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ABSTRACT

The 13-amyloid peptide characteristic o f the lesions o f Alzheimer’s disease (AD) is 
derived from the amyloid precursor protein (APP), a single transmembrane-spanning 
protein with several alternatively-spliced variants, some o f which contain a Kunitz 
protease inhibitory (KPI) domain. Although intracellular localisation o f APP has been 
described in many cell types, it has not been characterised in NTera 2 (NT2) neurones, 
which are the best available model o f human CNS neurones. Here, the subcellular 
distributions o f APP and APLP2 (amyloid precursor-like protein 2) were demonstrated, 
by indirect immunocytochemistry, to be overlapping but not the same in both NT2 stem 
cells and neurones. No obvious differences were apparent when comparing the locations 
of either APP or APLP2 in stem cells versus neurones, APLP2 being restricted to the 
region of the Golgi apparatus, and APP extending into compartments approaching the 
cell membrane, including growth cones o f neurones. Therefore, no clear differences in 
intracellular routing of these proteins were identified, immunocytochemically, in human 
CNS-type neurones compared with stem cells, which represent non-neuronal cells. 
This work emphasised the need to use antibodies that distinguish between APP and 
APLP2 (which does not contain the 13-amyloid sequence) in studies o f APP processing 
and amyloidogenesis, since only APP was concentrated in compartments beyond the 
Golgi apparatus. Heat-shock and no feeding had no immunocytochemically detectable 
effects on APP or APLP2 distributions or 13-amyloid production in NT2 cells. Although 
a preliminary investigation to establish a protocol by which NT2 cells can be studied by 
electron microscopy produced only scant cellular material, more recent publications 
have shown that slight variations on methods tested here give a successful protocol.

The expression o f KPI-containing APP in human brains has only been described 
previously in terms o f its mRNA. The ratio o f KPI-/non-KPI-APP mRNA appears to 
be elevated in AD (Tanaka et al., 1989; Johnston et al., 1996). A novel polyclonal 
antibody (Ab993), specific for the KPI-domain epitope, was characterised for use in 
immunohistochemistry using paraffin-em bedded human brain sections. 
Immunohistochemical staining was enhanced significantly by reduction o f sulphydryl 
bonds with 2-mercaptoethanol, followed by alkylation o f the reduced bonds with 
sodium iodoacetate. Microwaving o f sections also enhanced immunolabelling, by a 
mechanism that was additive to reduction and alkylation. Incubation with 80% formic 
acid did not increase immunolabelling. KPI-containing protein distribution in normal 
and AD human brains was characterised by indirect immunohistochemistry. KPI-APP 
was concentrated mainly in pyramidal cells o f the temporal and visual neocortex. In 
Alzheimer’s disease there was a significantly increased incidence of cellular staining for 
KPI-APP. KPI-containing protein was closely related to the pathology o f AD. It was 
found in association with the tangle-bearing population o f neurones, blood vessels 
including those affected by cerebro-vascular amyloid, within the neuropil and in 
association with plaques. This evidence corroborates that supplied previously by mRNA 
data and studies of hAPP transgenic mice in highlighting the importance o f this isoform 
of APP in the pathogenesis of AD.

The cytokine transforming growth factor-131 (TGF-131) is upregulated in AD brains, but 
its mRNA expression has not been characterised. TGF-J31 and hAPP(V717F) bigenic



mice show accelerated development o f A D -like pathology compared with 
hAPP(V717F) singly transgenic mice (Wyss-Coray et a l,  1997). It has been suggested 
that elevated TGF-J31 could increase expression of KPI-containing APP isoforms in 
AD and/or upregulate CNS extracellular matrix proteins that may promote amyloid 
deposition. TGF-131 mRNA in AD and control frozen human brain sections was 
quantified by in situ hybridization histochemistry. A modest, significant increase in 
TGF-131 mRNA was found in AD temporal cortex and white matter compared to 
controls, supporting previous immunohistochemical studies.
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CANDIDATE’S STATEMENT

The objectives of this research were to further present understanding o f the sub-cellular 

processing o f proteins that have been demonstrated to be involved in the pathogenesis 

of Alzheimer’s disease. This work aimed to concentrate on the processing o f these 

proteins in human brains as well as in cultured human cells that can be differentiated 

into a phenotype bearing close resemblance to human CNS-type neurones, thus 

providing evidence that is as relevant as currently possible to the in vivo processes of 

Alzheimer’s disease.

Results o f work included in this thesis, carried out by Dr. D. Parkinson at Sheffield 

Hallam University, are indicated in the text below. Dr. Parkinson was responsible for 

making the anti-KPI antibody used in this study and described below, and for the 

characterisation o f this antibody by immunoprecipitation and Western blotting 

(Campbell e ta l., 1999).
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CHAPTER 1: INTRODUCTION

After heart disease, cancer and stroke, Alzheimer’s disease (AD) is the fourth most 

prevalent cause of death in the developed world. It is the commonest cause o f dementia, 

affecting an estimated 17-20 million people worldwide (Shastry and Giblin, 1999), 

including between 2 and 10 per cent o f Europeans and North Americans over 65 years 

of age (Alloul et al., 1998) and costing the US, for example, $60 billion annually 

(Martin, 1999). AD is a progressive, age-related dementia that leads to premature death 

from associated complications such as pneumonia, the clinical course ranging typically 

from 5 to 7 years from onset until death (Perry, 1991). Better health care and healthier 

lifestyles mean that those at risk for AD will increasingly survive other diseases and live 

longer. Therefore both the social and financial burdens of this distressing illness are 

rising, and it is becoming an ever more pressing issue to uncover the causes o f AD and 

to identify potential therapeutic mechanisms.

Age is the least disputed risk factor for AD. Also likely factors are family history of 

AD, presence o f the apolipoprotein E s4 allele, history o f depression, Down’s 

syndrome, race and head trauma with loss o f consciousness. Other suspected risk 

factors include lower education, aluminium absorption, gender, hypertension and 

vascular disease. Among factors generally identified to be protective against AD are 

cigarette smoking, non-steroidal anti-inflammatory drugs, oestrogen intake, arthritis 

and apolipoprotein E 82 allele (Alloul et a l , 1998). However, it is likely that there is a 

multitude o f factors that contribute towards whether or not any individual develops this 

devastating disease.
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At present AD cannot be diagnosed with certainty until post-mortem. The clinical 

diagnostic criteria include progressive dementia with characteristic signs and symptoms, 

notably failure o f memory, disorientation and confusion (Corsellis, 1976), and exclusion 

of other diseases that cause dementia. However, the clinical diagnosis must be 

confirmed post-mortem by the presence o f neuropathological lesions characteristic o f  

AD: senile or neuritic plaques, congophilic angiopathy and neurofibrillary tangles in the 

cerebral tissue (Sanan et al., 1994). Therefore studies o f the cellular mechanisms 

underlying AD may identify a means o f testing for the presence o f the disease 

pre-mortem as well as finding potential targets for drug therapy.

Neuropathology of Alzheimer’s disease

AD brains show marked atrophy of the cerebral cortex, particularly o f the frontal and

temporal lobes, with associated neurone loss (principally cholinergic) and astrocyte

proliferation in affected areas (Perry, 1991). Senile plaques are the most prominent

feature o f the neuropathology o f AD: they are found throughout the grey matter of the

cerebral cortex, particularly in the hippocampus and entorhinal cortex, and in deep

cerebral nuclei including the amygdala and corpus striatum (Selkoe, 1994b). Two

distinct types o f plaque have been described, the “diffuse” plaque and the “classical”,

“neuritic” or “mature” plaque. Both o f these contain a 4kD peptide, beta-amyloid, a

fragment of the amyloid precursor protein (APP). This varies in length from 39-42

amino acids, the 42 amino acid length peptide being the species that is deposited

initially in plaques (Iwatsubo et a l , 1994). B-amyloid (29-42) exists exclusively in a B

sheet conformation in solution, suggesting that this peptide may act as a “seed” for

deposition o f 13-amyloid (1-42), followed by deposition o f peptides terminating at

amino acids 39-40 (Barrow and Zagorski, 1991). 13-amyloid (40) may even inhibit
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aggregation o f 13-amyloid (42) (Mucke et al., 2000). The classical or neuritic plaque 

also contains dystrophic neurites that often surround the J3-amyloid deposits, activated 

microglia, reactive fibrous astrocytes, and several other proteins such as heat-shock 

proteins, amyloid P component, a -1  antichymotrypsin, apolipoprotein E, 

a 2-macroglobulin, presenilins 1 and 2, and heparan sulphate proteoglycans (Rosenberg, 

2000). It has been demonstrated recently that senile plaques also contain mRNAs, 

predominantly neuronal ones, lending support to the notion that senile plaques form at 

sites where neurones degenerate (Ginsberg et al., 1999).

Recently, the ultrastructure o f 13-amyloid fibrils has been examined in situ in human 

brain tissue (Inoue et al., 1999). The lOnm-diameter fibrils were found to have a core 

composed o f amyloid P component subunits and chondroitin sulphate proteoglycan 

(CSPG), surrounded by a layer o f heparan sulphate proteoglycan (HSPG). 13-amyloid 

filaments, lnm wide, were associated with the surface o f these fibrils. This is likely to 

be a more accurate reflection o f the structure o f fibrillar 13-amyloid than had been 

described previously because the fibrils were examined in situ. Examination in situ 

avoided alteration o f their structure by the process o f extraction from the tissue, which 

may cause dissociation o f 13-amyloid and HSPG. HSPGs have been demonstrated to be 

an invariable component of all systemic amyloids in humans as well as being present in 

amyloid plaques, neurofibrillary tangles (NFTs) and cerebrovascular amyloid in AD 

brains (Young et al., 1989; Verbeek et al., 1999). This supports the notion o f their being 

an integral part o f 13-amyloid fibrils, and emphasises their contribution to AD 

pathology. Heparan sulphate is found in cholinergic synaptosomes, suggesting that 

degeneration o f axons o f cholinergic neurones may result in deposition o f HSPGs in
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senile plaques (Young et al., 1989). Furthermore, APP has been suggested to be an 

HSPG core protein (Schubert et al., 1988).

The dystrophic neurites o f mature plaques contain NFTs, which are paired helical 

filaments (PHF) in a double helix, consisting mainly o f abnormally phosphorylated tau 

protein (Johnston et al., 1994), and some studies have suggested that they contain 

13-amyloid among other components (Masters et al., 1985; Perry et al., 1992; 

Rosenblum, 1999). Subsequent death of these neurones may then leave “ghost” tangles 

in the neuropil due to the relatively high resistance of NFT to degradation. Although it 

is notable that, in some instances of dementia, neuritic plaques may be found in the 

absence of tangles (Duff and Hardy, 1995). Neuropil threads may also be seen forming 

a dense meshwork in the neuropil. These are recognised by antibodies to 

phosphorylated tau or PHF, and probably represent abnormal axons and dendrites of 

neurones that contain or will develop NFT (Esiri et al., 1997).

Finally, fi-amyloid is also deposited in other forms in AD such as long, ribbon-like 

amorphous deposits in the superficial subpial cortex, or fibrillar deposits in the walls of 

meningeal and intracerebral microvessels known as congophilic angiopathy or cerebral 

amyloid angiopathy (CAA) (Selkoe, 1994b). In capillaries o f cerebral cortex, fi-amyloid 

fibrils have been observed in association with the basement membrane (Miyakawa et 

al., 1974; Inoue et al., 1999). In Madin-Darby canine kidney (MDCK) cells, fi-amyloid 

was secreted preferentially at the basolateral cell membrane, postulating a potential 

mechanism by which fi-amyloid accumulates at the abluminal basement membrane of 

AD brain microvessels (Haass et al., 1994). Examination o f serial sections through 

senile plaques by electron microscopy indicated that amyloid fibrils were produced at 

the basement membranes o f capillary endothelial cells, and projected into the



surrounding parenchyma, at least one degenerable capillary being found in each senile 

plaque (Miyakawa et al., 1982).

13-amyloid is deposited in diffuse plaques and cerebral blood vessels only occasionally 

in normal ageing but is often present in mild dementia (Price, 1993), in the absence of 

neuritic plaques and NFT. 13-amyloid deposits in non-demented aged individuals have 

been shown to lack accompanying cellular abnormalities, including NFT, astroglial and 

microglial reaction or proliferation (Coria et al., 1993). It may be that this represents an 

early stage o f AD, before neuronal death becomes widespread and cognitive deficit 

becomes more apparent. Furthermore, neuritic plaques are present only in AD, whereas 

NFT are present in normal ageing as well as being the result o f neuronal injury in a 

variety o f other neurodegenerative illnesses, such as Pick’s disease, Lewy body 

dementia and Parkinson’s disease (Schmechel et al., 1993). The numbers o f neuritic 

plaques or NFTs may correlate better than the number of amyloid plaques with degree 

of dementia, but neither plaque numbers nor NFT numbers correlate well with degree of  

dementia (Esiri et al., 1997). In contrast, amyloid load and levels o f extracted 

13-amyloid have been shown to correlate well with degree o f dementia (Cummings and 

Cotman, 1995; Naslund et al., 2000). It is therefore postulated that 13-amyloid is the 

species initially responsible for causing neuronal damage, and that NFT and neuritic 

plaques develop subsequently. Further evidence in support o f this will be discussed 

below. Increasing degree o f cognitive impairment is associated also with diminishing 

levels o f acetyl choline and synaptophysin, thought to reflect loss o f cholinergic 

neurones and/or their synapses (Esiri et al., 1997).

Before extracellular 13-amyloid deposition occurs, there is gathering evidence o f  

intracellular 13-amyloid accumulation. This appears to be followed by appearance o f a



“halo” o f 13-amyloid around dying and ghost neurones, several o f which may result in 

the genesis o f an amyloid plaque and its associated pathology (LaFerla et al., 1997; 

Wilson et al., 1999). Even prior to intracellular 13-amyloid deposition, some studies 

have identified synaptic pathology that appears to either precipitate or result from 

accumulation o f intracellular APP, finally resulting in cell death and extracellular 

13-amyloid deposition (Martin et a l,  1994; Masliah et al., 1994; Games et al., 1995). 

Alternatively, it has been postulated that elevated soluble intra- or extracellular 

13-amyloid produces the neurotoxic effects that result in synaptic pathology (Turner et 

al., 1996; Lee et al., 1998; Wilson et al., 1999; Mucke et al., 2000).

Processing of amyloid precursor protein and other proteins with 

potential roles in Alzheimer’s disease

Expression and roles of APP isoforms

APP is expressed by most cells of the human body. Differential splicing o f the primary 

RNA transcript of APP generates eight protein products of differing length, APP-695 

being the most abundant in brain, followed by APP-751 then APP-770, both o f which 

contain a domain with considerable homology to the Kunitz protease inhibitors (KPI).

Evidence suggests that APP-751 mRNA has a higher abundance in neurones in regions 

of the human brain associated with neuritic plaque formation, in normal adults as well 

as in AD (Neve et a l,  1988; Johnson et al., 1990), implying early involvement o f this 

phenomenon in the pathogenesis of AD. In human AD brain there are elevated levels of 

cytokines, markers of the inflammatory response, and astrocytosis occurs. In primary 

cultures from foetal human cerebral cortex, astrocytes were shown to be the major
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producers o f 13-amyloid (Busciglio et a l ,  1993). Astrocytes produce a higher proportion 

of KPI- containing APP mRNA isoforms than APP-695 (Gray and Patel, 1993a). 

Interestingly, pyramidal neurones, in areas of human brains affected by AD pathology, 

also contain relatively more KPI-APP than APP-695 (Neve et a l , 1988).

The APP-751 isoform was shown to be up-regulated and the APP-695 isoform 

down-regulated in response to neuronal injury in rat brain (Iverfeldt et a l , 1993). It is 

possible that this effect was mediated via the products o f microglia and macroglia that 

invade the sites o f CNS lesions: cytokines such as interleukin-1 (IL-1), a mitogen for 

astrocytes, transforming growth factor-131 (TGF-131) and basic fibroblast growth factor 

(bFGF). These are found at the sites o f lesions, including senile plaques, and have been 

shown to elevate the expression of all three APP isoforms, APP-751 and APP-770 

more so than APP-695 (Gray and Patel, 1993a and b). In a normal human foetal 

astrocytic cell line, heat-shock led to an increase in KPI-APP mRNA, with no change 

in APP-695, reduced secreted APP and increased intracellular, possibly 13-secretase, 

processing (Shepherd et a l ,  2000). Stress, induced by serum deprivation, increased the 

proportion of APP mRNA that contained exons 7 and 8 but lacked exon 15 (adjacent to 

the 13-amyloid N-terminus (Konig et a l ,  1992)) in the C6 glioma cell line, suggesting a 

potential means by which elevated 13-amyloid could be generated (Sudoh et a l ,  1996). 

It has also been reported that higher expression of APP-751 suppresses the expression 

of APP-695 and APP-770 (Ramakrishna et a l,  1996).

Together, these findings raise the question o f whether these KPI-containing APP 

isoforms release more 13-amyloid, or 13-amyloid that is more susceptible to aggregation, 

than that produced from the degradation o f APP-695? These possibilities have been 

investigated in vitro. In human foetal astrocytic cells, increased KPI-APP expression
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induced by heat-shock was accompanied by a shift from APP secretion towards 

intracellular processing, possibly via 13-secretase cleavage (Shepherd et al., 2000). 

Expression o f APP-751 in mouse teratocarcinoma P19 cells and human embryonic 

kidney 293 cells resulted in increased secretion o f 13-amyloid (42) (Ho et al., 1996). 

Much research has focussed on the metabolism of APP with the hope o f identifying the 

pathways via which its various degradation products are formed, and the molecules and 

mechanisms that regulate the routing of APP along these pathways.

Transforming growth factor-B1 and its association with KPI-APP in 

Alzheimer’s disease

Immunoreactivity o f the cytokine transforming growth factor-131 (TGF-131) has been 

demonstrated in capillaries of the hippocampus and entorhinal cortex o f normal human 

brains (Van der Wal et al., 1993) and in astrocytes, microglia and oligodendrocytes of 

frontal cortex from a single normal human brain (Da Cunha et al., 1993). Increased 

immunoreactivity was present in AD brains, with TGF-131 immunolabelling in diffuse 

plaques, NFTs, glial cells and the neuritic element of senile plaques, as well as in blood 

vessels (Van der Wal et a l , 1993; Peress and Perillo, 1995).

It has been postulated that TGF-131 may be neuroprotective in response to 13-amyloid 

toxicity and other cellular insults (Prehn et al., 1993; Prehn et al., 1996; Ren et al., 

1997), and its mRNA is upregulated in response to stress or injury (Klempt et al., 1992; 

Logan et al., 1992; Ata et al., 1997).

TGF-131 has been shown to accelerate development of AD pathology in hAPP/TGF-131 

bigenic mice, which overexpress particularly the KPI-containing isoforms o f mutant 

hAPP (V717F) (Wyss-Coray et a l,  1997). TGF-131 elevates APP mRNA in astrocytes,
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and mRNA and protein in microglia in vitro (Gray and Patel, 1993; Amara et a l , 1999; 

Monning et al., 1994), more so the KPI-containing isoforms than APP-695 in 

astrocytes (Gray and Patel, 1993). Thus overexpressed TGF-131 may potentially 

influence APP splicing, and/or production or deposition of 13-amyloid.

Subcellular processing of APP

Following translation, APP undergoes N -  then O-linked glycosylation and tyrosine 

sulphation in the Golgi complex (Weidemann et al., 1989), after which the mature 

protein is cleaved resulting in the generation o f peptides o f various lengths, some 

potentially amyloidogenic. Rablb, a small GTP-binding protein that is an important 

regulatory protein in ER to Golgi transport, is necessary for trafficking o f APP from the 

ER to the Golgi. Furthermore, Golgi maturation o f APP and production o f soluble a -  

and 13-secretase cleaved APP (sAPPa and sAPPJ3) are dependent on correct functioning 

of Rablb in cultured 293 cells (Dugan et al., 1995). This raises the possibility that other 

members o f the Rab family may be important in further steps o f APP trafficking.

The enzymes that are responsible for APP cleavage are beginning to be identified. They 

were originally designated a-secretase, 13-secretase and y-secretase, cleaving APP 

between residues 16 and 17 of the 13-amyloid sequence, at the N-terminus o f 13-amyloid 

and at the C-terminus of 13-amyloid respectively, as shown in Figure 1. Some o f these 

enzymes have now been identified, as described below. Five different length C-terminal 

fragments o f APP have been identified, from human brain and APP-695-transfected 

human embryonic kidney (293) cells, o f which two fragments included the 13-amyloid 

sequence (Estus et al., 1992). The larger, potentially amyloidogenic fragments were 

more abundant in brain (normal and AD) than in liver, kidney, small intestine or

17



muscle, indicating that a distinct pathway for APP processing exists in the brain, which 

may partly explain the selective deposition of 13-amyloid in the brain in AD.

APP is illustrated in Figure 2. It is predicted to have a single transmembrane region, 

with the 13-amyloid sequence partially embedded within this and extending into the 

extracellular domain. The intracellular C-terminus is relatively short, and contains a 

triplet o f lysine residues that are important for correct membrane anchorage and 

consequently for normal a-secretase cleavage of APP within the 13-amyloid sequence, 

just N-terminal to the transmembrane domain (Usami et al., 1993). Another study 

showed that the precise amino acid sequence at and around the a-secretase site does not 

greatly affect the efficacy o f proteolysis; rather it depends on the presence o f an 

a-helical conformation and the distance (12-13 amino acids) o f the cleavage site from 

the membrane (Sisodia, 1992). This provides further evidence that correct membrane 

anchorage o f APP is essential for non-amyloidogenic processing, and implies that 

increased production o f 13-amyloid may result from incorrect membrane insertion, 

leading to 13-amyloid deposition. The C-terminus also contains an NPTY motif that 

binds two neuronal proteins, X I 1 and FE65, and may be involved in internalisation of 

APP via clathrin-coated pits (Fiore et al., 1995; McLoughlin et al., 1996; Borg et al., 

1996). The amyloid precursor-like protein 2 (APLP2), a member o f the APP family that 

does not contain 13-amyloid, also includes an NPTY sequence in its cytoplasmic region 

that binds FE65 (Guenette et al., 1996), suggesting similarity in this aspect o f its 

processing compared with APP. Point mutations in APP, found in familial AD, appear 

to have an adverse effect on its interaction with FE65 (Zambrano et al., 1997), implying 

a role for the NPTY domain in AD.
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When APP is cleaved within the 13-amyloid sequence a non-amyloidogenic N-terminal 

derivative, secreted APPa (sAPPa), containing residues 1-16 o f 13-amyloid, is released 

into the extracellular environment. However, sAPP found in the brain tissue and CSF of 

both normal and AD patients does not always include this truncated 13-amyloid 

fragment (Weidemann et al., 1989). Mixed human brain cell cultures were demonstrated 

to secrete truncated sAPP13, cleaved (by 13-secretase) between residues Met 596 and Asp 

597 o f APP-695, the N-terminus o f 13-amyloid (Seubert et al., 1993). 13-secretase 

cleavage was subsequently demonstrated to occur prior to cleavage at the C-terminus of 

13-amyloid to generate soluble 13-amyloid from the secretory pathway in cultured 

African green monkey kidney (COS) cells (Maruyama et al., 1994).

However, alternative proteolytic processing pathways exist that yield 13-amyloid. Both 

full-length, mature APP and various 13-amyloid-containing fragments were detected in 

late endosomes/lysosomes in human umbilical vein endothelial cells (HUVECs), which 

express large amounts o f APP-751 and APP-770 (Haass et al., 1992b). It was 

demonstrated by cell surface antibody labelling and cell surface biotinylation that APP 

was re-internalized into these compartments from the plasma membrane; although the 

possibility that some APP may be targeted directly to endosomes/lysosomes, from the 

Golgi apparatus, was not ruled out. In human NTera 2 neurones 13-amyloid was secreted 

into the culture medium with a 2 hour delay following metabolic labelling (Turner et 

al., 1996). This 13-amyloid could be detected intracellularly before it was recovered in 

the medium, and it was still produced following trypsin treatment o f the intact cells but 

not after trypsin treatment of permeabilised cells. Thus, in this cell type, APP appears 

not to be re-internalized from the plasma membrane before intracellular 13-amyloid is 

produced.
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Full-length, mature APP and C-terminal fragments were then shown to be present in 

clathrin-coated vesicles (CCVs) in rat neuroendocrine PC 12 cells (Norstedt et al., 

1993). CCVs are known to participate in two intracellular pathways: trafficking from 

the plasma membrane to early endosomes, and from the trans-Golgi network to late 

endosomes/lysosomes. This therefore supports the findings o f Haass et al. (1992b). 

Furthermore, deletion of the cytoplasmic portion o f APP or depletion o f potassium in 

the medium o f cultured transfected Chinese hamster ovary (CHO) cells (which 

decreased APP re-intemalization via clathrin-coated vesicles) resulted in reduced 

secretion o f labelled 13-amyloid from the cells following cell surface radioiodination 

(Koo and Squazzo, 1994). However, sAPP production remained unaffected, suggesting 

that sAPP and 13-amyloid were generated by different proteolytic pathways. The 

majority o f sAPP secreted from the radiolabelled cells was recovered during the 

following 15 minutes, whereas 13-amyloid was collected at relatively low levels over a 

course o f 105 minutes, supporting the idea that 13-amyloid was produced via the 

endocytic pathway.

APP secretase enzymes

Tumour necrosis factor-a converting enzyme (TACE), also known as ADAM (a 

disintegrin and metalloprotease) 17, and ADAM 10 have been identified to possess 

a-secretase activity (Buxbaum et al., 1998; Lammich et al., 1999). In cultured cells, 

TACE was responsible for regulated a-secretase cleavage, and ADAM 10 allowed both 

constitutive and regulated a-secretase cleavage o f APP. Lammich et al. (1999) 

suggested that ADAM 10 may be activated en route to the plasma membrane by fiirin, 

which cycles between the Golgi and plasma membrane, thus allowing a-cleavage of 

APP either intracellularly or at the plasma membrane. Although TACE and ADAM 10
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have just 21% amino acid identity, their catalytic domains may share more structural 

similarity (Lammich etal., 1999).

13-secretase activity has been demonstrated in the endosomal/lysosomal, acidic protease, 

cathepsin D (Chevallier et al., 1997). Cathepsin D cleaved a synthetic peptide bearing 

the Swedish double missense mutation, (KM 0 NL) N-terminal to 13-amyloid, 

preferentially to non-mutated APP analogue peptides. However, it has not been shown 

to increase 13-amyloid production from full-length, cellular APP. 13-secretase activity 

has been suggested to occur in detergent-insoluble membrane domains, enriched in 

glycosylphosphatidylinositol (GPI)-anchored aspartyl proteases and cholesterol (Lee et 

al., 1998; Sambamurti et al., 1999). A transmembrane aspartyl protease, Asp 2, BACE 

(13-site APP-cleaving enzyme), or memapsin 2, cloned and identified in human AD and 

age-matched, control brains, cleaves APP specifically at the 13-secretase site (Hussain et 

al., 1999; Sinha et al., 1999; Vassar et al., 1999; Yan et al., 1999; Lin et al., 2000). 

BACE was identified in the Golgi, trans-Golgi network (TGN), secretory vesicles and 

endosomes, and to a lesser extent in endoplasmic reticulum (ER) and lysosomes of 

transfected human embryonic kidney (HEK) 293 cells, and acted optimally at pH 4.5 

(Vassar et al., 1999). It was co-localised with APP in the ER and Golgi, but not further 

towards the cell periphery where only APP was present, in COS-7 cells (Hussain et al.,

1999). In rat brain, BACE was expressed at higher levels in neurones than in glia 

(Vassar et al., 1999) and in human brain it was detected immunohistochemically only in 

neurones (Hussain et al., 1999). It also had high activity levels in CNS-derived cell 

lines (Sinha et al., 1999). 13-secretase cleavage was increased in vitro by overexpression 

of BACE, and decreased by inhibition of endogenous BACE (Vassar et al., 1999).
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A second 13-secretase enzyme, BACE2, was characterised recently, which cleaves APP 

both at the 13-secretase site and within 13-amyloid (Farzan et a l , 2000; Solans et al.,

2000). BACE2 has been suggested to contribute to excessive 13-amyloid production in 

individuals bearing the Swedish double missense mutation adjacent to its cleavage site 

within 13-amyloid (Farzan et al., 2000). 13-secretase cleavage appears to be the 

rate-limiting step in 13-amyloid production, because total 13-amyloid formation can be 

increased or decreased by mutations at the 13-cleavage site, but is not altered by 

mutations at or near the y-cleavage site (Sinha and Lieberburg, 1999).

A gene on chromosome 14, mutations in which account for approximately 80% of 

early-onset autosomal dominant AD (Sherrington et al., 1995) encodes a putative seven 

transmembrane-spanning protein, S I82 or presenilin 1 (PS1). This protein appears 

likely to contain the active site o f the y-secretase APP-cleaving enzyme, in its 

C-terminal fragment (Wolfe et al., 1999; Esler et al., 2000; Kimberly et al., 2000; Li et 

al. , 2000). Another early-onset FAD locus on chromosome 1 (Levy-Lahad et al., 

1995a; Rogaev et al., 1995) encodes a protein, STM2 (second seven transmembrane 

gene), or presenilin 2 (PS2). with 67% amino acid sequence identity to S I82 

(Levy-Lahad et a l , 1995b), suggesting a similar function to the S I82 protein. Evidence 

suggests that PS2 also can function as a y-APP-cleavage enzyme (Kimberley et a l , 

2000; Li et a l , 2000). Furthermore, mouse embryonic stem cells lacking PS1 and PS2 

have been shown to have no y-secretase activity (Herreman et a l ,  2000). Mutations in 

PS1 and PS2 are discussed below.
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Manipulations in vitro of APP processing

The pathways of APP trafficking and proteolysis can be studied further by observing the 

outcomes o f various biochemical manipulations o f cellular events. For example, 

inhibition o f endosomal-lysosomal proteolysis by ammonium chloride or leupeptin 

results in decreased production o f the C-terminal derivatives o f APP in HEK 293 cells 

(Golde et al., 1992) supporting the role o f these intracellular compartments in APP 

degradation that produces potentially amyloidogenic fragments.

Brefeldin A (BFA), a fungal metabolite, induces dissolution o f the Golgi complex into 

pre- and post-Golgi compartments: the cis-, medial- and trans-Golgi compartments 

being redistributed to the ER, and the TGN fusing with early endosomes. Treatment of 

CHO cells and COS cells with BFA caused accumulation o f APP in the ER and 

inhibition o f APP secretion (Caporaso et a l , 1994), suggesting that secretory cleavage 

of APP occurs distal to the trans-Golgi. However, no APP immunoreactivity was found 

in the reticular TGN-endosomal structure formed upon BFA treatment, indicating that 

APP or APP fragments are not transported directly between the TGN and early 

endosomes. Another study, also using COS cells, showed that both BFA and monensin 

(which disrupts intra-Golgi transport and processing and inhibits lysosomal 

degradation) increased the production o f an 11.5kD APP derivative which includes the 

13-amyloid sequence, and inhibited APP maturation and secretion o f sAPP (Gabuzda et 

al., 1994). This supported the observation made by Caporaso et al. (1994), that 

a-secretase cleavage of APP occurs in a later secretory compartment, and demonstrated 

that inhibition o f APP maturation can lead to the formation o f amyloidogenic 

derivatives in the ER or early Golgi compartments.
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In N2a neuroblastoma cells, doubly transfected with human APP and PS1, and in 

primary rat cortical neurones, 13-amyloid (x-42) was generated and retained, in an 

insoluble form, in the ER. Both 13-amyloid (1-42) and (x-42) were produced in the 

TGN and packaged into post-TGN secretory vesicles. 13-amyloid (1-40) and (x-40) 

were made only in the TGN and packaged into secretory vesicles (Greenfield et al., 

1999). Of the 13-amyloid within the TGN, some was detergent-soluble and some 

detergent-insoluble.

However, in PC 12 cells treated with the weak base chloroquine, which inhibits 

proteolytic enzymes within the normally acidic lysosomes and Golgi complex, APP and 

C-terminal APP fragments accumulated in lysosomes (where they were not easily 

detected prior to chloroquine treatment). However, they were not detected in Golgi 

compartments (Caporaso et a l ,  1994). The same effect o f chloroquine was observed in 

COS cells (Gabuzda et a l , 1994). It is therefore possible that lysosomal proteolysis o f 

APP allows 13-amyloid production.

When A -172 human glioblastoma cells are treated with phorbol 12-myristate 

13-acetate (PMA), which activates protein kinase C (PKC), an increase in sAPP 

secretion results, and a decrease in intracellular amyloidogenic fragments is observed 

(Fukushima et al., 1993). It thus seems possible that in AD aberrant regulation of the 

balance between APP processing in these two pathways could result in an increase in 

production o f 13-amyloid or o f 13-amyloid (42) relative to 13-amyloid (40), and 

subsequently neurotoxicity and 13-amyloid deposition.

However, a-secretase and amyloidogenic pathways are not necessarily mutually

exclusive. For example, in SY5Y cells, a-secretase cleavage o f APP is up-regulated by

PKC activation while 13-secretase cleavage remains unaffected, although regulation o f
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APP cleavage pathways appears to be controlled by different mechanisms in different 

cell types (Dyrks et al., 1994).

On the whole the studies described above support each other and discrepancies between 

them can sometimes be explained by differences in experimental technique, or the use 

of different cell types that express varying levels of the different length APP isoforms 

and metabolise APP in different ways. However, the evidence provided by these 

studies, notably those on cultured cells and non-human brain cells, is not always 

necessarily a true representation of APP processing in human brain. This is primarily 

because of its complex environment as an organ, wherein interactions between its many 

cell types and surrounding tissues add complexity to the events described in isolated cell 

types. Therefore, as described in more detail below, this project made use o f human 

CNS-type cultured neurones (NTera 2 neurones) and human brain tissue.

Functions of the amyloid precursor protein

Many potential functions o f APP and sAPP have been proposed, KPI-containing sAPP 

being identical to protease nexin-II, a serine protease inhibitor (Cunningham, 1993). 

Fibrillar 13-amyloid was shown recently to bind KPI-APP, thus enhancing its inhibition 

o f coagulation factor XIa, and potentially contributing to cerebral haemorrhage 

associated with CAA. The fibrillar 13-amyloid bound to the N-terminal region o f APP, 

where there are also binding sites for Zn2+ and heparin, which also stimulate inhibition 

of factor XIa by KPI-APP (Wagner et al., 2000). APP and sAPP may be involved in 

neurite outgrowth, acting via binding with laminin (Kibbey et al., 1993) and/or heparan 

sulphate proteoglycans (HSPG) via its heparin binding site (Snow et al., 1990; Small et 

a l , 1994), and APP itself may be an HSPG core protein (Schubert et a l , 1988). Splicing
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out o f exon 15 o f the APP gene creates a new consensus sequence for attachment of a 

chondroitin sulphate chain, resulting in production o f appicans, which appear to be 

strong cell adhesion molecules and may participate in cell arborization (Pangalos et al.,

1995).

APP may function as a cell surface receptor (Ferreira et al., 1993), possibly at synaptic 

terminals in neurones where it has been identified at the synaptic plasma membrane 

(Shimokawa et al., 1993). It has been suggested that APP may bind and recycle 

substances such as histones, proteases and matrix proteins from the extracellular 

medium (Potempska et al., 1993). The latter theory is supported by the particularly high 

expression o f APP in cells that have a high membrane turnover and undergo endocytic 

and phagocytic retrieval and exocytosis (Beer et al., 1995) implying a potential role for 

APP in tissue maintenance and repair. There is evidence that sAPP also protects against 

hypoglycaemia- and glutamate-induced excitotoxicity by lowering intracellular 

calcium concentration ([Ca2+]i) (Mattson et al., 1993), and that the effect o f sAPP on 

[Ca2+]j is mediated via cyclic GMP (cGMP) (Barger et al., 1995). In addition, sAPP can 

activate the p21ras-dependent mitogen-activated protein kinase (MAPK) cascade, which 

enhances phosphorylation o f intracellular substrates, including tau, which is 

hyperphosphorylated in AD (Selkoe, 1994a).

Aberrant processing of APP in AD may have effects upon the functions of sAPP as well 

as causing damage via 13-amyloid, for example by production o f sAPP that is less 

effective at regulating [Ca ]i, or exhibits defective binding to extracellular matrix 

components.
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The genetics of Alzheimer’s disease

Chromosome 21

The linkage o f some cases of autosomal dominant AD with missense mutations in the 

APP gene on chromosome 21 within or immediately adjacent to the 13-amyloid 

sequence (Haass and Selkoe, 1993) supports a primary role for APP processing in the 

pathogenesis o f AD. These mutations are associated with early onset familial AD 

(FAD). A double missense mutation, found in a Swedish pedigree, that alters the 

lysine-m ethionine, immediately N-term inal to 13-amyloid residue 1, to 

asparagine-leucine, results in the secretion o f approximately 7 times the normal amount 

o f 13-amyloid in transfected cell cultures (Johnston et al., 1994). Three other 

FAD-linked mutations convert the valine, three residues C-terminal from 13-amyloid 

residue 43, to isoleucine, phenylalanine or glycine. These mutations result in a 

1.5-1.9-fold increase in the proportion o f 13-amyloid (1-42) over 13-amyloid (1-40) 

released into conditioned medium of human neuroblastoma (Ml 7) cells (Suzuki et al., 

1994) and produced by other cultured cell types (Selkoe, 1995). The APP717 valine to 

phenylalanine mutation has since been shown to produce AD-type pathology in 

transgenic mice (Games et a l , 1995). In addition, all people with Down’s syndrome 

(trisomy 21) who live into their late thirties and beyond develop a neuropathology 

indistinguishable from that of AD (Ashall and Goate, 1994), the APP gene being normal 

but over-expressed. This indicates that overproduction o f 13-amyloid results ultimately 

in extracellular deposition of the peptide. However, mutations in APP itself only 

account for about 2-3% of FAD cases (Barinaga, 1995).
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Chromosome 19

A gene on chromosome 19 that encodes apolipoprotein E (apo E) has been linked with 

some cases o f late-onset AD. Apo E is a carrier molecule, produced predominantly by 

astrocytes, that binds soluble 13-amyloid in vitro (Wisniewski et al., 1993), and is 

transported into neurones by members o f the low-density lipoprotein (LDL) receptor 

superfamily, predominantly the lipoprotein receptor related protein (LRP) (Martin, 

1999; Rosenberg, 2000). The apo E 84 allele has the highest affinity for LRP, the s3 

allele has intermediate affinity and the 82 allele binds least efficiently. Apo E s4 is 

strongly associated with late-onset familial and sporadic AD, although no mutations in 

apo E are associated with AD (Scott, 1993), indicating that possession o f this allele 

increases AD susceptibility, while presence o f the 82 allele decreases risk o f AD and 

delays onset, these effects being dose-dependent. In addition, presence o f the LRP C 

allele may be a risk factor for late-onset sporadic AD (Shastry and Giblin, 1999; 

Rosenberg, 2000). Apo E is found in senile plaques and has been shown in vitro to 

induce J3-amyloid filament formation (Sanan et al., 1994). It was subsequently 

demonstrated that, in AD brains, intracellular apo E correlates with 13-amyloid 

immunoreactivity within the same cytoplasmic granules, suggesting that the 

hydrophobic 13-amyloid is stabilised by this lipid (LaFerla et al., 1997). These cells, 

which were found in clusters, also exhibited DNA fragmentation, were found in areas of 

extracellular 13-amyloid deposition, and the extent o f DNA damage correlated with 

intracellular 13-amyloid immunoreactivity.

Chromosome 12

A further locus linked to late-onset AD is present on chromosome 12. On this

chromosome a candidate gene, which may contain deletions in AD patients, encodes
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a 2-macroglobulin, a serum protease inhibitor, which also binds to 13-amyloid and LRP 

(Martin, 1999; Rosenberg, 2000).

Chromosomes 14 and 1

Many mutations occur in a gene that was identified recently on chromosome 14 

(Sherrington et al., 1995), accounting for approximately 80% of early-onset autosomal 

dominant AD and resulting in very early and severe amyloidosis. The gene encodes a 

putative seven transmembrane-spanning protein, S I82 or presenilin 1 (PS1). There is 

convincing evidence that this protein contains the active site o f y-secretase 

APP-cleaving enzyme, in its C-terminal fragment, and that this becomes active on PS1 

endoproteolysis (Wolfe et al., 1999; Esler et a l ,  2000; Kimberley et al., 2000; Li et al., 

2000). One o f the PS1 mutations that is associated with familial AD, PS1AE9, which 

lacks the cytoplasmic loop (encoded by exon 9) containing the PS1 endoproteolytic 

cleavage site, appears to result in a stable, single-chain protein with y-secretase activity 

(Li et al., 2000). PS1 and the two peptides produced following PS1 proteolysis have 

been localised within the cell bodies and dendrites o f human NTera 2 neurones, and 

have been shown to reside in the ER and early Golgi in several cell types (Cook et al., 

1996; Parkinson, 1998; Wolfe et al., 1999). Following the discovery o f PS1, another 

early-onset FAD locus was identified on chromosome 1 (Levy-Lahad et al., 1995a; 

Rogaev et al., 1995). The protein encoded by this gene also is predicted to have seven 

transmembrane domains (and is hence named the second seven transmembrane gene 

associated with AD, STM2, or presenilin 2 (PS2)). It has a 67% identical amino acid 

sequence to SI82 (Levy-Lahad et al., 1995b), suggesting a similar function to the S I82 

protein, and there is evidence to suggest that it too can function as a y-secretase enzyme 

(Kimberley et al., 2000; Li et al., 2000). Other evidence indicates that an

31



apoptosis-linked gene, ALG-3, the mouse homologue o f PS2, may be protective 

against T cell receptor- and Fas-induced cell death (Vito et al., 1996). Presenilin 

mutations that occur in some cases of familial AD have been shown to increase 

production o f the more readily deposited 42-amino acid length 13-amyloid in transfected 

cells and transgenic mice (Citron et al., 1997), whereas a PS1 knockout reduced 

13-amyloid (40) and (42) production significantly (Steiner et a l ,  1999).

Chromosome 10

A further susceptibility locus for AD has been identified recently, residing on 

chromosome 10. This locus appears to influence the risk o f AD independently of apo E 

genotype (Myers et al., 2000), and is associated with elevated levels o f plasma 

13-amyloid (42) (Ertekin-Taner et a l , 2000). A further study found evidence for linkage 

of four further adjacent markers on chromosome lOq with AD, particularly late-onset 

(Bertram et a l , 2000). The locus of one of these markers is within 195 kb o f the insulin 

degrading enzyme gene, which has been postulated to degrade 13-amyloid in neurones 

and in microglia, implying that this chromosome 10 locus may influence, indirectly, 

intracellular 13-amyloid metabolism.

Sporadic Alzheimer’s disease

Most cases of AD are sporadic and occur with late-onset (over age 65). Some suggested

causes o f sporadic AD include toxic agents such as metal ions including aluminium,

zinc and iron, which have been shown to promote aggregation o f physiological

concentrations o f 13-amyloid (Mantyh et a l , 1993; Bush et a l ,  1994); infectious agents,

although spongiform changes that are apparent in Creutzfeldt-Jakob and

Gerstmann-Straussler disease are not part o f the AD pathology; neurotransmitter
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deficits, principally acetyl choline, demonstrated by a 90% drop in cortical choline 

acetyltransferase activity in AD; and selective death o f the cells responsible for the 

neurotransmitter deficits (Perry, 1991). Given the genetic evidence for the importance 

o f APP in AD, it can be postulated that abnormal processing o f APP due to 

environmental factors may result in overproduction of 13-amyloid or release o f abnormal 

13-amyloid. This 13-amyloid may be more prone to aggregation and/or might not be 

cleared as effectively as usual from the central nervous system (CNS), leading to plaque 

formation. There is evidence that 13-amyloid promotes neurite extension in its soluble 

form but becomes increasingly neurotoxic upon aggregation (Pike et al. , 1991; Howlett 

et al., 1995). 13-amyloid has been demonstrated to interact with endothelial cells with 

the result o f an excess o f superoxide radical production, which could lead to 

neurodegeneration (Thomas et al., 1996). Amyloid fibrils have been observed within 

the cytoplasm of endothelial cells in AD brain (Miyakawa et al., 1974). A recent study 

using patch-clamp techniques has suggested that aggregated 13-amyloid may produce 

neurotoxic effects by insertion into the cell membrane o f NT2N neurones as a 

Ca2+-carrying ionophore (Sanderson et al., 1997). Abnormally processed APP may also 

give rise to other altered APP degradation products that have a detrimental effect on 

neurones (Mattson et al., 1993).

Mitochondrial dysfunction has been implicated in sporadic AD (Davis et al., 1997;

Swerdlow et al., 1997; Tanaka et al., 1998; Beal, 2000). Cytoplasmic hybrid (cybrid)

cell lines have been created, by replacing the mitochondrial DNA o f NT2 cells or

human neuroblastoma SH-SY5Y cells with mitochondrial DNA o f sporadic AD

subjects (Swerdlow et al., 1997; Khan et al., 2000). These AD cybrids displayed

reduced cytochrome c oxidase (COX) activity, lowered mitochondrial membrane

potential, elevated 13-amyloid (40) and (42) secretion and intracellular 13-amyloid (40),
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and increased caspase-3 activity. Caspase enzymes, which participate in activation of 

cell death pathways, can cleave APP, resulting in increased 13-amyloid production, and 

caspase-3 protein is elevated in AD brains (Gervais et al., 1999). 13-amyloid (40) 

secretion by cybrids was normalised by caspase-3 inhibition, and lowered with 

antioxidant treatment (Khan et a l , 2000).

It has been demonstrated that 13-amyloid is produced by cultured cells during normal 

metabolism (Haass et a l , 1992a; Shoji et a l , 1992) and 13-amyloid is present in both 

normal human brain and cerebro-spinal fluid (CSF) (Tabaton et a l , 1994). This peptide 

varies in length from 39 to 43 amino acids (13-amyloid (39)-13-amyloid (43)). It has 

been shown that all diffuse plaques, thought to represent an early stage o f AD, contain 

13-amyloid (42/43) but not 13-amyloid (40), and that all neuritic plaques contain 

13-amyloid (42/43) while only one third o f them are 13-amyloid (40)-positive (Iwatsubo 

et a l ,  1994). Furthermore, the C-terminus o f 13-amyloid has been demonstrated to 

determine the rate o f formation o f amyloid deposits in vitro, 13-amyloid species that 

terminate at residues 39-40 being nucleated by those that include the C-terminal 

residues 42-43 (Jarrett et a l,  1993). Hence these longer 13-amyloid species are likely to 

be crucial to the initiation and/or acceleration o f development o f amyloid deposits in the 

central nervous system in AD. A further possibility is that higher than normal 

concentrations o f unrelated globular proteins could effectively reduce the critical 

concentration required for 13-amyloid fibrillization. For example, typical cytoplasm has 

a total protein concentration approaching 1M, so a burst o f  protein production 

associated with neuronal repair could result in fibrillization o f 13-amyloid when it is 

approaching its normal critical concentration (Lansbury, 1999).

34



Thus any genetic or environmental factor that affects the rate or manner of production 

or proteolysis o f APP, or the aggregation state of 3-amyloid in the brain, could result in 

amyloid deposition and/or neuronal injury.

Reduced cerebral blood flow and decreased oxidative glucose metabolism in AD brain 

indicate other factors that may contribute to development o f AD. There is often a 

marked vascular component to AD pathology and alterations to cerebral blood vessels 

have been described. There are thickenings, fragmentations and irregularities o f  

capillary basement membranes, with deposition of basement membrane proteoglycans, 

and 3-amyloid fibrils that project into the neuropil (de la Torre and Mussivand, 1993; 

Inoue et al., 1999). De la Torre and Mussivand suggested that alterations in the capillary 

basement membranes, along with reduced vessel elasticity, damage to vessels caused by 

amyloid deposits, or vessel degeneration due to genetic predisposition, may all 

contribute to abnormal blood flow patterns, and changes in shear stress and shear rate in 

vessel walls. This results in impaired blood flow and delivery o f nutrients, such as 

oxygen and glucose, to the brain. Neurones in area CA1 o f the hippocampus, which is 

affected severely in AD, are reported to be particularly susceptible to chronic 

cerebrovascular ischaemia. Affected neurones, when deprived o f energy substrates, 

trigger release o f diffusible glial mitogens that signal reactive astrocyte proliferation (de 

la Torre and Mussivand, 1993), and astrocytosis is indeed a feature o f AD pathology.

The role of cellular stress in Alzheimer’s disease

Factors that have been suggested to be involved in the pathogenesis o f AD and APP 

metabolism include reduced cerebral glucose metabolism (Hoyer, 1993; Meier-Ruge et 

al., 1994), oxidative stress and heat shock (Pappolla et al., 1995), mitochondrial
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dysfunction (Davis et a l , 1997; Swerdlow et al., 1997; Tanaka et al., 1998) and 

inflammatory activity (Schnabel, 1993). Inhibition o f oxidative energy metabolism in 

COS cells by sodium azide or carbonyl cyanide, a mitochondrial uncoupler, has been 

shown to increase the production o f potentially amyloidogenic C-terminal APP 

fragments, which accumulate in the Golgi complex (Gabuzda et al., 1994). This 

indicates that energy-related metabolic stress may alter APP processing in a way that 

increases 13-amyloid production or results in a change in mechanism of proteolysis that 

produces an abnormal 13-amyloid species. Heat shock induces APP secretion from 

HUVECs, followed by upregulation of APP mRNA and protein synthesis (Ciallella et 

al., 1994). APP accumulation following heat shock was reported to have a Golgi-like 

distribution in both HUVECs (Ciallella et al., 1994) and in stably transfected C6 glioma 

cells (Pappolla et al., 1995). Furthermore, glucocorticoids have been shown to enhance 

cell death caused by 13-amyloid- and glutamate-induced oxidative stress in rat and 

mouse hippocampal neurones (Behl et al., 1997). Glucocorticoid receptors may be 

dysfunctional or have a decreased level o f expression in the hippocampus AD (Wetzel 

et al., 1995), leading to an increase in glucocorticoid production in AD brain (Eber,

1996).

As mentioned above, it has been suggested that disturbance o f brain microcirculation is

responsible for the reduced cerebral blood flow and glucose and oxygen metabolism

that have been described in AD (de la Torre and Mussivand, 1993; de la Torre, 1997).

An alternative explanation of the reduction in oxidative glucose metabolism is that the

neuronal insulin receptors of the brain become desensitized, perhaps by increased levels

o f stress factors such as cortisol and catecholamines (Henneberg and Hoyer, 1995).

Insulin receptors are found with the highest density in the olfactory bulb, hypothalamus,

cerebral cortex and hippocampus, while insulin mRNA has been detected mostly in
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hippocampal pyramidal cells, followed by medial prefrontal cortex, entorhinal cortex, 

perirhinal cortex, thalamus and the olfactory bulb granule cell layer. Stimulation of 

neuronal insulin receptors in rats, with intracerebroventricularly administered insulin, 

increased brain energy metabolism, while experimental desensitisation o f neuronal 

insulin receptors resulted in decreased oxidative glucose metabolism, reduced energy 

formation and impairment of learning and memory (Henneberg and Hoyer, 1995).

Investigation of APP processing in a model human CNS neuronal 

system

In this study processing of APP and the effects of cellular stress were investigated in a 

system that bears a closer resemblance to neurones o f the human CNS. The cell line 

NTera 2/DI (NT2) is a pluripotent human embryonal carcinoma cell line which can be 

induced by treatment with retinoic acid to terminally differentiate into a neuronal 

phenotype (NT2N) (Andrews et a l ,  1984; Andrews, 1984). These neurones express 

many markers o f human CNS neurones, such as CNS neurofilament proteins, but not 

peripherin, a peripheral nervous system (PNS) neurofilament protein; several neuronal 

microtubule associated proteins (MAPs), including tau, but not a PNS isoform of tau; 

and many other neuronal markers such as NCAM and synaptophysin (Pleasure et a l ,  

1992). NT2 neurones also possess axons and functional dendrites (Pleasure et a l ,  

1992).

Undifferentiated NT2 stem cells can be studied alongside NT2N neurones as 

comparative models o f the processing o f APP in non-CNS cells versus CNS-type 

neurones. In this investigation, the intracellular localization o f APP has been 

demonstrated in stem cells and neurones by indirect immunocytochemical techniques,
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with the aim of providing a means of comparing APP processing in neurones versus 

equivalent non-neuronal cells. As discussed above, the effects o f metabolic stresses, 

implicated in AD, were studied in relation to APP localization in both the stem cells and 

neurones. The aim of this was to identify any differences in the responses o f the two 

different cell types to stress, and thus suggest reasons why the characteristic pathology 

of AD is restricted to the brain and not other tissues and organs. However, it has to be 

taken into account that the evidence provided by previous studies may sometimes be 

complicated by the subsequent discovery that commonly used antibodies to APP also 

recognise other members o f the APP family, the amyloid precursor-like proteins 1 and 

2 (APLP1 and 2). These proteins do not contain the 13-amyloid sequence but otherwise 

show great homology to APP (Webster et al., 1995). APLP2 is present in normal and 

AD human brain, in neurones, astrocytes, neuritic plaques and dystrophic neurites 

(Crain et a l , 1996), and is expressed by NT2 cells. Therefore great care must be taken 

in the selection o f antibodies to APP when studying its intracellular distribution, as 

discussed above. The distribution of APLP2 in NT2 cells was therefore compared with 

that o f APP under all experimental conditions that were employed to investigate APP.

Summary

This work focussed on clarification o f differences in processing and distribution o f  

various members o f the family o f amyloid precursor and amyloid precursor-like 

proteins in cultured neurones and/or human brains. Expression o f TGF-131 mRNA in 

human brains was also quantified, following its recent association, when expressed in 

combination with hAPP (V717F), with AD pathology in transgenic mice (Wyss-Coray 

e ta l ,  1997).
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APP was examined, in comparison with APLP2, in cultured NTera 2 cells, which share 

more similarities with CNS neurones than any other type o f cultured cell currently 

available. The effects o f cellular stresses were investigated on immunolocalisation o f  

APP, APLP2 and 13-amyloid. The potential for electron microscopical examination of 

APP distribution and processing in these cells was investigated briefly.

There is accumulating evidence for the importance o f KPI-APP in the development of 

AD pathology, as is discussed in detail elsewhere. Although KPI-APP mRNA has been 

examined in normal and AD human brains, KPI-APP protein has not. Therefore a 

protocol was established for examining KPI-APP protein in paraffin-embedded human 

brain sections by indirect immunohistochemistry, using a new anti-KPI antibody, and a 

study was carried out to investigate the expression and distribution o f this protein in 

normal and AD human brains.

Although TGF-131 protein has been localised immunohistochemically in normal and 

AD human brains, its mRNA has not been studied. Therefore TGF-131 mRNA was 

examined in human brains by in situ hybridization histochemistry, with the aim of  

characterising its expression levels and cellular distribution in normal aged controls 

versus AD individuals.
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CHAPTER 2: METHODS

Cell culture

NTera2 (NT2) stem cells were derived from an original P30 passage o f clone NT2/D1 

from the laboratory of P. W. Andrews (University o f Sheffield). Cells were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% foetal bovine serum (FBS), 

1% L-glutamine and 1% penicillin-streptomycin (cDMEM (complete DMEM)), at 

37°C under a humidified atmosphere containing 10% C02in air. Tissue culture plastic 

flasks with ventilated caps were used. FBS was heat-inactivated at 50°C for 30 minutes 

before use. Cells were passaged 1:3 every 3 to 4 days, when confluent, by scraping 

gently with sterile glass beads. This technique o f removing the cells from the flask 

detaches them in small clusters without damaging them greatly. Cells were replated at a

fk  0density above 5 x 10 cells per 75-cm flask. All contaminated waste material was 

disposed of in bleach or by autoclaving.

Freezing NT2 stem cells

At every passage of the stem cells, any cells that were not needed for differentiation or 

to maintain the stem cell cultures were frozen in liquid nitrogen. This allowed a stock of 

low passage (P) number (between P30 and P50) stem cells to be collected. These were 

recovered whenever the stem cell cultures became infected or passed beyond P50.

Freezing medium was made with 90% foetal calf serum (FCS) and 10% dimethyl 

sulphoxide (DMSO).

Cells were removed from the flask by scraping with sterile glass beads.
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Cells were spun down at 1500 rpm for 5 minutes and the supernatant was removed.

Cells were resuspended in freezing medium. The cells from two 75-cm 2 flasks were 

resuspended in 9ml freezing medium, and this suspension was frozen at in 1ml aliquots 

at -70°C. The vials in which the cells were frozen were placed in an insulated container 

at room temperature so that the freezing process occurred over several hours. This 

minimised damage to the cells that would be caused by more rapid freezing.

After three to four days the cells were transferred from -70°C to liquid nitrogen. 

Recovering NT2 stem cells

Stem cells that had been stored in liquid nitrogen were recovered to replace cultures that 

had passed beyond P50 or become infected. Stem cells were only kept until they 

reached P50 because each passage o f cells created a sub-culture o f the original stem 

cells. Therefore the cells become progressively less similar to the original phenotype 

with every successive passage. P50 was selected as the cut-off point because beyond 

this passage a lower yield of neurones was obtained on differentiation o f the stem cells.

Cells were removed from liquid nitrogen and thawed immediately in a water bath 

(Gallenkamp) at 37°C.

Complete DMEM was added dropwise, washing out the DMSO slowly so that the cells 

were not shocked by a sudden addition of medium.

Cells were centrifuged at 1500 rpm for 5 minutes.

The supernatant was removed and cells were resuspended in cDMEM.

The cell suspension was added to a 25-cm2 flask and placed in the incubator.
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Differentiation of NT2 stem cells to produce neuronal cultures

NT2 stem cells were harvested by incubation with O.Sjigml-1 trypsin containing

0.53mM ethylene-diaminetetraacetic acid (trypsin-EDTA) or cell dissociation solution 

(Sigma Chemical Co) for 5 minutes at 37°C. This yields a single cell suspension rather 

than the clumps o f cells obtained by scraping with glass beads. To obtain 99% pure 

neuronal cultures, these cells were replated at a density of 106 per 75-cm2 flask and fed 

weekly with 10-5M retinoic acid in cDMEM for 21 days.

Cells again were removed from the flasks with trypsin-EDTA or cell dissociation 

solution, split 1:2 and fed with cDMEM.

After 2 days cells were harvested using trypsin-EDTA or cell dissociation solution and

f t  0replated at a density of 3-9x10 per 25-cm flask in cDMEM with mitotic inhibitors. 

The inhibitors used were uridine, fluorodeoxyuridine (both used at lOpM), and cytosine 

arabinoside (used at lpM). The mitotic inhibitors prevented any non-neuronal cells 

from replicating. The neuronal cells, which were terminally differentiated and had 

therefore dropped out o f the cell cycle, remained unaffected by the mitotic inhibitors. 

Once the non-neuronal cells had been prevented from dividing by the mitotic inhibitors, 

the neurones formed a layer on top of the other cell types.

Cells were fed with cDMEM and inhibitors twice per week for 2 to 3 weeks. Then the 

neurones, which formed the top layer o f cells, were removed with trypsin-EDTA, cell 

dissociation solution, or mechanically, by striking the side o f the flask firmly. They 

were replated in flaskette chambers. Some o f these were not coated, some were coated 

with just poly-D-lysine, and others were coated with poly-D -lysine and matrigel
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(Collaborative Research). The neurones were fed twice per week with cDMEM and 

inhibitors.

Coating coverslips and chamber slides with poly-D-lysine and matrigel

This procedure was carried out in a sterile hood. 12mm diameter glass coverslips were 

used. These were etched in 6M hydrochloric acid, rinsed several times with distilled 

water, then sterilised with 70% ethanol (BDH) before use, then placed in the wells o f a 

24-well plate in a sterile hood and allowed to dry. The chamber slides consisted o f glass 

slides with 1, 2, 4 or 8 plastic chambers attached by a silicone seal. The coverslips and 

slides had to be coated with poly-D-lysine before the matrigel would adhere to the 

surface. Distilled water used in this procedure was sterilised by passing from a syringe 

through a 0.22pm filter (Nalgene).

A O.lmgml-1 stock o f poly-D-lysine was made using sterile distilled water. This was 

stored at -20°C.

The surface o f each coverslip or slide was aseptically coated with 5.0pgcm-2 (50pl of

O.lmgml-1 stock per cm2) poly-D-lysine. The 24-well plates/slides were rocked gently 

to ensure even coating of the surface.

After 5 minutes the excess solution was aspirated from the 24-well plate or chamber 

slides.

The coverslips or slides were allowed to air dry in the sterile hood for at least 2 hours. 

Those that were not required immediately were sealed in an airtight container and stored 

at room temperature for up to one month.
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Once the coverslips/slides were dry the matrigel was mixed to homogeneity using a 

pre-cooled (on ice) pipette. The tube of matrigel itself was kept on ice because it forms 

a gel rapidly above 4°C.

The matrigel was diluted 1:36 in cold DMEM in a pre-cooled tube.

Enough o f the diluted matrigel to cover the growth surface easily was added to each of 

the coverslips/chamber slides. This was lOOpl per well of an 8-well chamber slide. A 

bent, fire-polished pasteur pipette was used to spread the matrigel over the growth 

surface.

The matrigel-coated coverslips/slides were incubated in a 37°C incubator for 3 hours.

Any unbound material was aspirated and the coverslips or chambers were rinsed gently 

with DMEM. Cells were plated on the coated coverslips or chamber slides the same 

day.

Heat-shock of NT2 cells

Chamber slides containing NT2 stem cells or neurones were sealed by wrapping with 

plastic film.

The sealed flasks were transferred to an incubator at 42°C for 30 minutes.

Meanwhile, control slides that were not being heat-shocked were fixed (as described 

below) and stored at 4°C.

Following heat-shock the plastic film was removed from the chamber slides and the 

cells (except the “0 hours recovery” cells) were returned to the incubator at 37°C, 10% 

C 02.
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Cells that were given 0 hours’ recovery after heat-shock were fixed immediately. The 

rest of the cells were fixed following 1,4, 12 or 24 hours’ recovery at 37°C.

Immunocvtochemistrv

NT2 stem cells or neurones were fixed with -20°C methanol (BDH) or acetone (BDH) 

for 5 minutes, and some were further permeabilised in 0.5% triton X-100. Intracellular 

antigens were localised by indirect immunocytochemistry using mouse monoclonal and 

rabbit polyclonal primary antibodies (see Table 10, Appendix). Cells labelled with 

anti-13-amyloid primary antibody were pre-treated with 80% formic acid for 10 

minutes. Visualisation was achieved by fluorescein isothiocyanate (FITC)- or 

rhodamine (TRITC)-conjugated secondary antibodies, biotinylated secondary antibody 

followed with FITC- or TRITC-conjugated streptavidin, or by biotinylated secondary 

antibodies followed by avidin-HRP complex, developed with diaminobenzidine (DAB). 

Cells were examined by fluorescence or light microscopy respectively. In the case of the 

fluorescently-labelled secondary antibodies or streptavidin cells were then examined by 

confocal microscopy.

Fluorescent labelling:

This method of antigen detection was used for both NT2 stem cells and NT2 neurones.

Following fixation cells were re-hydrated in 0.1 M phosphate-buffered saline (PBS) for 

15 minutes twice.

Cells that were to be labelled with anti-13-amyloid antibody were incubated in 80% 

formic acid for 15 minutes then washed in PBS for 15 minutes three times.
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Endogenous peroxidase activity was quenched by incubating cells in 0.5% hydrogen 

peroxide (H2O2) in methanol for 25 minutes. Cells were then rinsed gently with PBS 

three times for 10 minutes.

Non-specific binding sites were blocked with 5% normal serum from the species in 

which the secondary antibody was raised in 3 mg/ml bovine serum albumin (BSA)/PBS. 

Other blockers that were tested were fish gelatin (2%, 5% in PBS), blotto (dried 

skimmed milk powder, 1%, 5% in PBS), BSA (1%, 5%, 30% in PBS), and foetal calf 

serum (FCS, 2%, 5% in PBS). Cells were then rinsed briefly with PBS.

Cells were incubated in primary antibody, diluted in 3% normal serum from the species 

in which the secondary antibody was raised, in 3 mg/ml BSA/PBS (or another blocker 

as described in (5) above), for 1 hour at room temperature or overnight at 4°C.

Cells were rinsed with PBS for 10 minutes three times. They were then incubated with 

secondary antibody conjugated to FITC, TRITC or biotin, diluted in PBS, for 30-45  

minutes at room temperature. The cells were rinsed with PBS for 10 minutes three 

times.

Cells that were labelled with biotinylated secondary antibody were incubated with 

FITC- or TRITC-conjugated streptavidin for 30 minutes then rinsed with PBS for 10 

minutes three times. Cells were mounted with anti-fade and the edges o f the coverslips 

were sealed with nail polish to prevent drying out.

Chromogenic labelling

This method of immunostaining was used for both NT2 stem cells and neurones.
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Following fixation cells were re-hydrated in 0.1M phosphate-buffered saline (PBS) for 

15 minutes twice. If required cells were microwaved in 0.05M Tris-HCl, pH 7.0, then 

washed in distilled water for 5 minutes three times.

Cells that were to be labelled with anti-B-amyloid antibody were incubated in 80% 

formic acid for 15 minutes then washed in PBS for 15 minutes three times.

Endogenous peroxidase activity was quenched by incubating cells in 0.5% H2O2 in 

methanol for 25 minutes. Cells were then washed in 0.1M PBS for 10 minutes three 

times.

Non-specific binding sites were blocked with normal serum (supplied in a Vectastain 

Elite ABC kit) from the species in which the secondary antibody was raised, as 

recommended in the manufacturers’ instructions. Cells were washed briefly in PBS.

Cells were incubated with primary antibody diluted in PBS containing 5% normal 

serum from the species in which the secondary antibody was raised for 1 hour at room 

temperature or overnight at 4°C.

The cells were washed in PBS for 10 minutes three times. They were then incubated for 

30 minutes at room temperature with secondary antibody conjugated to biotin from the 

Vectastain Elite ABC kit, diluted in PBS according to the manufacturers’ instructions. 

The cells were again washed in PBS for 10 minutes three times.

Cells were incubated with avidin and biotinylated horseradish peroxidase 

macromolecular complex (ABC) from the Vectastain Elite ABC kit for 30 minutes at 

room temperature. This complex was made 30 minutes before use, by addition o f
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Avidin DH and biotinylated horseradish peroxidase H reagents (from the kit) to PBS as 

described by the manufacturers’ instructions.

Cells were washed in PBS for 10 minutes three times then incubated with 

diaminobenzidine (DAB) peroxidase substrate solution until the desired staining 

intensity was reached. The cells were washed for 5 minutes in tap water then dehydrated 

through serial alcohols (70%, 80%, 95%, 100% x 2 ethanol (BDH)) to xylene. Cells 

were mounted with DePeX.

Localization of intracellular compartments using other markers

The following methods were used to localise nuclei and the endoplasmic reticulum (ER) 

in NT2 stem cells and neurones.

Nuclei

These were labelled with the dye bis-benzamide. Cells were fixed and steps 1 to 9 o f  

the fluorescent immunolabelling method (described above) were carried out. 

Bis-benzamide was added to a dilution o f 1:25 during the last 10 minutes o f the 

secondary antibody incubation.

Endoplasmic reticulum

Rhodamine-conjugated wheatgerm agglutinin (R-WGA) was used as an alternative 

marker for the ER. Fluorescence immunocytochemistry was carried out as described 

above, and R-WGA was added to the wells to a final concentration o f lOjig/ml in 0.1 M 

PBS 30 minutes prior to addition of the secondary antibody. The secondary antibody
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was added to the R-WGA in PBS for 30 minutes so that the total incubation time o f the 

cells with R-WGA was 1 hour.

Purification and concentration of antibodies using protein 

G-agarose

The mouse monoclonal antibodies FC8/A9 and EH4/D8 were purified and concentrated 

using protein G-agarose beads (GammaBind Plus Sepharose, Pharmacia).

The crude antibody was brought to room temperature and adjusted to pH7 with 0.2M 

Na2HP04, pH8.

5ml protein G binding buffer (0.02M sodium phosphate, 0.15M NaCl, pH7.4) was 

added to a vertical column, from a syringe attached to the top o f the column, and run 

through the outlet valve at the bottom of the column until no air bubbles remained.

lml slurry o f protein G beads in suspension was added to the column. Binding buffer 

was pumped through the column, using pressure from an air-filled syringe on top o f the 

column, until the beads had been packed down to the 0.5ml mark on the column, with

0.5ml buffer remaining on top of the beads, so that no air bubble was introduced (which 

would reduce binding and/or elution of the antibodies).

The pH-adjusted antibody was added carefully from a syringe to the top o f the column, 

taking care not to disturb the surface of the beads, and allowed by gravity to run through 

the column, the antibody binding to the protein G beads. The liquid collected from the 

bottom of the column was kept until it was ensured that the antibody was collected in a 

subsequent fraction eluted from the column, as described below.

49



The column was washed with 5ml binding buffer and the eluate was collected (fraction 

1).

The amount of 0.05M Tris-HCl, pH8, needed to neutralise 1ml eluting buffer (0.1M 

glycine, pH 2.6) was determined. 1ml aliquots o f eluting buffer were added to 50pl, 

lOOjil, 150pl, 200|nl, 250pl and 300pl Tris-HCl, pH8, and tested with pH paper. It was 

found that 250pl 0.5M Tris-HCl, pH8, was needed to neutralise each 1ml eluting 

buffer.

The antibody was eluted from the column by adding 5ml eluting buffer to the top of the 

column and allowing it to run through by gravity. Five 1ml aliquots of eluate were 

collected (fractions 2-6) in 1.5ml microcentrifuge tubes. 250pl 0.5M Tris-HCl, pH8, 

was added to each 1ml aliquot o f eluate immediately after collection from the column, 

to neutralise the eluate and therefore preserve the activity o f any antibody contained 

within each fraction.

The column of protein G beads was cleaned with 1.5ml 10% acetic acid (BDH), the 

eluate was collected (fraction 7) and 1ml 0.5M Tris-HCl, pH8, was added to neutralise 

it, in case any antibody was collected in this fraction.

The beads were equilibrated with 20ml binding buffer and the column was sealed and 

stored at 4°C for re-use.

The optical densities and protein concentrations o f the fractions collected were 

measured at 280nm using a Genequant II spectrophotometer.
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ELISA

Enzyme-linked immunosorbent assay (ELISA) was used to confirm that the antibodies 

concentrated with protein G were still active, and to determine the relative 

concentrations o f the original and concentrated samples. Alkaline phosphatase- 

conjugated secondary antibody was used, followed by the substrate para-nitrophenyl 

phosphate. The absorbance of the reaction product, para-nitrophenol, was measured 

using a plate reader.

‘Test’ wells o f a flat-bottomed 96-well plate were coated with lOOpl per well o f 

5jng/ml antigen conjugated to BSA, in PBS. lOOpl per well o f 5pg/ml BSA/PBS was 

added to ‘control’ wells.

The plate was wrapped in plastic film to prevent evaporation and incubated at room 

temperature overnight or at 37°C for 1 hour.

The plate was rinsed with distilled water from a wash bottle to remove any unbound 

material.

All wells were blocked with lOOpl 1 mg/ml BSA/TBS for 30 minutes. The plate was 

rinsed with distilled water.

lOOpl o f primary antibody diluted in BS A/TBS was added to each well and incubated 

for 2 hours at room temperature. The plate was rinsed three times with TBS.

lOOpl of alkaline phosphatase-conjugated secondary antibody, 1:1000 in BSA/TBS, 

was added to each well and incubated for 45 minutes at room temperature. The plate 

was rinsed three times with TBS.
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IOOjliI of lOmM para-nitrophenyl phosphate (substrate) in alkaline phosphate (AP)

buffer was added to each well. The reaction was stopped by addition o f lOOpl per well

o f 1M NaOH (BDH). Absorbance was measured using a plate reader.

Electron Microscopy

Four different methods were tested for collecting, fixing and embedding NT2 stem cells

and neurones:

Stem cells:

1. Stem cells were removed from the flasks with cell dissociation solution (Sigma 

Chemical Co), spun down at 1200 rpm for 5 minutes and fixed as described below. 

They were then embedded in Unicryl resin.

Neurones:

2. Neurones were scraped from the flask using a flexible plastic rod and the largest 

individual clusters o f neurones were selected and placed in glass vials, fixed as 

described below and stained with osmium tetroxide. These cells were then 

embedded in araldite resin in gelatine capsules as described below.

3. Neurones were fixed in situ on the glass slides, stained with osmium tetroxide and 

embedded in araldite resin by placing pre-hardened blocks onto a small amount of  

unpolymerised resin over the clusters of neuronal cell bodies. When the whole block 

was polymerised it was snapped off, with the neurones now embedded in it.

4. Neurones were removed from the flasks mechanically (by striking the side of the 

flask), and spun down in a bench-top microcentrifuge (Gallenkamp) in 1.5ml
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microcentrifuge tubes (Scotlab) at 1000 rpm for 5 minutes (which should be slow 

enough to preserve morphology since NT2 neurones will still grow following 

centrifugation at this speed). The neurones were then fixed by various methods, as 

described below. Some of these neurones were stained with osmium tetroxide and 

embedded in araldite resin and some were embedded in Unicryl resin.

Fixing cells for electron microscopy

Before staining with osmium tetroxide at least three samples of neurones collected 

by each of the methods described above were fixed for one hour in one of each of 

the following fixatives:

• 4% paraformaldehyde (BDH) in 0.1M phosphate-buffered saline (PBS)

• 4% paraformaldehyde + 1% glutaraldehyde (BDH) in 0.1 M PBS

• 2% paraformaldehyde in 0.1M PBS

• 2% paraformaldehyde + 1% glutaraldehyde in 0 .1M PBS

• 2% glutaraldehyde in 0.1 M PBS

Cells were then washed briefly with 0.1M PBS.

Before embedding in “Unicryl” resin, neurones which were to be used for 

immunocytochemical studies (not stained with osmium tetroxide) were fixed for 10 

minutes in one of each of the following:

• 4% paraformaldehyde in 0.1M PBS

• 4% paraformaldehyde + 0.05% glutaraldehyde in 0.1M PBS
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• 2% paraformaldehyde in 0.1M PBS

• 2% paraformaldehyde + 0.05% glutaraldehyde in 0 .1M PBS 

Cells were then washed briefly with 0.1M PBS.

Embedding cells in araldite resin

Only NT2 neurones, not stem cells, were embedded in araldite resin. Following 

collection and fixation o f the neurones by the three methods (2, 3 and 4) described 

above they were processed further either floating in glass vials (method 2), in situ on the 

slides (method 3), or as pellets in the bottoms of 1.5ml microcentrifuge tubes (Scotlab) 

(method 4). When the cells were in vials or microcentrifuge tubes the reagents were 

carefully added and removed with pasteur pipettes. When the neurones were still 

attached to the slides the reagents were pipetted onto the horizontal slides, then poured 

off following incubation.

1. The PBS used to wash the fixative from the cells was removed.

2. Osmium tetroxide was added and incubated for 1 hour at room temperature in the 

fume hood.

3. Cells were washed with 0.1M PBS for 5 minutes three times.

4. The cells were dehydrated in serial alcohols: 2 minutes in each o f 50%, 75%, 95%, 

100%, then 100% dehydrated ethanol (BDH).

5. 1,2-epoxypropane was added and incubated for 30 minutes at room temperature in 

the fume hood.
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6. The 1,2-epoxypropane was removed and replaced with 1:1 epoxypropane:araldite 

resin containing 1 drop (from a pasteur pipette) o f B.D.M.A. accelerator per ml of  

resin. This was incubated overnight on a mixer in the fume hood.

7. The cells were incubated with araldite resin containing 1 drop o f B.D.M.A. 

accelerator per ml of resin for 8 hours in the fume hood.

8 .

• Clusters o f neurones collected by scraping (method 2 above) were transferred to 

gelatine capsules with 2 drops of araldite resin + accelerator in the bottom, then 

the capsules were filled to the top with resin + accelerator. These were then 

placed in an oven at 60°C for 48 hours until the resin had polymerised. (If left in 

the oven for longer than 48 hours the resin became brittle and sections could not 

be cut from it.)

• Neurones that were processed on the slides (method 3 above) were covered with 

a small drop of unpolymerised araldite resin + accelerator, then pre-hardened 

blocks of resin were positioned over this and the slides were incubated at 60°C 

in the oven for 48 hours.

The pre-hardened blocks o f resin were prepared by filling empty gelatine 

capsules with resin + accelerator and incubating in the oven at 60°C for 48 

hours, then the ends of the polymerised blocks were sawn o ff giving a flat 

surface to place over the cells.

55



• Neuronal pellets collected by centrifugation were embedded by filling the 

microcentrifuge tubes with araldite resin + accelerator. These were then incubated in 

the oven at 60°C for 48 hours until the resin was polymerised.

9. The polymerised resin containing the neurones was removed from the gelatine 

capsules and the microcentrifuge tubes using a razor blade. The blocks o f  

polymerised resin on the glass cell culture slides were removed by trimming around 

the edges of the resin on the slides with a razor blade then carefully lifting the block 

away from the slide with the aid of the razor blade.

Embedding cells in Unicryl resin

Stem cells:

1. Stem cells were removed from the flasks by incubating with cell dissociation 

solution (Sigma Chemical Co) for 5 minutes at 37°C.

2. They were spun down in 1.5ml microcentrifuge tubes at 1200 rpm for 5 minutes, 

resuspended in fixative (one of each of the four described above) and agitated gently 

for 10 minutes to ensure fixation of all o f the cells.

3. The cells were spun down again at 1000 rpm for 5 minutes then rinsed gently with

0.1M PBS avoiding disturbing the pellet.

4. The cell pellets were then dehydrated in graded alcohols: 2 minutes in each o f 50%, 

75%, 90%, 100% and 100% dehydrated ethanol (BDH).

5. 1ml Unicryl resin was added to each o f the microcentrifuge tubes and incubated 

overnight at 4°C.

56



6. The Unicryl resin was aspirated and replaced with 1ml per tube o f fresh resin, and 

left under an ultra-violet light in the cryostat (Bright Instrument Co. Ltd.) until 

polymerised (2-3 days). Initially tubes were left in different positions in the cryostat 

to determine the optimum position (and therefore temperature) for polymerisation of 

the resin. Once this had been determined the tubes were always left in the same 

place in the cryostat during polymerisation. The ultra-violet lamp was placed 15cm 

away from the tubes.

7. The microcentrifuge tubes were cut away from the polymerised blocks of resin with 

a razor blade.

Neurones:

1. Neurones were removed from the flasks mechanically (by striking the side o f the 

flask)

2. The neurones were spun down in 1.5ml microcentrifuge tubes at 1000 rpm for 5 

minutes (which should be slow enough to preserve morphology since NT2 neurones 

will still grow following centrifugation at this speed).

3. The neurones were resuspended in fixative and agitated gently for 10 minutes, then 

they were spun down again, rinsed, dehydrated and embedded as described above 

(steps 3-7) for stem cells.

Coating nickel grids with pyroxylin

A water bath was prepared in a glass dish (surface area approximately 15cm x 15cm)

and dust was removed from the surface of the water by dragging fibre-free velin paper

across it.
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One drop (from a pasteur pipette) o f 1.5% pyroxylin in amyl acetate was added to the 

surface of the water bath.

Once the pyroxylin had spread over the entire surface o f the water bath (seen as a 

multicoloured sheen on the water surface) the nickel grids were placed one at a time, in 

rows, on the surface. The grids were placed dull surface facing downwards since the 

sections were to be collected on the dull surface.

A square of bench-coating paper was used to collect the grids from the water bath. The 

paper was held shiny side facing the grids and rocked swiftly across the grids so that 

they stuck to the paper.

The grids were dried overnight in a petri dish under a lamp, then removed from the 

paper when needed.

Cutting and collecting sections for EM

Sections were cut with a Reichert ultra-microtome. Glass knives were made and a 

“boat” was made on each knife by sticking foil tape loosely around the top o f the knife, 

forming a well. This was sealed with paraffin wax, filled with water, and the sections 

were allowed to float onto the water when cut. Semi-thin sections were collected from 

the water bath with a paint brush and placed on glass microscope slides. Ultra-thin 

sections from araldite resin blocks were collected on formvar-coated copper grids and 

sections from Unicryl resin blocks were collected on pyroxylin-coated nickel grids.

Staining semi-thin sections with toluidine blue

The section(s) on each slide were covered with toluidine blue and the slides were placed 

on a hot-plate for approximately 2 minutes, not allowing the toluidine blue to dry.
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The toluidine blue was washed off with 70% ethanol (BDH) from a wash bottle. This 

removed excess stain from the tissue.

The sections were rinsed with distilled water from a wash bottle and observed under a 

light microscope.

Staining ultra-thin sections with uranyl acetate and lead citrate

A square of parafilm (American National Can) was placed in the bottom of a black petri 

dish with the surface of the parafilm that was adjacent to the protective paper facing 

upwards.

For each grid that was to be stained a drop of uranyl acetate was placed on the parafilm 

with a pasteur pipette.

A grid was placed carefully onto each drop o f uranyl acetate with the section facing 

downwards. The lid was put on the petri dish to exclude light and the sections were 

incubated for 15-20 minutes.

Each grid was removed with a pair of forceps and rinsed carefully with distilled water 

from a wash bottle. Excess water was blotted from the grids with filter paper 

(Whatman).

A drop o f lead citrate for each grid was placed on a fresh square o f parafilm in the petri 

dish. Care was taken not to breathe on the lead citrate because carbon dioxide reacts 

with the lead citrate to form lead oxide crystals. These crystals appear as black deposits 

under the electron microscope, obscuring the section.
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Each grid was placed, section down, onto a drop of lead citrate, the lid was replaced on 

the petri dish and the sections were incubated with the lead citrate for 2 minutes.

The sections were rinsed with distilled water from a wash bottle and blotted with filter 

paper to remove excess water, then stored for examination under the electron 

microscope.

In situ hybridization

AD and control brains (numbered S24-S158) were donated via the Alzheimer’s disease 

Society from Yorkshire to this laboratory directly. Pathological diagnosis was carried 

out by Professor R. C. A. Pearson in this laboratory. The tissue sections used were 

lOpm-thick frozen sections that had previously been mounted on gelatin-coated glass 

microscope slides and pre-treated with 4% paraformaldehyde (BDH), 0.25% acetic 

anhydride in triethanolamine hydrochloride and dehydrated in alcohols and chloroform 

(BDH). The oligonucleotide probe was labelled with [35S]. All equipment and solutions 

used for in situ hybridization were autoclaved to destroy any enzymes (nucleases, 

particularly ribonucleases) with which they may have been contaminated. Gloves were 

worn at all times to minimise contamination by ribonucleases from the skin.

The sequence of the TGF-131 antisense oligoprobe (Gibco BRL) was:

5’CGT GGA GCT GAA GCA ATA GTT GGT GTC CAG3’

The sequence o f the TGF-131 sense oligoprobe (Gibco BRL) was:

5’CTG GAC ACC AAC TAT TGC TTC AGC TCC ACG3’
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Radiolabelling of oligonucleotide probe

This procedure was carried out using an “oligonucleotide 3’ end labelling system” 

(NEN/DuPont). The oligoprobe was labelled with 35SdATP. 5pl oligoprobe, 2.5pl 

C0 CI2 , 12.5jnl terminal transferase reaction buffer, 7.5pl pure H2O (from the kit), 5pl 

35SdATP and 2.5pl terminal transferase enzyme were added to a reaction vial. This was 

spun down in a centrifuge at 10 000 rpm for 10 seconds to collect the liquid at the 

bottom of the vial. The vial containing the reaction mixture was floated in a water bath 

(Gallenkamp) at 37°C for 1 hour. Following the incubation the reaction was stopped by 

adding 400pl reagent A (from the kit) and cooling on ice.

Separation of radiolabelled oligoprobe from unincorporated nucleotides

The radiolabelled probe was separated chromatographically from unincorporated 

nucleotides using a “NENSORB” nucleic acid purification cartridge (NEN/DuPont) as 

follows:

The sorbant was settled to the bottom of the purification cartridge by gently tapping it, 

then the cartridge was clamped vertically.

2ml 100% methanol (HPLC grade; BDH) was added to the purification cartridge to 

pre-wet the sorbant. This was gently pushed through the column with a syringe until the 

meniscus reached the top of the sorbant, taking care not to allow the column to dry out.

2ml Reagent A from the oligonucleotide 3 ’end labelling system (NEP-100; 

NEN/DuPont) was pushed through the column slowly with the syringe.
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The sample containing the labelled probe was added to the cartridge and pushed through 

gently. The effluent was collected in a microcentrifuge tube (fraction 1). Any 

unincorporated nucleotides should have been collected in this fraction.

The cartridge was washed gently with 2ml Reagent A and the effluent was collected in 

microcentrifuge tubes (fractions 2 and 3).

The radiolabelled probe was eluted with 1ml 50% ethanol (BDH). As this was pushed 

through the column 3 drops o f the effluent were collected in tube 4, 14 drops in tube 5, 

5 drops in tube 6 and the rest in tube 7.

5pl of each fraction was placed in a scintillation tube with 4ml scintillant (Optiphase, 

Pharmacia LKB) and counted on the scintillation counter (Pharmacia LKB). The 

highest level of radioactivity corresponds to the fraction containing most o f the labelled 

probe.

The labelled probe was stored at 4°C until used (less than 48 hours).

Care was taken at all times to ensure that the column did not dry out because this would 

introduce air bubbles that would reduce binding and/or elution o f the probe.

In situ hybridization procedure

Calculation of probe labelling

The value obtained from the scintillation counter gives the number o f counts in 5pi o f  

the fraction containing the labelled probe. From this the volume containing 106 cpm was 

calculated, and this volume, diluted in hybridization buffer, was added to each section 

as follows:
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Dilution of probe in hybridization buffer

Sufficient hybridization buffer was thawed so that all o f the sections could be covered 

with lOOjul o f buffer. The tube containing the hybridization buffer was placed in a 

beaker o f boiling water for 10 minutes. The buffer was then quenched by placing the 

tube in an ice-filled container.

The volume o f probe required to give a final activity of 106 counts per minute (cpm) 

was added to the hybridization buffer along with 1M dithiothreitol (DTT) to a final 

concentration of 1% (v/v). This was mixed thoroughly on the “whirlimix”.

Calculation of the melt temperature

The melt temperature, Tm, (the temperature at which 50% o f the hybrids will 

spontaneously dissociate) was calculated using the following formula:

Tm (°C) = 16.61og[M] + 0.41[Pgc] + 81.5 -  Pm -  B/L -  0.65[Pf]

Where:

M = molar concentration of Na+, to a maximum of 0.5 (1 x SSC contains 0.165M Na+),

Pgc = percentage of guanine and cytosine in the probe sequence,

Pm = percentage of mismatches between the probe and the target mRNA (usually = 0 

for synthetic oligoprobes),

Pf = percentage o f formamide in the buffer,

B = 675 for synthetic oligonucleotides of up to 100 bases,

L = probe length in bases.
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Hybridization procedure

The incubator was set to the incubation temperature (Ti) for hybridization. This was 

15°C lower than the Tm calculated using the formula above.

2 sheets of filter paper (Whatman, no. 1) were placed in the bottom of a bioassay dish 

(Nunc). This was dampened with 4x standard citrate saline (SSC) to keep the chambers 

humid and prevent the sections from drying out.

The slides were laid on the filter paper and each section was covered with lOOpil 

hybridization buffer containing 106 cpm labelled probe and 1% DTT.

Each section was covered with a square of parafilm (American National Can) to help 

prevent evaporation.

The lids were placed on the trays (Just Plastics Alternatives) and the sections were 

incubated overnight at the Ti.

Post-hybridization washing

This removes excess, unhybridized probe from the sections. Care was taken not to allow 

the slides to dry out until the washing procedure was finished. If the slides are allowed 

to dry this increases the background staining dramatically, over the slide itself as well as 

the section. The washing temperature (Tw) used was 15°C lower than the Tm in 

washing buffer, calculated using the formula described above.

The squares o f parafilm were removed from the sections by dipping the slides into a 

large beaker o f lx  SSC at room temperature. Each slide was immediately transferred to 

a rack in a container filled with lx  SSC so that the slides were not allowed to dry out.
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When the parafilm had been removed from all of the slides, the racks o f sections were 

washed in lx  SSC at Tw for 15 minutes. This was repeated 4 times.

The sections were washed in fresh lx  SSC at room temperature for at least 1 hour.

The sections were dipped briefly in purified water (MilliRo 6 Plus, Millipore) to remove 

excess salt.

The slides were laid on laboratory paper, covered and left to dry overnight. 

Autoradiography using film

The sections were exposed to tritium sensitive film (Hyperfilm, Amersham). This film 

requires long exposure times but has a fine grain emulsion, thus giving good 

localisation of signal.

Rows o f the slides were attached to card with double-sided sticky tape, the sections 

facing away from the card.

In the darkroom, the card was placed in the x-ray cassette (Genetic Research 

Instrumentation, Ltd.). The film was laid against the slides with the emulsion-coated 

surface of the film facing the sections.

The cassette was sealed tightly to exclude any light and stored at room temperature for 

3-5 weeks to allow exposure of the sections to the film.

The following solutions were made up for developing the film:

• Developer: 400ml Contrast FF (Ilford) in 1600ml purified water

• Stop bath: 40ml glacial acetic acid (BDH) in 1960ml purified water (2% v/v)
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• Fixer: 400ml Hypam Fixer (Ilford) in 1600 ml purified water

In the darkroom, the film was developed by immersing in trays (Just Plastics 

Alternatives) containing these solutions in the following order:

a). Developer (5 minutes).

b). Stop bath (2% acetic acid) (30 seconds).

c). Fixer (5 minutes).

d). Tap water (at least 10 minutes). The tap was kept running slowly during this 

wash.

The film was hung up to air dry.

Autoradiography using dipped sections

Following hybridization of sections the slides were dipped in photographic emulsion 

(K5 Nuclear emulsion, Ilford). This allows more precise localisation (to single cells

O f
when using S) o f the signal. The radioactivity from the hybridized probe exposes the 

silver grains in the emulsion. The silver grains can be seen over the site o f hybridization 

following development.

This procedure was carried out following exposure o f the sections to tritium sensitive 

film.

The emulsion was liquefied from its solid form in the dark room. The emulsion was 

transferred, using plastic forceps, into a glass cylinder in a water bath (Gallenkamp) at 

43-45°C until liquefied (about 45 minutes).
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The emulsion was diluted with an equal volume o f purified water containing a drop of  

glycerol per 10ml water, at 45°C, and mixed with a glass rod. Care was taken not to 

introduce air bubbles. The glycerol was added to help to ‘plasticize’ the emulsion.

The emulsion was left until a blank slide could be dipped into it without bubbles being 

present in the layer of emulsion coating the slide.

Each of the slides with hybidized sections on them was dipped into the emulsion, then 

removed slowly and steadily to coat them with a layer of emulsion of even thickness.

The back of each slide was wiped clean and placed flat on an ice-cold metal plate until 

the emulsion formed into a gel (approximately 15 minutes).

The slides were placed flat on the bench at room temperature to dry (2-3 hours).

Once dry the slides were placed in racks in light-tight boxes containing silica gel (a 

drying agent) (BDH) and wrapped tightly in black plastic. Decreased humidity 

minimises fading of the image. The boxes were placed in the refrigerator for 8 weeks to 

expose the emulsion to the sections.

Before developing, the slides were warmed to room temperature. In the darkroom, the 

slides were developed by immersing in these solutions in the following order:

a). Developer (Ilford Phenisol, diluted 1:4 with purified water, 2 minutes).

b). Stop bath (2% acetic acid, 30 seconds).

c). Fixer (30% w/v sodium thiosulphate (BDH) in purified water, 5 minutes).

d). Cold, running tap water (30 minutes).
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e). Purified water (briefly).

Sections were counterstained with cresyl violet as follows:

The slides were immersed in 0.1% cresyl violet for 1-2 minutes, then dehydrated in 

serial alcohols (70%, 80%, 95%, 100% x 2, 2 minutes in each).

The slides were incubated in xylene for at least 15 minutes, then the sections were 

coverslipped using DPX as mountant.

Quantification of autoradiography

Quantification o f the autoradiographic signal from film allows analysis o f regional 

distribution o f signal. The signal from dipped sections shows the cellular distribution of 

the hybridized probe. However, the signal from the dipped sections could not be 

quantified because there was not sufficient signal present.

Film autoradiography

The film was transilluminated with a light box and the grey density was measured using 

a video camera and “Freelance” Image Analysis system. The ambient light level was 

kept constant by carrying out the quantification in a dark room.

“Shade correction” was used to control for differences in background grey level 

between films. The grey level of a blank area of the film was measured and this was 

subtracted from every autoradiogram image captured from that film. The mean grey 

level o f 10 circular areas o f the same size was calculated for both the grey matter 

(cortex) and white matter of each section.
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The lens diaphragm and magnification o f the video camera were kept constant so that 

all measurements were comparable. The film was clipped down onto the light box so 

that it did not curl up, altering the grey level measured.

Immunohistochemistrv

Blocks o f temporal and visual cortex were available from the brains o f 16 normal and 

14 Alzheimer cases. AD patients were those of Professor Gordon Wilcock in Bristol. 

Brains were collected with fully informed consent. Patients were at end-stage o f 

dementia. Pathological diagnosis was carried out by Dr. J. W. Neal in Cardiff and 

paraffin-embedded blocks were provided. The brains had been fixed in 10% formalin 

and the blocks were stored in 10% formalin prior to embedding in paraffin wax. Further 

AD brains (numbered S 125—S I81) were donated via the Alzheimer’s disease Society 

from Yorkshire to this laboratory directly, and pathological diagnosis was carried out in 

this laboratory by Professor R. C. A. Pearson. These brains had been fixed in 10% 

formalin and blocks o f middle temporal cortex or whole temporal cortex were 

embedded in paraffin wax as described below.

Embedding blocks of human brain tissue in paraffin wax

Steps 1-5 were carried out in the fume hood.

1. Blocks were taken from 10% formalin and incubated overnight in 70% ethanol 

(BDH).

2. The blocks were incubated in 80% then 95% ethanol, each for 2 hours.
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3. The blocks were incubated in 100% ethanol for 1 hour, then transferred to fresh 

100% ethanol for a further hour.

4. The tissue was incubated in chloroform (BDH) overnight.

5. The blocks were transferred to jars of hot (60°C) liquid paraffin wax in an incubator 

for 3 hours, then this was replaced with fresh paraffin wax for a further 3 hours.

6. The paraffin wax was replaced again, the incubator was sealed and a pump was used 

to create a vacuum in the incubator for 3 hours. This ensured that the wax penetrated 

the brain tissue fully.

7. The blocks o f brain tissue were embedded in paraffin wax that was then allowed to 

cool and harden overnight at room temperature.

Cutting and mounting paraffin sections of human brain tissue

10pm sections were cut using a Spencer ‘820’ rotary microtome.

Sections were floated on a water bath (Gallenkamp) at approximately 45°C and 

collected on tespa-coated glass microscope slides.

The sections were blotted gently with fibre-free paper to remove excess water then 

dried overnight in an incubator at 60°C.

Immunohistochemical staining of paraffin-embedded human brain 

sections

When staining paraffin sections 0.1M tris-buffered saline (TBS) was used instead o f

0.1M PBS that was used when staining NT2 cells.
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1. Sections were de-waxed in xylene for 20 minutes.

2. Sections were hydrated through serial alcohols (100% x 2, 95%, 80% then 70% 

ethanol, 2 minutes each) to distilled water (5 minutes).

3. If required sections were microwaved in 0.05M Tris-HCl, pH 7.0, then washed in 

distilled water for 5 minutes three times.

4. Sections that were to be labelled with anti-B-amyloid antibody were incubated in 

80% formic acid for 15 minutes then washed in 0.1M TBS for 15 minutes three 

times.

5. Endogenous peroxidase activity was quenched by incubating sections in 0.5% H2O2 

in methanol (BDH) for 25 minutes.

6. Sections were washed in TBS for 10 minutes three times.

7. Non-specific binding sites were blocked with normal serum (supplied in a 

Vectastain Elite ABC kit) from the species in which the secondary antibody was 

raised, as recommended in the manufacturers’ instructions.

8. Sections were washed briefly in TBS.

9. Sections were incubated with primary antibody diluted in TBS containing 3% triton 

X-100 and 3mg/ml carrageenan for 1 hour at room temperature or overnight at 4°C.

10. Sections were washed in TBS for 10 minutes three times.

1 1 .Sections were incubated for 30 minutes at room temperature with secondary 

antibody conjugated to biotin (from the Vectastain Elite ABC kit), diluted in TBS 

according to the manufacturers’ instructions.



12. Sections were washed in TBS for 10 minutes three times.

13 .Sections were incubated with avidin and biotinylated horseradish peroxidase 

macromolecular complex (ABC) from the Vectastain Elite ABC kit for 30 minutes 

at room temperature. This complex was made 30 minutes before use, by addition of 

Avidin DH and biotinylated horseradish peroxidase H reagents (from the kit) to 

TBS as described by the manufacturers’ instructions.

14. Sections were washed in TBS for 10 minutes three times.

1 5 .Sections were incubated with diaminobenzidine (DAB) peroxidase substrate 

solution, enhanced with nickel, until the desired staining intensity was reached.

16. Sections were washed for 5 minutes in tap water.

17 .Sections were dehydrated through serial alcohols (70%, 80%, 95%, 100% x 2 

ethanol) to xylene.

18. Sections were mounted with DePeX.

19 .Photographs o f the stained sections were taken using a Leitz ‘Dialux 22’ 

microscope.

Steps 1, 2, 4 and 14-17 were carried out in the fume hood.

Immunolabelling of KPI-APP in human brain sections

This immunolabelling procedure included treatment o f tissue sections with

2-mercaptoethanol and iodoacetic acid, as follows:
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Endogenous peroxidase activity was quenched by incubation in 0.5% H2O2 (Sigma 

Chemical Co.) in methanol.

Sections were microwaved in 0.05M TRIS-HCL (BDH Laboratory Supplies), pH 7.0 

for 7 minutes.

Disulphide bonds were reduced with 0.14M 2-mercaptoethanol (Sigma Chemical Co.) 

in 0.5M TRIS.HC1 pH 8 and ImM EDTA for 3 hours in the dark at room temperature.

Sections were washed for 3 minutes in distilled water and reduced sulphydryl bonds 

were alkylated in 250mgml-1 iodoacetic acid (Sigma Chemical Co.) in 0.1M NaOH 

(BDH), diluted 1 in 10 in 0.5M TRIS.HC1 pH 8 and ImM EDTA, in the dark at room 

temperature for 20 minutes.

Immunostaining was carried out using a Vectastain Elite ABC kit (Vector 

Laboratories), as above.

Sections were incubated with anti-KPI antibody, at 1:400 dilution, overnight at 4°C.

Visualisation o f the secondary antibody was achieved using diaminobenzidine (DAB), 

enhanced with nickel (Vector Laboratories).

Quantification of KPI-containing APP in human brain sections

Following immunohistochemical localisation o f KPI-containing APP isoforms 

(KPI-APP) in normal and Alzheimer’s disease (AD) paraffin-embedded brain sections, 

superficial, middle and deep cortical KPI-APP load was quantified using ‘Freelance’ 

image analysis. Sections were analysed blind by colour-coding and numbering slides.
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During image analysis the ambient light level was kept constant by working in a 

darkroom and illumination o f the slides by the microscope lamp was kept constant. 

“Shade correction” was used to subtract the background grey level (at the edge of the 

coverslip, outside the section) from the grey levels measured from the sections. SI78 

was used as a reference for image analysis by inclusion with each batch o f slides that 

was labelled. S I78 therefore controlled for differences in labelling intensity between 

batches o f sections that were immunostained separately. Each reference section was 

used to determine the threshold for grey level measurement for the corresponding batch 

o f slides. The mean grey level recorded from each section was expressed as a 

percentage o f the mean grey level of the reference section from the same batch. The 

reference sections were used also to select the minimum object area that would be 

measured on each section in order that all cells would be measured. In temporal cortex 

this was 20pm2 and in visual cortex the minimum object area was 10pm2. The number 

of objects above the minimum grey level and minimum object area was then measured 

in each section, and the area and mean grey level o f each o f these objects were 

measured. Large blood vessels and plaques were eliminated from the objects selected by 

the computer for measurement, so that as far as possible the only objects that were 

measured were cells.

Measurement of amyloid load of temporal cortex of AD brains

Paraffin-embedded sections o f middle temporal gyrus were immunolabelled with 

anti-B-amyloid antibody (Dako), for those brains in which amyloid load had not been 

measured previously (Radenahmad N., 2000). The amyloid load (percent) for each case 

was measured over a field that included the entire depth o f the temporal cortex, using 

the Freelance image analysis programme. This measurement thus included all
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B-amyloid-immunopositive structures, such as plaques, cerebro-vascular amyloid and 

diffuse amyloid.

Statistical analysis

All statistical analyses were carried out using SPSS for Windows on a PC. 

Non-parametric data were analysed using the Mann-Whitney U-Wilcoxon Rank Sum 

W test. Parametric data were analysed using Student’s t-test when Levene’s test was 

not significant. Confounding variables that might affect results were examined using 

regression analysis.

Materials

Unless otherwise stated, all tissue culture plasticware was obtained from Nunc Inc. and 

cell culture media were obtained from Gibco BRL. Pipettes and tips were obtained from 

Gilson. Glass microscope slides were from Chance Propper Ltd. and glass staining jars 

were from Gallenkamp. Slides were held in plastic staining racks from Just Plastics Ltd. 

Hotplate/magnetic stirrer and 40°C oven were from Gallenkamp. Unless otherwise 

indicated, all other reagents were obtained from Sigma Chemicals.
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CHAPTER 3: LOCALISATION OF APP AND APLP2

IN NTERA2 STEM CELLS AND NEURONES

Introduction

NTera 2 cells as a model system for investigating APP processing

The pluripotent embryonal carcinoma (EC) cell line NTera 2/DI (NT2) was cloned 

from the human teratocarcinoma cell line Tera 2 (Andrews et al., 1984). It is unique in 

its potential, upon treatment with retinoic acid, to undergo terminal differentiation into a 

neuronal phenotype (Andrews, 1984). Over 99% pure post-mitotic neuronal cultures 

can be obtained from this procedure (Pleasure et al., 1992). These neurones resemble 

closely human central nervous system (CNS) neurones. They contain many neuronal 

markers, including axonal and dendritic markers, such as highly phosphorylated 

neurofilament proteins and microtubule-associated protein 2 (MAP 2) respectively, of 

polarised neurones (Pleasure et al., 1992). NT2 neurones (NT2N) are thus the best 

available in vitro model of human CNS neurones.

Since only the brain is affected by the characteristic pathology o f AD it is useful to have 

a model system in which neuronal versus somatic cells can be studied with respect to 

APP processing. NT2 stem cells provide a ‘control’ equivalent non-neuronal model that 

can be studied in parallel with NT2N cells, to search for any differences between the 

ways that human CNS neurones and non-neuronal cells process APP and respond to 

insults that may participate in AD pathogenesis. This cell line was therefore selected to 

study the subcellular processing of APP in neurones and stem cells, and the effects o f
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cellular stress, simulated by heat-shock and no feeding, on the subcellular distributions 

of APP and B-amyloid.

Identification of intracellular compartments in NT2 cells

The aim of this work was to identify the intracellular compartments where APP and 

13-amyloid are concentrated in NT2 stem cells and neurones. Initially techniques were 

optimised for identifying the endoplasmic reticulum (ER), Golgi bodies, the trans-Golgi 

network (TGN), lysosomes and nuclei in both stem cells and neurones. Cells were then 

double-labelled with antibodies to APP, APLP2 or B-amyloid and markers for 

intracellular compartments.

Immunolocalisation of APP, APLP2 and fi-amvloid in NT2 cells

The presence o f APP has been demonstrated in NT2 stem cells and neurones, and 

13-amyloid has been immunoprecipitated from the cell lysates and conditioned media of  

NT2 neurones (Wertkin et al., 1993). However, prior to this study the subcellular 

locations o f APP and its derivatives had not been investigated immunocytochemically 

in NT2 cells.

Indirect immunocytochemistry was used to identify APP, APLP2 and B-amyloid. 

Non-transfected cells were used to avoid potential alterations o f processing pathways 

arising due to overexpression of APP.

The identification o f the amyloid precursor-like proteins, APLP1 and APLP2, which 

are highly homologous to APP, led to the discovery that antibodies designed previously 

to recognise APP also recognise APLP2 (Slunt et a l , 1994). APLP2 is present in human
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brain, as well as many cultured cell lines including NT2, so the intracellular distribution 

of APLP2 in NT2 cells was characterised immunocytochemically so that it could be 

compared with the distribution o f APP. In addition, an antibody (A lz-90) that 

recognises only APP and not APLP2, was used to visualise APP in these cells. If APP 

and APLP2 are processed via different pathways, then previous work that employed 

antibodies to APP may have resulted in the identification o f APLP2 as APP. The 

locations o f these two proteins in NT2 neurones may indicate whether or not they 

follow similar processing pathways in human brain neurones, as well as shedding light 

on the identities o f cellular compartments in which they are concentrated and thus the 

route(s) by which they are processed in vivo.

Results

Optimisation of cell culture

Stem cells and neurones were plated for immunocytochemistry in chamber slides rather 

than on coverslips because the chamber slides were easier to handle and allowed more 

economical use o f reagents (in particular neurones and antibodies) because o f the small 

chamber sizes.

When neurones were plated out onto glass coverslips or chamber slides they formed 

large, floating clusters and did not adhere to the glass. For immunocytochemical 

detection o f antigens a single layer of cells was required on the slides. Therefore the 

coverslips or chamber slides were coated with poly-D-lysine. The neurones then 

adhered to the growth surface but remained in clusters, and their processes remained 

short, terminating in large growth cones, after a week. The coverslips or chamber slides
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were therefore coated with poly-D-lysine followed by matrigel. The cells then adhered 

to the growth medium in an even layer of single cells and small clusters of cells. After 

2-3 days the neurones had grown processes and were still evenly spread over the 

growth surface, but beyond this length o f time the neurones gradually migrated towards 

each other to form clusters. After a week they had elaborated long processes that were 

in contact with many other cells. These clusters became larger the longer the cultures 

were kept (up to 4 weeks), so neurones were fixed three days after being plated on 

matrigel so that individual cells could be seen following immunolabelling.

Optimisation of immunocvtochemical labelling

Following fixation o f stem cells with -20°C methanol immunostaining o f the Golgi 

apparatus or endoplasmic reticulum was more clearly visible than in cells that were 

fixed with -20°C acetone, so -20°C methanol was used to fix cells. Some cells that 

were immunolabelled with anti-B-amyloid were fixed for 5 minutes or 20 minutes in 

2% or 4% paraformaldehyde in 0.1M phosphate-buffered saline (PBS), incubated in 

80% formic acid for 10 minutes, then permeabilised in 0.3% triton X -100 for 15 

minutes before immunostaining.

To block binding of antibodies to non-specific sites 3mg/ml BSA/PBS or 3% normal 

serum from the species in which the secondary antibody was raised (in PBS) were 

found to be more effective than blotto or fish gelatin. Both BSA/PBS and normal serum 

together were more effective than either blocker on its own. 3mg/ml BSA/PBS 

prevented non-specific binding more effectively than lmg/ml BSA/PBS. 5mg/ml 

normal serum or 5% BSA/PBS were no more effective than 3mg/ml or 3% respectively, 

so the latter were used in all subsequent experiments.



When triton X-100 was used to permeabilise the cells fixed with -20°C methanol there 

was no difference in the pattern or intensity of labelling in comparison with untreated 

cells. Many o f the cells that were incubated with triton X-100 became detached from 

the substrate on which they were fixed. This step was therefore omitted from the 

immunolabelling procedure when cells were fixed in -20°C methanol.

It was found that there was too small an amount of APP in the cells for its distribution 

to be seen clearly when detected with primary antibody followed with fluorescently 

labelled secondary antibody. Therefore biotinylated secondary antibodies were used 

followed with either streptavidin conjugated to a fluorescent molecule (e.g. fluorescein 

or rhodamine) or ABC (avidin and biotinylated horseradish peroxidase macromolecular 

complex) followed by DAB (diaminobenzidine). These methods allowed greater 

amplification o f the signal so that the labelled protein could be localised more 

accurately and the signal was strong enough for photomicroscopy.

All immunolabelling experiments were repeated at least 3 times to ensure that the 

results were replicable and consistent.

Purification and concentration of antibodies and ELISA

Spectrophotometry of the eluate collected from the protein-G columns used to purify 

and concentrate the antibodies FC8 and EH4, showed that fraction 2 (following addition 

of eluting buffer) contained O.lmg/ml protein in both cases. The activities o f both FC8 

and EH4 were shown by ELISA to have been retained following purification and 

concentration with protein G beads. The ELISAs performed also confirmed that the 

antibodies had been concentrated, FC8 by x2.63 (Figure 3) and EH4 by X2.67 (Figure 

4).
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Immunolocalisation of APP and APLP2 in NTera 2 stem cells

To identify the distribution o f specific proteins in stem cells methods were developed by 

which various subcellular compartments could be identified.

Identification of intracellular compartments

Lysosomes, the Golgi apparatus and endoplasmic reticulum (ER) were visualised using 

monoclonal and/or polyclonal antibodies. The Golgi apparatus was labelled also with 

rhodamine-conjugated wheatgerm agglutinin. Nuclei were labelled with 

bis-benzamide.

Lysosomes

Three antibodies were tested to label lysosomes in stem cells: anti-cathepsin-D, 

anti-LAMP-1 and anti-LAMP-2 (lysosome associated membrane proteins 1 and 2). Of 

these anti-LAMP-1 provided the most specific staining (Figure 5). A similar pattern 

was seen with LAMP-2 immunolabelling (Figure 6), but a slightly larger number o f  

vesicles were immunopositive. With anti-cathepsin-D antibody the cells were intensely 

immunopositive in the region labelled by the LAMP-1 and LAMP-2 antibodies, but the 

staining extended beyond the lysosomes. It may have been possible to reduce the 

staining intensity with this antibody (e.g. by lowering the concentration o f primary 

antibody) to improve its specificity, but the specificity of LAMP-1 was good enough to 

render this unnecessary. Lysosomes were small and numerous in NT2 stem cells (Figure 

5 and Figure 6).
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Golgi apparatus

Two antibodies, anti-B-COP and anti-5 8k, were used to localise the Golgi apparatus. 

O f these anti-58k (Figure 7 and Figure 8) was found to give slightly more specific 

labelling, although some labelling was visible beyond the region of the Golgi apparatus 

with both antibodies. R-WGA presented a similar problem, but had the advantage that it 

could potentially be used in double-labelling experiments more readily than an antibody 

because it was less likely to cross-react with antibodies used to label another protein.

When labelled with anti-5 8k the Golgi apparatus was visible as a cluster o f large, 

intensely stained perinuclear vesicles. Further smaller vesicles that were only faintly 

stained radiated out through the cytoplasm (Figure 7 and Figure 8).

Endoplasmic reticulum

Two antibodies, anti-PDI (protein disulphide isomerase) and anti-GRP-94, were used 

to visualise the ER. Of these anti-PDI allowed more specific labelling o f the ER, shown 

in Figure 9.

Nuclei

Nuclei were successfully labelled with the dye bis-benzamide. The stained nuclei 

appeared blue under the microscope using an ultra-violet filter, which contrasted with 

the green/red o f the FITC/TRITC respectively. However, when the cells were viewed 

using the blue or green filters (used to view FITC-/TRITC-labelled structures) the 

staining was so bright that it bled through and the nuclei were still visible.
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Immunolabelling of APP and APLP2 in NTera 2 stem cells

The antibodies used to immunolabel APP and APLP2 are described in Table 1, below, 

and in the appendix (Table 10).
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Table 1: Antibodies used for immundetection of APP and APLP2

Antibody Antigen raised against Species raised in Monoclonal/

Polyclonal

87-4afp Epitope within C-terminal 20 
amino acid residues o f full 
length, membrane-bound, 
human APP (also recognises 
APLP2)

Rabbit Polyclonal

22C11 Epitope within residues 
60-100 of the N-terminus of 
human APP-695

Mouse Monoclonal

Alz-90 Amino acid residues 511-608 
of human APP-695

Mouse Monoclonal

FC8 Residues 1-19 of 13-amyloid 
(in immunised mice)

Mouse Monoclonal

EH4 Residues 1-19 of 13-amyloid 
(in immunised mice)

Mouse Monoclonal

3B11 Residues 596-617 of human 
APLP2

Mouse Monoclonal

APLP2 was localised, using the monoclonal antibody 3B11, to large, perinuclear 

organelles, in the region of the Golgi apparatus (Figure 10 and Figure 11).

Affinity-purified 87-4, a polyclonal antibody that recognises both APP and APLP2, 

labelled smaller reticular vesicles in NT2 stem cells as well as the darkly stained 

perinuclear vesicles (Figure 12 and Figure 13) seen with 3B11. The monoclonal 

antibodies 22C11 and A lz-90 demonstrated that APP extended into many small 

granularities throughout the cytoplasm (Figure 14 and Figure 15). 22C11 labels both 

APP and APLP2, but Alz-90 is specific for APP.
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Stem cells immunolabelled with FC8, a monoclonal antibody to an epitope within the 

first 12 amino acids o f the 13-amyloid sequence o f APP, but which does not recognise 

cleaved 13-amyloid, displayed small immunopositive vesicles (Figure 16 and Figure 17). 

These were similar in appearance and subcellular localisation to those labelled by 

affinity-purified 87-4. However the larger, more darkly stained perinuclear vesicles 

seen with 87-4 were not visible. This is consistent with the absence of 13-amyloid from 

APLP2.

Immunostaining with FC8 was very weak so the antibody was concentrated using 

protein G beads, resulting in a 2.63-fold increase in concentration. Immunolabelling 

using the concentrated FC8 resulted in slightly darker staining o f APP (as seen inFigure 

16 and Figure 17) but the contrast between labelled and unlabelled material was not 

great enough for the antibody to be used for double-immunolabelling.

Immimolocalisation of APP. APLP2 and fi-amvloid in NTera 2 

neurones

As well as individual identification of subcellular compartments (as performed in stem 

cells) to aid localisation of APP, APLP2 and 13-amyloid, double-labelling experiments 

were used to localise these proteins more accurately.

Identification of intracellular compartments

As well as the antibodies and markers used in stem cells a further monoclonal antibody 

was used to label the trans-Golgi network, as described below, to improve the 

specificity of immunolabelling of this target.
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Golgi apparatus

Immunolabelling o f the Golgi apparatus with the antibodies (anti-B-COP and anti-5 8k) 

used to localise the Golgi apparatus in stem cells was unsuccessful in neurones. Staining 

extended beyond the cell bodies and into the processes o f the neurones. This staining 

could not be reduced by lowering the concentrations o f  antibodies used. 

Rhodamine-conjugated wheatgerm agglutinin labelled the Golgi apparatus in neurones 

with greater specificity (Figure 18 and Figure 19).

Trans-Golgi network

The monoclonal anti-trans-Golgi network (TGN) antibody labelled the TGN with high 

specificity. A discrete, perinuclear, reticular structure was intensely immunostained 

(Figure 20).

Nuclei

The position of the TGN in relation to the nucleus, labelled with bis-benzamide, in an 

NT2 neurone is illustrated in Figure 21 and Figure 22. More thorough washing ( 5 x 5  

minutes instead o f 3 x 3 minutes) o f the neurones following labelling allowed 

visualisation o f nuclei without the stain bleeding through when cells were viewed 

through different filters, as occurred with stem cells.

Immunolabelling of APP and APLP2 in NTera 2 neurones

APLP2 was localised to large, perinuclear vesicles using the antibody 3B11 (Figure 23 

and Figure 24) in the region of the TGN. Its distribution was similar in appearance to 

that seen in NT2 stem cells.
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With antibodies 22C11 and Alz-90 APP was visible in structures along the processes of 

neurones as well as in the perinuclear region (Figure 25 and Figure 26). Alz-90  

demonstrated the presence o f APP in granular structures in the cytoplasm of neuronal 

cell bodies (Figure 27 and Figure 28). When labelled with Alz-90, APP was not masked 

by the presence o f APLP2 in the cell body (as it is with 22C11) because A lz-90  

recognises only APP and not APLP2.

APP was clearly visible in small granular structures in the growth cones o f neurones, 

whereas APLP2 was not detected in the growth cones with 3B11 (Figure 29-Figure 33).

Co-localisation of APLP2 and APP with the Golgi apparatus in NTera 2 

neurones

Neurones were immunolabelled using either 3B11 to detect APLP2 or 22C11 to detect 

APP (and APLP2) followed with biotinylated secondary antibody, then fluorescein 

isothiocyanate-conjugated streptavidin. The cells were also incubated with 

rhodamine-conjugated wheatgerm agglutinin. When examined with a confocal 

microscope APLP2 was found to be present in the same region as the Golgi apparatus, 

whereas APP extended beyond the region of the Golgi apparatus and into the neuronal 

processes. This is shown in Figure 34 and Figure 35.

Immunodetection of ft-amyloid in NTera 2 neurones

It has been demonstrated that 13-amyloid is present in NTera 2 neurones, but not in NT2

stem cells, by immunoprecipitation and Western blotting (Bowes, 1999).

Immunocytochemical labelling was therefore used with the aim of confirming this

finding and identifying the subcellular location o f this 13-amyloid. Stem cells and

neurones were immunolabelled with anti-J3-amyloid antibody following -20°C
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methanol or -20°C acetone fixation for 5 minutes. Half of the cells were treated with 

80% formic acid for 10 minutes prior to immunostaining. No B-amyloid was detected in 

any o f these cells. Further batches o f neurones were then fixed with 2% or 4% 

paraformaldehyde in 0.1M PBS for 5 minutes or 20 minutes. Half o f these were 

incubated with 80% formic acid for 10 minutes, and all were permeabilised in 0.3% 

triton X-100 for 15 minutes and immunostained for B-amyloid. No B-amyloid was 

immunolabelled in these neurones either. Anti-5 8k was used as a positive control 

alongside these experiments and these cells were immunopositive in all cases.

Controls

Immunolabelling with an irrelevant mouse monoclonal antibody, or with pre-immune 

serum from 87—4, yielded no immunostaining (Figure 36 and Figure 37).

Effects of stress, by heat-shock and no feeding, on B-amyloid, APP and 

APLP2 in NTera 2 stem cells and neurones

Effects of heat-shock

Following heat-shock at 42°C and 0% CO2 for 30 minutes no B-amyloid was detected 

by immunocytochemistry after recovery times o f 0, 1, 4, 12, 24, or 48 hours, nor in 

control stem cells or neurones that were not subjected to heat-shock. Cells that were in 

separate wells on the same slides as those stained for 13-amyloid were immunolabelled 

with 3B11 or 22C11 to detect APLP2 or APP respectively. No differences in intensity 

o f immunolabelling o f APLP2 or APP were observed under the fluorescence 

microscope following heat-shock and 0, 1 ,4 , 12, 24, or 48 hours’ recovery, compared 

to control stem cells or neurones that were not heat-shocked. No alterations in the
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distribution patterns of either protein were observed under the microscope following 

heat-shock and 0, 1,4, 12, 24, or 48 hours’ recovery, compared to control stem cells or 

neurones that were not heat-shocked.

Effects of no feeding

Neurones were plated on poly-D-lysine- and matrigel-coated chamber slides. After 2 

days the medium was replaced with fresh cDMEM to remove any dead cellular material 

that may have been present due to replating. All experiments were timed from this date. 

The cells in control chamber slides were fixed after 1 week. Further cells were fixed 2, 

3, 4, 5 or 6 weeks after the last date that the medium was replaced. The neurones were 

immunolabelled with anti-ft-amyloid, 22C11 (to label APP) or 3B11 (to label APLP2) 

followed with biotinylated secondary antibody then streptavidin-conjugated FITC. The 

cells to be labelled with anti-13-amyloid antibody were treated with 80% formic acid for 

10 minutes prior to immunostaining.

When examined under the fluorescence microscope the cells were immunonegative for 

13-amyloid in all cases. With 22C11 and 3B11 the intensity o f immunolabelling and 

distribution of protein in the stressed cells were indistinguishable from the intensity and 

distribution of immunopositivity in cells that had not been subjected to stress.
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Figure 5

Figure 6
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Figure 5 and Figure 6

Shown by indirect immunofluorescence, NT2 stem cells contain numerous, small 

lysosomes. Cells were fixed in -20°C methanol, then immunolabelled with monoclonal 

antibodies to lysosome-associated membrane proteins LAMP-1 (Figure 5) and 

LAMP-2 (Figure 6), followed by FITC-labelled secondary antibody.

Scale bar, top left = 10pm.
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Figure 7 and Figure 8

The Golgi apparatus in NT2 stem cells appears as a cluster o f large, perinuclear 

vesicles, and smaller vesicles radiating out through the cytoplasm. Methanol-fixed cells 

were stained with anti-5 8k, a monoclonal antibody that recognises a protein on the 

cytoplasmic face o f the Golgi apparatus, followed by biotinylated secondary antibody 

and DAB (Figures 7 and 8).

Magnification = x 300
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Figure 9
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Figure 9

The endoplasmic reticulum in NT2 stem cells is a large, perinuclear structure. NT2 cells 

were fixed in -20°C  methanol, and stained with anti-PDI followed with 

TRITC-labelled secondary antibody.

Magnification = x  200
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Figure 10 and Figure 11

APLP2 is concentrated in large, perinuclear organelles in the region o f the Golgi 

apparatus of NT2 stem cells. Methanol-fixed cells were immunolabelled with 3B11, a 

monoclonal antibody to APLP2, followed by biotinylated secondary antibody and DAB 

(Figures 10 and 11).

Magnification = x 200
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Figure 12 and Figure 13

Polyclonal antibody 87-4 recognises an epitope in the C-terminus o f both APP and 

APLP2. In methanol-fixed NT2 stem cells, labelled with 87-4 followed by biotinylated 

secondary antibody and DAB, heavily-stained perinuclear vesicles (as seen with 

antibody 3B11) are apparent, as well as small, reticular vesicles (Figures 12 and 13).

Magnification = x 200
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Figure 14

102



Figure 14

In methanol-fixed NT2 stem cells, antibody 22C11 was followed with biotinylated 

secondary antibody and FITC-conjugated streptavidin. APP and APLP2 were seen 

extending into numerous small granularities throughout the cytoplasm.
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Figure 15
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Figure 15

Monoclonal antibody Alz-90, which recognises only APP, and not APLP2, followed by 

biotinylated secondary antibody and FITC-conjugated streptavidin in methanol-fixed 

NT2 stem cells. Many small granularities in the cytoplasm were stained, but with less 

frequency than when cells were labelled with 22C11.
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Figure 16 and Figure 17

Small, reticular vesicles were stained in the cytoplasm o f NT2 stem cells 

immunolabelled with monoclonal antibody FC8, which is directed to an epitope within 

the first 12 amino acids of the J3-amyloid sequence o f APP. Methanol-fixed cells were 

stained with FC8 followed by biotinylated secondary antibody and DAB (Figures 16 

and 17). The large, perinuclear vesicles stained by 87-4 are not immunopositive, but the 

smaller vesicles are, consistent with the absence o f 13-amyloid from APLP2.

Magnification = x 200

107



Figure 18

Figure 19



Figure 18 and Figure 19

Rhodamine-conjugated wheatgerm agglutinin labelled the perinuclear Golgi apparatus 

in NT2N neurones, as well as further vesicles that extend into the processes (Figures 18 

and 19). Cells were fixed in -20°C methanol. Images were obtained by confocal 

microscopy.

Magnification, Figure 18 = x 200, Figure 19 = x 75
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Figure 20
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Figure 20

The trans-Golgi network (TGN) in NT2N neurones is a discrete, perinuclear, reticular 

structure. Methanol-fixed NT2N neurones were stained with monoclonal anti-TGN 

antibody, followed by biotinylated secondary antibody and FITC-conjugated 

streptavidin.
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Figure 21

Figure 22
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Figure 21 and Figure 22

The TGN in an NT2N neurone (Figure 21), stained as in Figure 20, showing its position 

adjacent to the nucleus o f the same cell (Figure 22), stained with the dye 

bis-benzamide.

Magnification = x 200
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Figure 23 and Figure 24

APLP2 was restricted to large, perinuclear vesicles in the region o f the TGN in NT2N 

neurones, similar to its distribution in stem cells. Methanol-fixed cells were stained 

with monoclonal antibody 3B11, followed with biotinylated secondary antibody and 

FITC-conjugated streptavidin (Figures 23 and 24).
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Figure 25

APP was present in the cytoplasm of NT2N neurones beyond the region o f the Golgi 

apparatus. Here, immunolabelled structures are visible along the processes o f neurones 

as well as in the perinuclear area. Methanol-fixed neurones were stained with 

monoclonal antibody 22C11, followed with biotinylated secondary antibody and 

FITC-conjugated streptavidin.

Figure 26

An NT2N neurone, immunolabelled with antibody 22C11 as in Figure 25, again 

showing the presence of perinuclear APP and APLP2.
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Figure 27 and Figure 28

Monoclonal antibody Alz-90, which recognises APP but not APLP2, demonstrated the 

presence o f APP in granular structures in the cytoplasm of neuronal cell bodies, when 

not masked by labelling of APLP2. Methanol-fixed neurones were stained with Alz-90 

followed by biotinylated secondary antibody and FITC-conjugated streptavidin 

(Figures 27 and 28).
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Figure 29 to Figure 33

APP was present in the growth cones o f NT2N neurones, as shown with antibodies 

A lz-90 (Figure 29 and Figure 32), and 22C11 (Figure 30 and Figure 33), but APLP2 

was not seen in the growth cones of neurones labelled with 3B11 (Figure 31). Methanol 

fixed cells were labelled with antibodies Alz-90 (Figure 29 and Figure 32), 22C11 

(Figure 30 and Figure 33), or 3B11 (Figure 31), followed with biotinylated secondary 

antibody and FITC-conjugated streptavidin.
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Figure 34

Figure 35



Figure 34 andFigure 35

Red = wheatgerm agglutinin (Golgi apparatus); Green = 3B11; Yellow = overlap.

Red = wheatgerm agglutinin (Golgi apparatus); Green = 22C11; Yellow = overlap.

Double-labelling of the Golgi apparatus and APLP2 (3B11) in NT2N neurones (Figure 

34) confirmed that APLP2 was concentrated in the Golgi apparatus. Double-labelling 

of the Golgi apparatus and APP (and APLP2) with 22C11 (Figure 35) confirmed that 

APP extended into the cytoplasm of neurones beyond the region o f the Golgi apparatus 

(green staining). Methanol-fixed neurones were immunolabelled with 3B11 or 22C11, 

followed with biotinylated secondary antibody and FITC-conjugated streptavidin, and 

incubated with rhodamine-conjugated wheatgerm agglutinin. Images were obtained by 

confocal microscopy.
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Figure 37

124



Figure 36 and Figure 37

Controls: No specific labelling was seen when methanol-fixed NT2 stem cells were 

stained with an irrelevant mouse monoclonal antibody (Figure 36) or pre-immune 

serum from 87-4 (Figure 37) followed by biotinylated secondary antibody and 

FITC-conjugated streptavidin. Both photographs are overexposed to demonstrate the 

presence of cells.
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Discussion

In summary, there were similarities in the distributions o f both APP and APLP2, in 

stem cells compared with neurones. In both stem cells and neurones, APLP2 was 

included within the region containing APP, but APP extended beyond the location of 

APLP2. No 13-amyloid was detected in stem cells or neurones. No production o f  

13-amyloid or alterations in cellular APP or APPLP2 content or distribution were noted 

in stem cells or neurones upon heat-shock or no feeding.

Subcellular localisation of APP and APLP2

APP was present in small, intracellular compartments throughout much o f the 

cytoplasm o f NT2 stem cells, whereas APLP2 was found in larger, perinuclear 

organelles, in the region o f the Golgi apparatus (Campbell et a l , 1996). In NT2N 

neurones, APLP2 was detected in similar large, perinuclear organelles, identified by 

double-labelling as Golgi vesicles. In neurones APP extended into smaller vesicles 

beyond the Golgi apparatus, and was detected in small, granular structures in processes 

and growth cones (Campbell et al., 1997).

A previous study of APP in untransfected NT2 cells, using metabolically-labelled APP, 

indicated that the half-life o f APP holoprotein turnover is approximately 1 hour in stem 

cells and 3 hours in neurones (Wertkin et a l ,  1993). In neurones most o f the APP was 

degraded before becoming O-glycosylated, inferring that proteolysis occurred without 

the full-length protein being routed to the plasma membrane. 13-amyloid was detected 

in the cell lysate, as well as in media, from neurones but not from stem cells. This 

13-amyloid therefore may have been generated directly from immature APP without its
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reaching the plasma membrane, or from the smaller amount o f mature APP following 

its re-intemalisation from the plasma membrane to the endosomal-lysosomal system. In 

the present study APP was not seen at the plasma membrane when cells were viewed by 

either conventional or confocal microscopy, although it is possible that the protein is 

delivered here and cleaved rapidly so that it remains below the level o f abundance 

necessary for detection by immunocytochemistry.

In the hamster primary visual pathway metabolically-labelled APP was shown, by 

Western blot analysis, to be transported rapidly to the growing tips o f axons (Moya et 

a l , 1994), analagous to the localisation of APP to the growth cones o f NT2N neurones 

in this study. In hamster retinal ganglion cells fast axonal transport o f both APP and 

APLP2 to the presynaptic terminal has been demonstrated (Lyckman et al., 1998). Here 

there was rapid turnover of APP and APLP2, independently of visual activity.

In polarised rat hippocampal neurones, transfected with tagged human APP695, APP 

was delivered first to the axonal surface, then routed by transcytosis to the dendritic 

surface (Simons et al., 1995). In contrast, in polarised epithelial cells (in which 

axonally-routed proteins are usually delivered to the apical membrane, and 

dendritically-routed proteins to the basolateral membrane) APP is delivered, directly, 

basolaterally, suggesting that neurone-specific sorting and processing mechanisms may 

exist.

In COS-1 cells, transiently transfected with human APP770 or mouse APLP2 cDNA, 

both APP and APLP2 were present in cellular structures labelled by lentil lectin that 

binds to oligosaccharides specific to the Golgi compartment (Slunt et al., 1994).
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The variability in APP and APLP2 distributions found in these different cell types may 

result from a high degree o f heterogeneity of processing o f APP and APLP2 in neuronal 

versus non-neuronal cells, and in different subtypes o f neurones. This, in turn, may 

reflect the confinement of AD pathology to areas containing specific neuronal subtypes 

in AD brains.

Discrimination between APP and APLP2

The identification o f the amyloid precursor-like protein 2, APLP2, (Slunt et al., 1994) 

added confusion to the interpretation o f previous, and some subsequent, studies of APP 

by immunological methods. APLP2 is a 751 amino acid polypeptide with high 

homology (including regions with up to 72% identity) to APP-751. Slunt et al. reported 

that APLP2 and APP have almost identical expression patterns in mouse brain, as 

determined by in situ hybridisation histochemistry. Four widely used anti-APP 

antibodies, Ab 369, 22C11, LN27.7 and LN21.9, were demonstrated to cross-react with 

APLP2. Furthermore, immature forms of APP-770 and APLP2, and secreted forms o f  

APP-695 and APLP2, co-migrated in SDS-polyacrylamide gel electrophoresis.

This study demonstrated overlap in the intracellular locations where APP and APLP2 

are concentrated in NT2 stem cells and neurones. The similarity o f NT2N neurones to 

human CNS neurones raises the possibility that this may also be the case in the human 

brain, which also expresses APLP2, thus highlighting the need to differentiate between 

these two highly related polypeptides when performing immunological studies o f APP 

in human brain.

The similarity between APP and APLP2 may in fact prove useful to the study o f APP 

processing mechanisms, because APLP2 does not contain the B-amyloid region. Subtle
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differences in the cellular processing o f these two proteins may aid identification of 

amyloidogenic proteolytic processing routes that are followed by APP but not APLP2, 

thus suggesting points at which therapeutic intervention may be applied to reduce 

production o f the 13-amyloid peptide.

Routes of amyloidogenic and non-amvloidogenic processing of 

APP

The absence o f 13-amyloid immunostaining in NT2N cells may have been due to low 

levels o f 13-amyloid in the cells, below the level necessary for immunodetection. The 

13-amyloid may have been washed out o f cells fixed with -20°C  methanol. 

Alternatively, the antigenic site may have been inaccessible to the primary antibody 

because the 13-amyloid was in an inappropriate conformation or bound to a chaperone 

molecule. It is unlikely that no 13-amyloid was present in these cells since it had been 

detected previously, by immunoprecipitation and Western blotting, in cells derived from 

the same original stock o f passage 30 stem cells (Bowes, 1999). 13-amyloid was also 

reported to be present in cell lysate (as well as media) from untransfected NT2N 

neurones by immunoprecipitation (Wertkin et al., 1993). However, it was unclear 

whether this 13-amyloid was produced directly from intracellular, immature APP or if  it 

was generated in the endosomal-lysosomal system following re-intemalisation o f  

mature APP from the plasma membrane.

Subsequently to the present investigation, in NT2N neurones overexpressing APP-695, 

both 13-amyloid (40) and 13-amyloid (42) were identified by enzyme-linked  

immmunosorbent assay (ELISA) in cell lysates and media (Cook et al., 1997). 

Following retention of APP in the endoplasmic reticulum/intermediate compartment
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(ER/IC) 13-amyloid secretion was abolished, intracellular 13-amyloid (40) production 

was eliminated, but intracellular 13-amyloid (42) synthesis was unchanged. A similar 

pattern was seen in uninfected cells, except that in these cells there was a gradual 

accumulation o f intracellular 13-amyloid (42) rather than a steady-state, higher 

abundance o f the peptide, probably because overexpression o f APP-695 saturated the 

cells’ capacity for 13-amyloid (42) generation or accumulation. Both 13-secretase and 

y-secretase cleavage of APP thus appeared occur in the ER/IC, but only to produce the 

42 amino acid 13-amyloid peptide. This suggested that 13-amyloid (40) generation occurs 

in a more distal compartment where either the y-secretase enzyme acts at a different 

point in APP or another y-secretase enzyme cleaves APP at an alternative site. Further 

evidence for 13-secretase cleavage o f APP occurring in the ER/IC o f neurones was 

provided by a pulse-chase study o f NT2N cells, demonstrating production o f  

13-secretase-cleaved N-terminal APP fragment (APP13) following retention o f  

endogenous APP in the ER/IC (Chyung et al., 1997).

In other cell types a variable, but often similar, picture o f 13-amyloid production is seen. 

In an electron microscopical examination o f primary rat hippocampal neurones 

13-amyloid (42) was immunolocalised in the ER, and 13-amyloid (40) in the TGN, a few 

budding, coated vesicles and some multilamellar late endosomes. In contrast, in COS-7 

cells, used as a model of non-neuronal cells, no 13-amyloid was detected intracellularly 

but both 13-amyloid (40) and (42) were present at the cell surface (Hartmann et al., 

1997). In N2a neuroblastoma cells, doubly transfected with human APP-695 and 

human PS1, and primary rat cerebral cortical neurones, 13-amyloid (1-40), (x-40), 

(1-42) and (x-42) were all produced in the TGN and packaged into post-TGN secretory 

vesicles. 13-amyloid (x-42) was generated also in the ER and retained there in a
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detergent-insoluble state (Greenfield et a l , 1999). Of the 13-amyloid in the TGN, some 

(including both 13-amyloid (40) and (42)) was detergent-soluble and some was not. In 

rat brain 13-amyloid has been found in a detergent-insoluble, glycolipid-enriched 

membrane domain (DIG), along with endoproteolytic fragments o f APP and PS 1 (Lee 

et al., 1998). These DIGs, membranous ‘rafts’ that may participate in protein 

trafficking, often o f proteins involved in signalling, have a high lipid content, including 

cholesterol and GM1.13-amyloid has affinity for these lipids, which have been reported 

to promote intra-membranous peptide aggregation and amyloid 13-sheet formation, 

suggesting that this may be a site of intracellular initiation of 13-amyloid aggregation 

(L e e e ta l ,  1998).

In human AD brain, intracellular 13-amyloid is present in cells with DNA damage 

(LaFerla et a l ,  1997). This 13-amyloid immunoreactivity was found in the same 

cytoplasmic granules as apolipoprotein E (apo E) and correlated with accumulation of  

apoE and gp330 (a cell surface receptor that binds apo E). Extracellular 13-amyloid 

deposition was evident only upon neuronal cell death, initially as halos o f 13-amyloid 

immunoreactivity around individual neurones, then as 13-amyloid plaques containing 

numerous neuronal cell ghosts. By comparison with analysis o f nuclear DNA 

fragmentation, it appeared that neuronal cell death occurred before extracellular 

deposition o f 13-amyloid.

These events have been suggested to be preceded by synaptic abnormalities and/or loss 

that are accompanied by increased APP and abnormally phosphorylated tau in the cell 

bodies o f the affected neurones, and accumulation o f APP in astrocytes and microglia 

(Martin et a l ,  1994; Masliah et a l ,  1994). More recently, neuronal mRNAs were found 

to predominate in senile plaques, supporting the suggestion that senile plaques form at
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sites where neurones degenerate in AD (Ginsberg et a l ,  1999). Bahr et a l ,  (1998) found 

that exposure o f rat hippocampal slices to exogenous 13-amyloid (42) resulted in 

accumulation o f 13-amyloid in the somata o f CA1 pyramidal neurones. This was 

followed by build-up o f amyloidogenic C-terminal fragments (CTFs) in the somata, 

apical and basal dendrites of these neurones, and in bands o f punctate structures 

resembling synapses in the molecular layer o f the dentate gyrus and the stratum 

lacunosum-moleculare o f CA3. The synaptophysin concentration was found by 

immunoblot analysis to be reduced by 50% following 13-amyloid (42) treatment. 

13-amyloid (40), in contrast, accumulated throughout the hippocampal slice without 

selectivity of area. Thus a self-perpetuating cycle may occur in AD, whereby any factor 

that precipitates an increase in concentration o f intracellular 13-amyloid (42), such as 

increased APP expression or a shift towards amyloidogenic APP proteolysis, results in 

further increase o f APP expression and/or a further increase in amyloidogenic 

processing. This may result in synaptic abnormality and loss, followed by retrograde 

neuronal death then extracellular deposition of 13-amyloid and formation o f amyloid 

plaques.

The effects of stress on APP processing

Cellular stress and the inflammatory response have been implicated in the pathogenesis

o f AD. The cellular stress response involves a rapid, transient change in the pattern of

gene expression, including induction o f the heat-shock proteins and suppression o f

synthesis o f most other proteins (Dewji et a l ,  1995). The APP gene contains a

heat-shock element (Salbaum et a l ,  1988) that has been shown to increase APP

transcription, in NT2 stem cells and in HeLa cells, upon activation by heat-shock

(Dewji et a l ,  1995). In the lesions o f AD brains heat-shock proteins including ubiquitin
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and HSP70 are present (Pappolla et a l ,  1995), as well as abnormally phosphorylated tau 

(Grundke-Iqbal et a l ,  1986), which is also elevated in the brains o f heat-shocked rats 

(Papasozomenos and Yuan, 1991).

Previous studies o f the effects o f heat-shock on cultured cells have reported elevation of 

APP expression. There was a 5 -  to 8-fold rise in APP mRNA levels, with a peak at 4 

hours post-heat-shock, in human umbilical vein endothelial cells (HUVECs) exposed 

to a temperature of 42°C for 30 minutes (Ciallella et a l ,  1994). This was followed by 

increased APP protein in media peaking at 1 hour post-heat-shock, and APP 

immunoreactivity with a peak at 12 hours post-heat-shock. Immunopositive APP was 

in a perinuclear Golgi-like region and discreet, granular cytoplasmic structures, much 

like the pattern o f APP immunoreactivity found in NT2 stem cells in the present study.

In both C6 glioma cells and N2a neuroblastoma cells, heat-shock at 44°C for 30 

minutes increased frequency of detection of APP, with a Golgi-like distribution, from 

fewer than 10% of unstressed cells to over 90% of stressed cells following 4-6  hours of 

recovery (Pappolla et a l ,  1995).

NT2 stem cells and HeLa cells, transiently transfected with a fragment o f the human 

APP promoter including the heat-shock element, heat-shocked at 43 °C for 1-3 hours, 

followed by 24 hours’ recovery, displayed induction o f APP gene expression (Dewji et 

a l,  1995).

In the present study, following cellular stress by heat-shock or deprivation from 

nutrients no 13-amyloid was detected in cells, and the distributions and staining 

intensities o f  APP and APLP2 were unchanged upon investigation by 

immunocytochemistry. The bulk o f evidence from similar studies indicates that APP
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expression is likely to be upregulated in NT2 cells following stress. In particular, the 

report by Dewji et a l  (1995), that there is increased transcription o f APP in NT2 stem 

cells following heat-shock, suggested that APP protein might be upregulated in the 

present study also (although the cells used by Dewji et a l  were transfected with a 

fragment of the APP promoter). More recently, in NT2N neurones oxidative stress has 

been shown, by immunoprecipitation and Western blotting, to increase intracellular 

13-amyloid production while APP expression was unaltered (Paola et a l ,  2000).

It may be that there were small changes in APP and/or 13-amyloid production, following 

heat-shock, which were too subtle to be detected immunocytochemically. Furthermore, 

there may have been alterations in APP mRNA splicing that could not be seen with the 

anti-APP antibody used, 22C11, which labels all APP isoforms. The anti-KPI antibody 

described in a later chapter, which was developed after termination of this study, may be 

of use in further immunocytochemical study of APP in NT2 cells following heat-shock. 

In a human foetal astrocytic cell line heat-shock has been shown to increase 

KPI-containing APP mRNA but not APP-695 or APLP2 mRNA (Shepherd et a l ,  

2000). As discussed below (chapter 6), there appears to be a shift in splicing o f APP 

mRNA in AD in favour o f KPI-containing isoforms. It would be interesting to see if  

this change is induced in NT2N neurones under conditions o f stress.

13-amyloid did not appear to be accumulated intracellularly in either unstressed or 

stressed NT2 stem cells or neurones. 13-amyloid may have not been detected in the cells 

because it was washed out of those that were fixed with -20°C methanol. It may have 

been in an inappropriate conformation or bound to a chaperone molecule, rendering the 

antigenic site inaccessible to the primary antibody. Although 13-amyloid had been 

detected by Western blotting in cells derived from the same original stock o f stem cells
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(Bowes, 1999), it may be that subsequent passaging o f the cells had resulted in 

subcloning o f a phenotype that no longer accumulated intracellular 13-amyloid.

This work was terminated due to difficulties in producing a consistent supply of large 

enough quantities o f NT2N neurones, because o f the long time period required for 

cellular differentiation, with regular feeding resulting in a high infection rate. 

Furthermore, the lack o f immunocytochemical detection o f intracellular 13-amyloid 

presented a hindrance to studying amyloidogenic pathways o f APP processing in these 

cells by immunocytochemistry.
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CHAPTER 4: DEVELOPMENT OF A PROTOCOL

FOR ELECTRON MICROSCOPICAL 

EXAMINATION OF NTERA 2 CELLS

Introduction

Prior to this study NTera 2 cells had not been examined successfully by electron 

microscopy (EM) before. The purpose o f this work was to define methods by which 

NT2 cells can be prepared for EM and immuno-EM and to investigate the distribution 

of Alzheimer-related peptides and proteins in NT2 cells by immuno-EM.

Cultures o f mature primary rat hippocampal neurones have previously been examined 

by EM and immuno-EM by processing and embedding in situ on glass coverslips prior 

to cutting ultra-thin sections and staining with uranyl acetate and lead citrate (Hartmann 

et ah, 1997). Therefore this method was used, along with collection o f cells by scraping 

or by centrifugation followed by processing and embedding, to determine protocols for 

EM and immuno-EM of NT2 stem cells and neurones.

Methods

Initially cells were stained with osmium tetroxide so that the quality o f their 

morphological preservation could be examined, and embedded in araldite resin, an 

epoxy resin. Other cells were embedded in Unicryl resin, an acrylic resin suitable for 

immuno-EM, then semi-thin sections were stained with toluidine blue and examined 

under the light microscope. Ultra-thin sections were stained with uranyl acetate and
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lead citrate for examination under the electron microscope. Unicryl resin is preferable to 

an epoxy resin for immuno-EM because it allows water to penetrate the tissue, so it 

does not have to be removed from the sections before immunostaining. In addition, 

Unicryl resin can be polymerised at very low temperatures by ultra-violet light. This 

helps to prevent loss o f antigenicity caused by polymerisation o f araldite resin at 60°C.

Results

Stem cells collected by centrifugation

Stem cells that were collected by centrifugation, embedded in Unicryl resin and stained 

with uranyl acetate and lead citrate, were found, upon examination o f  

toluidine-blue-stained semi-thin sections, to contain cellular material. However, 

examination o f ultra-thin sections of cells fixed with 2% paraformaldehyde and 0.05% 

glutaraldehyde under the electron microscope showed that the cells had poorly 

preserved morphology. This is illustrated in Figure 38, Figure 39, Figure 40 and Figure 

41, which show the disruption of the plasma membrane and absence o f cytoarchitecture 

within the cells. In some cases fragments o f organelles are visible, and possibly whole 

nuclei, but cells fixed and embedded in this manner were not sufficiently intact to be 

used for immuno-EM.

Neurones collected by centrifugation

When neurones were harvested by centrifugation a much larger cell pellet was obtained 

than when neurones were collected by scraping or processed in situ. The cell pellets did 

not disintegrate during processing. Some o f these cells were stained with osmium
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tetroxide and embedded in araldite resin, while another batch was embedded in unicryl 

resin without staining with osmium tetroxide.

Semithin sections of the neurones collected by centrifugation and embedded in araldite 

resin were stained with toluidine blue, but it was difficult to tell from these sections 

whether or not there were any neurones present: if  there were any neurones present their 

morphology had not been preserved. Therefore no ultra-thin sections were cut from 

these blocks.

Neurones collected by scraping

The least successful method o f collecting neurones was by scraping from the flask 

because the clusters o f neurones were so small that most o f them were lost during the 

subsequent washes, fixation and staining. The only material that was successfully 

stained with osmium tetroxide and embedded in araldite resin was found, on 

examination o f semi-thin sections, not to contain neurones. This material may have 

been matrigel.

Neurones processed in situ

Those neurones that were processed in situ on the glass slides were successfully 

retained in the resin blocks, but the clusters o f cell bodies were so small that only about 

50-70 ultra-thin sections could be cut from each block. Two ultra-thin sections were 

successfully cut and collected from these block fixed with 2% paraformaldehyde. These 

were stained with uranyl acetate and lead citrate and examined under the electron 

microscope, but it was not clear whether or not the material contained in these sections 

was neuronal tissue. The sections were too thick for any cells that may have been
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present to be seen clearly, and the resin blocks may have been left in the oven for too 

long, thus becoming too brittle to cut evenly, because the sections had a ‘wrinkled’ 

appearance. If the material present in the sections was neuronal tissue it was too 

severely disrupted for its morphology to be seen. It is possible that these sections 

contained only matrigel.

Comparison of methods

Too few sections were collected, stained and examined for a comparison to be made 

between the quality o f tissue preservation by different fixatives.

With each of the techniques that were tested for embedding cells there either was very 

poor preservation of cell morphology or the scant populations o f cells were lost during 

the procedure. The lack o f any obvious solutions to these problems meant that the 

length o f time that would be required to solve them was beyond the available time, so 

this work was discontinued.
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Figure 38

Figure 39
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Figure 38

Electron micrograph of a semithin section of NT2 stem cells collected by centrifugation, 

fixed in 2% paraformaldehyde and 0.5% glutaraldehyde, embedded in Unicryl resin and 

stained with uranyl acetate and lead citrate. Fragments o f cell membrane, organelles and 

possibly nucleus are visible. The cytoarchitecture is severely disrupted and the resin 

appears creased.

Magnification = x 2 600

Figure 39

Higher power electron micrograph of the NT2 stem cells seen in Figure 38. Possible 

nuclear material is seen here.

Magnification = x 7 900
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Figure 40

Figure 41
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Figure 40

Higher power electron micrograph o f the area o f NT2 stem cell material shown in 

Figure 40, showing a possible nucleus.

Magnification = x 21 000

Figure 41

High power electron micrograph o f an organelle, possibly a mitochondrion, within the 

area of NT2 stem cells shown in Figure 38.

Magnification = x 64 000
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Discussion

Collection o f NT2 stem cells or neurones by centrifugation appeared to disrupt their 

morphology too much for successful EM examination. Neurones that were scraped from 

the cell culture vessels were barely visible to the naked eye and therefore too easily lost 

during the lengthy osmicating and embedding procedure. Although no neurones were 

identified in sections cut from those that were processed in situ, this seemed the most 

promising o f the techniques attempted. If cellular material was retained in the resin 

blocks on removal of the glass slides, these neurones would be expected to be relatively 

intact in comparison to those that were processed following removal from the culture 

surface and thus subjected to greater mechanical stress. Indeed traces o f the neuronal 

processes and their clusters of cell bodies were visible with a magnifying glass on the 

surfaces o f the blocks exposed on removal o f the slides.

Since completion of this work the results o f two studies have been published in which 

NT2 cells were successfully examined by EM. The first o f these studies described 

co-cultures of NT2 neurones with primary rat astrocytes as well as pure NT2N cultures 

on poly-D-lysine and matrigel (Hartley et al., 1999). In the co-cultures the neurones 

spread out over the astrocyte cell layer rather than forming the clusters seen when NT2 

neurones are grown on matrigel. These cells were fixed in situ with 2% glutaraldehyde 

in phosphate-buffered saline (PBS) overnight at 4°C, osmicated and stained with uranyl 

acetate, then embedded in partially pre-hardened blocks o f EPON resin. This method 

resulted in preservation o f morphology sufficient to identify synapses and intracellular 

structures. In the pure neuronal cultures few synapses were present and these contained 

small clusters of vesicles without synaptic densities. In the co-cultures many synaptic
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densities were seen, with associated small, clear vesicles, and large, dense-cored or 

clear vesicles.

In the second o f these studies NT2 neurones grown on p o ly -D -ly sin e- and 

m atrigel-coated coverslips were examined by EM and immuno-EM for 

neurotransmission type (Guillemain et al., 2000). Neurones were fixed in 4% 

paraformaldehyde and 0.5% glutaraldehyde in 0.1M PBS for 1 hour at room 

temperature. One set o f cultures was immunolabelled and all cultures were then 

osmicated and embedded in araldite resin in situ. Punches 1.5mm in diameter were 

made through the cultures and these were mounted on araldite blocks. After ultra-thin 

sections were cut, non-immunolabelled sections were stained with uranyl acetate and 

lead citrate. This paper describes in detail the ultrastructure o f the NT2 neurones 

examined by EM. Cell bodies with a large, regular nucleus and clear cytoplasm, and a 

smaller number o f cell bodies with an irregular nucleus and dense cytoplasm were 

described. Golgi saccules, smooth and rough endoplasmic reticulum, mitochondria and 

polymorphic autophagic-like vacuoles were identified in both o f these cell types. 

Axon-like and dendrite-like processes were described. Few classical synaptic contacts 

were present in the clusters o f cell bodies, but a number o f typical synaptic contacts 

were observed between axon-like and axon-like or between axon-like and 

dendrite-like processes, with symmetrical membrane densifications and numerous 

synaptic-like vesicles. The immuno-EM successfully labelled neurotransmitters in the 

cytoplasm of cell bodies and dendrites of NT2 neurones.

The similarity o f the techniques used in the two studies described above to the method 

used in this study for in situ embedding o f NT2 neurones suggests that neurones may 

have been successfully embedded in the blocks that were processed in situ. The sections
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that were cut may have been too thick for the cells to be seen under the electron 

microscope, or the cells may have been discarded in sections that were not collected. 

Alternatively, the optimum concentrations of paraformaldehyde and glutaraldehyde may 

not have been used so that cells were poorly preserved. The ultra-thin sections of in situ 

neurones that were examined by EM were from the block that was fixed with 2% 

paraformaldehyde, whereas Hartley et al. (1999) used 2% glutaraldehyde and 

Guillemain et al. (2000) used 4% paraformaldehyde plus 0.5% glutaraldehyde.

This in situ method o f processing NT2 cells for EM or immuno-EM, optimised 

according to the methods described by Hartley et a l  (1999) and Guillemain et al. 

(2000) should be of use in future studies o f EM localisation o f proteins and peptides 

implicated in the pathogenesis o f AD.
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CHAPTER 5: KPI-CONTAINING APP IN THE

HUMAN BRAIN

Uncovering of a KPI domain epitope of Alzheimer’s 

amyloid precursor protein for immunohistochemistrv in 

human brain 

Introduction

The amyloid precursor protein is expressed by most cells o f the human body. 

Differential splicing o f the primary RNA transcript o f APP generates eight protein 

products o f differing length, APP-695 being the most abundant in brain, followed by 

APP-751 and APP-770. The latter two o f these contain a Kunitz protease inhibitory 

(KPI)-encoded region (Ponte et a l ,  1988; Tanzi et a l  1988; Kitaguchi et a l ,  1988). 

Much research to date has focussed on APP-695 because, unlike KPI-containing 

isoforms (KPI-APP), its distribution is restricted to the brain. However, evidence 

suggests that the ratio of KPI-APP/APP-695 isoform mRNA is elevated in the brain 

with age and in AD (Johnson et a l , 1990; Wighton-Benn et a l , 1995). More recently it 

has been demonstrated that the KPI-APP protein level in the soluble subcellular 

fraction o f AD brains is significantly higher than in normal brains (Moir et al., 1998). 

Furthermore, the increase in APP-751/APP-695 mRNA ratio in hippocampal 

pyramidal neurones shows a strong, linear, positive correlation with senile plaque 

density in the hippocampus and entorhinal cortex (Johnson et a l , 1990).
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The present study investigates the pre-treatments needed to allow for the use o f a novel 

polyclonal antibody that is specific for KPI-APP. Methods are described that uncover 

the epitope to allow detection o f the antigen by immunoprecipitation and 

immunohistochemistry.

Methods

Antibody production, immunoprecipitations. SDS-PAGE and Western blotting were 

carried out by D. Parkinson (Camp,bgILgloL-19-9P).

Antibody production

Polyclonal antibodies (Ab993) to the KPI domain of APP were generated in a rabbit by 

D. Parkinson (Sheffield Hallam University), by immunisation with a synthetic peptide. 

The peptide sequence and its alignment to the KPI domains o f APP and amyloid 

precursor-like protein 2 (APLP 2) are shown in Figure 42.

Tmmunohistochemical staining of human brain sections

Immunostaining was performed on lOjim-thick sections o f formalin-fixed, 

paraffin-embedded whole temporal cortex o f 3 neurologically normal human brains 

(Table 2).
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Table 2: Brains used for immunohistochemical staining.

Case no. Age Sex P.M. Delay/hours Cause o f death

S156 93 Female 25 Ischaemic heart disease

S172 84 Male 48 Emphysema

S131 82 Male 58 Carcinoma of the lung

Endogenous peroxidase activity was quenched by incubation in 0.5% H2O2 (Sigma 

Chemical Co) in methanol. Immunostaining was then carried out using a Vectastain 

Elite ABC kit (Vector Laboratories), as indicated in the kit. The sections were incubated 

with anti-KPI antibody, at 1:400 dilution, overnight at 4°C. Visualisation o f the 

secondary antibody was achieved using diaminobenzidine (DAB), enhanced with nickel 

(Vector Laboratories).

Prior to immunostaining, pre-treatment A was performed on three sections, three 

sections were given pre-treatment B, three were given pre-treatment C and three were 

given pre-treatment D. This was repeated for each o f the three brains. The 

pre-treatments were as follows:

A: Microwaved in 0.05M Tris-HCl (BDH Laboratory Supplies), pH 7.0 for 7 minutes.

B: Reduction with 0.14M 2-mercaptoethanol (Sigma Chemical Co) in 0.5M Tris-HCl 

(pH 8) and ImM EDTA for 3 hours in the dark at room temperature. These sections 

were then washed for 3 minutes in distilled water and reduced sulphydryl bonds were 

alkylated in 250mg/ml iodoacetic acid (Sigma Chemical Co) in 0.1M NaOH, diluted
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1:10 in 0.5M Tris-HCl (pH 8) and ImM EDTA, in the dark at room temperature for 20 

minutes.

C: Pre-treatment A followed by B.

D: Incubation with 80% formic acid (BDH Laboratory Supplies) for 20 minutes.

Alongside each of the above pre-treatments, three sections were given no pre-treatment 

prior to immunostaining, and the primary antibody was omitted from one section. The 

control section from which the primary antibody was omitted was given the 

pre-treatment that was being investigated in the positive sections.

Controls included pre-absorption o f the primary antibody with the antigen, and 

substitution of the primary antibody with non-immune serum. Twelve sections were 

treated with pre-absorbed antibody and twelve with non-immune serum, and groups of 

three o f these were given pre-treatments A, B, C or none. Pre-immune serum from the 

immunised rabbit was not available, therefore non-immune serum from another rabbit 

was used. Positive control sections from the same brain, labelled with anti-KPI primary 

antibody, 1:400, were stained alongside these sections.

Results

Western blots

This work was carried out by D. Parkinson (Sheffield Hallam University). Cell culture 

medium conditioned by retinoic acid-treated NT2 cells was used to characterise the 

KPI-specific antibody used in this study since these human cells produce both 

KPI-containing APP and APP-695 (Pleasure and Lee, 1993; Wertkin et a l , 1993). Two
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monoclonal antibodies, 6E10 and DE2, that recognise epitopes within 

the 13-amyloid peptide sequence, were used on immunoblots to identify jail-Xorais^of 

secreted, a-secretase-cleaved APP. The preparation and characterisation o f 6E10 has^__________________ ____---------------- A X  ^

been described previously (Ghiso et al., 1992). DE2 was raised against 13-amyloid 1—16 

by D. Parkinson (Sheffield Hallam University). Both 6E10 and DE2 recognised bands 

of 115kDa and 105kDa /Figure 43, A). These results demonstrate that DE2 has similar 

properties to 6E10, and it was used for subsequent immunoprecipitations. Rabbit 

antiserum Ab993 stained only the 115kDa band (Figure 43, B).

While Ab993 stains KPI-containing APP on immunoblots without pre-treatment other 

than the standard solubilising in detergent containing a reducing agent, it does not 

immunoprecipitate any APP when used with untreated medium (Figure 43, B). After 

NT2 medium was treated with 2-mercaptoethanol to reduce disulphide bonds, followed 

by iodoacetamide to alkylate the cysteine residues and prevent reformation o f the 

disulphide bonds, DE2 still immunoprecipitated the 115kDa band (Figure 43, B). These 

results indicate that binding o f Ab993 to the KPI domain requires reduction o f  

disulphide bonds to reveal its epitope.

Immunohistochemistrv

The results of immunostaining of sections from the brain o f an 84-year-old male who 

died o f emphysema are shown in Figure 44. Sections that were not pre-treated 

displayed weak immunostaining o f cell bodies in the grey matter o f the temporal cortex 

(D). These were predominantly pyramidal cells in layers three and five, though not all 

pyramidal cells were immunopositive. In addition there was visible granular 

immunostaining o f the neuropil and positive staining o f probable astrocyte cell bodies.
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Pre-treatment o f sections with 2-mercaptoethanol and iodoacetate enhanced this 

staining (C), and sections that were microwaved were slightly more strongly 

immunolabelled (B). However, sections given both o f the above pre-treatments 

exhibited the greatest level o f immunoreactivity (A). In these sections extension of 

immunostaining into the dendrites o f pyramidal cells was apparent, consonant with the 

positive staining of the surrounding neuropil.

Other cell types that were stained may have been neuronal or glial, but were not easily 

identifiable due to their lack o f distinctive morphology. Formic acid pre-treatment of 

sections did not confer any enhancement of immunostaining.

Control sections incubated with primary antibody pre-absorbed with peptide antigen 

were immunonegative (E) were immunonegative, whether pre-treated as described 

above or not pre-treated. No immunostaining was seen on omission o f the primary 

antibody (F). In both these treatments the sections were so pale that photomicroscopy 

required significant underexposure relative to that used when photographing the 

immunopositive sections. Photomicrographs of the sections in E and F taken at the same 

settings as figures A and D were blank (data not shown).

Similar results were obtained with two other cases: a 93-year-old female, cause o f  

death was ischaemic heart disease; and an 82-year-old male, cause o f death was 

carcinoma of the lung (data not shown).
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Figure 42

Amino acid sequences of Kunitz protease inhibitor domain of APPs. The sequences for 
the Kunitz protease inhibitor domain are shown from the SWISSPROT entries for APP 
(Accession Number P05067) and APLP2/APPH (Accession Number Q06481). Identical 
amino acid residues between the peptide antigen used, by D. Parkinson (Sheffield 
Hallam University), for raising the KPI antiserum are shown as vertical bars.
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Figure 43

Characterisation of APP antibodies by Western blotting (work performed by D. 
Parkinson, Sheffield Hallam University). The samples were separated on 6.5% 
polyacrylamide gels, transferred to nitrocellulose and then subjected to Western 
blotting. (A) Separate lanes of NTera 2 medium were immunoblotted with 6E10 (lane 
1), DE2 (lane 2) or Ab993 (lane 3). The mobility o f molecular weight markers is shown 
to the left of lane 1. (B) NTera 2 medium was immunoprecipitated with either DE2 
(lanes 2 and 5) or Ab993 (lanes 3 and 6). Samples for lanes 1-3 were untreated while 
lanes 4-16 were reduced and alkylated prior to immunoprecipitation. Lanes 1 and 4 
contain a sample of medium. All lanes were immunoblotted with DE2.

154



Figure 44

Immunohistochemical staining o f  KPI-containing APP in human brain. 
Photomicrographs o f upper layer II pyramidal neurones in the middle temporal gyrus of 
case SI72. (a) Pre-treated with 2-mercaptoethanol and microwaving, (b) Pre-treated 
with microwaving, (c) Pre-treated with 2-mercaptoethanol. (d) No pre-treatment, (e) 
Sections pre-treated with 2-mercaptoethanol and microwaving and antibody 
pre-absorbed with peptide, (f) Pre-treated with 2-mercaptoethanol and microwaving 
and primary antibody omitted.
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Discussion

A polyclonal antibody to the KPI domain o f APP was generated in a rabbit. 

Immunoblots obtained with this antibody suggest high specificity (Figure 43).

The KPI antibody does not immunoprecipitate native APP (Figure 43). Examination of 

the SWISSPROT entry for APP (Accession Number P05067) reveals potential 

disulphide bonds between residue pairs 291-341, 300-324 and 316-337, which are 

within the KPI domain (residues 287-345, all APP-770 numbering). These disulphide 

bonds may obscure the epitope recognised by Ab993. This idea is supported by the 

results from immunoprecipitation o f APP (Figure 43) and therefore formed the rationale 

for pre-treatment of brain sections for immunohistochemical localisation o f APP.

This antibody is suitable for immunodetection o f KPI-containing APP isoforms in 

paraffin-embedded human brain, following uncovering o f the KPI domain epitope by 

pre-treatments evaluated in this study. Microwaving the sections enhanced 

immunostaining more than 2-mercaptoethanol. However, these effects were additive, 

therefore it is likely that the two pre-treatments uncover the epitope by different 

mechanisms.

It has been suggested that heat-mediated antigen retrieval for immunohistochemistry 

may uncover antigenic sites by providing the energy to rupture hydroxyl bonds between 

formalin and protein, and by chelation o f calcium from the sections by the salt solution 

(Morgan et a i,  1994). Removal o f calcium from the sections would break the fixative 

bonds permanently, thus revealing antigens. The pH o f the buffer also appears to 

influence the efficacy of antigen retrieval by this method (Shi et al., 1993).
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This study compared the effects o f heat-mediated antigen retrieval with reduction using 

2-mercaptoethanol or no pre-treatment.

The results o f this investigation show that both heating and disulphide bond reduction 

increase staining by the anti-KPI antibody when applied to paraffin-embedded human 

brain. M icrowaving the sections enhanced immunostaining more than 

2-mercaptoethanol did. However, these effects were additive and, therefore, it is likely 

that the two pre-treatments uncover the epitope by different mechanisms.

The methods described here most probably act by reduction o f disulphide bonds that 

normally mask the antigenic site, followed by alkylation to prevent the bonds from 

re-forming. This technique, therefore, may be useful for uncovering other antigens that 

are potentially hidden by disulphide bonds and cannot be exposed by other methods of  

antigen retrieval.

The absence of immunolabelling by an antibody that was pre-absorbed with the antigen 

demonstrates the specificity o f Ab993 for the KPI domain epitope o f APP. Lack o f  

staining by non-immune serum indicates that all immunostaining seen with Ab993 was 

due to labelling of the antigen by specific antibodies.

APP is a member o f a multigene family, including APLP1 and APLP2, and alternatively 

spliced variants of these other genes that include KPI domains have been reported 

(Slunt et a l , 1994; Sandbrink et a l , 1994). As shown in Figure 42, the peptide 

immunogen used to raise the KPI antibody has 68% identity with the corresponding 

sequence in the KPI domain of human APLP2, though non-identical residues separate 

the peptide into three short domains that may reduce the likelihood o f cross-reactivity 

with APLP2. Preliminary results indicate that the antibody has negligible
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cross-reactivity with APLP2 from brain so the results reported here most likely 

correspond to KPI-APP.

At present the cellular distribution of KPI-APP protein in human brain has not been 

described. This study suggests that KPI-APP is localised in pyramidal neurones as well 

as astrocytes. Staining o f neuronal processes and o f the neuropil suggests transport o f  

the protein throughout the cell. As discussed above, mRNA data suggest that KPI-APP 

protein levels may be elevated in AD brains, since the ratio o f KPI-APP/APP-695 is 

elevated in AD in comparison with normal brains. This antibody provides a tool with 

which the answers to these questions can be investigated.

This study demonstrates the importance o f examining the structure o f proteins that 

cannot readily be recognised by antibodies raised against distinct peptide regions. 

Epitopes that are potentially masked by the formation o f disulphide bonds can be 

revealed using both heat-mediated antigen retrieval and reduction with 

2-mercaptoethanol. Treatment with 2-mercaptoethanol allows detection o f  

KPI-containing APP by Western blotting, following immunoprecipitation, and can be 

used to enhance the results o f immunolabelling following microwaving.

Unlike other antibodies that are presently available for the study o f APP, this antibody 

specifically recognises KPI-containing isoforms. When used with the pre-treatments 

described here, it will be o f use in further studies o f the amount and distribution of 

KPI-APP protein in AD brains, complementing the research that has been done on APP 

mRNA in AD.
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CHAPTER 6: KPI-CONTAINING AMYLOID

PRECURSOR PROTEIN IN THE BRAIN IN 

NORMAL HUMANS AND IN ALZHEIMER’S

DISEASE

Introduction

Much recent research has highlighted the role played in Alzheimer’s disease (AD) of 

APP isoforms that harbour the Kunitz-type serine protease inhibitory (KPI) domain. 

Alternative splicing of exons 7 and 8 of APP RNA gives rise to APP isoforms that do or 

do not contain the KPI sequence. APP-770 contains both exons 7 (the KPI domain) and 

8 (the OX-2 domain), APP-751 contains exon 7 but not 8, and APP-695 contains 

neither exon (Ponte et al., 1988; Tanzi et a l  1988; Kitaguchi et al., 1988). Other minor 

APP-related isoforms that have been detected in human brain, amyloid 

precursor-related protein-365 (APRP-365) and APRP-563, also include the KPI 

domain (Neve et al., 1990; Jacobsen et al., 1991).

APP-695 mRNA is expressed preferentially in brain, principally in the neurones of 

association neocortex. KPI-containing APP (KPI-APP) mRNA is present in most 

tissues, including brain, and its distribution in the brain is more homogeneous than that 

of APP-695. Both KPI-APP and non-KPI-APP mRNAs are found in the hippocampal 

pyramidal neurones o f Ammon’s horn, the expression o f the former being higher in 

these neurones in normal adults (Neve et al., 1988). In contrast, pyramidal cells o f other 

cortical regions tend to express more non-KPI-APP than KPI-APP mRNA.
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It has been demonstrated in vitro that expression o f KPI-APP versus non-KPI-APP 

results in a shift in APP cleavage, generating a higher proportion o f 13-secretase-cleaved 

13-amyloid (1—40)/( 1—42) and a correspondingly lower proportion o f  

a-secretase-cleaved products that do not contain the whole 13-amyloid sequence (Ho et 

a l , 1996). The transgenic mice produced by Games et a l  (1995) expressed human APP 

(hAPP) that included introns 6-8, allowing alternative splicing o f exons 7 and 8 and 

expression o f hAPP-695, -751 and -770. The particularly high expression level of 

KPI-containing hAPP isoforms relative to APP-695, along with the high expression 

level o f hAPP, inclusion of the V717F familial AD mutation, and the use o f a PDGF-13 

promoter, may have contributed to the extensive AD-like pathology exhibited in these 

animals.

There are many conflicting reports on the levels o f expression o f KPI-APP versus 

non-KPI-APP mRNA isoforms in the human brain with increasing age and in AD. The 

levels o f expression o f KPI-APP mRNA isoforms have been demonstrated to be 

increased (Tanaka et a l , 1989; Rockenstein et a l , 1995), decreased (Johnson et a l , 

1988; Robinson et a l,  1994), or unchanged (Johnson et a l ,  1989; Ohyagi et a l ,  1992) 

in AD compared with normal age-matched control individuals. However, the prevailing 

evidence suggests that, whether APP mRNA levels are elevated or reduced in AD, the 

ratio of KPI-APP/non-KPI-APP mRNA is increased in AD in comparison with normal 

aged controls or non-AD dementias (Tanaka et a l ,  1989; Johnson et a l ,  1990; 

Wighton-Benn et a l,  1995; Johnston et a l ,  1996).

Although there have been many attempts to quantify levels o f KPI-APP and 

non-KPI-APP mRNA isoforms in human brain, the corresponding protein levels and 

distribution have not been characterised. Moir et a l  (1998) used whole hemispheres to
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quantify the overall levels of KPI-APP and non-KPI-APP protein in the membrane 

fraction and the soluble fraction of AD versus normal and neurological control brains. 

This study revealed an increase in KPI-APP in the soluble subcellular fraction in AD, 

lending support to the majority of the RNA studies.

Here a polyclonal antibody specific for the KPI domain epitope o f APP was used to 

characterise, by indirect immunohistochemistry, the cellular distribution o f KPI-APP 

protein in the temporal and visual cortices o f normal human brains and in the temporal 

cortex of AD brains. The SWISSPROT entry for APP (Accession Number: P05067) 

shows that it contains a cysteine residue on either side o f the KPI domain epitope to 

which the antibody was raised. It is likely that a disulphide bond forms between these 

cysteine residues, preventing antibodies from gaining access to the KPI domain. 

2-mercaptoethanol is a reducing agent that breaks disulphide bonds, thus allowing the 

antibodies to bind to the KPI domain. Therefore tissue sections were pre-treated with 

2-mercaptoethanol before incubation with the primary antibody. The reduced 

disulphide bonds could potentially re-form so, following incubation with 

2-mercaptoethanol, the reduced bonds were alkylated with sodium iodoacetic acid. This 

method is described in detail elsewhere (Campbell et al., 1999) and in the preceding 

chapter.

A wide age range o f normal brains was used to determine the effects o f ageing on 

KPI-APP protein expression. Serial sections o f whole temporal cortex from an AD 

case, with extensive KPI deposits, were immunostained with antibodies to paired helical 

filaments (PHF), amyloid precursor-like protein 2 (APLP2), 13-amyloid and KPI-APP 

to investigate the relationships between these proteins. Amyloid load has been shown to 

correlate well with degree o f dementia (Cummings and Cotman, 1995). Therefore the
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amyloid load o f each of the brains was quantified and compared with the amount of 

KPI-APP protein detected.

Methods

Tmmunolahelltng of KPI-APP in AD and normal brains

Brain sections from 16 normal cases and 14 AD cases (see Table 3) were 

immunolabelled with anti-KPI antibody, allowing analysis o f the distribution and 

intensity of KPI-containing APP immunopositivity in normal and AD brains. Brains 

were fixed in 10% formalin. Blocks o f middle temporal and visual cortex were taken 

from each o f the normal brains, and middle or whole temporal cortex was taken from 

each o f the AD brains. lOpm-thick sections were cut from the paraffin-embedded 

tissue blocks and mounted on TESPA-coated slides. These were immunolabelled with 

anti-KPI antibody as described in the ‘methods’ chapter. Microwave antigen retrieval 

has been described previously to improve immunolabelling of APP in formalin-fixed, 

paraffin-embedded human brain sections (Sherriff et a l ,  1994). In this study, sections 

were boiled twice in citrate buffer (pH 6). Quality o f immunostaining following this 

method o f microwave antigen retrieval was compared with that described in the 

methods chapter above (0.05M Tris-HCl, pH 7, for 3, 7 or 10 minutes). Microwaving in 

0.05M Tris-HCl, pH 7, for 7 minutes resulted in the best enhancement o f  

immunostaining intensity, without sections detaching from the slides, so this method 

was selected.

Controls included pre-absorption o f the primary antibody with the antigen, and 

substitution of the primary antibody with non-immune serum. Pre-immune serum from
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the immunised rabbit was not available, so non-immune serum from another rabbit was 

used. Positive control sections from the same brain, labelled with anti-KPI primary 

antibody, 1:400, were stained alongside these sections.

Initially, middle temporal cortex from SI78, an AD case that was known to contain a 

large amount o f 13-amyloid, was immunolabelled. These sections were strongly 

immunopositive for KPI-containing APP. This case was therefore used as a positive 

control, and one section o f S I78 was included with each batch o f sections 

immunolabelled with anti-KPI antibody. Another section of S I78 was labelled, as a 

control omitting the primary antibody, with each batch o f sections. Three sections from 

each tissue block were immunostained with anti-KPI.

Image analysis of KPI immunostaining

All o f these sections were then examined using the image analysis programme 

“Freelance”. Sections were analysed blind by colour-coding and numbering slides. Two 

areas o f superficial cortex and the adjacent two areas o f middle cortex and deep cortex 

were analysed in each section, giving a total o f six measurements o f each o f superficial, 

middle and deep cortex from each tissue block. These corresponded approximately to 

laminae I—II, III-IV and V-VI respectively. In sections o f temporal cortex the middle 

temporal gyrus was selected for analysis, and in visual cortex the primary visual cortex 

was selected.
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Immunolabelling of serial sections to localise KPI-APP in AD

temporal cortex

13 serial sections o f an AD case were immunolabelled with anti-B-amyloid (Dako), 

anti-KPI, anti-PHF (ICN Biomedicals) and 3B11 (anti-APLP2 (M.-T. Webster and P. 

Francis)), in the following order:

BA, KPI, 3B11, KPI, PHF, KPI, 13A, KPI, PHF, KPI, 3B11, KPI, BA

Sections o f whole temporal cortex were used, from a case with a large number of 

extracellular KPI-positive deposits present in the temporal cortex.

Sections that were immunolabelled with anti-B-amyloid were pre-treated with 80% 

formic acid (BDH Laboratory Supplies) for 20 minutes prior to incubation with the 

primary antibody. Those that were labelled with anti-KPI were pre-treated with 

2-mercaptoethanol and iodoacetate as described above.

Measurement of amyloid load of temporal cortex of AD brains

Paraffin-embedded sections o f middle temporal gyrus were immunolabelled with 

anti-B-amyloid antibody (Dako), for those brains in which amyloid load had not been 

measured previously (Radenahmad N., 2000). The amyloid load (percent) for each case 

was measured over a field that included the entire depth o f the temporal cortex, using 

the Freelance image analysis programme. This measurement thus included all 

B-amyloid-immunopositive structures, such as plaques, cerebro-vascular amyloid and 

diffuse amyloid.
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Table 3: Summary of control and AD cases used for KPI immunohistochemistry. 
P.M.D. = post-mortem delay; S.D. = standard deviation; N = number of cases.

Diagnosis Variable Mean S.D. Min. Max. N

Control Age/

years

70.94* 11.72 40 93 16

P.M.D./

hours

32.75 12.31 24 58 16

PH 6.44 0.49 5.58 7.21 13

AD Age/

years

79.50* 8.49 60 94 14

P.M.D./

hours

36.54 20.46 3 70 14

PH 6.02 0.03 6.00 6.04 2

* Significant difference, p<0.05.
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Table 4 & Table 5: Summary of results of image analysis o f KPI immunohistochemistry 

for control brains, n = 16, (Table 4), and AD brains, n = 14, (Table 5). S.D. = standard 

deviation; Nos. = numbers of cells; Cor. Nos. = corrected numbers o f cells; Dia. = 

diameter o f cells (pm); Area = area of cells (pm2); Sup. = superficial laminae; Mid. = 

middle laminae; De. = deep laminae; Tot. = total of all laminae.

Table 4: Controls.

Variable Mean SD Minimum Maximum

Nos. Sup. 0.40 0.63 0.00 2.17

Nos. Mid. 0.52 0.79 0.00 2.33

Nos. De. 0.61 0.83 0.00 2.67

Nos. Tot. 1.53 1.70 0.00 4.83

Cor. Nos. Sup. 0.11** 0.18 0.00 0.60

Cor. Nos. Mid. 0.14** 0.20 0.00 0.58

Cor. Nos. De. 0.13* 0.18 0.00 0.67

Cor. Nos. Tot. 0.42* 0.46 0.00 1.33

Dia. Sup./pm 13.08 16.78 0.00 47.56

Dia. Mid./pm 16.24 20.08 0.00 70.66

Dia. De./pm 25.53 22.31 0.00 66.63

Dia. Tot./pm 18.28 16.00 0.00 56.03

Area Sup./pm2 20.54 26.37 0.00 74.70

Area Mid./pm2 25.51 31.55 0.00 111.00

Area De./pm2 40.10 35.05 0.00 104.67

Area Tot./pm2 28.72* 25.14 0.00 88.02

*Significant difference, p<0.05; **significant difference, p<0.01.
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Table 5: AD.

Variable Mean SD Minimum Maximum

Nos. Sup. 2.65 3.63 0.00 14.17

Nos. Mid. 3.19 3.61 0.00 13.50

Nos. De. 2.82 3.02 0.00 10.50

Nos. Tot. 8.67 9.96 0.00 38.17

Cor. Nos. Sup. 0.73** 0.93 0.00 3.58

Cor. Nos. Mid. 0.75** 0.91 0.00 3.19

Cor. Nos. De. 0.55* 0.60 0.00 1.95

Cor. Nos. Tot. 1.98* 2.28 0.00 8.44

Dia. Sup./pm 25.73 10.25 0.00 44.87

Dia. Mid./pm 31.78 18.25 0.00 64.30

Dia. De./pm 39.56 20.32 0.00 76.11

Dia. Tot./pm 32.36 12.91 0.00 52.96

Area Sup./pm2 40.42 16.10 0.00 70.47

Area Mid./pm2 49.92 28.67 0.00 101.00

Area De./pm2 62.15 31.92 0.00 119.55

Area Tot./pm2 50.83* 20.28 0.00 83.19

*Significant difference, p<0.05; **significant difference, p<0.01.
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Results

The AD cases were significantly older than the normal control cases (AD 79.5 ± 8.5 

years, normal 71 ± 11.7 years, t-test: t = -2.31, p = 0.029). There was no significant 

difference in post-mortem delay between the AD and normal groups.

Results of image analysis of KPI immunohistochemistrv

The results o f image analysis are summarized in Table 4 and Table 5. There was no 

significant difference in cell size between the normal and AD cases when superficial, 

middle or deep laminae were examined separately. However, on analysis o f all laminae 

together, the overall area of KPI-immunopositive cells was greater in AD cases than 

normals (U = 33.0, p = 0.0257, Mann-Whitney U -  Wilcoxon Rank Sum W Test). This 

is shown in Figure 45. Counts o f cell numbers were therefore corrected to account for 

this size difference, using the Abercrombie correction (Abercrombie, 1946).

Using corrected cell numbers, there were more KPI-positive cells labelled in AD cases 

than in normals in the superficial (U = 39.5, p = 0.0021), middle (U = 44.0, p = 0.0040) 

and deep (U = 52.0, p = 0.0121) laminae, and in total (U = 51.5, p = 0.0116) 

(Mann-Whitney U -  Wilcoxon Rank Sum W Test). This is illustrated in Figure 46.

Post-mortem delay (pmd) was the major determinant o f cell numbers in control brains, 

in AD brains, and in all cases (Figure 47), by multiple regression analysis o f cell 

numbers with the variables age, pmd (and pH in control cases; pH values were available 

for only two AD cases), pmd making a 76% contribution to the correlation (beta = 0.76, 

T = 3.875, p = 0.0038).
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On multiple regression analysis o f corrected total cell numbers in all cases, with the 

variables diagnosis, age and pmd, the major determinant of total cell numbers, and of 

cell numbers in the superficial, middle and deep laminae, was diagnosis, followed by 

pmd. On analysis o f total cell numbers, diagnosis made a 51% contribution to the 

correlation (beta = 0.51, T = 2.80, p = 0.0097), and pmd made a 37% contribution (beta 

= -0.37, T = -2.21, p = 0.036).
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Distribution of KPI-containing APP in human brain by

immunohistochemistrv

In AD brains KPI-containing neurones were more common than tangles (labelled with 

anti-PHF). Layer V pyramidal neurones in the temporal lobe were often strongly 

KPI-immunopositive (Figure 48 and Figure 50), and this is where numerous tangles 

were found (Figure 49, Figure 51 and Figure 52). Many smaller, non-pyramidal cells in 

cortical layers II to VI were KPI-positive (Figure 53). The neuropil was stained with 

anti-KPI (Figure 54), suggesting that KPI may be present in many neuronal processes 

and/or glia.

Anti-KPI (Figure 54) labels plaques with the approximate frequency and intensity of  

anti-PHF (Figure 55), and with less frequency and intensity than 13-amyloid (Figure 

56). The implication is that KPI is in the neuritic elements of plaques since burnt out 

and diffuse plaques do not always have KPI staining (Figure 57, Figure 59, and Figure 

61 c.f. Figure 58, Figure 60 and Figure 62). An example o f a plaque in which the 

neuritic element appears immunostained with anti-KPI is shown in Figure 63 and 

Figure 64.

All blood vessels with cerebro-vascular amyloid (CVA) (labelled with anti-13-amyloid) 

and some without CVA were immunostained for KPI (Figure 65 c.f. Figure 66, Figure 

54 c.f. Figure 56, and Figure 63 c.f. Figure 64).

Sections immunolabelled with 3B11 showed no staining o f APLP2 (Figure 67). 

Immunolabelling with antibody that had been pre-absorbed with the antigen, or with 

non-immune rabbit serum, yielded no immunostaining (Figure 68 and Figure 69).
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Amyloid load of brains

13-amyloid loads in the temporal cortices o f the AD cases, along with ages and pmd of 

these cases, are summarised in Table 6 below.

Table 6: Summary o f 13-amyloid loads in temporal cortices of AD cases. P.M.D. = 
post-mortem delay; S.D. = standard deviation; N = number of cases.

Variable Mean S.D. Min. Max. N

Age/

years

79.50 8.49 60.00 94.00 14

P.M.D./

hours

36.54 20.46 3.00 70.00 13

Amyloid

load/%

5.14 4.65 0.07 14.27 14

On multiple regression analysis of corrected KPI-positive cell numbers in the AD cases, 

with the variables age, pmd and 13-amyloid load in the temporal cortex, the major 

determinant o f KPI-positive total cell numbers was pmd, which made a 77% 

contribution to the correlation (beta = -0.770, T = -2.586, p = 0.029). Neither 

13-amyloid load nor age were significant determinants o f KPI-positive cell numbers.
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Figure 48

KPI immunolabelling in cortex at the superior temporal sulcus o f an AD case, showing 

many heavily stained lamina V pyramidal neurones, as well as staining o f plaques, 

blood vessels and the neuropil. 10|Lim-thick sections o f  formalin-fixed, 

paraffin-embedded tissue were microwaved and treated with 2-mercaptoethanol and 

iodoacetic acid, then labelled with anti-KPI antibody followed with biotinylated 

secondary antibody, ABC and DAB.

Arrow indicates the same blood vessel as in Figure 49 and Figure 50.

Magnification = x 20 

Figure 49

Serial section to Figure 48, showing that tangle-bearing neurones belong to a similar 

population to the KPI-positive cells. Section was labelled with anti-PHF followed with 

biotinylated secondary antibody, ABC and DAB.

Arrow indicates the same blood vessel as in Figure 48 and Figure 50. Arrowhead 

indicates the same plaque as in Figure 51.

Magnification = x 20
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Figure 50
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Figure 50

Higher power magnification o f the section seen in Figure 48, showing a heavily 

immunostained, KPI-positive lamina V pyramidal neurone (centre).

Arrow indicates the same blood vessel as in Figure 48 and Figure 49.

Magnification = x 80

Figure 51

Higher power magnification o f the section seen in Figure 49, showing the 

PHF-positive, tangle-bearing cells in lamina V.

Arrowhead indicates the same plaque as in Figure 49.

Magnification = x 80
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Figure 52

Typical examples o f the many tangle-bearing pyramidal neurones in the hippocampal 

cortex o f the same AD brain as in Figure 48-Figure 51. Section was stained with 

anti-PHF antibody followed by biotinylated secondary antibody, ABC and DAB.

Magnification = x 80

Figure 53

KPI staining in middle temporal cortex o f an AD case, showing many immunopositive 

smaller, non-pyramidal, cells in laminae II (top left of photomicrograph) to VI (bottom 

right). Section was microwaved and treated with 2-mercaptoethanol and iodoacetic 

acid, then labelled with anti-KPI antibody followed with biotinylated secondary 

antibody, ABC and DAB.

Magnification = x  15
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Figure 54

Low power KPI staining o f the whole depth o f the cortex at the superior temporal sulcus 

from the case shown in Figure 48-Figure 52. The neuropil is stained, as well as plaques 

in similar numbers and intensity to those labelled with anti-PHF antibody (Figure 55). 

Several immunopositive blood vessels can be seen. Section was microwaved and treated 

with 2-mercaptoethanol and iodoacetic acid, then labelled with anti-KPI antibody 

followed with biotinylated secondary antibody, ABC and DAB.

Magnification = x 8

Figure 55

Serial section to that shown in Figure 54 above. PHF-positive plaques are present in 

similar numbers and labelled with similar intensity to those stained with anti-KPI 

antibody (Figure 54). Section was labelled with anti-PHF, followed with biotinylated 

secondary antibody, ABC and DAB.

Magnification = x 8
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Figure 56

Serial section to those in Figure 54-Figure 55. B-amyloid-positive plaques are more 

numerous than KPI- or PHF-positive plaques. Blood vessels that are KPI-positive 

(Figure 54) are not B-amyloid-positive. Section was microwaved in 80% formic acid 

prior to immunostaining with anti-B-amyloid antibody, followed by biotinylated 

secondary antibody, ABC and DAB.

Magnification = x 8
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Figure 57 and Figure 58

Serial sections o f cortex around the collateral sulcus o f the AD case shown in Figure 

48-Figure 52, immunolabelled with anti-13-amyloid antibody (Figure 57) and anti-KPI 

antibody (Figure 58). The fundus of the sulcus (long arrow) and the same blood vessel 

(arrowhead) are indicated. The blood vessel indicated is both B-amyloid-positive and 

KPI-positive. Examples of neuritic 13-amyloid plaques, in which the neuritic element 

appears to be KPI-positive, are indicated (short arrows). The upper section was treated 

with 80% formic acid before immunostaining with anti-J3-amyloid followed with 

biotinylated secondary antibody, ABC and DAB. The lower section was microwaved 

and treated with 2-mercaptoethanol and iodoacetic acid, then labelled with anti-KPI 

antibody followed with biotinylated secondary antibody, ABC and DAB.

Magnification = x 20 (top and bottom)
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Figure 59

Higher power magnification o f B-amyloid-positive plaques seen in Figure 57. The 

same blood vessel is indicated (arrowhead).

Magnification = x 80

Figure 60

Higher power magnification o f KPI-containing mature plaques seen in Figure 58 

(arrows). The KPI-positive material appears as a “halo” surrounding the plaque core, 

implying a neuritic pattern of KPI distribution.

Magnification = x 80
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Figure 61
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Figure 61 and Figure 62

Serial sections o f the AD case shown in Figure 53. Many diffuse 13-amyloid plaques are 

seen (short arrows, Figure 61), which are not immunolabelled with anti-KPI antibody 

(Figure 62). The same neuritic plaque, in which the neuritic element is KPI-positive, is 

indicated (long arrow), and the same blood vessel, which is both 13-amyloid- and KPI- 

positive, is shown (arrowhead).

The upper section was treated with 80% formic acid before immunostaining with 

anti-13-amyloid followed with biotinylated secondary antibody, ABC and DAB. The 

lower section was microwaved and treated with 2-mercaptoethanol and iodoacetic acid, 

then labelled with anti-KPI antibody followed with biotinylated secondary antibody, 

ABC and DAB.

Magnification = x  20
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Figure 63 and Figure 64

Higher power photomicrographs o f the neuritic plaque indicated in Figure 61 and 

Figure 62. Immunolabelled with anti-B-amyloid its heavily stained 13-amyloid core is 

apparent, surrounded by a 13-amyloid-positive neuritic element (Figure 63). In an 

adjacent serial section, immunostained with anti-KPI antibody, the core o f this plaque 

is not stained, but the neuritic element is (Figure 64). Surrounding diffuse plaques, 

labelled by anti-13-amyloid (Figure 63), are KPI-negative (Figure 64).

At the bottom left (arrowhead) is a blood vessel that is 13-amyloid-negative but 

KPI-positive.

The upper section was treated with 80% formic acid before immunostaining with 

anti-13-amyloid followed with biotinylated secondary antibody, ABC and DAB. The 

lower section was microwaved and treated with 2-mercaptoethanol and iodoacetic acid, 

then labelled with anti-KPI antibody followed with biotinylated secondary antibody, 

ABC and DAB.

Magnification = x 80
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Figure 65 and Figure 66

Higher power photomicrographs o f the blood vessel indicated in Figure 61 and Figure 

62. This large vessel is labelled by both anti-fi-amyloid (Figure 65) and anti-KPI 

(Figure 66) antibodies.

The upper section was treated with 80% formic acid before immunostaining with 

anti-13-amyloid followed with biotinylated secondary antibody, ABC and DAB. The 

lower section was microwaved and treated with 2-mercaptoethanol and iodoacetic acid, 

then labelled with anti-KPI antibody followed with biotinylated secondary antibody, 

ABC and DAB.

Magnification = x 80
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Figure 67

No APLP2 was immunolabelled with antibody 3B11 in AD cases. The section seen here 

was taken at the collateral sulcus o f the AD case that is shown in Figure 48-Figure 52. 

Some tissue sections were microwaved prior to immunostaining and others were not. 

Sections were then labelled with antibody 3B11 followed with biotinylated secondary 

antibody, ABC and DAB. The section shown here was not microwaved. There was no 

difference in immunostaining in sections that were microwaved.

Magnification = x 8

Figure 68

No immunostaining was seen in sections of AD brains that were microwaved, treated 

with 2-mercaptoethanol and iodoacetic acid, then labelled with anti-KPI antibody that 

had been pre-absorbed with the antigen, followed by biotinylated secondary antibody, 

ABC and DAB.

Magnification = x  90
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Figure 69

No immunostaining was seen in sections o f AD brains that were microwaved, treated 

with 2-mercaptoethanol and iodoacetic acid, then labelled with non-immune serum 

from the same rabbit in which the anti-KPI antibody was raised, followed by 

biotinylated secondary antibody, ABC and DAB.

Magnification = x 90
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Discussion

An increased incidence of KPI cell staining was found in AD compared with control 

cases by counting cells using image analysis. Thus the increased KPI-/non-KPI-APP 

ratio indicated by mRNA studies (Tanaka et al., 1989; Johnson et al. , 1990; 

Wighton-Benn et al., 1995; Johnston et al., 1996) appears to be accompanied by 

up-regulation o f KPI-APP protein in cells o f the temporal and visual cortices in AD 

compared with normal aged controls. In control subjects (as well as in AD) KPI protein 

expression was found to be unchanged with age. In one previous study mRNA data has 

shown an increased proportion o f KPI-/non-KPI-APP with age, though absolute levels 

of mRNA isoforms were not reported (Tanaka et al., 1993). Only 6 control brains were 

analysed by Tanaka et al., and of these only one was neurologically normal, two had 

Parkinson’s disease and three had cerebral infarction, whereas the present study 

consisted of 16 neurologically normal control subjects. A further study o f APP mRNA 

including 41 neurologically normal controls (Robinson et al., 1994) revealed only a 

small, non-significant increase in KPI/APP-695 ratio, and an overall decrease in 

KPI-APP mRNA level with age.

Pmd had a secondary influence on KPI-positive cell numbers. A comprehensive study 

of the effects o f pmd and pre-mortem variables on APP mRNA in human frontal cortex 

(Harrison et al., 1994) did not find any correlation between pmd and APP mRNA 

levels. However, a reduction in APP mRNA was found with decreased glutamate 

decarboxylase (GAD) activity (vulnerable to poor agonal state), with terminal pyrexia 

(non-significant), and with increasing duration o f terminal coma (non-significant). 

Pre-mortem factors that affect APP mRNA levels might be expected to similarly affect
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the corresponding protein levels. Although these data were not available for the brains 

used in this study, brain pH, which is reduced with poor agonal state, was known for the 

controls. No correlation was found between pH and KPI protein levels in control cases, 

but it is possible that other pre-mortem variables exerted an influence, and that KPI 

protein levels in the AD cases may have been influenced by pre-mortem course.

KPI staining in AD was closely related to the pathology. Cells that were 

KPI-immunopositive were the same population that are susceptible to tangles. Previous 

studies have identified KPI-APP mRNA in hippocampal granule and pyramidal 

neurones in normal and AD brains (Spillantini et al., 1989), neurones o f the association 

neocortex in normal adult brains (Neve et al., 1988), and white matter oligodendrocytes 

in normal and AD brains (Harrison et a l , 1994). Neve et a l , (1988) examined cellular 

distribution of KPI-APP mRNA by in situ hybridization in frontal association cortex, 

inferior temporal association cortex, striate (primary visual) cortex and motor cortex. 

Highest expression levels were found in the frontal and temporal association areas, with 

homogeneously strong hybridization in layers II -  VI. Motor cortex displayed moderate 

expression, which was strongest in layers III and V. In striate cortex weak hybridization 

predominated in layers III and V/VI. The pattern of KPI protein distribution observed in 

this study closely matches these descriptions of mRNA expression patterns, and roughly 

follows the distribution of pyramidal cells.

KPI staining was also present in the neuropil, possibly in neuronal processes and/or glia. 

Fast anterograde axonal transport o f APP has been described (Moya et a l , 1994), and 

APP has been localised at presynaptic terminals (Lyckman et a l ,  1998). In visual and 

temporal neocortex APP-695 and APP-751 mRNAs have been reported to be 

principally neuronal, and APP-770 mRNA mainly glial (Wighton-Benn et a l ,  1995). It
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therefore seems likely that KPI protein is indeed present in both neuronal processes and 

glia. Many, if  not all, plaques were immunolabelled for KPI and the KPI tended to be in 

the neuritic element of plaques. The presence of KPI in the neuropil and in the neuritic 

element o f plaques suggests that an up-regulation o f KPI in neuronal processes may be 

a precursor to plaque formation.

Cerebro-vascular amyloid (CVA) appeared to be accompanied by an increase in KPI, 

but many KPI-positive vessels did not have 13-amyloid deposits. The presence o f strong 

KPI immunoreactivity in a population of blood vessels that includes but exceeds those 

with CVA implies that KPI accumulation may precede and induce CVA deposition. 

Fibrillar 13-amyloid has been shown to bind to a site within amino acid residues 18-119 

of the N-terminus o f KPI-APP, and it was suggested that CVA may thus induce 

accumulation o f KPI-APP at sites of cerebral amyloid angiopathy (Wagner et a l , 

2000). However, the present study, together with the findings o f Wagner et al. (2000), 

indicates that upregulation o f KPI-APP precedes and may augment cerebro-vascular 

accumulation o f fibrillar 13-amyloid.

Neuronal loss is a prominent feature of AD (Perry, 1991). In rat brain, KPI-containing 

APP-751 mRNA is elevated following neurotoxic damage or persistent focal ischaemia 

(Sola et al., 1993; Abe et a l , 1991). The observed increased incidence o f KPI-positive 

cell staining in AD brains may reflect this up-regulation o f KPI-APP mRNA in rat 

brain as a response to neuronal injury. Transgenic mice expressing high levels o f  

hAPP-751 and -770 (bearing the V717F familial AD mutation) displayed extensive 

AD-like pathology, implying that overexpression o f KPI-containing APP isoforms may 

have contributed to development of this pathology (Games et a l , 1995).
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Gliosis and activation o f glial cells in AD (Perry, 1991) are further factors that may alter 

the proportions o f different APP isoforms in the brain. Cultured glial cells normally 

express a higher proportion of KPI-APP than non-KPI-APP mRNA (Gray and Patel, 

1993a). Activation o f glial cells may augment their production o f KPI-APP, as 

demonstrated in vitro (Gray and Patel, 1993a and b; Sudoh et a l , 1996; Shepherd et a l , 

2000) and in neuronal injury in rat brains (Iverfeldt et al., 1993).

Johnson et a l  (1990) found a strong linear relationship between the increased 

APP-751/-695 mRNA ratio in pyramidal cells and senile plaque density in AD 

hippocampus and entorhinal cortex. Although no relationship was found between 

KPI-positive cell numbers and 13-amyloid load in the present study, it might be o f  

interest to compare 13-amyloid load with KPI load, in view o f the apparent extracellular 

KPI deposits that were identified.

The increase in numbers of KPI-containing cells and presence o f KPI in the neuropil 

and blood vessels in AD brains that were uncovered in this study has implications for 

the mechanism by which 13-amyloid deposits develop in the CNS in AD. If KPI-APP 

has a different conformation to non-KPI-APP this may render it less susceptible to 

a-secretase cleavage, or alter its cellular trafficking thus reducing its exposure to 

a-secretase. The KPI domain might inhibit a-secretase, shifting APP processing from 

a-secretase to 13-secretase cleavage, resulting in generation o f more amyloidogenic 

fragments. Increased 13-amyloid secretion was reported in cultured cells expressing 

hAPP-751 in comparison with those expressing hAPP-695 (Ho et a l , 1996), further 

supporting a role for the APP-751 isoform in amyloidogenesis. Alternatively, normal 

13-amyloid clearance could be impaired if KPI inhibits the enzyme(s) responsible for 

13-amyloid degradation. Breakdown of secreted APP has been found to be inhibited by
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KPI in cultures o f chick neurones, thus altering the normal balance o f sAPP in the 

extracellular environment (Caswell et al., 1999).

It should be noted that APRP-563 mRNA has been found to be increased in AD brains 

(Neve et al., 1990). This amyloid precursor-related isoform contains the KPI domain, 

and hence could potentially be labelled by the antibody employed in this study. It does 

not contain the 13-amyloid sequence but the presence o f the KPI domain could still 

affect processing o f other, 13-amyloid-containing, APP isoforms as described above.

This study describes an increased incidence of KPI-immunopositivity in temporal and 

visual cortices in AD. A close relationship is outlined between the KPI domain and the 

pathology o f AD, with the implication that KPI accumulation is a precursor to 

13-amyloid deposition in plaques and as CVA.
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CHAPTER 7: TRANSFORMING GROWTH

FACTOR-R1 IN SITU IN THE HUMAN BRAIN

Introduction

Transforming growth factor-Bl (TGF-131) is a member of a family o f peptide cytokines 

first named for their ability to stimulate transformation o f fibroblasts. TGF-131-3 are 

widely expressed in human tissues and, o f these, TGF-131 has been studied most 

extensively. TGF-131 is involved with cell proliferation and differentiation, the 

inflammatory response, immune regulation, and regulates the extracellular matrix 

(ECM) by promoting synthesis o f matrix protein and stimulating protease inhibitors that 

prevent matrix degradation (Ebadi et al, 1997; Zhao and Schwartz, 1998). TGF-13 

affects gene transcription via Smads (homologues o f mad, a signal transduction gene 

product in Drosophila), signal transducer proteins that carry the signal from cell surface 

TGF-13 receptors to the nucleus (Heldin et a l ,  1997). In normal mammalian brains it is 

usually expressed by astrocytes, microglia, oligodendrocytes, microvessel endothelial 

cells and, to a lesser extent, neurones (Macvilay and Fabry, 1997; Mattson et a l ,  1997).

Immunohistochemical studies have demonstrated the presence o f TGF-131 in normal 

human brains. Here it has been found in capillaries o f the hippocampus and entorhinal 

cortex, but not in cell bodies or plaques (Van der Wal et a l ,  1993). Another study, o f 

frontal cortex from just one normal human brain, found TGF-131 immunoreactivity and 

mRNA (by in situ hybridization) in astrocytes, microglia and oligodendrocytes, but not 

neurones (Da Cunha et a l ,  1993). Greater immunoreactivity for TGF-131 has been 

demonstrated in AD brains in comparison with normal controls. In AD it has been
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immunolabelled in diffuse plaques, neurofibrillary tangles, blood vessels and, 

occasionally, in glial cells (Van der Wal et a l , 1993) and in the neuritic element of 

senile plaques (Peress and Perillo, 1995).

Recently, bigenic mice were developed that overexpress human APP (hAPP) and 

porcine TGF-131 (Wyss-Coray et a l,  1997). Singly transgenic mice overexpressing 

porcine TGF-131 in astrocytes display perivascular astrocytosis, up-regulation and 

accumulation o f extracellular matrix components laminin and fibronectin in the brain, 

and develop hydrocephalus (Wyss-Coray et a l ,  1995). Heterozygous, low-expressor 

mice, that do not develop this pathology, were used to create the bigenic mice. 

PDGF-hAPP mice, overexpressing mutant hAPP (V717F), particularly the 

KPI-containing isoforms, develop AD-like amyloid deposits (Games et a l ,  1995; 

Rockenstein et a l ,  1995). However, in the hAPP/TGF-131 bigenic mice there was 

accelerated deposition of 13-amyloid in comparison to the singly transgenic hAPP mice. 

Subsequently, TGF-131 singly transgenic mice were found to develop age- and 

TGF-131-dose-dependent amyloid deposits around cortical capillaries at around 6 

months o f age (Wyss-Coray et a l ,  2000). This amyloid deposition was preceded by 

up-regulation o f the basement membrane proteins perlecan and fibronectin and 

thickening o f cortical capillary basement membranes. It was then followed by 

microvascular degenerative changes similar to those found in AD brains. These findings 

highlight a potential role for TGF-131 in initiating or promoting the development o f  

13-amyloid deposits in AD. Furthermore, a possible association was made recently 

between a TGF-131 genetic polymorphism and AD (Luedecking et a l,  2000).

Although TGF-131 protein distribution in normal versus AD human brain has been 

investigated immunohistochemically, its mRNA expression has not been characterised,
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other than in frontal cortex from the single normal human brain in which TGF-131 

mRNA was localised, by in situ hybridization histochemistry (ISHH), by Da Cunha et 

al. (1993). This study therefore set out to quantify TGF-131 mRNA expression by ISHH 

in human frontal, temporal, hippocampal and visual cortex and underlying white matter, 

in AD and control cases. These four areas were chosen for the characteristic early 

development o f AD pathology in frontal, temporal and hippocampal cortex and later 

involvement o f visual cortex, and their varying amounts o f 13-amyloid deposition and 

APP expression throughout the progression of the disease. Hybridized, radiolabelled 

sections were first exposed to film in order to quantify the overall level o f expression of  

TGF-131 mRNA in grey matter and white matter o f each o f the brain areas. Sections 

dipped in emulsion were then developed and counterstained with cresyl violet for 

analysis under a light microscope to identify cell types containing TGF-131 mRNA.

In situ hybridization histochemistry

This technique is used to detect a specific nucleotide sequence in tissue sections. When 

added to the tissue sections, under appropriate conditions, the probe will hybridize 

(form base pairs) with the target sequence, but not with other, non-complementary, 

nucleic acid sequences in the tissue. A synthetic oligoriboprobe (Gibco BRL) was 

selected to detect TGF-131mRNA in human brain sections. The probe was radiolabelled 

with 35S and the hybrids (paired probe and target strands) were detected by 

autoradiography, the resulting signal being proportional to the amount o f target mRNA 

present in the tissue.

The sequence of the TGF-131 antisense oligoprobe was:

5’CGT GGA GCT GAA GCA ATA GTT GGT GTC CAG3’
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The sequence o f the TGF-131 sense oligoprobe was:

5’CTG GAC ACC AAC TAT TGC TTC AGC TCC ACG3’

Results of in situ hybridization histochemistry

Separation of radiolabelled oligoprobe from unincorporated nucleotides

Fraction 5 from each sample passed through a purification cartridge was found to 

contain the majority o f the radiolabelled probe. Fraction 5 from all o f the samples of 

labelled sense or antisense probe were mixed, and the scintillation counter was used to 

obtain the number of counts per 5|il o f the combined sense fractions and the combined 

antisense fractions.

The combined sense probe contained 1205950 counts per 5jxl. Thus 4 . 14 j l i 1 contained 

106 counts, so 4 .14pil labelled probe was added per 1OOpl hybridization buffer (volume 

added to each section).

The combined antisense probe contained 2138750 counts per 5pl. Thus 2.33jul 

contained 106 counts, so 2.33pl labelled probe was added per 1 OOptl hybridization 

buffer.

Calculation of incubation and washing temperatures for in situ  

hybridization

Tm (°C) = 16.61og[M] + 0.41[Pgc] + 81.5 -  Pm -  B/L -  0.65[Pf]

Melt temperature and incubation temperature for incubation buffer

Tm = 16.61og[0.5] + 0.41[53.33] + 81.5 -  0 -  675/30 -  0.65[50]
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Tm = 43.37°C

Therefore Ti = 43.37 - 1 5  = 28.37°C

Melt temperature and wash temperature for washing buffer 

Tm = 16.61og[0.165] + 0.41[53.33] + 81.5 -  0 -  675/30 -  0.65[0]

Tm = 99.34°C

Therefore Tw = 99.34 -  15 = 84.34°C 

Quantification of autoradiography using film

The first batch of sections that was hybridized was left against film for 3 weeks. When 

developed, the film was underexposed and was too pale to be quantified. Therefore the 

following film was exposed to the second batch of sections for 5 weeks. This film was 

dark enough for the results to be quantified. The first batch o f sections was 

hippocampus and visual cortex, and the second batch was frontal cortex and temporal 

cortex. The results below therefore include only frontal and temporal cortex. The ages 

and post-mortem delays of control and AD cases are shown in Table 7.

The mean grey levels of film exposed to some sections could not be quantified because 

these sections had dried out during the ISHH procedure, resulting in an abnormally high 

signal, or sections were damaged occasionally. There were therefore different numbers 

of cases in the frontal (AD: n = 13; control: n = 4) and temporal (AD: n = 9; control: n = 

8) groups. These groups were tested independently for differences in mean 

post-mortem delay (pmd) or age (Table 8). (Age was known for all cases, but pmd was 

not available for three cases.) Using Student’s t-test there was no significant difference
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in pmd between controls and AD cases in either frontal or temporal groups. On analysis 

of frontal cases using Student’s t-test there was no significant difference in age between 

controls and AD. Levene’s test for equality o f variances gave a significant result (F = 

6.592, p = 0.021) for the temporal group when age was analysed. Therefore the 

Mann-Whitney-U-Wilcoxon-Rank-Sum-W test was used. This showed that the AD 

cases in the temporal group were significantly older than the controls (U = 13.5, p = 

0.030). However, regression analysis showed that mean grey levels in temporal cortex 

were not dependent on age (T = 1.571, p = 0.147).

There was a small, statistically significant increase in amount o f TGF-131 mRNA in 

temporal cortex (t = 2.43, p = 0.028) and temporal white matter (t = 2.30, p = 0.037) in 

AD cases versus controls (see Table 9) using Student’s t-test. There was no significant 

difference in amount o f TGF-131 mRNA in frontal cortex or white matter in AD cases in 

comparison with controls using Student’s t-test.
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Table 7 and Table 8: Summary of ages and post-mortem delays o f control and AD 

cases used for TGF-131 ISHH. P.M.D. = post-mortem delay; S.D. = standard deviation; 

N = number o f cases.

Table 7: All cases.

Variable Diagnosis Mean S.D. Min. Max. N

Age/

years

Control 70.55 16.28 40 93 11

AD 83.00 7.70 67 98 15

P.M.D./

hours

Control 36.28 11.86 20.50 58.00 10

AD 42.54 14.51 19.00 69.00 13
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Table 8: Frontal versus temporal.

Variable Area Diagnosis Mean S.D. N

Age/years Frontal Control 74.00 5.89 4

AD 82.54 7.95 13

Temporal Control 69.00 18.83 8

AD 87.00* 5.83 9

P.M.D./

hours

Frontal Control 39.00 12.73 4

AD 41.00 14.82 11

Temporal Control 34.25 11.04 7

AD 45.29 11.93 7

* p<0.05
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Table 9: Mean grey levels of film exposed to control and AD sections. FGM = frontal 
grey matter; FWM = frontal white matter; TGM = temporal grey matter; TWM = 
temporal white matter; mean = mean of mean grey levels; S.D. = standard deviation; N 
= number o f cases.

Area Diagnosis Mean S.D. N

FGM Control 211.52 23.14 4

AD 227.71 16.05 13

FWM Control 183.67 38.76 4

AD 184.86 33.38 13

TGM Control 197.86 33.97 8

AD 229.57* 18.44 9

TWM Control 165.88 29.42 8

AD 198.07* 28.36 9

* p<0.05
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Results of autoradiography using dipped sections

Very few silver grains were visible on the dipped sections following counterstaining 

even though they had been exposed for a long time (8 weeks) after being dipped in 

emulsion. The silver grains that were present were not clustered over cells, as would be 

seen if  cells had been labelled specifically, but were randomly distributed over the 

sections, so quantification was not possible.

Discussion

A modest, significant increase in TGF-131 mRNA was detected in AD temporal cortex 

and white matter in comparison with controls. Although the temporal AD cases were 

older than temporal controls, the mean grey levels o f these cases were not affected by 

age, as shown by regression analysis, so the observed increase in TGF-131 mRNA was 

not caused by the difference in mean age between the two groups.

The film that was exposed to the hippocampal and visual sections for 3 weeks was 

underexposed. This was probably due to low sensitivity o f the probe because, after 5 

weeks o f exposure to the frontal and temporal sections, the second batch o f film was 

exposed sufficiently for quantification. Since sections were not dipped in emulsion until 

after exposure to film, the initially weak radioactive signal may have decayed to such an 

extent that the emulsion was not exposed to a sufficiently strong signal for the mRNA to 

be detected by this method. Unfortunately, this meant that cell types containing elevated 

TGF-131 mRNA in AD could not be identified and compared with the cell types that 

were found to contain high levels of KPI-APP protein.
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These results are in agreement with immunohistochemical studies that have 

demonstrated increased levels o f TGF-131 protein in AD brains. TGF-131 was found in 

comparable amounts and distributions in cortical capillaries o f control and AD brains 

(Van der Wal et al., 1993) but was not found in plaques or cell bodies in normal aged 

brains (Van der Wal et al., 1993; Peress and Perillo, 1995). Van der Wal et a l  (1993) 

described TGF-131 immunoreactivity in 13-amyloid-immunopositive plaques and 

thioflavin-labelled (13-amyloid-positive) plaques and tangles in the dentate gyrus and 

entorhinal cortex o f AD brains. TGF-131-positive plaques were located mostly in the 

molecular layer of the dentate gyrus. Bielschowsky silver stain, which does not label 

early plaques, co-localised only rarely with TGF-131 on serial sections, suggesting that 

TGF-131 predominates in diffuse rather than neuritic plaques.

Using a different primary antibody, TGF-131 was identified in the neuritic element of 

senile plaques, by comparison with non-serial tau- versus 13-amyloid-immunolabelled 

sections (Peress and Perillo, 1995). Although neither study found notable cellular 

TGF-131 staining in AD brains Van der Wal et al. detected faint immunopositivity in 

glial cells that co-stained with anti-glial fibrillary acidic protein (GFAP) or 

anti-leukocyte common antigen (LCA), identified as astrocytes and microglia 

respectively, in the hippocampus and entorhinal cortex. In the normal frontal cortex 

studied by Da Cunha et al. (1993), TGF-131 mRNA was found in astrocytes, microglia 

and oligodendrocytes, but no TGF-131 immunoreactivity was found, suggesting that, 

although mRNA may be synthesised constitutively it might only be translated under 

pathological conditions. In brains from patients with acquired immunodeficiency 

syndrome (AIDS), the amount of TGF-131 immunoreactive protein correlated positively 

with interleukin-1, which is elevated also in AD brains (Da Cunha et al., 1993).
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Elevated levels o f TGF-13 have been found in pre- and post-mortem serum and 

post-mortem CSF of AD patients in comparison with controls, the levels o f serum 

TGF-13 correlating with disease severity (Chao et al., 1994a and b), lending additional 

support to the involvement of TGF-13 in AD.

Animal and in vitro studies provide further insight into the regulation and role of 

TGF-131 in the brain. TGF-131 has been suggested to participate in the response to 

neuronal injury. TGF-131 mRNA is upregulated in rat brain following  

hypoxia-ischaemia (Klempt et al., 1992), cerebral lesions (Logan et al., 1992), 

hippocampal deafferentation or kainic acid-induced neurodegeneration (Morgan et al., 

1993). The latter two studies found mRNA increases in astrocytes, macrophages and 

endothelial cells (Logan et al., 1992), and astrocytes, reactive microglia and 

macrophage-like cells (Morgan et al., 1993). TGF-131 mRNA has been reported to be 

elevated also in cases of cerebral infarction in humans, in lesion-associated astrocytes 

and macrophages (Peress and Perillo, 1995) and neurones (Ata et al., 1997). TGF-131 

may offer neuroprotection, or aid glial scar formation accompanied by promotion of 

ECM deposition, similar to its role in peripheral scar formation (Logan et al., 1992). As 

implied by its induction in deafferented areas o f the brain, it may play a role in the 

reactive synaptogenesis that follows deafferentation, analogous to the abortive neuronal 

sprouting seen in AD. Indeed, TGF-13 can induce production of nerve growth factor and 

neurotrophin-3 (Flanders et a l,  1998).

Several in vitro studies have shown TGF-131 to be neuroprotective against 

13-amyloid-induced neurodegeneration in primary rat hippocampal neurones and in 

human NTera 2 neurones (Prehn et al., 1996; Ren and Flanders, 1996; Ren et al., 1997) 

and against cytotoxic hypoxia and excitotoxic insult in primary chick neurones (Prehn
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et al., 1993). It has been speculated that the mechanism of this neuroprotection may be 

related to the influence of TGF-131 on expression of the Bcl-2 and B c 1 - x l  oncoproteins. 

These are involved with protection against neuronal cell death, particularly via 

programmed cell death or apoptosis. Both were upregulated following treatment of 

neurones with TGF-131, whereas expression o f  Bax, which counteracts the 

neuroprotective effects of Bcl-2, was unaffected (Prehn et al., 1996). There is increased 

Bcl-2 protein expression in neurones adjacent to those that have died in AD brains 

(Glenner, 1988). It is therefore possible that this is mediated via TGF-131. Evidence 

from these in vitro studies suggests that TGF-131 may also exert neuroprotective effects 

via prevention o f J3-amyloid-induced loss o f mitochondrial potential and function 

(Prehn et al., 1996; Ren et a l , 1997). AD brains show signs that mitochondrial function 

is impaired (Gibson et al., 1999) so it may be speculated that TGF-131 is upregulated in 

attempt to restore mitochondrial function.

Many more suggestions have been made as to the role of TGF-131 in AD. In NTera 2 

neurones it increases levels of presenilin 1 (PS1) mRNA (Ren et al., 1999). PS1 was 

recently demonstrated to be responsible for y-secretase cleavage o f APP, thus 

potentially increasing 13-amyloid production (Wolfe et a l ,  1999; Kimberley et a l ,  

2000). Treatment o f mouse hippocampal slice cultures with TGF-131 increased cellular 

accumulation and plaque-like deposition o f 13-amyloid (Harris-White et a l ,  1998). 

TGF-13 was shown to be required for 13-amyloid-induced increase in cytosolic calcium 

in olfactory neuroblasts, a potential mechanism of neurotoxicity (Wolozin et a l ,  1995; 

Cotter et a l ,  1999). TGF-131 elevates APP mRNA in rat astrocytes (Gray and Patel, 

1993a and b) and human astrocytes (Amara et a l ,  1999), and increases both APP 

mRNA and protein in mouse microglia (Monning et a l ,  1994), thus potentially
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augmenting 3-amyloid production. Gray and Patel (1993a and b) demonstrated greater 

elevation o f KPI-containing isoforms o f APP than APP-695, and it is likely, as 

discussed elsewhere in this work, that KPI-APP levels are increased in AD. This 

elevation of APP by TGF-131 may be elicited by induction of APP mRNA stabilisation 

by TGF-131 such that steady-state levels o f APP mRNA are increased (Amara et al., 

1999). Infusion o f TGF-131 into the lateral ventricle o f rats elevates expression o f  

tubulin-al, glial fibrillary acidic protein (GFAP) and clusterin mRNAs, cytoskeletal 

proteins that are also increased in AD (Laping et al., 1994). 13-amyloid itself may in 

turn regulate the actions o f TGF-13 in the brain. It was demonstrated in vitro that 

13-amyloid monomer acts as a TGF-13 antagonist, and 13-amyloid aggregates can have 

TGF-13 partial agonist or antagonist activity depending on the TGF-J3 function 

measured, thus potentially inhibiting the neuroprotective property o f TGF-13 and/or 

augmenting activation o f glial cells (Huang et a l, 1998).

A drawback of in vitro studies of TGF-13 is that the actions of such cytokines tend to be 

influenced by the context in which they are studied. For example, TGF-13 treatment of 

microglial cells grown on fibronectin (which is upregulated in TGF-131 transgenic mice 

that exhibit amyloid deposition (Wyss-Coray et al., 2000)) or laminin resulted in 

up-regulation o f APP mRNA, whereas in microglia grown on collagen or uncoated 

plastic culture dishes APP mRNA expression was decreased (Monning et al., 1994). 

Thus the in vivo conditions under which TGF-13 is expressed can be expected to 

modulate its actions. Elevation of TGF-131 in AD may increase the production o f ECM 

proteins and alter levels o f other cytokines that in turn modify the role o f TGF-131 in 

AD in comparison to the normal human brain. This complexity must be borne in mind 

when attempting to extrapolate in vitro findings to the human brain, or indeed when
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analysing results from animal models, where the environment in which TGF-13 is 

expressed differs from that o f the human brain.

This work adds strength to the evidence in favour o f up-regulation o f TGF-131 mRNA 

in AD. It was discontinued due to the weakness o f signal given by the oligoprobe and 

the lack o f availability of an alternative TGF-131 probe. However, the results obtained 

here indicate that further studies of TGF-131 mRNA expression in AD, using larger 

sample sizes and a more effective TGF-131 probe, might successfully confirm its 

suggested up-regulation in AD brains and clarify the cellular origin(s) of this finding.
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CHAPTER 8: DISCUSSION

In NT2 stem cells and neurones, APLP2 and APP were detected immunocytochemically 

in the region o f the Golgi apparatus. Whereas APLP2 was concentrated principally in 

this perinuclear region, APP extended into compartments throughout most o f the 

cytoplasm of stem cells, and into small, granular structures along the processes and in 

growth cones of neurones. The overlap in distributions o f the 13-amyloid-containing 

APP and non-13-amyloid-containing APLP2 in NT2 cells emphasises the need to use 

antibodies that distinguish between the two when investigating amyloidogenesis in 

human brain. Differences in intracellular locations o f APP and APLP2 that were 

identified in NT2N neurones may aid description o f amyloidogenic pathways, if  

13-amyloid is generated in a subcellular compartment where APP but not APLP2 is 

concentrated in human CNS-type neurones. Ultimately, comparison of the structures of 

APP and APLP2 and their intracellular routing may also help identification o f the 

structural features o f APP that signal its sorting and routing for amyloidogenic 

processing. Thus targets may be set for therapeutic intervention to redirect APP towards 

non-amyloidogenic routes.

The presence o f APP in neuronal processes and growth cones is analogous to its fast 

axonal transport to the tips o f growing axons, and to mature presynaptic terminals, o f  

neurones from the hamster primary visual pathway (Moya et al., 1994; Lyckman et a l , 

1998). At presynaptic terminals APP may be involved in neurite outgrowth via 

interaction with components of the extracellular matrix such as laminin or HSPGs 

(Kibbey et al., 1993; Small et al., 1994). It may function, itself, as a cell adhesion 

molecule (Pangalos et a l , 1995), or a cell surface receptor (Shimokawa et a l , 1993). It
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has also been postulated to participate in recycling o f substances such as histones, 

proteases and matrix proteins into cells, particularly where there is a high membrane 

turnover as in endocytosis, phagocytosis and exocytosis (Potempska et al., 1993; Beer 

et al., 1995). If APP is involved in maintenance and repair o f mature neuronal synapses 

in human brain, its aberrant processing could be detrimental to synapses in AD brain 

and result in their degeneration, particularly in areas o f high synaptic plasticity such as 

the memory pathways o f the hippocampus. Indeed, synaptic abnormalities or loss, 

accompanied by increased APP and abnormally phosphorylated tau, have been 

suggested to precede neuronal intracellular accumulation of 13-amyloid (Martin et al., 

1994; Masliah et al., 1994). This, in turn, has been postulated to precede neuronal cell 

death and then extracellular 13-amyloid deposition (LaFerla et al., 1997). The presence 

of APP in NT2N processes and growth cones means that these neurones are potentially 

a useful model in which axonal transport o f APP and its function at growth cones and 

possibly synapses of human CNS-type neurones may be studied. Presenilin 1 (PS 1), 

which is responsible for y-secretase APP cleavage, has been immunolocalised in NT2 

and NT2N cell bodies and dendrites (Cook et al., 1996; Parkinson, 1998), so it would be 

of interest to compare, by double immunocytochemical labelling, APP distribution with 

PS 1 distribution in NT2 neurones.

13-amyloid could not be detected in NT2 cells by immunocytochemistry, and no 

13-amyloid production, or alteration o f APP or APLP2 distributions or staining 

intensities, were seen following cellular stress. It is possible that too little 13-amyloid 

was present in NT2 cells in the present study for its detection by immunocytochemistry. 

Intracellular 13-amyloid in untransfected NT2 neurones has been demonstrated 

previously by immunoprecipitation (Wertkin et al., 1993) and subsequently to this
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study, by ELISA (Cook et al., 1997), 13-amyloid (42) being generated in the 

endoplasmic reticulum (ER)/intermediate compartment (IC), and 13-amyloid (40) 

distally to the ER/IC. Pulse-chase labelling o f endogenous APP also demonstrated 

13-cleavage of APP following its retention in the ER/IC of NT2N cells (Chyung et a l , 

1997). These findings are similar to those in primary rat hippocampal neurones where 

13-amyloid (42) was present only in ER, and 13-amyloid (40) was found in TGN, 

secretory vesicles and late endosomes (Hartmann et a l , 1997). This pattern was closely 

followed in N2a neuroblastoma cells, doubly transfected with hAPP-695 and PS1, and 

primary rat cerebral cortical neurones, where 13-amyloid (42) was produced in ER as 

well as in TGN, whereas 13-amyloid (40) was generated only in the TGN (Greenfield et 

a l , 1999).

Apart from the present study, the effects o f heat-shock on APP processing in NT2 cells 

has only been performed using transfected stem cells, overexpressing APP (Dewji et a l ,

1995), in which there was increased APP transcription following heat-shock. The 

effects o f oxidative stress on APP processing in untransfected NT2N cells resulted in 

increases in both intracellular and extracellular 13-amyloid production while APP levels 

remained unchanged, (seen by immunoprecipitation and Western blotting), possibly via 

increased 131 and 1311 protein kinase C (PKC) activity (Paola et a l ,  2000).

Immunocytochemical detection o f intracellular 13-amyloid, produced from endogenous 

APP, may require greater signal amplification following antibody binding than was 

possible with the techniques used in this study. Alternatively, the peptide may have 

been washed out o f methanol-fixed cells and/or inaccessible in those fixed with 

paraformaldehyde and glutaraldehyde. Different methods of antigen retrieval may be of 

use in detecting intracellular 13-amyloid in these cells, such as treatment o f cells with
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protease (e.g. trypsin), which may break bonds between the target and the fixative 

(Polak and Van Noorden, 1997).

Processing o f NT2 cells in situ, on the slides on which they were grown in culture, was 

the most promising o f the methods that were evaluated for examination o f cells by 

electron microscopy (EM). As discussed above, in chapter 4, two subsequent studies 

have employed very similar methods to the one described here, and described the 

ultrastructure o f NT2 neurones co-cultured with astrocytes (Hartley et al., 1999) and 

characterised the neurotransmission type of NT2 neurones by immuno-EM (Guillemain 

et al., 2000). Adaptation o f the method described in the present study for collecting 

resin-embedded cells directly from the culture surface, for example by growing cells on 

coverslips as described by Guillemain et al. (2000), should allow successful collection 

of NT2 cells for future EM and immuno-EM studies. Thus, localisation o f APP and 

possibly 13-amyloid in these cells by immuno-EM, as originally proposed in this study, 

appear possible.

A potential mechanism by which 13-amyloid production may be increased in AD, is 

through altered expression o f APP isoforms. It was demonstrated in vitro that 

expression o f APP-751 in comparison with non-KPI-APP resulted in increased 

secretion of 13-amyloid (42) and decreased a-secretase cleavage products (Ho et al.,

1996). Astrocytes, which were the major producers o f 13-amyloid in primary cultures 

from foetal human cerebral cortex (Busciglio et al., 1993), contain a higher proportion 

of KPI-APP than APP-695 (Gray and Patel, 1993a). In areas o f human brains with AD 

pathology, an increased KPI-/non-KPI-APP mRNA ratio has been found (Tanaka et 

al., 1989; Johnson et al., 1990; Wighton-Benn et al., 1995; Johnston et al., 1996), 

specifically in AD pyramidal neurones (Neve et al., 1988), raising the possibility that
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fi-amyloid production by these cells may be elevated. Therefore, KPI-APP protein in 

human brain was investigated immunohistochemically, to assess its distribution in 

normal human brains in comparison with AD brains.

Paraffin-embedded human brain sections were immunolabelled using a novel 

polyclonal antibody to the KPI domain o f APP, generated in a rabbit. A protocol was 

established for uncovering the KPI domain epitope, by reduction and alkylation of 

disulphide bonds prior to immunostaining. Microwaving the sections (which is thought 

to uncover antigens by breaking hydroxyl bonds between the protein and formalin 

fixative and chelation of calcium from sections (Shi et a l , 1993; Morgan et a l , 1994)) 

enhanced this immunostaining in an additive manner, implying that these 

pre-treatments uncover the epitope by different mechanisms. The method described for 

uncovering the KPI domain is of potential use for detection of epitopes of other proteins 

that may be masked similarly by disulphide bonds. In normal human brains KPI-APP 

was localised, with this antibody, to pyramidal neurones, probably astrocytes, and the 

neuropil, suggesting transport o f KPI-APP along cell processes.

Comparison o f neurologically normal, aged, control brains with AD cases revealed a 

significantly increased incidence of KPI cellular staining, in terms o f cell counts. This 

supports the increased ratio of KPI-/non-KPI-APP mRNA found previously in AD 

brains compared with normal aged controls (Tanaka et a l ,  1989; Johnson et a l ,  1990; 

Wighton-Benn et a l ,  1995; Johnston et a l ,  1996). KPI protein expression was 

unaffected by age, in both control and AD cases. KPI staining in AD was related closely 

to the pathology, and was present in the neuropil, possibly in the processes o f neurones 

and/or glia. In addition, many plaques were immunolabelled, and KPI was present in the 

neuritic element o f plaques, suggesting that KPI-APP up-regulation in neurites may
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precede 13-amyloid plaque formation. Double-immunolabelling studies in this 

laboratory have since shown that KPI-APP and 13-amyloid are probably not entirely or 

precisely co-localised (Bielby et al., 2000). Presence of KPI in the neuropil may reflect 

the APP immunolabelled in processes o f NT2N neurones, described above, in axons 

and presynaptic terminals in the hamster primary visual pathway (Moya et al., 1994; 

Lyckman et al., 1998), and in axons and dendrites o f rat hippocampal neurones (Simons 

et al., 1995). NT2N neurones may therefore provide a model in which KPI-APP 

processing can be studied using this anti-KPI antibody, in comparison with 

non-KPI-APP, to investigate whether or not presence o f the KPI domain alters 

subcellular neuronal processing of APP.

Cellular staining was strongest in layer V pyramidal neurones, and many layer III 

pyramidal cells and small, non-pyramidal cells in layers II to VI were KPI-positive. 

Previous descriptions of KPI-APP mRNA distribution have reported it to be expressed 

in similar cell types. It was present in hippocampal pyramidal and granule cells in 

normal and AD brains (Spillantini et al., 1989), and layers II-VI o f frontal and temporal 

association neocortex, layers III and V o f the motor cortex and layers III and V/VI of 

the striate cortex in normal adult brains (Neve et al., 1988). KPI-positive blood vessels 

included and exceeded the population that were 13-amyloid-positive, implying that KPI 

accumulation may be a precursor to cerebro-vascular amyloid deposition. The KPI 

domain inhibits certain serine proteases, including blood coagulation factors, the effect 

on factor XIa being potentiated by binding o f fibrillar 13-amyloid to the N-terminal 

region of APP (Wagner et al., 2000). Thus accumulation o f KPI-APP in cerebral blood 

vessels in AD may create a microenvironment that is predisposed towards 

haemorrhaging, particularly once cerebral amyloid angiopathy develops.
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The increase in KPI-APP protein demonstrated in AD brains may occur as part o f a 

response to neuronal injury, as suggested by animal models o f neurotoxic damage or 

ischaemia (Sola et al., 1993; Abe et al., 1991). Activated glial cells (such as the 

astrocytes, microglia and macrophages associated with senile plaques), as well as the 

neurones immunolabelled in this study by anti-KPI, may produce elevated levels of 

KPI-APP (Shepherd et a l, 2000).

TGF-J31 mRNA was found to be increased significantly in AD temporal cortex and 

white matter, in agreement with immunohistochemical studies that have found 

up-regulation of TGF-131 protein in AD brains compared with normal controls (Van der 

Wal et al., 1993; Peress and Perillo, 1995). TGF-131 mRNA also is up-regulated in 

reactive astrocytes, microglia, macrophages and endothelial cells in response to 

neuronal injury in rat brains (Klempt et al., 1992; Logan et al., 1992; Morgan et al., 

1993). In humans, in cases o f cerebral infarction, it has been reported to be elevated in 

lesion-associated astrocytes, macrophages and neurones (Peress and Perillo, 1995; Ata 

etal., 1997).

The increase o f KPI-APP in astrocytes by TGF-131 (Gray and Patel, 1993 a and b), 

together with the acceleration of development o f AD pathology when TGF-131 is 

expressed in conjunction with hAPP (V717F) in bigenic mice (Wyss-Coray et a l ,

1997), support a potential causal role of overexpressed TGF-131 in up-regulating 

KPI-APP in AD. Thus, it can be speculated, the altered ratio o f APP isoforms may 

result in APP being metabolised in such a way that 13-amyloid is over-produced (Ho et 

al., 1996), or the KPI domain inhibits its degradation, and amyloid deposition ensues. 

Low-level overexpression o f TGF-131 in recently developed singly transgenic mice 

resulted in increased vascular basement membrane proteins, perlecan and fibronectin,
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and thickened cortical capillary basement membranes, as is seen in AD (Wyss-Coray et 

al., 2000). These changes were followed by age- and dose-dependent amyloid 

deposition around cortical capillaries, and microvascular degeneration, similar to the 

cerebro-vascular amyloid and microvascular abnormalities o f AD (Miyakawa et al., 

1974; Selkoe, 1994b). It may be speculated that upregulated TGF-131, in the presence of 

human APP, might induce similar increased production o f extracellular matrix 

components and amyloid deposition in the vicinity of TGF-131-containing neurones and 

glia, and that KPI may enhance this process. It would be interesting to assess whether 

overexpression o f TGF-131 alters the ratio o f KPI-/non-KPI-APP in regions o f  

basement membrane protein and amyloid deposition in these transgenic mice. Similarly, 

it would be useful to investigate the effects o f TGF-131 on APP isoforms in human 

CNS-type neurones, such as NT2N cells, to see if  there is upregulation o f KPI-APP, as 

found in astrocytes (Gray and Patel, 1993a and b).

In NT2 neurones, TGF-131 has already been shown to increase levels o f presenilin 1 

(PS1) mRNA (Ren et a l , 1999). PS1 is likely to be responsible for intra-membranous 

y-secretase cleavage of APP (similarly to PSl-mediated intra-membranous Notch-1 

cleavage), thus potentially increasing 13-amyloid production (De Strooper et al., 1999; 

Wolfe et a l , 1999; Kimberley et a l , 2000). Exposure o f mouse hippocampal slice 

cultures to TGF-131 increased cellular accumulation and plaque-like deposition o f  

13-amyloid (Harris-White et a l , 1998). It would therefore be o f interest also to 

investigate whether TGF-131 increases 13-amyloid production in NT2 neurones. These 

cells may then provide a model in which to isolate any neuronal mechanisms by which 

TGF-131 may potentially influence 13-amyloid deposition in AD brains.
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Importantly, this work has illustrated some o f the ever-widening variety o f molecules 

and their pathways that are implicated in development of AD pathology. The number of 

potential therapeutic targets that are thus being identified may reflect the apparently 

heterogeneous population of subtypes of AD pathogenesis, which might therefore each 

respond better to therapeutic intervention targeted to different regulators o f APP 

processing, and perhaps specific cell types. At the same time, adverse effects on 

similarly regulated proteins (such as Notch-1 in comparison with y-secretase cleavage 

of APP) must be avoided. It may be necessary to target only a specific pool o f APP, so 

as to preserve its normal functions, and the functions o f the APLPs. This work has 

contributed to characterisation of a human CNS-type neuronal cell culture system in 

which APP and APLP2 can be immunolocalised to overlapping intracellular 

compartments. The effects o f potential therapeutic agents can thus be investigated in 

these cells, to give a picture o f their putative effects on human CNS neurones versus 

somatic cell types. NT2 cells are also o f potential use in further investigations o f  

KPI-APP, which was demonstrated here to have increased cellular incidence in AD and 

to be closely related to AD pathology.

In the hAPP V717F transgenic mice generated by Games et a l  (1995), intraperitoneally 

injected anti-13-amyloid antibodies crossed the blood-brain barrier, decorated the 

amyloid plaques in the brains of the mice, and induced clearance o f these plaques (Bard 

et al., 2000). The antibodies appeared to act by triggering microglia to clear the plaques 

via Fc receptor-mediated phagocytosis and degradation o f peptide. This potential AD 

therapy is now the subject o f intensive research, with the hope that it may be possible to 

reverse the accumulation o f AD pathological features and symptoms in humans by this 

means. However, development of a therapeutic intervention that acts at an earlier point
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in the cascade o f events that results in amyloid deposition may be a more effective 

treatment. For example, inhibition o f the 13- or y -  secretase enzymes, to lower 

13-amyloid production and thus potentially inhibit formation o f toxic aggregates, can be 

postulated to prevent development o f associated pathological features o f the disease 

such as dystrophic neurites, neurofibrillary tangles, astrocytosis and cell death. Thus, 

intervention aimed at a more primitive stage o f the disease process might prevent 

neuronal loss and cognitive decline more effectively than might removal o f 13-amyloid 

aggregates once these have already perhaps caused secondary damage and begun 

symptomatic development.

Further to this work, NT2 cells will provide a model cell type in which the effects of 

agents implicated in the pathogenesis o f AD can be studied, in relation to APP 

processing, subcellular localisation and transport, and 13-amyloid generation, in the 

context o f human CNS-type neurones versus non-neuronal cell types. In particular, 

regulation of the secretase enzymes that have been identified recently could be usefully 

studied in these cells. With reference to this work, it would be o f interest to clarify 

whether or not TGF-131 augments y-secretase APP processing by PS1, following the 

description o f PS1 mRNA upregulation by TGF-131 in NT2 neurones. Similarly, it 

would be useful to investigate whether TGF-131 elevates KPI-APP more than 

non-KPI-APP in NT2 neurones, as it appears to in astrocytes (Gray and Patel, 1993a 

and b), and whether or not this is linked to increased amyloidogenesis, and/or how it 

relates to PS1 regulation by TGF-131. The efficacies o f potentially therapeutic 13- and 

y-secretase inhibitors could be tested in these cells, as a model o f the effects they may 

have in CNS neurones in AD. For example, immunoprecipitation and Western blotting 

could be used to quantify the relative proportions o f  amyloidogenic and
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non-amyloidogenic APP fragments generated following application o f 13- and 

y-secretase inhibitors.

This work has characterised the distributions of APP and APLP2 in NT2 stem cells and 

neurones, emphasising the partial overlap in sites of intracellular concentration of APP 

and APLP2, and thus the need for use o f antibodies that distinguish between these two 

molecules in studies o f APP and amyloidogenesis. Any effects o f cellular stress, by 

heat-shock or no feeding, on APP and APLP2 distributions and 13-amyloid production 

were not detectable by indirect immunocytochemistry. More recent investigations by 

other researchers have delineated methods by which NT2 cells can be studied by EM 

(Hartley et al., 1999; Guillemain et a l ,  2000), suggesting that optimisation o f the 

similar methods that were tested here might enable immuno-EM characterisation of  

APP and 13-amyloid in these cells. A protocol was established for immunolabelling o f  

KPI-APP in brain tissue, and increased cellular incidence o f KPI-APP in AD compared 

to neurologically normal controls and association o f this isoform with AD pathology 

were identified. TGF-131 mRNA was demonstrated, by in situ hybridization 

histochemistry, to be elevated significantly in AD brains compared with controls, 

supporting previous immunohistochemical evidence for upregulation o f TGF-131 

protein in AD brains.
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APPENDIX

Tris-phosphate-buffered saline (TBSV 0.1M. pH7.4 -  7.8
25g Tris-HCl (BDH)

6g Na2HP04 (BDH)

1.25g NaH2P 0 4.2H20  (BDH)

35g NaCl(BDH)

5L Distilled H20

Concentrated HC1 added to adjust to pH7.4 -  7.8

Phosphate-buffered saline fPBSk 0.1M. pH7.4 

Solution A

27.6g NaH2P 04.H20  (BDH) in 1L distilled H20  

or

32.Og NaH2P 04.2H20  (BDH) in 1L distilled H20  

Solution B

28.4g Na2HP04 anhydrous (BDH) in 1L distilled H20  

or

36.0g Na2HP04.2H20  (BDH) in 1L distilled H20  

Mixed 1 part solution A : 4 parts solution B.

Diluted 1 : 2 with distilled H20  to give 0.1M PBS. 

Concentrated HC1 added to adjust to pH7.4

Alkaline Phosphatase (AP) buffer, pH9.5
lOOmM TRIS.HC1 (BDH) 

lOOmM NaCl (BDH)

5mM MgCl2 (BDH)
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Anti-fade
20mg p-phenylenediamine 

2ml lx  PBS 

18ml glycerol 

Stored at -20°C.

20x Standard saline citrate fSSC)

175.3g NaCl (BDH)

88.2g Na Citrate (BDH)

800ml Autoclaved diethylpyrocarbonate (DEPC) treated water 

Adjusted to pH7.0 with concentrated HC1 or ION NaOH (BDH). 

Autoclaved DEPC treated water added to make up to 1 litre.

Hybridization buffer 
10ml 20x SSC 

lml 5Ox Denhardt’s solution 

0.5ml 0.1MEDTA 

lml Denatured herring sperm DNA 

5mg yeast tRNA 

5mg Poly A

25ml deionized formamide 

5g dextran sulphate

Made up to 50ml with 20mM phosphate buffer.
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Table 10: primary antibodies

Antibody Antigen/Compartment
labelled

Species raised 
in

Mab/
Pab

Source

87-4afp APP and APLP2 Rabbit Pab Dr. D.
Parkinson

22C11 N-terminal epitope on 
human APP

Mouse Mab Boehringer
Mannheim

AIz-90 APP Mouse Mab Boehringer
Mannheim

FC8 N-terminus of APP Mouse Mab Dr. D.
Parkinson

EH4 N-terminus of APP Mouse Mab Dr. D.
Parkinson

HE1 Non-biological Mouse Mab Dr. D.
Parkinson

3B11 APLP2 Mouse Mab Dr. M-T. 
Webster, Dr. P. 
Francis

Anti-58K 58kD peripheral Golgi 
membrane protein

Mouse Mab Sigma

Anti-13-CO
P

Golgi 13-COP 
(coatomer protein)

Mouse Mab Sigma

Anti-TGN Trans-Golgi network Sheep Mab Dr. V.
Poonambalam

Anti-PDI Endoplasmic reticulum Rabbit Pab Dr.T. Wileman

Anti-G RP-
94

Endoplasmic reticulum Rabbit Pab Dr. T. Wileman

Anti-LAMP
-1

Lysosome-associated 
membrane protein-1

Mouse Mab DSHB

Anti-LAMP
-2

Lysosome-associated 
membrane protein-2

Mouse Mab DSHB
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Antibody Antigen/Compartment
labelled

Species raised 
in

Mab/
Pab

Source

A nti-
cathepsin-D

Lysosomal protein 
Cathepsin-D

Rabbit Pab Dr. T. Wileman

Anti-PHF Human paired helical 
filaments

Rabbit Pab ICN
Biomedicals

Anti-13-
amyloid

Residues 8-17 of 
human 13-amyloid

Mouse Mab Dako

Mab = monoclonal antibody; Pab = polyclonal antibody; Dr. D. Parkinson: Sheffield 
Hallam University; Dr. T. Wileman: Institute o f Animal Health, Pirbright.
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