# Sheffield Hallam University

Two dimensional diffusers with plenum and tailpipe discharge.

CHILTON, Brian W.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19460/

# A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19460/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions.

# TWO DIMENSIONAL DIFFUSERS WITH PLENUS AND TAILPIPE DISCHARGE.

A Dissertation Submitted to the C.N.A.A.

as Fulfilment for the Degree of Master of Philosophy.

by

# BRIAN W. CHILTON.

Dept. of Mechanical and Production Engineering, Sheffield Polytechnic.

ProQuest Number: 10694341

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.



ProQuest 10694341

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346



#### SUMMERY

Two dimensional diffusers, both with and without tailpipes, have been tested with different inlet boundary layer conditions and various diffuser geometries.

The effect on the developing boundary layer parameters within the diffuser and tailpipe are investigated for the various conditions. The interaction of all these various parameters are investigated and their effects on the diffuser performance determined.

A theoretical prediction technique based on the momentum integral equation and Head's entrainment function is developed and the prediction method tested against the experimental results. This prediction technique was shown to accurately predict the boundary layer and performance parameters for thin inlet boundary layers and low area ratios. I would like to express particular gratitude to Dr. E. F. C. Ferrett for his guidance and encouragement throughout the project.

Also to my wife Jenny for typing and re-typing this thesis.

I also thank the following for their assistance with this research project:-

- G. Artingstall.
- D. Lampard.
- 0. Bardsley.
- D. Croft.

The technicians and staff of the Dept. of Mechanical/Production Engineering, Sheffield Polytechnic.

# LIST OF CONTENTS.

|              |                                                                                                     | Page. |
|--------------|-----------------------------------------------------------------------------------------------------|-------|
|              | Introduction.                                                                                       | 1     |
| Chapter I    | Review of Previous Work.                                                                            | 6     |
| Chapter II   | The Present Investigation.                                                                          | 14    |
| Chapter III  | Flow Definitions and Performance Parameters.                                                        | 17    |
| Chapter IV   | Experimental Facilities                                                                             | 22    |
| Chapter V    | General Test Procedure and Range of Tests.                                                          | 28    |
| Chapter VI   | Data Reduction.                                                                                     | 32    |
| Chapter VII  | Reynolds Number Tests.                                                                              | 34    |
| Chapter VIII | Discussion of the Experimental Results.                                                             | 38    |
| Chapter IX   | Prediction of the Boundary Layer and Performance<br>Parameters.                                     | 49    |
| Chapter X    | Possible Extensions of Work.                                                                        | 57    |
| Chapter XI   | Main Conclusions.                                                                                   | 58    |
| 10           | References.                                                                                         | 65    |
|              | APPENDICES.                                                                                         | •     |
| Appendix 1   | Experimental Rig Design Calculations.                                                               | Al    |
| Appendix 2   | Investigation on Preliminary Axi-symmetric Riz.                                                     | A7    |
| Appendix 3   | Results of Inlet Pipe/Diffuser Streamline<br>Curvature on the Pressure at the Diffuser Inlet Plane. | A9    |
| Appendix 4   | Data Reduction Program.                                                                             | Alo   |
| Appendix 5   | Results of Reynolds Number Tests.                                                                   | A13   |
| Appendix 6   | Results of Diffuser Tests.                                                                          | A15   |
| Appendix 7   | Error Analysis.                                                                                     | A16   |
| Appendix 8   | Derivation of Formulae used in Main Text.                                                           | · A19 |

# LIST OF FIGURES.

| Figure No.                               |                                                               |
|------------------------------------------|---------------------------------------------------------------|
| 1                                        | Diffuser geometry.                                            |
| 2                                        | Comparison of the performance of straight walled diffusers.   |
| •                                        | (from Gibson).                                                |
| 3(a)                                     | Pressure recovery (from Kline et al).                         |
| 3(b)                                     | Effectiveness (from Kline et al).                             |
| 3(c)                                     | Pressure recovery/AR (from Kline et al).                      |
| . 3(d)                                   | Effectiveness/AR (from Kline et al).                          |
| 4                                        | Results of the investigations of Kelnhoffer and Derrick.      |
| 5                                        | Effects of including the tailpipe pressure rise in the per-   |
| •                                        | formance (from Kline et al).                                  |
| 6                                        | Effects of aspect ratio on performance (from Kline et al).    |
| 7                                        | Effects of turbulence intensity on performance.               |
| 8                                        | Cp / Reynolds number (from Hudimito).                         |
| · 9 ·                                    | Comparison of ideal and actual recovery in a diffuser /tail-  |
|                                          | pipe combination (from Kline et al).                          |
| 10                                       | Instataneous flow velocity/time.                              |
| 11(a)                                    | Experimental rig used for the preliminary boundary layer      |
| н на | investigation.                                                |
| 11(b)                                    | Preliminary experimental rig pressure tapping positions.      |
| 12                                       | Preliminary rig pressure tappings.                            |
| 13                                       | Boundary layer growth with distance from inlet for aysymetric |
|                                          | rig.                                                          |
| 14                                       | Schematic diagram of main experimental rig.                   |
| 15                                       | Settling chamber.                                             |
| 16(a)                                    | Thin inlet boundary layer velocity profile.                   |
| 16(b)                                    | Fully developed inlet boundary layer velocity profile.        |
| 17                                       | Inlet blending radius.                                        |
| 18                                       | Parallel walls showing one set of location slots for diffuser |
| · /                                      | and tailpipe.                                                 |
| ,                                        |                                                               |

•

| Figure No.     |                                                                    |
|----------------|--------------------------------------------------------------------|
| 19             | The diffuser and tailpipe ascembly.                                |
| 20             | The pitot traverse stations and static pressure tappings.          |
| 21             | Velocity profile at inlet using the combined 'pitot-static'        |
|                | head.                                                              |
| 22             | The pitot traverse.                                                |
| 23             | Schematic diagram of the instrumentation.                          |
| 24             | Alternative instrumentation used during the pilot investigation    |
| 25             | The initial positioning of the pitot tube.                         |
| 26(a)          | Typical computer plotted velocity profiles.                        |
| 26 <b>(</b> b) | Typical computer plotted performance parameters.                   |
| 27             | Flow chart for the data reduction program.                         |
| 28             | Pressure recovery/Reynolds number $(2\phi = 10^{\circ}, AR = 3)$ . |
| 29             | Pressure recovery/Reynolds number (various geometries).            |
| 30             | Effectiveness/Reynolds number $(2\phi = 10^{\circ}, AR = 3)$ .     |
| 31             | $28^{4}/w_{1}$ and H/Reynolds number for fully developed flow.     |
| 32             | Typical boundary layer velocity profiles.                          |
| 33             | Plenum discharge pressure recovery.                                |
| 34             | Boundary layer thickness and shape factor at the diffuser          |
|                | exit plane for plenum discharge $AR = 2$ .                         |
| - 35           | Boundary layer thickness and shape factor at the diffuser          |
|                | exit plane for plenum dishcarge $AR = 3$ .                         |
| 36             | Cp/AR for various divergence angles from experimental results.     |
| 37             | $\eta$ and $\eta_{\rm E}$ /Divergence angle for plenum discharge.  |
| 38             | Cp at the diffuser exit plane for both plenum and tailpipe         |
| ·<br>·         | discharge.                                                         |
| 39             | Shape factor and boundary layer thickness at diffuser exit to      |
|                | tailpipe (AR = 2).                                                 |
| 40             | Shape factor and boundary layer thickness ant diffuser exit        |
|                | to tailpipe (AR = 3)                                               |

Cp at a position 25 mm upstream of the diffuser exit plane for

٩.,

41 ./

|                                       | Figure No. |                                                                       |
|---------------------------------------|------------|-----------------------------------------------------------------------|
|                                       | 41 cont.   | both plenum and tailpipe discharge with a thin inlet                  |
|                                       |            | boundary layer.                                                       |
| •                                     | 42         | Pressure recovery after diffuser exit plane for plenum                |
|                                       | •          | discharge.                                                            |
| •                                     | 43         | Cp maximum in tailpipe and Cp at the diffuser exit plane              |
|                                       |            | for tailpipe discharge.                                               |
| . · · · ·                             | 44         | Maximum Cp for plenum and tailpipe discharge.                         |
|                                       | 45         | Position of Cp maximum downstream of diffuser exit plane.             |
|                                       | 46         | Typical velocity profiles at diffuser exit and in tailpipe.           |
| •                                     | 47         | Effectiveness for plenum and tailpipe discharge. (AR = 2).            |
| -<br>-                                | 48         | Effectiveness for plenum and tailpipe discharge (AR = 3).             |
|                                       | 49(a - f)  | $Cp/distance$ from inlet $(x/w_1)$                                    |
| •                                     | 49(g - 1)  | $\mathcal{M}$ and $\mathcal{M}_{E}$ /distance from inlet $(x/w_{i})$  |
|                                       | 50         | $\mathcal{H}_{E}$ /tailpipe length for different inlet boundary layer |
| ·                                     | •          | thickness.                                                            |
|                                       | 51         | '28 <sup>*</sup> /w and H/distance from inlet $(x/w_i)$ AR = 2.       |
|                                       | 52         | $2\delta^*/w$ and H/distance from inlet $(x/w_i)$ AR = 3.             |
|                                       | 53         | Stability criteria.                                                   |
|                                       | 54         | Velocity profiles in diffuser and tailpipe at the limit of            |
| •                                     | •          | flow stability.                                                       |
|                                       | <b>5</b> 5 | Stall in the diffuser.                                                |
|                                       | 56         | Experimental and theoretical $Cp/distance$ from inlet (AR = 2)        |
| •                                     |            | for plenum discharge.                                                 |
| · · · · · · · · · · · · · · · · · · · | 57         | Experimental and theoretical $Cp/distance$ from inlet (AR = 3)        |
|                                       |            | for plenum discharge.                                                 |
|                                       | 58         | Experimental a.d theoretical $Cp/distance$ from inlet (AR = 2)        |
| •                                     | •          | for tailpipe discharge.                                               |
|                                       | 59         | Experimental and theoretical Cp/ distance from inlet (AR = 3)         |
|                                       |            | for tailpipe discharge.                                               |
| •.                                    | 60         | Theoretical and experimental Cp/distance for a thick inlet            |
|                                       |            | boundary layer $(2\phi - 5)$ .                                        |

Figure No.

61

62

63

64

65

66

67

68

70

71

72

73

74

75

79

Theoretical and experimental Cp/distance for a thick inlet boundary layer ( $2\phi = 10^{\circ}$ ,  $15^{\circ}$ )

Theoretical and experimental Cp/distance from inlet for a fully developed inlet flow (AR - 3,  $2\phi = 5^{\circ}$ )

Cp experimental and theoretical for various inlet boundary layers  $(2\phi = 5^{\circ}, AR = 3)$ 

Theoretical and experimental boundary layer shape factor/ distance from inlet (5°, 10°)

Theoretical and experimental boundary layer shape factorE distance from inlet (15°)

Experimental and theoretical shape factor/distance from inlet for plenum and tailpipe discharge.

Experimental and theoretodal shape factor/distance from inlet for AR = 3, 15°, thick boundary layer for both plenum and tailpipe discharge.

Experimental and theoretical momentum thickness/distance from inlet, AR = 3, thin boundary layer, tailpipe discharge. Experimental and theoretical momentum thickness/distance from inlet for thin inlet boundary layer, plenum discharge and  $5^{\circ}$  $10^{\circ}$ , and  $15^{\circ}$  divergence angles.

Diffuser rig design conditions.

Pitot probe and sidewall models.

Errors in axisymmetric rig wall thickness.

Developing axisymmetric velocity profile.

Diffuser inlet effect on streamline curvature.

76 Data reduction program.

77 Comparison of actual exisymmetric and  $\frac{1}{7}$  th power law profile. 78 Accuracy of Simpson's rule rountine with no. of equal increments.

Element considered for momentum integral derivation.

80

Element considered for entrainment function.

# LIST OF TABLES.

| I    | The Configurations and Conditions Tested.                     |
|------|---------------------------------------------------------------|
| II   | Example of the Computer Computer Tabulation of the Parameters |
| III  | Comparison of Cp maximum for Tailpipe and Plenum Discharge.   |
| IV   | Comparison of Parameters for Plenum and Tailpipe Discharge.   |
| V    | Snape Factor Stability.                                       |
| VI   | Experimental against Theoretically Predicted Parameter.       |
| VII  | Inlet Pipe Pressure Drop.                                     |
| VIII | Inlet Streamline Curvature Effects.                           |
| IX   | Diffuser Tests.                                               |

# LIST OF PLATES.

- 1. The Main Diffuser Experimental Rig.
- 2. The Inlet Contraction and the Diffusing Section and Tailpipe.
- 3. The Pitot Traverse.
- 4. The Pitot Probe Head.
- 5. The Micromanometer.
- 6. The Multitube Manometer.

NOMENCLATURE.

|          |                                                    | •            | • . • .           |
|----------|----------------------------------------------------|--------------|-------------------|
|          |                                                    |              | Units.            |
| b        | Breadth of diffuser.                               |              | n                 |
| .i       | Length of tailpipe.                                |              |                   |
| L        | Length of diffuser wall.                           |              | III.              |
| N        | Length of diffuser.                                | •            | m                 |
| u        | Fluid velocity.                                    |              | m/s               |
| T :or uo | Freestream velocity (generally taken as o          | entreline va | lue) m/s          |
| ជ        | Mean velocity. (mass averaged velocity)            |              | m/s               |
| WI       | Inlet width. (Diffuser)                            | . •          | m                 |
| W2       | Outlet width.                                      |              | m                 |
| W        | Local width of duct.                               |              | · m               |
| ∝ -      | Kinetic energy correction factor                   | •            |                   |
| P        | Momentum correction factor                         |              | • • • •           |
| 2\$      | Divergence angle.                                  | •            |                   |
| x        | Distance from inlet of diffuser.                   |              | m                 |
| θ        | Momentum thickness.                                | •<br>•       | m .               |
| δ*       | Displacement thickness.                            |              | m                 |
| H        | Shape factor.                                      | • .          |                   |
| AR       | Area ratio. (v. /v.)                               |              | · .               |
| AS       | I 2<br>Inlet aspect ratio. b/w                     |              |                   |
| Cp       | Pressure recovery coefficient.                     |              |                   |
| M        | Effectiveness.                                     |              | •                 |
| ρ        | Density of fluid.                                  | С. н.        | kg/m <sup>3</sup> |
| Re(N_)   | Reynolds no. based on inlet width and me           | an velocity. | •                 |
| P .      | local static pressure.                             |              | $N/m_{mm}^2 E_20$ |
| p,       | Inlet static pressure.                             | • .          | $N/m^2, mm H_2O$  |
| jui<br>T | Mass flow.                                         | · •          | kg/s              |
| CpL      | Pressure recovery coefficient based on a pressure. | tailpipe     |                   |
| CpE      | Energy corrected Cp.                               |              |                   |

٩

•

|                            |                                                    |                           | Units.    |
|----------------------------|----------------------------------------------------|---------------------------|-----------|
| $\mathcal{M}_{\mathbf{F}}$ | Energy corrected M.                                |                           |           |
| ju                         | Viscostiy of fluid.                                |                           | kg/ns     |
| U                          | Kinematic viscosity of fluid.                      |                           | m /s      |
| <sup>Re</sup> ×            | Re based on length.                                |                           |           |
| L/W2 /                     | Length of tailpipe expressed in                    | diffuser exit widths.     |           |
| δ                          | Distance to edge of boundary la of boundary layer. | yer from wall i.e. thickn | iess<br>m |
| R.M.S.                     | Root mean square value.                            | <b>v</b>                  |           |
| М                          | Mach number                                        |                           |           |

#### INTRODUCTION.

In many fluid flow systems it is required to increase the static pressure in the system by means of decelerating the flow and reducing the kinetic energy of the fluid. Provided that the flow everywhere is subsonic this may be achieved with a diverging duct. These are used extensively in such systems as gas turbine intakes, venturimeters, wind tunnels and air conditioning systems.

This particular work is confined to two dimensional diffusers, although conical diffuser performance is included in the review of relevant work.

A two dimensional diffuser is one which has two components of velocity, one along and the other perpendicular to the longitudinal axis. This implies an infinite diffuser breadth which is not possible in practice. However, it has been shown that for ratio of breadth to width, known as the Aspect Ratio (AS), of greater than six, the sidewall effects are minimal (this is discussed in further detail in the following section). It is interesting to note that many large annular diffusers may be likened to a two dimensional diffuser having a large aspect ratio.

## (i) Diffuser Geometry.

A two dimensional diffuser geometry (shown in figure 1) may be described by a combination of various parameters.

The ones favoured in the present investigation are -

Area Ratio (AR) =  $w_2/w_1$ Divergence Angle =  $2\phi$ Inlet Aspect Ratio (AS) =  $b/w_1$ Distance from Inlet =  $x/w_1$ 



н 1 Two other possible parameters are:-

Diffuser Wall Length Ratio L/w,

Diffuser Axial Length Ratio N/w,

If a diffuser is followed by a tailpipe then an extra parameter:-

Tailpipe Length = n

(where n = length of tailpipe/tailpipe width).

In diffusers a corner radius is normally provided at the diffuser inlet and exit. These radii prevent the diffuser wall length and the axial length from being determined accurately. Therefore, in this work the ratios  $L/w_1$ and  $N/w_1$  have not been used. However, several earlier workers have expressed performance data in terms of  $L/w_1$  and  $N/w_1$  in addition to either area ratio (AR) or divergence angle (2¢).

Diffuser Performance and Flow Parameters.

(ii) Inlet boundary layer thickness.

The inlet boundary layer thickness is usually described by the ratio of displacement thickness to half the inlet width  $(2\delta^*/w_1)$ . The inlet boundary layer may also be described by a ratio of the momentum thickness to half the inlet width  $(20/w_1)$ . The shape of the velocity profile may be illustrated by the ratio of  $\delta^*/\theta$ , known as the shape factor (H). Fuller definitions of those boundary layer parameters will be included in chapter III.

(iii) Flow regimes.

(c)

There are three basic regimes of flow within a diffuser:-

- (a) Unseparated flow; This occurs when the boundary layer remains attached to the diffuser wall at all times.
- (b) Separated flow; It is generally accepted that this occurs when the boundary layer becomes detached from the wall (although it may re-attach at a later stage).
  - Stall; This occurs when a stagnant, recirculatory flow is present.

The fluid near the wall tends to move upstream. Stall is an advanced stage of flow separation.

There are various degrees of stall and separation in a diffuser, but the two preceding definitions are generally used to discriminate between separation and stall.

(iv) Performance parameters.

Several parameters are needed to assess diffuser performance, but the two most commonly used are:-

(a) The pressure recovery coefficient (Cp) which is defined as the ratio of the static pressure rise between any station downstream of the diffuser inlet (p) and the station at the diffuser inlet (p,), to the inlet dynamic pressure,  $\frac{1}{2}Q\bar{u}_{1}^{2}$ , where  $\bar{u}_{1}$ , is the mass averaged inlet velocity.

Hence  $Cp = (p - p_i)/\frac{1}{2} Q \pi_i^2$ 

(b) The diffuser effectiveness which is defined as the ratio of the static pressure rise between the station at inlet and a station downstream  $(p - p_{,})$ , and the dynamic pressure decrease between the two positions, which is  $\frac{1}{2}(Qu_{,}^{2} - Q\bar{u}_{2}^{2})$  therefore effectiveness  $(\gamma)$  for incompressible flow reduces to:-

$$\mathcal{H} = (p - p_i) / \frac{1}{2} \rho_i \bar{u}^2 (1 - 1/AR^2)$$

This is not an energy efficiency since it uses the mass averaged velocity ū in the calculation of the dynamic pressure.

A true energy efficiency may be obtained by taking into account the discrepancy incurred by using the value of mean velocity determined from the mass flow, (i.e.  $\bar{u} = \frac{1}{2} \sqrt{w} \int_{0}^{w} \rho \, u dw$ .). Hence the kinetic energy using  $\bar{u}$  will be;  $\frac{1}{2} \sqrt{u^3} w$  or  $\frac{1}{2} \int_{0}^{w} \rho \, \bar{u}^3 \, dw ----$  (1) The true kinetic energy is  $\frac{1}{2} \int_{0}^{w} \rho \, u^3 \, dw ----(2)$ Therefore to convert the mass averaged velocity value of kinetic energy to the true value of kinetic energy a kinetic energy correction factor  $\propto$  can be used. Thus from equations 1 and 2,  $\propto$  may be defined as:

 $\propto = \frac{1}{2} \int_{0}^{w} \rho u^{3} dw / \frac{1}{2} \int_{0}^{w} \rho \bar{u}^{3} dw$ -----(3a)

which reduces to:-

$$\propto = 1/\pi \int_{c}^{W} \left(\frac{u}{\overline{u}}\right)^{3} d\pi \quad \dots \quad (3b)$$
  
or  $\propto = 1/\pi \int_{0}^{W} \left(\frac{u}{\overline{u}}\right)^{3} dy$ 

Cp may be corrected to a true energy recovery.

$$Cp_{\mathsf{E}} = (p - p_{\mathsf{I}})/2 e\bar{u}^2 \propto,$$

and similarly for effectiveness

$$\mathcal{M}_{E} = (p - p_{i})/\frac{1}{2} \varrho(\propto_{i} \bar{u}_{i}^{2} - \propto_{i} \bar{u}^{2})$$

Other parameters used include:

The total pressure loss coefficient  $\lambda$  which is given by the expression;-

$$\lambda = 1 - (p - p_1) / \frac{1}{2} e^{\bar{u}_1^2} (1 - 1/AR^2)$$

Therefore  $\lambda = 1 - M$ 

Livesey however, points out that since the kinetic energy is uncorrected  $\lambda$  is not strictly a total pressure loss coefficient.

Another form of total pressure loss coefficient is used by Idel Chik :-

$$\xi = \frac{p - p_1}{\frac{1}{2} e^{\overline{u}_1^2}} \text{ or } \lambda \left(1 - \frac{1}{AR^2}\right)$$

# (v) Inlet parameters.

An important parameter used in describing the inlet flow condition is the Inlet Reynolds number (Re). This is usually based on the inlet width w, as the characteristic dimension. Hence the inlet Re. is

$$\underbrace{p_{\overline{u},\overline{w}}}_{(vi)}$$
 or  $\underline{u},\overline{w}$   
v

The various flow parameters used in this work are:-Re number (based on inlet width) =  $e^{\overline{u}_i \cdot v_i}$ 

$$\delta^*$$
 = displacement thickness (m)  
 $\theta$  = Nomentum thickness (m)  
 $H$  =  $\overset{\times}{\Theta}$  = shape factor.  
 $2\phi$  = Divergence angle of diffuser. (degrees)  
 $AP$  = Area Potio of diffuser = m (m

= Pressure recovery coefficient =  $(p - p_i)^{\frac{1}{2}} e^{(\overline{u}_i^2)}$ = Effectiveness =  $(p - p_i)^{\frac{1}{2}} e^{(\overline{u}_i^2 - \overline{u}^2)}$ = Kinetic energy correction factor =  $\frac{1}{W} \int_0^W (\frac{\overline{u}}{\overline{u}})^3 dy$ 

Cp

4 X

#### REVIEW OF PREVIOUS WORK.

Certain early work was done on diffusers by various workers such as BORDA<sup>33</sup> and VENTURI<sup>34</sup> in the 18th century, but the first really comprehensive study was carried out by GIBSON<sup>1</sup>. He published many papers on his work between 1910 and 1913. In his experiments he tested over 90 different diffusers, both plane walled and conical, with angles of divergence varying from 3° to 180° and area ratios from 2.25 to 10.96. His general conclusions on the effect of divergence angle and area ratio on pressure recovery have been borne out by subsequent workers in this field. An example of Gibsons introducing work is shown in figure 2.

I.1 Effects of Geometry.

I.l.l Area Ratio (AR) and Divergence Angle  $(2\phi)$ 

The effects of geometry of the diffuser has undergone extensive work and the optimum divergence angle has been found to be in the region of  $7^{\circ}$ , the exact angle varying with inlet and stream conditions.

KLINE et al conclude that the optimum divergence angle lies between  $6^{\circ}$  and  $3^{\circ}$ . At these angles of divergence the optimum effectiveness occurs at low area ratios (approximately 2 in unstalled diffusers). However, the optimum pressure recovery coefficient occurs at high area ratios with slight separation in the diffuser. These trends are shown in figures 3c and 3d. DERRICK and KELNHOFFER draw similar conclusions in their work, shown in figures 3d and 4.

Gibson, however, found the optimum pressure recovery coefficient to be dependent on diffuser type. His optimum divergence angles were  $5^{\circ}$  for conical,  $6^{\circ}$  for square and  $10^{\circ}$  for a two dimensional diffuser of AR = 4. This can be seen in figure 2. These values, however, are suspect since he used a tailpipe pressure tapping approximately two diffuser exit diameters downstream. More recent workers have shown that when a diffuser is credited with the pressure rise in the tailpipe, then the divergence





FIGURE .... 3(a)

€e. 1



EFFECTIVENES (From PLINE<sup>2</sup>)

FIGURE ... 3(b)









angle at optimum performance is increased by 2 to 3 degrees. Thus Kline postulates that the reason Gibson's work varies from the generally accepted values is due to this small tailpipe addition.

A later worker in this field VULLERS<sup>2</sup> carried out an investigation into the performance of diffusers with plenum discharge. He situated the diffuser just downstream of the fan discharge. There was no flow straightening of any kind between the fan and diffuser inlet. Since inlet flow symmetry and turbulence have a large effect on performance, and no inlet conditions were stated, his results have not been included in the review. More important work was done by HUDDIITO<sup>4</sup> in 1952. His diffuser performance ( $Cp_L$ ) was based on the maximum pressure in the tailpipe. He published data for area ratios of 1.5, 2.0 and 3.33 (shown in figure 5).

His results are consistent with those of  $GIBSON^{1}$  and shows the optimum tailpipe recovery to occur with a diffuser of AR = 3.33 and divergence angle  $10^{\circ}$  at a position 3.5 exit diameters downstream. The optimum value of Cp in the tailpipe was 0.82.

This value agrees with Kline's optimum of 0.82 for  $2\phi = 7^{\circ}$  with an AR= = 3.33 and a plenum discharge. However, Hudimito's value should be slightly higher due to the addition of the tailpipe. However, at optimum divergence angles, (7° for plenum discharge and 10° for tailpipe discharge) the difference between Cp and Cp<sub>1</sub> is so slight that it may be obscured by experimental error.

The following general conclusions on optimum area ratios and divergence angles may be drawn from previous workers.

1. The maximum diffuser performance occurs between  $6^{\circ}$  and  $8^{\circ}$ .

2. Optimum effectiveness occurs at area ratios of approximately 2.

3. Maximum values of Cp occurs at area ratios of approximately 3 or slightly greater.

4. The actual values of maxium pressure recovery coefficient increases from 0.65 and 0.35 as the inlet boundary layer decreases. This effect is shown in figures 3c and 3d. 1.1.2 ASpect Ratio (AS)

Little work has been conducted solely into the effect of Aspect Ratio (AS) on two dimensional diffuser performance. However, Kline'et al state that experimental evidence leads to the conclusion that aspect ratios greater than six will make sidewall effects insignificant (shown in figure 6). Even on small aspect ratio diffusers (AS = 1), it appears that aspect ratio is a much less important factor than Area Ratio in governing the performance of the Unstalled diffuser. However aspect ratio must be taken into account when results such as those of DERRICK  $^5$  and KELNHOFFER, are assessed. (Derrick and Kelnhoffer investigated a diffuser having an aspect ratio less than unity).

1.2 Effect of Inlet Boundary Layer Conditions.
 1.2.1 Boundary Layer Thickness.

The effect of boundary layer thickness appears to be one of the most significant factors governing diffuser performance. Therefore work which does not state the inlet boundary layer condition is of little practical value.

The inlet boundary layer thickness is described by the ratio of the displacement thickness to half the inlet width i.e.  $2\delta^*/W_1$ . DERRICK<sup>5</sup> who uses fully developed flow conditions  $(2\delta^*_{W_1} = 0.11)$ , states that the inlet boundary layer thickness for a fixed geometry diffuser establishes the absolute maximum Cp for that diffuser. Further, the inlet conditions affect the performance more than flow regime. He states that generally as the inlet boundary layer thickness increases, then Cp and  $\gamma$  decrease (this is shown in figure 3c and 3d).

KLINE<sup>2</sup> has done extensive work on the effect of the inlet boundary layer thickness, from  $2\frac{1}{W_1} = 0.007$  (which he uses to define a thin boundary layer) to  $2\frac{1}{W_1} = 0.05$ . It may be noted that fully developed flow at the inlet would have a value of  $2\frac{1}{W_1}$  of around 0.11. (This has been found during preliminary investigations in the present work).

Kline has 'mapped' these inlet conditions for various divergence angles and area ratios, (Examples of these can be seen in figures 3a, 3b).



Effects of aspect ratio on performance for constant inlet boundary layer thickness on all four walls  $2\delta^{7'}/v_4=0.015$ ,

FIGURE ... 6

Using this data, figures 3c, and 3d were plotted. These show that for optimum geometric conditions (AR = 3.0,  $2\phi = 7^{\circ}$ ), the variation of inlet boundary layer thickness from  $2\delta_{W_1}^{\prime\prime} = 0.007$  to 0.05 reduces the maximum Cp from 0.85 to 0.65. Kline et al also note that increases in boundary layer thickness are usually generated by an increased inlet pipe length. This increase may, however, have the effect of increasing the turbulence intensity, (to be discussed later) which also has an effect on performance.

There is a limited amount of data for fully developed flow at inlet. WAITHAN<sup>6</sup> for this inlet condition shows that peak recovery occurs at divergence angles between  $10^{\circ}$  and  $20^{\circ}$ .

Another inlet parameter which has an effect on performance is the boundary layer shape factor H. MOORE and KLINE<sup>7</sup> note that shape factor H and  $2\delta^{*}/w_{1}$ together probably have an effect on performance but did not investigate it. 1.2.2 Turbulence Intensity  $(\sqrt{u'^{2}}/\overline{U})$ 

The level of turbulence intensity affects the performance of the diffuser. Turbulence intensity being defined as the ratio root mean square value of the flow velocity fluctuations,  $\sqrt{\overline{u}^{/2}}$  to the mean velocity of the flow  $\overline{\overline{u}}$ ,  $(\sqrt{\overline{u}^{'2}}/\overline{\overline{u}})$ .

WAITMAN, RENEAU and KLINE<sup>6</sup> observed that the level of turbulence affected the angle at which stall inception occurred. They noted that, generally, in small diffusers with divergence angles of less than 20°, low turbulence levels delay stall inception. However, at higher divergence angles and larger diffuser wall lengths, higher inlet turbulence levels delay stall inception. They conclude that pressure recovery is a function of both inlet turbulence intensity and the boundary layer thickness. These results are shown in figure 7.

Kline et al conclude that with a turbulence intensity of less than  $\frac{7}{7}$ , the flow will be unaffected. If turbulence levels exceed  $\frac{7}{7}$ , then a large transitory stall regime will only occur at higher area ratios.



100



FIGURE .... 7

will have little effect but with high inlet turbulence intensities ( $\geq 5_{12}$ ) the onset of stall is delayed and therefore pressure recovery may be slightly increased.

1.3

#### Diffuser Performance.

Kline et al show conclusively that optimum performance occurs at low area ratios, (2 to 3), divergence angles between  $6^{\circ}$  to 10° and a thin inlet boundary layer. They also conclude that the optimum pressure recovery occurs in a large area ratio diffuser, (approximately 3), at the onset of slight flow separation. If, however, flow separation increases pressure pressure recovery will fall. Kline et al postulate a criterian for the detachment of the boundary layer which correlates the peak recovery geometry. Their criterion is that the flow will leave the diffuser wall when the local momentum thickness gradient reaches 0.012 i.e.  $\frac{\partial \theta}{\partial x} = 0.012$ . This they call their detachment criterion and is derived in ref. 2 chapter 5.

I.4

# Reynolds Number Effects (Re)

Reynolds number for a diffuser is generally based on the inlet width or diameter. Kline in his extensive work on two dimensional diffusers assumed that Reynolds Number (based on inlet width) had no significant effect over the range of his tests. Although the Reynolds Number did vary, Kline carried out no tests to substantiate this view. COCKRELL and MARKLAND<sup>29</sup> conclude that Reynolds Number is only important in its effect on the size of the boundary layer thickness.

Similarly FERENT<sup>21</sup> notes that in theory for a given diffuser geometry and upstream conditions then a variation in Reynolds Number will vary the inlet boundary layer thickness, and therefore performance. Secondly he points out that for a given inlet boundary layer thickness the Reynolds Number will affect the rate of growth of the boundary layer within the diffuser and hence performance. He goes on to point out that if one considers a simple power law velocity profile then it is evident that as Reynolds Number increases then  $28\frac{\%}{W_4}$  will be reduced. This trend is shown in his experimental work where he found  $\frac{4}{3}$  and Cp to increase until Reynolds Number reaches 2 x 10<sup>5</sup>
after which he notes that further increases in Reynolds Number produce no detectable increases in Cp or 47.

RIPPL<sup>11</sup>, found that Cp was essentially constant in both conical and two dimensional diffusers for a variation in Reynolds Number from 8 x 10<sup>4</sup> to  $6 \times 10^5$ . GIBSON<sup>1</sup> in 1910 also stated that he found no change in performance with Reynolds Number over the range used in his work,  $(4 \times 10^4 \text{ to } 2 \times 10^5)$ but gives no further information about his tests. YOUNG and GREEN did tests from Reynolds Numbers of 1 x 10<sup>5</sup> to 1 x 10<sup>6</sup> and their data shows that up to the transonic region the: Reynolds number effects were negligible. MOORE and KLINE<sup>7</sup>, and FOX and KLINE<sup>13</sup> did not find any variation in performance with Reynolds Number, although the tests were confined to Reynolds Numbers of 5 x 10<sup>3</sup> to 2 x 10<sup>4</sup>.

Kline, however, suggests three possible effects on performance of Reynolds Number variation.

- (i) If the Reynolds Humber is below 2 x 10<sup>4</sup>, then an increase in Reynolds
  Number will produce an increase in performance parameters.
- (ii) If Reynolds Number is above 2 x 10<sup>4</sup> and either a jet flow regime exists or the performance charateristics have not reached their optimum values, then there is still a slight Reynolds Number dependence.

(iii) Optimum performance is independent of Reynolds Number.

HUDENITO<sup>4</sup> did publish some data on Reynolds Number effects, (shown in figure 8). He showed that for a particular diffuser (AR = 3.33, N/ $v_1$  = 16.67,  $2\phi = 7^{\circ}42^{\circ}$ ) the maximum pressure coefficient, Cp<sub>L</sub>, increased by 30% as the Reynolds Number increased from 3 x 10<sup>3</sup> to 3 x 10<sup>4</sup>. As the Reynolds Number was increased above 3 x 10<sup>4</sup>, the increase in Cp<sub>L</sub> was much reduced. The maximum Reynolds Number was 5 x 10<sup>4</sup>. This value corresponds to the lower limit uned by most workers in the field.

It is important to note that for many of these reported tests, particularly those at low Reynold's Number, the apparent effect of performance was not simply due to the transition of laminar to turbulent flow.

#### Tailpipe Addition.

The effect of tailpipe addition has been investigated by numerous workers.

I:5



The first being that of GIBSON, who used the tailpipe pressure to compute the performance of his diffusers.

From his data it can be estimated that his tailpipe had a length of approximately two outlet diameters  $\binom{L}{W_2} = 2$ , and his optimum tailpipe pressure recovery (Cp<sub>L</sub>) occurred with a divergence angle of 11° (with two dimensional diffusers). KLINE<sup>2</sup> et al also did work on the effect of constant area ducts following the diffuser. He postulates that the pressure rise in the first part of the tailpipe is due to the increased uniformity of the velocity profile. However he concluded that the value of pressure recovery (Cp) at the exit plane of the diffuser was independent of the tailpipe to within the uncertainty of the data.

The fraction of pressure recovery which occurred in the tailpipe ( $\Delta$  Cp ) was small (up to 7%) for diffusers operating without flow separation. However it increased as the amount of separation increased until transitory stall was established, when it was about 30%. REID<sup>16</sup> showed that the addition of a tailpipe improved the performance of the diffuser and increased the divergence angle required for optimum performance. HUDENITO<sup>4</sup> also found that the pressure recovery (Cp) increases when a tailpipe was added to the diffuser (shown in figure 9 and also figure 5). For a diffuser of L/w, = 16.67, 2¢ = 7°42°, and an area ratio 3.33, then the maximum Cp<sub>L</sub> occurred in the tailpipe at 3.5 exit widths dowstream ( $\frac{L}{W_2}$ .

COCKHELL and MARKLAND<sup>29</sup> also found that for a configuration of  $15^{\circ}$  divergence angle, AR = 2.25 with a fully developed flow, the addition of a tailpipe increases the overall recovery increases dramatically by about  $60^{\prime}_{i}$ .

KELNHOFFER and DERRICK<sup>5</sup> state that performance increased by the addition of a tailpipe of 6 hydraulic diameters long. Kline in discussing Derricks paper suggests that complete velocity transverses of tailpipe and diffuser could be taken and would be a worth while topic of research.

MACIONALD and FOX<sup>31</sup> observed that such large variations occurred between plenum discharge and tailpipe that the use of plenum dishcarge data to predict tailpipe discharge performance could lead to serious errors being incurred.



In conclusion it seems generally agreed that the addition of a tailpipe will increase performance, (except at very low divergence angles) due to the improvement in the velocity profiles in the tailpipe and the subsequent momentum recovery.

#### Chapter Two.

#### THE PRESENT INVESTIGATION.

II.1 Main Indications of the Review.II.1.1 The Diffuser Geometry.

Most of the work reviewed in chapter I was concerned with either two dimensional or axisymetric diffusers having plenum or tailpipe discharge. The various divergence angles and area ratios have been covered comprehensively. II.1.2 Diffuser performance

The previous chapter indicates that the optimum performance occurs when the divergence angle occurs between  $7^{\circ}$  and  $10^{\circ}$  and the area ratio lies between two and three for a two dimensional diffuser. The actual angle and area ratio is dependent on the inlet and outlet conditions, effectiveness decreases for area ratios above two and pressure recovery coefficient (Cp) decreases for area ratios above three, also an increase in area ratio appears to promote separation. The effect of the diffuser inlet boundary layer thickness is reasonably conclusive. As the boundary layer thickens, it adversely affects the diffusers overall performance, however, it must be noted that the method of boundary layer generation could be of some importance due to flow turbulence effects.

The presence of a downstream tailpipe appears to increase performance in high area ratios, high divergence angle diffusers. • However the developing velocity profile within the diffuser (and tailpipe if fitted) appears to have been largely ignored.

The effect of Reynolds Number (Re) (based on inlet width) appears a little uncertain, since many workers have assumed its effects to be negligible but not carried out tests to verify their assumptions. It would however, appear that most workers have assumed that for Reynolds Numbers (Re) above  $5 \times 10^4$  the effect of Reynolds Number (Re) is small. Though the inlet boundary layer thickness would appear to significantly affect this point of independence.

The effect of turbulence intensity has not received much attention, however, the work done on this seemed to be in agreement as to its effect. For values of turbulence intensity less than  $\frac{\pi}{2}$  the performance will be unaffected, above  $\frac{\pi}{2}$ , however, the boundary layer stability is improved and the onset of a transitory stall regime will tend to only occur at high area ratios.

II.2

## The Present Investigation

It has been shown by the literature survey that a diffuser with plenum discharge has an optimum geometrical configuration (for maximum pressure recovery (Cp) ) of approximately  $7^{\circ}$  divergence angle and an area ratio (AR) of 3. A diffuser with a tailpipe fitted (i.e. a parallel duct mounted downstream of the diffuser exit) has an optimum congiguration of 10° divergence angle and an area ratio (AR) of approximately 3. It has however been noted that the developing velocity profile within the diffuser and tailpipe has been largely ignored, although some workers comment on the usefulness of such information. This is surprising since it is the improvement on the velocity profile of the tailpipe which yields a better performance for the overall diffuser tailpipe combination. It was therefore decided to investigate, both theoretically and experimentally the developing boundary layer parameters within the diffuser and tailpipe and their effect on the performance parameters. Also the effect on the overall performance by the addition of a tailpipe was investigated.

-For the theoretical investigation the Integral method used by Ferrett<sup>21</sup> was further developed for application to two dimensional diffusers, both with and without tailpipes. This method is based on the Momentum integral equation and uses the concept of entrainment as postulated by Head for the "auxiliary" equation. However the assumptions of the Head method are only valid if a substantial potential core flow exists at all points in the system. Therefore recordings of the developing elocity profile enabled the potential core to be measured at various stations along the diffuser and tailpipe. A preliminary investigation was carried out on an axisymetric parallel walled rig, to determine the length of inlet pipe required upstream of the diffuser to produce the required inlet boundary layer conditions. With this data a rig was designed and constructed to give three different diffuser inlet boundary layer thicknesses from  $2\int_{W_1}^{\infty} = 0.01$  to fully developed  $(2\delta_{W_1}^{\infty} = 0.11)$ ; three divergence angles of 5°, 10° and 15°; two area ratios for each divergence angle and either plenum or tailpipe discharge. The rig was also constructed so that velocity traverses could be taken at various stations along both the diffuser and tailpipe to facilitate investigation of the developing velocity profile.

With this rig all thirty six different configurations were tested and the developing velocity profiles measured. Also a test to determine the effect of terminating the tailpipe at the maximum pressure position was performed.

Tests were also carried out on one configuration to determine the effects of increasing Reynolds Number on performance for the three different inlet boundary layer thicknesses.

#### Chapter Three.

#### FLOW DEFINITIONS AND PERFORMANCE PARAMETERS.

III.l

#### Boundary Layer Definitions.

These boundary layer definitions are true for two dimensional flow only (i.e. flow parallel to and perpendicular to the flow direction in one plane only). Fuller derivations can be found in appendix 8. III.1.1 Displacement Thickness ( $\delta^{\times}$ )

This is defined as the distance by which the wall would be required to move towards the centreline of the diffuser if there were no boundary layer present (i.e. flow velocity was at the free steam or centre line value at all points, uniform flow velocity) to maintain the same mass flow. This is denoted by the symbol  $\delta^{\times}$  and has the value  $\delta^{\times} = \int_{0}^{\delta} (1 - \frac{u}{u_{0}}) dw$ . III.1.2 Momentum Thickness ( $\theta$ )

The Momentum Thickness has no strict physical meaning as in the case of  $\delta^{\star}$ , though for the two dimensional case it can however be defined as the distance by which the wall would have to be moved to maintain a constant flow of momentum flux past the position if the flow velocity was uniformly at the mainstream velocity. Though this does not hold for the axisymetric case. For two dimensional flow  $\theta = \int_{0}^{\infty} \frac{\omega}{\omega_{c}} (1 - \frac{\omega}{\omega_{c}}) dw$ , Momentum Thickness ( $\theta$ ) is strictly the distance the wall would have to be moved to pass the deficiency in momentum flux through that space at the mainstream velocity but for two dimensional case the distances are the same, but they are not for the axisymetric case.

III.1.3 Shape Factor (H)

This is the ratio of displacement thickness  $(\delta)$  to momentum thickness  $(\theta)$  and is denoted by the symbol H. This is an important flow parameter and since it partially defines the shape of a velocity profile, can be used to give an indication of the onset of separation. This senerally accepted to occur when H exceeds 1.8 for non diverging flows. For diverging flows values of H in the region of 2.5 to 3 may be obtained before separation occurs.

It can also indicate flow irregularities and asymmetry.

III.2

#### Flow Properties.

III.2.1 Mean Velocity.

For the purpose of this work the mass averaged velocity u was used which can be defined as the velocity required to give the same mass flow along the duct and therefore must have a value of  $\bar{u} = 1/e^w \int_c^w u dw$ , therefore for incompressible flow would have a value of  $\bar{u} = 1/w \int_c^w u dw$ . Since this value is obtained from mass flow equivalence, a kinetic energy correction factor  $\propto$ 

must be used for kinetic energy equivalence  $(\propto = \sqrt[]{w} \int_{c}^{w} \left(\frac{u}{\bar{u}}\right)^{3} dw)$  and similarly for momentum flux equivalence a momentum correction factor  $\beta$  would be required  $(\beta = \sqrt[]{w} \int_{c}^{w} \left(\frac{u}{\bar{u}}\right)^{2} dw).$ 

III.2.2 Flow Steadiness (or Unsteadiness).

The unsteadiness is usually quoted as the ratio of the maximum fluctuation in the static pressure to the mean static pressure i.e. unsteadiness=(pmax -  $p \min$ )/p)

III.2.3 Reynolds Number (Re).

The Reynolds Number for the present investigation is determined using the mass averaged flow velocity at the inlet to the diffuser and the viscosity, density and the width at the diffuser inlet station:  $(\text{Re} = \rho_1 u_1 w_2 / u_1)$ III.2.4 Fluid Properties.

Since the flow velocities are low, any local Mach number will be less than 0.25 and the flow may be assumed incompressible. This implies that temperatures are constant along the duct and thus density and viscosity variations may be ignored. In addition static pressure and temperature may be assumed to remain constant across any cross section.

It may be noted that errors will be incurred here particularly in the case of density since static pressure is not constant along the duct, however, the error is less than  $\frac{\pi}{2}$ . This error could be eliminated for certain parameters using the static pressure at the point in question for the calculation of the density instead of using the inlet station values.

There are three basic regimes of flow, these are;-

(a) Unseparated flow, this occurs when the boundary layer remains attached to the diffuser wall at all times.

(b) Separated flow; It is generally accepted that this occurs when the boundary layer becomes detached from the wall (though it may re-attach at a later stage).

(c) Stall; This occurs when a stagnant, recirculating flow is present and the fluid near the wall tends to move upstream. Stall is an advanced stage of flow separation.

There are various degrees of stall and separation within a diffuser, but the two preceding definitions are generally used to discriminate between stall and separation.

III.4 Turbulence Intensity.

The level of turbulence present in the flow is expressed as the R.M.S value of the flow velocity fluctuations,  $\sqrt{u'^2}$  to the mean velocity of the flow  $\overline{U}$ , i.e.  $\sqrt{u'^2}$  this can be seen in figure 10.

III.5 Performance Parameters.

The performance parameters chosen to be of interest in this investigation were:-

(a) The Pressure Recovery Coefficient (Cp). This is defined as the ratio of the static pressure rise between the diffuser inlet and enother station downstream, and the inlet value of  $\frac{1}{2} \in \overline{u_i}^2$  of the fluid, where  $\overline{u}$  is the mass averaged velocity and therefore  $\frac{1}{2} \in \overline{u_i}^2$ is not the true inlet kinetic energy of the fluid. Therefore  $Cp = (p - p_i) / \frac{1}{2} e^{\overline{u_i}^2}$ .

This is the parameter of general interest to the designer since diffusers are included to increase the static pressure at the expense of the flow kinetic energy. Cp therefore gives a guide to the relationship between the two parameters.



(b) Energy Corrected Cp. (Cp<sub>F</sub>).

This is the value of Cp previously defined but corrected for the error incurred by calculating the inlet kinetic energy with the mass averaged velocity. This is achieved by including the kinetic energy correction factor ( $\propto$ ), defined earlier as  $\sqrt[4]{w} \int_{c}^{w} \left(\frac{\omega}{d}\right)^{3} dw$ .

Therefore  $Cp_E$  can be expressed as:-  $Cp_E = Cp_{\chi} = (p - p_1)/\frac{1}{Z} \propto (P_1 \overline{u}_1^2)$ . (c) Effectiveness of the Diffuser.  $(\gamma_1)$ .

Effectiveness is defined as the ratio of the pressure change between the inlet and a downstream station and the change in the "Kinetic Energy" between the two stations (Again based on mass averaged velocities, therefore, the effectiveness is not a true energy efficiency).

$$\mathcal{M} = (p - p_1) \frac{1}{2} (\rho_1 \tilde{u}_1^2 - \rho_1 \tilde{u}_1^2)$$

for incompressible flow can be expressed as

$$\mathcal{Y} = (p - p_1) \frac{1}{2} C_1 (\bar{u}_1^2 - \bar{u}_2^2) \text{ or } (p - p_1) \frac{1}{2} C_1 \bar{u}_1^2 (1 - 1/AR^2).$$

The effectiveness, as its name implies gives a rough guide to the effectiveness of the diffuser in converting kinetic energy to a static pressure rise. This is not however an energy efficiency due to the error incurred in using the mass averaged velocities.

(d) Energy Corrected Effectiveness  $(\mathcal{Y}_F)$ .

The energy corrected effectiveness of a diffuser has the same definition as the effectiveness except that the kinetic energies based on mass averaged velocities are corrected by the inclusion of a kinetic energy correction factor  $\propto$  for each station, therefore,  $\mathcal{N}_{\mathcal{E}}$  can be expressed as:-

$$M_{E} = (p - p_{i}) / \frac{1}{2} (\rho_{i} \bar{u}_{i}^{2} \alpha_{i} - \rho_{i} \bar{u}^{2} \alpha_{i})$$

or for incompressible flow

$$\mathcal{M}_{\varepsilon} = (\mathbf{p} - \mathbf{p}_i) / \frac{1}{2} \rho \left( \bar{u}_i^2 \dot{\mathbf{x}}_i - \bar{u}^2 \boldsymbol{x} \right)$$

$$M_{E} = c_{P} / (\alpha_{1} - \alpha / AR^{2})$$

(e) Loss coefficients.

The most general loss coefficient used ( $\lambda$ ) is expressed as:-

$$\lambda = 1 - (p - p_i) / \frac{1}{2} \rho \overline{u}_i^2 (1 - 1/AR^2) = 1 - \gamma$$

This expresses the loss as a total pressure loss through the diffuser, but as with effectiveness ( $\mathcal{M}$ ) does not give the true energy loss since it employs the mass averaged velocity and would therefore have to have a uniform flow velocity at both stations to give an energy loss coefficient. An energy corrected total loss coefficient is given by the expression:

 $K_t = \alpha_1 - Cp - \alpha (A_1/A)^2$ 

#### Chapter Four.

#### EXPERIMENTAL FACILITIES.

IV.1

### Choice of the Experimental Rig.

The work of Kline et al and Kelnhoffer and Derick described in chapter I, indicated that areas of interest for optimum diffuser performance were, angles of divergence from  $5^{\circ}$  to  $15^{\circ}$  and area ratios in the range of 2 to 3. It was therefore decided to construct a variable geometry diffuser having three possible divergence angles,  $5^{\circ}$ ,  $10^{\circ}$  and  $15^{\circ}$  and two area ratios, 2 and 3. To this was added a detachable tailpipe which could be varied in length to a maximum of 12 diffuser exit widths for AR = 3, and 18 diffuser exit widths for AR = 2. It was also required that the boundary layer could be interchanged at the inlet to the diffuser between thin, thick and fully developed.

The method used to vary the inlet boundary layer thickness was to make the duct length variable. This particular method was chosen because the duct could be constructed easily and significant variations in turbulence intensity and velocity profile distortion were unlikely. In addition the use of a duct enabled a series of static pressure tappings to be positioned at various stations upstream of the diffuser inlet. Hence the effect of streanline curvature on the diffuser inlet static pressure could be examined and the static pressure reading corrected by extrapolating results taken along the duct upstream of the zone affected by streadline curvature. For the three inlet boundary layer thicknesses, the inlet duct was required to be three different lengths. The values of boundary layer thickness chosen (based on the displacement thickness/half the duct width) were 0.01, and 0.06 for the thin and thick boundary layers respectively, and from a simple power law analysis a fully developed inlet flow was found to be in the region of 0.11.

To determine the actual duct lengths required for these boundary layer conditions a preliminary investigation was carried out on a 3" diameter brass tube. Since these results were for an axisymetric case the values of  $2\delta^{*}/D$ were therefore smaller than required values of  $2\delta^{*}/w_{i}$ , but since this effect reduces with the boundary layer thickness a fair comparison can be made if suitable allowance is made.

IV.2

## Preliminary Investigation

A brass tube shown schematically in figures lla and llb, was used to carry out a preliminary investigation into the growth of a turbulent boundary layer. A pitot traverse (shown in figure 22) was located in tappings and traverses of the developing boundary layer made, (the tappings are shown in figure 12). The results obtained (figure 13), clearly show that for a fully developed flow,  $2\delta^{*}/D = 0.084$  for axisymetric case, an inlet pipe length of x/D in the region of 32 to 36 is required. Therefore, a value of  $x/w_1$  of 37 was chosen for the two dimensional case giving a  $2\delta^*/w_1$  value For a value of  $2S^*/w_1$  of 0.06 the relationof 0.11 at the diffuser inlet. ship shows that x/D values in the range of 11 to 12 for the axisymetric case, give the required boundary layer thickness, but since the two dimensional boundary layer has a larger  $2S^*/w_1$  than for the axisymetric case and the boundary layer growth is slower, a value of 13 was chosen, i.e. 1 metre. For the thin inlet boundary layer a value of x/w of 1 was chosen this being the smallest value allowable to avoid the effects of the boundary layer (The trip wire is described later in this chapter). trip wire. The values of  $x/w_1 = 37$ , 13 and 1 gave diffuser rig inlet boundary layer values of  $2S^*/w$ , of; 0.11, 0.06 and 0.01 respectively, (The full results of the preliminary investigation are shown in appendix 2.). These values of inlet duct length, determined from the preliminary investigation, were all substantiated by early tests on the main diffuser experimental rig.

IV.3

Diffuser Rig Design.

The experimental diffuser rig, shown schematically in figure 14, consisted of a radial flow fan, settling chamber contraction and experimental diffuser rig. From the previous work of other researchers, summarised in chapter one, it has been shown that for sidewall effects to be minimal, the aspect ratio (AS) should be at least six. Therefore, an inlet aspect ratio of eight was chosen. The width of the duct was determined from consideration of the









minimum dimension which could be accurately traversed by a pitot tube in the boundary layer. To satisfy this objective it was decided that the width of the duct would have to be at least 80 mm., thus giving a duct breadth of 640mm.

The investigation was only concerned with incompressible flow (the mach number being less than 0.25). This required a volumetric flow in the region of 7,600 cubic ft/min. at delivery pressures from 50 mm. to 250 mm water gauge (the preliminary calculations made to estimate these quantities are shown in appendix 1). It was decided that the best means of acheiving this large variation in delivery pressure, without resorting to a variable speed fan, was by using a 24 inch, backward curved aerofoil section radial flow fan running at 2100 rpm, powered by a 25 h.p. motor, with a radially feathering damper at the inlet to the fan. However it was found during preliminary investigations that with a small back pressure (50 mm w.g.), the fan needed to be damped to a very low inlet area. This caused the fan discharge to become very unstable, producing both a flow which pulsated severely and excessive vibration of the fan and the experimental rig. Thus it was found necessary to slow the fan speed down to 1800 rpm. for the thin and thick inlet boundary layer conditions. This measure produced a steady and non pulsating flow. Settling Chamber and Contractions. IV. 3.2

The fan discharged through a flexible coupling into a 0.6 metre x 1 metre x 2 metres long settling chamber. The settling chamber (shown in figure 15) consisted of five sets of 28 s.w.g. x 16 mesh wire gauzes and two  $\frac{3}{2}$ " cell by 75 mm long aluminium honeycomb flow straighteners ( $\frac{3}{2}$ " x 75 mm gives a cell diameter to cell length ratio of  $\frac{1}{2}$  as recommended by the National Physical Laboratory in their publication N.P.L. 1218.<sup>26</sup>).

This settling chamber discharged into a perspex contraction, constructed to N.P.L 1218 specification (The co-ordinates of the contraction profile are given in appendix 1) to give a thin boundary layer and uniform profile (shown in figure 16a) at the exit. In order to ensure that the boundary layer was turbulent on exit from the contraction the boundary layer was 'tripped'. From Pankhurst and Holders text "Wind Tunnel Technique" it was calculated that







## The Main Diffuser Experimental Fagcilities.

# PLATE.....l

a boundary layer trip wire of diameter (.25 mm at the contraction exit plane would be required to effect this, thus ensuring a turbulent boundary layer on entry to the diffusing section. (calculation shown in appendix 1). IV.3.3 Diffuser and Tailpipe.

The flow from the contraction passed into the inlet duct, whose dimensions (mentioned previously in this chapter) were determined by the boundary layer thickness required at the inlet plane of the diffuser. Then the flow entered the experimental diffuser and tailpipe.

The inlet of the diffuser was given a l2mm blending radius on the corner, as shown in figure 17. This was to reduce the probability of the boundary separating from the wall on entering the diffuser. A blending radius was also given to the diffuser/tailpipe joint though the effects on the boundary layer here would not be as serious as they could be at the inlet since a sharp corner would not tend to separate the boundary layer from the wall at this point.

The diffuser/tailpipe rig was constructed from 1" thick perspex sidewalls with slots milled along them. These slots enabled the diffuser and tailpipe walls, which were both constructed of  $\frac{1}{2}$ " perspex sheet, to be located in position. This enabled the various configurations of the diffuser and tailpipe (12 in all) to be changed quickly. The walls were sealed in the slots by slicone grease and the joints taped to prevent air leakage. The complete assembly was secured to the inlet section by a flange at the inlet of the diffusing section. The bars were used to clamp the sidewalls and thus secure the whole assembly rigidly together. This can be seen in figures 18 and 19.

IV. 3.4 Static and Pitot Tappings.

The velocity of flow was measured by a pitot traverse which was located in tappings as shown in figure 20. Initially it was envisaged to use these tappings for both the pitot and the static pressure tappings, by incorporating a 0.6mm diameter hole in the locating head for the pitot traverse, and therefore to obtain the dynamic head directly. Unfortunately a certain amount



FIGURE....16(a)



FIGURE....16()



## INLET BLENDING RADIUS

FIGURE....17



THE DIFTUSER AND TAILPIPE ASSEMBLY.

FIGURE...19



The Inlet Contraction



The Diffusing and Tailpipe sections

# PLATE ..... 2

of interaction was experienced between the pitot head and the static tapping when the pitot head was traversing close to the wall which caused inaccuracies in the dynamic head (shown by an apparent distortion of the velocity profile, figure 21). Finally an independent static tapping of 0.8mm diameter was incorporated as shown in figure 20.

Instrumentation.

IV. 4.1 Pitot Probe.

**IV.4** 

The actual pitot traverse was taken from a design used by Ferrett<sup>21</sup> in his investigation into truncated conical diffusers.

The actual pitot locating head was larger and the pitot probe was of a larger diameter, 0.6mm diameter with a bore of 0.15 mm diameter. This was done to reduce the response time of the instrument and thus remove the necessity for balancing manometers or other arrangements. Also a spring was incorporated in the micrometer screw movement to remove any backlash. The instrument is shown in figure 22.

The pitot was traversed perpendicular to the diffuser wall since it was the boundary layer which was of major interest, and the cosine error at the centreline was at a maximum less than 1%. Due to the thickness of the pitot probe tubing (0.8mm) some rotation of the end was experienced due to drag. This was calculated, (shown in appendix 1) and found to be never more than  $.2^{\circ}20^{\circ}$  which gave an error of 0.08% and was neglected.

IV.4.2 Hanometers.

The pitot probe, which was described previously was connected to an "Airflow Developments" manometer graduated in 1.0mm's water gauge intervals from - 10mm to 600mm. Due to the distance between the graduations, approximately 1.5mm, it is unlikely that the readings taken are of a greater accuracy than  $\pm$  0.5mm of water gauge. The static pressure side of the manometer was also connected to a T.E.M micromanometer. This micromanometer was graduated in 0.2mm of water gauge which was magnified by an optical system and had a range of 0.0 to 600.0 mm of water gauge. The probable accuracy of this instrument was in the region of  $\pm 10.1$ mm of water. The



This dimension was determined when all the tappings where in position. The tappings were all measured then machined to the smallest size to < 0.0000",-0.0005"

PITOT TRAVERSE STATIONS AND STATIC PRESSURE TAPPINGS

FIGURE....20



. .

small inaccuracy was caused by friction in the sliding glass graduated suspended measure and float system.

It was found that a considerable time lag was inherent in the system due to the small size of the static pressure tapping (0.8mm) and the volume within the micromanometer. This had the effect of damping out small pressure fluctuations in the system. This damping could be increased if necessary by increasing the restriction in the static pressure line by the use of a valve. Due to the small size of the pitot probe bore, there was also a considerable time lag on this side of the differential system which could also be increased further by the use of a flow restriction valve if necessary, thus giving the effect of damping out small pressure fluctuations. It was therefore found unnecessary to additionally damp the instruments by the use of reservoirs. In addition to these two manometers a 36 tube multitube manometer was used and attached to the static pressure tappings. This was employed to determine the most important positions at which to make velocity traverses.

The layout of the pressure measuring systems which were used are shown schematically in figure 23.



FIGURE .... 22


The Pitot Traverse

PLATE.....3



# The Pitot Probe Head

PLATE ... 4





The Micromanometer

PLATE .... 5



The Multi-tube Manometer (36 tube)

PLATE! ... 6

#### Chapter Five.

#### GENERAL TEST PROCEDURE AND RANGE OF TESTS.

V.1 Preliminary Investigation Procedure.

During the preliminary investigation, the pressure measurement circuit was connected initially as indicated by the schematic layout shown in figure 24 (i). The procedure followed using this layout was as follows:

Any flow in the pitot dynamic pressure side caused a pressure differential across the restriction 'C' which was indicated on the balancing manometer. The balancing valve 'A' was then opened and air bled into the system through the restriction 'B'. When the balancing manometer showed no differential it could be assumed that the value of pressure 'P' had been reached in the micromanometer. Unfortunately this system was so sensitive to small variations in flow that it was difficult to obtain a balance and any slight drift gave the impression of balance not being acheived. It was therefore decided to use the simpler system shown in figure 24 (ii) together with a larger pitot head diameter. Thus the response time and the effect of drift were reduced.

Using this system, tests were performed at 22 stations along the brass tube which has been described earlier. The experimental procedure was the same as that used for the main diffuser work to be described later in the chapter. The only difference between the preliminary investigation and the main one was that, during the former, velocity traverses were taken at every station.

V.2 Experimental Procedure for Diffuser Investigation.

The rig was assembled to the required configuration, (inlet duct length divergence angle, area ratio and tailpipe length).

The pitot probe was then adjusted so that the centre line of the probe head would be 0.5mm. from the wall when in position. The reason for the pitot probe not being positioned at the wall was to reduce the effect of the local pressure gradient caused between the pitot head and the wall thus causing the streamlines near the wall to be deflected towards the wall.



FIGURE ... 24

The positioning of the probe head was accomplished by the use of a feeler gauge (figure 25) being placed under the head and then adjusting the zero by means of a grub screw at the very top of the pitot traverse, marked 'A' on figure 22.

The probe was then placed in the first position upstream of the diffuser inlet and traversed to the duct centre line. The fan was started and the damper opened slowly until the centreline velocity head was in the region of 350 mm. w.g. (77m/s) or 400 mm for fully developed flow conditions. The pitot probe head was then returned to its original positon at 0.5mm. from the wall and the rig left for a few minutes to allow the fan and flow to stabilise.

The position was traversed initially at 0.5mm. intervals followed by larger increments (depending on the boundary layer thickness) to the centreline of the duct. Whilst traversing the duct, the readings were plotted to ensure the elimination of erroneous results (these only tended to occur when the flow in the boundary layer was becoming unstable.). A time of between 15 to 30 seconds was allowed between each reading to allow the manometers to reach a steady state condition.

The traverse was then returned to zero, removed from the duct, re-set to its initial 0.5mm condition, and ploced in the next station of interest, which was determined from the multitube manometer (mentioned in the previous chapter). Another traverse to the duct centreline was then carried out. This procedure was reapeated until all the stations of interest had been traversed. If, however, the flow had separated or stalled only a static pressure measurement was taken at the station.

This data was placed on computer punch cards and processed into the requisite form and the required parameters calculated by the data reduction program described in the following chapter (chapter V1).

Range of Tests.

V.3

Test were carried out for three diffuser inlet boundary layer thicknesses



# INITIAL POSITIONING OF PITOT HEAD

FIGURE .... 25

of  $2 \delta^*/\pi$ , of 0.01, 0.06 and 0.11 which were described as thin, thick and fully developed respectively. For these three inlet conditions a series of at est Reynolds Number tests were carried out Reynolds Numbers ranging from 6 x 10<sup>4</sup> to 4 x 10<sup>5</sup>. These tests are listed in Table I (the full results can be seen in appendices 5 and 6). These tests established where the limits of Reynolds Number dependence lay and thereby indicated the limiting values of Reynolds Number for subsequent tests.

The next series of tests were comprehensive velocity traverses for the three inlet boundary layer thicknesses at the stations of interest both in the diffuser and tailpipe (where fitted). These tests were carried out for three angles of diffuser divergence  $(5^{\circ}, 10^{\circ} \text{ and } 15^{\circ})$ , and for each angle two area ratios were tested (2 and 3). All these geometric and flow conditions were tested both under plenum discharge and tailpipe discharge conditions. This produced a total of 36 different configurations, the results of which are shown in appendix 6.

A test was also made with a thick boundary layer and a divergence angle of  $10^{\circ}$  with the tailpipe terminated at the maximum pressure position (as deter mined from the multitube manometer) to determine the effect of this measure. All these tests are listed in Table I.

Additional tests were also carried out on the test rig. One of these tests was to take static pressure readings in the inlet for each configuration in order to determine the actual static pressure at the inlet to the diffusing section (as mentioned in chapter IV). Another test was to carry out full velocity traverses of the duct at various stations, and in particular at the inlet, to determine the symmetry of the flow. (This particular test helped to resolve the pitot and static interaction which caused distortion at the wall and thus very much accentuated the slight distortion caused by the trip wire). Also tests were carried out to verify the assumptions of inlet duct length required to obtain the required inlet condition to the diffuser which were based on the preliminary investigations with the brass pipe. As mentioned in the previous chapter a good egreement was acheived between the required

| -         | TEST No. | CONDITION OF RIG.                    |                                         |  |
|-----------|----------|--------------------------------------|-----------------------------------------|--|
|           |          | Thin Inlet B/L                       | (2 <b>5%, =</b> 0.01)                   |  |
| · · · · · | 109      | 5° AR2 plenum discharge.             |                                         |  |
|           | 112      | 5° AR2 tailpipe discharge.           |                                         |  |
|           | 110      | 5° AR3 plenum discharge.             |                                         |  |
| · · · ·   | 111      | 5° AR3 tailpipe discharge.           |                                         |  |
| •         |          |                                      |                                         |  |
| •         | 103      | 10° AR2 plenum discharge.            |                                         |  |
|           | 104      | 10° AR2 tailpipe discharge.          |                                         |  |
|           | 102      | , 10° AR3 Plenum discharge.          |                                         |  |
|           | 101      | 10 <sup>0</sup> Tailpipe discharge.  |                                         |  |
|           | 105      | 150 (DO playin discharge             |                                         |  |
|           | 103      | 19 kn2 prenum discharge.             |                                         |  |
|           | 108      | 15° ARZ tallpipe discharge.          |                                         |  |
|           | 106      | 15° AR3 plenum discharge.            |                                         |  |
|           | 107      | 15° AR3 tailpipe discharge.          |                                         |  |
|           |          | Thick Inlet B/L                      | $(25'/w_1 = 0.06).$                     |  |
|           | 202      | 5° AR2 plenum discharge.             |                                         |  |
| • •       | 201      | 5° AR2 tailpipe discharge.           | •                                       |  |
|           | 203      | 5° AR3 plenum discharge.             |                                         |  |
|           | 204      | 5° AR3 tailpipe discharge.           |                                         |  |
| •         | 205      | 10 <sup>0</sup> IPO nienum dischenze |                                         |  |
| •         | 205      | 10° ANZ Prendm discharge.            |                                         |  |
| •         | 200      | 10 Anz tampipe discharge.            | ,<br>                                   |  |
| · • •     | 207      | 10° AR2 optimum talipipe 10          | engtn.                                  |  |
|           | 210      | 10° AR3 plenum discharge.            |                                         |  |
|           | 208      | 10° AR3 tailpipe discharge.          |                                         |  |
|           | 209      | 10° AR3 tailpipe discharge.          | •                                       |  |
| •         | 211      | 15° AR2 plenum discharge.            |                                         |  |
|           | 214      | 15° AR2 tailpipe discharge.          | • • • • • • • • • • • • • • • • • • • • |  |
|           | <br>919  | 15° AB3 nlenum discherge             |                                         |  |
| •         | CTC      | 150 the toil time discharge.         |                                         |  |
|           | 213      | i wy warththe discuarge.             |                                         |  |
|           | •        |                                      |                                         |  |

| TEST No. |                 | CONDITION OF RI            | <u>G</u> .    |
|----------|-----------------|----------------------------|---------------|
|          | ·               | Fully Developed Inlet I    | 'low = 0.11   |
| 302      | 150             | AR2 plenum discharge.      |               |
| 301      | 15 <sup>0</sup> | AR2 tailpipe discharge.    |               |
| 303      | 15°             | AR3 plenum discharge.      |               |
| 304      | 15°             | AR3 tailpipe discharge.    |               |
| 305      | 10 <sup>0</sup> | AR3 tailpipe discharge.    |               |
| 306      | 10 <sup>0</sup> | AR3 plenum dishcarge.      |               |
| 307      | 10 <sup>0</sup> | AR2 plenumdischarge.       |               |
| 308      | 100             | AR2 tailpipe discharge.    |               |
| 309      | 5°              | AR2 plenum discharge.      |               |
| 310      | 5°              | AR2 tailpipe discharge.    |               |
| 311      | 5 <sup>0</sup>  | AR3 plenum discharge.      |               |
| 312      | 5°              | tailpipe discharge.        | •             |
| 000      | Thi             | n inlet boundary layer inl | et profile.   |
| 350      | Ful             | ly developed velocity prof | ile. (inlet). |
|          |                 |                            |               |

REYNOLDS No. TESTS

| Test No. | Re. No.                 | Configuration.                 |
|----------|-------------------------|--------------------------------|
| 1        | 4.68 x 10 <sup>5</sup>  | 10° AR3 tailpipe thin boundary |
| 2        | 4.44 x 10 5             | laÿer.                         |
| 3        | 4.25 x 10 <sup>5</sup>  | •                              |
| 4        | 2.25 x 10 <sup>5</sup>  |                                |
| 5        | 1.44 x 10 <sup>5</sup>  |                                |
| 6        | 1.07 x 110 <sup>5</sup> |                                |
| 7        | 2.61 x 10 <sup>5</sup>  |                                |
| 8        | 3.02 x 10 <sup>5</sup>  |                                |
| 9        | 0.61 x 10 <sup>5</sup>  |                                |
|          |                         |                                |

|     | 1620 110. | REYNOTUS NO.            | CONTINUE RETOR!                    |
|-----|-----------|-------------------------|------------------------------------|
|     | 10        | 4.08 x 10 <sup>5</sup>  | 10° AR 3 Tailpipe thin boundary    |
|     |           |                         | layer.                             |
|     | 20        | $3.5 \times 10^5$       | 5° AR 2 Tailpipe thick boundary    |
|     | 21        | $2.9 \times 10^5$       | layer                              |
|     | 22        | 2.0 x 10 <sup>5</sup>   |                                    |
|     | 23        | 1.4 x 10 <sup>5</sup>   |                                    |
|     | 24        | 0.57 x 10 <sup>-5</sup> |                                    |
| • . | 30        | 4.0 x 10 <sup>5</sup>   | 10° AR 3 tailpipe thick boundary   |
|     | 31        | 3.6 x 10 <sup>5</sup>   | layer.                             |
|     | 32        | $2.9 \times 10^5$       |                                    |
|     | 33        | 2.3 x $10^5$            | · · ·                              |
|     | 34        | 1.7 x 10 <sup>5</sup>   |                                    |
|     | 35        | 0.6 x 10 <sup>5</sup>   |                                    |
|     | 40        | 4.0 x 10 <sup>5</sup>   | 15° AR 2 tailpipe fully developed  |
|     | 41        | 3.9 x 10 <sup>5</sup>   |                                    |
|     | 42        | 3.5 x 10 <sup>5</sup>   |                                    |
| ·   | 43        | $3.2 \times 10^5$       | •                                  |
|     | . 44      | 2.6 x $10^{5}$          |                                    |
|     | 45        | 2.2 x 10 <sup>5</sup>   |                                    |
| •   | 46        | 1.5 x 10 <sup>5</sup>   | •                                  |
|     | 50<br>10  | 4.3 x 10 <sup>5</sup>   | 10° AR 3 tailpipe fully developed. |
| ••• | 51        | 3.8 x 10 <sup>5</sup>   |                                    |
|     | 52        | 3.4 x 10 <sup>5</sup>   |                                    |
|     | 53        | $2.4 \times 10^5$       |                                    |
|     | 54        | 1.8 x 10 <sup>5</sup>   | .•                                 |
|     | 55        | 1.4 x 10 <sup>5</sup>   |                                    |
|     |           |                         |                                    |

## Chapter Siz.

#### DATA REDUCTION.

The data reduction was carried out by a program on an I.B.M. 1130 computer. The data obtained during the experimental run was punched onto data cards in the following sequence:-

- (a) The divergence angle, area ratio, tailpipe length and the designated number for the run.
- (b) The atmospheric pressure temperature.
- (c) The static pressure at the position, being traversed, width at the position. The number of the position, distance of the position from the diffuser inlet, the centre line dynamic pressure.
- (d) The pitot dynamic pressure measured in mm. water, the distance between the readings and the number of readings at that particular spacing, less one, were then read in and repeated until all the data for that position had been read in.

The program produced the parameters listed below (numerical integration was performed using a modified Simpson's rule subroutine, as outlined in appendix 4.).

Mean Velocity, 
$$\bar{u} = 2/w \int_{0}^{w_{2}} u dw$$
  
Re. Number, (Re) =  $\langle \bar{u} w / \mu$   
Non-dimensionalised displacement thickness,  $2\delta_{W}^{*} = \frac{2}{W} \int_{0}^{w/2} (1 - u/u_{0}) dw$   
Non-dimensional Momentum thickness,  $2\theta/w = \frac{2}{W} \int_{0}^{w/2} (u_{0}(1 - u/u_{0})) dw$   
Shape factor,  $H = \delta^{*}/\Theta$   
Kinetic Energy Correction factor,  $= 2/w \int_{0}^{w/2} (\frac{u}{\bar{u}})^{3} dw$ .  
Pressure Recovery Coefficient,  $Cp = (p - p_{1})/\frac{1}{2} \varrho \bar{u}_{1}^{2}$   
Effectiveness,  $\eta = (p - p_{1})/\frac{1}{2} \varrho (\bar{u}_{1}^{2} - \bar{u}^{2})$   
or in the case of stalled or separated flow,  $= \frac{(p - p_{1})}{\frac{1}{2} \varrho \bar{u}_{1}^{2}(1 - 1/AR^{2})}$ 

Energy Corrected Effectiveness, =  $\frac{(p - p_i)}{\frac{1}{2} \rho(\alpha, \bar{\mu}_i^2 - \alpha \bar{\mu}^2)}$ 

Energy corrected Cp, Cp =  $\frac{(p - p_i)}{\frac{1}{2} e^{\alpha_i} \bar{u}_i^2}$ 

Momentum Correction Coefficient,  $\beta = 2/\pi \int_{0}^{\sqrt{2}} (\frac{u}{\bar{u}})^2 d\pi$ Non-dimensional distance from diffuser inlet,

x/w, = <u>Distance from diffuser inlet.</u> Width at diffuser inlet.

An example of these parameters is tabulated in Table II Graphs showing velocity profiles and variations in Cp,  $Cp_E$ , and  $\gamma$  along the duct from the diffuser inlet are illustrated in figures 26a and 26b similar graphs were plotted for each diffuser configuration tested.

A flow diagram of the program is shown in figure 27 and the actual program is included in appendix 4.

|                                      | E C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                           |                                                                                         |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| ,<br>RUN<br>V                        | ЕNFRGY<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CO.<br>S84<br>CO.<br>S84<br>CO.<br>S86<br>CO.<br>S86<br>CO.<br>S86<br>CO.<br>S86<br>CO.<br>S86<br>CO.<br>S86<br>CO.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S.<br>S. |                                                                                         |
| 2 • 740M                             | EFFECT-<br>I C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                | • • • • • • • • • • • • • • • • • • •                                                   |
| L ENGTH                              | PRESS.<br>RECOV.<br>COEFF.<br>0.000<br>0.472<br>0.472<br>0.582<br>0.630<br>0.639                                                                                                                                                                                  |                                                                                         |
| 2, TAILPIPE                          | K.E.CORR.<br>FACTOR<br>1.045<br>1.051<br>1.306<br>1.301<br>1.109<br>1.033<br>1.026                                                                                                                                                                                |                                                                                         |
| ATIO = 2                             | SHAPE<br>FACTOR<br>1.392<br>1.513<br>2.017<br>1.459<br>1.217<br>1.217                                                                                                                                                                                             |                                                                                         |
| AR<br>AR<br>A<br>R<br>A<br>R         | 2THETA<br>WIDTH<br>0.0448<br>0.03990<br>0.1128<br>0.1224<br>0.0706                                                                                                                                                                                                | M1<br>918<br>656<br>656<br>141<br>1122<br>1112<br>879<br>879                            |
| 150EG                                | 2DELTA*<br>WIDTH<br>0.0624<br>0.2076<br>0.2276<br>0.1787<br>0.0869<br>0.0620                                                                                                                                                                                      | TABI<br>TABI<br>TABI<br>TABI<br>TABI<br>TABI<br>TABI<br>TABI                            |
| H<br>ANGLE                           | LGCAL<br>REYNOLDS<br>NUMBER<br>350445<br>336455<br>334627<br>400561<br>404860<br>394327<br>394327                                                                                                                                                                 | ATM<br>- PT<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7<br>- 7       |
| 224 DIV                              | ₹<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                | TEMP.<br>1199.00<br>199.00<br>199.00                                                    |
| 0<br>•<br>0<br>•<br>0<br>•<br>0<br>* | PRATIC<br>PRATIC<br>M/M/M/SS<br>-1234<br>-154<br>-154<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15<br>-15                                                                                                                                       | <pre> / / / / / / / / / / / / / / / / / / /</pre>                                       |
| THICKNES                             | H DIST<br>FRCM<br>-0.070<br>0.050<br>0.923<br>1.839<br>2.734                                                                                                                                                                                                      | BETA C<br>1.018<br>1.018<br>1.116<br>1.116<br>1.013<br>1.013<br>1.013<br>1.010<br>1.013 |
| NLET B/L                             | CSN WIDT<br>A M/M<br>A M/M<br>A M/M<br>A M/M<br>A M/M<br>A 152.4<br>152.4<br>152.4<br>152.4                                                                                                                                                                       | ACU400F                                                                                 |
| <b>1</b>                             | ۰ <u>۵.</u>                                                                                                                                                                                                                                                       |                                                                                         |





DATA REDUCTION PROGRAM.





Ind data Reduction of present data.

÷.,

Figure 27 cont...

•

#### Chapter Seven.

#### REYNOLDS NO. TESTS.

The Test Conditions.

As mentioned in Chapter V the Reynolds Number dependence tests were mainly carried out for one diffuser geometry ( $2\neq 10^{\circ}$ , AR = 3, with a tailpipe fitted), and the Cp measured between the inlet and exit planes of the diffuser. (For the exit plane a position 25 mm upstream of the exit was used). Tests on this configuration were carried out for three inlet boundary thicknesses with Reynolds Numbers varying from approximately  $6 \times 10^{4}$ to  $4 \times 10^{5}$ . Two additional tests on the other geometries were carried out subsequently. These were:-

(a) The first additional configuration tested was for a fully developed flow into a 15° divergence angle diffuser of area ratio 3. In this test the Cp was measured at a position 0.025m into the tailpipe i.e.  $x_t/w_2 = 0.1$  (where  $x_t$  is the distance measured from the diffuser exit plane into the tailpipe). (b) The second was a thick inlet boundary layer with a diffuser configuration of 2  $\phi$  = 5° and AR = 2 with the Cp taken between the diffuser inlet and the diffuser exit plane. (as for the 10° case).

VII.2 Reynolds No. Tests Results.

VII.2.1 Thin Inlet Boundary Layer.

For the thin inlet boundary layer  $(2 \delta''_{W_i} = 0.01)$  it can be seen that Cp is largely independent of Reynolds number in the region of  $2 \times 10^5$  upwards, but below this the dependence would appear to increase slightly, though the Cp remains within 2%, from Re's of  $1 \times 10^5$  upwards (figure 28). Below this value it is difficult to determine the effects due to the difficulties in measuring the low flow velocities with a pitot static **probe**.

VII.2.2 Thick Inlet Boundary Layer.

With a thicker inlet boundary layer  $(2\delta^*/w) = 0.06$ , this value increases as the Re. No. decreases), the Cp falls sharply and also there is a noticeable

VII.1



increase in the Reynolds Number (Re) dependence for this particular flow condition. The Reynolds number dependence would appear to become significant in the region of Reynolds numbers of  $2.5 \times 10^5$  and lower (i.e. greater than 1%). Below Re. =  $2.5 \times 10^5$  Reynolds number dependence increases sharply and at a Reynolds number of  $1 \times 10^5$  the Cp has fallen by 5%, this can be seen on figure 28.

VII.2.3 Fully Developed Flow.

For the fully developed flow case a similar trend can be seen but even more markedly than for the two previous inlet conditions, in that by Reynolds numbers around 1.0 x  $10^5$  the Cp has fallen by as much as 7%. VII.2.4 Further Reynolds Number Tests.

This effect is shown even more in the test on the  $15^{\circ}$  diffuser with the fully developed inlet flow. In this test the Cp was 12% lower at a Reynolds number of 1 x  $10^{5}$  than at a Reynolds number of 4.0 x  $10^{5}$ . An opposite effect can be seen for the  $5^{\circ}$ , AR = 2 test with the thick inlet boundary layer, in that the Cp falls off less quickly at low Reynolds numbers than for the  $10^{\circ}$ , AR = 3 configuration. (Shown in figure 29).

VII. 3.1. General Conclusions from the Reynolds Number Tests.

For convenience a critical Reynolds number will be defined such that all flows with Reynolds numbers above this are independent (to within  $Z_{2}^{\prime}$ ) and conversely all flows with Reynolds Numbers below this are dependent on Re. This critical Reynolds Number should not be confused with the general meaning of critical Reynolds Number.

It can be seen from the graphs of pressure recovery coefficient (Cp) against Reynolds Number for the three different inlet boundary layer conditions (for a  $10^{\circ}$  divergence angle diffuser), shown in figure 23, that the point of Reynolds Number (Re) independence occurs at a higher Reynolds Number as the boundary layer thickens and it would seem reasonable to assume that the effect will be as shown extrapolated in figure 28. The results also shown a similar trend to those shown by FERRETT in his water tests.

The tests carried out on other divergence angles would seem to indicate







that for a given boundary layer condition Reynolds number independence decreases away from the optimum geometrical configuration.

VII.4

# Discussion of the Results.

From the experimental results it can be seen that the probable reason for the increase in Reynolds number dependence as the Reynolds number decreases below the critical value, is due to an increase in the boundary layer thickness  $(2S^*/m_1)$ . The boundary layer will grow as the Reynolds number is reduced, shown in figure 31. A similar effect can be seen for the momentum thickness  $(2\theta/m_1)$  and to a much lesser extent for the shape factor (H), (shown in figure 31). It is therefore apparent that as Reynolds number decreases the boundary layer thickens and Cp falls.

This is due to the reduction in the momentum of the boundary layer which decreases its ability to flow against the adverse pressure gradient in the diffuser, therefore causing increased distortion of the boundary layer velocity profile and a reduction in the Cp of the diffuser (shown in figures 28 and 29). The distortion of the velocity profile will also reduce the effectiveness of the diffuser, (shown in figure 30).

These tests show that performance is never independent of Reynolds number although the dependency is markedly less significant as the Reynolds number increases.

It also shows that the inlet boundary layer thickness, and the geometrical configuration of the diffuser affect the extent of the Reynolds number dependence. Therefore it can be concluded that for Reynolds numbers  $3.0 \times 10^5$  the effect of Reynolds number dependence on any of the tested configurations is less than 1%. However the tests would seem to indicate that a more adverse condition, such as a very high divergence angle, may increase the Reynolds number dependence to even higher values of Reynolds number.

It was therefore assumed for the general diffuser testing, discussed in chapter VIII, that if the inlet Reynolds numbers were kept above  $3.0 \times 10^5$  the Reynolds number effects would be negligible. However the work did show that Reynolds number effects above  $2.0 \times 10^4$  are not as negligible as many

## Chapter Eight.

#### DISCUSSION OF THE EXPERIMENTAL RESULTS.

VIII.1 General Observations from the Plenum Discharge Work.

Chapter I shows that previous workers seen to show that the pressure recovery coefficient (Cp) should be at a maximum for an area ratio of approximately 3.0 and a divergence angle of 7°. Whereas the optimum effectiveness ( $\mathcal{A}$ ) occurs at a divergence angle of 7° also, but an area ratio of 2.0. The results obtained during this investigation indicate that the optimum diffuser geometry for pressure recovery coefficient (Cp) and effectiveness ( $\mathcal{A}$ ) occur with a divergence angle of 5° and area ratio of 3.0 for both parameters. However it must be borne in mind that this investigation was carried out at around the optimum geometries for both Cp and  $\mathcal{A}$  and figure 33 shows that the optimum pressure recovery (Cp) probably occurs in the region of 6° to 7° depending upon the thickness of the inlet boundary layer. VIII.2 Plenum Discharge Pressure Recovery Coefficient. (Cp).

VIII.2.1 Thin Inlet Boundary Layer.

Closer examination of the results indicate that though distortion of the boundary layer is low for the 5° divergence angle diffuser of AR = 3.0, the boundary layer thickness is becoming very large, caused by the long wall length and the adverse pressure gradient  $\partial p/_{\infty}$ . Therefore any further increase in area ratio (AR) will be unlikely to have any effect for the case of a thin inlet boundary layer at inlet to the diffuser. The pressure recovery coefficient (Cp) for a 5° included angle diffuser can be seen to be at its optimum for an area ratio of 3.0.

Examination of the  $10^{\circ}$  divergence angle, AR = 3.0 diffuser results show that the distortion of the boundary layer, shown by the shape factor (H), is not sufficiently large to cause separation of the boundary layer from the wall and the boundary layer thickness at the exit plane of the diffuser  $(2 \delta^*/\pi_2)$ indicates that further diffusion may be possible without inducing separation





or increasing the boundary layer thickness to such a value that it would either promote separation or reduce the recovery (shown in figure 35). Therefore a higher pressure recovery coefficient could probably be attained by using an area ratio of 4.0.

For the 15° divergence angle diffuser it can be seen that a further increase in the area ratio (AR) should also increase the pressure recovery coefficient, though probably less than for the 10° diffuser since the adverse pressure gradient  $\partial p/\partial x$  is very severe and slight thickening of the boundary layer together with increased distortion may induce separation of the boundary layer. Thus it can be concluded that the results are probably misleading, in that the optimum area ratio for peak pressure recovery (Cp) for a 5° divergence angle diffuser is 3.0. Any further increase in AR would cause the boundary layer thickness to become so large that it would make further improvement However, in the cases of the 10° and 15° divergence angle diffusers, unlikely. the boundary layer thickness is sufficiently small to allow a further increase in the area ratio (AR). Also since the shape factor (H) is fairly small the boundary layer could still withstand a further loss of momentum. Therefore the optimum geometry probably lies between  $7^{\circ}$  and  $10^{\circ}$  divergence angle with an area ratio (AR) of between 3.0 and 4.0, which is in agreement with many previous workers.

VIII.2.2 Thickening of the Inlet Boundary Layer.

Any increase in the inlet boundary layer thickness has a severe effect on the pressure recovery of the diffuser (Cp), shown in figure 33 (though it is less marked with the 5° diffuser). This is because there is less forward momentum in the boundary layer and also the rate of entrainment of momentum into the boundary layer is lower with the thicker inlet boundary layer. Thus the distortion of the boundary layer when flowing against an adverse pressure gradient ( $\partial p/\partial x$ ) is more severe, and therefore smaller pressure gradients give better pressure recovery in the diffuser. Figure 35 shows that for flow with a "thick" inlet boundary layer ( $2\delta^*/w_1 = .06$ ) flowing in a diffuser with an area ratio (AR) of 3.0 the boundary layer will separate from the diffuser






wall when the divergence angle is between  $10^{\circ}$  and  $15^{\circ}$ . However, fully developed flow at the inlet  $(2 S^*/w_1 = 0.11)$  is more stable within the diffuser than the thick boundary layer. Figure 35 also shows that for this fully developed inlet flow case there is a reduction in the distortion of the boundary layer as the divergence angle is increased above  $10^{\circ}$ , (as defined by the shape factor (H)). This is due to the lower pressure recovery and therefore a smaller adverse pressure gradient. This phenomenon is discussed more fully in paragraph VIII.5.

Therefore it can be generally concluded that any increase in the diffuser inlet boundary layer thickness will reduce the pressure recovery coefficient (Cp) and reduces the ability of the boundary layer to flow against an adverse pressure gradient  $(\partial_p / \partial_x)$  due to its lack of momentum, thus increasing the distortion and the likelyhood of separation or stall within the diffuser. This reduction in 'Cp' with the boundary layer thickness can be seen in figure 36.

VIII.3 Plenum Discharge Effectiveness (५).
VIII.3.1 Thin Inlet Boundary Layer.

It must be noted that effectiveness is usually only of secondary importance, the important parameter being generally the pressure recovery coefficient (Cp); which gives an indication of the efficiency of the diffuser in converting the inlet kinetic energy into a pressure rise at the diffuser exit. The effective ness ( $\gamma$ ) is used to give a measure of the proportion of the kinetic energy reduction occurring within the diffuser which can be accounted for by the static pressure increase. However a term such as efficiency for this parameter, even when corrected for energy deficiencies, would be misleading therefore effectiveness is used to denote this parameter. This prevents problems occuring from the use of a highly effective diffuser ("efficient") with low pressure recovery when a high pressure recovery is required.

For a thin inlet boundary layer the effectiveness of the diffuser can be seen in figure 37 to be at a maximum with a diffuser divergence angle of  $15^{\circ}$ , and an AR = 3.0. This again is contrary to the findings of Gibson<sup>1</sup>.

However Gibson used a tailpipe pressure tapping to measure his pressure recovery, this alone would give quite a large discrepancy against plenum dis-The reason for this is in the use of the expression for effectcharge work. iveness based on mass continuity within the diffuser ( $\Lambda = Cp/(1 - 1/AR^2)$ ). The use of this expression only gives a true estimation of the 'energy effectiveness of a diffuser if the inlet and outlet velocity profiles are identical. Therefore as the distortion at the diffuser exit plane increases, the kinetic energy based on the mass continity  $(\frac{1}{2} \rho \bar{u}_2^2)$  increasingly underestimates the actual exit kinetic energy  $(\frac{1}{2}\int_{c}^{W} u^{2} dw)$  and for certain conditions the error can be in excess of 10%, (shown in figure 37). The addition of a tailpipe will recover some of this energy 'deficiency' incurred from the use of the continuity expression by reducing the distortion of the velocity profile (discussed in paragraph VIII.4), thus as in Gibson's case overestimating the plenum discharge effectiveness. When the effectiveness is corrected for this energy deficiency by using the kinetic energy correction factor  $\propto$ , the effectiveness ( $\mathcal{M}_{E}$ ) will increase considerably. The use of this corrected value of effectiveness ( $\mathcal{M}_{E}$ ) is shown in figure 37 and it can be seen that this 'true' effectiveness  $(\mathcal{M}_{E})$  is higher than the normally used effectiveness  $(\mathcal{M})$ . The effect is most marked for the highly distorted profiles i.e. AR = 3.0,  $2\phi = 10^{\circ}$ ,  $15^{\circ}$ . The 15° divergence angle diffuser with an area ratio of 3.0 increases in effectiveness from 0.95 for  ${\rm M}$  to 0.97 for  ${\rm M}_{\rm E}$  en increase of approximately 2%. However the optimum area ratio remains at 3.0, and not 2.0 as found by many previous workers, also the divergence angle of 15° can be seen to be the optimum geometry for peak effectiveness.

VIII.3.2. Thickening of the Inlet Boundary Layer.

If a thicker boundary layer is present at the inlet to the diffuser distortion of the boundary layer increases, shown by an increase in the shape factor (H). The figure 37 shows the peak effectiveness ( $\mathscr{A}$ ) to occur with a diffuser area ratio (AR) of 3.0, similar to the thin inlet boundary layer condition. The divergence angle of the diffuser for this optimum value of effectiveness ( $\mathscr{A}$ ) is reduced to a value of 5° and figure 37 indicates that



the divergence angle for peak effectiveness may be even smaller.

The use of the energy corrected effectivness ( $\mathcal{M}_{r}$ ) changes this situation entirely and the optimum geometry of the diffuser is changed to 15° divergence This is important since it can be seen that if angle and area ratio of 2.0. a tailpipe is to be included in the system, as in Gibson's work, then some of this energy may be recovered in the tailpipe as a static pressure rise and thus the Cp and  $\mathcal{M}_{\mathcal{F}_{L}}$  (tailpipe values) would be likely to increase above the diffuser The use of the energy corrected effectiveness gives plenum dishcarge values. the same optimum geometries for both thin and thick inlet boundary layer thick-The effect of a further increase of the inlet boundary layer thickness nesses. to a fully developed flow condition at the inlet can be seen in figure 37, to give optimum values of  $\mathcal{M}$  and  $\mathcal{M}$  at the same area ratio i.e. 2.0. Also, the divergence angle required for the peak effectiveness ( $\mathcal{A}$ ) is similar to that for a thick inlet boundary layer, that is  $5^{\circ}$  or less. However for the optimum  $\mathcal{M}_{E}$  the divergence angle is again 15°.

These are important design points since the use of optimum plenum discharge effectiveness to design a diffuser/tailpipe system would indicate the use of the wrong divergence angle for the system.

VIII.4Discussion of Tailpipe Addition.VIII.4.1Comparison with Plenum Discharge.

Figure 38 shows that with a thin boundary layer at the inlet  $(2 \delta^* / w_1^{=} 001)$  there is a reduction in pressure recovery coefficient (Cp) at the diffuser exit plane for the diffuser/tailpipe combination when compared with the plenum discharge case. However, for thick inlet boundary layers and fully developed inlet flows the values of pressure recovery coefficient (Cp) for plenum disand for tailpipe discharge at the diffuser exit plane are the same, within experimental error, for all except the  $15^{\circ}$  divergence angle. This error, however, can be explained. In both these cases the diffusers have stalled, but in the plenum discharge case the flow stalled much earlier within the diffuser than it did in the diffuser/tailpipe configuration. Thus indicating that for non-





optimum conditions there is an effect transmitted into the diffuser from the tailpipe addition. Comparison of the figures 34, 35, 39 and 40 show that the shape factor 'H' at the diffuser exit plane for both tailpipe discharge and plenum discharge are the same, within experimental error, and that the boundary layer thicknesses  $(2 \delta^* / \pi_1)$  at the exit plane have a high degree of similarity for the two discharge cases. This indicates that the tailpipe has an almost negligible effect on the flow within the diffuser (except at the limit of the flow stability i.e. separation or stall). However figure 38 would seen to contradict this statement for the case of a thin inlet boundary layer. Indicated by a fall in pressure recovery within the diffusing section when a tailpipe is fitted.

Results taken just inside the diffuser (that is, at a position 25mm upstream of the diffuser exit plane) with a thin inlet boundary layer (shown in figure 41) show that for an area ratio of 3 there is a very good agreement between the plenum and tailpipe discharge values of pressure recovery coefficient(Cp) within 15 and for an area ratio of 2.0 the agreement is within 25 except for the  $5^{\circ}$  divergence angle diffuser. This shows that the tailpipe has a negligable effect on the flow within the diffuser even for a thin inlet boundary layer at the inlet to the diffuser. It is only with a thin inlet boundary layer and low area ratios that there is any appreciable pressure re covery 'on' or shortly after the diffuser exit plane for a plenum discharge (shown in figure 42). This indicates that the sudden expansion occuring at the exit plane diffuses upstream affecting the flow within the diffuser slightly, therefore the inclusion of a tailpipe will degrade the performance for this condition.

For tailpipe discharge, figure 43 shows that within the tailpipe there is a considerable pressure recovery for all boundary layer thicknesses at the inlet, and all geometries except for the small divergence angles with a low area ratio (AR = 2.0). This is due to the very small distortion of the boundary layer and therefore wall frictional losses in the tailpipe offset any slight increase in pressure recovery. It can also be seen that for









DISCHARGE WITH LOW AREA RATIO.

FIGURE .... 42

the thick and fully developed flows an improvement in the pressure recovery coefficient (Cp) is of the order of 5% for a 5° divergence angle diffuser, 8% for a 10° diffuser and 10% for a 15° diffuser. This could, however, increase up to 20% for a 15° divergence angle diffuser with an area ratio of 3.0 and a fully developed flow at the inlet. VIII. 4.2 Pressure Recovery Coefficient (Cp).

It has been shown that only in the case of a thin inlet boundary layer flowing into a small area ratio (AR = 2.0) and a small divergence angle  $(2\phi = 5^{\circ})$  diffuser is there no increase in the pressure recovery coefficient by including a tailpipe. This is due to the very low distortion of the velocity profile within the diffuser, shown by the low shape factor (H = 1.6)coupled with the thin boundary layer at the diffuser exit  $(2\delta^*/w_2 = .11)$ . However for all the other configurations tested there is an increase in the pressure recovery coefficient (Cp) by using a tailpipe. The increase in Cp,  $(Cp_{t} = tailpipe recovery)$  to the plenum discharge figure can be seen to be very marked for thick and fully developed inlet boundary layers, especially with high area ratios and with divergence angles above 10°; for example figure 44 shows that there is a 30% increase for a 15° divergence angle diffuser, with an area ratio of 3.0 and a thick inlet boundary layer. This reduces to a 15% increase for a  $10^{\circ}$  divergence angle diffuser and an grea ratio of 3.0 with a thick or fully developed flow at the inlet. Position of the Maximum Recovery. VIII.4.3

As the boundary layer at the inlet thickens then the position of the maximum pressure recovery in the tailpipe moves downstream (this is shown in figure 45). Also as the distortion of the boundary layer within the diffuser increases then the position of the peak recovery also moves downstream. This is as expected since as the distortion increases the deficiency of momentum within the boundary layer increases therefore it will take longer for the transfer of momentum into the boundary layer from the core flow to occur.

Another factor affecting the transfer of momentum from the core flow to the boundary layer is the thickness of the boundary layer at the inlet to the



FIGURE....43



tailpipe, therefore es the inlet boundary layer thickens for a given geometry diffuser then the position of Cp, maximum moves downstream. With a low divergence angle diffuser  $(2\phi = 5^{\circ})$ , a low area ratio (2.0) and a thin inlet boundary layer the position of themaxiumum recovery in the tailpipe moves so far upstream that it coincides with the diffuser exit plane. Therefore, with a smaller area ratio the 10° and 15° divergence angle diffuser peak recoveries will move upstream until at some small area ratio they will be coincident with the diffusing section exit plane. At this condition there is obviously no advantage in having a tailpipe; in fact a slight improvement will probably be attained by using a plenum discharge. An interesting point worth noting is the effect of terminating the tailpipe at the position of maximum recovery. This was done for a 10° divergence angle diffuser of an area ratio 2.0 with a thick inlet boundary layer. The values of Cp<sub>L</sub> maximum for the whole tailpipe and the 'truncated' tailpipe are 0.645, and 0.644 respectively which indicates that terminating the tailpipe at the peak recovery position has no measurable effect upon the pressure recovery of the diffuser/tailpipe configuration. This is as expected since the results have shown that the tailpipe has little or no effect on the conditions within the diffuser, except at the limit of flow stability, therefore it would seen reasonable to expect a further length of parallel duct downstream of the termination point to have little effect on the conditions at the point of termination.

## VIII.4.4 Optimum Pressure Recovery.

It has been shown by the results that the maximum pressure recovery occurs for a particular divergence angle and boundary layer thickness when the area ratio is such that the flow at the diffuser exit plane is distorted to the limit of flow stability within the diffuser, (onset of separation). This flow condition will exist at the geometry for optimum pressure recovery for both plenum and tailpipe discharge. The results shown in figure 44 indicate that the optimum geometries for both discharge conditions are coincident. However figure 44 may not be sufficiently comprehensive to give a true indication of the diffuser/tailpipe optimum geometry.



## POSITION OF CP. MAX. IN THE TAILPIPE FOR AREA RATIO 2.0 (DOW STRIAM OF DIFFUSER END PLANE)

FIGURE....45



Typical velocity profiles at diffuser exit and in tailpipe.

FIGURE....46

It has been shown previously that the inclusion of a tailpipe has the effect of extending the limit of flow stability to higher divergence angles than would be expected with plenum discharge. Therefore the optimum divergence angle for a diffuser/tailpipe combination will be higher than that for the optimum pressure recovery for plenum discharge. The optimum geometry for a system fitted with a tailpipe is likely to be in the region of 10° divergence angle with an area ratio of 4.0 to 5.0. In contrast with 7° for plenum discharge with an area ratio of approximately 4.0; Both these geometries are for thin inlet boundary layer conditions. This area ratio for the optimum pressure recovery will reduce as the inlet boundary layer thickens, there may also be a slight reduction in the divergence angle required.

VIII.4.5 Effectiveness. 
$$(\mathcal{M}_{1})$$

It has been mentioned several times during this chapter that the addition of a tailpipe does not affect the performance of the diffusing section significantly, therefore the effectiveness ( $\mathcal{A}$ ) at the diffuser exit plane will be lower than the energy corrected effectiveness ( $\mathcal{A}_E$ ) due to the distortion of the boundary layer, this can be seen in the expressions.

$$\mathcal{M} = Cp/(1 - 1/AR^2) - 1$$
  
$$\mathcal{M}_E = Cp/(\alpha_1 - \alpha_2 / AR^2) - 2$$

Therefore since  $\alpha_1$  and  $\alpha_2$  are always greater than unity, with high distortion of the velocity profile within the diffuser  $\alpha_2$  will become large and will make the expression  $(\alpha_1 - \alpha_2 / AR^2)$  less than  $(1 - 1/AR^2)$  due to this very high value of  $\alpha_2$ . Unlike the plenum discharge case there is a reduction in the distortion within tailpipe thus the  $\alpha_2$  value reduces making the expression  $(\alpha_1 - \alpha_2 / AR^2)$  greater than  $(1 - 1/AR^2)$ . Thus  $\mathcal{A}_E$  becomes less than the value of effectiveness  $(\mathcal{A}_1)$  shown in figures  $49\varepsilon - 491$ . There is also a general improvement in the effectiveness  $(\mathcal{A}_1)$  in the tailpipe due to the improvement in the velocity profile and pressure recovery. This was true for all the configurations tested. The reason for this quite appreciable increase in the pressure recovery coefficient and the effectiveness  $(\mathcal{A}_1)$  is solely due





EFFECTIVENESS...TATLPIPE AND PLENCET DISCHARGE AR 3.0

FIGURE....48





FIGTRE..... 49(c)





FIGURE .... 49(f)

Divergence angle 50, AR = 2.0, Tailpipe discharge





PIGUAL .... 49(h)

Divergence angle =  $10^{\circ}$ , AR = 2.0 /, Tailpipe discharge



FIGURE .... 49(1)

Divergence angle =  $10^\circ$ , AR = 3.0, Tailpipe discharge



FIGURE .... 49(j)

Divergence angle =15°, AR = 2.0, Tailpipe discharge



FIGURE .... (D(1:)



FIGURE..... 49(1)

to the improvement of the velocity profile (shown in figure 46) caused by the re-energising of the boundary layer in the tailpipe therefore reducing the flow kinetic energy. This can also be seen in figures 51 and 52 by the abrupt fall in both boundary layer thickness  $(2\delta^{*}/\pi)$  and the shape factor (H) on entering The effect, however, can be seen to be more marked with the the tailpipe. greater distortion of the boundary layer within the diffuser, indicating that the maximum pressure recovery will occur when the flow is near to separation at the diffuser exit plane, (as previously mentioned). Also as the boundary layer thickens and as distortion increases then the crossover point of effectiveness ( $\mathcal{M}$ ) and the energy corrected effectiveness ( $\mathcal{U}$ )moves downstream due to the greater momentum transfer required, and for the case of the thicker boundary layers the momentum transfer will be much slower. Another point of interest can be seen when high values of pressure gradient  $\partial \rho / \partial x$  exist as in the 15° divergence angle diffuser. In this case there is a secondary initial crossover of  $\gamma$  and  $\gamma_{r}$  presumably due to the very high initial diffusion without severely distorting the boundary layer, (shown in figure 49k). It can be also seen in figures 49g - 491 that as the boundary layer at the inlet to the diffuser thickens then the energy corrected effectiveness falls more rapidly in the tailpipe due to the increased wall friction for the thick boundary layers and fully developed flows. This effect is shown in figure 50.

VIII.5 Flow Stability in Plenum and Tailpipe Discharge.

The flow 'stability' seens to be very sensitive to the shape factor (H) and boundary layer thickness  $(2\sqrt[5]{n})$  combination. For a thin inlet boundary layer thickness and a thin local boundary layer thickness  $(2\sqrt[5]{n})$ , the shape factor (H) can reach a value in the region of 3.0 before any separation of the boundary layer occurs. However for thick inlet boundary layer flows and fully developed inlet flows, shape factors in the region of 2.0 to 2.2 appear to be the limit for stable flow (This is shown in figure 53 and table V).

When for a particular configuration having optimum geometry, this point is reached, the boundary layer thickness continues to increase but the shape factor remains constant. This indicates an increase in the rate of growth in the momentum thickness, perhaps due to small amounts of 'transitory' or









FIGURE .... 53

'incipient' separation at the wall. This effect appears to be an indication of imminent separation of the boundary layer. Figure 54 shows a profile for a  $10^{\circ}$  divergence angle diffuser of area ratio = 3.0 at a position where the shape factor (H) has reached a value of 2.26. The profile shows definite instability of the boundary layer probably due to slight transitiory separation occurring. Divergence angles above this can be seen to cause the diffuser to stall. However comparison of figures 34, 35, 39, 40 and table IV show that stall inception in a diffuser fitted with a tailpipe occurs further downstream in the diffuser (This can be seen in table IV which gives 'H' values at the same point for a plenum and tailpipe discharge). This indicates that there is a slight interaction between the tailpipe and diffuser when the flow is approaching the limit for stable flow due to a diffusion of the more stable tailpipe flow upstream. Also thick inlet boundary layers seem to be less stable than fully developed flows. This is a function of the lower pressure gradient associated with fully developed inlet flows, and can be seen reflected in the shape factor (H) in figure 39 and the lower values of pressure recovery (Cp) for fully developed flows.

Another interesting point observed during the tests was that when slight or transitory separations occurred, the flow separated from the diverging walls. However, when the diffuser "stalled" it tended to separate from the side wall and flow down one side of the diffuser only, (this phenomenen is illustrated in figure 55), the flow would then after several minutes change over to the other sidewall. The reason for the stall occurring on the sidewall is probably due to the large divergence angle  $(15^{\circ})$  requiring quite a considerable momentum change when the flow stalls to follow the diverging wall whereas by stalling from the sidewall the abrupt direction and therefore momentum change can be reduced but a sufficient cross section change occurring to reduce the 'diffusion' of the flow.


VELOCITY PROFILES IN DIFFUSER AND TAILPIPE AT THE LIMIT OF FLOW STABILITY

FIGURE ... 54



TABLE...III

| Configuration                                                                                      | Co max.                   | Positio                     | n of en m                      | er. Renerks                                                                                                             |
|----------------------------------------------------------------------------------------------------|---------------------------|-----------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Jnlet AR 20                                                                                        |                           | z/wl                        | x <sub>t</sub> /w <sub>2</sub> |                                                                                                                         |
| Thin 2 5°<br>Thick 2 5°<br>F.D. 2 5°<br>PLETUM<br>DISCHARGE                                        | • 753<br>• 656<br>• 627   |                             |                                |                                                                                                                         |
| Thin 2 50<br>Thick 2 50<br>F.D. 2 50<br>TAILPIPE<br>DISCHARGE                                      | •700<br>•681<br>•664      | 15.787<br>23.792<br>27.79   | 2.55<br>6.55<br>8.55           | Position moves<br>downstream as<br>b/l thickens at<br>inlet                                                             |
| Thin 3 5°<br>Thick 3 5°<br>F.D. 3 5°<br>PLENUM<br>DISCHARGE                                        | •836<br>•795<br>•756      |                             | _                              |                                                                                                                         |
| Thin 3 5°<br>Thick 3 5°<br>F.D. 3 5°<br>TAILPIPE<br>DISCHARGE                                      | •845<br>•842<br>•790      | 49• 698<br>43• 26<br>43• 26 | 8.13<br>6.99<br>6.99           | Position moves<br>upstream as b/l<br>thickens at inlet                                                                  |
| Thin 2 10 <sup>0</sup><br>Thick 2 10 <sup>0</sup><br>F.D. 2 10 <sup>0</sup><br>PLENUM<br>DISCHARGE | •711<br>•583<br>•541      |                             |                                |                                                                                                                         |
| Thin 2 10°<br>Thick 2 10°<br>F.D. 2 10°<br>TAILPIPE<br>DISCHARGE                                   | •732<br>•645 (•64<br>•640 | 12.05<br>4) 27.34           | 3•73<br>11•37                  | Position moves<br>downstream with<br>thickening b/1.<br>Figures in () for<br>tailpipe truncated<br>at max. press. posn. |
| Thin 3 10°<br>Thick 3 10°<br>F.D. 3 10°<br>PLENUM<br>DISCHARGE                                     | •788<br>•645<br>•631      |                             |                                |                                                                                                                         |
| Thin 3 10°<br>Thick 3 10°<br>F.D. 3 10°<br>TAILPIPE<br>DISCHARGE                                   | .812<br>.734<br>.729      | 42•257<br>42•257<br>46•85   | 10.40<br>10.40<br>11.93        | Position moves<br>downstream with<br>thickening inlet<br>b/l.                                                           |

.

.

.

٩.,

.

# TABLE. III cont. ....

| Configuration                                                                                      | Cp max.                 | Position of                | of Cp max.              | Remarks                                                                                                                       |
|----------------------------------------------------------------------------------------------------|-------------------------|----------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| b/l AR 20                                                                                          |                         | x/w]                       | x/#2                    |                                                                                                                               |
| Thin 2 15 <sup>0</sup><br>Thick 2 15 <sup>0</sup><br>F.D. 2 15 <sup>0</sup><br>PLENUM<br>DISCHARGE | • 680<br>• 515<br>• 478 |                            |                         | •                                                                                                                             |
| Thin 2 15°<br>Thick 2 15°<br>F.D. 2 15°<br>TAILFIFS<br>DISCHARGE                                   | • 732<br>• 647<br>• 622 | 12.139<br>24.133<br>24.133 | 4.66<br>10.66<br>10.66  | Cp max. moves<br>upstream with<br>thickening<br>inlet b/l.                                                                    |
| Thin 3 150<br>Thick 3 150<br>F.D. 3 15<br>PLENUM<br>DISCHARGE                                      | • 761<br>• 593<br>• 532 |                            |                         |                                                                                                                               |
| Thin 3 15°<br>Thick 3 15°<br>F.D. 3 15°<br>TAILPIPE<br>DISCHARGE                                   | .802<br>.793<br>.689    | 42.950<br>43.018<br>43.018 | 11.91<br>11.94<br>11.94 | Cp max. moves<br>slightly upstream<br>as b/1 thickens<br>However longer<br>tailpipe reqd.<br>to accurately<br>assess results. |

## TABLE. III cont. ...

| Configuration                                                                                      | Cp max.                 | Position o                 | of Cp max.              | Remarks                                                                                                                       |
|----------------------------------------------------------------------------------------------------|-------------------------|----------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| b/1 AR 2¢                                                                                          |                         | x/w1                       | x/77                    | 1                                                                                                                             |
| Thin 2 15 <sup>0</sup><br>Thick 2 15 <sup>0</sup><br>F.D. 2 15 <sup>0</sup><br>PLENUM<br>DISCHARGE | • 630<br>• 515<br>• 478 |                            |                         |                                                                                                                               |
| Thin 2 15°<br>Thick 2 15°<br>F.D. 2 15°<br>TAILFIFE<br>DISCHARGE                                   | • 732<br>• 647<br>• 622 | 12.139<br>24.133<br>24.133 | 4.66<br>10.66<br>10.66  | Cp max. moves<br>upstream with<br>thickening<br>inlet b/1.                                                                    |
| Thin 3 150<br>Thick 3 150<br>F.D. 3 15<br>PLENUM<br>DISCHARGE                                      | •761<br>•593<br>•532    |                            |                         |                                                                                                                               |
| Thin 3 15°<br>Thick 3 15°<br>F.D. 3 15°<br>TAILPIPE<br>DISCHARGE                                   | •802<br>•793<br>•689    | 42.950<br>43.018<br>43.018 | 11.91<br>11.94<br>11.94 | Cp max. moves<br>slightly upstream<br>as b/1 thickens<br>However longer<br>tailpipe reqd.<br>to accurately<br>assess results. |

Comparison of parameters for plenum and tailpipe discharge.

| •            | •              | •              | •          | •              | .•    | •              | •     | •     | •                                                          |
|--------------|----------------|----------------|------------|----------------|-------|----------------|-------|-------|------------------------------------------------------------|
| x            | ∝p_            | ∼t             | Cpp        | Cpt            | Mp    | n <sup>t</sup> | Mep   | Met   | Remarks.                                                   |
|              | 1              | Thin i         | nlet bo    | undary         | layer | 2 / 17]        | 0.01  |       |                                                            |
| 0.812        | 1.103          | 1.096          | 0.748      | 0.684          | 0.924 | 0.936          | 0.928 | 0•949 | 5 <sup>0</sup> , <b>A</b> R 2<br>No effect                 |
| 1.700        | 1.181          | 1.178          | Ò•832      | 0.831          | 0.941 | 0.963          | 0•947 | 0.973 | 5°, AR 3<br>No effect                                      |
| 0.354        | 1.086          | 1.090          | 0.658      | 0.668          | 0.952 | 0.952          | 0.966 | 0.965 | 10°, AR 2<br>No effect                                     |
| 0.842        | 1.124          | 1.166          | 0.784      | 0.780          | 0.962 | 0.926          | 0.969 | 0•936 | 10°, AR 3<br>No effect                                     |
| 0.201        | 1.084          | 1.108          | 0.596      | 0.612          | 0.949 | 0.932          | 0.972 | 0.931 | 15°, AR 2<br>Slight improv.                                |
| 0• 554       | 1.081          | L.174          | 0•749      | 0 <b>.7</b> 28 | 0.973 | 0.910          | 0.976 | 0•931 | 15°, AR 3<br>No effect.                                    |
| <b></b>      |                | Thick i        | nlet bo    | undary         | layer | 2 / 1/17       | 0.06  |       |                                                            |
| 0.812        | 1.232          | 1.233          | 0.635      | 0.635          | 0.911 | 0.909          | 0.945 | 0•943 | 5°, AR 2<br>No effect                                      |
| 1.700        | 1.284          | L. 267         | 0.790      | 0.810          | 0.933 | 0.936          | 0•936 | 0•945 | 5°, AR 3<br>No effect                                      |
| 0.358<br>(н. | L.219<br>L.942 | 1.245<br>2.013 | 0.536      | 0.520          | 0.877 | 0.865          | 0•954 | 0•954 | 10°, AR 2<br>No effect                                     |
| 0.843<br>(H  | 1.292<br>1.958 | 1.329<br>2.056 | 0.640<br>) | 0.645          | 0,880 | 0.869          | 0•932 | 0.925 | 10 <sup>0</sup> , AR 3<br>Slightly worse<br>for tailp. dis |
| 0.201<br>(H  | 1.219<br>2.056 | 1.306<br>2.33  | 0•463<br>) | 0•472          | 0.867 | 0.818          | 0•972 | 0•957 | 15°, AR 2<br>Better profile<br>for tail. dis.              |
| 0•554<br>(н. | 5.0<br>3.9     | 1.76<br>2.05   | 0.556<br>) | 0.650          | 0.632 | 0.738          |       | -     | 15°, AR 3<br>Noticable<br>improvement                      |
|              |                |                |            |                | · .   |                |       |       | for tailpipe<br>discharge.                                 |

p Plenum discharge value

t Tailpipe discharge value

ep Energy corrected plenun value

et Energy corrected tailpipe value

# HIGH SHAPE FACTOR STABILITY VALUES AT DIFFUSER EXIT OR STATICN PRIOR TO STALL, FOR PLENUM AND TAILPIPE DISCHARGE

|                  |     |       |       |       | ······································ |
|------------------|-----|-------|-------|-------|----------------------------------------|
| 2¢               | AR  | 28*/w | Н,    | ×     | COMMENTS                               |
| .15 <sup>0</sup> | 2   | 0.032 | 2.32  | 1.03  | very stable                            |
| 15 <sup>0</sup>  | 2   | 0.173 | 2.05  | 1.22  | slightly<br>unstable                   |
| 10 <sup>0</sup>  | 2   | 0.190 | 2.01  | 1.25  | slightly<br>unstable                   |
| 10 <sup>0</sup>  | 3.  | 0.182 | 1.96  | 1.22  | stable                                 |
| 10 <sup>0</sup>  | . 3 | 0.24  | 1.96  | 1.29  | stable                                 |
| 10 <sup>0</sup>  | 3.  | 0.33  | 2.12  | 1.426 | stable                                 |
| · 15             | 3   | 0.37  | 3.90  | 1.924 | separation                             |
| 15               | 3   | •66   | 10    | 5.84  | stall                                  |
| . 15             | 3   | 0.266 | 1.93  | 1.40  | unstable                               |
| 10               | 3   | .185  | 2.02  | 1.24  | stable                                 |
| 10               | 3   | .250  | 2.06  | 1.33  | stable                                 |
| 10               | 3   | •374  | 2.277 | 1.53  | unstable                               |
| 15 ·             | 3   | •174  | 2.05  | 1.763 | stable                                 |
|                  | -   |       |       | •     | (stall at<br>next station.             |
| 15               | 3   | • .07 | 2.10  | 1.39  | unstable                               |
| 10               | 3   | .251  | 2.01. | 1.31  | stable                                 |
|                  |     |       |       |       | •                                      |

### VIII.6. Mass Continuity Check

To check the accuracy of the results obtained a mass flow continuity check can be carried out along the diffusing and tailpipe sections. An example is shown in table Y(a) for a 5<sup>°</sup> divergence angle, AR = 2.0, diffuser and tailpipe with various inlet boundary layer thicknesses.

It can be seen for the thin inlet boundary layer condition that the error in the mass flow continuity is very low especially within the diffusing section (less than 0.3%), and it is not until approximately 10 diffuser outlet widths  $(X/N_1 = 30)$  that the error exceeds the experimental uncertainty. However, for the thicker inlet boundary layer conditions the error is greater than that which would be expected from experimental uncertainty within 3 inlet widths into the diffuser  $(X/M_1 = 3)$ 

The reason for this error is the growth of the boundary layer on the sidewalls i.e. the non-diverging walls. This has the effect of increasing the centreline velocity due to the reduction in mass flow in this boundary layer. This can be seen in the thin inlet boundary layer case at the very end of the tailpipe, approximately 18 diffuser exit diameters downstream. However, for the thick inlet boundary layer the effect can be seen to be increasing in magnitude down the whole system, which would be consistent with a growing sidewall boundary layer. The fully developed flow exhibits even larger errors within the diffuser which again indicate that the error is due to the thickening sidewall boundary layer, However the sidewall boundary layer appears to be sufficiently large that distortion of this boundary layer occurs within the diffuser, which later recovers in the tailpipe which is

indicated by a reduction in error in the tailpipe as the boundary layer recovers. This distortion can also be seen to a lesser extent for the thick inlet boundary layer case by the slight reduction in error early in the tailpipe.

### MASS FLOW CONTINUITY CHECK

 $5^{\circ}$  divergence angle, AR = 2, tailpipe discharge.

|   |                  | Mas                  | Mass Flow/metre breadth (kg/s) |                       |                            |                                |                            |  |  |  |  |  |
|---|------------------|----------------------|--------------------------------|-----------------------|----------------------------|--------------------------------|----------------------------|--|--|--|--|--|
|   | x/w <sub>l</sub> | Thin<br>inlet<br>B/l | Mass<br>Flow<br>error<br>%     | Thick<br>Inlet<br>B/l | Mass<br>Flow<br>Error<br>% | Fully<br>Dev.<br>Inlet<br>Flow | Mass<br>Flow<br>Error<br>% |  |  |  |  |  |
|   |                  |                      | Diffusing Section              |                       |                            |                                |                            |  |  |  |  |  |
| - | 0.0              | 7.715                | 0.0                            | 6.848                 | 0.0                        | 6.830                          | 0.0                        |  |  |  |  |  |
|   | 2.66             | 7.684                | -0.4                           | 7.039                 | +2.80                      | 7.083                          | +3.70                      |  |  |  |  |  |
|   | 6.66             | 7.740                | +0.27                          | 7.219                 | +5.00                      | 7.269                          | +6.40                      |  |  |  |  |  |
|   | 10.66            | 7.250                | +0.13                          | 7.239                 | +5.70                      | 7.496                          | +9.70                      |  |  |  |  |  |
|   |                  |                      |                                |                       |                            |                                |                            |  |  |  |  |  |
|   |                  |                      | Т                              | ailpipe               | Sectio                     | n                              |                            |  |  |  |  |  |
|   | 11.78            |                      |                                | 7.220                 | +5.40                      |                                |                            |  |  |  |  |  |
|   | 15.78            | 7.734                | +0.24                          | 7.278                 | +6.30                      | 7.430                          | +8.70                      |  |  |  |  |  |
|   | 19.84            | 7.754                | +0.5                           |                       |                            |                                |                            |  |  |  |  |  |
|   | 23.79            |                      |                                | 7.354                 | +7.40                      |                                |                            |  |  |  |  |  |
|   | 31.78            | 7.84                 | +1.7                           |                       |                            | 7.278                          | +6.50                      |  |  |  |  |  |
|   | 46.87            | 7.906                | +2.5                           | 7.391                 | +7.90                      | 7.296                          | +6.80                      |  |  |  |  |  |
| 1 |                  | <u> </u>             | L                              | 1                     | Ľ                          |                                | ,<br>                      |  |  |  |  |  |

#### Chapter Nine.

#### PREDICTION OF BOUNDARY LAYER AND PERFORMANCE PARAMETERS.

IX.1.1 The Theoretical Prediction.

The objective of the theoretical approach developed by Ferrett<sup>21</sup> was to predict the boundary growth within the diffuser and tailpipe and thus determine the flow parameters Cp, H, and  $\theta$  along the diffuser/tailpipe system. This method of theoretical approach requires to be tested against extensive data on the growth of actual boundary layer parameters within such a system to determine the validity of the assumptions made in predicting the developing boundary layer.

During this investigation a fairly extensive study was made of the developing boundary layer parameters in a diffuser and a diffuser/tailpipe system, thus further analysis of the accuracy and the limitations of the prediction method developed by Ferrett can be usefully car ied out using this experimental data.

IX.1.2 The Prediction Method.

The theoretical approach developed by Ferrett was an integral method to solve the boundary layer equations.

The momentum integral equation for a two dimensional compressible flow is used. Head's entrainment function (using the compressible form proposed by Green) is used as the auxiliary shape factor equation and continuity is used for the prediction of the centreline velocity. Greens skin friction law is employed for the calculation of the skin friction. Air viscosity is calculated from Sutherlands viscosity law and the static pressure rise calculated by application of the Euler equation along the centre line streamline of the diffuser/tailpipe and the pressure assumed constant across the cross section.

IX.1.3 The Boundary Layer Equations used and the Method of Solution.

The boundary layer equations used to describe the developing boundary layer are as follows:-

(1) The Momentum Integral Equation for a two dimensional compressible flow.  
Of 
$$/2 - \frac{dQ}{dx} + \theta \left[ \frac{1}{W_0} \cdot \frac{dY_0 - (H+2-M_0^2)}{(1+C\cdot2M_0^2)} + \frac{1}{\pi} \frac{dT}{dx} \right]$$
  
(2) Continuity.  
 $\frac{(w - 2\pi\theta)(W_0^2 - 1)}{M_0 - (1+0\cdot2H_0^2)} - \frac{dw}{dx} - 2 \left[ H \frac{d\theta}{dx} + \frac{dH}{dx} \right]$   
(3) Divergence.  
 $\frac{dw}{dx} = 2 \tan \phi$   
(4) Entrainant.  
 $\frac{\theta}{dx} - HI \left( \frac{d\theta}{dx} \right) = F - \frac{\pi I}{(1-0\cdot2H_0^2)} \cdot \frac{1}{H_0} \cdot \frac{dH_0}{dx}$   
(5) Skin Friction.  
 $\left( \frac{Gf}{Cf_{FP}} + 0.5 \right) \left( \frac{H}{E}_{FP} - 0.4 \right) = 0.9$   
Where  $H_{PP}$  and  $Gf_{PP}$  are flat plate values,  $Gf_{PP}$  is derived from the expressions  
For  $f_{FP} = (0.012/10\varepsilon_{10}(F_0 R_0) - 0.009)$ .  
Where For  $= (1 - H_0^2/5)^{M_2}$  and  $F_{\mathcal{E}} - 1+0.056H_0^2$   
And  $H_{FP}$  is defined as  $\frac{1}{2} = 1 - 6.8 \sqrt{\frac{5f_{FP}}{2}}$ , and  $R_{\theta} = \frac{f_0 u \cdot \theta}{\sqrt{4e}}$   
These five differential equations are then rearranged into the non-dimensional form of 1-  
 $\frac{d\theta'}{dx} = \theta'(\theta', M_0, w', H, HI)$   
 $\frac{dM_0}{dx} = M_0(\theta', M_0, w', H, HI)$   
 $\frac{dM_0}{dx} = H(\theta', H_0, w', H, HI)$   
 $\frac{dH}{dx} = H(\theta', H_0, w', H, HI)$   
 $\frac{dH}{dx} = H(\theta', H_0, w', H, HI)$ 

 $Y(1) - \Theta'$  Y(2) = Mo Y(3) = w' Y(4) = HY(5) = H1 These equations are then integrated simultaneously using the Runge - Kutta routine and values of Cp,  $Cp_E$ , H, H1,  $2\theta_W$ ,  $2\delta_W^W$ ,  $\alpha$  and Ho are calculated continuously down the diffuser tailpipe.

The solution of these equations requires the following diffuser inlet data to be specified in advance.

1. Centreline velocity. (uo)

2. Total temperature  $(T_{T})$ 

3. Effective total pressure  $(P_{Te})$ 

4. Effective static pressure (Pe)

5. Diffuser divergence  $(\tan \phi / 2)$ 

6. Shape factor (H)

7. Momentum thickness  $(\theta)$ 

8. Measured static pressure  $(p_o)$ 

9. Area Ratio (AR)

10. Inlet width  $(w_1)$ 

IX.1.4 Assumptions of the Method.

1. Since this method of prediction of the boundary layer parameters uses both the Momentum Integral Equation and an entrainment function 'F' the solution assumes that there is no interaction between the boundary layers on opposing walls and that a potential core exists at all points in the diffuser tailpipe system. Therefore, it would be expected that this approach would only be accurate for thin inlet boundary layers and small area ratios and would become increasingly inaccurate as the boundary layer grows in the diffuser/tailpipe system.

2. The method assumes that the static pressure is constant across the duct cross section, which would seem a reasonable assumption for the low mach no's tested. (N < 0.25)

That the velocity components perpendicular to the centreline are negligible.
 The total temperature is constant at all longitudinal and transverse stations. Therefore the total temperature is always equal to the inlet value.

5. The flow in the boundary layer is steady, two dimensional and always turbulent.

6. The normal Reynolds stress term, in the equations of motion for the boundary layer, is negligible.

IX.2 Prediction of the Pressure Recovery Coefficient (Cp).IX.2.1 The Thin Inlet Boundary Layer.

The theoretical and experimental values, of pressure recovery (Cp) are compared for a thin inlet boundary layer, an area ratio of 2.0 and plenum discharge in figure 56. There can be seen to be a very good correlation for the divergence angle of  $5^{\circ}$ , (within  $25^{\circ}$ ). This figure increases slightly for the  $10^{\circ}$  and  $15^{\circ}$  divergence angle cases, (the error for the 15° divergence angle is  $105^{\circ}$ ). When the area ratio (AR) is increased to 3.0 (shown in figure 57) the error increases to  $155^{\circ}$  to  $205^{\circ}$ .

The addition of a tailpipe to this system does appear to improve the situation slightly (shown in figure 53) and for an area ratio of 2.0 the difference between the predicted and experimental results is within 2%, for all divergence angles. However when the area ratio is increased to 3.0 (figure 59) the improvement is only slight, the error being between experimental and predicted pressure recovery falls to  $\pm 15\%$  the over/under estimation depending upon the divergence angle. This means that the theoretical, approach overestimates the high divergence angle cases and underestimates the low divergence angle cases.

IX.2.2 Thickening of the Inlet Boundary Layer.

As the inlet boundary layer thickens the error between predicted and experimental results for the plenum discharge increases for all cases. For the 5° divergence angle diffuser, of area ratio (AR) 2.0 and area ratio 3.0 with plenum discharge (shown in figure 60) the error, increases from -2% to -10%, though at the diffuser exit plane for the area ratio 3.0 case, the predicted and experimental values are within 2%. Figure 61 shows the  $10^{\circ}$  and













15° divergence angle, area ratios 2 and 3 results compared with the theoretical For the 10° divergence angle case the predicted values are in error results. by up to -15% for the area ratio 2.0 case, and up to +15% for the area ratio 3.0 case, for the  $15^{\circ}$  divergence angle, area ratio = 3.0, case the theoretical prediction overestimates by 40%. The error in the 15° divergence angles cases can be substantially explained by the failure of the theory to predict the separation of the boundary layer and infact stalling of the diffuser in the case of the area ratio 3 diffuser. Therefore, as can be seen, the error is much more reasonable for the area ratio (AR) = 2 diffuser (i.e. 8%). In the case of the 10° divergence angle diffuser the theory appears to take a mean between the AR = 2 and the AR = 3 cases. However since the theory does not take into account the effect of the downstream conditions diffusing upstream and affecting the flow, which in the case of a very small divergence angle diffuser or a tailpipe would appear to be a valid assumption (as shown in chapter However this is not the case when a further highly diverging section VIII). is included. The effect of the downstream conditions affecting the local boundary layer is obviously greater for thick boundary layers and high area ratio and high divergence angle diffusers. In addition the interaction between the boundary layers on the opposing walls will increase as the boundary layer thickens further in the diffuser. This can be seen in figure 62 which shows a fully developed inlet flow case with a divergence angle of 5° and an area The experimental value of pressure recovery coefficient (Cp) is ratio of 3. underestimated as usual for the 5° divergence angle case but is within  $\frac{5}{5}$  for much of the diffuser, however after approximately the first 30% of the diffuser the theory fails to predict the rapid fall in the  $\partial \mathcal{R}_{x}$  values and the error at the exit is an overestimation by the theory of approximately 10%. This trend to change from under estimation to over estimation as the inlet boundary layer thickens is shown in figure 63 for a  $5^{\circ}$  divergence angle diffuser of AR = 3.0 with thin, thick and fully developed inlet boundary layers. This reduction

10 11 -





of the prediction accuracy as the inlet boundary layer thickens is to be expected since the basis of this theoretical approach is the assumption that the opposing bound ry layers do not interact and that a potential core exists at all points in the system. Therefore any increase in the boundary layer thickness at the inlet must increase the error of the prediction method which will be seen as an overestimation of the pressure recovery.

IX.3 Shape Factor (H). IX.3.1 Thin Boundary Layer at Inlet.

The prediction of the boundary layer shape factor for plenum discharge with a thin inlet boundary layer can be seen in figures 64 and 65. The theoretical approach can be seen to underestimate the distortion of the boundary layer for all except the 15° diffuser of area ratio 3. However the general form of the prediction can be seen to be very similar to the experimental results and figure 64 shows how for small divergence angles the prediction becomes increasingly accurate. The sharp fall in shape factor (H) after the high inlet figure (caused by the boundary layer trip wire) is accurately predicted for the small divergence angle diffuser. As the divergence angle increases the prediction accuracy reduces especially when the area ratio also is increased. However, the prediction method fails to predict the later rapid increase in the shape factor, an error which increases with decreasing area ratios, the exception to this being shown in figure 65 for the 15° divergence angle diffuser area ratio = 3.0.

It would therefore seem that the prediction method in the case of a thin inlet boundary layer either underestimates the growth of the displacement thickness therefore the boundary layer growth, or overestimates the growth of the momentum thickness, both of which would be seen as an overestimation of pressure recovery due to the incorrect centre line velocity calculated.. (This is discussed in paragraph IX.4); This can be seen in figure 56 for the 10<sup>o</sup> and 15<sup>o</sup> divergence angle diffusers.

IX. 3.2 The Effect of Thickening the Inlet Boundary Layer.

As the inlet boundary layer thickens the prediction method can be seen





to again underestimate the shape factor (figures 66 and 67). This can be seen to be grossly underestimated in the 15<sup>°</sup> divergence angle case shown in figure 67. This accounts for the very large errors in pressure recovery predicted for this case when compared to the actual results. For both plenum discharge and tailpipe discharge (shown in figure 67),  $\frac{\partial H}{\partial \times}$  is so high that within 3 to 4 inlet widths as the distortion of the boundary layer is so large causing the boundary layer to separate, and the diffuser to stall. The theoretical prediction however fails to predict this thus giving far higher pressure recoveries than were experienced (40% higher).

It can be seen that the prediction method generally underestimates the boundary layer distortion for all the inlet boundary layer conditions tested, and thus fails to predict separation of the boundary layer, which it would normally do when the shape factor 'H' reached 2.8.

IX.3.4 The Inclusion of a Tailpipe.

The effect of the inclusion of a tailpipe on the shape factor 'H' is predicted as can be seen in figures 66 and 67. However the very rapid recovery of the boundary layer is not accurately predicted, thus explaining why a more rapid pressure rise occurs in the tailpipe at the limit of flow stability than is predicted for the thick inlet boundary layer case. Therefore the prediction of the boundary layer shape factor (H) is closest for a thin inlet boundary layer, especially with a small diver ence angle and area ratio. The prediction of the shape factor for this case is within  $22-4\frac{4}{12}$  (shown in Table VI).

IX.4 Momentum Thickness Prediction.

As previously suggested in paragraph IX.3 the underestimation of the shape factor is due to an overestimation of momentum thickness. It can be seen in figure 69 that in the early part of the diffuser/tailpipe system the correlation between experimental and predicted results is good, however, as the area ratio enlarges the error the theoretical result increases. However with low area ratio diffusers (AR = 2), shown in figure 70 with thin inlet boundary layer



THICK ENLET BOUNDARY LAYER , AR = 5 , 5° DIVERGENCE

FIGURE....66



THICK INLET BOUNDARY LAYER , AR = 3 , 15° DIVERGENCE







.

conditions the correlation is good, especially for the 5° divergence angle case and as described previously the shape factor correlation for this case is also in good agreement. Thus the boundary layer is accurately predicted for these cases, accounting for the close agreement between the experimenta and theoretical prediction results of the performance parameters for these cases

IX.5 Limits for Accurate Prediction of Flow and Performance Parameters.

It can be seen from the results obtained that for low area ratios and low divergence angle diffusers, that is below  $15^{\circ}$ , the correlation between the predicted boundary layer and the performance parameters is very good for a thin inlet boundary layer. For these particular geometrical configurations the agreement remains relatively close for a thick inlet boundary layer  $(2\delta^*/w_1 = 0.06)$  and even for the fully developed inlet flow case. Provided that the divergence angle is kept below  $10^{\circ}$  the correlation is quite good for most boundary layer and performance parameters, even, without any correction for the interaction of the opposing boundary layers.

 $2 = 5^{\circ}$ 

| 'PLENUM<br>AR2                                            |                                                      | Cp                                                   |                                                |                                                      | Н                                                    |                                           |                                                      | 2 <del>9</del> /\\1                                  |                                           |
|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| X/W1                                                      | EXP                                                  | 2-D TH                                               | AX1.TH                                         | EXP                                                  | 2D                                                   | AXI                                       | EXP                                                  | 2-D                                                  | XI-THEORY                                 |
| 2.66<br>6.67<br>10.66<br>ATHOS.                           | •367<br>•617<br>•748<br>•753                         | •350<br>•615<br>•755<br>-                            | •571<br>•757<br>•75 <sup>4</sup>               | 1.47<br>1.40<br>1.61                                 | 1.47<br>1.48<br>1.50                                 | 1.60<br>1.53<br>1.41                      | 0.019<br>0.039<br>0.069                              | .018<br>.042<br>.072                                 | .026<br>.058<br>.066                      |
| TAILPIPE<br>AR2 X/W                                       | EXP                                                  | 2D                                                   | IXA                                            | EXP                                                  | 2D                                                   | AXI                                       | EXP                                                  | 2 <b>-</b> D                                         | AXI                                       |
| 2.66<br>6.67<br>10.66<br>15.79<br>19.84<br>31.78<br>46.88 | .328<br>.556<br>.684<br>.700<br>.699<br>.691<br>.679 | .325<br>.571<br>.699<br>.717<br>.715<br>.708<br>.698 | •540<br>•675<br>•671<br>•662<br>•654<br>-      | 1.54<br>1.53<br>1.59<br>1.44<br>1.36<br>1.27<br>1.25 | 1.46<br>1.48<br>1.50<br>1.42<br>1.38<br>1.33<br>1.30 | 1.61<br>1.53<br>1.41<br>1.36<br>1.33<br>- | .024<br>.046<br>.068<br>.078<br>.079<br>.084<br>.078 | .018<br>.042<br>.076<br>.095<br>.097<br>.121<br>.152 | .026<br>.058<br>.066<br>.076<br>.085      |
| PLENUM<br>AR=3 X/W                                        | EXP                                                  | 2D                                                   | ÂXI                                            | EXP                                                  | 2D                                                   | AXI                                       | ЕХР.                                                 | 2 <b>-</b> D                                         | TXA                                       |
| 2.66<br>10.66<br>18.32<br>22.31<br>ATMOS.                 | .325<br>.689<br>.800<br>.832<br>.836                 | •29<br>•59<br>•69<br>•724                            | .550<br>.863<br>.865<br>.863                   | 1.48<br>1.51<br>1.63<br>1.69                         | 1.46<br>1.50<br>1.55<br>1.57                         | 1.61<br>1.68<br>1.45<br>1.41              | .021<br>.064<br>.102<br>.117                         | .018<br>.074<br>.144<br>.186                         | .026<br>.120<br>.138<br>.144              |
| 'AILPIPE<br>AR=3 X/W                                      | EXP                                                  | 2D                                                   | AX1                                            | EXP                                                  | 2D                                                   | AX1                                       | EXP                                                  | 2 <b>-</b> D                                         | AXI                                       |
| 2.66<br>10.66<br>22.31<br>29.3<br>40.6<br>49.7<br>58.7    | •329<br>•687<br>•831<br>•841<br>•844<br>•845<br>•843 | •29<br>•59<br>•724<br>•728<br>•727<br>•726<br>•725   | .490<br>.783<br>.783<br>.780<br>.770<br>-<br>- | 1.49<br>1.56<br>1.68<br>1.47<br>1.33<br>1.24<br>1.22 | 1.46<br>1.50<br>1.57<br>1.47<br>1.39<br>1.35<br>1.33 | 1.60<br>1.73<br>1.41<br>1.36<br>1.32      | .021<br>.067<br>.116<br>.126<br>.116<br>.092<br>-074 | .018<br>.074<br>.186<br>.206<br>.225<br>.241<br>.256 | .026<br>.122<br>.145<br>.157<br>.175<br>- |

.

| PLEJUM<br>AR2                                                                      |                                                                              | Ср                                                        |                                           |                                                       | H                                                    |                                           |                                                      | 29/11                                                |                                           |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------|
| _ X/W1                                                                             | EXP                                                                          | TH-2D                                                     | ŢXA                                       | EXP                                                   | 2D                                                   | AX 1                                      | EXP                                                  | 2D                                                   | FXA                                       |
| 0.76<br>2.64<br>4.65<br>ATMOS                                                      | •188<br>•513<br>•658<br>•711                                                 | • 204<br>• 540<br>• 696                                   | • 320<br>• 674<br>• 681                   | 1.647<br>1.654<br>1.739                               | 1.55<br>1.53<br>1.57                                 | 1.72<br>1.92<br>1.56                      | .013<br>.029<br>.047                                 | .009<br>.024<br>.044                                 | .012<br>.044<br>.050                      |
| TAILP.<br>AR=2                                                                     |                                                                              |                                                           |                                           |                                                       |                                                      |                                           |                                                      |                                                      |                                           |
| X/W1                                                                               | EXP                                                                          | 2D                                                        | AXT                                       | EXP ·                                                 | 2D                                                   | AXI                                       | EXP                                                  | 2D                                                   | AX1                                       |
| 2.65<br>4.64<br>6.04<br>8.04<br>12.05<br>17.72<br>27.35<br>33.78<br>39.03<br>42.38 | •519<br>•668<br>•721<br>•729<br>•732<br>•731<br>•727<br>•719<br>•714<br>•710 | •535<br>•697<br>•753<br>•753<br>•751<br>•747<br>•739<br>- | .674<br>.681<br>.681<br>.678<br>.671<br>- | 1.65<br>1.762<br>1.77<br>1.50<br>1.35<br>1.29<br>1.28 | 1.54<br>1.58<br>1.58<br>1.48<br>1.39<br>1.35<br>1.32 | 1.94<br>1.56<br>1.48<br>1.43<br>1.37<br>- | .029<br>.047<br>.058<br>.061<br>.059<br>.062<br>.071 | .023<br>.044<br>.058<br>.062<br>.071<br>.084<br>.105 | .045<br>.050<br>.054<br>.058<br>.066<br>- |
| PLENUM<br>AR=3                                                                     | EXP                                                                          | 2D                                                        | LXA                                       | EXP                                                   | 2D                                                   | AXI                                       | EXP                                                  | 2D                                                   | AXI                                       |
| 4.65<br>6.31<br>11.06<br>ATMOS.                                                    | .426<br>.693<br>.784<br>.788                                                 | •688<br>•768<br>•879                                      | •764<br>•776<br>•784                      | 1.592<br>1.631<br>1.670                               | 1.62<br>1.66<br>1.78                                 | 2.43<br>1.90<br>1.58                      | 0.021<br>.050<br>.076                                | .050<br>.073<br>.148                                 | .106<br>.120<br>.136                      |
| TAILPIPE<br>AR=3                                                                   | EXP                                                                          | 2D                                                        | AXI                                       | EXP                                                   | 2D _                                                 | AXI                                       | EXP                                                  | 2D                                                   | AXI                                       |
| 2.64<br>6.31<br>11.06<br>15.76<br>19.76<br>31.76<br>42.26                          | .487<br>.682<br>.780<br>.795<br>.801<br>.811<br>.812                         | •587<br>•796<br>•886<br>•897<br>•897<br>•896<br>•894      | • 691<br>• 792<br>• 797<br>• 796<br>• 794 | 1.58<br>1.62<br>1.80<br>1.49<br>1.41                  | 1.54<br>1.62<br>1.73<br>1.54<br>1.47                 | 2.10<br>1.85<br>1.54<br>1.45<br>1.40      | .027<br>.051<br>.083<br>.086<br>.097                 | .024<br>.064<br>.130<br>.150<br>.156                 | .052<br>.107<br>.120<br>.128<br>.136      |

CADLE VI (Contd.)

 $2\emptyset = 15^{\circ}$ 

| PLENUM AR                                                                          | 2                                                                                    | CP                                                                           |                                     |                                                                       | Н                                                                            |                                            |                                                      | 28/\1                                                                |                                      |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------|
| X/W1                                                                               | EXP                                                                                  | 2D                                                                           | AXI                                 | EXP                                                                   | 2 <b>-</b> D                                                                 | TXA                                        | EXP                                                  | 2 <b>-</b> D                                                         | AXI                                  |
| 0.66<br>2.64<br>ATMÓS                                                              | • 247<br>•596<br>• 680                                                               | •270<br>•662                                                                 | .43<br>.679                         | 2.317<br>1.975                                                        | 1.570<br>1.630                                                               | 1.94<br>1.74                               | .005<br>.014*                                        | 009<br>.029                                                          | .014<br>.044                         |
| TAILPIPE<br>AR=2                                                                   | EXP                                                                                  | 2D                                                                           | AXI                                 | EXP                                                                   | 2-D                                                                          | AX1                                        | EXP                                                  | 2 <b>-</b> D                                                         | TXA                                  |
| 0.66<br>2.64<br>4.13<br>6.14<br>8.14<br>10.14<br>12.14<br>16.14<br>24.13           | .249<br>.612<br>.703<br>.724<br>.730<br>.731<br>.732<br>.732<br>.729                 | .272<br>.661<br>.758<br>.758<br>.757<br>.756<br>.755<br>.755<br>.752<br>.747 | .44<br>.685<br>.627<br>.686<br>.683 | 1.704<br>2.124<br>2.282<br>1.531<br>1.381<br>-<br>1.287<br>-<br>1.243 | 1.59<br>1.64<br>1.65<br>1.49<br>1.43<br>1.40<br>1.38<br>1.38<br>1.38<br>1.34 | 1.92<br>1.73<br>1.54<br>1.45<br>1.405<br>- | .013<br>.041<br>.058<br>.062<br>.062<br>.058<br>.058 | .009<br>.031<br>.046<br>.052<br>.057<br>.060<br>.066<br>.076<br>.090 | .014<br>.043<br>.046<br>.050<br>.054 |
| PLENUM<br>AR-3                                                                     | EXP                                                                                  | 2D                                                                           | AX1                                 | EXP                                                                   | 2-D                                                                          | AXI                                        | EXP                                                  | 2 <b>-</b> D                                                         | AX1                                  |
| 2.64<br>4.29<br>7.27<br>ATMOS                                                      | •580<br>•663<br>•749<br>•761                                                         | .661<br>.784<br>.894                                                         | SEP'N                               | 1.827<br>1.747<br>1.650                                               | 1.64<br>1.73<br>1.90                                                         | (2.92)<br>SEP'N                            | .036<br>.045<br>.052                                 | .030<br>.054<br>.118                                                 | (.044)<br>SEP'N                      |
| TAILPIPE<br>AR=3                                                                   | EXP                                                                                  | 2D                                                                           | AXI                                 | EXP                                                                   | 2 <b>-</b> D                                                                 | AX1                                        | EXP                                                  | 2-D                                                                  | AXI                                  |
| 2.64<br>4.29<br>7.27<br>7.93<br>13.94<br>19.94<br>27.93<br>34.42<br>38.29<br>42.95 | .560<br>.639<br>.728<br>.744<br>.777<br>.792<br>.800<br>.801<br>.801<br>.801<br>.802 | .664<br>.788<br>.889<br>.900<br>.900<br>.899<br>.898<br>.897<br>.896<br>.895 | SEP'N                               | 1.75<br>1.74<br>1.81<br>1.82<br>1.30<br>1.25<br>1.24                  | 1.65<br>1.73<br>1.91<br>1.88<br>1.52<br>1.43<br>1.35                         | (2.97)<br>SEP'N                            | .034<br>.051<br>.090<br>.094<br>.083<br>.082<br>.077 | .031<br>.054<br>.112<br>.120<br>.134<br>.146<br>.162                 | (.045)<br>SEP'N                      |
#### Chapter Ten

### POSSIBLE EXTENSIONS OF TORK.

### Reynolds Number.

The present investigation has shown that diffuser performance is not as independent of inlet Re. as many workers assume. Therefore useful work could be carried out on the following:-

- (i) The effect of Reynolds number on performance parameters for diffusers with both plenum and tailpipe discharge to determine the effect of tailpipe addition on Reynolds number dependance.
- (ii) The effect of diffuser configuration (up to high divergence angles and area ratios) on Reynolds number effects.
- (iii) The effect of Reynolds number on the inlet boundary layer parameters.X.2 Boundary Layer Stability.

The present work indicates that there is a relationship between shape factor and displacement thickness which could be used to define the onset of boundary layer instability. Therefore if work was carried out with varying boundary layer thicknesses and shape factors by using more varied divergence angle diffusers than used in this work, with two area ratios to check the correlation. The relationship could then be accurately established, this would give a much better parameter than shape factor (H) for determining the onset of separation.

Theoretical Prediction.

The theoretical prediction method tested indicated that with large area ratios and thickening boundary layers the boundary layer prediction becomes increasingly inaccurate. Therefore the inclusion of some factor to allow for the reduction of entrainment with a thickening boundary layer could be usefully employed to increase the accuracy of this method at high area ratios and boundary layer thicknesses.

X.1

X. 3

### Chapter Eleven MAIN CONCLUSIONS.

The Reynolds Number Effects.

The Reynolds number investigation (chapter V11) shows conclusively that Cp is dependent on the inlet Reynolds number for all Reynolds numbers. As the Reynolds number decreases the inlet boundary layer thickness, the momentum thickness, and the shape factor (H) increase. Also as the inlet boundary layer thickness is increased (by the addition of an inlet pipe) the Reynolds number dependence increases at the lower Reynolds numbers, indicating the sole reason for the increase in Cp with increasing Reynolds number is due to the reduction of the inlet boundary layer thickness, this is also shown by a reduction in momentum thickness and shape factor.

The Reynolds number dependence increases as the divergence angle increases and as the inlet boundary layer thickness and shape factor increase. However the experimental results indicate that the results are within 1% for Reynolds numbers above  $3 \times 10^5$ , though there are indications that this error will increase for diffusers with divergence angles above  $15^\circ$ . Therefore it can be concluded that the effects on performance of Reynolds number are as follows:-

- 1. For inlet Reynolds numbers above  $3 \ge 10^{9}$ , the performance is independent of Reynolds number.
- 2. For very high divergence angle diffusers, stalled diffusers or diffusers in which a jet flow regime exists the Reynolds number dependence will increase and may be significant above  $3 \times 10^5$ .

That the optimum diffuser geometry is independent of Reynolds number (since as optimum configuration are approached then the Re dependence appears to reduce.)

XI.1

3.

XI.2 Diffuser Investigation Conclusions
XI.2.1 The Effect of the Boundary Layer Parameters.
XI.2.1.1 Inlet Boundary Layer Thickness.

Increase of the inlet boundary layer thickness, defined in this work by the displacement thickness non-dimensionalised by dividing by the local duct width, has a severe effect on the perfomance of the diffuser causing a fall in pressure recovery and effectiveness. This effect is particularly noticeable in the case of the higher divergence angle diffusers (due to the higher dp/dx values), and there is a generally increased growth of the boundary layer parameters with the thicker inlet boundary layers thus indicating a slower rate of momentum transfer.

It can therefore be concluded from the results of this work that the smaller the inlet boundary layer thickness the higher will be the pressure recovery and the effectiveness of the diffuser.

X1.2.1.2 Effects of Thickening the Boundary Layer

As the boundary layer thickens there is an increased tendency for the boundary layer to separate, (due to the lower rate of momentum transfer), however when the boundary layer is approaching a fully developed condition at inlet the pressure recovery falls by up to 40 - 50% of that of the thin inlet boundary layer case thus giving the appearance of an increased stability of the boundary layer as the inlet flow approaches a fully developed condition. X1.2.1.3 Shape Factor (H)

The inlet shape factor for the thin inlet boundary layer was particularly high (due mainly to the boundary layer trip wire). It can be seen from the profile figure 16a that there is a slight velocity deficiency on the centreline, however, this would not affect the performance severely. The distortion due to the trip wire, however, would reduce the performance, due to the momentum deficiency of the boundary layer, this was most noticeable with the case of the high divergence angle diffusers in which high pressure gradients occur, and any deficiency of momentum in the inlet boundary layer is less likely to recover for these cases. Therefore the performance values for the high divergence angle diffusers may be lower than that which would normally expected.

As the boundary layer thickens in the diffuser the ability of the diffuser to withstand further diffusion is a function of both the boundary layer thickness and the shape factor. That is, with a small boundary layer thickness the flow is able to withstand highly distorted flows (i.e. high shape factor) whereas with a large boundary layer thickness a much smaller shape factor can be withstood before separation occurs. Thus it can be seen that there is an important link between the stability of the boundary layer, the displacement thickness and the shape factor, this is discussed more fully in paragraph X1.2.1.6

X1.2.1.4 Flow Unsteadiness.

The flow unsteadiness, that is the fluctuation of the static pressure with respect to the mean static pressure was at a low level for all this work. However it was noticable that the unsteadiness increased with the area ratio and divergence angle and was at a maximum at separation or onset of stall, indicating that the separations were neither symmetric or stable conditions. X1.2.1.5 Kinetic Energy Correction Factor ( $\infty$ )

This parameter was calculated for the experimental results and the values of pressure recovery and effectiveness were corrected by the inclusion of this factor.

For the pressure recovery coefficient (Cp) the corrected value was always lower, since  $\propto_1$  (inlet value) must always be less than 1.0. Though the error between Cp and Cp<sub>E</sub> was never very large, due to the small inlet kinetic energy correction factor (largest for fully developed inlet flow conditions).

The effect on effectiveness is somewhat different, since the kinetic energy correction factor ( $\propto$ ) of the developing boundary layer is taken into account. It was seen that for moderately high divergence angle diffusers ( $2\phi = 15^{\circ}$ ) the effectiveness underestimated the energy corrected value severely therefore indicating that when a tailpipe is fitted the effectiveness will increase as the distortion, and therefore the  $\propto$ , of the boundary layer decreases. This effect becomes more marked as the divergence angle and the AR increase.

Generally it can be concluded that the distortion of the velocity profile causing the discrepancy between  $\gamma$  and  $\gamma_{\Xi}$ , is an important consideration when designing a fluid flow system where a tailpipe is fitted, especially if plenum discharge data is used. The use of non energy corrected effectiveness would not only give a pessimistic assessment of the effectiveness but may also indicate a totally incorrect geometry for the optimum effectiveness of the system being designed.

XI.2.1.6 Flow Stability Criteria.

The use of a relationship between the kinetic energy correction factor ( $\propto$ ) and the displacement thickness  $2\delta^{*}/v$  is shown to be unreliable in predicting instability of the boundary layer, and similar displacement thicknesses and kinetic energy correction factors can have totally different flow stability.

Shape factor (H) which has often been postulated as a criterian for flow stability also does not define the area of instability adequately. However, a relationship between shape factor (H) and the boundary layer stability, and could usefully be used in prediction techniques, such as the one tested using this work, to predict flow separation. For very small boundary layer thicknesses, high shape factors of the order of 3.0 can be sustained without instability, whereas at higher boundary layer thicknesses above  $2\delta/w = 0.2$ , the limit of stability is constant at a value of shape factor of 2.0

X1.2.2 The Effect of Diffuser Geometry.

X1.2.2.1 Divergence Angle and Area Ratio.

The divergence angle and area ratio have similar effects on the performance of the diffuser. As the divergence angle increases the value of dp/dx and therefore distortion of the boundary layer increases, whereas with increasing AR the boundary layer thickness for a given divergence angle increases.

Therefore these two parameters are interdependent in determining the performance of a diffuser since a low divergence angle will give a high boundary layer thickness but a low  $\frac{dP}{dV}$  value, and a high divergence angle, a high pressure

gradient in conjunction with a thin boundary layer. Since the interdependence of distortion and boundary layer thicknesses has been mentioned previously, it must follow that for a particular inlet boundary layer conditions there must be optimum geometries for both pressure recovery and effectiveness.

X1.2.2.2. The Optimum Geometry

The optimum configuration for pressure recovery is between 7° and  $10^{\circ}$ at an area ratio of approximately 4, (for a thin' inlet boundary layer). This will reduce both in area ratio and divergence angle as the inlet boundary layer thickens. The effect of these geometric parameters on diffuser effectiveness is similar except that the optimum diffuser effectiveness occurs at a lower area ratio, (approximately AR = 2.0).

An exception to this occurs with the inclusion of a tailpipe in the system. This increases the optimum area ratio, due to the reduction in the distortion of the boundary layer.

X1.3 The Addition of a Tailpipe X1.3.1 The Effects with the Diffuser Geometry.

The inclusion of a tailpipe can be detrimental at low area ratios due to the diffusion which occurs outside the diffuser exit plane. However at higher area ratios and high divergence angles there is a marked improvement in all performance parameters, and infact the addition of a tailpipe has the effect of increasing the divergence angle at which the optimum performance occurs since the increased distortion of the boundary layer recovers inside the tailpipe and the inclusion of a tailpipe to a stalled diffuser results in a large performance increase.

X1.3.2 The Effect of the Tailpipe on the Diffuser Parameters.

There is a slight stabilising effect on the boundary layer within the diffuser transmitted from the tailpipe, thus increasing the divergence angle at which separation will occur. This effect however, is limited to cases of high boundary layer distortion, and at other conditions the effect of the tailpipe on the diffuser parameters is not measureable. This is also true within the tailpipe itself and if truncated at the maximum pressure position the parameters at that point remain the same, (within experimental error).

X1.3.3 Position of Peak Recovery in the Tailpipe.

As the boundary layer at the inlet thickens the advantage of the inclusion of a tailpipe increases. However the momentum transfer required to improve the boundary layer profile is slower and thus a longer tailpipe is required for the optimum pressure recovery. This is seen as a movement of the peak pressure position downstream as the inlet boundary layer thickens.

X1.3.4 The General Effects of Tailpipe Addition

It can be generally concluded that:

1. The inclusion of a tailpipe is only detrimental for a very low area ratio and for moderate divergence angles probably  $\mathfrak{B}^{0} \leq 10^{\circ}$ 

2. For large area ratios, particularly with high divergence angles, the addition of a tailpipe always improves the performance.

3. There is no effect on the conditions within the diffuser transmitted upstream by the addition of a tailpipe. The exception to this is at the limit of flow stability where some stabilisation of the diffuser boundary layer is introduced by the addition of a tailpipe.

4. When a diffuser has stalled large increases in Cp can be obtained (up to 50%) by the inclusion of a tailpipe.

X1.4 Theoretical Prediction of Performance and Boundary Layer Parameters
X1.4.1 Pressure Recovery Coefficient (Cp) and Effectiveness (%)

The theoretical prediction technique tested gave very good correlation between theoretical and experimental performance parameters for the divergence angles tested, that is up to  $15^{\circ}$ , and providing the area ratio was not greater than 2.0. Above this area ratio the prediction itechnique becomes increasingly inaccurate. Increase in the inlet boundary layer thickness reduces the accuracy of the prediction though not markedly for the low area ratio cases (AR = 2). AL. 4. 2 FIGULGELON OF DOUNDARY Layer Parameters.

The prediction of the boundary layer thickness is accurate for small area ratio diflusers. Similarly the prediction of the momentum thickness is quite accurate for a small area ratio diffuser and a small divergence angle, but as the divergence angle or area ratio increase the prediction of the momentum thickness becomes increasingly inaccurate. However the momentum thickness is very small numerically and therefore accurate prediction of this parameter is very difficult. The prediction of shape factor (H) is quite accurate, for all the diffuser geometries tested except where flow instability or stall occurs. However even in the case of flow instability or stall the shape factor prediction can be seen to follow a similar trend to the actual results, though underestimating the actual value.

X1.4.3 Prediction of Separation of the Boundary Layer.

The prediction of separation of the boundary layer by the program is attempted by the use of a critical shape factor to define when separation will occur. The value of 2.8 used in this analysis is somewhat high and a value of 2.2 would seem to be a more suitable value, this would increase the accuracy of the prediction of separated flows. However it has been shown in chapter VIII that there is a definite relationship between the displacement thickness and shape factor at separation. Therefore the inclusion of a function of  $2\delta^{2}/w$  and H to define separation could be included into the prediction program to give a more accurate prediction of separation.

X1.4.4 Error due to the Boundary Layer Interaction.

The error increase with thickening inlet boundary layers occurs not only with a thickening inlet boundary layer, but also with low divergence angle large area ration. This is due to an interaction between the bound ry layers on the opposing walls and since the basis of the prediction technique is that of a potential core existing at all times then this will obviously reduce the accuracy of the technique. The inclusion of some form of blockage factor depending upon the displacement thickness to allow for the interaction of the opposing boundary layers could be included to increase the accuracy with increasing boundary layer thickness.

### REFERENCES.

GIBSON.

1.

2.

5.

6.

7.

8.

9.

Flow of water through pipes or passages having diverging boundaries. Trans. R. Soc. (Edinb.) 1913. Volume 48.

RENEAU, JOHNETONE & KLINE.

Performance of two dimensional diffusers.

Report PD 8 Sept. 1964.

Thermosciences Div., Dept. Mech. Eng. Stamford Univ. California.

3. VULLERS.

Utilisation of outlet K.E. of blowers by means of diffusers.

ZVDI Vo. 77, No. 31. 1933.

4. HUDEATTO B.

The experimental results of diverging flows.

Bulletin of Eng. Research Institute, Kyoto Univ. Vol 2 Sept. 1952. KELNHOFYER & DIRICK C.T.

Tailpipe effects on gas turbine diffuser performance, with fully

developed inlet conditions.

A.S.M.E. Journal Eng. for Power. January 1971.

KLINE, WAITMAN & REMEAU.

Effect of inlet conditions on performance of two dimensional diffusers. A.S.M.E. Journal Basic Eng. Sept. 1961.

MOORE & KLINE.

Some effects of vanes and turbulence in two dimensional wide angled subsonic diffusers.

N.A.C.A. TN 4080.

COCKRELL D. J. & KING A.L.

A review of the literature on subsonic flow through diffusers.

B.H.R.A. TN 902 1967.

SANDBORNE V.A.

An equation for the mean velocity distribution of boundary layers.

N.A.S.A Memo. 2-5-59E.

10. KLINE S. J. & SANDBORNE V. A.

Flow models in boundary layer stall inception.

A.S.M.E. Journal Basic Eng. Sept. 1961.

11. RIPPL.

Experimental investigation on efficiency of slim conical diffusers and their behavour with regards to flow separation. Monthly Tech. Review. Vol. 2. No. 3 March 1958

- 12. BRADLEY O. C. & COCKRELL D. J. Boundary layer methods applied to integral fluid problems. Proc. of the 1970 Heat Transfer and Fluid Mech. Institute. Stamford Univ. press. Stamford, California.
- 13. FOX & KLINE.

Flow regime data and design methods for curved subsonic diffusers. A.S.M.E. Journal Basic Eng. Vol. 84. ser. D. Sept. 1963. pp 303 - 312.

14. COCHRAN D. L.

Use of short flat vanes in two dimensional diffusers. N.A.C.A. Tech. Note 4309.

15. FERRETT E.F.C. & LAMPARD D.

Calculation method for the pressure recovery produced by diffusers fitted with tailpipes.

Paper 2, 1971, Dept. Mech. Eng. University of Nottingham.

16. REID.

Performance characteristics of plane walled two dimensional diffusers. N.A.C.A. TN 2888

17. BRADSHAW P.

Performance of a diffuser with fully developed pipe flow at entry. Journal Royal Aero Soc. Nov. 1963. Vol. 67.

18. BRADSHAW P.

Simple wind tunnel design.

N.P.L Aero Report 1258.

19. BRADSHAW P. & PANKEURST R. C.

Design of low speed wind tunnels.

N.P.L. Report 1039. June 1963

20. BROWN BOVERI REVIEW -

Calculation of rotationally symmetrical turbulent flow trough diffusers.

Brown Boveri Review. Vol.51, No.12 Dec.1964

21. FERRETT E. F. C.

Truncated conical diffusers.

Phd. thesis. Nottingham University, 1970

22. WALLACE F.J.

Pressure pulsations in reciprocating compressor delivery systems. J.Mech.Eng.Sc. Vol.8 No.2, 1966

23. KLINE S. J. & MCCLINTOCK F. A.

Uncertainties of single sample experiments.

A.S. W.F. Journal of Basic Eng. 1971.

24. KUCHEMANN D.

11

Inviscid flow near the trailing edge of an aerofoil. Z.Flugwiss 15, (1967), Heft 8/9

25. NICOLL W. B. & RAMARIAN B. R.

Modified entrainment theory for prediction of turbulent boundary

layer growth in adverse press. gradients.

A.S.M.E. paper FE16 1969.

26. SALTER C.

Low speed wind tunnels for specific purposes.

N.P.L. Report 1218. Dec. 1966

27. YANG TAH - TEA.

Splitter effects in conical diffusers.

Bulletin 103 Eng. Exp. Station. College of Engineering Clemson Univ.

28. GREEN J. E.

Application of Heads entrainment method to prediction of turbulent boundary layer and wakes in compressible flow. R.A.E. Technical Report 72079. April 1972 A review of incompressible diffuser flows. Aircraft eng. Oct. 1963.

30. PANKHURST & HOLDER. Wind tunnel technique:

Pitman text.

31. McDONALD A. T. & FOX R. W.

Incompressible flow in concial diffusers.

Purdue Technology report 1. Sept. 1964.

32. DUGGINS R. K.

The performance of conical diffusers discharging through tailpipes. Aircraft Engineering. August 1970.

33. BORDA J.C.

Memoir on the flow of fluids through orifices of vessels.

Memoirs de l'Academic Royale Des Sciences.

34. VENTURI G. B.

Recherches experimentales sur le principe de communication lateral dams les fluides. Paris 1797.

(Transl. in Nicholson's Journal of natural philosophy 3, London 1802)

35. LIVESEY J. L. & TURNER J.T.

The dependence of performance upon inlet flow conditions.

J. Roy. Aero. Soc. vol 69. November 1965

36. IDELCHIK I.E.

Handbook of hydraulic resistance; coefficient of local resistance and friction.

Gosud. Energ. Izd. Moskva-Leningrad (1960) Translated by Israel program for scientific translations for the U.S.A.F.C. and Nat. Sci. Foundation U.S.A (Jan 1966).

37. COCKRELL D. J. & MARKLAND E.

Effects of inlet conditions on incompressible flow through conical diffusers.

J. Royal Aeron. Soc. vol.66,613, Jan. 1962

20. LIVESEY J.L. & HUGH T.

Suitable mean values in one dimensional gas dynamics.

J. Mech. Eng. Sci 8 No. 4, P374 (Dec. 1966).

39. DERRICK C.T.

Effect of the addition of a straight walled duct on diffuser performance with fully developed inlet conditions. M.Sc. Thesis, School of Engineering and Architecture, Catholic University of America, Washington D.C. 1965

- 40. DUNCAN W.J., THOM A.S. & YOUNG A.D. Mechanics of fluids, second edition. Edward Arnold, Text, 1970
- 41. SCHLICTING H. Boundary layer theory (Translated by J. Kestin ) McGraw Hill, Text, 1963.

Other useful references not referred to in text:

Engineering Sciences Data Unit

Item 74015.

Performance in incompressible flow of plane walled diffusers with single-plane expansion.

MILLER D.S.

Performance of straight walled diffusers.

British Hydromechanics Research Association 1971

# 101 381 297 2.

6997

1

### SHEFFIELD POLYTECHNIC LIBRARY SERVICE

MAIN LIBRARY

**Sheffield City Polytechnic Library** 

## **REFERENCE ONLY**



76-07219 01. THESIS

• .

Two Dimensional diffusers with plenom and tail pipe dischange. Vol. 2. appendices. B.w. Chilton.

·

PhD.

#### APPYNDIX 1.

### EXPIRIMENTAL RIG DESIGN CALCULATIONS.

1.1 Experimental Rig Static Pressure Drop.

For the maximum flow required, that is M = 0.2, the mean flow velocity required would be 224 ft/s which corresponds to a flowrate (Q) of 112 cu ft/sec or 6850 cuft/min. This corresponds to an inlet Reynolds number of 3.5 x  $10^{5}$ (based on a 3" inlet width).

1.1.1 Settling Chamber Pressure Drop.

From N.P.L 1218 for a 2'0" x 2'0" settling chamber, with a flow velocity  $\tilde{a}_1 \circ$  28 ft/s would have the following loss coefficients.

'F' for honeycomb flow straighteners (2) = 0.5.

'K' for wire gauzes (5) = 0.2

Therefore K1 = 11

......

Therefore  $\Delta h_1 = -1.99$  inches w.g.

(Dynamic Head = 0.18 inches v.g.)

1.1.2 The Contraction.

The loss factor for the contraction  $'E_2' = 0.05$ 

Therefore  $\Delta h_2 = 0.58$  inches w.g. (Dynamic head = 11.4 ins. w.g.)

1.1.3 The Inlet Duct.

From OLSON effective dia of the inlet duct = 4 x AREA/PERIMETER

Hydraulic diemeter = 0.44ft. = Dh

Therefore effective Reynolds number =  $6.16 \times 10^5$ 

Giving ; f = 0.013

The loss coefficient  $K_3 = fL/Dh$ 

Therefore  $\Delta h_3 = 0$  to 3.5 inches of w.g. depending on inlet boundary layer conditions required, that is the length of the inlet duct.

1.1.4 Diffuser.

For AR = 3, divergence angle  $5^{\circ}$ .

 $\Delta h_4 = 0.77$  inches w.g. (Dynamic head = + 10.29 inches w.g.)







## Case..2

| REYNOLDS NO.<br>x10 <sup>-5</sup> | CASE 1<br>11Wo Ge | CASE 2      | APPROX. FLOW RATE<br>Cu ît/min. |
|-----------------------------------|-------------------|-------------|---------------------------------|
| 3.5                               | 4.45              | 10.07       | 7000.                           |
| 3.0                               | 3.0               | 7.16        | 60.00.                          |
| 2.5                               | 2.0               | 4.98        | 5000.                           |
| 2.0                               | 1.21              | 3, 22       | 40.00.                          |
| Reynolds no.                      | based or          | 1 3" diffus | er inlet width                  |

71

Diffuser rig design conditions.

FIGRE .... 71

For AR = 2, divergence angle  $15^{\circ}$ .

 $\Delta h_4 = 0.86$  inches w.g. (Dynamic head = + 8.68 inches w.g.)

1.1.5 Tailpipe.

For AR = 2, L = 9 exit diameters.

 $\Delta h_5 = 0.42$  inches w.g.

For AR = 3, L = 9 exit diameters

 $h_5 = 0.28$  inches w.g.

1.1.6 Plenum Discharge.

Loss coefficient 'K' = 1.0

AR = 2;  $\Delta n_6 = 2.89$  inches w.g.

AR = 3;  $\Delta h_6$  = 1.29 inches w.g.

1.2.6 The Cases Considered.

The two extreme cases considered were:-

(1) AR = 3,  $2\phi = 5^{\circ}$ , thin inlet boundary layer and plenum discharge.

(2) AR = 2,  $2\phi = 15^{\circ}$ , fully developed inlet flow and tailpipe discharge.

The maximum and minimum values of static pressure drop for the rig were

calcualted using the above two configurations.

For case 1; 4.46 inches w.g. bling the minimum pressure drop. For case 2; 10.07 inches of water gauge for the maximum pressure drop. This shown for other inlet Reynolds numbers in figure 71.

Therefore a pump of 12" water gauge minimum delivery pressure at a flow of 7000 cuft/min. Also to allow the flow to be varied to the lower flow conditions a radial damper is required, this would increase the flow resistance slightly, but would be easily catered for in the 12 inches water gauge pressure fan requirement.

1.1.7 Power Requirements.

Therefore the minimum fan requirement is 10.07 static pressure drop plus the dynamic head at the fan outlet this gives a power requirement of  $Q \times \dot{\Delta} h_T$ x Q w. which for the design case is 15 E.P.

If the fan is assumed to be 80% efficient a power requirement of 20H.P input would be required. Therefore a motor size of 25 H.P. was decided upon.

1.2 Rotation of Pitot Traverse due to Air Flow.

1.2.1 Basic Data used for Calculation.

Diameter of traverse = 0.032 inches.

Maximum extensions = 4.5 inches

= 3.0 inches.

Calculations based on an inlet Reynolds number of 3.5 x 10<sup>5</sup>, mean velocity

 $\overline{U}$  = 224 ft/s,  $\overline{U}$  in tailpipe = 112 ft/s (AR = 2)

 $\operatorname{Re}_{\mathbf{p}}(\operatorname{based} \operatorname{on pitot} \operatorname{in tailpipe}) = 1.89 \times 10$ 

Drag coefficient from PAO Cd = 0.95

Though due to turbulence of flow, drag may be considerably reduced.

Fd (Drag force)/unit length - (foot) =

Cd 1/2 Q u<sup>2</sup> A

Assuming flat velocity profile of 112 ft/s

Fd = 0.04215 lbf/ft or 0.00351 lbf/in.

For an area ratio of 3,  $\overline{U} = 74.6 \text{ ft/s}$ 

 $\operatorname{Re}_{p} = 1.26 \times 10^{3}$ ,  $\operatorname{Cd} = 1.00$ .

Therefore Fd = 0.00156 lbf/in.

1.2.2 Rotation of End of Pitot Traverse subjected to Flow with a Flat Velocity Profile.

Figure 72 shows the assumptions made for this analysis.

 $M = Rx - M_{R} - \frac{Fdx^{2}}{2} = bending moment at x.$ Therefore EI  $\frac{d^{2} y}{dx^{2}} = Rx - M_{R} - \frac{Fdx^{2}}{2}$ 

Therefore  $\frac{dy}{dx} = Rx^2/2 - M_R x - Fdx^3/6 + A$  -----(1)

When x = 0, dy/dx = 0, therefore A = 0

Moments about wall

=  $M_R - FdL^2/2 - 0$ , therefore  $M_R = FdL^2/2 - -\frac{1}{2}$  (2)

Moments about end.

$$RL - MR - FdL^2/2 = 0$$

Therefore substituting (2)



ū ( Uniform Velocity profile)

FIGURE ... 72

RL - FdL<sup>2</sup>/2 - FdL<sup>2</sup>/2 = 0 Therefore R = FJL ---- - (3) Substitute (2) and (3) in (1)  $\frac{dy}{dx}$  = FdLx<sup>2</sup>/2 - FdL<sup>2</sup>x/2 - Fdx<sup>3</sup>/6 -- -- -(1a) Therefore subsitute in (1a) for x = L i.e. pitot end.  $\frac{dy}{dx}$  EI = -FdL<sup>3</sup>/6 From figure 72 (ii) the polar second moment of area =  $\pi/2$  (R<sup>4</sup> - r<sup>4</sup>) Therefore Ixx =  $\pi/4$  (R<sup>4</sup> - r<sup>4</sup>) = 4.362 x 10<sup>-8</sup> in<sup>4</sup> Therefore  $\frac{dy}{dx}$  at end of pitot traverse in tailpipe if traversed  $4\frac{1}{2}$ " (in 6" duct)  $\frac{dy}{dx} = \frac{1}{EI} - x - \frac{FdL^3}{6} = 0.04073$ Therefore  $\Theta = 2^{\circ}20^{\circ}$  for AR of 3 with a  $4\frac{1}{2}$ " traverse.  $\frac{dy}{dx} = 0.0181$ 

 $\theta = 1^{\circ}2'$ 

Thus the maximum cosine error will be given for the  $2^{\circ}20$ ' rotation case. The error for this rotation will be 0.00% i.e. less than 0.1% therefore was considered insignificant.

1.3 Maximum Deflection of the Duct Wall.

Figure 72(iii) shows how this anlysis was carried out with the assumption of a uniform pressure at a section producing a uniformly distributed load of w/ft. The wall has been likened to a built in beam since the end positions are not free to rotate. The analysis is not strictly correct since it assumes the wall to be made up of strips not connected to their neighbouring strips. This will incur a slight error which will tend to overestimate the deflection. However for the thicknesses and lengths being considered this will be insignificant.

Bending moment at x.

 $= Rx - wx^2/2 - Mg = M$ 

also  $R_1 = v_T L/2$ 

ALLO DE CE - WEINT C - WA / C - MR

Therefore  $M = wLx/2 - wx^2/2 - M_R$  -----(1)

since  $\frac{d^2yEI}{dx^2} = M$  ----(2), at x = 0, L/2, dy/dx = 0 equating (2) and (1) and integrating. Then substituting for the above conditions in the expressions for dy/dx and y, we obtain the solution:

 $yEI = \frac{WL^4}{4.96}$ 

Since the maximum static pressure on the rig is of the region of -7.5" w.g. The maximum deflection will occur at the duct centreline and will be 0.035". However it may be noted that pressures of this order will only be experienced in the inlet pipe.

At the outlet from the contraction and inlet to the diffuser and along the init pipe there are substantial flanges reinforced by 1" square steel stiffners to prevent this deflection being so severe and the maximum measured was 0.01" in the inlet pipe

1.4 Transition to Turbulent Boundary Layer using a Trip Wire.

PANKEURST and HOLDER give the following relationships:-

Uod/ $\psi$  600 -----(1) Uod/ $\psi$  36 (Uox/ $\psi$ )<sup>2</sup> -----(2) where d = diameter of trip wire x = distance from leading edge. using  $\psi$  = 1.6 x 10 Uo =  $\overline{U}$  = 200ft/s from (1) d > 0.575 x 10<sup>-2</sup> inches.

However for low Reynolds number where  $\overline{U}$  may be substantially lower a more realistic value of  $d > 1.00 \times 10^{-2}$  inches. Similarly from (2) with a value of x = 1.0 inches.  $d > 5.0 \times 10^{-3}$  inches.

Similarly this may be substantially higher for the lower Reynolds number tests therefore a trip wire diameter of 0.01" at 1" from the end of the contraction was used for the experimental rig. That is 0.25mm. diameter, 25mm.

### APPENDIX 2.

### PRELIVINARY INVESTIGATION ON AXL SYLDEFFIC RIG.

This rig consisted of a 3 inch internal diameter brass tube 20ft long, consisting of two 10 ft. long tube s connected by a flanged coupling in the centre and with a bellmouth at the inlet.

The original rig was checked for alignment of the two pipes shown by figure 73 and re-aligned as shown to reduce the effect of a step as much as possible, especially in the areas where measurements were to be taken. The 'perspex' traverse positions were then manufactured to the form shown in figure 12.

To determine the best method of securing the tapping blocks to the tube a tensile test with two brass strips connected by a piece of perspex was carried out. Two tests for each adhesive were carried out (Araldite and Tensol No.7). The results of this test were that for Araldite the joint broke at a mean force of 0.55 kH whereas the mean for the tensol cement case was 0.98 kH. However, the joint did not break in shear on the adhesive/perspex joint as in the Araldite case but fractured the perspex stips therefore the stength of the joint would be considerably higher than this value. (The area of the joints were 200 sq. mm). This test showed conclusively that the adhesive to use for a brass/perspex joint was Tensol No. 7 cement.

The tube was then marked out as shown in figure 11 (a) and drilled. The tapping blocks were than cemented in position (using dummy tappings to accurately position the blocks). After this the actual static pressure tappings to be used were inserted and the whole pipe interior honed to de-burr the tappings and to polish the interior. A boundary layer trip wire was then attached (similar to in the main rig) 1 inch in from the bell mouth intake and then the whole rig levelled by means of adjusting the support points to remove any significant deflections of the pipe assembly which might influence the flow.

A data reduction program was then written to analyse the experimental work on the boundary layer growth with distance can be seen in figure 13. Typical



ERFORS IN WALL THICKNESS LOOKING IN FLOW DIRECTION





### APPENDIX 3.

### THE INLET PIPE/DIFFUSER INTERFACE STREAMLINE CURVATURE.

To determine the effect of streamline curvature at the inlet pipe/diffuser interface on the static pressure, the static pressure was measured along the inlet pipe; A typical set of results is shown in table VII and table VIII. The results were plotted against the distance from the diffuser inlet plane (shown in figure 75). This clearly shows the effect of distortion of the streamlines at inlet to the diffuser. However the magnitude is small, approximately 2% lower than the unaffected or 'effective' value.

The 'effective' value of the diffuser inlet static pressure was obtained by extrapolating the results taken sufficiently upstream of the diffuser not to be affected by the streamline curvature at the inlet plane.



. RUN NO. DIV. ANGLE = 10DEG., AREA RATIO = 3. TAILPIPE LENGTH = 2.740M INLET B/L THICKNESS = 0.0000

|              |         |                 |             | •    |                 |            |             |        |                |         |           |         |   |
|--------------|---------|-----------------|-------------|------|-----------------|------------|-------------|--------|----------------|---------|-----------|---------|---|
| POSN         | WIDTH   | DIST            | STATIC      | MEAN | LOCAL           | 2DELTA*    | 2 THETA     | SHAPE  | K & E « CORR « | PRESS   | EFFECT-   | ENERGY  | យ |
| •            |         | FROM            | PRESSO      | VELO | REYNOLDS        |            |             | FACTOR | FACTOR         | RECOV。  | IVENESS   | CORR。   | U |
|              | W/W     | INLET           | M/M H20     | N/S  | NUMBER          | MIDTH      | WIDTH       |        |                | COEFF   |           | EFFECTO |   |
| <b></b> 1    | 76,2 3  | 36 <b>.</b> 500 | <b>"154</b> | 76.9 | 390361 <b>。</b> | 0.0132     | 0.0063      | 2°078  | 1°020          | 000°0   | 1,000     | 0000°0  | 0 |
| 2            | 76.2 3  | 35°000          | -1540       | 0°0  | ° ()            | 00000°0    | 0°0000°0    | 00000  | 0°000°         | 000°0   | 1.000     | 000°0   | 0 |
| ო            | 76.2 3  | 31°000          | -198,       | 0°0  | ° 0             | 00000°0    | 0°000°0     | 000°0  | 000000         | 00000   | 1.000     | 0°000°0 | 0 |
| 4            | 76.2 2  | 27°000          | -222°       | 0°0  | .• C            | 0000000    | 0.0000      | 000°0  | 00000          | 0°000   | 1.000     | 000000  | 0 |
| ŝ            | 76.2 2  | 3°000           | -226.       | 0°0  | °C              | 000000     | 0000000     | 000000 | 00000          | 000000  | 1。000     | 000000  | C |
| \$           | 76.2 1  | 000°6           |             | 0°0  | 0               | 0°0000     | 0°0000      | 000000 | 0°000°0        | 00000   | 1 0000    | 000000  | 0 |
| -1           | 76.2 1  | 5.000           | -249.       | 0°0  | •0              | 0°0000     | 0000000     | 00000  | 00000          | 00000   | 1.000     | 000000  | C |
| ŝ            | 76.2    | 7°000           | -269。       | 0°0  | 0               | 000000     | 0000000     | .000°0 | 00000          | 00000   | 1°000     | 0,000   | 0 |
| 6            | 76.2    | 3.000           | -275。       | 0°0  | °C              | 0°000°0    | 000000      | 0 0000 | 000000         | 00000   | 1 ° 0 0 0 | 0,000   | 0 |
| 10           | 76.2    | 1,000           | -280.       | 0°0  | • 0             | 000000     | 000000      | 0,000  | 00000          | 0°000°0 | 1.000     | 0°000°0 | 0 |
|              |         | •               |             |      |                 |            |             |        |                |         |           |         |   |
| •            |         | •               |             |      |                 |            |             |        |                |         | •         |         |   |
| POS          | N. BE   | TA C.           | /L VELs     | TEMP | • ATMoPF        | RESS. X    | LW/         |        |                |         |           |         |   |
|              | ب<br>اب | 600             | 78.1        | 18,0 | 753             | 3.4 - 36   | 500 36.5    | 10     |                |         | •         |         |   |
| N            | °<br>0  | 000             | 0°0         | 18,0 | 75:             | 3.4 1 2.4  | **** 307 0  | 0      |                |         |           |         |   |
| m            | °       | 000             | 0°0         | 1800 | 752             | 3.4 1 **   | **** 31°C   | 0      |                | -       |           |         |   |
| 4            | °C      | 000             | 0°0         | 18.0 | 752             | 3.4 (**    | **** 27.    | 0      |                |         | •         |         |   |
| ເດ<br>-<br>- | °       | 000             | 0°0         | 18.0 | 75:             | 3.4 (**    | **** 20.0   | n      |                |         |           |         |   |
| \$           | °       | 000             | 0°0         | 18°0 | 75:             | 3.4 1 **   | **** [9.    | 0      |                |         | •         |         |   |
| 2            | °0      | 000             | 0.0         | 18.0 | 755             | 3.4 . 1 ** | ×***        | 0      |                |         |           |         |   |
| α)           | °<br>C  | 000             | 0,0         | 18,0 | 1.01            | 10 1 708   | , 863 · J C |        |                |         |           |         |   |

ILL I

18.0

0000000

000

| Distanc<br>wire in | e from<br>cont. | trip | Undimensionalised<br>dist. from inlet. | Static<br>pressure<br>tappings. | Pitot<br>stations. | Comments.                    |
|--------------------|-----------------|------|----------------------------------------|---------------------------------|--------------------|------------------------------|
| Inches             | mm              |      | x/vī                                   | mm H O                          | mm H O             | $2\phi = 15^{\circ}, AR = 2$ |
| 112.5              |                 |      | 0                                      | _                               | -                  |                              |
| 109.5              | 2781            |      | -1.0                                   | -215                            | -210               | 3" from inlet                |
| 103.5              | 2629            |      | -3.0                                   | -208                            | -206               |                              |
| 91.5               | 2324            |      | -7.0                                   | -198                            | -199               | •                            |
| 79•5               | 2019            |      | -11.0                                  | -184                            | -176               | 2" after flange              |
| 67.5               | 1715            |      | -15.0                                  | -183                            | -177               |                              |
| 55.5               | 1410            | _    | -19.0                                  | -187                            | -175               |                              |
| 43•5               | 1105            |      | 23.0                                   | -96                             | -164               | checked (96)                 |
| 31.5               | 800             |      | -27.0                                  | -161                            | -149               |                              |
| 19.5               | 495             | ļ    | -31.0                                  | -150                            | -128               |                              |
| 7.5                | . 190           |      | -35.0                                  | -156                            | -98.5              | Flange                       |
| 3.0                | 76              |      | -36.5                                  | -98                             | -98                | exit from                    |
| 1.5                | 38              | ·    | -37.0                                  | -99                             | -98                | contraction.                 |
|                    |                 |      |                                        |                                 |                    |                              |

4

Table VIII.

#### REFERENCEA 4.

### THE DATA REDUCTION PROGRAM.

4.1 Input of Data.

3.

4.

5.

6.

4.2

The experimental data is analysed as shown in figure 27 (The flow diagram) by a computer program on an 1130 IBN computer.

The data was input as follows:

1. Divergence angle, area ratio, tailpipe length and the number of the run.

2. The atmospheric pressure and temperature.

The width of the duct at the first position, the static pressure at the position, the centreline at dynamic pressure at that position, and the position number.

The number of readings taken at a particular spacing - 1, and the distance a between the readings (mm).

The data was then read in. Cards 4 and 5 were then repeated until all the readings at that station had been input.

The next station data was then input as in 3 to 5 this was repeated until all the data for the stations had been run, then any additional runs were analysed by starting from card 1 again until all the data required to be analysed had been input.

The Analysis of the Experimental Data.

The density was calculated from the static pressure, the viscosity was also calculated from the expression:-

 $(4.84 \times 10^{-3} \times (T + 273.2)) + 0.394) \times 10^{-5}$  -----(1) When T = ambient temperature in °c.

The velocity was then calculated for each experimental point taken for the relationship V(I) = 2p(I)/Q -----(2) where (I) is the array used for that set of data a value of flow deficiency was then calculated (Used to calculate  $\delta^{*}$ )

 $DEL(I) = 1 - V(I)/U_0$  -----(3)

and also a momentum deficiency term

DF MOM(I) -  $(1 - V(I)/U_0) \times V(I)/U_0$  -----(4).

Then the kinetic energy and momentum at that particular point were calculated and stored in an array (I).

AKE(I) =  $\frac{1}{2} \times V(I)^3 \times Q$  -----(5) AMOM(I) =  $V(I)^2 \times Q$  -----(6)

These parameters were then integrated for the set of data in the array using a Simpson's rule subroutine which included a routine for the <sup>3</sup>/<sub>3</sub>'ths rule for use on the last four values if an odd number of values was read in. Using this subroutine the parameters were calculated by integrating the data for each block input and then sum\_ing the results to find the value for the particular station being analysed. The parameters calculated using this technique were:

(a) Flow  $(m^3/s)$ 

(b) Mass Flow (kg/s)

(c) Displacement Thickness.

(d) Momentum Thickness.

(e) Flow Kinetic Energy.

(f) Flow Momentum.

From these values and the previously calculated values the following parameters. were calculated.

(g) Reynolds Number.

- (h)  $\propto$
- (i) P
- (k) ū
- **(1)** H
- (m) Cp
- (n) Cp<sub>E</sub>
- (o) M
- (p) -4<sub>E</sub>
- (q) λ

The values of velocity for each point was stored in an array together with its corresponding value of distance from the wall, for each station Cp, Cp<sub>E</sub>  $\mathscr{U}$  and  $\mathscr{U}_E$  were also stored in an array with its corresponding value of  $x/w_1$ . After the run had been analysed these values, that is, vel/distance from the wall, and Cp, Cp<sub>E</sub>,  $\mathscr{U}$ , and  $\mathscr{U}_E/x/w_1$ , were plotted by the computer. This had the advantage of showing any obvious erronious results or even punching errors which had not been detected.

The data reduction program used can be seen in figure 76 and typical outputs in appendix 5 and 6.

### DATA REDUCTION PROGRAM.

FIGURE ... 76

10 ...

والمرديقي متماجع بمراجع والتبيين

1. . . . .

### ••• FORTRAN SOURCE STATEMENTS

SUBROUTINE SIMSN(FN,A,N) DIMENSION FN(50) COMMON H L=0 A=0.0 MM=N V=N/2 B=N/2.0 C=B-M ... STNO.C..... FORTRAN SOURCE STATEMENTS .....

| -           | $IF(C-0.4)1_{1}2_{1}2$                              |     |
|-------------|-----------------------------------------------------|-----|
| · 2         | L=1                                                 |     |
| 6           | N=N-3                                               |     |
| · · · · · · | 1F(N)1,5,1                                          |     |
| 1           | A = FN(1) + FN(N+1)                                 |     |
|             | J=2                                                 |     |
|             | K=2                                                 |     |
|             | DC3I=2,N                                            |     |
|             | J=J+K                                               |     |
|             | h = A + J * FN(I)                                   |     |
| 3           | К=-К                                                |     |
|             | A=A*H/3.0                                           |     |
|             | IF(L-1)4,5,5                                        |     |
| 5           | K=MM                                                |     |
|             | A=A+0.375*H*(FN(N-2)+3.0*FN(N-1)+3.0*FN(N)+FN(N+1)) | • • |
| 4           | RETURN                                              |     |
|             | END                                                 |     |

RENCED STATEMENTS

ES SUPPORTED CRD INTEGERS ARD PRECISION

EQUIREMENTS FOR - SIMSN N- 2; VARIABLES AND TEMPORARIES- 18;

VE ENTRY POINT ADDRESS IS 0020 (HEX)

SUCCESSFUL COMPILATION

WS UA SIMSN 1111 1111 DB ACDR 5AF7 DB CNT 0011

\*ICCS(CARD,1403PRINTER,DISK,PLOTTER,TYPEWRITER,KEYBOARD)
\*LIST SCURCE PROGRAM
\*CNE WCRD INTEGERS

••STNO.C..... FORTRAN SOURCE STATEMENTS

INTEGER AR INTEGER DIV INTEGER RUN EXTERNAL SIMSN DIMENSION AMOM(30) DIMENSION V(30),DELP(30),DEL(30),DFMCM(30),AKE(30),VMEAN(30), 1W(30),P(30),DELTA(30),DEL(30),UTHET(30),UDEL(30),SHAPE(30) 1,AK(30),ALP(30),CP(30),ETA(30),ENETA(30),LAMDA(30),WM(30),DI(30), 1RENC(30) ,CVEL(30),ATMPR(30) ,ATEM(30)

CONSTANTS AND PROGRAM- 234
DIMENSION CPE(30) , BETA(30) DIMENSION VEL(100), Y(100) CIMENSION XW(30) COMMON H NOTE PLACE BLANK CARD BETWEEN EACH SET OF DATA DATA IN THE FOLLOWIING UNITS & DI = DISTANCE FROM INLET TO RIG I.E. AFTER CONTRACTION WM = WIDTH IN M/M AWM(WIDTH) IN M/M, NTOT = TOTAL NUMBER OF READINGS AT A PARTICULAR POSITION, SPRES = STATIC PRESSURE, TEMP IN DEGREES CENTIGRADE ATMP = ATMOSPHERIC PRESSURE IN M/M MERCURY DELPC = CENTRELINE TOTAL PRESSURE IN M/M WATER. POSN = THE NUMBER GIVEN TO THE PARTICULAR LOCATION ADI = THE DISTANCE FROM THE INLET (I.E. AFTER CONTRACTION) TO THE POSITY IN METRES WRITE(1, 65)FORMAT(1X, PLEASE READY PLOTTER , PLACE PEN \*\*EXACTLY\*\* 1.0 INCH 1FROM RIGHT HAND EDGE , THEN PRESS START ') PAUSE READ(2,81)DIV, AR, TE, RUN READ(2,291)ATMP, TEMP IF(RUN)42,42,64 CONTINUE \*\*\*\*\*\*\*\*NORMAL PLOITING SCALES \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* CALL SCALF(0.065,0.074,0.0,0.0) CALL FPLOT(1,160.0,0.0) - CALL SCALF(0.065,0.074,0.0,0.0) CALL FGRID(0,0.0,0.0,10.0,8) CALL FGRID(1,0.0,0.0,10.0,12) CALL FCHAR(-10.0,30.0,0.12,0.15,1.57) WRITE(7,651)FORMAT('DISTANCE FROM WALL (IN M/M)') CALL FCHAR(20.0,-8.0,0.12,0.15,0.0) WRITE(7,652) FORMAT('VELOCITY (METRES/SEC)') DO 660 I=1,12 YI=I\*10.0 CALL FCHAR(-8.0, YI, 0.1, 0.1, 0.0) WRITE(7,661)YI · FORMAT(F4.0) CONTINUE DO 662 I=1,8 X = I \* 10.0XI=I\*10.0-3.0 CALL FCHAR(XI,-3.0,0.1,0.1,0.0) WRITE(7,663)X FORMAT(F4.0) CONTINUE . -CALL FCHAR(40.0,123.0,0.1,0.1,0.) WRITE(7,670)RUN FORMAT('RUN NG. ', I4) CALL FPLOT(1,0.0,0.0) CALL FPLOT(2,0.0,0.0) \*\*\*\*\*\*\*\*END OF NORMAL PLOTTING SCALES \*\*\*\*\*\*\*\*\*\*\*\*

| ERRS    | STRO. | C FORTRAN SOURCE STATEMENTS                                                                               |
|---------|-------|-----------------------------------------------------------------------------------------------------------|
|         | 300   | CONTINUE                                                                                                  |
|         | 2     |                                                                                                           |
|         |       | FTA(TNUET)=1.0                                                                                            |
|         | 1     | CONTINUE                                                                                                  |
|         | *     | READ(2,290)AWM+SPRES+DELPC+AD1+POSN                                                                       |
| •       | 100   | CONTINUE                                                                                                  |
|         |       | 1F(AWM)40,40,2                                                                                            |
|         | 2     | CONTINUE                                                                                                  |
|         |       | J=PGSN+0.01                                                                                               |
|         |       | ABET=0.0                                                                                                  |
|         |       | AHCH(J)=0.0                                                                                               |
|         |       | BET=0.0                                                                                                   |
| •       |       | BETA(J)=0.0                                                                                               |
|         |       |                                                                                                           |
|         |       |                                                                                                           |
|         |       |                                                                                                           |
|         |       | DEEN=0.0                                                                                                  |
| •       | •     | ΔK FN=0.0                                                                                                 |
|         |       | NT=0.0                                                                                                    |
|         | •     | $V \times E \wedge N(J) = 0.0$                                                                            |
|         |       | UDEL(J)=0.0                                                                                               |
|         |       | UTHET(J)=0.0                                                                                              |
|         |       | SHAPE(J)=0.0                                                                                              |
|         |       | RENC(J) = 0.0                                                                                             |
| •       |       | $ALP(J)=C.\hat{a}$                                                                                        |
|         |       | CP(J)=0.0                                                                                                 |
|         |       | CPE(J)=0.0                                                                                                |
|         | · ·   | ENEIA(J)=0.0                                                                                              |
|         | C     |                                                                                                           |
|         |       | N(J)-ANA*0.001<br>0(1)=0070                                                                               |
| •       | C     | AWM=VALUE OF WIDTH READ IN IN NUM FOR POSN. TO BE CALCULATE                                               |
|         | ÷     | DI(J)=ADI                                                                                                 |
| •       |       | WM(J) = AWM                                                                                               |
|         |       | XW(J) = DI(J)/W(INLET)                                                                                    |
|         | ÷     | WRITE(5,9)AWM, POSN, RUN                                                                                  |
|         | •     | WRITE(5,31)ATMP, TEMP                                                                                     |
|         |       | WRITE(5,34)DELPC                                                                                          |
|         |       | DENSY=ATMP*13.6*9.81/(287.4*(TEMP+273.2))                                                                 |
|         | •     | AMU=((4.84*0.001*(TEMP+273.2))+0.394)+0.C0001                                                             |
|         |       | ANU=ANU/DENSY                                                                                             |
|         |       | WKITE(J;IU)UENSY;AMU;ANU<br>U-SCRT/2 0*RELDC*0 R1/RENSY)                                                  |
|         |       | 0-3QKI12:0*0CLPC*9:01/0CN31)<br>ATMOD/11-ATMD                                                             |
|         |       | ATEN(J)=TENP                                                                                              |
|         |       | CVEL(J) = II                                                                                              |
| •       |       | AY=0.0                                                                                                    |
|         |       | L=1                                                                                                       |
|         | С     | READS H IN M/M                                                                                            |
| •       | • •   | READ(2,33)NN,H                                                                                            |
|         |       | WRITE(5,13)NN,H                                                                                           |
|         | •     |                                                                                                           |
|         |       |                                                                                                           |
| •       | •     |                                                                                                           |
|         |       |                                                                                                           |
| · · · · |       |                                                                                                           |
|         | ·     | المتستعين المستجد والهادا والانتظام ومرواقه والمتركب المعمر الأردام والمتحاصية والمعاصية فالمتعوم متاركات |
|         | · .   |                                                                                                           |

| C-ERRSSTN | 0.0        | F   | 0 9 | ₹Т | RΛ | N | SOU | R C | Е  | S 1 |
|-----------|------------|-----|-----|----|----|---|-----|-----|----|-----|
|           | . <b>•</b> |     |     |    |    |   |     |     |    |     |
|           | H=H*0.     | 001 |     |    |    |   |     |     | •. |     |

ं

• •

•

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H=H*0.001                                                                          | •.      |    |     | • • • • • • • • • • • • • • • • • • • |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------|----|-----|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |         |    |     |                                       |
| d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IF(NN)401,401,6                                                                    |         |    |     | · · · · · · · · ·                     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NNN=NN+1                                                                           |         |    |     | •                                     |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DELP IN P/M WATER                                                                  |         |    |     |                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | READ(2, 32)(DELP(K), K=1, NNN)                                                     |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CO7I=1, NAN                                                                        |         |    |     |                                       |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IF(CELP(I))605,606,606                                                             |         |    |     |                                       |
| 605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DELP(I) = -DELP(I)                                                                 |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V(I) = SQRT(2*DELP(I)*9.81/DENSY)                                                  |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\forall (I) = -\forall (I)$                                                       |         |    |     |                                       |
| ٠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GD TC 607                                                                          |         |    |     | •                                     |
| 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V(I) = SCRT(2 * DELP(I) * 9.81/DENSY)                                              |         |    |     |                                       |
| 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONTINUE                                                                           |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y(L) = AY                                                                          |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VEL(L) = V(I)                                                                      |         |    |     | •                                     |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L=L+1                                                                              |         |    |     |                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AY=AY+1000.0*H                                                                     |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEL(I) = 1 - V(I) / U                                                              |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DFMCM(1)=(1-V(I)/U)*V(I)/U                                                         |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AKE(I)=V(I) **3*DENSY                                                              |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AMOM(1)=V(1)**2*DENSY                                                              |         |    |     |                                       |
| · 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CONTINUE                                                                           | •       | •  |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $AY = AY - 1C00 \cdot 0 \neq H$                                                    | · · ·   |    |     |                                       |
| · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L=L-1                                                                              |         |    |     | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WRITE(5,35)                                                                        | •       |    |     | ·.                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WRITE(5, 12)(DELP(K), K=1, NNN)                                                    |         |    |     | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hRITE(5, 36)                                                                       |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RTTE(5, 12)(V(1), 1=1, NN)                                                         |         |    |     | • •                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALL SIMSN(V, Q, NN)                                                               | •       |    |     | · · ·                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALL SIMSN(DEL.DELS.NN)                                                            |         |    |     | •<br>•                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DELIS=DELIS+DELS                                                                   |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALL SIMSN(DEMON.DMONS.NN)                                                         |         |    |     | •                                     |
| and a second sec | DEEM=DEEM+DXOMS                                                                    |         |    | •   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALL SIMSNIAKE, AKEN, NND                                                          | •       |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |         |    | ÷   | 14.<br>19                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CALL STRSM(AMOM, ABET, NN)                                                         |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DET-DETAAGT                                                                        |         |    | · . | •                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |         |    |     | . •                                   |
| ۱.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    |         | •  |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | •       |    |     |                                       |
| 7 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    | •       |    | •   |                                       |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                    |         |    |     |                                       |
| · 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{1} \left( \frac{1}{1} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$ |         |    |     |                                       |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                    |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |         | •• |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RENU(J)=VMEAN(J)*W(J)ZANU                                                          |         |    | - e |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |         |    |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IHEIA(J) = OEFM                                                                    |         |    |     |                                       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SHAPE(J)=DELIA(J)/THETA(J)                                                         |         | •  |     |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AK(J) = AAK                                                                        | · · -   |    |     |                                       |
| - ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ALP(J) = 2 \neq AX(J) / (FLCWM \neq VMEAN(J))$                                    | ) * * 2 | )  | •   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $UDEL(J) = 2 \times DELTA(J) / W(J)$                                               | •       | •  |     | -                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>BETA(J)=2.*BET/(FLOWM*VMEAN(J)</pre>                                          | ).      |    | •   |                                       |

 $UTHET(J) = 2 \times THETA(J) / M(J)$ WRITE(5,15)VMEAN(J) WRITE(5,14)FLCW WRITE(5,16)FLOWM WRITE(5,17)REND(J) WRITE(5,18)DELTA(J) kRITE(5,19)THETA(J) WRITE(5,37)UDEL(J),UTHET(J) WRITE(5,20)SHAPE(J) WRITE(5,21)AK(J)WRITE(5,22)ALP(J) CO8021=1,L CALL FPLCT(C, VEL(I), Y(I)) 802 CONTINUE CALL FCHAR(VEL(L),Y(L),0.08,0.08,0.0) WRITE(7,655)J 655 FORMAT(12) CALL FPLOT(1,0.0,0.0) CALL FPLOT(2,0.0,0.0) 9 FORMAT(' WIDTH = ', F5, ), POSITION = ', F3, O, ' RUN NO. ', I4) FORMAT(11H CENSITY = ,F9.7,17H DYN VISCOSITY = ,F9.7,23H KINEMATI 10 1 VISCOSITY = ,F9.712 FCRMAT(1H + 15F7.2) 13 FORMAT(1X, 13, 1X, F8.5) FORMAT(8H, FLOW =  $\cdot$  F9.6) 14 15 FORMAT(17H MEAN VELOCITY = ,F9,2) 16 FORMAT(13H MASS FLOW = ,F9.6) 17 FORMAT(16H REYNOLDS NO. = , F9.2) 18 FORMAT(10H DELTA $\approx = , F7.5$ ) 19 FORPAT(9H THETA = ,F7.5) 20 FORMAT(16H SHAPE FACTOR = ,F5.3) 21 FORMAT(16H KINETIC ENERGY = ,F11.1) 22 FORMAT(32H K.E.CORRECTION FACTOR(ALPHA) = ,F6.4 ,/// ) .290 FCRMAT(F5,1,1X,F6,1,F6,2,F6,3,F3,0) FORMAT(F5.1, F5.1) 291 30 FORMAT(3F6,2,1X,F3.0) FORMAT(20H ATMOSPHERIC PRESS. , F6.2, 19H ATMOSPHERIC TEMP. , F6.2) 31 32 FORMAT(16F5.1) FORMAT(13,1X,F6.2) 33. 34 FORMAT(35H CENTRELINE DYN HEAD (M/M WATER) = ,F6.2) 35 FORMAT(26H DYN HEAD IN M/M WATER = ) 36 FCRMAT(24H VELOCITY IN METRES/SEC.,) 37 FORMAT(13H 2DELTA\*/W = ,F6.4,3X,12H 2THETA/W = ,F6.4) 401 CONTINUE IF(y(J)-y(1))3,3,4141 CP(J)=9.81\*(P(J)-P(INLET))/(0.5\*DENSY\*VMEAN(INLET)\*\*2) IF(VMEAN(J))412,411,412 411 ETA(J)=9.81\*(P(J)-P(INLET))/(0.5\*DENSY\*VMEAN(INLET)\*\*2\*(1.0-W(INLE 1T \* \* 2/(J) \* \* 2) GO TO 50 412 ETA(J)=9.81\*(P(J)-P(INLET))/(0.5\*DENSY\*(VMEAN(INLET)\*\*2-VMEAN(J)\*\* 12))ENETA(J)=9.81\*(P(J)-P(INLET))/(0.5\*DENSY\*(VMEAN(INLET)\*\*2\*ALP(INLE

| 0.7.11(7)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                               |                                |                       |             | •                     |              |       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------|-----------------------|-------------|-----------------------|--------------|-------|
| • STIVU •    | Corror FORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RAN                             | SOUR                           | CE S                  | ТАТ         | E. M. E. N.           | TS eres      |       |
|              | 1T)-ALP(J)*VEFA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (N(J)##2)                       | )                              | • · · · ·             |             |                       |              |       |
|              | LAMDA(J)=1-ETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (J)                             | •                              |                       |             |                       | a strandard  |       |
| 50           | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |                       | • • • · · · |                       | •            |       |
| · .          | CPE(J)=CP(J)/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LP(INLET                        | )                              |                       | , <b>1</b>  |                       |              |       |
|              | GO TO 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | •                              |                       |             | ÷ .                   |              |       |
| 40           | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                                |                       |             |                       |              |       |
|              | WRITE(5,80)UDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L(INLET)                        | ,DIV,AR,                       | TL,RÚN                |             |                       |              |       |
|              | kRITE(5,60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | · .                            |                       | •           | •                     |              |       |
|              | WRITE(5,61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | 2                              |                       |             |                       |              | •     |
|              | WRITE(5,62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                |                       |             |                       |              |       |
| 59           | FORMAT(1H1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                |                       |             |                       |              |       |
| 60           | FORMAT(120H PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISN WIDTH                       | H DIST                         | STATIC                | MEAN        | LOCAL                 | 2DELTA*      | 2 T H |
|              | 1ETA SHAPE K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E.CCRR.                         | PRESS.                         | EFFECT-               | ENERG       | Y ENERG               | Y            |       |
|              | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                |                       |             |                       |              |       |
| 61           | FORMAT(120H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | FROM                           | PRESS.                | VEL.        | REYNOLDS              |              |       |
|              | 1 FACTOR F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACTOR                           | RECOV.                         | IVENESS               | CORR.       | CORR.                 |              | ;     |
|              | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                                |                       |             |                       | <b>x</b> - 1 |       |
| 62           | FORMAT(120H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MZM                             | INLET                          | M/M H2C               | MZS         | NUMBER                | WIDTH        | MJD   |
| •            | 1TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | COEFF.                         |                       | EFFEC       | T. CP.                |              | :     |
|              | 1.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                | -                     |             | -                     |              | _     |
| 63           | FORMAT(13,2X,F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1,2X,F                        | 6.3,2X,F!                      | 5.0,2X,F              | 4.1,2X,     | F8.C,2X,              | F7.4,2X,F    | =6.41 |
|              | 12X, F5.3, 3X, F5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,6%,F5,                        | 3,3X,F5.3                      | 3,3X,F5.              | 3,3X,F5     | .3)                   |              |       |
|              | D0701=1,J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                |                       |             |                       |              |       |
| 70           | kRITE(5,63)1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IM(1),DI(                       | I),P(I),                       | /MEAN(I)              | ,RENO(I     | ),UDEL(I              | ), UTHET (]  | [),SI |
| •            | 1APE(I), ALP(I),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CP(I);ET/                       | A(I),ENE                       | FA(I),CP              | E(I)        |                       | - ··· ···    |       |
| 600          | FORMAT(' POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N. BEL                          | A CZLIV                        | /EL. II               | EMP.        | ATM.PRES              | S. X/M       | L '/) |
| 101          | kRIIE(5,604)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                |                       |             |                       |              | •     |
| 604          | +UKMAI(1X,//)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                |                       | •           |                       |              | 2.1   |
|              | WRITE(5,600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                |                       |             | •                     |              | •     |
| ( 01         | $\begin{array}{c} UU & 6U1 & I=I,J \\ \vdots & DITS(S & (02)) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0571/11                         |                                | ****                  |             |                       | •            |       |
| 602          | ECONATIAN IN F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | 5 VEL (1) 57<br>V CC 1 51      | AIEM(1);)             | ALMPRII     | ),XX(1)               | 21           |       |
| 002<br>(**** | CUANA NA ANA NO N<br>TTO ICAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18452.342/<br>TNC DOUT          | A;FJ;1;J/<br>IME EOD (         | \;F4+1;4;<br>`D `+CTA | NC DIC      | •1,4X,1°0<br>TANCE ED | ADI INIET    |       |
|              | CALL SCALEIG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180 KUUL.                       |                                | 28 TCIA               | 12 012      | TANGE PR              | OF INCE      | ****  |
|              | CALL SUALFIUSU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160 0 0 0                       | , U • U , U = U .<br>N • • • • |                       |             | . ·                   |              |       |
|              | DILINIET)-0 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10000,000                       | <b>∪]</b> <sup>∞</sup>         |                       |             |                       | •            |       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                               |                                |                       |             |                       |              |       |
| •            | X = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                | •                     |             |                       | •            | ×     |
|              | NG-YA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                |                       |             |                       |              |       |
|              | NS-NA<br>XS=5/801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                               | •                              |                       |             |                       |              |       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .7.8.0 0                        | 0.01                           |                       |             |                       |              |       |
|              | CALL SCALFIAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0 \cdot 0 \cdot 0 = 0 \cdot 0$ | 1.2.NS1                        |                       |             |                       | •            |       |
|              | CALL FORIDIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0, 0, 0, 0, 0, 0                | ), 1, 103                      |                       |             |                       |              |       |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000000000                     |                                |                       |             |                       |              |       |
| ·            | XSX=X01/10+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                                |                       |             |                       |              |       |
|              | CVIT ECHVB1-AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C.0.2.0                         | 12.0.15                        | 571                   |             |                       |              |       |
| •            | WRITE17_7001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~; ~ ~ <u>.</u> ; ( e ]         | 3 U & I J & J                  |                       |             | -                     |              |       |
| 700          | FORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RECOV                           | CORFE                          |                       | IVENESS     | 1)                    |              | •     |
|              | $\frac{1}{100} \frac{1}{110} \frac{1}{110} \frac{1}{100} \frac{1}$ | • NLUUY0<br>                    |                                |                       | 19611633    | 1                     |              |       |
|              | YCP=1&0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                |                       |             | •                     |              |       |
|              | CVII CCMVDI-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SN. VOD. O                      | 1.010                          | 01                    |             | •                     |              |       |
|              | URITE/7 7011V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 001107304<br>700                | • 1 3 U • 1 3 U •              |                       |             | •                     |              |       |
| 711          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U f                             | •                              |                       | • •         |                       |              |       |
| 711          | FORMATIC2 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                |                       |             |                       |              |       |
| 711<br>7C1   | FORMAT(F3.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                |                       |             |                       |              |       |
| 711<br>701   | FORMAT(F3.1)<br>XCH=XSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                |                       |             |                       | •            |       |
| 711<br>7C1   | FORMAT(F3.1)<br>XCH=XSC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                |                       |             |                       | •            |       |

.

5.

: -

|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| .STRO | •C••••• FORTRAN SOURCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STATEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |
|       | CALL FCHAR(XCH,-0.08,0.12,0.15,0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>,</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| 702   | FORMATIONISTANCE FROM DIFFUSER INLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T (METRES)!)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| 102   | DO 709 $I=1$ , NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | IF(ADI-2.0)712,712,7111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 7111  | $\mathbf{I} = \mathbf{I} + \mathbf{I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 712   | XL=I*0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |
|       | $XLL=XL-ADI \neq .02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 700   | $LALL = HUMAR(ALL_1 - 0.03, 0.1, 0.1, 0.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 703   | FORMAT(F3, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e en transferencia de transfer<br>Ferencia de transferencia de transferencia de transferencia de transferencia de transferencia de transferencia d | 0                                     |
| 105   | CALL FPLOT $(1, 0, 0, 0, 0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | CALL FPLCT(2,0.0,0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | DO 704 I=INLET,J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | CALL FPLOT(1,CI(I),CP(I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | CALL FPLOT(2,DI(I),CP(I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | CALL PUINT(C)<br>- CALL EDICT() DITIN CDETTN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | CALL FPLCT(2, DI(1), CPE(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |
|       | CALL PCINT(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ۰<br>سر                               |
| 704   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | CALL FCHAR(DI(J),CP(J),0.1,0.1,0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
|       | WRITE(7,705)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 705   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |
|       | $\begin{array}{c} CALL  FPLOT(1, 0, 0, 10, 0) \\ CALL  SPLOT(2, 0, 0, 0, 0) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | DO 7061=1XLFT.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                     |
| .•    | CALL FPLOT(1,CI(1),ETA(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | CALL FPLCT(2,CI(I),ETA(I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
|       | CALL POINT(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |
| •     | CALL FPLCT(1,DI(I),ENETA(I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | CALL FPLCI(2,DI(1),ENEIA(1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 706   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| 100   | $= CALL = ECHAR(OT(J) \cdot ETA(J) \cdot O_{2} \cdot O_{2$ | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                     |
|       | WRITE(7,707)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>'</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| 707   | FORMAT(1 EFF.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| 708   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| •     | CALL FCHAR(0.2,1.2,0.1,0.1,0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| 710   | WKITEL///IU/KUN<br>Endyat/i din Mc 1 tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 110   | CA11 FPIOT(1.0.0.0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| С     | *******END CF PLOTTING ROUTINE ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                     |
| 80    | FORMAT(1h1, 'INLET B/L THICKNESS, = ', F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6.4, DIV. ANGLE =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ',I2,'DEG                             |
|       | 1., AREA RATIO = ', II, ', TAILDIDE LEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1GTH = 1, F5.3, 1M , 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RUN NO. 1,                            |
| 0.1   | 114,///)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 81    | FURMAT(12,1X,12,1X,F5,3,1X,14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | NKI10(0)097<br>READ(0,81)01V.AD.T1.011N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| 810   | READ(2,291)ATMP.TEMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | IF(RUN)42,42,64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| 42    | CALL EXIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                     |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |

## -APPENDIX 5

,

## Reynolds number test results.

| Test No. | Reynolds No.                   | .Configuration                   |
|----------|--------------------------------|----------------------------------|
|          |                                |                                  |
| 1        | 4.68 x 10 <sup>5</sup>         | 10° AR 3 Tailpipe thin boundary  |
| 2        | 4.44 x 10 <sup>5</sup>         |                                  |
| 3        | $4.25 \times 10^{5}$           |                                  |
| 4        | 2.25 x 10 <sup>5</sup>         |                                  |
| 5        | <b>1.4</b> 4 x 10 <sup>5</sup> | •                                |
| 6        | 1.07 x 10 <sup>5</sup>         |                                  |
| 7        | 2.61 x 10 <sup>5</sup>         |                                  |
| 8        | 3.02 x 10 <sup>5</sup>         |                                  |
| 9        | $0.61 \times 10^{5}$           |                                  |
| 10       | $4.08 \times 10^5$             |                                  |
|          |                                |                                  |
| •        |                                |                                  |
|          |                                |                                  |
| 20       | 3.5 x 10 <sup>5</sup>          | 5° AR 2 Tailpipe thick boundary  |
| 21       | $2.9 \times 10^{5}$            | layer                            |
| 22       | 2.0 x 10 <sup>5</sup>          |                                  |
| 23       | $1.4 \times 10^5$              |                                  |
| 24       | $0.57 \times 10^{-5}$          |                                  |
|          |                                |                                  |
| 30       | $4.0 \times 10^5$              | 10° AR 3 tailpipe thick boundary |
| 31       | 3.6 x 10 <sup>5</sup>          | layer.                           |
| 32       | $2.9 \times 10^5$              |                                  |
| 33       | $2.3 \times 10^5$              |                                  |
| 34       | $1.7 \times 10^{5}$            |                                  |
| 35       | 0.6 x 10 <sup>5</sup>          |                                  |

|               |             |           |                                       | · · · · · · · · · · · · · · · · · · · |                   |                |                                        |
|---------------|-------------|-----------|---------------------------------------|---------------------------------------|-------------------|----------------|----------------------------------------|
|               | Test No.    | ,         |                                       | Reynolds No.                          |                   | Configuration. | •••••••••••••••••••••••••••••••••••••• |
| • * ****      | ·           |           | •<br>• • • • •                        |                                       | ·····             |                |                                        |
| •             | 40          | • · · · · |                                       | $4.0 \times 10^{5}$                   | 15 <sup>0</sup>   | AR 2 tailpire  | fully developed                        |
|               | 41          |           | •                                     | 3.9 x 10 <sup>5</sup>                 | •                 |                |                                        |
|               | 42          | ~         |                                       | $3.5 \times 10^5$                     | •                 |                |                                        |
|               | 43          |           |                                       | $3.2 \times 10^5$                     |                   | •              | •                                      |
|               | 44          |           | •                                     | <b>2.6</b> $\times$ 10 <sup>5</sup>   |                   |                |                                        |
| •             | 45          | •         |                                       | 2.2 x $10^{5}$                        | · · · · · · · · · |                | · · · · · ·                            |
| · ·           | 46          | •         |                                       | $1.5 \times 10^{5}$                   |                   |                |                                        |
|               |             |           |                                       |                                       | •                 |                | • .<br>•                               |
|               |             |           |                                       |                                       |                   |                |                                        |
| · ·           | 50          |           |                                       | 4.3 x 10 <sup>5</sup>                 | 100               | AR 3 tailpipe  | fully developed.                       |
| •             | 51          |           |                                       | 3.8 x 10 <sup>5</sup>                 | •<br>•            | •-             |                                        |
| •             | 52          | •         |                                       | $3.4 \times 10^{5}$                   |                   |                |                                        |
|               | 53          |           |                                       | $2.4 \times 10^5$                     |                   |                |                                        |
|               | 54          |           | -                                     | $1.8 \times 10^5$                     | <br>              |                | •                                      |
| . 9           | 55          |           |                                       | $1.4 \times 10^{5}$                   | •                 |                |                                        |
| •             | •           |           | •                                     |                                       |                   |                | 1                                      |
| •             |             |           |                                       |                                       | • • • •           |                |                                        |
|               |             |           | :                                     | -                                     |                   |                |                                        |
| 1999 <b>-</b> | 1           |           |                                       | · · ·                                 |                   | •              |                                        |
| · . · ·       | í           | · · ·     | •                                     |                                       | · · · · · ·       |                |                                        |
|               | •           |           |                                       | •                                     |                   |                |                                        |
|               | · · · · · · |           | · · · · · · · · · · · · · · · · · · · | •                                     |                   |                |                                        |
|               |             |           | · · · · · · · · · · · · · · · · · · · |                                       |                   |                |                                        |
|               |             |           |                                       | •                                     |                   |                |                                        |
|               |             |           |                                       |                                       |                   |                |                                        |
|               |             |           |                                       |                                       |                   |                |                                        |
|               |             |           |                                       |                                       |                   |                |                                        |
|               |             |           |                                       |                                       |                   |                |                                        |
|               |             |           |                                       |                                       |                   |                |                                        |

.

| NO.                  | •        | CCRF                        | * O *                                                                   | * # 0<br>* # 0<br>• # # 0              | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | · · · · · · · · · · · · · · · · · · · | 0°00<br>**                             | 拉 拉<br>拉 拉<br>拉 拉<br>拉                                                  | ****<br>0 <b>•</b> 76      |     | ÷  | •                       | 4                    |   |      |
|----------------------|----------|-----------------------------|-------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------------------------------------|----------------------------|-----|----|-------------------------|----------------------|---|------|
| 30M , RUI            |          | ENERGY<br>CORR.<br>EFFECT.  | * * * * *<br>0 ° 0 0 ° 0                                                |                                        | 0.000<br>0.985                                                                                                 | 0°000<br>0•000                        | 000 <b>°0</b>                          | 0.000                                                                   | ¢☆☆☆☆<br>0.912             |     | •  |                         |                      | • |      |
| 11H = 1.8            |          | EFFECT-<br>IVENESS          |                                                                         | *****<br>*****<br>**                   | 0,000                                                                                                          | 000°00<br>***                         | 林 荘 存 な 存<br>0 • 000                   | 立<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | ****<br>0•914              | •   |    | •••                     | •<br>• •             | • |      |
| PIPE LENC            |          | PRESS.<br>RECOV.<br>COEFF.  | 00 x<br>00 x<br>00 x<br>00 x                                            | ************************************** | ######################################                                                                         | *****                                 | 0.418<br>0.000                         | 0000-0                                                                  | 0.000                      |     | •  |                         |                      |   |      |
| = 3,TAIL             |          | t.ee.corr.<br>Factor        | 0,000<br>1,011<br>4444                                                  | ***<br>******<br>*****                 | ****<br>1 • 098                                                                                                | * * * * * *<br>0 • 0 0 0              | 0.000                                  | ****                                                                    | なななな<br><b>】。065</b>       |     |    | •                       |                      |   |      |
| EA RATIO             |          | SHAPE K<br>FACTOR           | 0 • 000<br>* 1 • 50 0<br>* * * 4                                        | 0.000                                  | 0.000<br>1.590                                                                                                 | 0,000                                 | 0 • 000<br>0 • 000                     | 0°°000                                                                  | 0.000<br>1.356             | · . |    |                         |                      |   |      |
| EG., ARE             | •        | 2THETA                      | 0 • 0000<br>0 • 0095<br>0 • 0000                                        | 0.0000                                 | 0.0000<br>0.0692                                                                                               | 0.0000.0                              | 0.4966<br>0.0000                       | 0°0000<br>0°0000                                                        | 0.0000<br>0.1028           |     | ÷: | -                       |                      |   |      |
| E = 100              |          | 2DELTA*<br>                 | 0.0000<br>0.0149<br>0.0000                                              | 00000                                  | 0.0000                                                                                                         | 0.4980<br>0.4980                      | 0.4980<br>0.4980                       | 0.4980<br>0.4980                                                        | 0.4980                     |     |    | •                       |                      |   |      |
| DIV. ANGL            |          | LOCAL<br>REYNOLDS<br>NUMBER | **************************************                                  | ÔÔ                                     | -0-<br>629496.                                                                                                 | ****                                  | ************************************** | ****<br>****<br> 0                                                      | <i>ф</i> фффффф<br>546310. |     |    |                         |                      |   | •    |
| 0.014                |          | MEAN<br>VEL.                | 0.00                                                                    | 00.00                                  | 45.0<br>45.0                                                                                                   |                                       | * O<br>* O<br>* O                      |                                                                         | 0°0<br>36•3                |     |    |                         |                      |   |      |
| CKNESS =             | •        | STATIC<br>PRESS.<br>M/M H20 | -420 •<br>****                                                          | 00                                     | * •<br>* 0<br>* ()<br>* 1<br>*                                                                                 | 580.                                  | * 500<br>* * * * *                     | ****                                                                    | ☆<br>☆  <br>☆ U<br>☆ ↓     |     |    |                         |                      |   |      |
| B/L THIC             |          | DIST<br>FRCM<br>INLET       | ▲<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000°0-                                 | -0.000                                                                                                         | **                                    | *****                                  | *****                                                                   | #*****<br>2.116            |     |    |                         |                      |   |      |
| INLET                |          | WIDTH<br>M/M                | 76.0<br>26.0                                                            | 7.7                                    | 213.0                                                                                                          | 5 0 0<br>7 0                          | 70°8<br>***<br>**                      | 0°0<br>*****                                                            | *****<br>229•0             |     |    |                         | 1944<br>1944<br>1944 |   |      |
| 27<br>27<br>27<br>27 | <b>.</b> | PGSN                        | -1 2 3                                                                  | 45                                     | \$ r 0                                                                                                         | co or o                               | 0 m m                                  | (2) (2)<br>                                                             | 4 5                        |     |    | на <sup>ст</sup> .<br>ж | •                    |   | 1. s |

\*\*\*\* INLET B/L THICKNESS = 0.014,DIV. ANGLE = 10DEG., AREA RATID = 3,TAILPIPE LENGTH = 1.830M , RUN NG.

|     | ENER      | CCRR     | СD           | <b>中日</b><br>13<br>13<br>13 | 00°0    | ****                                    | 建建筑     | 0°00                                                                                                           | 2<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2<br>7<br>2 | 0.730   | *****  | *****                                                                                       | 0,000    | 计算法的   | 计数数数数                                                                                                                                          | 化标准涂料                 | 化化化化化                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 527°0   |       |
|-----|-----------|----------|--------------|-----------------------------|---------|-----------------------------------------|---------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|--------|---------------------------------------------------------------------------------------------|----------|--------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| •   | ENERGY    | CORR.    | EFFECT.      | *****                       | 000000  | 0.000                                   | 0.000   | 0.000                                                                                                          | 0.000                                                                                            | . 776.0 | 0.000  | 0.000                                                                                       | 0.000    | 南北市政政  | 0.000                                                                                                                                          | 0.000                 | 林 林 林 林                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.930   |       |
|     | EFFEC1-   | IVENESS  |              | 0.000                       | 0.000   | *****                                   | 拉拉尔斯拉   | <b>拉拉拉拉</b>                                                                                                    | ° 000 ° 0                                                                                        | 4.293 2 | 0.000  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | ****     | 0,000  | 12 12 12 12 12<br>12 12 12<br>12 12 12<br>12 12<br>12 12<br>12 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>12<br>1 | 0.000                 | ·<br>故 ·<br>立 ·<br>二 ·<br>一 · ·<br>一 · ·<br>一 · · · · · · · · · · · · · · · · · · · | 1.540   |       |
|     | PRESS.    | RECOV.   | COEFF.       | 0.000                       | 0.000   | *****                                   | ****    | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | *****                                                                                            | 0.739)  | *****  | 0.000                                                                                       | 0.418    | 0°00°0 | 0°000                                                                                                                                          | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.788   |       |
|     | K.E.CORR. | FACTOR   |              | 0°000                       | 1.011   | *****                                   | *****   | ****                                                                                                           | 化拉拉拉                                                                                             | 0.307   | *****  | 0.000                                                                                       | 0.000    | 0.000  | 经收销收益                                                                                                                                          | 故故故故故                 | たななな                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.337   |       |
|     | SHAPE     | FACTOR   | • •          | 0.000                       | 1.6.06  | ななななな                                   | 0.000   | 000-0                                                                                                          | 0.000                                                                                            | 1.546   | 0.000  | 0.000                                                                                       | c. c c o | 000000 | 0.000                                                                                                                                          | 0.000                 | 0.000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.350   | . :   |
|     | 2 THE TA  |          | HIDIM        | 0.0000                      | 0.0091  | 0.0000                                  | 0.000.0 | 0.1503                                                                                                         | 0.0000                                                                                           | 0.1369  | 0.0000 | 0.0000                                                                                      | 0.4966   | 0.0000 | 0.000                                                                                                                                          | 0.000.0               | 00000-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1671.0  | •:    |
|     | 20ELTA*   |          | <b>HTOIM</b> | 0.0000                      | 0.0146  | 0000.000                                | 0.0000  | 0.0000                                                                                                         | 0 • 0 0 0 0                                                                                      | 0.2147  | 0.4980 | 0.4980                                                                                      | 0.4980   | 0.4980 | 0.4980                                                                                                                                         | 0.4980                | 0.4980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2419  |       |
|     | LOCAL     | REYNOLDS | NUMBER       | ******                      | 444859. |                                         | 0       | •0<br>0                                                                                                        | •0-                                                                                              | 601817. | 部的的存在的 | ******                                                                                      | 01       | ****   | 按政府政府部官                                                                                                                                        | •0-                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 527669. |       |
|     | MEAN      | VEL.     | M/S          | -0.0-                       | 87.9    | -0.0-                                   | -0.0-   | 0.0-                                                                                                           | 0.0-                                                                                             | 79.9    | -0.0-  | -0-0                                                                                        | ***      | 0°0    | 0•0                                                                                                                                            | -0.0-                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61.4    | · · · |
|     | STATIC    | PRESS.   | N/M H20      | •                           | -375.   | ****                                    | •0      | •0                                                                                                             | 特定有容容                                                                                            | -26.    | •      | 580.                                                                                        | 580.     | ななななな  | ななななな                                                                                                                                          | ****                  | * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • C -   | •     |
|     | DIST      | FRCM     | INLET        | 建物合物的                       | -0.038  | 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | -0.000  | 经收款款款                                                                                                          | -0.000                                                                                           | 0.734   | *****  | ***                                                                                         | ****     | キャッシュ  | 建物草原酸                                                                                                                                          | 网络拉拉拉                 | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.116   |       |
| • · | WIDTH     |          | M N N        | 0.1                         | 76.0 -  | 0.2                                     | 7.7     | 0.7                                                                                                            | 0.2 -                                                                                            | 13.0    | 4.9    | 0.0                                                                                         | 10.8     | ****   | 0.0                                                                                                                                            | ·<br>·<br>·<br>·<br>· | 治古古谷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.0    | •     |
| •   | POSN      | •        | • ;          | r1                          | 2       | ŝ                                       | 5       | ŝ                                                                                                              | \$                                                                                               |         | က      | σ                                                                                           | 01       | 8<br>  | 2                                                                                                                                              | н<br>С                | 14 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U<br>N      |              |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RUN         |              | 5                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WO          | 2<br>2       | ドロドロ                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>1</b> 83 | -            | 1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11          |              |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NGTH        | - U          | L<br>L                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 00           | •<br>?<br>?                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BdId        |              | 2                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TAIL        | . 0          | •<br>2                                |
| and the second se | ů.          |              | כ<br>כ<br>י                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | u<br>2       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RATI        | u<br>a       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EA I        | ה            | 20                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AF          | 5 T A        | 1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н<br>С<br>С | 0 T L        | 4                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100         | \$<br>\<br>_ | : 1                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | × 11        |              | ר<br>כ<br>כ                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NGLE        |              | 1                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /• A        |              | 1122                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , DIV       | -            | j                                     |
| ವನ್ನಡಚಿತ್ರ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • 015       | N N N        |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br> 1     | 2            | -<br>,                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IESS        | A T 11       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICKN        | , FV         | -<br>)                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H           | 01 S T       | · · · · · · · · · · · · · · · · · · · |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8/          | a            | -                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NLE         |              | >                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ₩<br>款      | 2            | 5                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 131<br>132  | U d          | )                                     |

| ality of the second | RUN         |        | Y ENE                       |                                      | × × C<br>× × × C                                                                                 | ) * /~<br>• * •<br>• * O              | ) * *<br>* * *                                                     |                                                                                                                | ****                                                                            | × × •                                                                                                                                                                                                               |       |   |   |                             |   |   |
|----------------------------------------------------------------------------------------------------------------|-------------|--------|-----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|---|-----------------------------|---|---|
|                                                                                                                | 330M •      |        | ENER<br>CORR<br>F           | ] * O(<br>_ * O(<br>_ * O(<br>_ * O( |                                                                                                  | 0000.0000                             | 0.000                                                              |                                                                                                                | 000.0                                                                           | 0 * 0<br>0 * 0<br>0 * 0<br>0 * 0                                                                                                                                                                                    |       |   |   | ст. н.<br>1. ст. <b>н</b> . |   |   |
|                                                                                                                | 6TH = 1.    |        | EFFECT-<br>IVENESS          | 0000-00                              | 0                                                                                                | 0.071                                 | 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | * * * * * * * * * * * * * * * * * * *                                                                          |                                                                                 | 4<br>4<br>4<br>4<br>4<br>4<br>5<br>6<br>6<br>6<br>7<br>7<br>7<br>6<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 |       |   |   |                             |   |   |
|                                                                                                                | PIPE LEN    | · .    | PRESS.<br>RECOV.            | 0000                                 | 8<br>8<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | * * * * * * * * * * * * * * * * * * * | ******                                                             | 0.418                                                                                                          |                                                                                 | 0.792                                                                                                                                                                                                               |       |   |   |                             |   |   |
|                                                                                                                | 1 = 3,TAIL  | · ·    | K.E.CORR.<br>FACTOR         | 0.000                                | <b>α</b> α α α α α α α α α α α α α α α α α α                                                     | * * * * *<br>1 • 099                  | * * 000 • 0                                                        | 0.000                                                                                                          | ) & \$<br>) & \$<br>) & \$<br>) & \$<br>) & \$<br>) & \$<br>}                   | #***#<br>1。062                                                                                                                                                                                                      |       | • |   | · · ·                       |   |   |
|                                                                                                                | EA RAVIC    | •      | SHAPE<br>FACTOR             | 0.000                                | 4 0 0 4<br>4 0 0 0<br>4 0 0<br>4 0 0<br>4 0 0<br>4 0 0<br>4 0 0                                  | 0.000                                 | 0.000                                                              | 0000-0                                                                                                         | 0000-00                                                                         | 0.000                                                                                                                                                                                                               |       | • | • |                             |   |   |
|                                                                                                                | EG., AR     | х<br>2 | 2THETA<br>                  | 0.0000                               | 0.0000<br>0.0000<br>0.1503                                                                       | 0.0730                                | 0.0000                                                             | 0-4966<br>0-00000                                                                                              | 0.0000                                                                          | 0.078                                                                                                                                                                                                               | •     |   |   |                             |   | • |
|                                                                                                                | ш = 10D     |        | 2DELTA*<br>                 | 0.0150                               |                                                                                                  | 0.0000                                | 0.4980<br>0.4980                                                   | 0.4980<br>0.4980                                                                                               | 0.4980                                                                          | 0.4980                                                                                                                                                                                                              |       |   |   |                             |   |   |
| an a                                                                       | ,DIV. ANGL  |        | LCCAL<br>REYNOLDS<br>NUMBER | *******<br>425566                    |                                                                                                  | 579202.                               | ****                                                               | • <b>• •</b> • • • • • • • • • • • • • • • •                                                                   | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*              | \$\$\$\$                                                                                                                                                                                                            |       |   |   |                             |   |   |
|                                                                                                                | = 0.015     |        | MEAN<br>Vel.                | 0.0                                  |                                                                                                  | 40°0                                  | 0.0                                                                | ☆ ○<br>☆ ○<br>粋                                                                                                | 0.0                                                                             | 33.5                                                                                                                                                                                                                |       |   | 1 |                             |   |   |
|                                                                                                                | CKNESS      | ·      | STATIC<br>PRESS.<br>M/M H21 | -345.                                |                                                                                                  | * * * *<br>-24 •                      | 0.<br>580.                                                         | 580.<br>* * *                                                                                                  | *<br>*<br>*<br>*<br>*<br>*                                                      | *<br>*<br>1<br>0<br>0                                                                                                                                                                                               |       |   |   |                             |   |   |
|                                                                                                                | B/L THIC    | •<br>  | DIST<br>FRCM<br>INLET       |                                      |                                                                                                  | -0.000                                | *****                                                              | ****<br>****<br>***                                                                                            | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                        | *****                                                                                                                                                                                                               |       |   |   |                             |   |   |
|                                                                                                                | INLET       |        | HTOIW .<br>M/M              | 76.0                                 | C                                                                                                | 213.0                                 | 4°-9                                                               | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | ****                                                                                                                                                                                                                |       |   |   | •                           |   | - |
|                                                                                                                | な<br>次<br>次 | •      | NSD                         |                                      | רא <i>יר</i> י ר                                                                                 | -10                                   | ωσ                                                                 | 0 7                                                                                                            | 2 5                                                                             | 1.10                                                                                                                                                                                                                | , , , |   | : |                             | • | • |

| ** INLET B/L THICKNESS = 0.015, DIY. ANGLE = 10DEG., AREA RATIG = 3,TAILPIFE LENGTH = 1.63<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ** INLET                               | . B/L THI                                                                                   |                                                                                             |               |                                         | CUT Contemporation Contemporation | ×        | and an and an and a second                                              | يراجع والمتعاطية والمحافظ المحافظ المحافظ المحافظ المحافظ | بديا والمحادثة والمتركمة المرادية المحادث والمحادثة | يكماني المحمد ومحاطبهم المحافية المحافة المحافية ا |                   | J. 2. 2. 2. 4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------|-----------------------------------------|-----------------------------------|----------|-------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| SN       WIDTH       DIST       STATIC       MEM       LCCAL       ZDELTA*       ZTHETA       SHAPE       K.E.CGRR.       PRESS.       FFECT-         NUM       INLET       NM H27       STATIC       MEM       LCCAL       ZDELTA*       ZTHETA       SHAPE       K.E.CGRR.       PRESS.       VEL       RECOV.       LVENESS         NUM       INLET       NM H27       NUMBER       WIDTH       MIDTH       MIDTH       FACTOR       FRESS.       VEL       RECOV.       LVENESS       VEL       RECOV       LVENESS       VEL       VEL       VEL       VEL       VEL       VEL       VEL       VEL       <                                                                                                                                                              | •                                      |                                                                                             | CKNESS =                                                                                    | 0.015         | , DIV. ANGL                             | E = 10D                           | EG., ARI | EA RATIC                                                                | = 3, TAIL                                                 | PIPE LENC                                           | TH = 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30M , RU          | Z             |
| SN       WIDTH       DIST       STATIC       MAN       LCCAL       ZDELTA*       ZTHETA       STHETA       RECOV.       INCESS.       VELS       RECOV.       INCESS.       VELS       RECOV.       INCESS.       VELS       NUMBER       WIDTH       DIST       STATIC       MAN       LCCAL       ZDELTA*       ZTHETA       STHETA       RECOV.       INCESS.       VELS       NUMBER       WIDTH       DIST       RECOV.       INCENT       CONCO       CONCO <th></th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th>-<br/>1</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> |                                        |                                                                                             |                                                                                             |               | •                                       |                                   | -<br>1   |                                                                         | -                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |
| SN       WIDTH       DIST       STATIC       MEAN       LCCAL       ZTHETA       STATIC       FACTOR       REESS.       FFECT-         FROM       PRESS.       VEL.       REYNOLDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | •                                                                                           |                                                                                             |               |                                         |                                   |          |                                                                         |                                                           | •                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |
| M/M       I/LET       M/M       HZD       M/D       M/D         0.1       0.1       0.0       0.0       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000       0.0000                                                                                                                                      | LOIM NSC                               | H DIST<br>FRCM                                                                              | STATIC<br>PRESS.                                                                            | MEAN<br>Vel.  | LCCAL<br>REYNOLDS                       | 2DELTA*                           | 2THETA   | SHAPE<br>FACTOR                                                         | K.E.CORR.<br>FACTOR                                       | PRESS.<br>RECOV.                                    | EFFECT-<br>IVENESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ENERGY<br>CORR.   | шС            |
| 76.01       0.0038       -0.00       0.0000       0.0000       0.0000       0.0000         7.17       -0.0000       0       -0.000       0.0000       0.0000       0.0000       0.0000         7.17       -0.0000       0       -0.000       0.0000       0.0000       0.0000       0.0000         7.17       -0.0000       0       -0.00       0.0000       0.0000       0.0000       0.0000         7.17       -0.0000       0       -0.000       0.0000       0.0000       0.0000       0.0000         7.17       -0.0000       0.0000       0.0000       0.0000       0.0000       0.0000         7.17       -0.0000       0.0000       0.0000       0.0000       0.0000       0.0000         7.17       -0.000       0.0000       0.0000       0.0000       0.0000       0.0000         7.18       0.1784       0.1760       0.0000       0.0000       0.0000       0.0000         7.18       0.1784       0.1770       0.0000       0.0000       0.0000       0.0000         7.19       0.1784       0.1790       0.0000       0.0000       0.0000       0.0000         10.0       8.88888       8.88888                                                                                                                                                                                                                                   | W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/ | INLET                                                                                       | M/M H2D                                                                                     | N/S           | NUMBER                                  | WIDTH                             | WICTH    |                                                                         |                                                           | COEFF.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EFFECT            | ,<br>,        |
| 3       3       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5                                                                                                                                                                                                                                                                                                                                                                | 2 76.0                                 | * * * * * *<br>• 0 • 0 3 8                                                                  | -93.                                                                                        | -0.0<br>43.9  | 224827.                                 | 0.0154                            | 0.0100   | U-000<br>1-541                                                          | U.000<br>1.011                                            | 0.000                                               | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * 000 * * *       | # O           |
| 7.7       7.7       7.7       7.7         7.1       7.4       0.2       7.4       0.4         7.1       7.4       0.2       0.2       0.4         7.1       7.4       0.4       0.4       0.4         7.1       0.4       0.4       0.4       0.4         7.1       0.4       0.4       0.4       0.4         7.1       0.4       0.4       0.4       0.4         7.1       0.4       0.4       0.4       0.4         7.1       0.4       0.4       0.4       0.4         7.1       0.4       0.4       0.4       0.4         7.1       0.4       0.4       0.4       0.4         7.1       0.4       0.4       0.4       0.4         7.4       0.4       0.4       0.4       0.4         7.4       0.4       0.4       0.4       0.4         7.4       0.4       0.4       0.4       0.4         7.4       0.4       0.4       0.4       0.4         7.4       0.4       0.4       0.4       0.4         7.4       0.4       0.4       0.4       0.4                                                                                                                                                                                                                                                                                                                                                                                            | 10                                     | · 谷谷谷谷谷。<br>( ) ( )                                                                         | * (<br>* *<br>*                                                                             | 0.0           | );<br>/                                 | 0.0000                            | 0.000.0  | 中<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | <b>林</b>                                                  | な<br>な<br>な<br>な<br>な                               | <b>存</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000             | *             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · · · · · · · · · · · · · · · · · ·  |                                                                                             |                                                                                             |               |                                         | 0.0000                            | 0.1503   |                                                                         | ***                                                       | * *<br>*<br>*<br>*                                  | **<br>**<br>**<br>**<br>**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | ¢ C           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2                                    | -0.000                                                                                      | ****                                                                                        | 0.01          | • • • • • • • • • • • • • • • • • • • • | 0.0000                            | 0.000    | 0.000                                                                   | ***                                                       | ***                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000             | ⇒<br>,        |
| 0.0       ******       580.       -0.0       ******       0.0       0.000       0.000         10.8       ******       580.       *****       0.0       0.000       0.000         *****       580.       *****       0.0       0.4980       0.4966       0.000       0.000         *****       0.0       *****       0.0       0.000       0.000       0.000         *****       0.0       *****       0.0       0.000       0.000       0.000         *****       0.0       *****       0.0       0.000       0.000       0.000         *****       0.0       *****       0.0       *****       0.0       0.000       0.000         ****       0.0       *****       0.0       *****       0.0       0.000       0.000         *****       0.0       *****       0.0       *****       0.000       *****       0.000         *****       0.0       *****       0.4980       0.0000       0.000       0.000         *****       0.0       *****       0.000       *****       0.000       0.000         *****       0.0       *****       0.4980       0.000       0.000 <t< td=""><td>7 212.8</td><td>0.784</td><td>9 C</td><td>32<b>.</b>4</td><td>460162.</td><td>0.1147</td><td>0.0700</td><td>1.639</td><td>1 • 108<br/>*****</td><td>0.723)</td><td>1.589</td><td>1.775</td><td>0,</td></t<>                                                | 7 212.8                                | 0.784                                                                                       | 9 C                                                                                         | 32 <b>.</b> 4 | 460162.                                 | 0.1147                            | 0.0700   | 1.639                                                                   | 1 • 108<br>*****                                          | 0.723)                                              | 1.589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.775             | 0,            |
| 10.8       #*****       580.       #*****       580.       0.4966       0.000       0.000       0.418         *****       0.0       *****       0.0       0.000       0.000       0.000       0.000         2       0.0       0.0       0.000       0.000       0.000       0.000       0.000         2       0.0       *****       0.0       0.000       0.000       0.000       0.000         2       0.0       *****       0.0       *****       0.0       0.000       0.000         2       0.0       *****       0.0       *****       0.0       0.000       0.000         2       0.0       *****       0.0       *****       0.0       0.000       0.000         3       *****       0.0       *****       0.0       0.000       0.000       0.000         3       ****       0.0       *****       0.0       0.000       0.000       0.000         3       5       5       0.1914       0.1321       0.0978       1.052       0.7690       4*****         5       2       3.5       5       0.0700       0.000       0.000         5       2                                                                                                                                                                                                                                                                                             |                                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 580.                                                                                        |               |                                         | 0.4980                            | 0.0000   | 0000                                                                    | 000 • 0                                                   | 0000                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   | 3 - 51        |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.8                                   | 5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 | 580.                                                                                        | * * * *       | • 0 -                                   | 0.4980                            | 0.4966   | 000.0                                                                   | 0.000                                                     | 0.418                                               | · *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000.0           | 0             |
| ******       -0.0       0.4980       0.6000         ******       0.0       0.4980       0.6000         ******       0.0       0.4980       0.6000         *****       0.0       0.4980       0.6000         *****       0.0       *****       0.6000         *****       0.0       *****       0.6000         ****       0.0       ****       0.6000         ****       0.0       0.1321       0.1350       1.***         0.1321       0.0978       1.350       1.***       0.769         ****       0.0       ****       0.0       ****       0.769         ****       0.0       1.350       1.***       0.769       0.***         ****       0.0       ****       0.0       ****       0.***         ****       0.1321       0.0978       ****       0.769         ****       0.1321       0.0978       ****       0.769         ****       0.1321       0.0978       ****       0.769         ****       0.1321       0.0978       ****       0.769         ****       ***       0.769       ****       0.769         ***                                                                                                                                                                                                                                                                                                                     | × C<br>× C<br>× C<br>× C               | * * * * * * * * * * * * * * * * * * *                                                       | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* |               | ****                                    | 0.4980                            | 0.000    | 0000                                                                    | 0°000<br>*****                                            |                                                     | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * C<br>* C<br>* C | 粹 :           |
| <pre>**** 0.0 ***** 0.0 ****** 0.0.650 0.000 ***** 0.769 1.33.5 510914. 0.1321 0.0978 1.350 1.062 0.769 1.836 1.836</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | <b>李安府沿安</b> 郡                                                                              | <b>放你放你</b> 我                                                                               | 0.0           | •0-                                     | 0.4980                            | 0.0000   | 0.000                                                                   | · · · · · · · · · · · · · · · · · · ·                     | 0.000                                               | 000°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000              | ; .;;         |
| 0.769 1.836 2.116 -0. 33.5 510914. 0.1321 0.0978 1.350 1.062 0.769 1.836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *****                                  | ***                                                                                         | *****                                                                                       | 0*0           | <b>放放放放放放</b> 放                         | 0.4980                            | 0°0000   | 0.000                                                                   | 非非常非                                                      | 0.000                                               | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 水水水水水             | **            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 228.6                                | 2.116                                                                                       | 0                                                                                           | 0.0           | 510914.                                 | 0.1321                            | 0.0978   | 1,350                                                                   | 1.062                                                     | 0.769                                               | 1.836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.952             | O j           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                             |                                                                                             |               |                                         | •••                               |          |                                                                         |                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                             |                                                                                             |               | •                                       |                                   |          |                                                                         |                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                      | · · ·                                                                                       |                                                                                             |               | •                                       | •                                 |          | :                                                                       |                                                           |                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                 |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                             |                                                                                             |               |                                         |                                   |          | •                                                                       | •                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                             |                                                                                             |               |                                         |                                   |          | •                                                                       |                                                           |                                                     | <sup>*</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                             |                                                                                             |               |                                         |                                   |          | •                                                                       |                                                           | •                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                             |                                                                                             |               |                                         |                                   |          |                                                                         | -                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                                                                                             |                                                                                             |               | · · ·                                   | •                                 |          |                                                                         |                                                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |               |

| RUN            |        |
|----------------|--------|
| 1.830M *       | •      |
| LENGTH =       |        |
| 3,TAILPIPE     | •      |
| AREA RATIO =   | ·<br>· |
| = 10DEG.,      |        |
| ANGLE          |        |
| = 0.008,DIV.   | · · ·  |
| THICKNESS      |        |
| r B/L          |        |
| INLET          |        |
| **<br>**<br>** | •      |

:

| шO                          | ¥ C                                                                       | ) kî                                                                            | 22       | 0      | 2,1                                     | 0             | *      | <b>\$</b> 5 | 0       | X,t    | ::                                       | ¥      | ¥,t    | 0       |
|-----------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|--------|-----------------------------------------|---------------|--------|-------------|---------|--------|------------------------------------------|--------|--------|---------|
| ENERGY<br>CORR.<br>EFFECT.  |                                                                           | 0.000                                                                           | 0.000    | 0°000  | 0.000                                   | *****         | 0.000  | 0.000       | 000 • 0 | ***    | 0.000                                    | 0.000  | 本文字字文  | ****    |
| EFFECT-<br>IVENESS          | 0.000                                                                     | )                                                                               | ***      | ***    | 0.000                                   | **            | 0.000  | ****        | 改革政府    | 0.000  | 12 12 12 12 12 12 12 12 12 12 12 12 12 1 | 0.000  | 经济公共政  | **      |
| PRESS.<br>RECOV.<br>COEFF.  | 0.000                                                                     | )                                                                               | ****     | 成众称之政  | 蜂 · · · · · · · · · · · · · · · · · · · | (0.722)       | *****  | 0.000       | 0.418   | 0.000  | 0.000                                    | 0.000  | 0.000  | 0.769   |
| K.E.CORR.<br>FACTOR         | 0.000                                                                     | <b>1 - ( - 1 - 1</b>                                                            | ****     | *****  | ****                                    | 1.108         | ****   | 0.000       | 0.000   | 0.000  | 经存款款款                                    | ***    | ***    | 1.062   |
| SHAPE<br>FACTOR             | 0.000                                                                     | ) · · · · · · · · · · · · · · · · · · ·                                         | 000 0.   | 0.000  | 0.000                                   | <b>1.</b> 639 | 0.000  | 0.000       | 000000  | 0.000  | 0.000                                    | 0.000  | 0.000  | 1.350   |
| 2THETA<br><br>WIDTH         | 0.00055                                                                   | 0.0000                                                                          | 0.0000   | 0.1503 | 0.000                                   | 0.0700        | 0.0000 | 0.000       | 0.4966  | 0.0000 | 0.0000                                   | 0.0000 | 0.0000 | ć.0978  |
| 20ELTA*<br><br>WIDTH        | 0.0000                                                                    | 0.0000                                                                          | 0.0000   | 0.0000 | 0.0000                                  | 0.1147        | 0.4980 | 0.4980      | 0.4980  | 0.4980 | 0.4980                                   | 0.4580 | 0.4980 | 0.1321  |
| LOCAL<br>REYNOLDS<br>NUMBER | ****                                                                      |                                                                                 | •        | •0     | •0-                                     | 460162.       | ***    | ****        | • 0 -   | ****   | *****                                    | •01    | ****   | 510914. |
| MEAN<br>VEL.                | -0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0                                  | 10.0                                                                            | 0.0-     | 0.0-   | -0.0                                    | 32.4          | -0•0   | 0.0-        | ****    | 0.0    | 0.0                                      | 0.0-   | 0.0    | 33•5    |
| STATIC<br>PRESS.<br>M/M H2C | - 0<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3<br>- 3 | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | •0       | •0     | ****                                    | -2-           | •0     | 580.        | 580.    | ****   | <b>安水水水水</b>                             | ****   | ***    | •0-1    |
| DIST<br>FRCM<br>INLET       | * * * * * * <b>*</b><br>  0 ~ 0 ~ 0                                       | )<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                   | -0.00.0- | ****   | -0.00.                                  | 0.784         | *****  | ****        | ****    | ***    | <b>放 省 2 2 2 2</b>                       | ****   | 众大女公女女 | 2.116   |
| WIDTH<br>M/M                | 0.1<br>76.0                                                               | 0.2                                                                             | 7.7      | 0.7    | 0.2                                     | 212.8         | 4.9    | 0.0         | 10.8    | *****  | 0.0                                      | ****   | 以出的办公  | 228.6   |
| POSN                        | r                                                                         | i u                                                                             | 4        | IJ     | ç                                       | ~             | ω      | ō           | 10      |        | 12                                       | 13     | 14     | 12      |

| PRESS. FEFECT- ENERGY F              |
|--------------------------------------|
| K.F.CORR. PRI                        |
| - FACTOR F                           |
|                                      |
| REYNOLDS                             |
| PRESS, VEL.<br>M/M H20 M/S<br>00.0 * |
| FROM<br>INLET<br>***                 |
| * 0 *<br>* 1 *<br>ZHON               |

. .

| •       |                                          | ,1              |         |                                       |             |         |         | •                                     |           |                                                                              |         |
|---------|------------------------------------------|-----------------|---------|---------------------------------------|-------------|---------|---------|---------------------------------------|-----------|------------------------------------------------------------------------------|---------|
|         |                                          |                 |         |                                       | ·           |         |         |                                       | •         |                                                                              |         |
|         |                                          |                 | •.      |                                       |             |         |         |                                       |           |                                                                              |         |
| HIDTH   | I DIST                                   | STATIC          | MEAN    | LOCAL                                 | 2DELTA*     | 2 THETA | SHAPE   | K.E.CORR.                             | PRESS.    | EFFECT-                                                                      | ENERGY  |
|         | FRCM                                     | PRESS.          | VEL.    | REYNOLDS                              |             |         | FACTOR  | FACTOR                                | RECOV.    | IVENESS                                                                      | CCRR.   |
| W/W     | INLET                                    | V/N H2C         | S/M C   | NUMBER                                | WIDTH       | WIDTH   |         |                                       | COEFF.    |                                                                              | EFFECT. |
| 0° 1    | 作作业的联邦                                   | •0              | -0-0    | ****                                  | 0 • 0 0 0 0 | 0.0000  | 0.000   | 0.000                                 | 0.000     | 0.000                                                                        | 存存存得    |
| . 0 . 9 | -0.038                                   | -122.           | 50°9    | (260619)                              | 0.0106      | 0.0052  | 2.033   | 1.011                                 | 0 • 0 0 0 | 0.000                                                                        | 0.000   |
| 0.2     | 政府政治政策                                   | *****           | 0.0-    | þ                                     | 0.0000      | 0.0000  | 故障障碍    | 计算机                                   | *******   | 称华市政府                                                                        | 000°0   |
| 7.7     | -0.000                                   | •0              | -0.0-   | •<br>0                                | 00000.      | 0.000   | 0.000   | *****                                 | ****      | ** * * * *                                                                   | 000°0   |
| 0.7     | 南方北部市市                                   | •0              | 0.0-    | •                                     | 0,000.0     | 0.1503  | 0.000   | - 指字法程序                               | ****      | 法公议公共                                                                        | 0,000   |
| 0.2     | -0°000                                   | 放放放水水           | -0.0    | °0-                                   | 0°0000      | 0.000.0 | 0.000   | ****                                  | ****      | 0°000                                                                        | 000 °0  |
| 12.8    | 0.784                                    | •<br>0)<br>1    | 32.4    | (460162.                              | 0.1147      | 0.0700  | 1.639   | 1-108                                 | (0.708)   | 1.192                                                                        | 1.260   |
| 6°7     | 这些故事的                                    | 0               | 0.0-    | 市市なななない                               | 0.4980      | 0.000   | 0.000   | ····································· | 本はななな     | 0°000                                                                        | 0°000   |
| 0.0     | *******                                  | 580°            | .0.0-0- | ****                                  | 0.4980      | 0°0000  | 0.000   | 0.000                                 | 0°000     | 存存存存                                                                         | 00000   |
| 10.8    | ****                                     | 580.            | ****    | •01                                   | 0.4980      | 0.4966  | 0.000   | 0.000                                 | 0.418     | 化学校学校                                                                        | 0°000   |
| おおおお    | ****                                     | <b>堆</b> 攻 亭亭 章 | 0.0     | · · · · · · · · · · · · · · · · · · · | 0.4980      | 0.0000  | 0*000   | 0.000                                 | 0.000     | 0.000                                                                        | ****    |
| 0,0     | 5.55 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 | 南京市市            | 0.0     | *****                                 | 0.4980      | 0*0000  | 0000 "0 | 经按款款款                                 | 0°000     | ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>· | 000.*0  |
| *****   | ****                                     | *****           | 0°0-    | °0-                                   | 0.4980      | 0°0000  | 0000-0  | 动动动动物                                 | C • CO O  | 0.000                                                                        | 0°000   |
| ななたの    | ****                                     | ****            | 0.0     | ****                                  | 0.4980      | 0.0000  | 0.000.0 | ****                                  | 0°000     | 带攻幕攻攻                                                                        | おおおお    |
| 28.5    | 2,116                                    | • 0 - 0         | 33.5    | 510914°                               | 0.1321      | 0.0978  | 1.350   | 1.062                                 | 0.754     | 1.329                                                                        | 1.366   |

• • • • • •

•

:

.

. .

•  •

THE MERITIAN PROVIDENT

| ***                   | TNICT                                                                                                                                                          |                                                                                             |                                                                                             |                 | . 017                                   |                 |                 |                 |                                                                                                                | 1010<br>111                                                                                      |                                                                                                                |                        |                  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|-----------------|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------|------------------|
| 1<br>5<br>5<br>5<br>5 |                                                                                                                                                                |                                                                                             |                                                                                             |                 | + DIV + ANG                             |                 | nce, ak         | EA KAIII        | J = 291ALL                                                                                                     |                                                                                                  | C-H = 7.2                                                                                                      | 20% • KU               | Z                |
| .t                    | •<br>•<br>•                                                                                                                                                    | •<br>•<br>•                                                                                 | •                                                                                           |                 |                                         |                 |                 |                 |                                                                                                                |                                                                                                  |                                                                                                                |                        |                  |
| •                     |                                                                                                                                                                |                                                                                             |                                                                                             |                 | •                                       |                 |                 |                 |                                                                                                                |                                                                                                  | •                                                                                                              |                        |                  |
| POSN                  | MIDTH                                                                                                                                                          | H DIST<br>FRCM                                                                              | STATIC<br>PRESS.                                                                            | MEAN<br>Vel.    | LOCAL<br>REYNOLDS                       | ZDELTA*         | 2THETA          | SHAPE<br>FACTOR | K.E.CORR.<br>FACTOR                                                                                            | PRESS.<br>RECOV.                                                                                 | EFFECT-<br>IVENESS                                                                                             | ENERGY<br>CORR.        | шO               |
| erref                 | м/ж<br>0                                                                                                                                                       | INLET<br>*****                                                                              | M/M H2(                                                                                     | S/W C           | NUMBER<br>*****                         | WIDTH<br>0.0000 | W1DTH<br>0.0000 | 0.000           | 000 • 0                                                                                                        | COEFF.                                                                                           | 0000                                                                                                           | П F F C T •<br>* * * * | *                |
| 101 11                | 76.0                                                                                                                                                           | 0.038                                                                                       | -171-                                                                                       | 20.1            | 302454                                  | 0.0145          | 0.000           | 1.593           | 1.011                                                                                                          |                                                                                                  |                                                                                                                | 0.000                  | 0                |
| n 4                   | 1.1                                                                                                                                                            |                                                                                             |                                                                                             |                 |                                         | 0.0000          | 0.0000          | 0.000           | ****                                                                                                           | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1                  | 8<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2               | 0000.0                 | ¢, >‡            |
| υ v                   | ۰ م<br>۲                                                                                                                                                       | ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф<br>ф | • ×<br>• ×<br>×                                                                             |                 | 00                                      | 0*0000          | 0.1503          | 0.000 • 0       | × 1                                                                                                            | 中<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 0.000                  | 0                |
| ~1 C                  | 212.8                                                                                                                                                          | 0.784                                                                                       | -1-1-                                                                                       | 32.4            | 460162.                                 | 0.1147          | 0.0700          | u•ucu<br>1•639  | 1。108                                                                                                          | 0.133                                                                                            | 0.000<br>1.048                                                                                                 | U.UUU<br>1.081         | ÷ O              |
| ω                     | 4.9                                                                                                                                                            | ****                                                                                        | •0                                                                                          | 0.01            | *****                                   | 0.4960          | 0°000           | 0000-0          | なななな                                                                                                           | *****                                                                                            | 0.000                                                                                                          | 0.000                  | 17               |
| ь.<br>,               | 0,0                                                                                                                                                            | *****                                                                                       | 580.                                                                                        | 0.0             | ****                                    | 0.4960          | 0.0000          | 000-00          | 0.000                                                                                                          | 0.000                                                                                            | <b>林市市市</b><br>1                                                                                               | 0000*0                 | 22               |
|                       | 10•8<br>***                                                                                                                                                    | ***                                                                                         | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$                                                      | * C<br>* C<br>* | • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 | 0.4980          | 0.4966          | 0.000           |                                                                                                                | 0.418                                                                                            | ☆☆☆☆☆<br>○<br>○<br>○<br>○<br>○                                                                                 | 0.000                  | O X              |
| 4 CJ                  | 0.0                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                 | ****                                    | 0.4930          | 0.0000          | 0.000           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                    | 0.000                                                                                            | 00000                                                                                                          |                        | р <del>1</del> 7 |
| 5                     | <b>这</b><br>27<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>14<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 |                                                                                             | ****                                                                                        |                 | •                                       | 0.4980          | 0.0000          | 0.000           | \$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$<br>\$ | 0.000.0                                                                                          | 0 ~ 000                                                                                                        | 000°0                  | 13               |
| 1 1                   | 228.6                                                                                                                                                          | 2.116                                                                                       | * •<br>* •<br>* 1<br>*                                                                      | ສະຕິ<br>ເ       | 510914.                                 | 0.1321          | 0.0978          | u•∪∪∪<br>1•350  | *****                                                                                                          | 0.781                                                                                            | 1•15C                                                                                                          | *****<br>1。165         | μO               |
| •                     | -<br>-<br>                                                                                                                                                     | •                                                                                           |                                                                                             |                 |                                         | •               |                 |                 |                                                                                                                |                                                                                                  | J,                                                                                                             |                        |                  |
| •<br>                 |                                                                                                                                                                |                                                                                             |                                                                                             |                 |                                         | •               |                 | •               |                                                                                                                |                                                                                                  | •                                                                                                              | •                      | •                |
|                       |                                                                                                                                                                |                                                                                             |                                                                                             | . :             |                                         |                 | . • •           |                 |                                                                                                                |                                                                                                  |                                                                                                                | -<br>-<br>-            |                  |
|                       | 1<br>                                                                                                                                                          |                                                                                             |                                                                                             | •               | •                                       | •               |                 |                 |                                                                                                                |                                                                                                  |                                                                                                                | •<br>•<br>~            |                  |
|                       |                                                                                                                                                                |                                                                                             |                                                                                             |                 |                                         |                 | •               |                 |                                                                                                                | •                                                                                                |                                                                                                                | •                      | · ·              |
|                       |                                                                                                                                                                |                                                                                             |                                                                                             | •               |                                         |                 |                 |                 |                                                                                                                |                                                                                                  |                                                                                                                | •                      |                  |
|                       |                                                                                                                                                                |                                                                                             |                                                                                             |                 |                                         |                 |                 |                 |                                                                                                                | •                                                                                                |                                                                                                                | •                      |                  |
|                       |                                                                                                                                                                |                                                                                             |                                                                                             |                 |                                         |                 |                 |                 | •                                                                                                              | •                                                                                                |                                                                                                                |                        |                  |
| • •                   |                                                                                                                                                                |                                                                                             |                                                                                             | · .             |                                         |                 | •               |                 |                                                                                                                |                                                                                                  |                                                                                                                |                        |                  |

うちにはないたいのであるのであって、これでいたなかったかであるとなるのであるとなる

| 3.TAILPIPE LENGTH = 1.830M | CORR. PRESS. EFFECI-<br>RECOV. IVENESS COR<br>COEFF. O. 0000 0.000<br>0.0000 0.000 0.000<br>0.000 0.000 0.000<br>0.000 0.000 0.000<br>0.000 0.000 0.000<br>0.000 0.000 0.000<br>0.000 0.000 0.000<br>0.000 0.000 0.000 0.000<br>0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |   |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|
| 3. TAILPIPE LENGTH = 1.    | <ul> <li>CORR. PRESS. EFFECT-</li> <li>TOR RECOV. IVENESS</li> <li>COEFF. IVENESS</li> <li>COEFF. IVENESS</li> <li>COEFF. O. 0000</li> <li>COEFF. O. 0000</li> <li>O. 0000</li></ul> |                |   |
| 3. TAILPIPE LENG           | CORR. PRESS.<br>TOR RECOV.<br>COEFF.<br>COEFF.<br>COEFF.<br>COO<br>0.000<br>0.000<br>0.15<br>0.000<br>0.15<br>0.000<br>0.15<br>0.000<br>0.15<br>0.000<br>0.15<br>0.000<br>0.15<br>0.000<br>0.000<br>0.000<br>0.000<br>0.15<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |   |
| 3.7AIL                     | CORR.<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |   |
|                            | Х<br>Н 0 Ц * * * * •<br>Ц * * * * •<br>П * * * * •<br>С • * * * * •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +• * * * * * * | • |
| EA RATIC                   | SHAPE<br>FACTCR<br>2.113<br>2.113<br>2.113<br>2.113<br>2.113<br>2.113<br>0.000<br>0.000<br>0.000<br>1.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |   |
| EG. ARI                    | 2THETA<br>2THETA<br>2.1074<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |   |
| 100                        | ZDELTA*<br>WIGTH<br>0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |   |
| , DIV. ANGL                | LOCAL<br>REYNOLDS<br>NUMBER<br>NUMBER<br>60680<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |   |
| = 0°013                    | А<br>М<br>М<br>М<br>М<br>М<br>М<br>М<br>М<br>М<br>М<br>М<br>М<br>М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |   |
| CKNESS                     | STATIC<br>PRESS.<br>M/M H2.<br>M/M H2.<br>* * 10.<br>* * * * * * 10.<br>* * * * * 10.<br>* * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |   |
| B/L THI                    | × − × − × − × − × − × − × − × − × − × −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |   |
| INLET                      | WIDTH<br>M/M<br>76.0<br>1.7<br>7.7<br>0.2<br>0.2<br>0.2<br>212.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |   |
| 章<br>                      | С<br>С<br>N м 4 и 0 м<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |   |

| •                          | 00 CM<br>0 00<br>0 0 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0            |            |                |   |
|----------------------------|------------------------------------------------------------------|------------|----------------|---|
| R UN<br>NUN<br>R           | Е К<br>С С К К<br>С С К К К<br>С С К К К<br>С С С К К<br>С С С С |            |                |   |
| = 2•740M                   | EFFECT-<br>IVENESS<br>1.000<br>0.725                             |            |                | - |
| LENGTH -                   | PRESS.<br>RECGV.<br>CCEFF.<br>0.6644                             | <b>-</b> . |                |   |
| 3, TAILPIPE                | K.E.CCRR.<br>FACTCR<br>1.040<br>0.000                            | •          |                |   |
| ATIG = 3                   | SHAPE<br>FACTOR<br>1.395<br>C.CCO                                |            |                |   |
| AREA R                     | 2THETA<br>MICTH<br>0.0376<br>0.000                               | 141        | .140<br>.662   |   |
| 100EG.,                    | 2DELTA*<br>10114<br>0.0525<br>0.0525                             | ESS. X     | •5<br>•5<br>11 |   |
| ANGLE =                    | LCCAL<br>REYNOLDS<br>NUTHBER<br>398378.                          | ATM.PR     | * 764<br>* 764 |   |
| 525 DIV                    | VEL.<br>VEL.<br>76.6                                             | TENP.      | 16.5           |   |
| ۲<br>د<br>د<br>د<br>د<br>د | STATIC<br>PRESS.<br>PV/M H21<br>-269.<br>-32.                    | C/L VEL.   | 81•1<br>C•0    |   |
| THICKNE                    | TF CIST<br>FRCM<br>INLE<br>-0.070                                | BETA       | 1.016<br>C.CCO |   |
| INLET B/L                  | PCSN hID<br>N/M<br>1 76.2<br>2 223.0                             | PCSN.      | 2              |   |

| D          |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ° RUN      | ЕNERGY<br>ССКА.<br>ССКА.<br>ССКА.<br>ССКА.<br>ССКА.<br>ССКА.<br>СССКА.<br>О.<br>О.<br>О.<br>О.<br>О.<br>ССС |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 2.74CN   | EFFECT-<br>IVENESS<br>1.000<br>C.731                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LENGTH =   | PRESS.<br>RECOV.<br>CCEFF.<br>0. COO<br>C. 646                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| , TAILPIPE | K.E.CCRR.<br>FACTCR<br>1.039<br>C.CCO                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ATIC = 3   | SHAPE<br>FACTCR<br>1.388<br>C.CCC                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| AREA R     | 2THETA<br>MICTH<br>0.0380                                                                                   | 0 7 X<br>0 7 X 0 7 X<br>0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X 0 7 X |
| lodeg.,    | 2CELTA*<br>MICTH<br>0.0528<br>C.CCC0                                                                        | E E E E E E E E E E E E E E E E E E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| • ANGLE =  | LCCAL<br>REYNOLDS<br>NUMBER<br>359013.                                                                      | А<br>Т<br>7<br>7<br>6<br>4<br>4<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 528 CIV    | VELAN<br>VELAN<br>69.0                                                                                      | -<br>H 90<br>F 90<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SS = 0.    | STATIC<br>PRESS.<br>PRESS.<br>-218.<br>-26.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| THICKNE    | FRCM<br>FRCM<br>Inlen<br>0.643                                                                              | 8 E T A<br>C. C C C C<br>C. C C C C<br>C. C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VLET B/L   | SN WID<br>M/M<br>76.2<br>223.0                                                                              | P<br>C<br>N<br>N<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4<br>1     | 0.                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

. .

|   | ů                                                   |                                                                              |                                                                                                                |  |
|---|-----------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
|   | s<br>RUN<br>S                                       | ЕКЕК<br>ССККК<br>ССКК<br>ССКК<br>СС<br>СС<br>СС<br>СС<br>СС<br>СС<br>СС<br>С |                                                                                                                |  |
|   | = 2°74C%                                            | EFFEC7-<br>IVENESS<br>1.CCC<br>C.722                                         | · .                                                                                                            |  |
|   | LENGTH -                                            | PRESS.<br>CCEC.<br>CCEF.<br>C. 638<br>C. 638                                 | - · · ·                                                                                                        |  |
|   | , TAILPIFE                                          | K.E.CCRR.<br>FACTCR<br>1.039<br>C.CCO                                        | ¢                                                                                                              |  |
| - | ATIC = 3                                            | SHAPE<br>FACTCR<br>1.381<br>C.CCO                                            | · · · · ·                                                                                                      |  |
|   | AREA R                                              | 27HETA<br>WICTH 0.0283<br>C.CCCC                                             | /%1<br>• 518<br>• 062                                                                                          |  |
|   | NLET B/L THICKNESS = 0.0529 CIV. ANGLE = 100EG., AF | ICSN MIDTH DIST STATIC MEAN LCCAL 2DELTA* 2TH<br>FRCM PRESS, VEL, REYNCLES   | PCSN. BETA C/L VEL. TEMP. ATM.PRESS. X/MI<br>1 1.015 55.8 17.0 ° 764.5 -C.518<br>2 C.CCO C.O 17.0 764.5 11.062 |  |
|   |                                                     | Lag                                                                          |                                                                                                                |  |

| • . | ů          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |  |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
|     | * RUN      | ENERGY<br>CCRR.<br>CCRR.<br>CCRR.<br>CCRR.<br>CCCR.<br>CCCR.<br>CCCR.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCC.<br>CCCCCC |                          |  |
|     | = 2°746M   | EFFECT-<br>IVENESS<br>1.0000<br>0.716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |  |
|     | LENGTH =   | PRESS.<br>RECCV.<br>COEFF.<br>C.COO<br>C.COO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •<br>•<br>•              |  |
|     | 5 TALLPIPE | К.Е.ССЯR.<br>FACTCR<br>1.039<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |  |
|     | ATIC = 3   | SHAPE<br>FACTCR<br>1.383<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                        |  |
| •   | AREA R     | 21HETA<br>MICTH<br>MICTH<br>0.02390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /41<br>• 518<br>• 052    |  |
| -   | 100EG. *   | 2DELTA*<br>MICTH<br>C. C540<br>C. CC00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESS. X<br>• 5<br>• 1 1   |  |
|     | ANGLE =    | LCCAL<br>EYNGLDS<br>NUMBER<br>33291.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ATN  PR<br>* 764<br>764  |  |
|     | 40 DIV.    | 7 KELN<br>45 KELN<br>0.0<br>2 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TEMP.<br>17.0<br>17.0    |  |
|     | 50°0 = S   | STATIC<br>FRESS.<br>-91.<br>-11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.1 VEL.                 |  |
|     | THICKNES   | H DIST<br>FRCM<br>- INLE<br>0.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BETA (<br>1.c16<br>c.c00 |  |
|     | VLET 8/L   | CSN WIDT<br>M/W<br>5.87<br>223.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PCSN.                    |  |
|     | Ч          | Q.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |  |

|                                                                                             | •                   | οο<br>ΟΟ<br>ΟΟ<br>ΟΟ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |  |
|---------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
|                                                                                             | ¢ RUN               | ENERGY<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>COR.<br>CO | •                        |  |
|                                                                                             | 2.74CN              | EFFECT-<br>IVENESS<br>1.CCC<br>0.715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |  |
|                                                                                             | L ENGTH =           | PRESS.<br>RECCV.<br>CCEFF.<br>C. COO<br>0.631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |  |
|                                                                                             | TAILPIFE            | K.E.CCRR.<br>FACTCR<br>1.040<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |  |
| 4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | ATIC = 3            | SHAPE<br>FACTGR<br>1.374<br>C.CCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |  |
| •                                                                                           | AREA R              | 27HETA<br><br>WIRTH<br>C. C4C7<br>0. CCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /W1<br>918<br>062        |  |
|                                                                                             | 1 CDEG. <b>*</b>    | 2DELTA*<br>MIDTH<br>C.CCCO<br>C.CCCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 55 -0.55 II.             |  |
|                                                                                             | ANGLE =             | LCCAL<br>REYNCLDS<br>NUMBER<br>NUMBER<br>169179.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATN - PRI<br>* 764       |  |
|                                                                                             | 60 DIV              | WEAN<br>VELL.<br>32.6<br>32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TENP.<br>17.0<br>17.0    |  |
|                                                                                             | s<br>10<br>10<br>10 | STATIC<br>PRESS.<br>P/N H20<br>-47.<br>-5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /L VEL.<br>34.6<br>C.O   |  |
|                                                                                             | THICKNES            | H CIST<br>FRCM<br>INLET<br>-0.C70<br>0.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BETA G<br>1.016<br>C.COO |  |
|                                                                                             | NLET B/L            | CSN HIDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PCSN.                    |  |
|                                                                                             | н                   | ц.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | :                        |  |

|   | °<br>C        |                                                                                             | •                            |  |
|---|---------------|---------------------------------------------------------------------------------------------|------------------------------|--|
|   | s<br>RUN<br>N | С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С |                              |  |
|   | 2.74CM        | EFFECT-<br>IVENESS<br>1.CCC<br>0.677                                                        |                              |  |
|   | L ENGTH       | Р<br>С С С С К<br>С С С С С С С С<br>С С С С Г<br>С С С С С<br>С С С С                      |                              |  |
|   | s TALLPIPE    | K.E.CCRR.<br>FACTCR<br>1.029<br>0.000                                                       | c                            |  |
|   | ATIC = 3      | SHAFE<br>FACTCR<br>1.453<br>0.000                                                           |                              |  |
|   | AREA          | 2THETA<br>kIDTH<br>0.C231<br>C.CCC                                                          | /W1<br>。918<br>•062          |  |
| - | 100 HG        | 2CELTA*<br><br>WIDTH<br>C.CCCO                                                              | RESS. X<br>4.5 - C<br>4.5 11 |  |
|   | • ANGLE       | LCCAL<br>REYNCLDS<br>NUMBER<br>59955.                                                       | ATM。PI<br>~ 76.<br>76.       |  |
|   | 337 DIV       | D<br>VEL<br>D<br>C<br>C<br>C<br>C                                                           | TENP.<br>17.0<br>17.0        |  |
|   | SS = C•C      | STATIC<br>PRESS.<br>T M/N H2<br>-5.                                                         | C/L VEL.<br>12.0<br>C.0      |  |
|   | 1 H I C K N E | THE CIST<br>FRCN<br>FRCN<br>FRCN<br>FRCN<br>FRCN<br>FRCN<br>FRCN<br>FRCN                    | BETA<br>1.012<br>C.CCO       |  |
|   | INLET B/L     | PESN hIC<br>M/V<br>1 76.2<br>2 23.0                                                         | PCSN.                        |  |
|   |               |                                                                                             |                              |  |

|             | <u> </u>    |                                              |                                                                                                                                                                                                                                                                                                                                                         |  |
|-------------|-------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | RUNN        | VERG<br>VER<br>0000<br>0000                  |                                                                                                                                                                                                                                                                                                                                                         |  |
| •           | •           |                                              |                                                                                                                                                                                                                                                                                                                                                         |  |
|             | . 2°740M    | EFFECT-<br>IVENESS<br>1.0000<br>0.696        | •                                                                                                                                                                                                                                                                                                                                                       |  |
|             | H H DN      | RESS<br>COVS<br>0.000<br>0.522               | • • •                                                                                                                                                                                                                                                                                                                                                   |  |
| •           | . "         |                                              | ана стана стана<br>Стана стана стан<br>Стана стана стан |  |
|             | 2. TAILPIPE | K . E . CORR.<br>FACTOR<br>1.050<br>0.000    |                                                                                                                                                                                                                                                                                                                                                         |  |
|             | ATIO = 2    | SHAPE<br>FACTOR<br>1.303<br>0.000            | •                                                                                                                                                                                                                                                                                                                                                       |  |
| -<br>-<br>- | AREA RI     | 2THETA<br>WIDTH<br>0.0846<br>0.0000          | м т<br>1 00 %<br>1 00 %                                                                                                                                                                                                                                                                                                                                 |  |
| •           | 5DEG。,      | ELTA*<br>IDTH<br>01103<br>00000              | S.<br>* * *                                                                                                                                                                                                                                                                                                                                             |  |
| -           |             | 0 200<br>N                                   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                             |  |
|             | . ANGLE     | LOCAL<br>REYNOLDS<br>NUMBER<br>4043920       | ATM。PR<br>755                                                                                                                                                                                                                                                                                                                                           |  |
|             | 03 DIV      | MEAN<br>VEL.<br>78.4<br>0.0                  | TEMP.<br>16.0<br>16.0                                                                                                                                                                                                                                                                                                                                   |  |
|             | 5 = 0°11    | STATIC<br>PRESS。<br>M/M H20<br>-236。<br>-37。 | 'L VЕL.<br>38.4<br>0.0                                                                                                                                                                                                                                                                                                                                  |  |
|             | HICKNESS    | DIST<br>FROM<br>1NLET<br>0.010               | ETA C.<br>019 8                                                                                                                                                                                                                                                                                                                                         |  |
|             |             | WIDTH<br>M/M<br>76°2<br>52°4                 | N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N                                                                                                                                                                                                                                                             |  |
| •           | INLET       | POSN<br>2 L POSN<br>2 L                      | 0<br>0<br>0                                                                                                                                                                                                                                                                                                                                             |  |
| . •         | •           |                                              |                                                                                                                                                                                                                                                                                                                                                         |  |

|                                                                                                                  | ŏ            | WV 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          |
|------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|
|                                                                                                                  | N<br>N       | 0001 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                       |          |
|                                                                                                                  | e<br>L       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                       |          |
| •                                                                                                                | W            | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                       |          |
|                                                                                                                  | °740         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          |
|                                                                                                                  | N<br>11      | L> HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                       |          |
|                                                                                                                  | H            | 10 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0 0 L 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · ·                                 |          |
|                                                                                                                  | LENC         | 8 8 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |          |
|                                                                                                                  | ш<br>с       | o<br>or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |          |
| , and a second | ILPI         | 108<br>108<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                       |          |
|                                                                                                                  | TA           | ен но<br>• • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                       |          |
|                                                                                                                  | 23           | Σ<br>Υ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |          |
| ł                                                                                                                | 10           | ACTC<br>• 30010<br>• 00010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                       |          |
| •                                                                                                                | RAT          | NE HO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          |
|                                                                                                                  | SEA.         | HETA<br>77H<br>841<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |          |
|                                                                                                                  | AF           | 1 1 2 0 ° 0 1 1 1 0 ° 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  |          |
|                                                                                                                  | e<br>S       | ×   800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X O4                                    |          |
|                                                                                                                  | ISDE -       | 7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S IO IO                                 |          |
| · · · · ·                                                                                                        | 0            | 8 S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 10 10<br>0 10 10<br>10 0 0<br>11 10   |          |
|                                                                                                                  | פרש          | 6900<br>6900<br>6900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T Wo                                    |          |
|                                                                                                                  | A A A        | 1 2 2 2 0<br>8 2 2 4 0<br>8 2 4 0 0<br>8 2 4 0<br>8 0 0 0<br>8 0 0 0 0 0 0<br>8 0 0 0 0 0 0 0 | ₹.                                      |          |
|                                                                                                                  | DIV          | Ze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | °<br>A<br>D<br>O<br>O<br>O              |          |
|                                                                                                                  | Э            | 名<br>(<br>(<br>(<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17<br>100 Н<br>00                       |          |
|                                                                                                                  | - <b>1</b> 0 | 20<br>70<br>70<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                       |          |
|                                                                                                                  | O<br>11      | NU SUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | > ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |          |
| -                                                                                                                | SS           | NOVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C/L<br>84<br>0                          |          |
|                                                                                                                  |              | - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A HO<br>90                              |          |
|                                                                                                                  | I H L        | I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 H<br>0 ° 0<br>0 ° 0                   | <b>1</b> |
|                                                                                                                  | 3 / L        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          |
| •                                                                                                                | س<br>(       | 2007<br>NG<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 S N .<br>2 1 2                        |          |
| •                                                                                                                | INL          | DOSI<br>5 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ă                                       |          |
|                                                                                                                  | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |          |

| • | ō                          | ພູບູ່ບູບ                                             |               |                |     |      |   |                                         |                      | •           |            |              |
|---|----------------------------|------------------------------------------------------|---------------|----------------|-----|------|---|-----------------------------------------|----------------------|-------------|------------|--------------|
| • | , RUN N                    | ENERGY<br>Cork.<br>Effect.<br>0.000<br>0.000         |               |                |     |      |   | •<br>•<br>•                             |                      |             |            |              |
|   | 2.ª74.0M                   | EFFECT#<br>IVENESS<br>1.000<br>0.698                 |               |                |     | •    | • | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                      | •<br>•<br>• |            |              |
|   | H<br>L<br>E<br>L<br>E<br>L | PRESS。<br>RECOV。<br>CUEFF。<br>0。000<br>0。523         | •<br>••       |                |     |      | • |                                         |                      |             |            |              |
|   | TAILPIPE                   | с.Е.СОКК.<br>FACTOR<br>1.049<br>0.000                | •             |                |     |      |   |                                         | 2 - 11 - 24 - 1<br>2 |             | <b>.</b> . |              |
| • | ATIO = 2,                  | SHAPE<br>FACTOR<br>1.299<br>0.000                    |               |                | • • | •    |   |                                         |                      |             |            |              |
|   | AREA R                     | 2THETA<br>2.00000                                    | IM/           | •918<br>•133   |     |      |   | •                                       |                      |             |            |              |
|   | 15DEC。                     | 2DEL TA*<br>WIDTH<br>0.1108<br>0.0000                | ESS。 X        | ر بر<br>۲<br>۵ |     | •    | • | •                                       |                      |             | •          | 1            |
|   | • ANGLE =                  | LOCAL<br>REYNOLDS<br>NUMBER<br>345688.               | ATMePRI       | * 755          |     |      |   |                                         |                      | •           | •          |              |
|   | 08 DIV                     | MEAN<br>MEAN<br>MEAN<br>MEAN<br>MEAN<br>MEAN<br>MEAN | TEMP.         | 15°0<br>15°0   | •   |      | • |                                         |                      |             |            |              |
|   | S<br>11<br>2               | STATIC<br>PRESS。<br>M/M H20<br>-171。                 | יר אבר.       | 75°2<br>0°0    |     |      |   |                                         |                      |             |            |              |
|   | THI CKNES                  | H DIST<br>FROM<br>INLET<br>0.070<br>0.315            | BETA C        | 1。019<br>0。000 | •   |      |   | •                                       |                      | ••••••      |            |              |
|   | LET B/L                    | DSN WID7<br>M/M<br>76.2                              | POSN <b>°</b> | ~ ~            | •   |      | • |                                         |                      | •           |            | •            |
|   | V F                        | 0 40<br>Q                                            |               | . •            |     | <br> |   |                                         | •                    |             | . •        | - <b>*</b> 2 |

| 1 | 00               | с<br>С<br>С<br>С<br>С<br>С<br>С<br>С                |            |                  |  |
|---|------------------|-----------------------------------------------------|------------|------------------|--|
|   | A NUX            | ENERGY<br>CORR.<br>6.000<br>0.000<br>0.000          |            | •                |  |
|   | = 2°740M         | EFFECT=<br>IVENESS<br>1•000                         | •<br>•     |                  |  |
|   | LENGTH           | PRESS.<br>RECOV.<br>COEFF.<br>O.000<br>O.515        | •<br>• • • |                  |  |
|   | 10 TAILPIPE      | K。E。CORR。<br>FACTOR<br>1。049<br>0。000               |            |                  |  |
|   | AT10 = 2         | SHAPE<br>FACTOR<br>1.299<br>0.000                   | •          |                  |  |
|   | AREA R           | 2THETA<br>WIDTH<br>0.00337                          | TM/        | • 918 -<br>• 094 |  |
|   | 15DEG。           | 2DELTA*<br>WIDTH<br>0.1088<br>0.0000                | ×<br>°S    | с.<br>11<br>04   |  |
|   | =<br>ANGLE<br>'° | LOCAL<br>REYNOLDS<br>NUMBER<br>320330.              | ATM。PRI    | . 755            |  |
|   | 088 DIV          | MEAN<br>Vel<br>61.7<br>61.7<br>0.0                  | TEMP       | 15.00            |  |
|   | S<br>S<br>S<br>S | STATIC<br>PRESS.<br>M/M H20<br>1144.<br>-22.        | יור עבר.   | 69<br>000        |  |
|   | L THICKNES       | DTH DIST<br>FROM<br>1 INLET<br>2 -0.070<br>4 -0.312 | BETA C     | 1。019<br>0。000   |  |
|   | INLET B/         | POSN WI<br>1 76.1                                   | POSN。      | r1 N             |  |
|   |                  |                                                     |            | •                |  |

|   | <b>ي</b> ت    | -        | 0       | <b>_</b> | ں<br>ِ  |   |   |   |
|---|---------------|----------|---------|----------|---------|---|---|---|
| • | ENERGY        | CORRS    | EFFECT  | 0°000    | 000 ° 0 |   |   |   |
| • | EFFECT        | IVENESS  |         | 1.000    | 0。686   |   |   | • |
|   | PRESSo        | RECOVS   | COEFF   | 00000    | 0.515   |   |   |   |
|   | K . E . CORR. | FACTOR   |         | 1.053    | 00000   | • | • |   |
|   | SHAPE         | FACTOR   |         | 1。309    | 000000  |   |   |   |
|   | 2 THE TA      |          | HIDIM   | 0。0586   | 000000  |   |   |   |
|   | 2DELTA*       |          | WIDTH   | 0.1160   | 000000  |   |   |   |
|   | LOCAL         | REYNOLDS | NUMBER  | 259412。  | °0      |   |   | 1 |
|   | MEAN          | VEL。     | S/W O   | 50°0     | 0.0     |   |   |   |
|   | STATIC        | PRESSo   | M/M H20 | • 76-    | -140    |   |   |   |
|   | DIST          | L ROM    | INLET   | 0。312    | 0.312   | • | • |   |
|   | MIDTH         |          | M/W     | 76.2     | 5204    |   |   |   |
|   | POSN          |          |         |          | 5       |   |   |   |

POSN。 BETA C/L VEL。 TEMP。 ATM。PRESS。 X/W1 1 1.020 56.7 15.0 755.5 4.094 2 0.000 0.0 15.0 755.5 4.094

INLET B/L THICKNESS = 0.1160 DIV. ANGLE = 15DEG., AREA RATIO = 2, TAILPIPE LENGTH = 2.740M

1

P RUN NO

| °                | ωŭ õõ                                                                                              | · .                                                                                           |   |   |
|------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---|---|
| ° RUN N          | ENERGY<br>CORR.<br>Effect.<br>0.0000                                                               |                                                                                               |   |   |
| = 2°7¢0M         | EFFECT-<br>Iveness<br>1.000<br>0.677                                                               | •                                                                                             |   |   |
| LENGTH<br>LENGTH | PRESS.<br>RECOV.<br>COEFF.<br>0.000<br>0.508                                                       |                                                                                               |   |   |
| 20 TAILPIPE      | K.E.CORR.<br>FACTOR<br>1.053<br>0.000                                                              |                                                                                               |   |   |
| ATIO = 2         | SНАРЕ<br>FACTOR<br>1.913<br>0.000                                                                  | •                                                                                             |   |   |
| AREA R           | 2THETA<br>WIDTH<br>0.0867<br>0.0000                                                                | /W1<br>• 918<br>• 094                                                                         |   |   |
| 15DEG。*          | 2DELTA*<br>WIDTH<br>0.1139<br>0.0000                                                               | د م<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د |   | • |
| ANGLE =          | LOCAL<br>REYNOLDS<br>NUMBER<br>221417.<br>0.                                                       | ATM。PR<br>755                                                                                 |   |   |
| DIV              | MEAN<br>MEAN<br>ANEL<br>AN<br>AN<br>AN<br>AN<br>AN<br>AN<br>AN<br>AN<br>AN<br>AN<br>AN<br>AN<br>AN | т п<br>15°0<br>15°0                                                                           |   |   |
| S = 0°11         | STATIC<br>PRESS:<br>M/M H20<br>168.                                                                | ./:                                                                                           |   |   |
| THICKNES         | H DIST<br>FROM<br>INLET<br>0.070<br>0.312                                                          | BETA<br>1.020<br>0.000                                                                        | • |   |
| LET B/L          | SN WIDT<br>M/M<br>76.2<br>152.4                                                                    | POSN.                                                                                         |   |   |
| NI               | 0 40                                                                                               |                                                                                               |   |   |

|                                                                                                                | <pre>% RUN NK<br/>EN EN NK<br/>CORR®<br/>CORR®<br/>EFFECT<br/>0000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                         |  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------|--|
|                                                                                                                | EFFECT-<br>IVENESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 0.6            |                         |  |
|                                                                                                                | PRESSS<br>PRESSS<br>COEFF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0000             | •                       |  |
| an in the second se | • TAILPIPE<br>• TAILPIPE<br>• E • CORR •<br>FACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | •<br>•<br>•             |  |
|                                                                                                                | ATIO = 2<br>Shape<br>Factor<br>1 = 324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | ••                      |  |
|                                                                                                                | AREA R.<br>2THETA<br>WIDTH<br>0.0926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U.00000          | •918<br>•094            |  |
|                                                                                                                | 15DEG。<br>2DELTA*<br>WIDTH<br>0.1226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000<br>ESS. X | ເດີ<br>1<br>1<br>0<br>4 |  |
|                                                                                                                | ANGLE =<br>LOCAL<br>REYNOLDS<br>NUMBER<br>48561.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O.<br>ATM.PR     | *<br>755                |  |
|                                                                                                                | 26<br>MEAN<br>MEAN<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>28°44<br>29°44<br>29°44<br>29°44<br>29°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°44<br>20°4 | 0 • 0<br>TEMP•   | 14°0<br>14°0            |  |
|                                                                                                                | SS = 0.12<br>STATIC<br>PRESS.<br>M/M H2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -4°              | 32°5<br>0°0             |  |
|                                                                                                                | THICKNES<br>H DIST<br>INCET<br>INCET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.312<br>BÉTA C  | 1°022<br>0°000          |  |
|                                                                                                                | INLET B/L<br>Posn widt<br>n/m<br>1 76.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 152.4<br>Posn. | rf (V                   |  |

• •

r

| • | °               | й<br>С 00<br>С С Ц                                                                          | •        |                                                                                                  |
|---|-----------------|---------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------|
|   | ° RUN           | С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С | •        |                                                                                                  |
|   | : 2.740M        | EFFECT-<br>IVENESS<br>1.0000<br>0.716                                                       |          |                                                                                                  |
|   | LENGTH =        | РКЕ<br>КПСО<br>СОПЕТ<br>0.6000<br>0.636                                                     |          |                                                                                                  |
|   | 3, TAILPIPE     | K.E.CORR.<br>FACTOR<br>1.052<br>0.000                                                       | •        |                                                                                                  |
|   | ATIO            | БААР<br>FACTOR<br>0,000<br>5                                                                |          |                                                                                                  |
|   | AREA R          | 2THETA<br>WIDTH<br>0.0834<br>0.0000                                                         | IM       | 2 % × 2 *                                                                                        |
|   | : 10DEG.        | 2DELTA*<br>WIDTH<br>0.1094<br>0.0000                                                        | ESS。X,   | • • •<br>4 4<br>* . ⊓<br>* *                                                                     |
|   | "<br>ANGLE<br>• | LOCAL<br>REYNOLDS<br>NUMBER<br>427888.<br>0.                                                | ATM。PR   | ム<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |
|   | 01V 946         | MEAN<br>MEAN<br>のまいい<br>のの<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の      | TEMP.    | 0 C<br>• •<br>• •<br>• •                                                                         |
|   | SS = 0.1(       | STATIC<br>PRESSo<br>PRESSo<br>M/M H20<br>-3190                                              | C/L VEL. | 6<br>° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °                                                       |
|   | THICKNE         | H DIST<br>FROM<br>INLE1<br>0.070<br>0.896                                                   | BETA     |                                                                                                  |
|   | ALET B/L        | SSN WID<br>M/M<br>76.2<br>222.5.6                                                           | POSN     |                                                                                                  |
|   |                 |                                                                                             |          |                                                                                                  |

| 19<br>19 <b>1</b> 9 |     | °           |             | ZO °°°                                        |              | - 1<br>- 1             |                                          |   |       |             |
|---------------------|-----|-------------|-------------|-----------------------------------------------|--------------|------------------------|------------------------------------------|---|-------|-------------|
|                     |     | * RUN N     | •           | ENERGY<br>CORR.<br>EFFECT.<br>0.0000<br>0.000 |              |                        |                                          |   |       |             |
|                     | •   | = 2°740M    |             | EFFECT-<br>IVENESS<br>1,000<br>0,718          | •            |                        |                                          | J | • • • |             |
|                     |     | LENGTH      | •           | PRESS<br>RECOV.<br>COEFF.<br>0.0000<br>0.638  |              |                        |                                          |   | · ·   |             |
|                     | •   | 3° TAILPIPE | •<br>•<br>• | K.E.CORR.<br>FACTOR<br>1.053<br>0.000         | •            |                        | •                                        |   |       | •           |
| *<br>*<br>*<br>*    |     | ATIO =      |             | SHAPE<br>FACTOR<br>1.314<br>0.000             | ········     |                        |                                          |   |       |             |
|                     |     | AREA R      |             | 2THETA<br>WIDTH<br>0.0842<br>0.0000           | /W1          | 。918<br>。753           |                                          |   |       |             |
|                     | •   | 10DEG.      |             | 2DELTA*<br>WIDTH<br>0.1106<br>0.0000          | х<br>ss<br>ш | • * * •                | · ·                                      |   |       | ,<br>,<br>, |
|                     | -   | • ANGLE =   |             | LOCAL<br>RFYNOLDS<br>NUMBER<br>377126。<br>0.  | A.T.M & P.R  | 753                    |                                          |   | •     |             |
|                     | •   | 106 DIV     |             | MEAN<br>- VEL.<br>74.3<br>74.3<br>0.0         | TEMP。        | 18°0<br>18°0           |                                          |   |       |             |
|                     |     | SS = 0.1    |             | STATIC<br>PRESS.<br>M/M H20<br>-248.<br>-32.  | C/L VEL.     | 83°8<br>0°0            |                                          |   |       |             |
|                     | · · | THICKNE     |             | TH DIST<br>FROM<br>INLE<br>0.070              | BETA (       | 1 ° 0 2 0<br>0 ° 0 0 0 |                                          |   | •     |             |
|                     |     | ILET B/L    |             | 55N WID<br>M/M<br>1 76.27                     | POSNe        | N                      | n an |   |       |             |
|                     |     | 40<br>1-4   |             |                                               |              | •<br>•<br>•            |                                          |   | •     |             |

| 0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| « RUN        | ENERGY<br>CORR.<br>EFFECT.<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| : 2°740M     | EFFECT-<br>IVENESS<br>1.0000<br>0.709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L ENGTH      | PRESS.<br>RECOV.<br>COEFF.<br>0.0000<br>0.530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TAILPIPE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ATI() = 3 \$ | SHAPE<br>FACTOR<br>1.319<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AREA RI      | 2THETA<br>WIDTH<br>0.08386<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10DEG。»      | 2DELTA*<br>%IDTH<br>0.1169<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | нО Х<br>н н<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х<br>х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ° ÅNGLE ⊨    | LOCAL<br>REYNOLDS<br>NUMBER<br>2400110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A - A<br>A - A |
| 69<br>DIV    | A X KEA<br>0 S X S - X<br>0 S | о<br>Ф<br>Ш<br>Ф<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| s = 0.11     | STATIC<br>PRESS。<br>M/M H20<br>113。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , Γ<br>5.0 < Π<br>5.0 < Γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| THICKNES     | H DIST<br>FROM<br>10.070<br>0.896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ILET 8/L     | 05N WIDT<br>M/M<br>76.2<br>228.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °<br>S<br>S<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Ő           | ШО 00<br>ШС 00<br>ШС 00<br>ШС 00<br>С 00<br>С 00<br>С 00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ° RUN N     | ENERGY<br>CORRº<br>Corrº<br>O ° 000<br>O ° 000<br>O ° 000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| . 2.740M    | EFFECT-<br>IVENESS<br>1 ° 000<br>0 ° 707                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| LENGTH      | PRESS。<br>RECOV。<br>COEFF。<br>0。COFF。                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3, TAILPIPE | K°E°CORR.<br>FACTOR<br>1°058<br>0°000                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ATIO<br>×   | БАА<br>РАСТОР<br>1 • 32 0<br>• 000<br>0                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AREA R      | 2THETA<br>WIDTH<br>0.0053                                 | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10DEG.,     | 2DELTA*<br>WIDTH<br>0.1263<br>0.0000                      | ш • •<br>С Н<br>С Н<br>С Ч<br>С Ч<br>С Ч<br>С Ч<br>С Ч<br>С Ч<br>С Ч<br>С Ч<br>С Ч<br>С Ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ° ANGLE     | LOCAL<br>REYNOLDS<br>NUMBER<br>132406。<br>0.              | ATA<br>A P<br>A 253<br>A 753<br>A 753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 63 DIV      | MEAN<br>Velo<br>M/S<br>36.83<br>36.03                     | ТЕМР。<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>22.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.00<br>20.000<br>20.000<br>20.000<br>20.000<br>20.000<br>20.0000<br>20.0000<br>20.00000000 |
| S = 0°12    | STATIC<br>PRASS<br>M/R H20<br>199 к<br>180                | 4 / г<br>0°0'2 . <<br>П<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| THICKNES    | T DIST<br>FROM<br>INLET<br>0.0700                         | SETA<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0022<br>0.0020<br>0.0020<br>0.0020<br>0.00200000000                                                                                                                                                                                                                                                                                                                                                                                                             |
| ET 8/L 1    | sn width<br>M/M<br>276.2<br>228.6.                        | C II E<br>S S<br>S S<br>S S<br>S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| L<br>       | 0<br>0<br>0                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

and the state when

• .

| a RUN       | ENERGY<br>CORR.<br>EFFECT<br>0.000<br>0.000               |                          | •          |   |                                       |
|-------------|-----------------------------------------------------------|--------------------------|------------|---|---------------------------------------|
| = 2°740M    | EFFECT-<br>IVENESS<br>1.000<br>0.698                      |                          |            |   |                                       |
| LENGTH .    | PRESS.<br>RECOV.<br>COEFF.<br>0.000<br>0.620              |                          |            | • |                                       |
| • TAILPIPE  | <pre>&lt; .E . CORR.<br/>FACTOR<br/>1.059<br/>0.000</pre> |                          | •          |   |                                       |
| AT10<br>= 3 | SHAPE<br>FACTOR<br>1.332<br>0.000                         |                          |            |   |                                       |
| AREA R      | 2THETA<br>WIDTH<br>0.00011                                | /W1<br>• 918<br>• 758    |            |   | · · · · · · · · · · · · · · · · · · · |
| 10066.,     | 2DELTA*<br>WIDTH<br>0.1214<br>0.0000                      | ESS, X<br>•1<br>•1       |            |   |                                       |
| ANGLE -     | LOCAL<br>REYNOLDS<br>NUMBFR<br>140094 •<br>0 •            | * ATM • PF<br>753<br>753 | -<br>-<br> |   |                                       |
| 14 DIV.     | Z S S S S S S S S S S S S S S S S S S S                   | TEMP.<br>22.0<br>22.0    |            |   |                                       |
| S = 0,12    | ХТАТІС<br>РХПАТІС<br>М/ЖКSS<br>1 95<br>1 95<br>1 95       | ./L VEL.<br>32.3<br>0.0  |            |   |                                       |
| THICKNES    | H DIST<br>FROM<br>INLET<br>0.896                          | BETA C<br>1.022<br>0.000 | 8          |   | •                                     |
| ET B/L      | SN WIDT<br>M/M.<br>76.2<br>228.6                          | POSN.<br>1<br>2          | · · ·      |   |                                       |

•


















## APPENDIX 6.

## DIFFUSER EXPERIMENTAL RESULTS.

SYNBOLS.

X

Δ

·M

 $\mathcal{M}_{\mathcal{E}}$ 

Ср

 $C_{P_E}$ 

Table IX is included here as an Index to the results. These are the tabulated results of the experimental performance and flow parameters. The graph plots are of the velocity traverses and of; Cp, Cp<sub>E</sub>,  $\mathcal{Y}$ , and  $\mathcal{Y}_E$  against  $x/w_i$  for each test.

## TABLE IX.

| Test No. | • | Condition of Rig.                      |
|----------|---|----------------------------------------|
|          |   | Thin Inlet B/L $(28)/w = 0.01$         |
| 109      |   | 5° AR2 plenum discharge.               |
| 112      | • | 5° AR2 tailpipe discharge.             |
| 110      |   | 5° AR3 plenum discharge.               |
| 111      |   | 5° AR3 tailpipe discharge.             |
|          |   |                                        |
| 103      | • | 10° AR2 plenum discharge.              |
| 104      |   | 10° AR2 tailpipe discharge.            |
| 102      |   | 10° AR3 plenum discharge.              |
| 101      |   | 10 <sup>°</sup> tailpipe discharge.    |
|          |   |                                        |
| 105      |   | 15° AR2 plenum discharge.              |
| 108      |   | 15° AR2 tailpipe discharge.            |
| 106      | • | 15° AR3 plenum discharge.              |
| 107      | • | 15° AR3 tailpipe discharge.            |
|          |   | Thick Inlet B/L $(2\delta'/v) = 0.06)$ |
| 202      |   | 5° AR2 plenum discharge.               |
| 201      |   | 5° AR2 tailpipe discharge.             |
| 203      |   | 5° AR3 plenum discharge.               |
| 204      |   | 5° AR3 tailpipe discharge.             |
|          |   |                                        |
| 205      |   | 10° AR2 plenum discharge.              |
| 206      |   | 10° AR2 tailpipe discharge.            |
| 207      |   | 10° AR2 optimum tailpipe length.       |
| 210      | • | 10° AR3 plenum discharge.              |
| 208      |   | 10° AR3 tailpipe discharge.            |
| 209      |   | 10° AR3 tailpipe discharge.            |
|          |   |                                        |

## Table IX contd.

- 14 - E

.

|   | 211                                     | 15° AR2 plenum discharge.                  |
|---|-----------------------------------------|--------------------------------------------|
|   | 214                                     | 15° AR2 tailpipe discharge.                |
|   | 212                                     | 15° AR3 plenum discharge.                  |
|   | 213                                     | 15° AR3 tailpipe discharge.                |
| 1 |                                         | Fully Developed Inlet Flow (28*/w = 0.11)  |
|   | 302                                     | 15° AR2 plenum discharge.                  |
|   | 301                                     | 15° AR2 tailpipe discharge.                |
|   | 303                                     | 15° AR3 plenum discharge.                  |
|   | 304                                     | 15°° AR3 tailpipe discharge.               |
|   | • · · · · · · · · · · · · · · · · · · · |                                            |
|   | 305                                     | 10° AR3 tailpipe discharge.                |
|   | 306                                     | 10° AR3 plenum discharge.                  |
|   | 307                                     | 10° AR2 plenum discharge.                  |
|   | 308                                     | 10° AR2 tailpipe discharge.                |
|   |                                         |                                            |
|   | 309                                     | 5° AR2 plenum discharge.                   |
|   | 310                                     | 5° AR2 tailpipe discharge.                 |
|   | 311                                     | 5° AR3 plenum discharge.                   |
|   | 312                                     | 5° tailpipe discharge.                     |
|   |                                         | <b>q</b>                                   |
|   | 000                                     | Thin inlet boundary layer inlet profile.   |
|   | 350                                     | Fully developed velocity profile. (inlet). |
|   |                                         |                                            |

.

| <b>.</b>   |        | 2<br>U.   |          | )       | c       |                   |         |         | C              | Ċ       |           | 0         |
|------------|--------|-----------|----------|---------|---------|-------------------|---------|---------|----------------|---------|-----------|-----------|
| , RUN      | ·      | ENERGY    | CCRR .   |         | 0,000   | 0 - 5 - 3 - 3<br> | 0.942   | C.936   | 0.936          | 0.931   | 00000     | 0.000     |
| = 2.74CM   |        | EFFEC1-   | IVENESS  |         | 1.000   | C-937             | C•936   | 0.926   | 0 <b>.</b> 935 | 0.945   | 619.0     | 0.913     |
| LENGTH =   |        | PRESS.    | RECOV.   | CCEFF.  | 0.000   | C.487             | 0.682   | 0.780   | 0.795          | 0.801   | C.811     | 0.812     |
| , TAILPIPE |        | K.E.CORR. | FACTOR   | + · · · | 1.017   | 1.031             | 1.079   | 1.166   | 1.091          | 1.030   | 0.000     | 0.000     |
| ATIG = 3   |        | SHAPE     | FACTOR   | I       | 2.031   | 1.580             | 1.622   | 1.800   | 1.494          | 1.413   | C.•CCO    | C • C C O |
| AREA R     |        | 2THETA    |          | WICTH   | 0.0052  | 0.0271            | 0.0513  | 0.0837  | 0.0859         | 0.0566  | 0.000     | 0.000     |
| 10056.,    |        | 2DELTA*   |          | WICTH   | 0.0106  | C.0429            | 0.0833  | 0.1507  | G.1284         | 0.1366  | 0.000     | 000000    |
| V. ANGLE = | •      | LCCAL     | REYNOLDS | NUMBER  | 431682. | 437987.           | 472138. | 501922. | 507686.        | 504463. | •0        | •0        |
| 06 DI      |        | NEAN      | VEL.     | N/S     | 87.2    | 60.4              | 45.4    | 34.6    | 34.1           | 6 • E E | ວ<br>ບໍ່ວ | 0•0       |
| S = 0.01   |        | STATIC    | PRESS.   | N/N H20 | -3.75.  | -150.             | -60.    | -15.    | •<br>0<br>1    | ر       | •0-       | •0-       |
| HICKNES    | ·<br>· | CIST      | FRCM     | INLET   | -0.038  | 0.201             | 0.481   | 0.843   | 1.201          | 1.506   | 2.420     | 3.220     |
| B/L 1      |        | WIDTH     |          | N/W     | 76.2 -  | 11-6              | 60.0    | 23.0    | 28.6           | 28.6    | 28.6      | 28.6      |
| INLET      |        | PCSN      |          |         | -       | 2                 | ٦<br>٣  | 4 2     | 2              | 6 2     | 7 2       | 8         |

| X/WI       | C. CCC<br>C. CCCC<br>C. CCCCC<br>C. CCCCCC<br>C. CCCCC<br>C. CCCCCCCC | 42.257  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ATM.PRESS. | 762.0<br>762.0<br>762.0<br>762.0<br>762.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 762.0   |
| TENP.      | 000000<br>44444<br>500000<br>5000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24.0    |
| C/L VEL.   | ө Ф 4 4 и и и<br>в И 2 С С с в и<br>• • • • • • • •<br>и в П в ч и в                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C • O   |
| BETA       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000.0 |
| PCSN.      | 1234567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       |

0.0106

B/L THICKNESS

INLET

The second second

10056.7

| · · · · | ·           |                                                                                                  |          |                                           |                                       | · · ·          |       |
|---------|-------------|--------------------------------------------------------------------------------------------------|----------|-------------------------------------------|---------------------------------------|----------------|-------|
|         | , RUN       | П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П      |          |                                           | •                                     |                |       |
|         | ×000°°      | EFFEC1-<br>IVENESS<br>C.986<br>C.986<br>C.965<br>C.962<br>C.962<br>C.962                         | ·        |                                           | ,j*                                   |                |       |
|         | LENGTH      | Р<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С |          |                                           |                                       |                |       |
|         | • TAILPIPE  | K.E.CCRR.<br>FACTCR<br>1.017<br>1.031<br>1.031<br>1.124<br>0.000                                 |          |                                           |                                       |                |       |
| e       | . ATIC = 3  | SHAPE<br>FACTCR<br>1.683<br>1.552<br>1.631<br>1.631<br>1.666<br>0.000                            |          |                                           |                                       |                |       |
|         | AREA R      | 2THETA<br>W [ C TH<br>0. C C 79<br>0. C 5C 0<br>0. C 5C 0<br>0. C 764                            | 14/      | 498<br>645<br>212<br>435<br>435           |                                       | ·<br>· · · · · |       |
|         | 100EG.,     | 2DELTA<br>WIDTH<br>WIDTH<br>C.0342<br>C.0342<br>C.0342<br>C.1273<br>C.1273<br>C.1273             | ESS. X.  |                                           | •                                     |                |       |
|         | /• ANGLE =  | LGCAL<br>REYNOLES<br>NUMBER<br>414843.<br>529356.<br>529356.<br>520871.<br>0.                    | ATM.PR   | 759<br>759<br>759<br>759                  |                                       |                | · · · |
|         | 133 DIV     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | TENP.    | 19 ° 0<br>19 ° 0<br>19 • 0<br>19 • 0      |                                       |                |       |
|         | 0<br>0<br>1 | STATIC<br>PRESS.<br>N/W H2.<br>1229.<br>1329.<br>138.<br>0.                                      | ./L VEL. | 85744<br>00144<br>0100<br>0100<br>0100    |                                       |                |       |
|         | THICKNES    | н<br>1<br>0000<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1   | BETA C   | 1.008<br>1.012<br>1.025<br>1.045<br>0.000 | •                                     |                |       |
|         | NLET B/L    | CSN WIDT<br>1 76.2<br>2 138.0<br>3 160.0<br>4 223.0<br>5 999.9                                   | PCSN.    | 12345                                     | · · · · · · · · · · · · · · · · · · · | 1              | •     |
|         | hei         | <b>Ο</b> .                                                                                       | ٠        |                                           | •                                     | •              |       |

|                                                                                                                 | <b>.</b>   | mn 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                                                                                 | RUN N      | ЕNERGY<br>ССККС<br>ССККС<br>ССККС<br>ССККС<br>ССККС<br>ССККС<br>СССКК<br>СССКК<br>СССКК<br>СССКК<br>СССКК<br>СССКК<br>СССКК<br>СССКК<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССККС<br>СССКСССКС<br>СССККС<br>ССССКСССССС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |
|                                                                                                                 | - 0°00CW   | EFFECT-<br>IVENESS<br>0.958<br>0.952<br>0.952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |
|                                                                                                                 | L ENGTH =  | PRECCV.<br>COEFF.<br>COEFF.<br>C. COO<br>C. CO<br>C. COO<br>C. COO<br>COO<br>COO<br>COO<br>COO<br>COO<br>COO<br>COO<br>COO<br>COO |                                                                                                  |
| a substantia de la constantia de la constan | 7 TAILPIPE | K.E.CCRR.<br>FACTCR<br>1.016<br>1.019<br>1.047<br>1.086<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |
|                                                                                                                 | ATIC = 2   | SHAPE<br>FACTCR<br>1.647<br>1.647<br>1.654<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  |
|                                                                                                                 | AREA RI    | 2THETA<br>MICTH<br>0.0125<br>0.01289<br>0.0289<br>0.0289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х Н<br>1 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                   |
|                                                                                                                 | 10066.,    | ZDELTA*<br>WICTH<br>C.C105<br>C.0206<br>C.0206<br>C.0209<br>C.0809<br>C.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | х ососо<br>х х ососо<br>х х                                                                      |
| tine out having the second second second                                                                        | - ANGLE =  | LCCAL<br>REYNCLDS<br>NUMBER<br>885318.<br>885761.<br>885761.<br>387756.<br>387756.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ<br>マ      |
|                                                                                                                 | 05 DIV     | 4<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н |
|                                                                                                                 | S = 0.01   | STATIC<br>PRESS.<br>V/M H20<br>-1255.<br>-121.<br>-121.<br>-121.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Г<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С |
|                                                                                                                 | THICKNES   | 1 DIST<br>RREM<br>1 NLET<br>0.038<br>0.500<br>0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C      |
|                                                                                                                 | ET 8/L     | N WIDTH<br>76.2<br>112.0<br>138.0<br>152.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N N N N N N N N N N N N N N N N N N N                                                            |
|                                                                                                                 | INL .      | 5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>C.</b>                                                                                        |

|     | ů          |
|-----|------------|
|     | Z          |
|     | Z          |
|     | ã          |
|     | ¢          |
|     | ~          |
|     | Ĵ          |
|     | ~          |
|     | 2          |
|     | 11         |
|     | Ξ          |
|     | 5          |
|     | ŵ          |
|     | لىيە<br>   |
|     | ш<br>С.    |
|     | <u>а</u>   |
|     | <br>       |
|     | T A        |
|     |            |
|     | 2          |
|     | H          |
|     | 0<br>H     |
|     | AT         |
|     | ß          |
|     | ⊿<br>⊔     |
|     | AR         |
|     |            |
|     | **         |
| · · | ပ<br>ယ     |
|     | 00         |
|     |            |
|     | 11         |
| N.  | ա          |
|     | ับ<br>7    |
|     | 4          |
|     | -          |
|     | ĥ          |
| . 1 | <u> </u>   |
|     | տ<br>Օ     |
|     | H          |
|     | 5          |
|     |            |
| ,   | יי<br>הי   |
|     | ŝ          |
|     | Z          |
|     | ΰ          |
|     | · · · ·    |
|     |            |
|     |            |
|     | 3/L THI    |
|     | L THI      |
|     | ET B/L THI |

| •                                       | NC            | · . | шО                      | •      | 00                                                                                    | 00                | 00             | 00               | 00       | υc                | <b>)</b>    |              |             |       |       |       |        |       |       |         |             |   |        |
|-----------------------------------------|---------------|-----|-------------------------|--------|---------------------------------------------------------------------------------------|-------------------|----------------|------------------|----------|-------------------|-------------|--------------|-------------|-------|-------|-------|--------|-------|-------|---------|-------------|---|--------|
|                                         | , RUN         |     | ENERGY<br>CCRR.         | 000    | 0.965                                                                                 | C • 203           | 0.959          | 0.948            | 0.000    |                   | )<br>)<br>) |              |             |       |       |       |        |       | •     |         |             |   |        |
|                                         | 2.74CM        |     | EFFECT-<br>IVENESS      | 1.000  | 0.952                                                                                 | 0.945             | 0.960          | C. 558           | 195.0    | 0.954             | )<br>       |              |             |       |       |       |        |       |       |         | -           |   |        |
|                                         | LENGTH =      |     | PRESS.<br>RECOV.        | 0.00   | 0.668                                                                                 | 0.721             | 0.732          | C-731            | 0.719    | 0.710             |             |              | •           |       |       |       |        |       |       |         |             |   | •      |
|                                         | TAILPIPE      |     | K.E.CCRR.<br>FACTOR     | 1.016  | 1.040<br>1.090                                                                        | 1.118             | 1.047          | 1.036            | C. CCC   | 0.000             |             |              | -<br>-<br>- |       |       |       |        |       | •     | •       |             |   |        |
|                                         | VTIC = 2,     |     | SHAPE K<br>FACTCR       | 2.015  | 1.652<br>1.762                                                                        | 1.771             | 1.353          | 1.287            | C. CCC   | 000000            |             |              |             |       |       |       |        |       | •     |         |             |   |        |
|                                         | AREA RA       |     | 2 THETA<br>             | 0.0052 | 0.0473<br>0.0473                                                                      | 0.0580            | 0.0594         | 0.0622           | 0.000000 | 0-0000            |             | 141          | 498         | 527   | 036   | 044   | 716    | 349   | 522   | 028     |             |   |        |
|                                         | 1 C D E G • • | •   | ЮЕСТА*<br><br>К 10ТН    | 0.0105 | U•C45U<br>O•O834                                                                      | 0.1028            | 0.0804         | C.C8C1           | 0.0000.0 | 0.0000            |             | SS. X/       |             | C     | 0     | 0 0   | 0 17.  | 0 27. | 0 33. | 0<br>30 | 44          |   | ۰<br>۲ |
|                                         | ANGLE =       |     | LCCAL<br>REYNOLDS -     | 94515. | .42024.                                                                               | 386868.<br>192773 | 83802.         | 383025.<br>82220 | •0       | 00                |             | ATN.PRE      | 768.        | 768.  | 768.  | 768.  | 768.   | 768.  | 768.  | . 768.  | •ΩΟ)        |   | ·      |
| مان | 05 DIV.       |     | VEAN<br>VEL. R<br>V.S   | 76.7 3 | 6 - 14<br>- 24<br>- 14<br>- 24<br>- 24<br>- 24<br>- 24<br>- 24<br>- 24<br>- 24<br>- 2 | 37.6 3            | 37.45<br>37.45 | 37.3<br>5.6<br>6 |          | ပ ၀<br>• •<br>ပ ၀ | · .         | TEMP.        | 19.0        | 19.0  | 19.0  | 19.0  | 19•0   | 19.0  | 19.0  |         | . <b></b>   |   |        |
|                                         | C•0]          |     | STATIC<br>PRESS.        | -259.  | -14.                                                                                  | ມີແ               | 5 <b>6</b>     | • r              | - 7      | <br>              |             | /L VEL.      | 77.7        | 45.0  | 42.0  | 41.2  | 40.5   | 41.0  | 0.0   |         | -<br>-<br>- | • |        |
|                                         | THICKNES      |     | H CIST<br>FRCM<br>INIFT |        | 0.345                                                                                 | 0.460             | 0.518          | ° 1.350          | 2.574    | 2.574<br>3.229    |             | BETA C       | 1.007       | 1.034 | 1.045 | 1.017 | 1.013  | 1.014 | 00000 |         |             | • |        |
|                                         | LET 8/L       | •   | SN WIDT                 | 76.2   | 138.0                                                                                 | 152.4             | 152.0          | 152.0            | 152.0    | 152.0<br>152.0    | -           | PCSN.        | C           | 1 0   | 4 1   | ດ <   | ,<br>, | Ø     | 6     |         |             |   | •      |
| *                                       | IN            | •   | D L                     | r      | n v                                                                                   | ላ ሆ               |                | - α              | 00       |                   |             | <b>k</b> olo |             | •     |       |       |        |       |       |         |             |   | •      |

|            |           |       |       |       |       |        | •      |        |        |        | •.     |
|------------|-----------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| 14/X       | -0-498    | 2.650 | 4.527 | 6.036 | 8.044 | 12.047 | 17.716 | 27.349 | 33.775 | 39.028 | 42.375 |
| ATN.PRESS. | 768 . C   | 768.C | 768.0 | 768.0 | 760.0 | 768.C  | 768.0  | 768.0  | 768.0  | 768.0  | 768.0  |
| TEMP.      | 19.0      | 19.C  | 19.0  | 19.0  | 19.0  | 19.0   | 19.0   | 19.0   | 19.0   | 15.0   | 19.0.  |
| •          |           |       | · · · |       | •     |        |        |        |        |        |        |
| C/L VE     | 7.75      | 54.5  | 45.7  | 42.0  | 41.2  | 40.6   | 4C.5   | 41.0   | 0.0    | 0.0    | C • O  |
| BETA       | 1-007     | 1.015 | 1.034 | 1.045 | 1.029 | 1.017  | 1.013  | 1.014  | C.CCC  | 0000-0 | C-000  |
| PCSN.      | <b></b> 1 | 2     | m     | 4     | ഗ     | 6      | 7      | σ      | 6      | 10     | 11     |

| 0° 105        | н<br>СОКК<br>СОКК<br>СОКК<br>СО<br>СО<br>СО<br>СО<br>СО<br>СО<br>СО<br>СО<br>СО<br>СО<br>СО<br>СО<br>СО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                 |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------|--|
| P RUN N       | С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                                                                 |  |
| M000 ° 0      | EFFECT<br>IVENESS<br>1.000<br>0.987<br>0.949<br>0.907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                                                                 |  |
| ENGTH =       | PRESS.<br>RECOV.<br>0.00055.<br>0.247<br>0.580<br>0.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                                                                 |  |
| • TAILPIPE    | K.E.CORR.<br>FACTOR<br>1.016<br>1.027<br>1.0084<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                                                                 |  |
| <br>AT 10 = 2 | SHAPE<br>FACTOR<br>2.087<br>1.975<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •        |                                                                                 |  |
| AREA RI       | 2THETA<br>WIDTH<br>0.00048<br>0.00139<br>0.000376<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΙM,      | 498<br>656<br>937                                                               |  |
| 15DEG。9       | ZDELTA*<br>wiDTH<br>0.0100<br>0.0323<br>0.0743<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ESS。 X/  | 00000<br>10000                                                                  |  |
| angle =       | LOCAL<br>REYNOLDS<br>NUMBER<br>869654<br>380216<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATM.º PR | イン<br>イン<br>イン<br>イン<br>イン<br>イン<br>イン<br>イン<br>イン<br>イン<br>イン<br>イン<br>イン<br>イ |  |
| 00 DIV        | 46.4<br>6000000<br>6000000<br>6000000<br>6000000<br>600000<br>600000<br>60000<br>60000<br>60000<br>60000<br>60000<br>60000<br>60000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>600<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6000<br>6 | TEMP。    | 5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>5000<br>500                     |  |
| S = 0.01      | STATIC<br>PRESS<br>M/M H20<br>1221<br>230<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | יר עברי  | 75°2<br>66°0<br>48°3<br>0°0                                                     |  |
| THICKNES      | H DIST<br>1808<br>0.0088<br>0.0088<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3ETA C   | 1 • 007<br>1 • 011<br>1 • 033<br>3 • 000                                        |  |
| NLET B/L      | 0SN 41DTI<br>76°2<br>152°55<br>41DTI<br>152°55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | POSN     |                                                                                 |  |

•

•

•

:

•

~

:

•

| 0° 106      | П<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ° RUN N     | ENERGY<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>CORR.<br>COR.<br>CO                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                          |
| M0000 -     | EFFECT-<br>IVENESS<br>1.000<br>0.942<br>0.973<br>0.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                          |
| LENGTH -    | РКПС<br>КПСС<br>СОПТ<br>СОПТ<br>СОПТ<br>СО<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1, TAILPIPE | K°E°CORR°<br>FACTOR<br>1°016<br>1°067<br>1°076<br>1°081<br>0°000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                          |
| AT 10 = 2   | SHAPE<br>FACTOR<br>2.066<br>1.5747<br>1.5747<br>1.650<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |
| AREA R      | 2 THETA<br>W IDTH<br>0.0049<br>0.00450<br>0.0516<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | / W 1                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 15DEG.    | 2DELTA*<br>WIDTH<br>0.0101<br>0.0552<br>0.0787<br>0.0851<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | × • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                  |
| • ANGLE =   | LOCAL<br>REYNOLDS<br>NUMBER<br>386606.<br>410959.<br>460293.<br>536467.<br>536467.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                              |
| VID 10.     | ₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н<br>н                                                                                                                                                                                                                                                                                                                                       |
| S II 0.03   | STATIC<br>PRATIC<br>M/M<br>M/M<br>N<br>M/M<br>H20<br>1840<br>1940<br>1940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7 Г<br>9461°0<br>0°0200<br>0°0200<br>СЕГ                                                                                                                                                                                                                                                                                                                                                                 |
| HICKNES     | 00,200<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000<br>0,000000 | ETA<br>002255<br>000288<br>0000288<br>0000288<br>0000288<br>0000288<br>0000288<br>0000288<br>0000288<br>0000288<br>0000288<br>000028<br>000028<br>000028<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000020<br>000000 |
| ET 8/L 7    | N WIDTH<br>M/M/M/TH<br>12806<br>12806<br>22006<br>22006<br>22006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>2<br>2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                         |
| Z           | ら ようちょう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>чл.</b>                                                                                                                                                                                                                                                                                                                                                                                               |

| ي.<br>د ميلاد ميلاد ميلاد م |                  | and the second secon | and the character |                    |         |         |                | A second rest in the second |                  | an a | الله المراجع ا<br>المراجع المراجع |               |
|-----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|--------------------|---------|---------|----------------|-----------------------------|------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| INLET B/L                   | . THICKN         | ESS = 0•0                                                                                                       | 103 DIV           | • ANGLE =          | 15DEG.  | AREA R  | ATIO =         | 3° TAILPIPE                 | LENGTH =         | = 2°7¢0M                                 | P RUN N                                                                                                                                                                                                                           | 0° 10         |
|                             |                  |                                                                                                                 |                   |                    |         | •       |                |                             |                  | •                                        |                                                                                                                                                                                                                                   |               |
| POSN WID                    | TH DIS           | T STATIC                                                                                                        | MEAN              | LOCAL              | 2DELTA* | 2THETA  | SHAPE          | K°E°CORR°                   | PRESS。           | EFFECT-                                  | ENERGY                                                                                                                                                                                                                            | ENERG         |
| M/W                         | INL!             | M PRESS.<br>ET M/M H2                                                                                           | VEL.<br>O M/S     | REYNOLDS<br>NUMBER | HIDIM   | HIDIM   | FACTOR         | FACTOR                      | RECOV.<br>COEFF. | IVENESS                                  | CORR.<br>EFFECT.                                                                                                                                                                                                                  | CORR.<br>CPR. |
| 1 76.2                      | -0.03            | 8 -322 ·                                                                                                        | 80.8              | 409115°            | 0.0103  | 0°0051  | 2.020          | 1,016                       | 0000             | 1,000                                    | 000000                                                                                                                                                                                                                            | 000000        |
| 2 128.6                     | 0°20             | 1 -97.                                                                                                          | 51.9 \            | 4436460            | 0.0592  | 0.0338  | 1.748          | 1,056                       | 0.560            | 0.954                                    | 0°965                                                                                                                                                                                                                             | 0.551         |
| 3 161°4                     | 0°32             | 7 -65.                                                                                                          | 45 <b>°</b> 6     | 489466 <b>°</b>    | 0.0888  | 0.0511  | 1.738          | 1°085                       | 0.639            | 0°939                                    | 0.954                                                                                                                                                                                                                             | 0°629         |
| 4 220 6                     | 0 0 55'          | 4 <b>-</b> 29 <b>.</b>                                                                                          | 36。1              | 529414°            | 0.1630  | 0.0902  | 1 <b>。</b> 806 | 1.174                       | 0°728            | 0.910                                    | 16200                                                                                                                                                                                                                             | 0.716         |
| 5 228 6                     | 0°60'            | 4 i 23.                                                                                                         | 34.8              | 528415.            | 0.1717  | 0,0946  | 1.815          | 1.184                       | 0.744            | 0°914                                    | 0°934                                                                                                                                                                                                                             | 0°732         |
| 6 228 6                     | , 1 <b>.</b> 06, | 2 -10.                                                                                                          | 34.6              | 525570.            | 0.1073  | 0.0825  | 1,300          | 1.043 °                     | · 0 • 777        | 0°951                                    | 0,941                                                                                                                                                                                                                             | 0.764         |
| 7 228.6                     | 1.051            | 9 -4.                                                                                                           | 32°9              | 500133.            | 0.1029  | 0.0820  | 1,253          | 1,032                       | 0°792            | 0°950                                    | 0°937                                                                                                                                                                                                                             | 0°779         |
| 8 228 6                     | 2,12             | 8<br>-0°                                                                                                        | 31.0              | 470989.            | 0°0956  | 0.0770  | 1,241          | 1,028                       | 0.800            | 0°938                                    | 0°925                                                                                                                                                                                                                             | 0°787         |
| 9 228 6                     | 2°62.            | ი<br>ი                                                                                                          | 0.0               | •                  | 0000000 | 0000000 | 00000          | 00000                       | 0.801            | 0.901                                    | 000000                                                                                                                                                                                                                            | 0°788         |
| 10 228 6                    | 2°91             | 8<br>                                                                                                           | 0°0               | •<br>0             | 0.000   | 0000000 | 000 • 0        | 000.0                       | 0,801            | 0°901                                    | 0.000                                                                                                                                                                                                                             | 0.788         |
| 11 228 <b>.</b> 6           | 3.27             | 0<br>0                                                                                                          | 0°0               | •                  | 00000.  | 0000 0  | 000.0          | 000000                      | 0.802            | 0°903                                    | 0°000                                                                                                                                                                                                                             | 0°789         |
|                             |                  |                                                                                                                 |                   |                    |         | · ·     |                |                             |                  |                                          |                                                                                                                                                                                                                                   |               |
| POSN                        | BETA             | C/L VEL.                                                                                                        | TEMP.             | ATM。PR             | ESS. X  | TW1     |                |                             |                  |                                          |                                                                                                                                                                                                                                   |               |
| • <br>                      | 1.007            | 81 <b>.</b> 9                                                                                                   | 20 • 0            | . 760              | 0-      | 498     |                |                             |                  |                                          |                                                                                                                                                                                                                                   |               |
| 0                           | 1°021            | 55.0                                                                                                            | 20.0              | 760                | 0       | •637    |                |                             |                  |                                          |                                                                                                                                                                                                                                   |               |
| <i>.</i><br>۳               | 1.031            | 49°9                                                                                                            | . 20.0            | 760                | • 0 •   | °291    |                |                             |                  |                                          |                                                                                                                                                                                                                                   |               |
| 4                           | 1。063            | 43.1                                                                                                            | 20.0              | 760                | • 0 • 7 | • 270   |                |                             |                  |                                          |                                                                                                                                                                                                                                   | •             |
| ະ<br>ເກ                     | 1°067            | 41.0                                                                                                            | 20.0              | 760                | • 0 7   | • 926   |                |                             |                  |                                          |                                                                                                                                                                                                                                   |               |
| 9                           | 1°014            | 38°7                                                                                                            | 20.0              | 760                | •0 13   | , 737   |                |                             | •*               |                                          |                                                                                                                                                                                                                                   |               |

.

•

-

.

N 8 0 0 1 1

|   | ENERG<br>CORR •             | 0.000         | 0.245                      | 100°0<br>100°0 | 0.712   | 0°719         | 0°720   | 0°720      | 0.720      | 0.718      | 0.717        | 0.710   | 0.702    | 0.690   | · · ·  |               |                  |         |            |               |                                         |                  |                  |        | •             |        |        |        |          | ·<br>· |        |   |
|---|-----------------------------|---------------|----------------------------|----------------|---------|---------------|---------|------------|------------|------------|--------------|---------|----------|---------|--------|---------------|------------------|---------|------------|---------------|-----------------------------------------|------------------|------------------|--------|---------------|--------|--------|--------|----------|--------|--------|---|
|   | ENERGY<br>Corr.<br>Effect.  | 00000         | 0 955<br>0                 | 0,957<br>0,957 | 0,952   | 0.954         | 00000   | 0°949      | 00000      | 0000000    | 0.939        | 000000  | 00000    | 000000  |        |               |                  |         |            |               | •                                       |                  | و<br>د<br>د<br>د |        |               |        |        |        |          |        |        |   |
|   | EFFECT-<br>IVENESS          | 1.000         | 0,993                      | 01919          | 0.947   | 0.957         | 0.975   | 0°957      | 0°976      | 0°973      | 0,949        | 0.963   | 265.0    | 145°0   | 1      |               |                  |         |            | •             |                                         |                  | •                |        |               |        | •      |        |          |        |        |   |
|   | PRESS。<br>RECOV。<br>COEFF。  | 000 ° 0       | 0,249                      | 0°703          | 0.724   | 0°730         | 0.731   | 0°732      | 0.732      | 0°730      | 0.729        | 0.722   | 0,714    | 0°710   |        | •             |                  | •       |            |               |                                         | •                |                  |        |               |        |        |        | i        |        |        |   |
|   | K.E.CORR.<br>FACTOR         | 1.016         | 1,008                      | 1,200          | 1。085   | 1,058         | 000 • 0 | 1。040      | 000~0      | 00000      | 1.035        | 000000  | 000000   | 000000  | ·<br>· |               | •                | •       | •          | :             | •                                       |                  |                  | •      |               | •      | •      |        |          | ۵      | •      |   |
|   | SHAPE<br>FACTOR             | 2°130         | 1。704<br>2,126             | 2°282          | 1,531   | 1。381         | 00000   | 1。287      | 000 °0     | 000°C      | 1.243        | 00000   | 000000   | 000°0   |        |               |                  |         |            |               |                                         |                  |                  |        |               |        |        |        |          |        |        |   |
| - | ZTHETA                      | 0.0045        | 0°0733                     | 0.0583         | 0。0621  | 0.0615        | 0°0000  | 0°0583     | 0000000    | 000000.    | 0°0668       | 0000000 | 00000000 | 0000°0  |        | [14]          | 7 =              | •498    | <b>656</b> | 637           | •133                                    | .141             | 0136             | • 144  | •139          | •141 · | • 144  | .133   | °564 .   | s879   | °225   |   |
|   | 2DELTA*                     | 0.0097        | 0.0871                     | 0.1331         | 0.0952  | 0°0849        | 0000000 | 0.0751     | 0000000    | 0000000    | 0.0831       | 0000000 | 0°0000   | 0°00030 | •      | א<br>טעי<br>ג |                  | • 7 • 0 | • 7 0      | •7 2          | 4 · · · · · · · · · · · · · · · · · · · | • 7 • •          | •7 8             | •7 10. | .7 12.        | •7 16. | •7 20. | •7 24. | •.7 30 · | •7 35. | • 7 39 |   |
|   | LOCAL<br>REYNOLDS<br>NUMBER | 403549°       | 407070°                    | 391073.        | 391682. | 392698°       | •       | 391665° ·  | °0         | <b>°</b> 0 | 388276°      | Ő,      | °O       | •0      |        | ATM. PRI      |                  | 756     | 756        | 756           | 756                                     | 756.             | 756              | 756.   | 756           | 756    | 756    | 756    | 756      | 756    | 756    | , |
|   | MEAN<br>Velo<br>M/S         | 81 <b>.</b> 3 | 47.06                      | 39.4           | 39.4    | 39 <b>°</b> 5 | 0.0     | 30.4       | 0°0        | 0°0        | 39 <b>°1</b> | 0.0     | 0°0      | 0 * 0   | •      | TEMP          | -<br>-           | 22°5    | 22°5       | 22°5          | 22°5                                    | 22,5             | 22 <b>°</b> 5    | 22.5   | 22°5          | 22.5   | 22°5   | 22.5   | 22°5     | 22°5   | 22 • 5 |   |
| • | STATIC<br>PRESS。<br>M/M H20 | -284.         | 0<br>0<br>0<br>1<br>1<br>1 | • 7 •<br>• 7   | 6 e     | <b>٥</b>      | •<br>۲. | о<br>С     | <b>°</b> 6 | ອ<br>ເບັ   | •<br>ထ       | ູດ      | °<br>(\] | •0      |        | L VFL.        | 5<br>1<br>1<br>1 | 32,3    | 71.5       | 52 <b>°</b> 0 | + 5 ° 6                                 | +3.7             | t3 <b>.</b> 3    | . 0°0  | +2 <b>.</b> 8 | 0.0    | 0.0    | 42°8   | 0.0      | 0.0    | 0°0    |   |
|   | DIST<br>FROM<br>INLET       | -0°038        | 0°2010                     | 0.315          | 0°468   | 0.620         | 0°773.  | 0,925      | 1,230      | 1.535      | 1,839        | 2°329   | 2°734    | 2°389   |        | ETA C.        |                  | °007 8  | •005       | •042          | °078 2                                  | 032 <sup>z</sup> | 022 Z            | 000    | 015 V         | .000   | . 000  | °013 7 | ° 000    | 000    | 000    | • |
|   | M/M<br>M/M                  | 76.2          | 128.6                      | 152。4          | 152。4   | 152.4         | 152.4   | + 2 V - 1  | 152.4      | 152.4      | 152.4        | 15204   | 152.4    | 15204   |        | SN.           |                  |         | L<br>L     | с<br>М        | 4 1                                     | <b>–</b>         | <b>1</b>         | 7 0    |               | 0      | 0      |        | 2        | ы.     | 4      |   |
| * | POSN                        | -1 Č          | n w                        | t              | ഹ       | ı ں           | ~ 0     | ю <b>с</b> | י ה<br>י   | 0 (<br>    | 4 (<br>4 ,   | 21      | (1)<br>  | , ¢     |        | O<br>a        |                  | •       |            | 1<br>1        |                                         |                  |                  |        |               |        |        | 1<br>- | r-1      | e1 1   | -1     |   |

INLET B/L THICKNESS = 0.0097 DIV. ANGLE = 15DEG., AREA RATIO = 2, TAILPIPE LENGTH = 2.740M , RUN NO. 10

·

• 

. . .

•

.

×

.

•

•.

|   | 上し り00000<br>そり ・・・・・<br>日本し ) ゆうとと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч<br>ч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | и<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п<br>п                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | РАК<br>КЕЛЕ<br>ССССС<br>ССССС<br>ССССС<br>СССС<br>СССС<br>СССС                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | ж<br>т<br>т<br>т<br>т<br>т<br>т<br>т<br>т<br>т<br>т<br>т<br>т<br>т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 5447E<br>746767<br>7.2.2<br>7.4.471<br>1.4471<br>1.4471<br>1.4404<br>0.00000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 2114<br>2114<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 %/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 012000<br>01200<br>01200<br>01200<br>01200<br>01200<br>01200<br>01200<br>01<br>0200<br>01<br>0200<br>01<br>0200<br>01<br>0200<br>01<br>0200<br>01<br>0200<br>01<br>0200<br>01<br>0200<br>01<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>0200<br>02000000 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | К ССА<br>К К Y NOL CA<br>NUMBER<br>402853.<br>393350.<br>393350.<br>399220.<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | АТМ<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 後<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T<br>EMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • | 2000<br>1120<br>1120<br>1120<br>120<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VEL VEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000<br>00000<br>00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Н<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | POSN %IDT<br>1<br>2<br>3<br>3<br>4<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>0<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ግ ሀ ወ ት ወ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | POSN       WIDTH       DIST       STATIC       MEAN       LOCAL       ZDELTA*       ZTHETA       SHAPE       K.E.COKR.       PRESS.       EFFECT-       ENERGY       ENERGY | POSN       WIDTH       DIST       STATIC       MEAN       LOCAL       ZDELTA*       ZTHETA       SHAPE       K.E.COKR.       PAESS.       EFFECT-       ENERGY       EFFECT-       ENERGY       EFFECT-       ENERGY       CURK       CUCKY       CUCKY | POSN WIDTH       DIST       STATIC       MEAN       LOCAL       ZDELTA*       ZTHETA       SHAPE       K.E.COKR.       PAESS.       EFFECT-       ENERGY       ENERGY       ENERGY       ENERGY       ENERGY       CURX.       CUR       EFFECT-       ENERGY       ENERGY       ENERGY       ETCOR       INCOM       INCOM <t< td=""></t<> |

۰

j -

| 0             | 10 200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                               | • |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------|---|
| ۲<br>۲<br>۳   | 日<br>ののののののででの<br>に、・・・・・・・<br>のののなななのの<br>ただしのかななのの<br>たたしののなたたの<br>して<br>たたしののたたの                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                   |                                               |   |
| %0000<br>• 0  | IT<br>IT<br>IT<br>IT<br>IT<br>IT<br>IT<br>IT<br>IT<br>IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                                               |   |
| LENGTH        | ₩<br>₩<br>₩<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                                               |   |
| • TAILPIPE    | К н н с С С К К н<br>F A C T О К<br>I н с 0 1 6<br>I н с 0 2 4<br>I н с 2 2 4<br>I н с 2 2 4<br>I н 2 2 4<br>C е с с 0<br>C е е с 0<br>C е е с 0<br>C е е е е е е е е е е е е е е е е е е е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | •                                             |   |
| AT IO = 3     | БНАРЕ<br>РАСТОК<br>АСТОК<br>• 5 5 0 4<br>• 5 5 0 4<br>• 5 6 2 8<br>• 6 6 2 8<br>• 7 6 6<br>• 6 6 7 6<br>• 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | · · · · · · · · · · · · · · · · · · ·         |   |
| AREA R        | 2 ŤHÉTA<br>© 10 THÉTA<br>© 10 THÉTA<br>0 0 0 0 2 6 6 4<br>0 1 1 0 6 6<br>0 0 1 1 0 6 6<br>0 0 0 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 147                 | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6         |   |
| 5<br>СШС<br>С | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2 | ESS <b>,</b> X.     | 00000000000000000000000000000000000000        |   |
| - ANGLE       | よ<br>た<br>た<br>た<br>た<br>た<br>た<br>た<br>た<br>た<br>た<br>た<br>た<br>た                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r ATM.PR            | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5         |   |
| 095 DIV       | одылооол 2 х<br>одылоол 2 х 3<br>одылоол 2 х<br>одылоол 2 х<br>одон 2 х<br>одылоол 2 х<br>одылоос 2 х<br>ос 2 х<br>одылоос 2 х<br>одылоос 2 х<br>одылоос 2 х<br>одылоос 2 х<br>одылоос 2 х<br>одылоос 2 х<br>ос 2 х<br>о   | TEMP                |                                               |   |
| NS 0 • 0      | Н К Ч К Ч К Ч К Ч К Ч К Ч К Ч К Ч К Ч К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C/L VEL.            | 89499<br>897-40<br>9-9-9-0<br>9-9-0<br>9-0000 |   |
| THIOKNE:      | Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BETA                |                                               |   |
| NLET B/L      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •<br>NO<br>NO<br>NO | ጉ ላ ጥ ታ ኑን ው                                  |   |

CORR. EFFECT. **ENEKGY** 0.949 0.982 0.973 0.966 0.968 0 • 964 **0.**956 0.00.0 ł IVENESS 1•000 0•948 EFFLCT KECOV. COEFT. PRESS. K.E.CORR. FACTOR FACTUR SHAPE 0.00044 0.00214 0.00575 0.1156 0.1156 0.1159 2THETA WIDTH W 0.074 2DELTA\* EYNOLDS NUMBER 424714 424714 441618 468927 466927 466156 471566 471566 LOCAL 463968 DIST FROM WIDTH POSN 0. 1 C N + M V H

RUN NC

•

•740N

2 11

LENGTH

TAILPIPE

• ' m

n

RATIO

AREA

ЕG.,

a ŝ

R

DIV. ANGLE

• 006'5

O

11

THICKNESS

B/L

1-

ω

I N I

A state of the sta

-----

6

• ••

and the second s .....

and the second second

-

and a second second

....

.

1

LW/X ATM.PRESS 759.0 759.0 759.0 759.0 759.0 759.0 759.0 TENP. C/L VEL ETA ന . POSN 0 1 0 N T 1 N N H

| •          |                |                  |               | •                 |                |         |                              |                     |                  |                                                                                        |                               |                                                                                 |
|------------|----------------|------------------|---------------|-------------------|----------------|---------|------------------------------|---------------------|------------------|----------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------|
| POSN WIDT  | H DIST<br>FROM | STATIC<br>PRESS. | MEAN<br>Vel.  | LOCAL<br>REYNOLDS | 2DELTA*        | 2THETA  | SHAPE<br>FACTOR              | K.E.CORR.<br>FACTOR | URESS.<br>RECOV. |                                                                                        | ENERGY<br>CODD                | ENER<br>COBC                                                                    |
| 1 76 ° 2   |                | M/M H2(          | O M/S         | NUMBER            | WIDTH          | WIDTH   |                              |                     |                  |                                                                                        | EFFECT.                       |                                                                                 |
| 2 64°C     | 0,000          |                  | 65°4          | 407578°           |                | 0.0048  | 0 く<br>く<br>く<br>く<br>く<br>く | L•CL6               | 0.000            | 1,000                                                                                  | 0.000.0                       | )<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() |
| 3 120.4    | 0.508          | 1480             | 51.4          | 404891.           | 0.0711         | 0.0469  | 1 • 2 5 7 1                  | 1 ° C 0 F           | 0。528<br>0。556   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 . 943<br>7 . 947            | 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 °                                         |
| 4 147•0    | 0.812          | ° 0              | 42 <b>.</b> 1 | 404955.           | 0.1076         | 0.0677  | l.590                        | 1.096               | 0.684            | 0.936                                                                                  | 0,4040                        |                                                                                 |
|            | 1 • 5 1 2      | • '•<br>ਹਾ ਹਾ    | 40•6<br>40•7  | 405325 •          | 0.1126         | 0.0781  | 1•440                        | 1.082               | 0°700            | 0.935                                                                                  | 0,940                         | 0•ćê                                                                            |
| 7 152.4    | 2.422          |                  | 41.2          | . 411138.         | 0.1069         | 0.0842  |                              |                     | 0,699<br>0,691   | 0 • 9 3 5<br>0 • 9 3 5                                                                 | 0 <b>6 9 3 5</b><br>0 : 6 3 5 | 0 • 6 8                                                                         |
| 8 152.4    | 3°572          | ۔<br>ج           | 41°5          | 413928 <b>。</b>   | 0.0973         | 0°0780  | 1.247                        | 1.038               | 0.679            | 0.921                                                                                  | 0.913                         | 0.00                                                                            |
|            |                |                  |               |                   |                |         |                              |                     |                  |                                                                                        | •                             | £,                                                                              |
| POSN       | BETA C         | :/L VEL.         | TEMP          | . ATM.PI          | RESS           | TW/     |                              |                     |                  |                                                                                        | •                             |                                                                                 |
|            | 1,007          | 82 <b>°</b> 1    | 21.0          | 75:               | 3.7 **         | ****    | •                            |                     | •                |                                                                                        |                               |                                                                                 |
| 0          | 1.012          | 67 <b>°</b> 9    | 21,0          | 75                | 3.7 2          | •664    | •                            |                     |                  |                                                                                        | •                             |                                                                                 |
| ſſ         | 1.026          | 55 <b>,</b> 5    | 21.0          | .57               | 3 <b>.</b> 7 ó |         |                              |                     | •                |                                                                                        |                               |                                                                                 |
| 4 1        | 1.035          | 4701             | 21,0          | 75:               | 3.7 10         |         | •                            |                     | •                |                                                                                        |                               | •                                                                               |
| ມ          | 1,030          | 45.9             | 21.0          | 75.               | 3.7 15         | .787    |                              | •                   |                  |                                                                                        |                               |                                                                                 |
| <b>1 O</b> | 1.024          | 45°7             | 51°0          | 75.               | 3.7 19         | • 842   | ·                            | -                   |                  |                                                                                        | •                             |                                                                                 |
| _ α        | - 710 - 1      | 40°0<br>44       | 0°12          | 1 1               | 2°7 31         | • 784   | •.                           | -                   |                  |                                                                                        |                               | ,                                                                               |
| 5          |                |                  | 0.017         |                   | 0              | • 2 / 0 | •                            |                     |                  | •                                                                                      |                               |                                                                                 |
|            |                | •                |               |                   |                | •       | •                            |                     | •                | •                                                                                      |                               |                                                                                 |
|            |                |                  |               |                   |                |         | · .                          | د                   |                  |                                                                                        |                               | •                                                                               |
|            |                |                  |               | •                 |                | •       |                              |                     |                  |                                                                                        |                               |                                                                                 |
|            |                |                  | ٠             |                   |                |         |                              |                     |                  |                                                                                        |                               |                                                                                 |
|            |                |                  | -<br>-<br>-   | •                 | ÷              | •       | • .                          | •                   |                  | • •                                                                                    |                               |                                                                                 |
| •          | •              |                  |               |                   | •              |         |                              |                     |                  |                                                                                        |                               |                                                                                 |
| •          |                |                  |               |                   |                | •       |                              |                     |                  |                                                                                        |                               | •                                                                               |
|            |                |                  |               |                   | :              |         |                              | • .                 |                  |                                                                                        |                               |                                                                                 |

1

. .....

•

and the second

|                  | •      |         |                |               |           |         |             |        |           |           |         |           |         |
|------------------|--------|---------|----------------|---------------|-----------|---------|-------------|--------|-----------|-----------|---------|-----------|---------|
| PCSN             | WIDTH  | DIST    | STATIC         | MEAN          | LCCAL     | 2DELTA* | 2 T H E T A | SHAPE  | K.E.CCRR. | PRESS     | EFFEC1- | FNFRGY    | ĩ       |
|                  | •      | FRCN    | <b>PRESS</b> . | VEL.          | REYNCLDS  |         |             | FACTER | FACTCR    | RECCV.    | IVENESS |           | <br>; . |
|                  | N/N    | INLET   | T N/N H2       | D N/S         | NUMBER    | WIDTH   | WICTH       |        |           | COEFF.    |         |           | ,<br>,  |
| 1 7              | 6.2    | -0.050  | -213.          | 5-12          | 367562.   | C.0615  | J.C443      | 1.387  | 1.045     | C * C O O | 1,000   | 000000    | C       |
| 5                | 4 • C  | 0.203   | -123.          | 5 <b>°</b> 55 | 377762.   | C.C584  | C.C652      | I.509  | 1.077     | 0.283     | 0.925   | 0.953     |         |
| 3 12             | 0.4 .  | 0.508   | - 20°-         | 47.8          | 386475.   | 0.1553  | 0.0955      | 1.626  | 1.146     | 0.511     | 0.917   | C.952     | 00      |
| 4 14             | 7.0    | 0.812   | -10.           | 39.4          | 389183.   | C.2217  | C.1225      | 1805   | 1.233     | 0.635     | 0-905   | 640-0     | c       |
| נה<br>רין<br>גין | 2.4    | C • 858 | - 4 -          | 37.9          | 368107.   | C.2342  | 0.1258      | 1,803  | 1,247     | 0.655     | 0.908   | 5 K 5 V 0 | ° c     |
| 6 15             | 2.4    | 1.203   | •              | 38.2          | 390568.   | C.2138  | C.1359      | 1.572  | 1.156     | 0.670     | 20.034  |           |         |
| 7 15             | 2.4    | 1.813   | 4•             | 38.6          | 355070.   | C.1641  | 0.1207      | 1.359  | 1.073     | 0.681     | 0.95°   |           |         |
| 8 15             | 2.4    | 3.572   | •0             | 38•8          | 396851.   | 0.0663  | 0.0546      | 1.214  | 1.027     | 0.669     | 0.944   | 0.897     | 50      |
|                  |        |         | •              |               |           |         |             |        | -         |           |         |           |         |
| . 1              |        |         |                |               |           |         |             |        |           |           |         | ·         |         |
| PCSN             | ص<br>• | ETAC    | ./L VEL.       | TEMP          | . ATM. PF | RESS. X | /W1         |        |           |           |         |           |         |

|             | C•CCO | 2-664 | 6.666 | 1C.656 | 11.784 | 15.787 | 23.752 | 46°876 |
|-------------|-------|-------|-------|--------|--------|--------|--------|--------|
|             | 763.5 | 763.5 | 763.5 | 763.5  | 763.5  | 763.5  | 763.5  | 763.5  |
|             | 19.0  | 19.0  | 19.O  | 19.0   | 19.0   | 19.0   | 19.0   | 19.0   |
| ,<br>9<br>1 | 76.8  | 66.4  | 56.8  | 50.7   | 45.7   | 48.7   | 46.3   | 41.6   |
| •           | 1.017 | 1.028 | 1.053 | 1.C82  | 1.087  | 1.054  | 1.026  | 1.011  |
| ı           |       | 2     | m     | 4      | ហ      | 6      | 7      | ω      |

50105 INLET B/L THICKNESS = 0.0615 DIV. ANGLE =

| PCSN | WIDTH  | CIST   | STATIC  | NEAN  | LCCAL    | 2DELTA* | <b>ZTHETA</b> | SHAPE         | K.E.CORR. | PRESS. | EFFECT- | ENERGY  | ũ      |
|------|--------|--------|---------|-------|----------|---------|---------------|---------------|-----------|--------|---------|---------|--------|
|      |        | FRCM   | PRESS.  | VEL.  | REYNOLDS |         |               | FACTOR        | FACTOR    | RECOV. | IVENESS | CORR .  | С<br>С |
|      | N/N    | INLET  | N/N H2C | N/S   | NUMBER   | WICTH   | N ICTH        |               |           | CCEFF. |         | EFFECT. |        |
| 4    | 76.2 - | -0-070 | -203-   | 71.1  | 356410.  | 0.0558  | 0.0429        | <b>1.</b> 395 | 1.C44     | 0.000  | 1-00C   | 0.000   | ô      |
| 2    | 64.0   | 0.203  | -113.   | 58.5  | 364018.  | C.1CC3  | C.C664        | 1.508         | 1.078     | 0.290  | 0.924   | 0.953   | ů      |
| m    | 120.4  | 0.508  | -44.    | 47.1  | 373306.  | 0.1574  | 0.0558        | 1.641         | 1.151     | 0.513  | 0.916   | 0.954   | 0      |
| 4    | 147.0  | 0.812  | -6-     | 39.1  | 378118.  | 0.2230  | 0.1238        | <b>1.8Cl</b>  | 1.232     | C-635  | 0.911   | 0.945   | 0      |
| ŝ    | 200.0  | 1.000  | 0       | 0 ° 0 | •0       | 0000*0  | 0.000.0       | 0,000         | 0.000     | 0.656  | 0.767   | 0.000   | ပံ     |
|      |        |        |         |       |          |         |               |               |           |        |         |         |        |
|      |        |        |         |       |          |         |               |               |           |        |         |         |        |
|      |        |        |         |       |          | •       |               |               |           |        |         |         |        |

| IW/X        | -C.918 | 2.664       | 6.666 | 10-656 | 12,123 |
|-------------|--------|-------------|-------|--------|--------|
| "ATM.PRESS. | 761.5  | 761.5       | 761.5 | 761-5  | 761.5  |
| TEMP.       | 22.0   | 22.0        | 22.0  | 22.0   | 0,00   |
| C/L VEL.    | 75.9   | ردي.<br>دي. | 56.2  | 5C.3   |        |
| BETA        | 1.017  | 1.C29.      | 1.055 | 1.081  | 0000   |
| -NSD        | ~      | 2           | س     | 4      | ſ      |

INLET B/L THICKNESS = 0.0598 DIV. ANGLE =

, RUN NG.

5DEG., AREA RATIU = 2, TAILPIPE LENGTH = 0.000M

.

|   | EFFECT- ENERGY EN | JVENESS CURK. CU |           |         |               | C.931 0.568 0. | C.931 0.568 0.<br>C.92C 0.958 C. | C.931 0.568 0.<br>C.92C 0.958 0.<br>C.92E C.956 C. | 0.928 0.958 0.<br>0.928 0.958 0.<br>0.928 0.958 0.<br>0.928 0.956 0. | 0.928 0.956 0.<br>0.928 0.956 0.<br>0.928 0.956 0.<br>0.928 0.944 0.               |
|---|-------------------|------------------|-----------|---------|---------------|----------------|----------------------------------|----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------|
|   | PRESS.            |                  | C • C O O | 0.289   | C.514         | • 4 1 0 0      | 0.637                            | 0.637<br>0.703                                     | 0.637<br>0.637<br>0.703<br>0.754                                     | 0.637<br>0.637<br>0.754<br>0.789                                                   |
|   | K.E.CCRR.         | PACICK           | 1.041     | 1.069   | 1.138         |                | 1.224                            | 1.224<br>1.259                                     | 1.224<br>1.259<br>1.295                                              | 1.224<br>1.259<br>1.295                                                            |
|   | SHAPE             | TACICK           | 1.376     | I.469   | 1.600         | 1 700          | 10101                            | 1.626<br>1.826                                     | L = C Z C<br>L = 8 C Z<br>L = 8 C Z                                  | L.826<br>L.826<br>L.863                                                            |
|   | 2THETA            |                  | 0.0415    | 0.0640  | C•C543        | 0,1212         | 111200                           | 5521.0                                             | 0.1355<br>0.1566                                                     | 0 • 1355<br>0 • 1566<br>0 • 1665                                                   |
| • | 2DELTA*           | MIDTH            | C.0572    | 0.0941  | C.151C        | 0.2168         |                                  | C.2556                                             | C.2556<br>0.2919                                                     | C.2556<br>0.2519<br>0.3077                                                         |
|   | LCCAL             | NUMBER           | 402205.   | 412781. | 425480.       | 430519.        |                                  | 452130.                                            | 452130.457292.                                                       | 452130.<br>457292.<br>470139.                                                      |
|   | VEAN              |                  | 80.0      | 66.5    | 53 <b>.</b> 5 | 44.4           |                                  | 39.4                                               | 34•6<br>34•6                                                         | 90.4<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
|   | STATIC            | · NUNN<br>VN TUN | -312.     | -198.   | -110.         | -62.           |                                  | -36-                                               | -36.<br>-16.                                                         | 1 1 96<br>1 1 6<br>1 2 6                                                           |
|   | H CIST            | TALR<br>TALFT    | -0.070    | 0.203   | 0.508         | 0.812          | • • • •                          | 150°T ·                                            | 1-356<br>1-356                                                       | . 1.051<br>1.356<br>1.700                                                          |
| · | TOLM NSI          | N N              | 1 76.2    | 54.0    | 3 120.4       | 4 147.0.       | с<br>сг,                         | 3 1/3.8                                            | 5 2CC•2                                                              | 5 2CC 2<br>2 2CC 2<br>7 226 8                                                      |
|   | ۵.                |                  |           | 1.1     | 673           | Š              | r                                | F 41                                               | ግዛነው                                                                 | * 47 40 1-                                                                         |

5DEG., AREA RATIC = 3, TAILPIPE LENGTH = 0.000M , RUN NG. DIV. ANGLE = INLET B/L THICKNESS = 0.0572

| 14/X       | -0-918    | 2-654 | 1C.656 | 22,309 | 25.275 | 32.585 | 43.267 | 58.359 |
|------------|-----------|-------|--------|--------|--------|--------|--------|--------|
| ATM.PRESS. | 767.2     | 767.2 | 767.2  | 767.2  | 767.2  | 767.2  | 767.2  | 767.2  |
| TENP.      | . 15.0    | 15.0  | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   | 15.0   |
| C/L VEL.   | 86.1      | 74.1  | 12°2   | 44.0   | 42.1   | 37.8   | 31.8   | 30.0   |
| BETA       | 1-015     | 1.022 | 1.065  | 1.089  | 1.070  | 1.033  | 1.008  | 1.005  |
| PCSN.      | <b></b> ! | 2     | ო      | 4      | ഹ      | 6      | -      | 8      |

3, TAILPIPE LENGTH = 2.74CM 5DEG., AREA RATIG = DIV. ANGLE = INLET B/L THICKNESS = 0.0549

, RUN NG.

.

| COR<br>COR          | J       | 0.0        | 0°0     | 0°2     | 0.5<br>0 |   |   |         |                                         |        |               |      |
|---------------------|---------|------------|---------|---------|----------|---|---|---------|-----------------------------------------|--------|---------------|------|
| ENERGY<br>CORR.     | EFFECT. | 000°0      | 0.950   | 0.954   | 0.000    |   |   |         |                                         |        |               |      |
| EFFECT-<br>IVENESS  |         | 1.000      | 0.905   | 0.877   | 0.683    |   |   |         |                                         |        |               |      |
| PRESS.<br>RECOV.    | COEFF.  | 0.000      | C.411   | 0.536   | 0.583    |   |   |         |                                         |        |               |      |
| K.E.CORR.<br>FACTOR |         | 1.036      | 1.101   | 1.219   | 0.000    | • | • |         |                                         |        |               |      |
| SHAPE<br>FACTOR     |         | 1.367      | 1.641   | 1.942   | 0.000    |   |   | •       |                                         |        |               |      |
| 2,THETA             | WIDTH   | 0.0364     | 0.0711  | 0.0921  | 0.0000   |   |   | 1M1     | ***                                     | - 650  | •698          | .561 |
| 2DEL TA*            | WIDTH   | 0.0498     | 0.1168  | 0.1789  | 0-0000   |   | • | ESS. X. | **<br>**                                | • 8    | . 8           | -8   |
| LOCAL<br>REYNOLDS   | NUMBER  | 331072.    | 358726. | 373684. | .0       |   |   | ATM.PR  | * 755                                   | 755    | 755           | 755  |
| NEAN<br>Vel.        | M/S     | 64.8       | 47.9    | 40.4    | 0.0      |   |   | TEMP.   | 17.5                                    | 17.5   | 17.5          | 17.5 |
| STATIC<br>PRESS.    | M/M H20 | -151.      | -44.    | -12.    | •0       | • |   | ר עבר.  | 8.4                                     | 54.0   | 49 <b>.</b> 2 | 0.0  |
| DIST<br>FRCM        | INLET   | -0.070     | 0.202   | 0.358   | 0.500    |   |   | ETA C/  | .014 6                                  | .037 5 | .081 4        | .000 |
| <br><br>HIDIM       | W/W     | 76.2 -     | 111.6   | 138.0   | 200.0    |   |   | SN. BI  | . , , , , , , , , , , , , , , , , , , , | 5      |               | .+   |
| PCSN                |         | <b>~</b> 4 | 2       | ŝ       | 4        |   |   | Dd      |                                         | - 4    |               | -    |

, RUN NO.

1

AREA RATIO = 2, TAILPIPE LENGTH = 0.000M

DIV. ANGLE = 10DEG.

INLET B/L THICKNESS = 0.0498

ļ

| 3TH = 2.740M , RUN NO. |   | •      | • |         |
|------------------------|---|--------|---|---------|
| 2, TAILPIPE LEN        |   |        |   |         |
| AREA RATIO = 1         |   |        |   |         |
| = 100EG.,              |   |        |   |         |
| DIV. ANGLE             |   |        |   |         |
| .0560                  | • | ÷      |   |         |
| SS = 0                 |   |        |   | 1 × 1 ( |
| HICKNES                |   | •<br>• |   | F L F C |
| B/L T                  |   | •      |   |         |
| INLET                  |   |        |   |         |

1

the marie and do not

a statistica da servicia da servicia e estatada en la servicia da servicia da servicia da servicia da servicia A servicia da servicia da servicia e estatada estatistica da servicia da servicia da servicia da servicia da ser

|          |         |           |        | •      | -             | .918   | 0-     | 756      | 19-5          | 74.3       | 1.016   | r-4 ( |
|----------|---------|-----------|--------|--------|---------------|--------|--------|----------|---------------|------------|---------|-------|
|          |         |           |        |        |               | /Wl    | ESS. X | ATM.PR   | TEMP.         | /L VEL.    | BETA C  | PCSN. |
|          |         |           |        |        |               |        |        | 4        |               |            |         | -     |
| 0.6      | 0.874   | 116.0     | 0.630  | 1.026. | 1.221         | 0•0469 | 0.0572 | 395300.  | 3 <b>9</b> •1 | <b>0</b> , | 3.234   | 152.4 |
| 0.6      | 0.909   | 1.014     | 0.645  | 0.913  | 1.242         | 0.0883 | 0.1097 | 426469.  | 42.2          | <b>ب</b>   | 2.034   | 152.4 |
| <b>0</b> | 0.940   | 0.946     | 0.631  | 1.112  | <b>I.</b> 469 | 0.1198 | 0.1760 | 408063.  | 40.3          | <b>-</b>   | 1.070   | L52.4 |
| 0        | 0.947   | 0.894     | 0.594  | 1.235  | 1.853         | 0.1091 | 0.2023 | 409429.  | 40.5          | -10        | . 0.613 | 152.4 |
| 0        | 0.954   | 0.865     | 0.520  | I.245  | 2.013         | 0.0947 | 0.1906 | 403782.  | 44.1          | -32.       | 0.354   | 138.0 |
| 0        | 0.966   | 0.831     | 0.395  | 1.206  | <b>1.698</b>  | 0.0710 | 0.1206 | 389550.  | 50.6          | -69-       | 0.202   | 116.0 |
| ).<br>0  | 000 ° 0 | . 000 . 1 | 0°000  | 1.041  | 1.388         | 0.0403 | 0.0560 | 353409.  | 69.9          | -168.      | -0.070  | 76.2  |
| 0        | EFFECT. |           | COEFF. |        |               | WIDTH  | WIDTH  | NUMBER   | D. M/S        | M/M H20    | INLET   | W/W   |
| 00       | CORR.   | IVENESS   | RECOV. | FACTOR | FACTOR        |        |        | REYNOLDS | VEL.          | PRESS.     | FRCM    |       |
| ;        |         |           |        |        |               |        |        |          |               |            |         |       |

| IM,         | 918   | 650    | 645   | .044  | 041   | 349   | 077    |
|-------------|-------|--------|-------|-------|-------|-------|--------|
| ×           | 0     | N      | 4     | æ     | 14,   | 27.   | ~ ~    |
| ATM. PRESS. | 756.7 | 756.7  | 756.7 | 756.7 | 756.7 | 756.7 | 7 7 7  |
| TEMP.       | 19.5  | 19.5   | 19.5  | 19.5  | 19.5  | 19.5  | u<br>C |
| C/L VEL.    | 74.3  | 59.9   | 54.5  | 50.9  | 49.1  | 44.2  | 2 67 . |
| BETA        | 1.016 | 1,-084 | 160-1 | 1.085 | 1.039 | 0.951 |        |
| CSN.        | 1     | 2      | ŝ     | 4     | ഹ     | 6     | 7      |

•.

•

| • | •           |                                                                                                           |           |                                                                                         |
|---|-------------|-----------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------|
|   | RUN NO      | ENERGY.<br>CORR.<br>CORR.<br>0.000<br>1.000<br>0.996<br>1.000<br>0.944<br>0.944                           |           |                                                                                         |
|   | : 2.740M    | Е F F E C T -<br>I V E N E S S.<br>1 • 0 0 C<br>0 • 9 3 4<br>0 • 9 2 5<br>0 • 9 2 5<br>0 • 9 2 5          |           |                                                                                         |
|   | L ENGTH     | RECOV<br>CCCR<br>CCCS<br>CCCR<br>CCCS<br>CCC<br>CCC<br>CCC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>C |           |                                                                                         |
|   | , TAILPIPE  | K.E.CORR.<br>FACTOR<br>1.039<br>1.117<br>1.181<br>1.222<br>1.317<br>1.317<br>1.175                        | ·         |                                                                                         |
|   | ATIO = 3    | SHAPE<br>FACTOR<br>1.389<br>1.722<br>1.963<br>2.011<br>1.642<br>1.642                                     |           |                                                                                         |
|   | AREA R      | 2THETA<br><br>WIDTH<br>0.0711<br>0.0711<br>0.0848<br>0.0905<br>0.1257<br>0.1357                           | TM.       | 0 3 6 3 1 8<br>9 7 9 7 9 7 9 7 9 7 9 7 9 1 8<br>9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 |
|   | 10DEG.,     | DELTA*<br>WIDTH<br>0.0529<br>0.1225<br>0.1277<br>0.2507<br>0.2507<br>0.2230                               | SS. X/    | м м м м м м<br>0 N 4 0 H M<br>0 N 4 0 H M                                               |
|   | (. ANGLE =  | LCCAL 2<br>REYNCLDS -<br>NUMBER<br>403334.<br>448317.<br>4483703.<br>525621.<br>605747.<br>594086.        | ATM.PRE   | 765.<br>7655.<br>7655.                                                                  |
|   | 529 DIV     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                        | TEMP.     | 11111<br>•••••<br>•••••                                                                 |
|   | 0•0<br>= SS | STATIC<br>PRESS.<br>M/M H2<br>1311<br>1311<br>1344<br>1224                                                | ./L VEL.  | 882<br>5810<br>493<br>493<br>493<br>493<br>493<br>493<br>493<br>493<br>493<br>493       |
|   | THICKNES    | H DIST<br>FRGM<br>-0.076<br>0.201<br>0.354<br>1.201<br>1.201                                              | BETA C    | 1.016<br>1.043<br>1.062<br>1.062                                                        |
|   | ET 8/L      | N WIDT<br>M/M<br>1111-6<br>138-0<br>160-0<br>228-6<br>228-6                                               | - NSD     | しこうゆうら                                                                                  |
|   | INL         | 6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1          | <b>C.</b> |                                                                                         |

|     | СПХК<br>СПХК<br>СОТКК<br>СО<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ••• | П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П<br>П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| · . | Р<br>К<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • . |
|     | ж<br>Растоя<br>Растоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя<br>Стоя                                                                                                                                                                                                         |     |
| •   | FAP<br>FAP<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>FACTCR<br>F |     |
| ·   | 27         WIDTH         WIDTH         WIDTH         0.000346         0.000346         0.001349         0.1243         0.1243         0.1243         0.1243         0.1243         0.1243         0.1243         0.1243         0.1243         0.1243         0.1263         850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •   |
|     | MIDTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •   |
|     | НССАL<br>NUMBER<br>NUMBER<br>NUMBER<br>823177<br>8823100<br>970944<br>8823100<br>970944<br>765<br>77655<br>77655<br>77655<br>7655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _   |
|     | <ul> <li>№ № № № № № № № № № № № № № № № № № №</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|     | Р<br>Б<br>Б<br>Б<br>Б<br>Б<br>Б<br>Б<br>Б<br>Б<br>Б<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •   |
| •   | н полинального состания<br>и полинальности и полинальности и полинальний полина<br>полинальний полинальний полинальни полинальний полинальний полинальний полинальний полинальний полинальний полинальний полинальни полинальний                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| •   | овчелении<br>0 0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •   |
| •   | μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |

INLET B/L THICKNESS = 0.0522 DIV. ANGLE = 10DEG., AREA RATIC = 3, TAILPIPE LENGTH = 2.740M , RUN NG.

•

e norma em el ference en este de la contractor demonstra en este en el este en este de la contractor en este e

INLET B/L THICKNESS = 0.0542 DIV. ANGLE = 10DEG., AREA RATIO = 3, TAILPIPE LENGTH = 0.000M , RUN NG.

-.....

|   | л<br>И<br>Ш   | ີ່ມ<br>ບໍ່ບໍ່ | J       | 0.0     | •0      | 7 ° 0        | •••     | <b>0.</b> £ | 0.6     |   |   |
|---|---------------|---------------|---------|---------|---------|--------------|---------|-------------|---------|---|---|
| • | ENERGY.       | CORR .        | EFFECT. | 000 • 0 | 0.978   | 0.960        | 0.968   | 0.932       | 000 • 0 |   |   |
|   | EFFECT-       | IVENESS       | •       | 1.000   | 0.916   | 0.885        | 0.891   | 0.880       | 0.690   |   |   |
|   | PRESS.        | RECOV.        | COEFF.  | 0.000   | 0.336.  | 0.494        | 0.547   | 0.640       | 0,645   |   |   |
|   | K.E.CORR.     | FACTOR        |         | 1.039   | 1,113   | 1.186        | 1.226   | 1.292       | 0.000   |   |   |
|   | SHAPE         | FACTOR        |         | 1.372   | 1.699   | I.869        | 1.960   | 1.958       | 000.0   | • |   |
|   | <b>2THETA</b> |               | HIDIM   | 0.C395  | 0.0718  | 0.0858       | 0.0927  | 0.1225      | 0-0000  |   |   |
|   | 2DELTA*       |               | HIDIM   | 0.0542  | 0.1221  | 0.1604       | 0.1817  | 0.2399      | 3.0000  |   |   |
|   | LOCAL         | REYNOLDS      | NUMBER  | 356160. | 396605. | 428498.      | 464772. | 544266.     | • 0     | 4 | - |
|   | MEAN          | VEL.          | M/S     | 70.8    | 53.8    | 47.0         | 44.0    | 36.9        | 0.0     |   |   |
|   | STATIC        | PRES.S.       | M/M H2C | -197.   | -29.    | -46.         | -30.    | •           | •       |   |   |
|   | DIST          | FROM          | INLET   | -0-010  | 0.201   | 0.354        | 0.481   | 0.843       | 1.000   |   |   |
|   | WIDTH         |               | W/W     | 76.2 -  | .11.6   | 38.0         | 60.0    | 223.0       | 300.0   |   |   |
|   | PGSN          | •             | •       | 4       | 2       | ເ <u>ດ</u> . | 4       | ŝ           | 9       |   |   |

| IM/X        | -0-918 | 2.637 | 4.645 | 6.312  | 11.062 | 13.123 |
|-------------|--------|-------|-------|--------|--------|--------|
| ATM. PRESS. | 751.2  | 751.2 | 751.2 | 751.2  | 751.2  | 751.2  |
| TEMP.       | 19.0   | 19.0  | 19.0  | 19.0   | 19.0   | 19.0   |
| C/L VEL.    | 75.0   | 61.0  | 56.0  | 53.7   | 48.6   | 0.0    |
| BETA        | 1.015  | 1.042 | 1.069 | .1.083 | 1.103  | 0.000  |
| PCSN.       | Ч      | 7     | ŝ     | 4      | S      | 6      |

•

:

| PGSN       WIDTH       DIST       STATIC       MEAN       LOCAL       ZDELTA*       ZTHETA       SHAPE       K.E.CORR.       PRESS.       EFFECT-       CORR.                                                                                                                                                                                                                                                                                                                                                                                                                                         | INLET B/L                   | THICK                                     | VESS = 0.0                                    | 0609 DIV                     | /- ANGLE -                                                                        | = 15DEG.,                  | AREA R                     | ATIO = 2                | , TAILPIPE          | LENGTH                     | = 0• 000W               | , RUN NG                   | •              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|-----------------------------------------------|------------------------------|-----------------------------------------------------------------------------------|----------------------------|----------------------------|-------------------------|---------------------|----------------------------|-------------------------|----------------------------|----------------|
| PGSN       WIDTH       DIST       STATIC       MEM       LGCAL       ZDELTA*       ZTHETA       SHAPE       K.E.CDRR.       PRESS.       EFFECT-       ENERSY       CORR.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                           |                                               |                              | · · · ·                                                                           | ·<br>·<br>·                |                            |                         |                     |                            |                         |                            |                |
| 1       76.2       -0.070       -128.6       53.1       327655.       0.0609       0.0438       1.390       1.0044       0.0000       0.0000       0.0004       0.000         3       128.6       0.0201       -129.5       57.9       357455.       0.01730       0.0153       0.0455       0.9469       0.9469       0.9469       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465       0.9465 <th>DIW NSD4</th> <th>TH DI:<br/>FR(<br/>INL</th> <th>ST STATIC<br/>CM PRESS.<br/>CET M/M H2</th> <th>C MEAN</th> <th>LOCAL<br/>REYNOLDS<br/>NUMBER</th> <th>2DELTA*<br/><br/>WIDTH</th> <th>2THETA<br/><br/>WIDTH</th> <th>SHAPE<br/>FACTOR</th> <th>K.E.CORR.<br/>FACTOR</th> <th>PRESS.<br/>RECOV.<br/>COEFF.</th> <th>EFFECT-<br/>IVENESS</th> <th>ENERGY<br/>CORR.<br/>EFFECT.</th> <th>C C R<br/>C C R</th> | DIW NSD4                    | TH DI:<br>FR(<br>INL                      | ST STATIC<br>CM PRESS.<br>CET M/M H2          | C MEAN                       | LOCAL<br>REYNOLDS<br>NUMBER                                                       | 2DELTA*<br><br>WIDTH       | 2THETA<br><br>WIDTH        | SHAPE<br>FACTOR         | K.E.CORR.<br>FACTOR | PRESS.<br>RECOV.<br>COEFF. | EFFECT-<br>IVENESS      | ENERGY<br>CORR.<br>EFFECT. | C C R<br>C C R |
| 4 300.0       0.300       0.00       0.000       0.000       0.000       0.4         PGSN.       BETA       C/L VEL.       TEMP.       ATM.PRESS.       X/WI       0.551       0.000       0.4         1       1.017       67.4       16.0       761.2       -0.918       0.555       0.551       0.000       0.4         2       1.017       67.4       16.0       761.2       2.655       16.0       761.2       2.637       0.501       0.551       0.000       0.4         3       1.082       51.9       16.0       761.2       2.637       3.937       0.000       0.515       0.551       0.551       0.000         4       0.000       0.0       761.2       3.937       3.937       3.937       0.000       0.515       0.551       0.551       0.551       0.000       0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 76.2<br>2 89.4<br>3 128.6 | 0.00                                      | 70 -128.<br>50 -90.                           | 63.1<br>57.9<br>43.0         | 327657 <b>.</b><br>352745.<br>377395.                                             | 0.0609<br>0.0813<br>0.1736 | 0.0438<br>0.0540<br>0.0844 | 1-390<br>1-503<br>2-056 | 1.044<br>1.049      | 0.000<br>0.153<br>0.453    | 1.000<br>0.965<br>0.857 | 0.000<br>0.948<br>0.972    | 0000           |
| PGSN. BETA C/L VEL. TEMP. ATM.PRESS. X/WI<br>1 1.017 67.4 16.0 761.2 -0.918<br>2 1.017 62.5 16.0 761.2 0.656<br>3 1.082 51.9 16.0 761.2 2.637<br>4 0.000 0.0 761.2 3.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 300.0                     | 0.3(                                      | 0                                             | 0.0                          | •                                                                                 | 0000.0                     | 0.000                      | 0000                    | 00000               |                            | 0,00                    | 0.000                      | O              |
| 1       1.017       67.4       16.0       761.2         2       1.017       62.5       16.0       761.2         3       1.032       51.9       16.0       761.2         6       0.03       761.2       2.637         7       0.0       761.2       2.637         7       0.0       761.2       3.937         7       0.0       761.2       3.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •NSD4                       | BETA                                      | C/L VEL.                                      | TEMP.                        | ATM.PF                                                                            | RESS. X                    | IW/                        | •                       | c                   |                            |                         |                            |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - こ ろ み                     | 1.017<br>1.017<br>1.032<br>0.000<br>0.000 | 6 6 7 6 7 6 9 7 7 6 9 7 7 6 9 7 7 9 7 7 9 7 9 | 1100<br>1100<br>1100<br>1111 | 901<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 |                            | - 918<br>- 656<br>- 93-1   |                         |                     |                            | •                       |                            |                |

...

|      | •<br>       | ECCC44555<br>ECCC44555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|      | RUN N       | ENERGY<br>CDRR•<br>CDRR•<br>0•0000<br>0•000<br>0•000<br>0•000<br>0•000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
|      | W000 • 0    | EFFECT-<br>1 VENESS<br>1 • 000<br>0 • 634<br>0 • 6321<br>0 • 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      | T ENGTH     | Р<br>К<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|      | 3, TAILPIPE | K.E.CORR.<br>FACTOR<br>1.044<br>1.924<br>5.837<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      | ATIO = 3    | РАР<br>НАСТСК<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|      | AREA R      | 2THETA<br>WIJTH<br>WIJTH<br>0.0447<br>0.0958<br>0.0958<br>0.0472<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0918<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.0778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07778<br>0.07788<br>0.07778<br>0.07788<br>0.07778<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.07788<br>0.077888<br>0.077888<br>0.077888<br>0.077888<br>0.0778888<br>0.077888<br>0.07788888<br>0.077888<br>0.077888888<br>0.077888<br>0.07788888888<br>0.077888888888<br>0.07788 |   |
|      | 15DEG.,     | ZDELTA<br>WIDTH<br>WIDTH<br>0.00619<br>0.37400<br>0.65599<br>0.65599<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.000000<br>0.000000<br>0.000000<br>0.000000<br>0.000000<br>0.000000<br>0.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| s. a | • ANGLE =   | LGCAL<br>REYNOLDS<br>NUMBER<br>341833.<br>294654.<br>190565.<br>0.<br>190565.<br>759<br>759<br>759<br>759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • |
|      | 19 DIV      | м т<br>м т<br>м т<br>м л л л л л л л л л л л л л л л л л л л                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|      | s = 0.04    | STATIC<br>PRESS<br>PRESS<br>PRESS<br>PRESS<br>PL62<br>P162<br>P162<br>P162<br>P162<br>P162<br>P162<br>P162<br>P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|      | THICKNES    | H DIST<br>FRCM<br>-0.070<br>0.327<br>0.554<br>0.760<br>0.760<br>1.017<br>0.760<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|      | LET 8/L     | PCSN WIDT<br>PCSN PCSN WIDT<br>PCSN PCSN WIDT<br>PCSN PCSN PCSN WIDT<br>PCSN PCSN PCSN PCSN PCSN PCSN PCSN PCSN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|      | NI          | C ~ ~ ろうよう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |

| 5          |   |                                                              |                                                    |                                                                    |
|------------|---|--------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
| , RUN N    |   | ENERGY<br>CCRR•<br>EFFECT•<br>0.000<br>1.133<br>1.087        | 0.000<br>0.000<br>1.007<br>0.924<br>0.887          |                                                                    |
| = 2.740M   |   | EFFECT-<br>IVENESS<br>1.000<br>1.152<br>0.747                | 0.736<br>0.738<br>0.973<br>0.975<br>0.975          |                                                                    |
| LENGTH =   |   | PRESS.<br>RECOV.<br>COEFF.<br>0.000<br>0.174<br>0.497        | 0.572<br>0.650<br>0.718<br>0.790<br>0.793          |                                                                    |
| , TAILPIPE |   | K.E.CORR.<br>FACTOR<br>1.047<br>1.053<br>1.763               | 0.000<br>0.000<br>1.209<br>1.015<br>1.017          |                                                                    |
| ATIO = 3   | • | SHAPE<br>FACTUR<br>1.408<br>1.526<br>2.046                   | 0.000<br>0.000<br>1.727<br>1.197<br>1.198          |                                                                    |
| AREA R     |   | 2THETA<br><br>WIDTH<br>0.0445<br>0.0546<br>0.0850            | 0.0000<br>0.0000<br>0.1341<br>0.0513<br>0.0513     | /W1<br>918<br>636<br>221<br>2291<br>929<br>018                     |
| 150EG.,    | • | ZDELTA*<br><br>WIDTH<br>0.0628<br>0.0333<br>0.1740           | 0.0000<br>0.0000<br>0.2317<br>0.0614<br>0.0716     | Ш                                                                  |
| /. ANGLE = |   | LDCAL<br>REYNDLDS<br>NUMBER<br>374417.<br>404712.<br>365461. | 0.<br>590874.<br>489364.<br>436095.                | ATM.PR.<br>767<br>767<br>767<br>767<br>767<br>767<br>767<br>767    |
| 528 DIV    |   | MEAN<br>VEL.<br>VEL.<br>71.5<br>65.9                         | 0.0<br>0.0<br>37.6<br>27.7                         | Н<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| S = 0.06   |   | STATIC<br>PRESS.<br>N/M H20<br>-255.<br>-199.<br>-199.       | - 71.<br>- 46.<br>- 24.<br>- 1.                    | /L VEL.<br>76.5<br>61.4<br>61.4<br>61.4<br>61.4<br>233.1<br>29.8   |
| HICKNES    |   | DIST<br>FRCM<br>INLET<br>-0.070<br>0.050                     | 0.327<br>0.554<br>0.909<br>2.128<br>3.278          | ETA<br>018<br>0018<br>0052<br>0055<br>0055                         |
| T 8/L T    |   | WIDTH<br>M/M<br>76.2<br>89.4<br>128.6                        | 161.4<br>220.6<br>228.6<br>228.6<br>228.6<br>228.6 | 8 4000444 8                                                        |
| INLE       | • | DOSN<br>9 2 1 2 6                                            | 45078                                              |                                                                    |

7.270 0.656 27.926 43.018 .1.929 2.637 4.291 767.4 767.4 767.4 767.4 767.4 767.4 767.4 16.0 16.0 16.0 16.0 16.0 16.0 16.0 71.3 61.4 0°0°0 0°0°0 0°0°0 33**.**1 29**.**8
|          |                                                                      |                                                                                        | <b> </b>                                                                                                             |                                                                                                                                                                                  | ーワイコミュ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | FACTOR                                                               | FACTOR                                                                                 | RECOV.                                                                                                               | IVENESS                                                                                                                                                                          | CORR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| WIDTH    |                                                                      |                                                                                        | COEFF.                                                                                                               |                                                                                                                                                                                  | EFFECT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0448   | 1.392                                                                | 1.045                                                                                  | 000°0                                                                                                                | 1.000                                                                                                                                                                            | 0,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.0546   | 1.513                                                                | I.051                                                                                  | 0.161                                                                                                                | I00°I                                                                                                                                                                            | 0.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0680.0   | 2.333                                                                | 1.306                                                                                  | 0.472                                                                                                                | 0.818                                                                                                                                                                            | 0.957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ů                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.1128   | 2.0.17                                                               | 1.301                                                                                  | 0.582                                                                                                                | 0.864                                                                                                                                                                            | 0.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.1224   | I.459                                                                | 1.109                                                                                  | 0.630                                                                                                                | 0.946                                                                                                                                                                            | 0.933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ò                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0706   | 1230                                                                 | 1.033                                                                                  | 0.647                                                                                                                | 0•960                                                                                                                                                                            | 0.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | °0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| . 0.0509 | 1.217                                                                | 1.026                                                                                  | 0.639                                                                                                                | 0.935                                                                                                                                                                            | 0.836                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | 7 0.0546<br>5 0.0890<br>5 0.1128<br>7 0.1128<br>7 0.1224<br>9 0.0706 | 7 0.0546 1.513<br>5 0.0890 2.333<br>5 0.1128 2.017<br>7 0.1224 1.459<br>9 0.0706 1.230 | 7 0.0546 1.513 1.051<br>5 0.0890 2.333 1.306<br>5 0.1128 2.017 1.301<br>7 0.1224 1.459 1.109<br>9 0.0706 1.230 1.033 | 7 0.0546 1.513 1.051 0.161<br>5 0.0890 2.333 1.366 0.472<br>5 0.1128 2.017 1.301 0.582<br>7 0.1224 1.459 1.109 0.630<br>9 0.0706 1.230 1.033 0.647<br>1 0.0509 1.217 1.026 0.639 | 7         0.0546         1.513         1.051         0.161         1.001           5         0.0890         2.333         1.366         0.472         0.818           5         0.0890         2.333         1.366         0.472         0.818           6         0.1128         2.017         1.301         0.582         0.864           7         0.1224         1.459         1.109         0.630         0.946           7         0.1224         1.459         1.033         0.647         0.960           7         0.0706         1.230         1.033         0.647         0.960           7         0.0509         1.217         1.026         0.639         0.935 | 7         0.0546         1.513         1.051         0.161         1.001         0.984           5         0.0890         2.333         1.356         0.472         0.818         0.957           5         0.0890         2.333         1.356         0.472         0.818         0.957           5         0.1128         2.017         1.301         0.582         0.864         0.933           7         0.1224         1.459         1.109         0.630         0.946         0.933           7         0.1224         1.453         1.033         0.647         0.933           9         0.0706         1.230         1.033         0.647         0.950         0.913           9         0.0509         1.217         1.026         0.639         0.935         0.886 |

| IW/X       | -0.918 | 0.656  | 2.637 | 6.141 | 12.112  | 24.133 | 35.879 |
|------------|--------|--------|-------|-------|---------|--------|--------|
| ATM.PRESS. | 764.5  | 764.5  | 764.5 | 764.5 | . 764.5 | 764.5  | 764.5  |
| TEMP.      | 19.0   | 19.0   | 19.0  | 19.0  | 19.0    | 19.0   | 19.0   |
| C/L VEL.   | 73.2   | 67.8   | 55.9  | 50.8  | 48.3    | . 42.9 | 41.1   |
| BETA       | 1.013  | 1.01.8 | 1.116 | 1.108 | 1.038   | 1.013  | 1.010  |
| PCSN.      | r-1    | 2      | m     | 4     | ŝ       | 6      | 7      |

AREA RATIO = 2, TAILPIPE LENGTH = 2.740M , RUN NG. INLET B/L THICKNESS = 0.0624 DIV. ANGLE = 15DEG.,

ur de la service de

Jane 1

| NN NU     |          | RGY<br>RGY<br>RCT<br>000<br>28<br>28<br>00<br>10<br>00<br>26<br>00<br>00<br>59<br>00<br>59<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>00<br>55<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40M • RI  |          | П 2000<br>1 200<br>1 200                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TH = 2°7  | •        | SS<br>004<br>000<br>000<br>000<br>000<br>000<br>000<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IPE LENG  |          | х<br>σ<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. TAILP  |          | К. Е. СОК<br>F. A CTOR<br>1. 051<br>1. 052<br>1. 055<br>1. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RATIO =   |          | С 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| o 9 AREA  | •        | <ul> <li>2 T H E T / 2 T H E T / 2 T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T H E T / 2 M I D T / 2 M I D T H E T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T / 2 M I D T</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| = 15DEG   |          | 2DELTA<br>2DELTA<br>0.11071<br>0.1277<br>0.242<br>0.242<br>0.2455<br>0.0114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .V. ANGLE | •        | LOCAL<br>REYNOCD<br>NUMBER<br>3925400<br>42554730<br>44589290<br>445833370<br>445833370<br>442730<br>4425290<br>442520<br>4427300<br>442730<br>42733370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1102 D1   |          | C MEAN<br>20 MEAN<br>750<br>750<br>750<br>750<br>750<br>750<br>750<br>750<br>750<br>750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ф<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| VESS = 0. | <b>1</b> | ST<br>ST<br>ST<br>ST<br>ST<br>ST<br>ST<br>ST<br>ST<br>ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C < < < < < < < < < < < < < < < < < < <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /L THICK  |          | IDTH<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BETA<br>1 • 01<br>1 • 01<br>1 • 01<br>1 • 08<br>1 • 063<br>1 • 063<br>1 • 011<br>1 • 063<br>1 • 011<br>1 • 063<br>1 • 065<br>1 • 063<br>1 |
| INLET B   |          | р.<br>С. С. С. С. С. С.<br>С. С. С. С.<br>С. С. С.<br>С. С. С.<br>С. С.<br>С                                                                                                                                                                                                                                                                                                        | ос.<br>No чо мала<br>No vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| °                                                                                           | MC 0000<br>MC 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                     |   |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|---|
| N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | EFFRG<br>00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                     |   |
| W0000°0                                                                                     | EFFECT-<br>1 veness<br>0 ° 963<br>0 ° 489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                     |   |
| LENGTH                                                                                      | РАКПО<br>КПСОS<br>СОКППС<br>ОстПС<br>ОстПС<br>ОстПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТПС<br>СОСТС<br>СОСТПС<br>СОСТС<br>СОСТПС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТПС<br>СОСТС<br>СОСТПС<br>СОСТС<br>СОСТПС<br>СОСТС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТС<br>СОСТПС<br>СОСТС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СОСТПС<br>СССТС<br>СОСТПС<br>СОСТПС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТПС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОСТС<br>СОС<br>СО |          |                                     |   |
| TAILPIPE                                                                                    | K.E.CORR.<br>FACTOR<br>1.050<br>1.055<br>1.055<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •        |                                     |   |
| A710 = 2                                                                                    | SHAPE<br>FACTOR<br>1.0299<br>1.0393<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                                     |   |
| AREA R                                                                                      | 2THETA<br>WICTH<br>0.03357<br>0.0334<br>0.1248<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TW/      | 000<br>656<br>937                   |   |
| 15DEG。                                                                                      | 20ELTA*<br>WIDTH<br>0.1114<br>0.2205<br>0.2205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ESSo' X, |                                     | • |
| HANGLE                                                                                      | LOCAL<br>RFYNOLDS<br>NUMBFR<br>859895.<br>891720.<br>133570.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ATMOPR   | 759<br>759<br>759                   |   |
| 14 DIV                                                                                      | 50% 2 % K K K K K K K K K K K K K K K K K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEMP.    | 0000<br>888<br>9000<br>1111         |   |
| 0°11<br>S                                                                                   | STATIC<br>PRESS<br>M/M H20<br>11050<br>11050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VL VEL.  | 140<br>140<br>040<br>00<br>00<br>00 |   |
| THICKNES                                                                                    | H<br>FROM<br>0.070<br>0.201<br>0.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BETA C   | 1。019<br>1。019<br>1。074<br>0。000    |   |
| NLET B/L                                                                                    | OSN WIDT<br>M/M<br>1 7662<br>2 8964<br>3 12866<br>4 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POSNO    | <b>ч</b> и м 4                      |   |

| ž          | °<br>→ ↓ ↓                                                                                       |                                                                    |
|------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| °<br>KU    | 国                                                                                                |                                                                    |
| M0000°0 =  | EFFECT<br>IVENESS<br>1.000<br>0.853<br>0.758<br>0.758                                            |                                                                    |
| LENGTH     | Р<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С |                                                                    |
| • TAILPIPE | K.E.CORR.<br>FACTOR<br>1.052<br>1.1239<br>1.405<br>0.000                                         |                                                                    |
| ATIO = 3   | SHAPE<br>FACTOR<br>1.0309<br>1.0720<br>1.0831<br>1.923<br>0.000                                  |                                                                    |
| AREA R     | 27HETA<br>WIDTH<br>0.0826<br>0.1315<br>0.1380<br>0.0000                                          | × × × × × × × × × × × × × × × × × × ×                              |
| = 15DEG. • | 2DELTA*<br>WIDTH<br>0.1082<br>0.2409<br>0.2662<br>0.2662                                         | Ш П П П П П П П П П П П П П П П П П П П                            |
| • ANGLE    | LOCAL<br>REYNOLDS<br>NUMBER<br>380783。<br>461950。<br>536215。<br>625305。                          | *<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* |
| 082 DIV    | ▲                                                                                                | ●<br>↓<br>₩ 00000<br>₩ 00000<br>↓ 00000<br>↓ 00000<br>↓ 00000      |
| S = 0.1(   | N N N N N N N N N N N N N N N N N N N                                                            | 「<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し |
| THICKNES   | 4 DIST<br>10154<br>10100<br>1000<br>000000<br>000000<br>000000<br>0000000                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| LET B/L    | SN WIDT<br>, M/M<br>76°2<br>128°6<br>161°4<br>500°0<br>500°0                                     | の<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               |
| INI        | 0<br>0<br>40040                                                                                  |                                                                    |

المتعادية فتحالمه فتحاله المحالية

DIV. ANGLE = 15DEG., AREA RATIO = 3. TAILPIPE LENGTH = 2.740M , RUN NO. INLET B/L THICKNESS = 0.1095

.

| ົມ             | ប        |          | õ       | ŏ       | ő       | °,<br>O | ဂိ      | °       | °       |   |
|----------------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---|
| ENERGY         | CORR。    | EFFECT . | 0°00°0  | 0.958   | 0。951   | 0°699   | 0°898   | 0°798   | 0°742   |   |
| EFFECT-        | IVENESS  |          | 1,000   | 0.867   | 0。864   | 662°0   | 0.828   | 0.828   | 0°785   |   |
| PRESSo         | RECOV。   | COEFF.   | 000°0   | 0°413   | 0.473   | 0.541   | 0°558   | 0.656   | 0。689   |   |
| K . E . CORR . | FACTOR   |          | 10051   | 1°185   | 1.225   | 1°395   | 1°320   | 10108   | 1 • 015 |   |
| SHAPE          | FACTOR   |          | 1°307   | 1,712   | 1º798   | 2°100   | 1°937   | 1.483   | 1.188   |   |
| 2THETA         |          | WIDTH    | 0.0838  | 0.1253  | 0.1300  | 0°1461  | 0.1485  | 0.1138  | 0.0594  |   |
| 2DELTA*        |          | WIDTH    | 0,1095  | 0.2147  | 0.2337  | 0.3069  | 0.2879  | 0°1763  | 0°0,06  |   |
| LOCAL          | RFYNOLDS | NUMBER   | 394419° | 481317. | 5615840 | 6479830 | 675587. | 539296° | 412520° |   |
| MEAN           | VEL。     | 0 M/S    | 77°4    | 55°9    | 52°0    | 43°9    | 4401    | 35°2    | 26.9    |   |
| STATIC         | PRESS。   | M/M H20  | -253。   | -101。   | -19.    | -540    | -48.    | -12.    | °0      |   |
| DIST           | FROM     | INLET    | -0°070  | 0°201   | 0°327   | 0°554   | 0.757   | 1.519   | 3°278   |   |
| WIDTH          |          | M/M      | 76.2    | 128.5   | 16104   | ?20°6   | 22806   | 228 a 6 | 228.6   | • |
| POSN           |          |          | -1      | 2       | ก       | •••     | ເດ      | .,<br>v | ~       |   |

| LW/X       | -0°913 | 2°637   | 4.291 | 7°270 | 9°934  | 19°934 | 43a018 |
|------------|--------|---------|-------|-------|--------|--------|--------|
| ATM PRESS. | 751.8  | 75108   | 75168 | 751.8 | 75108  | 75108  | 751,08 |
| TEMP.      | 17.0   | 17.0    | 17.0  | 17°0  | 17°0   | 17.0   | 17.0   |
| C/L VEL.   | 87.1   | 71.00   | 67.5  | 63°2  | 61°9   | 4207   | 28.9   |
| BETA       | 1.020  | I • 066 | 570°1 | 1,136 | 1°109  | 10037  | 1,005  |
| POSN。      | e-4 (  | 2       | ŝ     | 4     | ະ<br>ເ | ,<br>Q | ~      |

ł,

÷.

|                                                                                                                  | Z        |             |   |                                         |
|------------------------------------------------------------------------------------------------------------------|----------|-------------|---|-----------------------------------------|
| an a                                                                         | , RUN    |             | • |                                         |
|                                                                                                                  | 2°740M   |             |   | * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |
| and the second | LENGTH = | •<br>•<br>• |   |                                         |
|                                                                                                                  | TAILPIPE | •           |   |                                         |
|                                                                                                                  | ŝ        |             |   | 2                                       |
|                                                                                                                  | ATIO =   |             |   |                                         |
|                                                                                                                  | AREA R   |             |   | 4 HUIHC                                 |
|                                                                                                                  | IODEG.,  |             |   | 201 + × <                               |
| •                                                                                                                | 81       |             |   | L                                       |
|                                                                                                                  | ANGLE    |             |   |                                         |
|                                                                                                                  | DIVo     |             |   | ·<br>N                                  |
|                                                                                                                  | 06       |             |   | < U 11                                  |
|                                                                                                                  | 0.11     |             |   | しゃやく                                    |
|                                                                                                                  | וו<br>גע |             |   | 1-<br>U                                 |
|                                                                                                                  | ICKNES   |             |   | 1010                                    |
|                                                                                                                  | Ŧ        |             | • | 7                                       |
|                                                                                                                  | B/L      |             |   | 6-11                                    |
|                                                                                                                  | INLET    |             |   | NUCC                                    |

| Z          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                                     |   |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------|---|
| ° RUN      | С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                                     |   |
| 2°740M     | IVENECT.<br>IVENECT.<br>1.000<br>0.8893<br>0.8822<br>0.8817<br>0.8872<br>0.8936<br>0.8936<br>0.8936<br>0.8937<br>0.8936<br>0.8937<br>0.8936<br>0.8936<br>0.8937<br>0.8936<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.8937<br>0.89377<br>0.89377<br>0.89377<br>0.893777<br>0.8937777<br>0.893777777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | •<br>•                                              |   |
| LENGTH =   | ЯР<br>СПССS<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О<br>О                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                                     |   |
| a TAILPIPE | K<br>F ACTORR<br>I • 1052<br>I • 1052<br>I • 0052<br>I                                                                                                                                                                                                                                                                  | •       |                                                     |   |
| ATIO = 3   | 54495<br>54495<br>1.0303<br>1.0303<br>2.0267<br>2.2673<br>2.2673<br>1.0333<br>2.1933<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.1953<br>2.19553<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.19552<br>2.1                                                                                             |         |                                                     |   |
| AREA R     | 27HETA<br>WIDTH<br>0.0345<br>0.1255<br>0.1255<br>0.1255<br>0.1657<br>0.1657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IW,     | 0000<br>6837<br>8508<br>8508                        |   |
| 10DEG。     | 20ELTA*<br>WIDTH<br>0.11105<br>0.2427<br>0.3742<br>0.3039<br>0.0533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SS。 X   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~              |   |
| ° ANGLE =  | LOCAL<br>REYNOLDS<br>NUMBER<br>396670<br>4351113<br>4351113<br>5577719<br>5297910<br>424835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ATM.PP. | C C C C C C C C C C C C C C C C C C C               |   |
| 106 DIV    | 、<br>て<br>い<br>ち<br>ち<br>ち<br>ち<br>ち<br>ち<br>ち<br>ち<br>ち<br>ち<br>ち<br>ち<br>ち                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEMP。   | 00000<br>00000<br>000000<br>00000                   |   |
| S = 0.1    | 11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11200<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11202<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>11002<br>10000<br>10000<br>10000<br>10000<br>10000<br>10000<br>100000<br>1000000 | /r ver. | ム F 2 C 2 F 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C |   |
| THICKNES   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3ETA C  | 004000<br>004000<br>004000<br>004000                |   |
| ILET B/L   | 05N WIDTI<br>76.2<br>111.6<br>2228.6<br>228.6<br>228.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | POSNe   | までるからら                                              |   |
| *<br>\$1   | 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |                                                     | • |

| LW/X         | 000°0 | 2.637     | 4°645   | 11,062        | 17°769 | 46.850  |
|--------------|-------|-----------|---------|---------------|--------|---------|
| ATM . PRESS. | 770.5 | G • 0 / / | 770.5   | 770.5         | 770.5  | 770.5   |
| TEMP。        | 16.0  | .16.0     | 16.0    | 16°0          | 16.0   | 16°0    |
| C/L VEL.     |       | / D e 4   | 65°3    | 57 <b>°</b> 9 | 48°4   | 28.7    |
| BETA         | 1.020 | UCD T     | 1 • 078 | 1.176         | 10097  | I • 005 |
| ° NSUd       | (     | ~         | ო       | 4             | ŝ      | 9       |

| °ON                                                                                         | ພບ ວວວວວ                                                                                           | •                                                                                           | •<br>           |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------|
| S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | ПО ШО ПО ПО ПО ПО ПО ПО ПО ОС СС<br>ПО ПО ПО ОС СС<br>ПО ПО ОС |                                                                                             |                 |
| W000 =                                                                                      | н                                                                                                  |                                                                                             |                 |
| HLBNG<br>HLBNG                                                                              | Ф<br>Ф<br>Ф<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С   |                                                                                             |                 |
| , TAILPIPE                                                                                  | K . F . CORR .<br>F A C T OR<br>1 . 051<br>1 . 144<br>1 . 202<br>1 . 426<br>0 . 000                | 2                                                                                           |                 |
| ATIO = 5                                                                                    | SHAPE<br>FACTOR<br>1.306<br>1.503<br>1.702<br>2.117<br>0.000                                       |                                                                                             | · · · · · · · · |
| AREA R                                                                                      | 2THETA<br>WIDTH<br>0.0351<br>0.1251<br>0.1561<br>0.1561                                            | / W 1<br>• 6 6 9 7<br>• 6 6 4 5<br>• 1 2 3                                                  |                 |
| 10DEG。                                                                                      | 2DELTA*<br>WIDTH<br>0.1112<br>0.23359<br>0.3305<br>0.3305                                          | S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |                 |
| PANGL                                                                                       | LOCAL<br>REYNOLDS<br>NUMBER<br>356842.<br>391473.<br>431618.<br>535529.<br>535529.                 | " АТМ • Р<br>768<br>768<br>768<br>768<br>768<br>768                                         | •               |
| 12 DIV                                                                                      | メ<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                 | Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н<br>Н |                 |
| S 0.11                                                                                      | Р 24<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2     | /Г<br>80°2<br>56°3<br>54°4<br>0°0<br>0°0                                                    |                 |
| THICKNES                                                                                    | H<br>FROM<br>INLET<br>0.0701<br>0.354<br>1.000                                                     | BETA<br>1.020<br>1.051<br>1.071<br>1.145<br>0.000                                           |                 |
| LET B/L                                                                                     | SN WIDT<br>M/4<br>1114.6<br>138.0<br>229.00<br>500.0                                               | ос<br>ослали<br>ослали<br>ослали                                                            |                 |
| Z<br>H                                                                                      | с.<br>О чимчи                                                                                      |                                                                                             |                 |

| IM/X        | 0°000<br>2°637<br>4°645<br>11°062                                                                                                                                                                                                                    | 1 1 0 1 1 |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| "ATM。PRESS。 | 768 <b>°</b> 0<br>768 <b>°</b> 0<br>768 <b>°</b> 0<br>768 <b>°</b> 0                                                                                                                                                                                 |           |
| TEMP        | 00000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>30000<br>300000<br>300000<br>300000<br>3000000 | 1         |
| C/L VEL.    | 8000<br>800<br>900<br>900<br>900<br>900<br>900<br>900<br>900<br>900                                                                                                                                                                                  | )<br>)    |
| BETA        | 1.020<br>1.051<br>1.071<br>1.45                                                                                                                                                                                                                      |           |
| SNe         | 12345                                                                                                                                                                                                                                                | 1         |

|  | İ |
|--|---|
|  |   |

| • | , RUN NC   | ENERGY<br>CORR.<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |                                                  |   |
|---|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------|---|
|   | M0000 =    | EFFECT<br>IVENESS<br>1.000<br>0.892<br>0.882<br>0.633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | •                                                |   |
|   | LENGTH     | Р<br>К<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | . t <sup></sup> .                                |   |
|   | • TAILPIPE | K.F.CORR.<br>FACTOR<br>1.053<br>1.152<br>1.226<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                   |                                                  |   |
|   | ATIO = 2   | SHAPE<br>FACTOR<br>1.311<br>1.622<br>1.755<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                                                  |   |
|   | AREA R     | 2THFTA<br>MIDTH<br>0.03556<br>0.12557<br>0.13955<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IW/                 | 。918<br>。6550<br>。5455<br>。551                   |   |
|   | 100FG.     | 20FLTA*<br>WIDTH<br>0.1172<br>0.2449<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ESS <b>o</b> X      | 00000                                            |   |
|   | • ANGLF    | LOCAL<br>RFYNOLDS<br>NUMBFR<br>371615.<br>406150.<br>441876.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ATM ° P3            | 768<br>768<br>768<br>768                         |   |
|   | 122 DIV    | ▲王<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本<br>本                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEM D               | 22100<br>00010<br>00010<br>00010                 |   |
|   | S = 0.1    | STATIC<br>PRESS<br>M/M H20<br>1179<br>1130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /L VEL.             | 82°6<br>68°2<br>63°5<br>0°0                      |   |
|   | THICKNES   | H<br>DIST<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNCM<br>INNC<br>INNC<br>INNC<br>INNCM<br>INNCM<br>INNCM<br>INNC<br>INNCM<br>INNCM<br>INNCM<br>INNC | RETA C              | 1 • 0 2 0<br>1 • 0 5 4<br>1 • 0 7 9<br>2 • 0 0 0 | i |
|   | INLFT B/L  | 00SN WIDTI<br>1 75.2<br>2 111.6<br>3 138.0<br>4 200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POSN <sup>a</sup> F | m N M 4                                          |   |
|   | H          | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                                                  |   |

| 0<br>0     |        | N C C C C C C C C C C C C C C C C C C C | 0°00<br>0°34<br>0°4                                                                         | 0000<br>0000<br>00000<br>00000          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|--------|-----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| , RUN NG   | •      | ENERGY<br>CORRO<br>EFFECT.              | 0°000<br>0°930<br>0°937                                                                     | 0 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| = 2,740M   |        | EFFECT.<br>IVENESS                      | 1。000<br>0。882<br>0。857                                                                     | 0°935<br>0°935<br>0°928                 | ÷.,       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| LENGTH =   |        | PRESS。<br>RECOV。<br>COEFF               | 0°000<br>0°398<br>0°518                                                                     | 0°760<br>0°690<br>0°640<br>0°640        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| , TAILPIPE |        | K.E.CORR.<br>FACTOR                     | 1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>1000<br>100                                 | 1,0099<br>1,0045<br>1,0045              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ATIQ = 2   |        | SHAPE<br>FACTOR                         | 1 • 00.4                                                                                    | L。692<br>L。431<br>L。271<br>L。221        | ·         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AREA R     |        | 2THETA                                  | 0 • 1 2 3 3<br>0 • 1 2 5 3<br>0 • 1 4 2 6                                                   | 0.1462<br>0.1313<br>0.0883<br>0.0534    | IW/       | 。。。。。。<br>のでののでの<br>のでからなっての<br>からかった。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10066.,    |        | ZDELTA*                                 | 0.2035<br>0.2035                                                                            | 0,2768<br>0,1879<br>0,1123<br>0,0652    | ESS.<br>X | 0100000<br>1000<br>1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /. ANGLE = |        | LOCAL<br>REYNOLDS<br>NUMBER             | 411761.<br>433914.                                                                          | 450298<br>433718<br>422829<br>417517    | ATM.PR    | 797<br>797<br>797<br>797<br>797<br>797<br>797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 089 DIV    | •<br>• | MEAN<br>VEL.                            | 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     | 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | TEMP      | ហហហហហហ<br>១១០០០០<br>៣៣៣៣៣៣៣<br>៧៣៣៣៣៣៣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SS = 0°]   |        | STATIC<br>PRESSo<br>T M/M H2            | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1<br>V O M H<br>V                       | C/L VEL.  | 8000044<br>0000040<br>0000040<br>000000<br>000000<br>000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| THICKNE    |        | H DIST<br>FROM                          | -0°070<br>0°272<br>0°254                                                                    | 0°450<br>1°375<br>2°034<br>2°034        | BETA      | 111111<br>0000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>00000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>000 |
| INLET B/L  |        | M/W NSOd                                | 2 111-6<br>3 1138-0                                                                         |                                         | POSN。     | こうちゅうらて.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| •       |        |        |         |               | •        |         | •       |        |                | •         |         |         |
|---------|--------|--------|---------|---------------|----------|---------|---------|--------|----------------|-----------|---------|---------|
| POSN    | WIDTH  | DIST   | STATIC  | MEAN          | LOCAL    | 205LTA* | 2 THETA | SHAPE  | K & E & CORR & | PRESS     | EFFECT  | ENERGY  |
|         |        | FROM   | PRESS.  | VFL。          | REYNOLDS |         |         | FACTOR | FACTOR         | RECOV。    | IVENESS | COPR。   |
|         | W/W    | INLET  | M/M H20 | N/S           | NUMBER   | WIDTH   | HLGIM   |        |                | COEFF.    |         | EFFECT. |
| •<br>•1 | 7602 . | -0,070 | -207°   | 7, 17         | 3711620  | 0°1089  | 0°0830  | 1.310  | 1.052          | 00000     | 1.000   | 000000  |
| ~       | 0.40   | 0°203  | -121.   | 60°3          | 385231°  | 0.1505  | 0.1057  | 1.422  | 1 ° 084        | 0°260     | 0°924   | 0.048   |
| ы<br>С  | 20°4   | 0.508  | -51。    | 4 R . 3       | 395212°  | 0.2082  | 0.1318  | 1.579  | 1.158          | 0 a 4 8 G | 0.896   | 0°929   |
| 4 1,    | 1°2¢   | 0.812  | -13.    | 40°8          | 407476°  | 0°2568  | 101100  | 1.721  | 1.219          | 0.608     | 0.899   | 0°925   |
| ا       | 5204   | 1,203  | •       | 3°°0          | 404278°  | 0°2308  | 0°1477  | 1.562  | 1°153          | 0°645     | 0°917   | 0°208   |
| 5       | 52°4 · | 2°118  | ູນ<br>ເ | 38°2          | 395640.  | 0.1211  | 0*00°0  | 1.288  | 1.050          | 0.664     | 0°928   | 0.881   |
|         | 5204   | 3.317  | е<br>гч | 38 <b>°</b> 3 | 397373 . | 0°0688  | 0°0566  | 1,216  | 1.028          | 0.653     | 0.916   | 0°862   |
|         |        | •      |         |               |          |         |         |        | •              |           |         |         |
| •       |        | •      |         |               |          |         | •       |        |                |           |         | •       |
| POS     | 4°     | TA C/  | 'L VEL。 | TEND          | ATM.PD   | x ssa   | LW/     |        |                |           |         |         |

INLET R/L THICKNESS = 0.1089 DIV. ANGLE = 5DFG. AREA RATIO = 2. TAILPIPE LENGTH = 2.740M PRUN N

10.00

ñ

| LM/X         | -0.918  | 2.664 | 6.666  | 10.656  | 15°787          | 27°795    | 43°530        |
|--------------|---------|-------|--------|---------|-----------------|-----------|---------------|
| ATM . PPESS. | 756°7   | 756.7 | .756.7 | 756.7   | 756.7           | 756°7     | 756.7         |
| TEND.        | 15.5    | 15.5  | 15.5   | 15.5    | ] ກ <b>ູ</b> ເງ | 15°5      | 15 <b>.</b> 5 |
| C/L VEL.     | . BD. 7 | 71.0  | 61.2   | 54.09   | 50°9            | 43°6      | 41.3          |
| BETA         | 1°020   | 1.030 | 1.056  | 1 • 075 | 1。053           | 1 ° 0 1 R | 1.011         |
| osn.         | e-1     | ~     | m      | 4       | n.              | Ŷ         | 2             |

 RUN NO. LENGTH = 0.000M 5DEG., AREA RATIO = 2, TAILPIPE DIV. ANGLE = . INLET B/L THICKNESS = 0.1090

| 20 00000<br>UU 00000                                                                                        |                                                                                             |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| ENERG<br>CORR<br>CORR<br>CORR<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO<br>CO |                                                                                             |
| 用<br>「<br>「<br>「<br>「<br>「<br>「<br>「<br>「<br>「<br>「<br>「<br>「<br>「                                          |                                                                                             |
| R R<br>CCCS<br>CCCS<br>CCCS<br>CCCS<br>CCCS<br>CCCS<br>CCCS<br>C                                            |                                                                                             |
| К е Е е СОRR е<br>F A С Т ОR<br>1 е 05 3<br>1 е 05 3<br>1 е 16 1<br>1 е 2 1 3<br>0 е 0 0 0                  |                                                                                             |
| БНАРЕ<br>РАСТОR<br>1. 313<br>1. 5313<br>0. 000<br>0. 000<br>0. 000                                          |                                                                                             |
| 27 HETA<br>WIDTH<br>0.0830<br>0.1052<br>0.1431<br>0.01431                                                   | <ul> <li>₩1</li> <li>664</li> <li>656</li> <li>123</li> </ul>                               |
| 2DELTA*<br>WIDTH<br>0.1090<br>0.2103<br>0.2103<br>0.2450<br>0.0000                                          | N N N N N N N N N N N N N N N N N N N                                                       |
| LOCAL<br>RFYNOLDS<br>NUMBER<br>376426<br>390666<br>401576<br>401576<br>401576                               | ATM。PR<br>758<br>758<br>758<br>758<br>758                                                   |
| 本<br>2000年<br>2000年<br>2000<br>2000<br>2000<br>2000<br>2000<br>2                                            | Н<br>199.00<br>199.00<br>199.00<br>199.00<br>199.00                                         |
| STATIC<br>PRESS<br>M/M H20<br>1212<br>1390<br>150<br>0                                                      | л<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                      |
| DIST<br>FROM<br>0.070<br>0.503<br>1.000<br>1.000                                                            | ЕТА<br>• 020<br>• 030<br>• 073<br>• 000                                                     |
| N WIDTF<br>76.2<br>94.00<br>1200.4<br>200.00                                                                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |
| о томфо<br>С                                                                                                | ă                                                                                           |

1

311 RUN NO. LENGTH = 0.000MTAILPIPE **"** Ħ AREA RATIO SDEG. DIV. ANGLE = THICKNESS = 0.1095LFT R/L

| ENERGY<br>Corr.     | 0,000                                                                                            | 0°469   | 0.581   | 0.678   | 0.711   | 0.717    |      |
|---------------------|--------------------------------------------------------------------------------------------------|---------|---------|---------|---------|----------|------|
| ENERGY<br>CORR.     | 0.000<br>0.000                                                                                   | 0.959   | 0°946   | 0,911   | C.898   | 000000   |      |
| EFFECT-<br>IVENESS  | 1.000                                                                                            | 0°921   | 0°923   | 0.912   | 0.911   | 0.0784   |      |
| PRESS.<br>RECOV.    | 0,000                                                                                            | 0°494   | 0.612   | 0°714   | 0.748   | 0.756    | . •. |
| K.E.CORR.<br>FACTOR | 1。053                                                                                            | 1,159   | 1°203   | 1.240 . | · 1。232 | 0°000    | •    |
| SHAPE<br>FACTOR     | 1001<br>010                                                                                      | 1。584   | 1.690   | 1.753   | 1.745   | 000°0    |      |
| 2THETA              | WIDTH<br>0.0834                                                                                  | 0.1308  | 0.1468  | 0.1562  | 0.1536  | 0.0000   |      |
| 2DELTA*             | W101H<br>0.1095                                                                                  | 0°2073  | 0°2482  | 0°2740  | 0°2582  | 00000°0  |      |
| LOCAL<br>REYNOLDS   | 382761 •                                                                                         | 411917。 | 4294170 | 468173. | 481093。 | 00       |      |
| MEAN<br>Vel.        | 75°4                                                                                             | 5103    | 4307    | 35°1    | 31°8    | 0°0      | •    |
| STATIC<br>PRESS.    | M/M H2(                                                                                          | -91.    | -50°    | -14。    | • 2 •   | : °<br>0 |      |
| DIST<br>FROM        | -0-070                                                                                           | 0°508   | 0.812   | 1。396   | 1°700   | 2°000    | •    |
| HTOTW N             | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 120.4   | 14700   | 2002    | 276°8   | 400°0    |      |

| X/W1          | -0°918<br>6°656  | 10.656         | 22°30° | 26°246 |
|---------------|------------------|----------------|--------|--------|
| ATM . PPESS . | 758°0<br>758°0   | 758°0<br>758°0 | 758.0  | 758°0  |
| TEMP.         | 0000             | 0.00           | 19.0   | 1°°U   |
| C/L VEL.      | 34°9'.<br>65°0'. | 58°2           | 43.4   | 0°0    |
| RETA          | 1°020<br>1°056   | 10000          | 1°078  | νυυ° υ |
| POSNo         |                  | n 4            | ເມີ    | ŝ      |

| ENERGY         | CORR。    | d<br>U  | 0°000°0 | 0°088         | 0。567    | 0.679       | 0.718   | 0°736         | 0°750          | 0°748   |     |  |
|----------------|----------|---------|---------|---------------|----------|-------------|---------|---------------|----------------|---------|-----|--|
| ENERGY         | CORR.    | EFFECTO | 0°000   | 1。083         | 0°932    | 0.913       | 0°910   | 0 893         | 0。867          | 0。855   |     |  |
| EFFECT-        | IVENESS  |         | 1。000   | 1。206         | 0,911    | 0.914       | 0°926   | 0.928         | 0.918          | 0°906   |     |  |
| PRESS。         | RECOV。   | COEFFo  | 000°0   | . 0°092       | 0°598    | 0.715       | 0°756   | 0.775         | 062°0          | 0°789   |     |  |
| K . E . CORR . | FACTOR   |         | 1。053   | <b>1。</b> 048 | 1,199    | 1°241       | 1.213   | 1.153         | 1.017          | loci    |     |  |
| SHAPE          | FACTOR   |         | 10313   | 1。353         | 1.677    | 10751       | 1.667   | <b>1。5</b> 84 | 1 <b>.</b> 196 | 1°177   | •   |  |
| ZTHETA         | 22228    | WIDTH   | 0.0343  | 0°0889        | 0°1460   | 0.1553      | 0.1504  | 0.1455        | 0.0551         | 0.0442  |     |  |
| 2DFLTA*        |          | HIDIM   | 0.1108  | 0.1203        | 0.2450   | 0 • 2 7 2 1 | 0.2508  | 0°2306        | 627C.0         | 0.0520  |     |  |
| LOCAL          | REYNOLDS | NUMBER  | 399019° | 405491.       | 451444 • | 480298°     | 512776. | 4 R G O 3 3 0 | 447601。        | 432477。 | . 4 |  |
| MEAN           | VEL。     | 0 M/S   | 76°9    | 73°8          | 45.01    | 35°8        | 32°9    | 3]。2          | 2.8.7          | 27.07   |     |  |
| STATIC         | PRESS。   | M/M H20 | -288。   | -254 .        | -69-     | -26.        | -11.    | - 4 -         | -<br>-         | •0      |     |  |
| DIST           | FROM     | INLFT   | 0.070   | 0.051         | 0°812    | 1.396       | 1°700   | 2°078         | 3.297          | 4.192   |     |  |
| WIDTH          |          | W/W.    | 76.2 -1 | 80°6          | 147.0    | 20002       | 220.6   | 228°6         | 222°6          | 22806   | •   |  |
| <b>NSU</b>     |          |         |         |               | 653      |             |         | 0             | +              |         |     |  |

312

. RUN NO.

----

· · · · · · · · · · ·

and the second 
5DEG. 9

DIV. ANGLE =

NLFT B/L THICKNESS = 0.1108 

AREA RATIO = 3. TAILPIPE LENGTH = 2.740M

| LW/X        | -0.918<br>0.660     | 10.656             | 18°320 | 22°309 | 27°270 | 43°267 | 55°013 |  |
|-------------|---------------------|--------------------|--------|--------|--------|--------|--------|--|
| ATM "PRESS" | 751°5<br>751°5      | 751.5              | 751.5  | 751.5  | 751.5  | 751.5  | 751.5  |  |
| TEMP        | 14°0                |                    | 14.0   | 14°0   | 14.0   | 14.0   | 14.0   |  |
| C/L VEL.    | 86 <b>°</b> 7<br>84 | 0 10<br>0 0<br>0 0 | 49.3   | 44.3   | 40°4   | 31.01  | 29°2   |  |
| BETA        | 1.020               | 1.068              | 1.031  | 1.074  | 1.052  | 1,006  | 1.003  |  |
| ° NSC c     | ~ (                 | 1 m                | . 4    | س      | ç      | 7      | œ      |  |

| INLET BAL THICKNESS = 0.1044 DIV. ANGLE = 50FG AREA RATIO = 3. TAILPIPE LENGTH = 0.000M<br>BOSN WIDTH DIST STATIC MFAN LOCAL 20ELTA* 2THETA SHAPE K.E.CORR. PRESS. FFECT<br>ROW PRESS. VEL. REWNINS                                                                                                                                                                                                                                                      | °<br>Č        | E A L O<br>N C L O<br>N C L O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| INLET BAL THICKNESS = 0.1084 DIV. ANGLE = 50FG., AREA RATIO = 3. TAILPIPE LENGTH<br>DOSN WIDTH DIST STATIC MEAN LOCAL ZDELTAR ZIHETA SHAPE K.E.CORR. PRESS.<br>MATH PIST STATIC MEAN LOCAL ZDELTAR ZIHETA SHAPE K.E.CORR. RECOV.<br>MATH INLET MAM PRESS. VEL. REYNOLDS FACTOR FACTOR RECOV.<br>1 152.4 -0.070264. 75.5 T66488. 0.1084 0.0884 0.08826 1.0312 1.052 0.0000<br>POSN. BETA CAL VEL. TEMP. ATM.PRESS. X/WI<br>1 1.020 84.9 19.0 759.0 -0.459 | 0°000W        | I VERSS<br>1 • 000<br>1 • 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •     |
| INLET R/L THICKNESS = 0.1084 DIV. ANGLE = 50EG AREA RATIO = 3. TAILPIPE<br>DOSN WIDTH DIST STATIC WEAN LOCAL 20ELTA. 2THETA SHAPE K.e.CORR.<br>FROM PRESS. VEL. REYNOLDS - 1.0100 0.0026 1.012 1.052<br>I 152.4 -0.070 -24.4.75.5 764488. 0.1084 0.0826 1.012 1.052<br>POSN. BETA C/L VEL. TEMP. ATM.PRESS. X/WI<br>I 1.020 84.9 19.0 759.0 -0.459                                                                                                       | LENGTH        | а х<br>х т т О О<br>х С П О<br>х С |       |
| INLFT B./L THICKNESS = 0.1084 DIV. ANGLE = 5DFG., AREA RATIO = 3<br>POSN WIDTH DIST STATIC MFAN LOCAL 2DELTA* 2THETA SHAPE<br>FROM PRESS VEL MENNLDS WIDTH WIDTH<br>INLET PRESS VEL 0.0326 1.0312<br>POSN. RETA C/L VEL. TEMP. ATM.PRESS. X/WI<br>1 1.020 84.9 19.0 759.0 -0.459                                                                                                                                                                         | • TAILPIPE    | K<br>F<br>F<br>F<br>F<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| INLFT R/L THICKNESS = 0.1084 DIV. ANGLE = 5DFG., AREA R.<br>DOSN WIDTH DIST STATIC MEAN LOCAL 2DFLTA* 2THETA<br>FROM PRESS. VFL. REYNOLDS WIDTH WIDTH<br>I 157.4 -0.070 -264. 75.5 766488. 0.1084 0.0026<br>POSN. BETA C/L VFL. TEMP. ATM.PRESS. X/WI<br>1 1.020 84.9 19.0 758.0 -0.459                                                                                                                                                                  | ATIO = 3      | FACTOP<br>1 0 312<br>1 0 312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -     |
| INLET B./L THICKNESS = 0.1084 DIV. ANGLE = 5DFG<br>POSN WIDTH DIST STATIC MEAN LOCAL 2DELTA*<br>FROM PRESS. VEL. REYNOLDS - 0.1084<br>I 152.4 -0.0070 -264. 75.5 765488. 0.1084<br>POSN. BETA C./L VEL. TEMP. ATM.PRESS. X.<br>I 1.0020 84.9 19.0 758.0 -0.                                                                                                                                                                                              | AREA R        | 21HETA<br>WIDTH<br>WIDTH<br>459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •     |
| INLET B./L THICKNESS = 0.1084 DIV. ANGLE<br>POSN WIDTH DIST STATIC MFAN LOCAL<br>FROM PRESS. VFL. RFWNCDS<br>NUMBER<br>1 152.4 -0.070 -254. 75.5 766483.<br>POSN. RETA C/L VEL. TEMP. ATW PP<br>1 1.020 84.9 19.0 755                                                                                                                                                                                                                                    | 50FG。<br>•    | 20<br>8<br>10<br>11<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · |
| INLET B./L THICKNESS = 0.1084 DIV<br>POSN WIDTH DIST STATIC MEAN<br>M.M INLET M.M H20 M/S<br>1 152.4 -0.070 -264. 75.5<br>DOSN. BETA C./L VEL. TEMP.<br>1 1.020 84.9 19.0                                                                                                                                                                                                                                                                                | , ANGLE       | LOCAL<br>NUMRER<br>7664888<br>ATM ° PF<br>75.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| INLFT B/L THICKNESS = 0.10<br>POSN WIDTH DIST STATIC<br>RM/M TNLET M/M H20<br>I 152.4 -0.070 -264.<br>I 152.4 -0.070 -264.<br>I 1.020 84.9                                                                                                                                                                                                                                                                                                               | 184 DIV       | А К К К К К К К К К К К К К К К К К К К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| INLFT B/L THI<br>POSN WIDTH<br>I 152.44 -0<br>I 1.52.44 -0<br>I 1.00                                                                                                                                                                                                                                                                                                                                                                                     | CKNESS = 0.10 | DIST STATIC<br>FROM PRESS.<br>INLET M/M H2C<br>070 -264.<br>20 84.9<br>20 84.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B/L THI       | ж к<br>м м м<br>м м м<br>м м м<br>м м<br>м м<br>м м<br>м м<br>м м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INLFT         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |

| •    |        |        |         | •    |          |           |          |         |           |        |         | •       |             |
|------|--------|--------|---------|------|----------|-----------|----------|---------|-----------|--------|---------|---------|-------------|
| POSN | WIDTH  | DIST   | STATIC  | MEAN | LOCAL    | 2DELTA*   | 2THETA   | SHAPE   | K.E.CORR. | PRESS。 | EFFECT- | ENERGY  | ENE         |
|      |        | FROM   | PRESSo  | VELS | REYNOLDS |           |          | FACTOR  | FACTOR    | RECOVS | IVENESS | CORR .  | ц<br>О<br>О |
|      | W/W    | INLET  | M/M H20 | N/S  | NUMBER   | HLDIM     | HIDIM    |         | • .       | COEFF. | •       | EFFECTO | J           |
| ٩    | 76.2   | 36°500 | •154°   | 76.9 | 390361°  | 0°0132    | 0°0063   | 2°078   | 1,020     | 000000 | 1,000   | 0°00°0  | ບົວ         |
| N    | 76.2   | 35.000 | -1640   | 0°0  | °. ()    | 0,0000    | 0°0000°0 | 000000  | 0 0 0 0 0 | 000°0  | 1,000 L | 0°000°0 | 0°0         |
| ო    | 76.2   | 31,000 | -198,   | 0.0  | °0       | 0000000   | 0°000°0  | 000°0   | 000000    | 00000  | 1.000   | 0°000   | 0°0         |
| 4    | 76.2   | 27°000 | -222 .  | 0°0  | . • C    | 00000 ° 0 | 0000000  | 0°000   | 000000    | 00000  | 1,000   | 0°000   | 0°0         |
| IJ   | 76.2   | 23°000 | -226.   | 0°0  | °C       | 0°0000    | 0000000  | 0°000   | 000000    | 00000  | 1.000   | 000000  | 0°0         |
| 9    | 76.02  | 19,000 | -250。   | 0°0  | ° 0      | 0°0000    | 0.000.0  | 000000  | · 000° 0  | 000000 | 1.000   | 0°000   | 0°0         |
| 1    | 76.2   | 15.000 | -249。   | 0°0  | °<br>0   | 0.000.0   | 0000000  | 000 ° 0 | 00000     | 000000 | 1,000   | 0°000   | 0°0         |
| ß    | 76.2   | 7°000  | -269。   | 0°0  | °0 °     | 0.0000    | 0000000  | 0°000   | 00000     | 000000 | 1.000   | 0°000   | 0°0         |
| ¢    | 76°2   | 3°000  | -275.   | 0°0  | 0        | 000000    | 0000000  | 0,000   | 0°000     | 00000  | 1.000   | 0°000   | 0°0         |
| 10   | 76.2   | 1。000  | -280.   | 0°0  | • 0      | 000000    | 000000   | 00000   | 000 000   | 0°000  | 1°000   | 000°0   | 0°0         |
| •    |        |        |         |      |          |           |          |         |           |        | •<br>•  |         |             |
| PO   | SNe BI | ETA C. | VL VEL. | TEMP | ATM.PR   | ESS。 X    | IW/      |         |           |        |         | •       |             |
| •    |        | 600°   | 78.1    | 18.0 | 753      | •4 / 36   | 500 56.  | 10 (    | •         | •      |         |         |             |

27.0 12.0 0.10 23.0 0 о С о А С \*\*\*\*\*\* \*\*\*\*\* \*\*\*\*\* \*\*\*\* \*\*\*\*\* \*\*\*\*\*\* 39°370 91°863 \$ 1 1 0°0 

0 0

13,123

J ١

RUN NO° 2°740M 11 3, TAILPIPE LENGTH n AREA RATIO 10066., ti DIV. ANGLE 00000°0 INLET B/L THICKNESS =

-----



.









RUN ND. 105



1 11/9

en tra tra





· · · realizant · art



\\_\_\_\_\_. \ร≿มา now knowled the



yəşul



•

and a state of the 
₹3.**2**% ₩





RUN NO. 201

















-




RUN NU.



· · · ·



RUN ND.











R3

An

 $\bigcirc$ 

 $\bigcirc$ 











VELOCITY (METRES/SEC)

<u></u>

Ć

 $\bigcirc$ 

< <sup>1</sup> ;

 $\bigcirc$ 

. ()



, 'Ì

1.12

()











| at a            | ta gereket i t                                   | 1944 - <u>1</u>                                    | in<br>Constanting and the main                                                                                                                                                                                                    | n se kipi su | e i seleter de la composition de la comp | a<br>Africa - Africa y | the table of the                 |                 |                                           | tang sita |
|-----------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------|-----------------|-------------------------------------------|-----------|
| 1               | et sector                                        |                                                    | te en station de la seconda de la second<br>La seconda de la seconda de |              | in Serge aner                                                                                                    |                        |                                  | alete gebiere e | lan an a |           |
| ine lag<br>Etyp |                                                  | and and<br>San San San San San San San San San San | na an a                                                                                                                                                                                          |              |                                                                                                                  |                        | an an Arrain<br>Arrain<br>Arrain |                 | an a  |           |
|                 | arta<br>Alexandre († 1949)<br>Alexandre († 1949) |                                                    |                                                                                                                                                                                                                                   |              |                                                                                                                  |                        |                                  |                 |                                           |           |
|                 |                                                  |                                                    |                                                                                                                                                                                                                                   |              |                                                                                                                  |                        |                                  |                 |                                           |           |

| e C          | n an an<br>Taonach<br>Taonachtan Stateach |  | · - 4. |  |
|--------------|-------------------------------------------|--|--------|--|
|              |                                           |  |        |  |
| 6 4 5<br>6 4 | at in                                     |  |        |  |

|       | • |  |  |
|-------|---|--|--|
| <br>8 |   |  |  |
|       |   |  |  |
|       |   |  |  |
| 1     |   |  |  |





••• ••











() () () «1.3 BCb/302/1004 403



on contractors on



2)93Uj



yəyni

(

005 +001/5





004 4001/S0E/JON 400








.







001/502/dD3 22/9

Jezni



1. A.











•

















/0 5 ·1



 $\bigcirc$ 





(\*)

l



 $\bigcirc$ 









### APPENDIA 1.

7.1

## ANALYSIS OF LIVELY ERFORS IN THE EXPERIMENTAL RESULTS.

The analysis used in this work is the method of KLINE and McLINTOCH <sup>23</sup> on the "Uncertainties of single sample experiments". This analysis attempts to estimate the probability of the result to be between certain limits.

7.1.1 The Uncertainty of the Velocity Values Obtained from the Pitot Probe.

$$V = \sqrt{\frac{\Delta P \times R \times T}{Pa}} \quad -----(7.1)$$

where  $\Delta p$  is the dynamic pressure from the pitot and Pa is the atmospheric pressure.

The pitot was found to be relatively insensitive to small angles of yaw < 5° and therefore any error from a slight yaw has been ignored in this analysis.

The major area of error in the  $\Delta p$  value occurs in the readings taken near the wall, for a thin boundary layer  $d\Delta p/dy$  is very large and therefore the uncertainty in  $\Delta p$  (wdp) is large. A variation in y of as little as 0.5 mm could yield a variation of the order of 50mm of water. The probable uncertainty for the wall readings is in the region of  $\pm 3$  mm of water (for a 50;1 certainty, estimated from tests on pitot positioning). Therefore the maximum uncertainty in velocity occurs near the wall (since all the other parameters remain constant across the section). Thus it can be estimated that the readings of dynamic pressure of the streamline 0.5mm out from the wall are generally of the order of 100  $\pm 3$ mm water.

Therefore if it is assumed that the probability of these readings being within ± 3mm of water is of a similar order to the certainty than the "certainty" of the velocity (w vel) is :-

$$w \text{ vel } = \left[ \left( \frac{\partial v}{\partial \Delta p} W \Delta p \right)^2 + \left( \frac{\partial v}{\partial T} W_T \right)^2 + \left( \frac{\partial v}{\partial P_a} W P_a \right)^2 \right]^{\frac{1}{2}}$$
which gives:-

$$w \text{ vel} = \left[\frac{\frac{2}{4}}{(\Delta p) pa} \left(w \Delta p\right)^{2} + \frac{\frac{2}{4} \cdot 2(\Delta p) R T(w pa)^{2}}{Pa Ta} + \frac{1}{4} \cdot 2(\Delta p) R(w T)^{2}\right] ----(7.2)$$

Dividing by velocity to non-dimensionalise eg. (7.2) becomes :-

$$\frac{\mathbf{v} \cdot \mathbf{v} \mathbf{el}}{\mathbf{v} \mathbf{el}} = \left[ \left( \frac{1}{2} \left( \frac{\mathbf{v} \Delta \mathbf{p}}{\Delta \mathbf{p}} \right)^2 + \left( \frac{1}{2} \left( \frac{\mathbf{w} \mathbf{p} \mathbf{a}}{\mathbf{p} \mathbf{a}} \right)^2 + \left( \frac{1}{2} \left( \frac{\mathbf{w} \mathbf{t}}{\mathbf{T} \mathbf{a}} \right)^2 \right)^2 \right]^{\frac{1}{2}} - \dots (7.3)$$
For values of  $\mathbf{p} = 100 \frac{4}{5} 3$   
 $\mathbf{F} = 300 \frac{4}{5} 0.5$   
 $\mathbf{p} \mathbf{a} = 760 \frac{4}{5} 0.1$   
 $\frac{\mathbf{w} \cdot \mathbf{v} \mathbf{el}}{\mathbf{v} \mathbf{el}} = \left[ \left( \frac{1\times 3}{2\times 100} \right)^2 + \left( \frac{1}{2} \frac{0.1}{760} \right)^2 + \left( \frac{1}{2} \frac{0.5}{300} \right)^2 \right]^{\frac{1}{2}}$   
 $= \frac{\mathbf{w} \mathbf{v} \mathbf{el}}{\mathbf{v} \mathbf{el}} = 1.5\%$ 

This value of uncertainty reduces at the centreline to  $\frac{w \text{ vel}}{\text{ vel}} = 0.2\%$  due to vel

the much higher certainty of the  $\Delta$  p value. Therefore the uncertainty of the mean velocity

$$\frac{\pi \bar{u}}{\bar{u}} = \frac{1}{n} \sum_{1}^{h} (u_a - u)^2 = 0.5\%$$

7.1.2 The Uncertainty in the Cp Value.

By a similar method the uncertainty of the Cp value be determined.

$$Cp = \Delta p / \frac{1}{2} \rho \bar{u}_1^2 = \frac{\Delta p RT}{\frac{1}{2} p_a \bar{u}_1^2}$$

therefore:-

$$wCp = \left[ \left( \frac{\partial Cp \cdot w\Delta p}{\partial p} \right)^2 + \left\{ \frac{\partial Cp \cdot w_{\overline{p}}}{\partial T} \right\}^2 + \left\{ \frac{\partial Cp \cdot w_{\overline{p}}}{\partial p_a} \right\}^2 + \left\{ \frac{\partial Cp}{\partial \overline{u}_1} \cdot w_{\overline{u}_1} \right\}^2 \right]^{\frac{1}{2}}$$

which gives

$$wCp = \left[ \left\{ \frac{RT}{\frac{1}{2}p_{a}^{2} \cdot \overline{u}_{1}^{2}} \cdot w\Delta p \right\}^{2} + \left\{ \frac{\Delta pR \cdot wT}{\frac{1}{2}p_{a}^{2} \overline{u}_{1}^{2}} \right\} + \left\{ \frac{-\Delta pRT \cdot wp}{\frac{1}{2}p_{a}^{2} \overline{u}_{1}^{2}} \right\} + \left\{ \frac{-2\Delta pRT \cdot w\overline{u}_{1}}{\frac{1}{2}p_{a}^{2} \overline{u}_{1}^{2}} \right\} \right]^{\frac{1}{2}}$$

dividing by Cp to non-dimensionalise

$$\frac{\text{wCp}}{\text{Cp}} = \left[ \left\{ \frac{\text{w} \Delta p}{\Delta p} \right\}^2 + \left\{ \frac{\text{wp}}{\text{T}} \right\}^2 + \left\{ \frac{\text{wp}}{\text{p}_a} \right\}^2 + \left\{ \frac{2 \cdot \text{wu}}{\text{u}_1} \right\}^2 \right]^{\frac{1}{2}}$$

Taking typical values:-

$$\overline{u}_{i} = 70 \pm 0.35, \Delta p = 200 \pm 0.5, \quad \text{Ta} = 300 \pm 0.5 \quad pa = 760 \pm 0.1$$
  
we obtain an uncertainty for Cp of  
$$\frac{\text{wCp}}{\text{Cp}} = \left[ \left\{ \frac{0.5}{200} \right\}^{2} + \left\{ \frac{0.5}{300} \right\}^{2} + \left\{ \frac{0.1}{760} \right\}^{2} + \left\{ \frac{2 \times 0.35}{70} \right\}^{2} \right]^{\frac{1}{2}}$$

# $= 1.04\% \simeq 1.0\%$

The main error in this is the value of  $\pi \bar{u}_1$  which if halved would reduce the error to the region of 0.5%.

The likely maximum errors in the experimental results can be summarised as follows:-

 $u = {}^{\pm} 0.2 \text{ to } 1.5\% \text{ depending on the y value.}$   $\bar{u}_{1} = {}^{\pm} 0.5\%$   $\bar{u}_{2} = {}^{\pm} 0.2\%$   $Cp = {}^{\pm} 1.0\%$   $\chi = {}^{\pm} 1.5\%$   $\delta^{*} = {}^{\pm} 0.5\%$  $\theta = {}^{\pm} 0.25\%.$ 

It must however be noted that these values are for normal cases, however at the limit of flow stability these values of error will be greatly increased. 7.2 Errors in the Data Reduction Method.

The use of the Simpson's rule subroutine for integration of the boundary layer parameters could incur some error due to the large value of du/dy near the wall. This is shown for the axisymetric rig in figure 77.

It can be seen that a simple  $\frac{V_7}{R}$  th power law approximates to the general from of the profile (i.e  $\frac{U}{U_0} = \left(\frac{r}{R}\right)^{\frac{1}{2}}$  where n = 7, in actual fact n = 8 gives a closer approximation). From the  $\frac{V_7}{R}$  power law profile it can be shown that as the spacing between the readings, especially near the wall, reduce then the accuracy of the calculated boundary layer parameters will increase. (H' is shown for the  $\frac{V_7}{7}$  power law profile against the number of readings taken in figure 78.). However, it was not possible to traverse closer to the wall than 0.5mm, therefore dictating the minimum step distance. It can be shown that for a  $\frac{V_7}{7}$  power law profile the value obtained for 'H' using the Simpson's rule subroutine is 1.411 as against an actual value of 1.365 from the expression,  $H = \frac{\delta^*}{2} = 1 - (2n^2/(2n+1)(n+1)^{\frac{V_2}{2}}$ 

ion, 
$$H = O = \frac{1 - (2n^2/(2n+1)(n+1))^2}{1 - (1 - 3n^2/(2n+1)(n+1)(n+2))^2}$$

Therefore for n = 7, H = 1.365.

which is + 3%. Which is a fairly large discrepancy and is larger than the





FIGURE .... 78

error incurred by the uncertainty of the accuracy of the experimental results. The error on the actual profile can be expected to be of a similar order, however in the diffuser where the profile is distorted the error will be much less marked since it is the large du/dy value which causes the problem, however the thin inlet boundary layer profile has an even higher du/dy value, therefore the error can be expected to be at a maximum here due to the inability of a Simpson's rule subroutine (based on a quadratic function between the experimental points), to accurately integrate very rapid changes in velocity as experienced near the wall. This error at the inlet plane can be expected to be always greater than % on H for all inlet boundary layer conditions and of a similar order for the displacement thickness and momentum thickness.

#### PPENDIX 8.

## AND BOIL

Displacement Thickness  $(\delta^*)$ . 8.1

The displacement thickness is defined as the distance the duct wall must be displaced in order that the actual flow rate would be the same for an ideal flow at the velocity outside the boundary layer. (uo). Mass flow in = | Qudw ---- (8.1) also by definition  $\dot{m} = \rho_0 u_0 (w/2 - \delta^{*})$  -----(8.2) equating (8.1) and (8.2)  $w/2 - \delta^{*} = \int_{0}^{w/2} (\varrho u/\rho_{0}u_{0}) dw$  $\delta^{*} = \int_{0}^{w/2} (1 - \varrho u/\rho_{0}u_{0}) dw -----(8.3)$ Therefore :

Momentum Thickness  $(\theta)$ . 8.1

Momentum thickness ( $\theta$ ) is defined as the distance to the duct wall must be moved such that the momentum flux deficit through this distance  $\theta$  at the free stream velocity will be the same of the deficit of momentum flux in the boundary layer from an ideal flow.

The momentum in the boundary layer : 

Therefore the deficit, from an ideal flow :  $= \int_{0}^{W_{2}} u \rho(u_{0}-u) dw \qquad -----(8.5)$   $= \int_{0}^{W_{2}} \rho u \rho(u_{0}-u) dw$ 

By definition

 $\Theta = \int_{0}^{\frac{2}{2}} \frac{u}{e^{0}u_{0}} \left\langle 1 - \frac{u}{u_{0}} \right\rangle dv \qquad \dots \qquad (8.6)$ Therefore

8.3 The Momentum Integral Equation for Two-Dimensional, Compressible Flow. Considering the element shown in figure 79. Mass entering CA =  $\int_{0}^{W_1} \frac{q_{udw}}{q_{udw}} = \dot{m} \qquad -----(8.7)$ Mass leaving DF =  $\int_{0}^{W_2} \frac{q_{udw}}{q_{udw}} = \dot{m} + \Delta \dot{m} \qquad -----(8.8)$ 



FIGURE ..... 79

....

Sincer

Hence net flow through surfaces CA and DF out of element ; .  $= \int_{W_{1}}^{W_{1}+V_{2}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{W_{1}}^{W_{1}+V_{2}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \left\{ \int_{0}^{W_{1}} \frac{\partial w \delta x}{\partial x} + \frac{d}{dx} \right\} \right\} \right\}$ 

Mass flow through face CD : (2)

$$= \int_{(1)}^{(2)} e_0 v_0 dz$$

Where suffix 'o' denotes values outside the boundary layer

Therefore from continuity;

For the balance of the rate of change of momentum in the x direction and the applied force in the x direction.

In the x direction the rate of momentum transport through AC;  

$$= \int_{0}^{W_{1}} (\frac{1}{2} dx)^{W_{2}} dx$$
Through DF;  

$$= \int_{0}^{W_{2}} (\frac{1}{2} dx)^{W_{1}} dx + \frac{1}{2} (\frac{1}{2} dx)^{W_{2}} \delta x + \int_{0}^{W_{1}} (\frac{1}{2} dx)^{W_{2}} \delta x + \frac{1}{2} dx)^{W_{2}} \delta x$$

$$= \int_{0}^{W_{1}} (\frac{1}{2} dx)^{W_{1}} dx + \frac{1}{2} dx$$

Pressure force on surface CA;

= pwj

on 
$$DE = -(p + \frac{\partial p}{\partial x} \partial x)(w_1 + \frac{\partial w}{\partial x} \partial x \cdot \frac{\partial}{\partial x}) + 2nd \text{ order terms}$$

Therefore net force in x direction ;

= - 
$$\operatorname{Wl} \bigotimes_{x} \bigotimes_{x} - \frac{p \partial W}{2 \partial x} \bigotimes_{x} + 2nd \text{ order terms}$$
 -----(8.15)

Pressure force in x direction from the wall assumed that over element mean pressure ;

$$= p + \frac{1}{2} \frac{\partial p}{\partial x} - \delta x$$

Therefore pressure force from wall ;

$$= \frac{1}{2} \frac{\partial w}{\partial x} \delta x p + 2nd \text{ order terms} -----(8.16)$$

Therefore net pressure force in x direction ;

$$= - w_1 \frac{\partial p}{\partial x} \delta x \qquad -----(8.17)$$

Force due to friction at wall ;

$$= - \mathcal{T}_{W} \delta x \cos \phi/2 / \cos \phi/2 = \mathcal{T}_{W} \delta x - (8.18)$$

Therefore since momentum change in x direction = force in x direction

$$\frac{d}{dx} \left\{ \int_{0}^{W_{1}} e^{u^{2} dw} \delta_{x} - u_{0} \frac{d}{dx} \left( \int_{0}^{W_{1}} e^{u} dw \right) \delta_{x} = -\frac{\partial p}{\delta x} \delta_{x} w_{1} - Tw \, \delta_{x} + 2nd \text{ order terms} - (8.19) \right\}$$

dividing by  $\delta x$  and letting  $\delta x$  tend to 0. ;  $d\left(\begin{pmatrix} W_1 \\ O u^2 d y \end{pmatrix} = u_2 d\left(\begin{pmatrix} W_1 \\ O u d y \end{pmatrix} = O_1 u_2 d u_2 = \int_1^\infty u_2 d  

$$\frac{d}{dx}\left(\int_{0}^{0} e^{u^{2}dw}\right) - u_{0}\frac{d}{dx}\left(\int_{0}^{0} e^{udw}\right) = e^{0}u_{0}w_{1}\frac{du_{0}}{dx} - u_{0}w_{1}\frac{du_{0}}{dx} - u_{0}w_{1}\frac{du_{$$

Where  $\frac{\partial p}{\partial x}$  has been eliminated by the bernouli equation ; uoduo - - 1 dp

$$\frac{\log du_0}{dx} = -\frac{1}{\rho_0 dx} \frac{dp}{dx}$$

Since  $w_1 = w/2$ , Equation (8.20) can be expressed as ;

$$\mathcal{T} \mathbf{w} = \varrho_0 \mathbf{u}_0 \frac{\mathbf{w}}{2} \frac{d\mathbf{u}_0}{d\mathbf{x}} - \frac{d}{d\mathbf{x}} \left\{ \int_0^{W_2} \varrho \mathbf{u}^2 d\mathbf{w} \right\} + \mathbf{u}_0 \frac{d}{d\mathbf{x}} \left\{ \int_0^{W_2} \varrho \mathbf{u} d\mathbf{w} \right\} -----(8.21)$$
  
Since  $\delta^* = \int_0^{W_2} (1 - \varrho \mathbf{u}) \frac{d\mathbf{w}}{\varrho_0 \mathbf{u}_0}$   
and  $\theta = \int_0^{W_2} \frac{\rho \mathbf{u}}{\varrho_0 \mathbf{u}_0} \left\{ 1 - \frac{\mathbf{u}}{\mathbf{u}_0} \right\} d\mathbf{w}$ 

With some rearrangement equation (8.21) becomes ;

$$\frac{\mathcal{T}_{W}}{\rho_{ouo}^{2}} = \frac{d\theta}{dx} + \frac{\theta}{\left(\frac{1}{u_{o}dx}\left(\left(\frac{H+2}{2}\right) + \frac{1d\rho}{\rho_{o}dx} \circ + \frac{1.dw}{w dx}\right)\right)}$$

## 4 Entrainment Function

Figure 80 shows the flow element in consideration, where  $\dot{m} = mass$  flow in the boundary layer at the section under consideration.

# Thus mass flow per unit breadth ;

Therefore substituting in (8.25) becomes ;

$$\hat{m} = \rho_0 u_0 (\delta - \delta_0^*)$$

differentiating with respect to x ;

$$\frac{din}{dx} = \frac{d}{dx} \left\{ Q_0 u_0 \left( \delta - \delta^* \right) \right\}$$

substituting Hl for  $(\delta - \delta^*)/\theta$ 

$$\frac{d}{dx} \rho_0 u_0 (\delta - \delta^*) = f(H1, \delta - \delta^*, \rho_0 u_0)$$

which can be expressed in the non-dimensional form;

$$\frac{1}{2} \cdot \frac{d}{dx} \left( e_0 u_0 \left( \xi - \xi^{*} \right) \right) = F(H1)$$

Where F = Heads entrainment function.

8.4



FIGURE....80