
An object-based codesign methodology.

CAI, Jianming.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19418/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19418/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

REFERENCE

Fines are charged at 50p per hour

2 8 mar 2003

I L L-

CW bckdc : 5 j8jv6

ProQuest Number: 10694299

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10694299

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

An Object-based Codesign Methodology

Jianming CAI

A thesis submitted in partial fulfillment of the requirements of
Sheffield Hallam University

for the degree of Doctor of Philosophy

February 2001

School of Computing and Management Sciences
Sheffield Hallam University

Abstract
The research into Codesign o f Hardware and Software stems from the development of
embedded systems, on which various systems restrictions are imposed. Typical restrictions
can be the overall time (latency) to complete an assigned function and the space/power
limits within the system. Although software can be used to undertake most tasks in an
embedded system, ASIC (Application Specific Integrated Circuits) hardware components
sometimes have to be recruited to meet the system constraints. Designing the restricted
embedded system with both software and hardware components in it involves the analysis
of not only individual hardware/software components but also their mutual influences.
Using co-design principles, the approach is to consider both hardware and software from a
coherent viewpoint.

This thesis presents the results from our research project in the area of Codesign of
Hardware and Software. In this project, we investigated previously published codesign
approaches and their methodological supports. The investigation has identified
shortcomings and problems with the existing codesign methodologies. A new object-based
codesign approach (Co-PARSE) is thus developed in this project, which is supported by
successive phases, guidelines, and techniques. This methodology offers a coherent design
framework for real-time embedded systems and incorporates the criteria of system
performance and hardware cost. Tools have been developed to facilitate the use of the
methodology. Within the methodology, a high-level system modeling and specification
approach has been developed and formalised in the Co-BSL (Codesign Behavior
Specification Language). The means of transforming Co-BSL specifications to C and
VHDL implementations is defined, and a library of VHDL components provided. The
thesis documents the partitioning approach taken within the methodology and proposes a
new multi-layered bus architecture as a basis for more flexible and efficient
implementations. A means of simulating the performance characteristics of this architecture
under different configurations is provided, and examples of simulation results are
presented. A new embedded system (the Radio Data Computing System) is designed and
simulated in the Co-PARSE methodology and simulation results analysed. The thesis
concludes with an evaluation of the work carried out in the project and proposals for
extending the results obtained in future research.

The major contributions reported in this thesis can be summarised as follows. First, the
unified system specification means has been designed, which is embodied in the Co-BSL. It
captures overall dynamic aspects and performance constraints in the system under
development. This high-level specification language is independent of implementation and
does not bias the designer towards the use of hardware or software components at this early
stage. Second, within Co-PARSE, the target architecture of the system under development
has been exploited to improve the system performance and at the same time to reduce
hardware cost. This novel concept has been realised by the introduction of an asynchronous
bus protocol and the multi-layer bus communication structure. Third, in order to evaluate
the strength and practicability of the Co-PARSE methodology, an extensive case study has
been carried out. The new RDC (Radio Dada Computing) System has been designed in the
proposed codesign approach. Codesign phases are subsequently applied and the guidelines
and tools that are specially developed in support of the methodology are fully utilized.

Acknowledgments
I would like to thank my supervisors Dr. David Lloyd and Dr. Innes Ritchie for introducing

me to the exciting research field, Codesign o f Hardware/Software. Their continuous

supervision, guidance and encouragement have been the major energy to push this research

project forward. Particularly, my sincere thanks go to Dr. Innes Ritchie for her

painstakingly reading through the draft version of this thesis. Her numerous comments and

suggestions make this thesis scientifically and technically sound. Overall quality of this

thesis has been improved thanks to the insight discussions with Dr. Innes Ritchie and

Professor Jawed Siddiqi.

I owe a great debt of gratitude to the Director of my Ph.D. program, Professor Jawed

Siddiqi, whose inspiration to my Ph.D. study and the lasting support were the keys to bring

this project to a fruitful completion. His comment on this thesis is highly esteemed. I am

also grateful to Professor Paddy Nixon and Professor Frank Poole for their valuable helps

and censorious comments that corrected and improved the thesis.

Many thanks are due to the past and present senior members and colleagues in Sheffield

Hallam University for their valuable support during this project carried out. They include

Professor Ian Draffan, Dr. John Travis, Mr. Steve Flowers, Mrs. Linda Harrison, Mrs.

Angela Cooper, Ms. Jo Laughton, Dr. Mehmet Ozcan, Mr. Iain Hughes, Mr. Mick

Fitzgibbons, and my fellow Ph.D. students in the Hallamshire Business Park.

I am greatly indebted to my wife, Feng-Mei SHEN, and son, Zhen CAI, for their

understanding and patience with my hectic research work. Their love and support have

accompanied me to the completion of this thesis. I would also like to extend my heartfelt

thanks to my parents whose constant stimulation and encouragement were a major source

of my determination to complete the Ph.D.

Finally, a MITRI bursary from Sheffield Hallam University is gratefully acknowledged,

which provided most financial support for this research project.

Contents
Chapter 1 Introduction.. 1

1.1 Overview of the Project... 1

1.2 Codesign of Hardware/Software... 1

1.3 Major Goals and Contributions Made in the Research Project.......................... 4

1.4 Outline of the Thesis.. 9

Chapter 2 Related Research...12

2.1 Introduction..12

2.2 Review of the Related Research Works... 12

2.2.1 Approach 1: Cosyma, (Germany) Technical Univ. of Braunschweig 13

2.2.2 Approach 2: Vulcan, (USA) Stanford University................................. 13

2.2.3 Approach 3: SpecSyn, (USA) University of California, Irv ine...........14

2.2.4 Approach 4: Ptolemy, (USA) University of California, Berkeley....... 16

2.2.5 Approach 5: TOSCA, (Italy) ITALTEL & Polotecnico di Milano17

2.2.6 Approach 6: CODES, (Germany) Siemens AG17

2.2.7 Approach 7, (USA) Carnegie Mellon U niversity................................. 18

2.2.8 Approach 8, (USA) University of California B erkeley.........................19

2.2.9 Approach 9, (USA) Princeton University.. 20

2.2.10 Approach 10, (UK) UM IST...20

2.2.11 Approach 11, (USA) University of V irg in ia21

2.2.12 Approach 12, (Sweden) Royal Institute of Technology....................22

2.3 Analysis of Existing Approaches.. 22

2.3.1 Codesign System Model and Specification M eans............................... 23

2.3.2 Use of VHDL in Codesign Approaches... 24

2.3.3 Hardware/software Partitioning M ethod.. 24

2.3.4 Performance Evaluation... 26

2.3.5 Target Architecture..27

2.3.6 Conclusions from the Analysis.. 27

2.4 The Proposed Object-Based Codesign Approach... 29

Chapter 3 System Modelling and Functional Verification...................................... 32

3.1 Modelling and Specification for Codesign System ..32

3.2 Object-Orientation in Codesign..33

3.3 The Co-PARSE Object-Based System Modelling and Specification Method.......... 34

3.3.1 PARSE Modelling Technique for Codesign... 35

3.3.2 PARSE Notations... 37

3.4 The Co-BSL Language..39

3.4.1 Overview of the Language... ...40

3.4.2 Co-BSL Data Types, Variables and Operators...................................... 42

3.4.3 Co-BSL Control Constructs.. 42

3.4.4 Co-BSL Program Structure... 43

3.5 Conversions from Co-BSL to VHDL and C ... 49

3.5.1 Co-BSL Program...51

3.5.2 Constants..51

3.5.3 P aths... 51

3.5.4 Primitives..52

3.5.5 Communication Channels..52

3.5.5.1 Synchronous Communication.. 54

3.5.5.2 Synchronous Bi-directional Communication............................54

3.5.5.3 Asynchronous Communication.. 55

3.5.5.4 Broadcast Communication.. 55

3.5.5.5 Wire Communication...56

3.5.6 Classes.. 57

3.5.7 Externals...58

3.5.8 Executions & Connections... 58

3.5.9 An Example of Conversion of Co-BSL into V H D L.............................58

3.6 Functional Verification in VHDL Simulation...59

Chapter 4 Design Space Exploration .. 61

4.1 Background..61

4.2 Review of Partitioning Techniques... 63

4.2.1 Partitioning Input and Granularity.. 64

4.2.2 Performance Estimation... 65

4.2.3 Performance Evaluation... 67

v

4.2.4 Target Architecture - Single Bus vs. Multiple B uses.......................... 69

4.3 The Partitioning Method in the Proposed Methodology...................................70

4.4 System Profiling with VHDL Simulations..71

4.5 Partitioning and Component Allocation with Multiple Buses.......................... 75

C hapter 5 The Perform ance E valuation...77

5.1 Performance Evaluation Techniques for Codesign...77

5.2 Justification for the Proposed Performance Evaluation M ethod......................79

5.3 Layered Bus Prototyping Model... 82

5.4 Asynchronous Bus Protocol and Bus Interface M odule.................................... 84

5.4.1 DTB Acquisition...86

5.4.2 DTB Operation.. 87

5.4.3 DTB M onitor... 88

5.5 Synthesis of the Prototyping Model..89

5.5.1 Synchronous Channels on the Same B u s... 89

5.5.2 Asynchronous Channel on the Same Bus... 91

5.5.3 Asynchronous Channel with Two Buses.. 92

5.5.4 Synchronous Channels with Two B uses.. 97

5.6 VHDL Packages and Libraries for Channel Communications........................100

5.7 Integrated Performance Evaluation in the Co-simulation Technique.............101

5.7.1 Performance Evaluation for Software Component.............................. 101

5.7.2 Software Component Performance (an example)................................ 103

5.7.3 Performance Evaluation for Hardware Component............................103

5.7.4 Hardware Component Performance (an example).............................. 106

5.8 Performance Evaluation for Codesign System..I l l

5.9 Review ... 112

C hapter 6 Case Study...116

6.1 Fundamentals of RDS...116

6.2 Radio Data Computing System..119

6.2.1 Co-specification of RDCS in Enhanced Process Graph......................120

6.2.2 Functional Verification and System Profiling (stage 1)......................122

6.2.3 Hardware/software Partitioning and Component Allocation (stage 2)....... 122

6.2.4 Performance Evaluation for Software Component (stage 5)............... 125

6.2.5 Performance Evaluation for Hardware Component (stage 3)..............126

6.2.6 Co-synthesis for Interfaces of Hardware/Software (stage 4)...............127

6.2.7 System Performance Evaluation (stage 6) .. 129

6.2.8 Analysis of Simulation Results... 130

6.3 Evaluation of the Codesign Case Study... 134

C hapter 7 Conclusions and Future Research Topics..137

7.1 Research Investigation... 137

7.2 Summary of the Project... 138

7.3 Potential Research Directions..141

References.. 144

Appendix A ... 156

Appendix B ... 169

Appendix C ... 172

Appendix D ... 182

Appendix E .. 193

Appendix F ..205

Appendix G ...212

Appendix H ...218

Appendix 1... 225

Appendix J ..237

v ii

Chapter 1

Introduction
1.1 Overview of the Project

This thesis reports on a research project in the area of Codesign o f Hardware/Software.

An object based codesign methodology has been developed, and tools for its use have

been constructed. The methodology has been evaluated by means of an extensive case

study. The major goals and contributions made in this project are explained in section

1.3 of this chapter, following the introduction to the topic of Hardware/Software

Codesign.

1.2 Codesign of Hardware/Software

Computers systems fall into two categories: the general-purpose computer system and

the special-purpose computer system. Examples of the former one can be PCs and

workstations while the latter one can be industry controllers, automobile controls,

medical instrumentation, and so forth. This project is about the research into special-

purpose computer systems, which are designed for dedicated applications. As these

systems are enclosed in a larger environment, they are often referred to as Embedded

Systems. The embedded systems can effectively accomplish the tasks that were

originally undertaken by other electronics or electronic-mechanical systems. Because of

this, the market share in relation to the embedded computer systems constitutes

significant increase. According to the statistics [EmbOl], 50 to 75 million embedded

processors are sold annually and the market for them will grow 30% to 1.2 billion by

2001. The PC microprocessors are only responsible for less than 1% of all processors

sold. Embedded processors outsell PC processors by more than 99%. In addition,

embedded development tools sales went from $690M in 1997 to $814.7M in 1998 - an

increase of 18.1%.

Codesign of hardware/software stems from the development of embedded systems that

have various system restrictions, such as the overall time (latency) to perform a given

task and the space/power limit. Although software programs can undertake most

functions in an embedded system, ASIC hardware components sometimes have to be

1

employed to meet the system constraints, particularly the overall time (latency) to

perform a given task assigned by the larger environment. Most embedded systems

consist of application-specific hardware components and programmable components

(special or general processors). Those special hardware components are designed to

assist programmable components on certain performance-critical tasks. Furthermore,

modem embedded systems usually have multiple processors working in a distributed

fashion. The embedded system is indeed a complex mixture of hardware and software

components. Creating an embedded system that meets those constraints is essentially a

hardware and software codesign problem, i.e. the design of hardware and software

components that have mutual influences on each other [Wol94].

System
Specification

Software
Development

Hardware
Development

System
Implementation &

Evaluation

Figure 1.1 Traditional Design Flow

As illustrated in Figure 1.1, the traditional design flow for a computer system is, early in

the design cycle, divided into two separate paths that are software (stage 2) and

hardware (stage 3) developments respectively. They proceed concurrently without the

assessment of mutual impacts and the evaluation of system goals until they reach the

final stage (stage 4) that is system implementation and evaluation. This separation is

also reflected in the system specification (stage 1), where hardware and software are

specified along separate tracks. The assumption behind this practice is that the software

designer does not need to be concerned with the low-level hardware details and the

hardware engineer, on the other hand, can be relieved from difficulties with

understanding complex software design. The separation is mainly in relation to the

availability of hardware components and the implementation technology involved. This

artificial separation mirrors various technical constraints in the history of computer

development. It often results in the designs that exceed both time and budget constraints

and yet worse results in failed systems that do not perform as intended.

2

Theoretically, each application area has its individual, optimal mixture of hardware and

software that is best suited to that specific application domain. As computer technology

has advanced, there has been a growing interest in the exploitation of combining these

two separate developments into a more unified discipline. It has officially been named as

“Codesign of H ardw are/Softw are” or simply “Codesign” [ICSP93].

In fact, the codesign is not an entirely new topic. Computer developers have employed

parts of its techniques for many years. The inspiration of this renewed interest is

primarily due to the following developments [PF92] [Mic94]:

1. Computing systems deliver increasingly higher performance to end users, which

makes special hardware architectures able to assist application-specific software.

2. Architectures with programmable hardware components can now speed up the

execution of specific computations or emulate new hardware designs, which enables

the designer to trade hardware components in a system for its execution time,

development cost, power consumption, and time to market.

3. Significant progresses in hardware synthesis/simulation tools have changed the play

field for system designers, which paves the way for the integration of CAD

environments in codesign technology.

Since 1993, the international workshop on Codesign of Hardware/Software has been

held annually and a large volume of research findings has been published, a number of

which can be found in [Buc94]. The codesign has been recognized as a well-established

research field.

In contrast to the traditional design flow, Figure 1.2 shows a generic framework for

codesign. At the very beginning of the system development, the system is specified by a

unified specification means that captures overall dynamic aspects and the constraint

requirements in a codesign system. Supported by performance estimation and combined

with various system constraints, hardware-software partitioning is carried out in stage 1.

Although hardware and software developments are concurrently implemented (stage 2,

3), there can be some feedback and interaction between them during the course of the

development. The satisfaction of system constraints can be re-assessed and the system

3

itself can be re-partitioned. After a mixed system implementation is created, the

evaluation in accordance with various system constraints is carried out (stage 4). The

whole procedure described above can be repeated until a satisfied codesign system is

realized.

In comparison with Figure 1.1, it is evident that the codesign approach maintains the

flexibility of choosing best solutions to a specific application domain. The traditional

approach only improves software/hardware performance individually so as only to

explore very limited design alternatives and then result in a better solution only to that

limited part of solution space.

System
Specification

Constraint Analysis
Hardware/Software Partitioning

Performance Estimation

Software Development Hardware Synthesis

Mixed System Implementation
System Evaluation

Figure 1.2 Generic Codesign Framework

1.3 Major Goals and Contributions Made in the Research Project

The generation of an inclusive methodology* for codesign is highly complex, but there

are many sub-problems. They represent core theories and technologies involved in the

research of codesign. They can be yet dealt with individually. These sub-problems are

listed as follows:

• NB. In context we adopt the following definitions by [Cal93].

• A method to solve a problem or a technique is characterized by a set o f well-defined rules, which leads to a correct solution to

the problem.

• A methodology has a wider scope than a method. It is a structured and coherent set o f methods, guides and tools for

determining the way in which a problem can be solved. A methodology leading to the use o f techniques can be used to

determine whether or not a specific technique is appropriate. It is, therefore, a combination of methods and techniques from

various fields. A design methodology is expressed in particular by the progress through successive steps and the tools for

efficiently developing a solution to the stated problem and respecting quality criteria.

4

• Unified hardware/software representation that captures the overall dynamic aspects

in a codesign system without bias on hardware or software implementation (co-

specification and modelling)

• Hardware/software partitioning methods (<design space exploration)

• Synthesis of hardware/software components and their interfaces (cosynthesis)

• Performance estimation and evaluation for a codesign system {system estimation &

evaluation)

• Applications of codesign technology {case-studies)

Since they are too comprehensive to be tackled within one research project, this research

has consequently focused specifically on the co-specification and modelling , system

estimation & evaluation, cosynthesis, and a case study. The design space exploration

based on the distributed system target architecture is a complicated issue, which

involves complex algorithms and system evaluation platforms. Our strategy to attack

this problem is to create a feasible evaluation platform. It allows various partitioning

schemes to be evaluated on this platform in terms of system performance and hardware

cost. Automatic partitioning algorithms/methods, however, have been left over as a

future research topic because it is relatively separate from this project. Without the

automatic partitioning algorithm, however, the partitioning process has to be operated

manually. The profiling technique [EF96] that is widely used in other codesign

methodologies has been adopted to collect the information needed in the partitioning

phase. In relation to the application area, we assume that the proposed methodology is

applied to the realm of embedded real-time system.

In this research, we investigated previously published codesign approaches and their

methodological supports. Based on the investigation, we proposed an object-based

codesign approach that is supported by a set of methods, guidelines and tools to form a

specific object-based codesign methodology. It extensively supports codesign process,

including system specification/modelling, hardware/software partitioning, system co

synthesis, and performance evaluation. During the cause of that investigation several

experimental case studies are utilized to support the development of these concepts and

examples from these studies are given at various places in this thesis. They have also

been reported in different publications [CLJ97][CLJ98b].

5

The methodology originates from the PARSE (PARallel Software Engineering)

[GJC94] [GGJ95] approach and has evolved to encompass the requirements for

codesign. It is therefore named as Co-PARSE methodology to emphasize its origin.

Major goals of this research are summarized as follows:

• Development of a system model to capture the overall dynamic aspects of

codesign system

The model employs object-based and CSP-styled system-level specification

notations. It supports hierarchical decomposition, encapsulation and component

reuse. Because of its origination from the PARSE approach, it is named “Co-

PARSE” and discussed in Chapter 3.

• Design of a system-level co-specification notation and functional verification

technique for codesign systems

The notation should be independent of hardware/software implementations. It

supports hierarchical decomposition, and promotes staged refinement. By identifying

concurrent process objects and their interactions, it captures structural and

behavioural properties of codesign systems. The co-specification notation, “Co-

BSL”, has been designed and described in Chapter 3. The functional verification

technique has been developed in Chapter 4, which is established on the conversion

from Co-BSL program to VHDL program. VHDL simulations enable the dynamic

behaviour of interacting components to be verified at an early stage of the codesign

process.

• A feasible hardware/software partitioning scheme

It is restricted to system temporal requirements, improves the system performance,

and reduces the hardware cost to a minimum. This scheme is discussed in Chapter 4.

• Development of new system target architecture and the co-synthesis method for

hardware/software interfaces

The system target architecture is assumed to be flexible and relatively easy to

evaluate in terms of system performance. In addition, template conversions and

VHDL packages and libraries should readily support the co-synthesis process. The

details of this development are described in Chapter 5.

• Development of a system-level performance evaluation technique

6

It can be used to assess both the performances of hardware/software components

and the codesign system’s performance. At the same time, the implementation cost is

as low as possible. It is also introduced in Chapter 5.

• Application of the proposed methodology

A case study is carried out in order to examine the strength and viability of the

proposed methodology. The case study is in favour of embedded real-time

system/controller. Its details are included in Chapter 6.

Original contributions have been made in this thesis, which fall into the following

categories:

• Analytical Contributions

1. The system-level Codesign Behaviour Specification Language (Co-BSL), which

captures overall dynamic aspects of codesign system and its performative

constraints (see Chapter 3)

2. The asynchronous bus protocol and the virtual prototyping technique with the

layered bus communication structure, which support the system performance

evaluation for codesign system (see Chapter 5)

3. The co-synthesis method used to implement the hardware/software interfaces,

which guides through smooth transition from path definitions in Co-BSL

description to the system implementations based on the layered bus

communication platform (see Chapter 5 and 6)

• Developmental Contributions

1. Six VHDL packages and one VHDL library that provide a portable platform for

future codesign research projects and that are necessary to support the

evaluation of the proposed codesign approach

• Four VHDL packages designed to support, in hardware/software partitioning

phase, functional verification and system profiling, which facilitate the

template conversion from Co-BSL communication channels to the VHDL

simulation program (see Chapter 3)

• One VHDL package and one VHDL library, which provide communication

components and support the communication protocol in the interface co

synthesis phase (see Chapter 5)

7

• One VHDL package, which implements the major algorithms in the case

study, the Radio Data Computing System (see Chapter 6)

2. The integration of ARM SDT Tool Kit and the List Scheduling Algorithm into the

system performance evaluation phase (see Chapter 5)

Evaluative Contributions

Application of the proposed methodology to an extensive case study, the Radio Data

Computing System (RDCS), which evaluates the strength and suitability of the

proposed codesign methodology in the development of real-time embedded systems

(see Chapter 6)

Disseminating Contributions

Part of the subject matters addressed in this thesis has been published in the

following conference proceedings and technical reports: [CLJ98a][CLJ98b][CLJ97]

[CLJ96a][CLJ96b][LJC95][CLJ95a][CLJ95b][CRLOO] (see References).

The publication [LJC95], as a starting point of this project, proposed an object-

based codesign approach, which employs PARSE approach including its

specification notations for modelling and specifying codesign system. A

comprehensive survey of the latest codesign methodologies is undertaken in

[CLJ95b] and their possible applications in low-power multimedia system are

reported in [CLJ95a]. The literature review in Chapter 2 is largely built upon these

two publications. While the publication [CLJ96b] investigated into the high-level

specifications for codesign system based on which the Co-BSL is designed, the

publication [CLJ96a] examined the feasibility of the conversion from BSL

description to VHDL program, which serves as a basis for the conversion from Co-

BSL program into C and VHDL program. In addition, two case studies, namely

GSM mobile handset and Radio Data System , have been carried out in this project,

which test the viability of co-specification in the Co-PARSE methodology and the

functional verification technique in the VHDL simulation. The relevant details are

published in [CLJ97] and [CLJ98b]. Due to the lack of specific review on space

exploration techniques in codesign society, the publication [CLJ98a] fills this gap

by a comprehensive survey of the space exploration techniques. It analyzes a variety

of merits on behalf of the five important issues. Part of the content in Chapter 4 is

built on this investigation. Finally, the virtual prototyping technique and the

exploitation of system target architecture for system performance proposed in this

project has been published in [CRLOO].

1.4 Outline of the Thesis

The remaining chapters of this thesis are abbreviated as follows:

Chapter 2 Related Research Works:

The literature review in this chapter takes a close look into the current state of practice

in codesign researches and the problems faced by codesign researchers. The codesign

methodologies surveyed are well established and all at the leading edge of this active

research field. The review has been concentrated on:

• Modelling and specification for codesign system

• Hardware/software partitioning

• Techniques used in system performance evaluation phase

• System target architecture

The review is summarized in a dedicated section that promotes object-orientation in

codesign methodology and justifies the proposal of our object-based codesign

methodology.

Chapter 3 System Modelling and Functional Verification:

This chapter deals primarily with modelling and specification of codesign system. The

modelling technique in the proposed object-based approach is largely built upon the

PARSE approach [GJC94] [GGJ95]. Considerable effort is spent on introducing the

development of Co-BSL language that is specially designed for capturing the overall

dynamic aspects of codesign system. Guidelines for the conversion of the high-level co

specification means (Co-BSL program) to the intermediate-level presentations, i.e.

VHDL and C programs, are detailed. The conversion is aimed at preserving the object-

oriented features in Co-BSL design, which comprise the encapsulation, communication

through message passing, reuse, and scalability. The system functional verification in

VHDL simulations with the token-passing protocol and its supporting VHDL packages

are also outlined in this chapter.

9

Chapter 4 Design Space Exploration:

Following the review on design space exploration techniques in the codesign society,

the profiling technique specially adopted in this project is presented. The profiling

process with VHDL simulations provides important information in the invocation time

of primitive process and communication intensity along communication channel. They

help identify the time-critical parts and dispatch them to hardware implementation to

beat the system time constraints. Possible improvements to the current partitioning

method are suggested too.

Chapter 5 The Performance Evaluation:

This chapter is a major part of the thesis. Critical constraints in codesign system are

tackled. Although constraints could include system execution time, hardware cost,

memory requirement, power consumption, and so forth, we concentrate on the issues

related to the system execution time, i.e. system performance, and the hardware cost.

The system performance is composed of the performance of individual component and

the performance of communication across system target architecture. The performance

evaluations for hardware and software components are carried out in both tools and

algorithms. While the hardware performance is assessed by the algorithm, namely List

Scheduling, the software performance is evaluated by using ARM SDT toolkit. In our

methodology, the virtual prototyping technique plays a vital role in evaluation of

constraint satisfaction. The conceptual system target architecture with the layered

system bus structure is proposed and realized in a specially designed asynchronous bus

protocol and the VHDL packages/libraries to facilitate the VHDL programming for bus

communications. Extra guidelines are also introduced to assist co-synthesis of

hardware/software interfaces. The resultant VHDL program is executed in ModelSim

VHDL simulation environment. Another important issue in this chapter is that the

VHDL simulation program is annotated in the performances obtained from the

evaluations for individual hardware/software components. The system performance is

evaluated in VHDL co-simulation with the annotations. Theoretically, the predicted

system performance from this type of VHDL simulation could be accurate to system

clock cycles.

10

Chapter 6 Case Study:

A case study is implemented in this chapter. The case study, namely Radio Data

Computing System, is used to evidence the feasibility and strength of the proposed

object-based codesign methodology. Major codesign phases including system co

specification, system functional verification/profiling, hardware/software partitioning

and the performance evaluation are highlighted in the study. Besides, experimental data

from VHDL simulations are listed and analyzed. The premier effort are focused on

establishing the relations between system latency, hardware cost in conjunction with

various partitioning schemes and different numbers of bus layer in the designated

system target architecture.

Chapter 7 Conclusions and Further Research Topics:

The thesis is concluded by a summary of the research project together with its

progresses and contributions made so far. Possible improvements to this experimental

codesign methodology are also suggested. Finally future prospective research

directions are addressed.

11

Chapter 2

Related Research
2.1 Introduction

A number of published codesign methodologies are reviewed in section 2.2. These

representative codesign methodologies developed in other institutions are well

established and all at the leading edge of this active research area. The emphasis of the

following literature review lies in the important issues directly related to three phases in

the codesign approach: codesign system specification and modelling,

hardware/software partitioning, and codesign system performance evaluation.

Another equally important issue we would like to closely examine is system target

architecture, which relates to one of the major contributions from this Ph.D. thesis.

In the following sections, each of them (from sub-section 2.2.1 to 2.2.12) deals with an

individual methodology. The heading shows its abbreviated name and affiliation. Those

without abbreviated names are headed only by their affiliations (sub-section 2.2.7 to

2.2.12). Besides, section 2.3 provides a detailed analysis of the reviewed methodologies

and justifies the object-based approach taken in this project. Finally, the object-based

codesign approach proposed in this research project is outlined in section 2.4. Its

framework is illustrated in a graph. Each phase in the framework is briefly described.

2.2 Review of the Related Research Works

It is worth mentioning at this point the alternative definitions of co-synthesis and

codesign. In some articles, the term codesign generally recognizes the difficulty in

addressing all of the system design problems in a unified framework while co-synthesis

concentrates on providing CAD solutions to the sub-problems in codesign system’s

synthesis [Kum94]. In this thesis, however, we will follow the mainstream definition

and do not take account of any particular difference between the term codesign and co

synthesis.

12

2.2.1 Approach 1: Cosyma, (Germany) Technical Univ. of Braunschweig [EH92]

[EHB93] [YEBH93] [HE98]

This is a software-oriented codesign approach. The original system is modeled as a

software system in Cx language program. The Cx language is a C programming

language extended with parallel processes and timing constraints. The system

specification written in Cx is compiled into two internal graphs: Extended Syntax Graph

(or ES graph) and Basic Scheduling Blocks (or BSBs). A simulator is provided for

system functional verification, performance estimation, and partitioning profiling.

Those parts (basic block) that are identified as computational bottlenecks and suitable

for synthesis of hardware in order to achieve a speedup in overall execution times, are

migrated to application-specific hardware (coprocessor), which is then specified in

HardwareC. Hardware/Software partitioning is repeated in nested loops. In the inner

loop, partitioning is executed by using simulated annealing algorithm, based on cost and

timing estimation. The partitions resulted from the inner loop are reexamined in the

outer loop that is supported by the hardware simulation tool for run time analysis.

System Specification Means: Cx, an extended C programming language

Partitioning Method: profiling and algorithm plus simulated annealing

Perform ance Evaluation: co-simulations in both special processor simulator and

hardware simulator (Mercury)

Target Architecture: The target architecture is like the one described in Figure 2.1 The

general-purpose CPU is implemented in standard Sparc processor and custom device in

coprocessor (function unit).

2.2.2 Approach 2: Vulcan, (USA) Stanford University [GM93] [GJM94] [Kum94]

[Kum96] [AG97] [Mic99]

In contrast to Cosyma, a hardware-oriented approach is adopted in the Vulcan. The

original codesign system is modeled as a hardware system in the hardware description

language, HardwareC. The Vulcan attempts to reduce the cost of its implementation by

migrating non-critical operations to a standard processor, such as 8086 or R3000. The

partitioning uses heuristics in a cost function with parameters related to the hardware

size, processor and bus utilization. While hardware components are synthesized in the

netlist of logic gates by using Olympus Synthesis Tools, software components are

compiled into a set of software threads destined for execution on standard processors.

13

The simulation in the Poseidon Simulator evaluates the performance of the final mixed

system. The strength of this research lies in the cosynthesis method and tool suite which

support the codesign processes including:

• conversion from the top-level HardwareC specification into an internal graph model

• partitioning in the algorithm, based on the internal graph model

• system synthesis particularly for software components and the interface between

software and hardware

• low-level simulations in Poseidon for system performance evaluation

custom device
application-

specific
hardware

bus interface

 ̂ '' system bus .

memory I/O device I/O device

Figure 2.1 Target Architecture of Cosyma

System Specification Means: HardwareC

Partitioning Method: algorithm plus heuristics

Perform ance Evaluation: co-simulations in an event-driven simulator, Poseidon

Target A rchitecture: the target architecture in Figure 2.2 is assumed in this approach.

A general-purpose microprocessor is embedded in the system with application specific

hardware components. The memory provides storage for program, user data and

interface buffer.

2.2.3 Approach 3: SpecSyn, (USA) University of California, Irvine [VG92]

[GVNG94] [GVN94] [BG97] [GZGHOO]

The SpecSyn aims at developing a methodology applied to a broad application domain,

i.e. embedded systems including codesign system. The main themes in this approach are

simulation, rapid prototyping, and framework environment. The system specification is

based on the design model, Program-State Machine (PSM). A system specification is

translated into a hierarchy of program-states in PSM. Each program-state represents a

mode of computation and may include standard programming declarations such as

general-purpose
CPU

interrupt

14

variables, types, and subroutines. In addition to PSM, A VHDL front-end language,

SpecCharts, is developed to support the captivity of PSM model. This approach also

suggests a conceptualization environment, which allows developers to quickly explore

and evaluate potential designs. An environment, also named SpecSyn, provides users

with three types of tool set that demonstrate the initial results: partitioners, estimators,

and prototype tools. The design path of SpecSyn goes through three major stages:

functionality specification, system design, and component implementation. The first

stage is to specify the functionality of a codesign system, which is characterized in this

approach as executable specification in a machine-readable and simulatable form. The

next stage is to map the functionality to system components, which could be memories,

buses, ASICs, and processors. The mapping process must satisfy the design constraints

such as cost, performance, and power consumption. The final stage relies on the

existing hardware/software synthesis and compilation tools.

memory
ML program interface

buffer

u se r da ta

micro
p rocesso r

Program m able
com ponent application-

specific
com ponen t

Figure 2.2 Target Architecture of Vulcan

System Specification Means: SpecCharts Visual Language

Partitioning Method: clustering algorithm with closeness metrics

Perform ance Evaluation: In addition to simulations in VDHL for system’s functional

verification, this approach emphasizes the direct implementations of software in

compilers and hardware in synthesis tools (Executable-Specification Refinement).

Target A rchitecture: Although the proposed model has the potentials of using the

multiple bus structures and separating the communication constructs from the

computation, how different allocation schemes can be examined in terms of the impact

on system performance remains as a challenging task.

15

2.2.4 Approach 4: Ptolemy, (USA) University of California, Berkeley [KL93]

[KL96] [TsaOO]

The Ptolemy is focused on the simulation, prototyping, and software synthesis of digital

signal processing systems. The key property in this work is heterogeneity, meaning that

software program, hardware modelling and algorithm simulation are embedded in a

single design environment. Since Ptolemy was developed intentionally for the design of

embedded systems with real-time signal processing components, its system

specification is encapsulated in an ad hoc formula, particularly tuned into the DSP

processing. A Synchronous Data Flow (SDF) Graph is adopted to capture the system

model. In this model, an application is specified in a graph, where nodes represent

computations and arcs indicate the flow of the data. Supported by the estimation tool,

the SDF plus design constraints are divided into hardware (VHDL) and software (C or

Assembly) components. Three different tools are provided during the partitioning

phase: manual, ILP solver and MIBS. The ILP solver solves problems in an integer

linear program while MIBS (Mapping and Implementation Bin Selection) solves the

extended partitioning problems in heuristics. The final mixed system is simulated in

Ptolemy Environment and implemented in VHDL synthesis tools and software

compilers.

address

processor
core

data

controller

hardware
module

hardware
module

hardware
module

i

■

' control

Figure 2.3 Target Architecture of Ptolemy

System Specification Means: the synchronous dataflow (SDF) graph

Partitioning Method: experience or algorithm

Perform ance Evaluation: co-simulations in Ptolemy environment or implementation

Target Architecture: Its target architecture is shown in Figure 2.3 [Kal96], which is

comprised of a processor core, hardware components (memory, ASICs etc.)

16

communicating via a single system bus, serial port, or shared memory. This structure is

in fact similar to the one in Figure 2.2.

2.2.5 Approach 5: TOSCA, (Italy) ITALTEL & Polotecnico di Milano [BFS96]

[FS96] [FS99]

The TOSCA aims at a codesign environment encompassing all stages in codesign

process. It is designed to manage the codesign process particularly for control-

dominated applications, such as telecom digital switching subsystems. A codesign

system is first specified in the commercial environment, SPeeDCHART or OCCAM II.

The specification is retained in a database that is the hub of all tools included in the

environment. Simulations at two levels are provided. The first level is to verify the

system functionality and gather profiling information, which will be used during

hardware/software partitioning phase. The second level is a VHDL-based virtual co

simulation (the term co-simulation will be explained in Chapter 5.), which shifts the

system tuning from the physical prototyping to the virtual prototyping [BFS94]

[AF+97]. Those software threads are converted into a Virtual Instruction Set (VIS)

program designed to run on a CPU core while hardware-bound parts are dispatched to

hardware components (coprocessors) described in VHDL. The hardware/software

interface is synthesized into a system bus that provides data transfer between hardware

and software components. The VIS code is created for the purposes of portability and

facilitating the VHDL-based co-simulation. Following the system performance

evaluation in VHDL co-simulations, the VIS code will finally be retargeted to a real

CPU core executing binary code or assembly program.

System Specification Means: SpeedCHART and OCCAM II

Partitioning Method: profiling and algorithm

Perform ance Evaluation: VHDL-based co-simulations

T arget A rchitecture: A CPU core and a set of coprocessors are interconnected in a

single system bus. The target architecture is to be realised in a single-chip. The target

architecture is similar to its counterpart in Figure 2.1.

2.2.6 Approach 6: CODES, (Germany) Siem ens AG [BSV93]

The CODES is primarily developed as an integrated hardware-software codesign

platform. Its philosophy is to make as much use of relevant existing tools as possible

and include as many useful tools as possible. The codesign system is modeled as a set of

17

communicating Parallel Random Access-Machine (PRAM). Its design path is as

follows. The original codesign system is specified in Statemate™ or SDL and is

partitioned manually into hardware and software components. The hardware partitions

are converted into VHDL program and software partitions into C program. Both C

compiler and VHDL synthesizer are used to create the executable code and the netlist

that can be further processed in other hardware design tools for placement and routing.

The final result is a physical prototype for performance evaluation.

System Specification Means: Statemate™ or SDL

Partitioning Method: experience (manual operation)

Perform ance Evaluation: simulations in Statemate™ or SDL tools and co-simulations

on the physical prototyping

Target A rchitecture: The target architecture assumed in this approach is a structure

composed of a processor, memory, off-the-shelf components and some ASICs, which is

similar to the target architecture in Figure 2.2.

2.2.7 Approach 7, (USA) Carnegie Mellon University [TAS93] [PTWP99] [PPTOO]

Its codesign system is modeled as the system with communicating sequential processes

(CSP) [Hoa85]. This approach concentrates on two important codesign issues: co

simulation and system cosynthesis. The hardware simulation tool (Verilog simulator) is

connected to the UNIX software processes via BSD UNIX socket facility, which

enables co-simulations that verify the functionality of mixed hardware-software

descriptions and supply a part of the information with regard to the system performance.

The system cosynthesis modifies the hardware-software partitions and control

concurrency to make the target system’s behaviour meet the design goals. Unlike other

methodologies, its partitioning phase takes place at the task level, which consists of a

sequence of operations abstracted from a process. The advantage of this treatment will

be discussed in Chapter 4. In addition, a physical prototyping system is developed as a

testbed, providing a precise and flexible assessment of the system performance.

System Specification Means: Verilog and other UNIX-based software programming

languages

Partitioning Method: experience plus the information from high-level software

simulation

18

Perform ance Evaluation: co-simulations by using the system development board

(physical prototyping)

T arget A rchitecture: The target architecture is same as in Figure 2.1. It consists of a

general purpose CPU running on an operating system and an ASIC communicating with

the CPU via interrupt-driven I/O or with memory and other I/O devices through system

bus. The memory and I/O devices are attached to the system bus.

2.2 .8 Approach 8, (USA) University of California Berkeley [CGJ+94]

This is a rigorous codesign framework that supports the development of codesign system

in synthesis, optimization, and verification. Its system model, Codesign Finite State

Machine (CFSM) is an extension of classical Finite State Machine (FSM). The codesign

starts within a unified framework that is unbiased towards the final implementations.

The programming language, Esterel, is used for system specification that is then

translated to CFSMs. The system is then interactively partitioned into hardware and

software components. This approach can synthesize the entire design, including the

hardware-software interface. Due to its FSM root, synthesizing hardware partitions into

a combinational circuit is a natural procedure, whereas software partitions have to be

converted into the portable C code via an intermediate model called software graph (S-

graph). The FSM model derived from CFSM is compatible with the input format in

many formal verification algorithms. This feature provides the possibility of

mathematically verifying the design in the early stage of codesign process. Another key

feature of this approach is the transition from specification to implementation, which is

achieved through the maintenance of the finite state machine model throughout. Because

of the obstacle of state explosion, this approach is suited to small control-dominated

embedded systems.

System Specification Means: Esterel language (real-time software specification

language)

Partitioning M ethod: experience (manual operation)

Perform ance Evaluation: formal verification on CFSM model plus the simulation in

intermediate internal format to complement the verification for some special cases

Target A rchitecture: This approach has focused on the internal theoretical model,

CFSM. Existing software/hardware design tools especially for the development of real

time embedded system have been used in other codesign phases. The system

19

architecture is not quite clear, but mostly like the one with single bus system plus other

communication mechanism such as interrupt and other hardware links, many of which

are commonly used in the current real-time embedded system.

2.2.9 Approach 9, (USA) Princeton University [WDW94] [YW95]

In contrast to other approaches, this research concentrates on the co-specification

method, whilst its ultimate aim is to develop an automated partitioning tool in the

hardware/software partitioning phase. A great deal of effort has been spent on the

framework, which proceeds from the object-oriented co-specification to other codesign

phases. At the system level, a prototype language, Object-Oriented Functional

Specifications (OOFS), is used to describe the system objects and operations within an

embedded system. The codesigner first has to divide the specification in software,

hardware, or codesign parts. Pure hardware or software parts are then converted into

C++ classes, whereas codesign parts are compiled into Bestmap-C code for hardware

and C++ classes for software. The performance and cost for hardware parts can be

obtained from Bestmap-C synthesis and simulations.

System Specification Means: object-oriented functional specification (OOFS)

Partitioning Method: manual operation (experience) and facilitated by the information

from simulations in C++ and Bestmap-C

Perform ance Evaluation: co-simulations in C++ program and Bestmap-C simulator

Target Architecture: Although the codesign target architecture could theoretically be

any distributed structure, the example of the target architecture demonstrated in relation

to the performance evaluation in this approach is made up of a host microprocessor and

ASICs, connected to a system bus. This is rather similar to the architecture in Figure

2 .2 .

2.2.10 Approach 10, (UK) UMIST [Edw93] [EF94] [EF96] [EFW97]

The contribution of this approach is an integrated codesign environment suitable for

general-purpose applications, rather than the more domain-specific approaches taken by

other researchers. A software-initiated approach is adopted, where the whole system is

treated as a software system written in C. Supported by an interactive profiling tool that

identifies performance critical regions in the original system, the C program is

subsequently partitioned into software and hardware modules. The critical regions are

20

implemented in custom hardware. The system development board with FPGAs enables

accurate and flexible evaluation of the system performance.

System Specification Means: C programming language

Partitioning Method: profiling to detect the computational bottlenecks

Perform ance Evaluation: co-simulations on the development board (physical

prototyping)

T arget A rchitecture: As illustrated in Figure 2.4, the twin bus architecture is used for

codesign system development. The processor P is a 16MHz i960 and the M is composed

of 256 KB static read-write memory. I/O consists of a single serial port. The custom

hardware is a Xilinx 3090 FPGA for programmable hardware implementation. Since the

AT bus and the interface are only used for communications between the development

board and a PC host, the target architecture is in fact similar to the one in Figure 2.2.

fp l [~m1 1/0
custom

hardware

()

AT bus
interface

(

system bus
(400 MB/s)

AT bus
(4 MB/s) ,

Figure 2.4 Development Board Architecture &
Communication with Host PC

2.2.11 Approach 11, (USA) University of Virginia [KAJW93] [KAJW96]

This research outlines a preliminary framework for codesign. The following features are

characteristic of this approach:

• integrated codesign process

• model continuity

• exploration of hardware/software tradeoffs

• evaluation of hardware/software alternatives

The codesign system is specified as a set of VHDL concurrent processes, which

communicate in certain designated fashion. The estimation and evaluation of system

performance are supported by VHDL simulations that are based on the (un)interpreted

modelling methodology [Ayl92]. Since VHDL provides a behaviour description of

21

hardware from system level down to the gate level, the partitions for hardware can be

implemented in a straightforward manner by hardware synthesis tools.

System Specification Means: VHDL/Petri nets specification

Partitioning Method: profiling and experience (manual operation)

Perform ance Evaluation: distribute-event simulation in VHDL program with the token

passing protocol

T arget A rchitecture: Distributed system architectures are assumed in this approach.

2.2.12 Approach 12, (Sweden) Royal Institute of Technology [JE+94]

The novelty of this approach is its fully automatic hardware/software partitioning and

memory allocation achieved by linking the GNU CC compiler to a behavioural VHDL

generator and high-level synthesis tools. The compiler is invoked three times. The first

is to make the profiling marks in the specification described in C programming

language and the second invokes an estimator to calculate the speedup factor under

hardware implementation and identify program regions suitable for hardware

implementation. The final one generates assembly and VHDL codes for software and

hardware respectively. The partitioning problem is formulated, as finding a subset of the

program regions suitable for hardware implementation and it is possible to gain the

greatest system speedup as they can be fixed into the hardware limit in terms of logic

gates. The dynamic programming technique is used in searching for the best subset.

System Specification Means: C or C++ specification

Partitioning Method: profiling and algorithm plus dynamic programming

Perform ance Evaluation: co-simulations in physical prototyping

Target A rchitecture: Its target architecture is a board with a microprocessor, ASICs,

FPGAs, standard components, and memory. All of them communicate through a single

system bus. This architecture resembles the one in Figure 2.2.

2.3 Analysis of Existing Approaches

The codesign methodologies surveyed above are then analyzed, with the focus on the

following issues:

• Codesign system model and specification means

• Use of VHDL in codesign approaches

• Hardware/software partitioning method

22

• Performance evaluation

• System target architecture

The outcome of this analysis shall support the objectives set out in our research project

and leads to an experimental object-based codesign framework proposed at the end of

this chapter.

2.3.1 Codesign System Model and Specification Means

The system model plays an important role in the codesign. It is particularly significant

due to the increasing complexity and the decreasing time to market. The importance of

a system model is apparent but often overlooked, particularly when dealing with small-

scale systems. A system model can provide both the detailed understanding of system

behaviour and the transformation capability that allows the generation of design

alternatives. A system model’s ability to extend across different system development

phases is essential for the validation of system-level models and their

hardware/software implementations.

As the survey shows, the following models are involved:

• CSP (approach 5 and 7)

• Petri nets (approach 11)

• Codesign Finite State Machine (approach 8)

• Program-State Machine (approach 3)

• Parallel Ransom Access-Machine (approach 6)

• Others (approaches 1, 2 ,4 , 9 ,10 and 12)

The system specification means adopted by those codesign approaches examined above

are categorized as follows:

• C or C-type, C++, and Esterel (approaches 1, 8 and 12)

• SpecCharts (approach 3)

• VHDL, Verilog, and HardwareC (approaches 2, 7 and 11)

• SpeedCHART, Occam II, and Petri nets (approach 5)

• Statemate™, SDL, and SDF graph (approach 4 and 6)

• OOFS (approach 9)

23

Current practice in relation to the codesign system modelling and specification is in an

ad-hoc state as it depends on development tools (environments) and, also, experiences

available to the developer. Those models and specification being used by other

researchers were originally designed solely for hardware or software system

development. They are either hardware or software implementation-biased. Therefore,

the research into their adaptability in codesign methodology needs to be highlighted.

2.3.2 Use of VHDL in Codesign Approaches

A number of codesign approaches employ HDLs or VHDL [IEEE94] [IEEE98] as

system specification means or the intermediate description tools that are directly linked

to the hardware synthesis tools. Compared with other HDLs, VHDL has the following

advantages: [Per94]:

• VHDL is an IEEE standard used as an interface between humans and design

automation tools.

• Many different design methodologies and design technologies are supported by

VHDL.

• It is independent of both technology and process.

• VHDL supports behavioural description of hardware from system level to gate

level.

• Its philosophy is similar to that of many modem programming languages so that it

is well facilitated by design decomposition aids (e.g. packages, configuration

declarations and the concept of multibodies).

Due to these advantages, VHDL deserves to be emphasized as a design description

tool in codesign and its development environment should be extended to support

codesign process.

2.3.3 Hardware/software Partitioning Method

Hardware/software partitioning is a really challenging task in codesign research. The

major problem is due to the contradictory dependency, where an individual partitioning

scheme exerts a great impact on the system performance, but the partitioning process

itself relies on the outcomes from the evaluation of system performance after the

partitioning. A review of the previous research in this area has been published in

24

[CLJ98a]. Here we are only concerned with the following three aspects: partitioning

method, partitioning process, and partitioning input.

The partitioning methods supported by the above-surveyed codesign approaches are

classified as algorithm, experience, and profiling. In other literature [GVNG94], these

terms are referred to as deterministic, statistical, and profiling. The deterministic

approach requires that all data dependencies are removed and all costs of components

known. It can lead to an effective partitioning, but it can fail when those elements are

unavailable. The statistical approach is based on the analysis of similar systems and

design parameters. The profiling approach is straightforward, and generally yields better

results because the partitioning can be determined even when strong data-dependency

exists. The deterministic approach requires that intervention from the designer is

minimal, which could lead to an automated partitioning process. From this point of

view, approaches 1, 2, 3, 4 and 12 represent the most sophisticated partitioning methods

while approaches 5, 10 and 11 need statistical information from analysis of similar

systems and/or designer’s experiences.

A partitioning process can be either intricate or straightforward. Approach 1 introduces

the idea of two partitioning loops. The inner loop iteration relies on merit estimation

and software simulation to meet the time constraint. By merit estimation we mean that

the system performance should be assessed against system constraints established

during specification phase. This assessment could be the emulation on a prototype

system or software simulations. Because at this stage the real system is not yet created

the precision of assessment varies due to the methods adopted. The outer loop checks

the integrated system’s performance. It uses the objective function and the simulated-

annealing partitioning algorithm. The partitioning can be iterated in either the inner

loop or outer loop. Approach 2 uses an objective function that incorporate the metrics of

hardware size, program/data storage, bus bandwidth, data rates, synchronization

overhead, and the period of time between certain operations. It adopts the partitioning

algorithm developed by other researchers to guide the partitioning process. Approach 3

supports various closeness metrics to group behaviours for execution on system

components that are chips, blocks on a chip, off-the-shelf processors, memories and

25

buses. More partitioning mechanics have been published in approach 1, 2, and 3 than

other studies and more experiences are presented in these approaches.

Although hardware/software partitioning can be performed at different abstraction

levels (i.e. partitioning granularity), it mostly occurs at behavioural or structural levels.

All the partitioning techniques described above could support behavioural level

partitioning. The partitioning granularity varies from task level to single statement level.

They can be roughly divided into two categories: coarse-granularity (task, function,

and process level) and fine-granularity (statement block and single statement level).

Accordingly, approaches 1, 2, 3, and 9 are fine-granularity and the others are coarse-

granularity. Partitioning with coarse-granularity is a common practice in the manual

partitioning operation. It implies larger chunks of functionality enclosed in a partitioned

component and less communication overhead across the components. In contrast,

partitioning with fine-granularity includes more decomposed objects and heavy

communication overheads. Therefore, careful consideration has to be taken in order to

balance these elements.

2.3.4 Performance Evaluation

Performance evaluation generally takes place after partitioning and/or the interface co

synthesis phases. Related techniques employed to date in the codesign approaches can

be characterized as follows:

• Implementation

• Physical prototyping (approaches 3, 6, 7, 10 and 12)

• Virtual prototyping and co-simulation in software (approaches 1, 2 ,4 , 5, 8, 9 and 11)

Some of the approaches (such as approaches 3, 4 and 6) also employ implementation as

one of the options in their evaluation stage apart from the prototyping techniques.

Because of its inflexibility and huge cost, the evaluation by the direct implementation of

a codesign system is less attractive. Physical prototyping is precise but it is costly and

less flexible. Sometimes, it is virtually impossible, particularly on occasions when some

of the system components are not available. Although virtual prototyping is less

accurate, it costs less and easy to operate. It is also very effective in the cases where the

performance evaluation is undertaken on changeable system architectures. Due to these

26

advantages, there has been a growing interest in virtual prototyping and the research to

improve its simulation accuracy (i.e. speed, precision, facility, and so forth) has

intensified [BFS94] [BE97] [PLCV97] [HB97].

2.3.5 Target Architecture

In spite of its extra connection to the CPU via an interrupt device, the target architecture

in Figure 2.2 is not fundamentally different from its counterpart in Figure 2.1 from the

system architecture’s point view because they both use a single system bus for

communication between hardware and software components. Yet, these two

architectures have been taken as the orthodox system target architectures. The reason

they are so popular is probably because of their simplicity that makes the co-synthesis

of hardware/software interface and performance estimation/evaluation convenient.

On the single bus platform, the general-purpose processor is naturally taken as a bus

master that controls bus traffic, so that the application-specific hardware component can

be simplified as a bus slave without the bus traffic control facility. The inclusion of such

functionality in an ASIC chip would significantly increase the total hardware cost and

complexity. In addition, the single level memory subsystem avoids the complexity that

would otherwise arise when analyzing and synthesizing hierarchical memory

subsystems.

A few of the approaches do allow designers to specify a codesign system with a

distributed system model, but there has been very limited research results reporting on

the allocation or mapping of the high-level specification into low-level distributed target

architectures i.e. the components connected to the system bus are self-clocked and the

system communication path is configurable.

2.3.6 Conclusions from the Analysis

The characteristic of a codesign system is regarded as increasing complexity and

decreasing production time. For example, the complexity scale of a mobile terminal will

be between 500,000 and 1 million transistors and industrial design times allowed for

this kind of applications are typically less than one year [GG94]. The transistors for

digital signal processing in the digitized camcorder are around 0.37 million [TA92]

[SC94]. Furthermore, in addition to ASICs, microprocessors and programmable

27

components are increasingly included, which makes these systems a complicated

mixture of hardware and software components. To address the system-level design

problems, new design methodologies are being developed. They require unified system

descriptions that allow the developer to express and evaluate alternative partitioning

strategies within the same notation [JDV92], supported by mechanisms for the

expression of design constraints at a high-level. The object-based codesign

methodology that provides system descriptions independent of the hardware/software

implementation aspects, supports hierarchical decomposition, and promotes staged

refinement should be explored.

Finally, each application domain may require a special target architecture that is best

suited in that area in relation to constraints of hardware cost and system performance.

Current codesign research is overwhelmingly based on the fixed system target

architecture that is featured as the system target architecture with a single bus structure.

Specialized hardware components attached to the single bus can certainly reduce the

system execution time, but the codesign system based on this architecture inevitably

suffers from the communication bottleneck inherited from this type of target

architecture. This pessimistic view is reflected in [Edw97]. It instead suggests that the

Application Specific Instruction Processor (ASIP) would benefit the system’s execution

more than ASICs do. While ASIPs remain as a promising option, we would argue that

the distributed system target architecture could also be considered as an alternative

solution.

As an example, a distributed target architecture is depicted in Figure 2.5 [SB91] [Sri93].

It is organised in a structure with 4 layers. The bottom two layers are extended by the

custom boards, each having one or more programmable processors. Each processor in

turn coordinates a number of application specific slave modules which can be either

hardware or software components. This target architecture exercises the hierarchical bus

organization that increases the communication bandwidth. On the other hand, the

system performance evaluation of this architecture has relied on the physical

prototyping. While this type of system architecture provides flexibility and scalability,

the system performance evaluation and partitioning strategy present a genuinely

challenging task. Physical prototyping is no longer feasible and costs increase too much

28

when the system structure changes. In addition, the hardware/software partitioning

strategy based on the granularity of basic blocks needs to be reconsidered, because it

would dramatically increase the overall communication load on system buses.

2.4 The Proposed Object-Based Codesign Approach

To address the aforementioned problems, we have proposed a new codesign approach,

which is object-based and oriented towards the distributed target architecture with

layered bus structure for communications among system hardware/software

components. Preliminary work was reported in [LJC95]. Figure 2.6 illustrates its design

flow.

softwre processor .
map to layer 1,2, or 3

workstation layer 1

LAN or Bus

singla board
computer layer 2

system bus

bus interface
module

processor
module

standard board
H/W and S/W

interface

layer 3

slave bus

slave 1 slave n layer 4

custom
boards

layer 3 & 4

application-specific
hardware modules

map to layer 4

Figure 2.5 Target Architecture with Layered Bus Structure

In our approach, the codesign system modelling technique is largely built upon the

PARSE methodology. The PARSE process graph has been employed to describe

process structures and their precise interactions. This specification is biased on neither

hardware nor software implementations. To specify the detailed behaviour of

hardware/software components and their communications, the Codesign Behaviour

Specification Language (Co-BSL) was designed specially in our project. Guidelines for

the conversion from Co-BSL program into intermediate-level presentations (C, VHDL,

and the communication configuration on the distributed target architecture) are also

provided. The functionality of the codesign system can thus be verified early in the

system-modelling phase by simulations in VHDL programs (stage 1).

29

In hardware/software partitioning phase (stage 2), the profiling information acquired

from the VHDL simulation for the verification of system functionality is used to

identify the time critical regions and the communication-intensified channels. It

facilitates the dispatch and allocation of hardware/software components and

communication channels in stage 2.

P ro c e s s G rap h &,
C o-B SL '

sy stem
specification ,

VHDL
irogram

^ s y s te m
profilling

jnform atio i

functional
verification &

profilling
hardw are/so ftw are

partitioning

VHDL
p rog ram V descrip tion

h ard w are so ftw are
descrip tion C p rogram

h ard w are
sy n th e s is

in terface
sy n th e s is

so ftw are
g en e ra tio n

HW /SW
in terface

h ard w are
c o m p o n en ts ,

so ftw are
co m p o n en ts ,

H W /SW in tegratio r
VHDL

Sim ulation
C o-S im ulation

Figure 2.6 Proposed Codesign Framework

Hardware partitions created from the partitioning phase are converted into VHDL

programs (stage 3) whereas software partitions into C programs (stage 5). While the

performance of hardware component is evaluated in the hardware-scheduling algorithm,

namely List Scheduling Algorithm , the performance of software component is evaluated

in simulations of ARM SDT tool-kit. The individual performance obtained from the

evaluation above is then annotated in a unified VHDL program that is simulated in a

VHDL simulation environment for system performance evaluation.

The novelty of this part of the work is that the virtual prototyping technique [PLCV97]

(also see Chapter 5) is applied to the distributed system architecture. In order to support

this application, a layered bus communication structure was designed first, together

with an asynchronous bus protocol. They form a platform used for prototyping system

target architectures virtually in VHDL programs that are supported by the VHDL

packages and libraries. Second the interface between hardware and software

30

components can accordingly be synthesized together with the allocation of

communication channels in this virtual environment (stage 4). Third, the system

performance can be evaluated in VHDL simulations (stage 6) instead of the simulation

in physical prototyping.

This technique is flexible and has a relatively low cost because no special hardware

equipment or component are needed. Besides, the codesign production time can be

significantly reduced because of the following three advantages:

• Implementation of hardware components in a VHDL program is supported by the

existing commercial hardware synthesis tools.

• C compilers and assemblers readily implement the software components in C

program.

• The codesign system itself can be developed concurrently with the fabrication of

hardware components due to the support from VHDL simulation environment.

Details related to each phase of the proposed codesign approach will be discussed in the

next two chapters, and the contributions from this thesis will be mentioned where

appropriate.

31

Chapter 3

System Modelling and Functional Verification
In this chapter, a review of the related research is first given, which supports our

proposal of the object-based codesign approach. Next, the modelling technique and the

specification notations employed in our approach are introduced. Guidelines for the

conversion from high-level co-specification down to intermediate-level descriptions are

also presented. Finally, the system functional verification and system profiling in

VHDL simulation with token passing protocol are explained.

3.1 Modelling and Specification for Codesign System

A previous investigation [CLJ95b] has shown that various system models and

specification tools have been adopted by the codesign approaches surveyed in Chapter

2. The system means involved are:

• CSP

• Petri nets

• Codesign Finite State Machine

• Program-State Machine

• Parallel Random Access-Machine

The system specification means include:

• C or C-like, C++, and Esterel

• SpecCharts

• VHDL, Verilog, and HardwareC

• SpeedCHART, Occam II, and Petri nets

• Statemate™, SDL, and SDF graph

• OOFS

An analysis [CLJ96b] of these models and specification styles has revealed an obvious

drawback, in which most of specification techniques are either hardware biased or

software biased. It has also indicated that the codesign techniques are historically

inherited from the high-level hardware synthesis. These factors play an important role

32

on both initial specification and subsequent development processes. Whilst it is

appropriate for certain applications in which software components only perform a minor

role, it does not allow for the migration in functionality from hardware to software

required by changes in application domain. In addition, a tendency in the design of

embedded system is towards a significant reduction of design time by re-using previous

designs and exploitation of available components. Existing codesign methodologies

provide rather limited support in component re-use.

Furthermore, the specification in the early stage of codesign development should

provide a good balance between the abstraction power and the ease of implementation.

As the complexity of codesign system is dramatically increasing and the codesign

technique is maturing, the latest development in codesign methodology demonstrates a

strong desire to seek more powerful system specification abstractions. Our analysis has

led to the hypothesis that the object-oriented analysis/design technique can help harness

the complexity and at the same time produce more reliable and reusable codesign

system. Since there are no standard and widely accepted system models and notations in

codesign, the object-oriented heterogeneous specification seems to meet this need.

3.2 Object-Orientation in Codesign

An object-based analysis and design technique has the following potential benefits

[Gra94]:

• Well-designed objects in object-based systems are the basis for systems to be

assembled largely from reusable modules, leading to higher productivity.

• Reusing existing classes which have been tested in the field on earlier projects, leads

to higher quality.

• The message passing paradigm allows for a much better, overall description of the

system.

• Encapsulated object types promote the implementation-neutral system descriptions

and facilitate subsequent object refinement in different designs.

• Object-based systems scale up better from small systems to large systems.

The benefit of modelling a codesign system in the object-oriented concept is

considerable. Firstly, safe software development requires that design notations capture

33

the structural and behavioural properties of the design, i.e., the identification of

concurrent process objects and their modes of interaction. This allows the dynamic

behaviour of the interacting components to be verified at an early stage of the design

cycle. Secondly, object-based design approaches provide object decomposition and

encapsulation. The decomposition of a problem into appropriate objects and

communication path permits the application of composition rules that ensures the

logical correctness of the design [GM93]. Object encapsulation allows the isolation of

sub-systems and separate development within the appropriate hardware or software

design notation.

Previous research into object-based analysis and design for codesign has already made

some progress though it is still in an early stage. Nam S. Woo has been working on the

co-specification method for codesign [WDW94]. By using Object-Oriented Functional

Specifications (OOFS) a system is divided into three groups: hardware, software, and

codesign, which are then treated separately. Although OOFS for codesign group can

been translated into C++ and Bestmap-C for the implementation of software and

hardware respectively by the compilers, the estimation and evaluation of system

performance have yet to be worked out. John Forrest has focused on heterogeneous

specification and implementation-independent descriptions for codesign systems

[For95]. The basic concept in his work is that a system is described as a set of

concurrent modules, each module has a number of ports, and the associated module

ports are connected. It reflects the common step of hierarchical decomposition. Two

sets of notations, unbiased to hardware or software, have been proposed: an outline one

and a reflection of part of it via C++. However, how the transition from these notations

to the low-level implementation is smoothly carried out (<cosynthesis) and how the

estimation and evaluation are integrated into this approach (<coestimation and

coevaluation) remain unknown.

3.3 The Co-PARSE Object-Based System Modelling and Specification Method

In order to address the problems in existing codesign approaches highlighted above, a

new object-based codesign methodology has been proposed in this project. The system

modelling technique adopted in it is based on the PARSE approach [GGJ95] [GJG93],

in which its modelling technique and specification means are well shown. Our codesign

34

approach differs from previous object-oriented work undertaken in codesign discipline,

in which the previous work focused upon the use of object-oriented analysis techniques

whereas this new approach focuses upon the benefits of object-based codesign such as

component re-use.

3.3.1 PARSE Modelling Technique for Codesign

The principles of managing complexity in a system are listed as follows [CY91]:

• Abstraction

• Encapsulation

• Inheritance

• Association

• Communication with messages

• Pervading methods of organization

• Scale

• Categories of behaviour

Various analysis and design methods incorporate some of these principles. Object-

orientation in software engineering can be simply characterized by two key features that

are glorified by encapsulation and inheritance.

PARSE supports an object-based approach to parallel system development, utilizing a

hierarchical decomposition and refinement design style. It can be used together with

recognized object-oriented analysis techniques [Ala90]. Originally it was developed to

support the production of robust, reusable parallel software. Current research has

focused on further exploiting the usage of its process objects for the development of

distributed software systems based on the “client-server behaviour” model and

producing CASE support in an industrial setting [RPJ+96] [LG96] [HG97].

The PARSE approach maintains two important properties that are encapsulation and

partial inheritance [Sad95]. It provides the designer with a high level abstraction of

system definition, which is unbiased by the system target architecture and programming

language. Because of this, its use in codesign has been proposed [LJC95].

35

PARSE provides high-level implementation-neutral abstractions for the specification

and supports hierarchical decomposition, encapsulation and component re-use. A

summary of the usage and operation of PARSE can be found in [GGJ95]. The initial

PARSE specification, can then be further refined ready for partitioning. The partitions

consist of objects designed for hardware synthesis, and objects destined for software

compilation. The process of translating PARSE into a range of software design

notations for software synthesis has been well understood [RSJ95] [RPJL+96] and in

this project the work has been done for translating the objects earmarked for hardware

implementation into VHDL equivalent components [CLJ96a]. In addition, the user can

simulate a process graph description in the early stage of system development only by

converting communication paths and path constructors into their VHDL counterparts

and providing interface information between the processes.

Table 3.1.
! T 1..... ... 1
S State | Behavioural j Concurrency j Program
! Transitions i Hierarchy i ! Constructs

r_ ""... ’ 1
Exceptions j Behavioural

I Completion
PARSE O • • • O •

• Feature fully supported, O Feature not supported

We can summarize the discussion above in the following five points:

1. From the viewpoint of key features supporting the development of embedded

systems [Gaj94], Table 3.1. [CLJ96b] illustrates the important characteristics

PARSE notations possess, which indicates PARSE can support most features needed

for the specification of codesign systems.

2. PARSE approach is object-based and PARSE notation is not hardware/software

prejudiced, which corresponds with the requirement of specifying a

hardware/software unbiased codesign system in object-oriented heterogeneous

specification means. In addition to PARSE notations, the fundamental principle

behind PARSE such as modularity, adaptability, reusability and maintainability is

also highly adaptive. It is appropriate to say that not only have PARSE notations

been employed, but also its strategies managing complexity.

3. PARSE process object notations help the designer to produce reusable modules by

encapsulation. It is necessary to be highly cautious about the claim of reusability

because there are two fundamentally different ideas of reusability. One is to make

use of modules from project to project and the other is reusable in the same project.

Although inheritance is partly responsible for re-use in the same project, it can

36

compromise this objective. The reason for this is that inheritance sometimes exposes

implementation details to an object’s clients [Gra94]. The strength of the PARSE

approach is, however, mainly from the encapsulation and abstraction compared with

its support in inheritance. This can benefit the reusability from project to project by

exploitation of the encapsulated module developed in the previous projects as the

off-the-shelf components.

4. PARSE is capable of abstraction of concurrency. Although it is a general feature for

HDLs to support the concurrency, its level is relatively low and the concurrency is

basically embodied in combinational circuits rather than the system itself. PARSE

offers a rich concurrency abstraction at the system level.

5. PARSE is a mature approach involving several years work at the collaborating

institutions. PARSE CASE tools are being developed, which could benefit codesign

projects. In addition, the codesign approach plus its supporting tools or development

environment based on PARSE methodology will not run into problems as copyright

of software tools and other legal issues.

3.3.2 PARSE Notations

Three representational formalisms, that is process graph notations, textual BSL, and a

schema of relational tables, support the representation of PARSE design. It is possible

to translate a PARSE design expressed in one formalism to an equivalent design

expressed in another [Gray95]. The proposed codesign methodology has employed

process graph notations as a high-level specification means. A hierarchical structure of

PARSE process graph notations is illustrated in Figure 3.1 and the PARSE process

graph notations are summarized in Figure 3.2 [GGJ95].

PARSE views a system as a collection of concurrent, hierarchically structured,

interconnected components known as process objects (Figure 3.2). The designer must

categorize each process object either as function server (ellipse icon), data server

(rectangle icon) or control process (round-angle icon).

Function server objects are passive and encapsulate some well-defined function or

behaviour. Data server objects are also passive and encapsulate important shared data

structures in a system. Control processes are active objects, which coordinate other

objects in a system in order to achieve the application's goal. Every process object

37

inherits some predefined behavioural properties from its general class. These process

objects might show internal concurrency and consequently can be hierarchically

decomposed into lower-level process objects. This classification supports the expression

of common design heuristics and abstractions, and enhances the amount of design detail

captured at each level. It permits the developer to express the system design in a manner

that is compatible with further refinement in both the hardware and software arenas.

paths constructors

synchronous asynchronous Non-deterministicconcurrent

broadcast Bi-directional deterministic

control
process

data

function

process
objects

external
interface
objects

process graph
entities

processing
entities

communication
entities

Figure 3.1 Classification of Process Graph Entities

P ro c e s s O b jec ts C om m unica tion P a th s P a th C o n s tru c to rs

data
server

external
interlace

synchronous

— o -
asynchronous

bi-directional
synchronous

>-E

non-deterministic

deterministic

Figure 3.2 PARSE Process Graph Notations

At the stage of logical, architecture-independent design, process objects may only

communicate by exchanging typed messages along communication paths; no directly

shared data space is permitted. This design approach enforces the encapsulation of

important and useful data and functionality in the system at hand. It further produces an

architecture-independent design that can be mapped onto specific message-passing or

shared memory machine architectures at a later stage in system development. Four

classes of communication paths are provided: synchronous, asynchronous, broadcast

and bi-directional synchronous, the latter modelling a coupled request-reply message

exchange.

38

PARSE provides path constructors, which allow the designer to represent different

modes of handling incoming messages in the situation where a process object possesses

multiple incoming communication paths. These modes include: concurrent input

handling (implying a further level of decomposition into lower parallel process objects),

non deterministic selection and deterministic (prioritized) selection, and the default case

in which the sequential ordering of message receipt is defined in the full internal

description of the process object.

In the original PARSE approach, in order to support a more detailed description of the

behaviour of a parallel system, the process graph entities are represented textually by a

Behavior Specification Language (BSL) [GGJ95] [GB94], However, since the BSL was

initially designed for the development of parallel software it does not take into account

the expression of various system constraints and hardware-related mechanics in

codesign system. For example, the operations such as binary bit “or” and “and”

operations and binary bit shift operation that are commonlly used in logic circuitry are

not included in BSL. The BSL is obviously unsuitable as a high level language for the

designer to describe a codesign system and the sequential behaviour of each primitive

(i.e. non-decomposable) process object. In particular, it is impossible to describe some

of the sequential behaviour in a primitive process object, which is destined for hardware

implementation. In our Co-PARSE project, a new language, namely Codesign

Behaviour Specification Language (Co-BSL) has been designed to serve the purpose of

codesign specification.

3.4 The Co-BSL Language

While this section is not intended as a textbook to introduce a new programming

language, it begins with an overview of the Co-BSL language. Major language features

such as program structure, data types, variables, operators, constructs, and

communication between processes, are all outlined. The emphasis is laid on the

comparison with original BSL language. Examples are given to illustrate the usage of

the language.

39

3.4.1 Overview of the Language

The Co-BSL is primarily designed as an alternative specification means for the

proposed object-based codesign approach. It complements the process graph notations

to capture the dynamic behaviour of primitive process objects, destined for software and

hardware components. Compared with the original BSL definition, the main features of

Co-BSL can be drawn as follows:

1. All Co-BSL elements are user accessible i.e. it does not separate the textual

portion from the user accessible ones as restricted in BSL [Bra94].

2. Its program portions are convertible to VHDL and C programs rather than the

Occam counterparts.

3. Its data type and expression are enhanced to include those especially for hardware

components.

4. A new communication channel, by the name of WIRE, is introduced to model the

behaviour peculiar to communications between hardware components.

5. A time indication can be created and attached to primitives, which facilitates the

cosynthesis of hardware/software with performance constraints.

6. Statements asserting system constraints particularly to hardware aspects are

enhanced.

7. Both procedures and functions are included.

8. Object-based features are preserved and those irrelevant to codesign are dropped.

9. Conventional delimiters are used to make the program more readable.

10. Other minor changes are made, which will be mentioned where appropriate.

The BSL explicitly separates the textual representation from the user accessible

elements {primitives). This artificial division was due to the initial intention to convert

the BSL program into a Occam program automatically by a compiler that was then

under development. Many of the structures in process graph notation however have

very few equivalence in the Occam. This leads to the introduction of the non-

automatically convertible part {the textual representation) and the automatically

convertible part {the user accessible elements) in BSL language. This separation is

conceptually awkward as a programming language and difficult for user to understand

the implementation details. The aforementioned restriction has been relaxed in Co-BSL,

although this does not mean that it is impossible for Co-BSL to be automated. Unlike

40

BSL, Co-BSL does not have the characteristic of user accessible and inaccessible parts,

which could otherwise introduce greater complexity in terms of understanding the

language itself.

It should be pointed out that like BSL, the Co-BSL adopts some of the important

principles in object-oriented programming languages such C++ and Java. Those object-

oriented facility provided in Co-BSL are: abstraction, encapsulation, message passing,

and scale. However, Co-BSL has its limitation, in which the polymorphism and

inheritance that are equally important issues in object-orientation are not supported.

As this research is to establish an experimental codesign approach with the consistent

support needed in codesign process, the automatic compilation of Co-BSL program into

VHDL, C and communication configuration is not the focus of this project. We instead

aim at furnishing Co-BSL with a syntactically verified grammar and conversion

semantics that is the topic of the next subsection. To make the context concise, the

syntax definition of Co-BSL in the bison [LMB92] is listed Appendix A for reference.

They have been thoroughly checked through GUN software [L096]: f le x and bison.

They are the equivalent Windows versions of LEX and YACC [Joh80] [Ben90]. Due to

the lack of space, the Co-BSL grammar checker in the form of C program (the output

from the bison) is not included in this thesis but is available on request.

From the codesign viewpoint, the most important element in Co-BSL is the primitive. In

the partitioning phase, the primitive is the basic unit to be dispatched to hardware and

software components. The primitives assigned to the hardware synthesis are converted

to the VHDL description whereas those destined for software implementations are

converted to the C program instead. The advantages of adopting primitives as the

smallest partitioning units will be discussed in Chapter 4. Other elements, particularly

those that are communication-related, are used to synthesize the interfaces between

hardware and software components. The communication channels are transformed into

a configuration in line with the target architecture with the layered bus target

architecture, which is built upon an asynchronous bus communication protocol and

other bus communication components we designed in this project. They are the main

topics in Chapter 5.

41

3.4.2 Co-BSL Data Types, Variables and Operators

data types comprise primary and composite types. A primary type is:

INT | REAL | BYTE | BOOLEAN | BIT | OCTAL | HEX | CHAR | TIME

A composite type is either ARRAY or RECORD.

Co-BSL is a strong-typed programming language. Obviously, some of primary types,

such as BIT, TIME, OCTAL and HEX, are essential for the user to describe hardware’s

data property. Besides, although the composite type RECORD is not object-oriented, it

needs to be included to represent tokens (discussed in Section5.5.3), which is required

by the token passing protocol [Sch92] [Rao92]. The protocol will be discussed later

when the conversion of Co-BSL program is dealt with.

variables must be declared before use. An example is as follows:

VARIABLE

num_operation: INT;

delay_operation: TIME;

state_operation: ARRAY [15] BOOLEAN;

operators are classified as:

relational operators: < | =< | > | => | = | <>

shift operators: SLL | SRL | SLA | SRA | ROL | ROR

arithmetic operators: + | - 1 * | / 1 REM | MOD

arithmetic (unary) operators: + | -

logical (binary) operators: AND | OR | NAND | NOR | XOR

logical (unary) operators: NOT

concatenation operators: &

Binary and shift operators are essential to specify the hardware’s behaviour and

therefore included. Following the convention in both C and VHDL, logical operators

are applicable to both BIT and BOOLEAN data types.

3.4.3 Co-BSL Control Constructs

Like other ordinary procedural languages, Co-BSL is equipped with a full range of

constructs of conditionals and loops, for example

42

condition

IF THEN or IF THEN ELSE or CASE

loop

WHILE and FOR repetitions

3.4.4 Co-BSL Program Structure

An instance of Co-BSL program is illustrated as follows (not all elements have to be

presented though).

CODESIGN codesign_name

constants

paths

primitives

classes

externals

executions

connections

END_CODESIGN

The language-reserved words, such as CODESIGN and END_CODESIGN above, are

written in uppercase totally. Comments start in two dashes —, which continues until the

end of the line. Co-BSL allows user to use all elements listed above in a Co-BSL

program though particular description power for codesign system is emphasized within

the primitives. Other language mechanics are described below.

codesign_name is an user-defined name representing a codesign system at the top-

level.

constants are optional and user-defined as global parameters. An example is:

CONSTANT

time-of-duration = 100;

paths are optional and used to define the communication channels with the type and

protocol.

43

A communication channel can be defined below:

path_name path_type message_type

The path_name is only an identifier representing this path. The path_type is one of the

following: SYNC | ASYN | BROD | BIDI | WIRE

message_type can be any primary or composite data type, which defines the data

passing through the communication path. The following example opens three

communication channels: in-vector (synchronous), out-data (asynchronous), and status

(wire):

PATH

in-vector SYNC ARRAY [15] INT;

out-data ASYN BYTE;

status WIRE BIT;

In addition to those new data types and control structures, Co-BSL extends BSL with a

new path type, WIRE path. Introducing this type of path is important because it supports

modelling behaviours commonly occurring in communications between hardware

components. This is inspired by the object class signal in VHDL, which is a descriptive

abstraction of a hardware wire. The WIRE path serves both to hold changing data

values and connect components. A WIRE path is a communication path connecting one

component to another. Along this path, the data flows. Connected to the WIRE path,

neither the sender blocks itself when the receiver is not ready nor the receiver waits

when the new data has not yet arrived. Also, the sent message is not preserved in a

queue (length > 1). Furthermore, a WIRE path can be connected to more than two

components and there can be more than two potential senders of the path, in which

situation a resolution of controversially simultaneous messages sent to the same channel

by different path senders has to be involved. This communication semantics is

obviously different from previous ones. Accordingly the process graph notations of

PARSE have to be extended by adding this new communication path.

Figure 3.3 illustrates some examples of WIRE path. In (a), the control process is the

sender of the path and the function server is the sole receiver. In (b), the left function

server is both the sender and receiver while the right one is only a sender. The example

(d) seems similar as the broadcast communication channel but there is no buffer for any

of the function servers. The necessity of this type of path is not only in relation to

44

modelling the behaviour of hardware component but also to many system-modelling

problems. It will be demonstrated in the following examples. The first one is the Radio

Data System [MW90] [RDS98], the data transmitting component periodically relays

information in frames. It does not care whether the receiver is ready and also the data

previously sent out is not reserved in a queue for listener’s retrieval. Obviously, this

kind of connection between the transmitter and the receiver is WIRE type.

Control
P rocess

Function Function
server

Function

Control
P rocess

Function Function

Data
server

Function FunctionFunction

ISDN
Network
(PSDN)

area 1 I a re a 2

Figure 3.3 Examples of WIRE Path Figure 3.4 Scenario of Handover

The second example is extracted from the GSM mobile communication system [Red95]

[MP92]. Modelling the system behaviour concerning the handover procedure of a

mobile unit has to employ the path type WIRE. The general scenario of the handover is

depicted in Figure 3.4. When a Mobile Station (MS) goes across the boundary between

area 1 and area 2, the handover occurs. The MS has continuously to monitor the

neighboring (area 1 and 2 in this case) cell’s perceived power levels and receiving

qualities. The MS sends the measurement report back to the currently serving base

station to facilitate the decision on when the handover constraints and thresholds are

met. The connections between MS and BTSs (Base Transceiver Stations) are WIRE

type as the MS only monitors the signal’s power level and the quality from BTSs.

A third example concerns a computer CPU system. The clock-generating component

sends clock signals to various other system components. The connection between the

clock generator and other components is again WIRE type.

Because of the similarities between the wire path of Co-BSL and the signal in VHDL,

the Co-BSL’s wire path are defined in similar syntax and semantics as the signal in

VHDL. For example, the wire path assignment is in the mnemonic “= = >” or “< = =”, a

45

process can suspend on a wire path by executing wait statement, and the assignment can

be dealyed by the explicite form “AFTER time-expression”. Furthermore, Co-BSL is

assumed to contain some of wire-path related attributes predefined in the laguage, such

as ‘Active, ‘Event, ‘Last_Value, ‘Last_Event, and ‘Last_Active, which provide

information about the wire path.

externals are optional. They are used to declare all external objects in a codesign which

have the same properties as primitive objects, but only their interfaces are visible.

executions define all the instances of concurrently active processes that could be

primitive sequential processes, external objects, or instantiated classes.

connections instantiate the connections between processes.

prim itives are processes that are optional and defined for a collection of primitives.

They are declared globally and used to describe the sequential behaviour in the non-

decomposable processes. A single primitive looks like follows:

PROCESS process_name OF class_type time_indication

inports

outports

constructors

variables

function_declaration

procedure_declaration

main_sequence

ENDJPROCESS

In BSL, only one timed communication protocol is provided for specifying the time

limit to wait for a message from the other end of the communication link. In codesign,

however, the maximum time latency in executing a sequential primitive process may

need to be specified, which will be used as a system performance constraint during

hardware/software cosynthesis stage. In Co-BSL we have introduced the

46

time Judication. It can be used to verify whether a hardware/software implementation

meets the time constraint later in the partitioning and performance evaluation phases.

The main_sequence above is a group of statement parenthesized with BEGIN and END.

The statements are delimited by A single statement could be any one of the

following:

/* empty */

| WAIT | WAIT ON NAME | WAIT UNTIL expression

| WAIT FOR expression

| BREAK | CONTINUE | RETURN | SKIP | STOP

| assignment | signal_assignment

| condition_statement | case_statement

| loop | proc_call | io_operation

Note that the wait statements above are important. It is used for activation or suspension

of an active sequential process. This is a distinctive feature, compared with the BSL, in

which an active process can only suspend at a communicating rendezvous.

Example 3.1 - SR Flip-Flop

The behaviour of a SR flip-flop is described in a Co-BSL primitive (Figure 3.5).

PROCESS SRFF OF FUNCTION_SERVER
INPORTS

S WIRE BIT;
R WIRE BIT;

OUTPORTS
Q WIRE BIT;
Qbar WIRE BIT;

VARIABLES
Last_State: BIT := ‘O’;

BEGIN
IF S = ‘0’ AND R = ‘0’ THEN

Last_State := Last_State;
ELSE.IF

S = ‘0’ AND R = *1’ THEN
Last_Sate := ‘O’;

ELSE
Last_State := ‘1’;

END_IF;
Q <= = Last_State AFTER 2 ns;
WAIT ONR, S;

END
END_PROCES S

Figure 3.5 Behaviour of a SR Flip Flop

classes are optional and based on the three general system supplied classes. It represents

a collection of classes, which could be instantiated {reused) in the same project or other

projects. A single class looks like as below:

47

D_CLASS class_name OF class_type

inports

outports

constructors

paths

executions

connections

portconncets

END_CLASS

It includes a number of inports/outports, which describe the input and output

connections for the class. Constructors are the property of user defined classes and they

can be applied to any user-defined class of process objects. A process object may have

many constructors attached to it and each of them must be labeled with an identifier.

The paths section defines internal paths between processes. The executions and

connections are used to instantiate the non-decomposable processes and their

connections. The final section, portconncets, defines connections between internal

processes and the formal parameters.

Example 3.2 - GSM Mobile Communication System

This example presents the usage of Co-BSL for specifying a codesign system,

particularly focused on the Co-BSL program structure. Detailed sequential behaviour

inside primitive is not included because they are not essential here.

BSC

OMCGMSC
etc.

BTS1 BTS2

\ /
V \ /

\ /

Station

Figure 3.6 Abstraction of Handover

Figure 3.6 illustrates the scenario for handover process in the GSM mobile

communication system. Assume that the handover happens within the administrating

48

area of a BSC and it handles the operation without consulting the GMSC. This BSC

then becomes the control process. OMC and GMSC plus other entities are thus external

objects. The mobile station has two communication channels linked to the BSC, one for

ordinary traffic load and the other for monitoring purpose in a special channel. The

mobile station can be further refined. The abstraction of this is shown in process graphs

(Figure 3.6 & 3.7) and the Co-BSL program is shown in Appendix C to keep the

context concise.

/ \

- H H Monitor
M onito r_da ta I

Transceiver

'A\/

Figure 3.7 The Refined Mobile Station

3.5 Conversions from Co-BSL to VHDL and C

Our previous work has established the conversion rules from BSL primitives and

communication channels to VHDL processes and signals [LJC95]. The implementation

details and the relevant VHDL packages specially developed in support of the template

conversion have been reported in [CLJ96a]. This section is, however, focused on the

conversion from Co-BSL design to VHDL/C programs, emphasizing the object-

orientation and component reuse. The conversion guidelines described below are aimed

at a broader scale. It allows all Co-BSL components to be converted to their VHDL

counterparts and preserves object-based features within the Co-BSL design. These

features are as follows:

• abstraction

• encapsulation

• communication with messages

• scale

• reuse

Referred to Figure 3.8, the conversion from Co-BSL to VHDL and C has a threefold

purpose. First of all, the Co-BSL design needs to be converted into an executable form

to check the system’s correctness in terms of its functionality. This allows the dynamic

49

behaviour of the interacting components to be verified at an early stage of the design

process. Second, this execution can provide the essential profiling information to

facilitate the hardware/software partitioning process. Third, after partitioning phase,

primitives in a Co-BSL design are dispatched to hardware and software components

that will eventually be allocated to a system target architecture, i.e. cosynthesis as

named in some literature. Conversions bridge the gap between the system-level

specification and the low-level implementation.

Process graph &
Co-BSL (VHDL programsystem

specification.

Functional
verification

hardw are/software
partitioning

VHDL
description

communication
configuration

C procedures or
functions

i perfom ance evaluation
, system implementation

Figure 3.8 Conversion from Co-BSL to VHDL and C

The reason for converting the Co-BSL program to VHDL program rather than C

program as an executable intermediate language for functional verification in this

project is as follows. The conversion from a Co-BSL presentation to its equivalent C

description can only take place at sequential process level, i.e. primitive process level in

Co-BSL. However, a Co-BSL design can be readily converted into its VHDL

counterpart at any level. VHDL models a discrete system as a collection of processes

concurrently executing and passing messages through signals [LSU89], so does the

modelling in Co-BSL. In addition, a VHDL process can be viewed as a portion of

procedural language program such as a function in C [PB96], which indicates that a

portion of C program can been viewed as a portion of VHDL but not the vice versa. The

following content, therefore, lays stress on the conversion from Co-BSL presentation to

its VHDL counterpart. The conversion into C representation will be mentioned

wherever appropriate. The discussion on cosynthesis of the interface between

hardware/software components will be delayed until Chapter 5, where it is described in

conjunction with the virtual prototyping technique.

50

The conversion of a Co-BSL design to their VHDL counterparts is established by

mapping the Co-BSL design constructs to the corresponding VHDL descriptions. A Co-

BSL design models a concurrent system as a set of communicating sequential processes

and a VHDL design can also be modeled as a set of communicating sequential

processes, an essential feature for the succinct description of both the macro-parallelism

and the micro-parallelism present in digital hardware [JDV92]. This property indicates

that the conversion can maintain the original design structure.

A Co-BSL program can be represented as follows:

CODESIGN codesign_name

constants

paths

primitives

classes

externals

executions

connections

END_CODESIGN

The conversion is tackled in accordance with the main elements in the Co-BSL program

shown above.

3.5.1 Co-BSL Program

A Co-BSL program can be converted into a VHDL entity without port declaration and

the architecture of the entity is created with the component instantiations in accordance

with the executions in the Co-BSL program, which will be explained where

appropriate.

3.5.2 Constants

Constants can be declared in a VHDL package ready to be used globally.

3.5.3 Paths

The paths are in fact internal signals declared in the architecture body of the entity,

which is the VHDL counterpart of the Co-BSL program.

51

3.5.4 Primitives

The primitives are a collection of Co-BSL primitive and only the conversion for single

primitive needs to be identified. A single primitive can be converted into a VHDL

design entity, consisting of entity declaration and architecture body. The information in

its inports/outports is transferred into the entity port and others into the architecture

body. In particular, the sequential behavioural description in Co-BSL is readily mapped

to a VHDL process. Although the VHDL description does not provide the same explicit

syntactical difference as exist in Co-BSL primitives (control process, junction server,

and data server), the contexts of the VHDL program clarify the semantic difference.

These VHDL entities are stored in a library for reuse (instantiation). The similar

principle can be applied to the conversion into C program but a Co-BSL primitive is

directly converted into a C procedure or function.

The collection of Co-BSL control flow constructs is in fact a subset of VHDL’s, which

control the execution flow in a primitive. The Co-BSL control flow constructs can

therefore be mapped directly to equivalent control flow constructs in VHDL. Because

the set of Co-BSL control flow constructs is designed as an intersection of both VHDL

and C control flow constructs, the Co-BSL control flow constructs can also find their

equivalence of C control flow constructs. The correspondence is so straightforward that

they are not discussed further here. Contrary to control flow constructs, the

implementation of the communication between primitives is a complex task, which is

detailed as below.

type Handshake is (lnactive_sink, Active_sink, lnactive_source, Active_source);
type Token is

record
Status: Handshake;
Color: Color_type;

end record;

Figure 3.9 Token Type Definition

3.5.5 Communication Channels

A handshaking protocol [Sch92][Rao90] has been adopted for synchronization and

manipulation of Co-BSL communication channels. The protocol named “Token

Passing” plays an important role in it. Fundamental to this protocol is the definition of

an enumeration type Handshake, a record type Token and its resolution function which

52

is called Bus Resolution Function (BRF), because of its simulation of bus functionality

in a digital system. Figure 3.9 shows the VHDL type definition for Handshake and

Token. Color_type is a user-defined record type containing any signal types required by

the particular model. To keep the content concise, the Bus Resolution Function has been

put into Appendix B.

The function of a handshake protocol is described as follows.

1. Initially, the output assigns inactive_source to the status field of the signal while the

input assigns inactive_sink to the status of the signal. The bus resolution function

makes the value of the signal the same as that coming from the input. Both the input

and the output can read this resolved value which specifies, by convention that the

output may now place a new token on the signal.

2. When the output has a token to be placed on the signal, the output assigns

active_source to the status field of the signal. The input is still assigning

inactive_sink to the status field of the signal. The bus resolution function reconciles

these differing assignments by placing a copy of the token from the output onto the

signal.

3. The input can now see an active_source status field value on the signal. When the

input is able, it copies this token and subsequently changes its assignment to the

status field of the signal to active_sink. The assignment from the output remains

unchanged, active_source. The bus resolution function now places a copy of the

token from the input onto the signal.

4. The input can now see an active_source status field value on the signal. When the

input is able, it copies this token and subsequently changes its assignment to the

status field of the signal to active_sink. The assignment from the output remains

unchanged, active_source. The bus resolution function now places a copy of the

token from the input onto the signal.

5. When the output sees the active_sink status field value on the signal, it knows that

the token it placed on the signal has been accepted by the input. The output then

assigns inactive_source to the status field of the signal. The assignment from the

input remains active_sink. The bus resolution function now places the token from the

output onto the signal.

6. The input sees an inactive_source status field value on the signal and prepares to

receive a new token by changing its assignment to the status field of the signal to

53

inactive_sink. The output’s assignment to the status field of the signal remains

inactive_source. The resolved value placed on the signal is the token from the input.

This handshaking process now loops back to step one.

This protocol embodies the communication style of a synchronous bus in a digital

system, which is widely used in simulation for computer communication via various

types of synchronous buses. It is synchronized between sender and receiver because the

sender has to be blocked until the receiver issues handshake signal “active_sink”, which

informs the sender that the receiver is ready to read the message from the sender. This

protocol can be used in the template conversion of synchronized communication path

(synchronous and bi-directional) in Co-BSL whereas new mechanisms have to be

sought to support the other two asynchronous communication paths (asynchronous and

broadcast). Based on this token passing protocol, the conversions of Co-BSL

communication paths to VHDL templates are described as follows.

3.5.5.1 Synchronous Communication

The synchronous communication template invokes two procedures. The sender and

receiver are situated in two concurrently active processes that are synchronized upon

tokens passing between them. Procedure syn_transmit(signal T: inout Token; variable

ColorT: Token; delay: time; wait_delay: time) (Appendix B) is invoked by the sender

process and Procedure syn_receive(signal T: inout Token; variable ColorT: out Token;

delay: time; wait_delay: time) (Appendix B) by the receiver process.

3.5.5.2 Synchronous Bi-directional Communication

A bi-directional communication template models the client/server interaction between

sender and receiver. Both the client and server are blocked at the path before they finish

communication. Therefore, a bi-directional communication path can be replaced by two

synchronous communication paths. The client is designated as the sender of the first

synchronous communication path and the receiver of the second path. In opposition, the

server is the receiver of the first path and the sender of the second path. Any of the

message types such as request, accept, or reply can be attached to the tokens traveling

along these two paths.

54

3.5.5.3 Asynchronous Communication

A VHDL process running concurrently with the sender and receiver processes has to be

created as a communication buffer (illustrated in Figure 3.10). This template maintains

a FIFO queue. The sender’s priority is higher than the receiver’s and the receiver has to

be blocked when the queue is empty, but the sender is never blocked because the queue

is made up by dynamic memory allocation which allows for a literally infinite queue.

asynchronous buffer
procedure

sen d e r’s program receiver’s program

syn_receive(
syn_receive()

Figure 3.10 Template for Asynchronous Communication

Procedure asy n _ b u ffer(s ig n a l T_in: inout Token, signal T_out: inout Token, delay:

time) is shown in Appendix B. Procedures in_que, number_of_que and out_que can be

found in the package Queue_definition which has been developed separately. Their

functions are:

• in_que(que_point, temp), token temp is put into the queue.

• out_que(que_point, ColorT), the first token in the queue is pulled out into ColorT.

• number_of_que(que_point, tmp), the total number of elements in the queue is put

into tmp.

Buffer 1 Buffer 2 Buffer n

Receiver 1 Receiver 2 Receiver n

T_out_1

sender
T_in

T_out_2 T_out_ n

Figure 3.11 Template for Broadcasting Communication

3.5.5.4 Broadcast Communication

Broadcast communication is a “non-blocking send” and a “blocking receive operation”.

The sender broadcasts messages in a channel without considering if the receivers are

ready to receive them and the receiver will be blocked if there is no message in the

channel. The receivers listen to the channel and receive the messages in the same order

in which the sender sent them out. Because receivers can receive messages at different

times, different buffers for receivers are constructed to keep the messages in the queues

55

in accordance with the different receiving speed. The template for this scenario is

shown in Figure 3.11, in which two procedures are invoked:

• Procedure bro_sepera_buf (signal T_in: inout Token, signal T_out: inout Token,

que_point: inout queptr; delay: time; wait_delay: time) (Appendix B)

• Procedure bro_syn (signal T: inout Token; wait_delay: time) (Appendix B)

N buffer processes are managed in the template, one for each receiver. Technically, a

special “Receiver” has been attached to T_in to participate in the hand-shaking process,

representing all buffer processes. Without it the sender would have to finish hand

shaking procedure in turn with every buffer for the same message broadcast in T_in.

These buffer processes now all listen to the signal T_in and choose the token with the

status of “active_source” sent out by the sender. In this cycle of handshaking it is

assumed that the real message is attached to the token.

3.5.5.5 Wire Communication

Since wire communication embodies the communication in signal in VHDL, its

conversion to VHDL template is consequentially straightforward and the handshake

protocol is now no longer needed for synchronization between sender and receiver. The

wire path can directly be declared as a signal with the Color_type as a user-defined

record type in VHDL. The path sender is a source for the signal and connected to an out

port while the receiver is connected to an in port. If both sending and receiving are

required in a Co-BSL primitive, an inout port can be declared in its counterpart VHDL

process. Finally, in case of sending messages simultaneously to the same

communication path by different path source, a resolution function has to be provided

by the designer in order to resolve the conflicting sources, which is a common practice

in VHDL.

PAR_VHDL_conversion

queue_definition token_definition

Figure 3.12 Relationship between Packages

In order to facilitate the conversion, we have developed four VHDL packages,

integrated into user’s VHDL simulation programs. These packages play an important

56

role in our methodology. As the reusable VHDL components, they help check the

correctness of the system specification and provide a test platform. Because of them,

dealing with communication channels in Co-BSL program has become so easier that the

user only needs to declare a signal in VHDL and invokes the relevant procedures from

the package PAR_VHDL_conversion. This package is designed as the only interface

between application VHDL programs and the four packages (see Figure 3.12). The

package queue ̂ definition provides the operations commonly used in asynchronous

communication path and the packages token_passing and tokenjdefinition provide both

token’s definitions and manipulations.

These packages have been tested by a series of experiments on a test bench [CLJ96a].

Because of the space limit, the VHDL source files of the packages are not listed, but it

is available on request. Although an executable recursive algorithm for translating a Co-

BSL description into its VHDL counterpart is possible as described in [Gaj94], it is not

intended to be the focus of this research.

Finally, as shown in [LJC95], Co-BSL path constructors can be readily mapped to

VHDL templates. In addition, the non-deterministic path constructor can also be

implemented, supported by a random number generator [Bak93] to handle the

communication on more than one path at the same time and treat them in random order.

3.5.6 C lasses

Converting Co-BSL classes to its VHDL equivalence provides codesign with the

scalebility and reusability. Note that the class in Co-BSL is not exactly the same jargon

as the abstract data type, class, as in C++ because the data inheritance is not emphasized

in Co-BSL that is focused on encapsulation, message passing, scalebility, and reuse. A

Co-BSL class is a collection of primitives (or previously defined classes) grouped

together, connected in paths so as to be reused as a scaleable collective component. Its

assembly mechanism in primitives is rather similar to the assembling of hardware

structure embodied in VHDL, which points out that VHDL contains all required

elements to support this conversion.

57

In reality, only rules guiding the conversion from a single Co-BSL class to its VHDL

counterpart need to be established. A Co-BSL class can straightforwardly be mapped to

a VHDL entity and put into design library for reuse. Its architecture body comprises the

component instantiation statements, which reuse the components converted from those

primitives and stored in the library. The inports and outports are written in the port of

the VHDL entity. Besides, path constructors can be implemented in the individual

instances of concurrently active processes and the paths are declared as internal signals

in the component’s architecture body. As path connections and portconnects have been

integrated into individual executions, they do not manifest themselves in VHDL

program explicitly. Since the primitives, external objects, or instances of other class

object have already been converted and stored in a library as VHDL component,

executions in the class are implemented by using VHDL component instantiation

statements.

3.5.7 Externals

Externals are a group of external objects that have the same properties as primitives but

only their interfaces are visible. A Co-BSL external object corresponds to a VHDL

component declaration and its instantiation can be implemented in component

instantiation statement in VHDL

3.5.8 Executions & Connections

They were dealt with previously in the conversion of classes.

3.5.9 An Example of Conversion of Co-BSL into VHDL

In this example, the Co-BSL program created in example 3.2 has been converted into a

VHDL skeleton program to demonstrate the viability of the guidelines set up in this

chapter. Due to the space limit in the content, we have put both its Co-BSL program and

the converted VHDL source file in Appendix C for comparison. In addition to

substantial comment in both programs, further explanation is needed.

In the VHDL program, five Co-BSL primitives have been converted to five VHDL

entities: BSC, BTS1, BTS2, Transceiver, and Monitor. They are compiled and installed

in the VHDL library WORK, in which there are other VHDL components: component

ExtjGM SC and component ExtjOM C that have been converted from the external

58

objects GMSC and OMC in its Co-BSL program. In addition, the Co-BSL class:

DjCLASS Mobile_Station has been converted to the VHDL entity definition: entity

CLASS_Mobile_Station which instantiated the components: Transceiver and Monitor.

The Co-BSL program: CODESIGN Handover has itself been converted to the VHDL

entity: entity CLASS_Mobile_Station.

The communication paths are all converted into VHDL signals as indicated in the

previous sections. Particularly, the path Monitor_data in the Co-BSL class definition

has been converted to the internal signal Monitor_data_wire in the entity

CLASS_MOBILE_Station. Other communication paths in the Co-BSL program are

Notification, Maintenance, Control_l, Control_2, Traffic _ f Traffic_2, Monitor_1, and

Monitor_2. They are all converted into corresponding VHDL signals in the entity

Handover.

3.6 Functional Verification in VHDL Simulation

In the proposed Co-PARSE methodology, the correctness of system function and the

satisfaction of performance constraints are verified in two stages:

1. System functional verification in VHDL simulations supported by the token-passing

protocol

2. System performance evaluation in VHDL co-simulations supported by virtual

prototyping technique (detailed in Chapter 5)

The VHDL simulation in this chapter has twofold advantages: functional debug and

system profiling. This section is only concerned with the system functional verification.

The system profiling will be discussed in Chapter 4 and the system performance

evaluation will be dealt with in Chapter 5.

The functional debug in the system development cycle can find design flaws earlier so

as to avoid potentially huge cost of a late patching-up that has been a well known

principle in Software Engineering [Pre94]. The functional verification adopted in this

project relies on the VHDL simulations supported by token-passing protocol. This

method requires a Co-BSL design converted into a VHDL program and simulated in a

VHDL simulation environment. The token-passing protocol is mainly used for

59

synchronization and communication between active processes. It has sound theoretical

base and successfully been used in a number of applications [SJA93] [Sch92] [KM+97].

In addition to examples shown in this thesis (Arithmetic Coding System in Chapter 4

and Radio Data Computing System in Chapter 6), two extra case studies (GSM system

and RDS system) have already been undertaken and published in [CLJ97] and

[CLJ98b]. The VHDL packages and the conversion rules established in this chapter

have been tested by these case studies in order to validate our methodology at the stage

1 and 2 as shown in Figure 2.6.

A complete example with both functional verification and system profiling will be

given in the next chapter. It is therefore not our intention here to examine this issue

further.

60

Chapter 4

Design Space Exploration
The Design Space Exploration is a synonym of Hardware/Software Partitioning in the

codesign society. Because of its complex nature and the lack of systematic investigation

into this field, we have conducted an extensive survey of current research into this area.

The original result from the survey has been published in [CLJ98a].

In this chapter, the background of design space exploration is first given, followed by a

review of state of the art in this research field. The review is established on our previous

investigation [CLJ98a]. Next, the profiling technique together with the system

functional verification in VHDL simulations is detailed. The benefit of introducing

object-orientation in this field is highlighted. Finally, possible improvements to this

technique are suggested.

4.1 Background

As mentioned in the introductory chapter, in comparison with the traditional design

path, the codesign approach maintains the flexibility of exploring alternatives in the

design space and therefore results in the best solutions to an application domain. This

design space exploration is also known as Hardware/Software Partitioning in the

codesign school, where a codesigner or a tool assigns system components

(functionalities) to hardware or software implementations. In general, the partitioning

problem consists of two different types: homogeneous and heterogeneous. The

homogeneous partitioning is solely concerned with dividing a pure software or

hardware system into its components. In the case of pure hardware system, the major

objective of partitioning is to satisfy various system constraints such as power

consumption and circuitry area, whereas the objective of partitioning a software system

is typically to increase the component utilization, speedup the system execution, and

reduce the overall communication overhead. Although the homogeneous partitioning

problem is still an open research topic, it is fairly well established [VG95][Hua85]. The

partitioning problem in codesign is a heterogeneous one. Therefore, in this chapter, we

will concentrate on the heterogeneous partitioning problem.

61

A partitioning technique has to be associated with some kind of attributes with which

one can decide the goodness of a specific partitioning scheme. These attributes are also

called metrics in other literature [GVNG94], which could build on monetary cost,

execution time, power consumption, circuitry area, memory size, testability, reliability,

reusability, and so forth. Individual technique only needs to coordinate part of the issues

aforementioned. At present, the metrics overwhelmingly adopted in other codesign

methodologies are execution time {performance) and monetary cost {cost) although

there are exceptionable cases such as [JE+94]. We too focus on these two metrics.

The difficulties with heterogeneous partitioning lie in the fact that there are inherent

differences in the model of computation used for implementation of hardware and

software models, and the two computations proceed at very different rates. Furthermore,

the different execution rates cause variations in the communication rate between

hardware and software components so as to entail a higher communication overhead

due to the necessary handshake and buffering mechanisms [Kum94]. Another

fundamental difficulty is that the accurate evaluation of the goodness of a partitioning is

utterly based on the attributes that are closely related to the implementation details,

whereas there is no implementation at all during partitioning phase. A less accurate

technique is therefore created, which is named the estimation. The estimation technique

enables a codesigner to select the best solutions by weighing the attributes resulted from

“rough implementations”, which is featured as the tolerance of inaccuracy and the high

fidelity of the relative goodness of any two partitionings under estimation.

It is obviously inadequate to divide a codesign system solely based on estimation and

approximation since there are several numbers of factors that could affect the

calculation of attribute. First, the optimization of object code by compiler and the

utilization of processor pipeline make the estimation of software timing extremely

difficult. Second, the system-level synthesis for hardware is hard to predict in terms of

execution time and resource allocation owing to the variable efficiencies of scheduling

and allocation algorithms. Finally, the hardware/software communication overhead

depends on its executing mechanism, which could result in the deviation of estimated

timing up to hundreds of clock cycles. The partitioning process is therefore destined to

62

be iterative and a preferred partitioning scheme may have to be evaluated after system

implementation.

A comprehensive configuration of partitioning system has been drawn in Figure 4.1

[GVNG94]. In this system, the input is first transformed into an internal model that is

functionally equivalent. Partitioning algorithms are then applied to this model, which

cooperates with estimator and objective function. The design feedback is used to

evaluate the impacts on the implemented codesign system from a specific partitioning

scheme.

user
interface

input

model > output
partitioning

algorithms estimators

J d e s ig n
feedbackobjective

function

•input

user
interface

model
partitioning

process

estimators

> output

J design
feedback

Figure 4.1 Typical Configuration Figure 4.2 The Simplified Configuration

While some of the codesign methodologies abide strictly by this configuration, there are

a number of simplified heterogeneous versions of this, in which sophisticate algorithms

and objective functions are not pursued and instead the partitioning process relies

highly on design feedback and iterative operation. This simplified configuration has

been illustrated in Figure 4.2, where only an estimator is retained to facilitate the

decision-making and the process is destined to repeat until the design feedback satisfies

partitioning objectives.

4.2 Review of Partitioning Techniques

A partitioning technique can be characterized in the following essential issues:

• Input to partitioning

• Partitioning granularity

• Performance estimation

• Performance evaluation

• Target architecture

The input to the partitioning reflects the level at which a partitioning can be carried out.

If, for example, a partitioning input is written in VHDL program that could have been

63

written at three different levels: behaviour, structure, or gate levels, then the partitioning

can correspondingly be done at three different abstraction levels. The partitioning

granularity is a measure of the size of each partitioned component [AG97]. The

partitioning input and granularity are related to each other. For example, the input in a

higher abstraction level can only support the partitioning with coarse-granularity. The

performance estimation is used to predict the performance over individual partitioning

scheme and on the other hand the performance evaluation examines performance by

consuming the design feedback from a specific implementation. Finally, the target

architecture significantly affects the interactions between hardware and software

components, thus the performance estimation and evaluation.

4.2.1 Partitioning Input and Granularity

The partitioning input can be expressed in either program or graphic presentation. The

examples listed below have been adopted in the published codesign methodologies:

• C(C++)

• SpecCharts, VHDL or HardwareC

• Occam II

• Signal Flow Graph

• Statemate™ and SDL

• Internal Graphic Presentations

The partitioning input is related to both system abstraction power and partitioning

granularity. The system abstraction needs to support partitioning process at a flexible

abstraction level. Though hardware/software partitioning can be performed at various

abstraction levels, it is mostly performed at the behavioural (functional) level.

Apparently, all of the partitioning input afore-listed supports behavioural level

abstraction thus the partitioning at this level. For a given input, there is only one

reasonable partitioning granularity. For example, the input in task-level dataflow graph

can only be partitioned into the level composed of tasks (<coarse-granularity), while the

input in arithmetic-level dataflow graph can be partitioned into the level composed of

arithmetic-operations (fine-granularity).

The partitioning granularity varies from task level to statement block level. They can be

roughly divided into two categories: coarse-granularity (task, function, and process

64

level) and fme-granularity (statement block level). The partitioning with coarse-

granularity is a common practice in the manual partitioning operation. It presumably

produces a larger chunk of functionality enclosed in a partition and less communication

overhead across the components. In contrast, the partitioning with fine-granularity can

usually result in better optimization but often creates too many components and

expensive communication costs. A compromise, therefore, has to be made against these

merits. As a trial, an experimental work has been reported on dynamically determined

granularity for different applications [HE97].

As outlined in Chapter 3, previous research addressed the system specification problem

and provided the specification means in an object-oriented fashion but there has been a

clear lack of strategy to create an object-oriented (or -based) codesign methodology

with consistent support of the object-orientation in the later codesign phases. Here, we

would like to argue that from the object-oriented point of view the partitioning input

and granularity should be based rather upon objects than upon statement blocks because

the benefits from object-orientation obviously outweigh the benefit of optimization

resulted from the fine-granular partitioning. The reasons behind that argument can be

given as follows:

• The partitions (objects or object-based entities) are well designed and assembled

largely from reusable modules, leading to higher productivity.

• The message-passing paradigm allows direct mapping of the communication path in

the specification into the communication interface in the system target architecture.

• Encapsulated partitions facilitate subsequent object refinement in different design

and scale up better from small systems to large systems.

• There is a significant reduction in the number of objects to be partitioned, which

makes partitioning algorithms work better and the designers operate easier.

4.2.2 Performance Estimation

The performance estimation supported in the published partitioning techniques can be

typified as algorithm, experience, and profiling. In other literature, these terms are

remarked as deterministic, statistical, and profiling. The deterministic (<algorithm)

approach requires all data dependencies removed and all costs of components known. It

can lead to a very good partitioning scheme, but fails while those elements are

65

unavailable. The statistical {experience) approach is based on analysis of similar system

and certain design parameters. The profiling approach is straightforward, which

generally yields better results because the partitioning can be determined even when

strongly data-dependency exists.

The deterministic approach keeps intervention from codesigner to a minimum. It leads,

therefore, to an automated partitioning process, at which the partitioning researches

have been aimed. Two representative techniques can be found in [EH92] [GM93]. They

both decompose the input into statement blocks and then transform them into internal

graphic representations that describe the data dependencies and are used to estimate the

system performance and the hardware cost. While they provide better optimizations for

the partitioning problem and offer the promise of automation of the partitioning process,

two major drawbacks with this technique should not be underestimated:

• Since the input has been decomposed into statement blocks during partitioning

phase, the object structure has profoundly been broken apart and the object-

orientation is no longer preserved in the design and implementation phases.

• Both techniques can only be applied to relatively small scale problems and the target

architecture assumed is simplified into one processor, one hardware component, and

single system bus, which neglects the system target architecture in terms of its

impacts on system performance.

Another deterministic technique is proposed by [JE+94]. In it, a partitioning problem is

formulated as finding a subset of the program regions suitable for hardware

implementation and able to gain the greatest system speedup, on condition that they can

be fixed into the hardware limit in terms of logic gates. Although it creates a

sophisticated algorithm for minimizing the memory interface traffic, the objective of the

partitioning is restricted to rather specific problem domain and this technique, therefore,

has its limitations from the application’s viewpoint. In addition, it also suffers from the

same drawbacks explained earlier.

An improved deterministic technique is seen in [VG92] and [GVNG94]. It decomposes

the input to one of three levels of granularity: tasks, subroutines, and statement blocks.

It also identifies three distinct partitioning problems: mapping system behaviours to

66

system components (custom or standard processors), mapping variables to memories,

and mapping communication channel to buses. However, its estimation model is mainly

concentrated on the issues related to hardware synthesis, such as pin number and chip

area and there is no indication in how to support the synthesis of hardware/software

interface, based on the target architecture with standard processors, ASICs and buses.

Finally, [HW96] has presented a completely different deterministic technique, where a

codesign system is generalized as a heterogeneous distributed system. The

hardware/software partitioning is then analogized in partitioning different types of

processing engines that could be general processors, ASIPs, or ASICs. The performance

estimation model is built upon processing engine’s computation and communication

costs. This deterministic technique tries to minimize these costs and maximize the

advantage of each specific processing engine. This work initiates the investigation into

the technique transfer from the performance evaluation for general distributed systems

to the performance estimation for hardware/software partitioning. While it opens a new

dimension of research into this field, it is still in a preliminary stage and some crucial

issues, such as communication cost, need to be more reliably counted in its estimation

model. In recent years, however, there is a significant interest in exploring the high

level model for estimating the communication cost in codesign system [KM98] [HB97],

which could provide a supplement for the estimation model enclosing the

communication cost.

From the discussions above, it is evident that the performance estimation for codesign

system is an open question.

4.2.3 Performance Evaluation

With the design feedback shown in Figure 4.1, the performance evaluation is used to

assess the impact on system performance by the “implemented’ codesign system in line

with its attributes set up during system specification phase. As pointed earlier, here we

concentrate on two attributes: system execution time and hardware cost. The

“implemented’ system does not necessarily mean a physically realized system with all

real components connected together. It could be any of the following: physical

implementation, physical prototyping, or virtual prototyping.

67

The evaluation relying on the physical implementation is less attractive because of its

inflexibility and huge cost.

Thanks to the programmable hardware components such as FPGA, the physical

prototyping has been a favorite choice particularly in the hardware and electronic

engineering society. Due to the programmable component, the hardware components

can now be programmed and connected to the processors through system buses. This

kind of technology is mature and also precise in terms of performance evaluation. But,

on the other hand, it is costly and less flexible. Some times, it is impossible, particularly

on the occasion when some of system components are unavailable. In addition, the

connection between the programmable hardware component and the processor is in

fixed protocol, which is overwhelmingly aligned to the target architecture with single

bus system and thus impossible to be benefited from exploitation of system target

architectures.

Contrary to physical prototyping, the virtual prototyping technique does not require

special equipment to carry out the co-simulation for a mixed codesign system with

hardware/software components and communicating links. It has the following

advantages: less cost, fast turnaround time, and flexility. The core concept of virtual

prototyping is the co-simulation of codesign system with mixed hardware/software

components and communication links within a unified environment. We classify those

published co-simulation methods in two categories: software-based and hardware-

based. The former one is supported by the co-simulation environment written in a

program language such as C or C++, which has to invoke a special simulation tool for

simulations of hardware components. One such example can be found in the Ptolemy

Simulation Environment [BHL+94]. The latter one, on the other hand, is based on a

hardware description language. It has to call in software processes for the simulations of

software components. An example of this has been reported in [TAS93]. The

aforementioned method has dominated this field since early 1990s. There are

commercial products available in recent years, such as the Seamless Co-simulation Tool

produced by the MentorGraphics [KN97]. The major drawbacks in these special

simulation tools are:

68

• The system target architecture is unchangeable, which is supposed the embedded

system with single bus target architecture. That prevents the benefits from exploiting

system target architectures.

• Software components have to be allocated to the processors specified by the tool

providers, which restrains the design from adopting other processors that would be

more suited.

Since commercial hardware CAD tools, particularly VHDL environments, were

extensively used in late 1980s, there has been a new development in this realm. It

advocates the co-simulation entirely within (V)HDL simulation environments. The

difficulties now lie in the co-simulation model that can accommodate not only the

communication links but also both hardware and software components. Some of the

relevant publications can be found in [Nie91] [BFS94] [BE97] [FFSS97] [KMA97]

[SJA93] [EPD94].

Our proposed experimental codesign methodology follows this new development in co

simulation. Further discussion in this aspect is delayed until Chapter 5 that has been

assigned to grasp the relevant details.

4.2.4 Target Architecture - Single Bus vs. Multiple Buses

The target architecture must be taken into account in partitioning phase, as it has

significant impact on system performance estimation and evaluation. Current system

target architecture assumed in other codesign approaches is overwhelmingly the one

with single system bus, to which are attached a general processor, hardware

components, and a system memory block. This type of system target architecture has

been the orthodox architecture assumed in the hardware/software partitioning research

since the codesign research started. The advantages of it can be captured as follows:

• The performance estimation and partitioning algorithm are made straightforward

because of the simple communication mechanism.

• The performance evaluation in physical prototyping is easy to implement and

comparatively cheap.

69

• The general-purpose processor is naturally taken as a bus master that provides

facilities for bus traffic control. The inclusion of such functionality in an ASIC chip

will otherwise significantly increase the total hardware cost and the complex.

• The single level memory subsystem avoids the complexity of analyzing and

synthesizing hierarchical memory subsystem.

The historical reason to involve the hardware components in an embedded system is to

increase the system computation throughput. Specialized hardware components attached

to a system bus can certainly speed up system execution. However, the target

architecture based on this kind of structure has to suffer from the communication

bottleneck inherited from the single bus system. An extensive experiment has resulted

in the comprehensive conclusions [Edw97], which suggests that the ASIPs can benefit

the system speedup more than ASICs do. While this suggestion is recognized as a

prospective research topic, we instead offer an alternative solution in this project i.e. the

system target architecture should also be exploited in support of increasing system

throughput in codesign systems. One of the special target architectures has been

illustrated in Figure 2.5, which as discussed earlier in Chapter 2 uses the layered bus

structure [Sri93] to increase the communication bandwidth and system execution speed.

An outstanding problem with this architecture is that it has to be simulated on the

physical prototyping platform, which is, as pointed earlier, expensive and inflexible. In

our codesign methodology, however, these problems are dealt with by promoting the

virtual prototyping technique, which will be discussed later in Chapter 5.

4.3 The Partitioning Method in the Proposed Methodology

Although present research in this field varies, it can categorically be divided into the

following topics: the performance estimation/evaluation, supporting tools (or

environments), and partitioning algorithms. The partitioning method we proposed in

this project is related to the performance estimation/evaluation and supporting tools.

The partitioning algorithm remains as one of the further research topics, which will be

discussed in the conclusion chapter.

Hardware/software partitioning must satisfy various system constraints that could be

monetary cost, performance, circuitry size, power consumption, and so forth.

70

Apparently, different strategies must be adopted to meet individual system constraints.

The partitioning objectives in our codesign methodology are to satisfy system timing

constraints and, at the same time, to reduce as much hardware cost as possible. Both of

them are paramount features in embedded real-time systems.

In the absence of partitioning algorithm, the partitioning process in our methodology

has to be iterative and rely on the previous experience and the feedback from the co

simulation in VHDL environment. The partitioning approach is straightforward, which

uses the profiling information obtained during the functional verification in VHDL

simulation. It helps dispatch the Co-BSL primitive/class to hardware components. The

criterion is that assigning those computation intensive Co-BSL instances to hardware

component can undoubtedly increase the system throughput so as to satisfy the system

time constraint. The selection of such instances should consider the hardware cost as

well.

4.4 System Profiling with VHDL Simulations

As mentioned in section 3.6, the system profiling process adopted in our methodology is

associated with the system functional verification in VHDL simulations. It requires

additional VHDL statements inserted into the VHDL program that is converted from its

Co-BSL specification. These extra VHDL statements are aimed at collecting the

following simulation statistics when their host VHDL program is executed for

functional verification:

1. Computation load of basic modules (loop, subprogram, or process), according to

their activation occurrences

2. Communication intensity of communication paths, in total number of

(a)synchronous sending or receiving operations

The first statistic can obviously help identify the computationally intensified modules

(the process particularly concerned here) that are appropriate candidates to be

dispatched to hardware implementations. The second one assists in allocation of

hardware/software components to a particular system bus that is included in the

assumed system target architecture.

In general, the partitioning process in our methodology comprises the following tasks:

71

1. VHDL simulations for functional verification and system profiling:

(i) converting the Co-BSL specification into VHDL program

(ii) adding the extra VHDL statements to record the profiling information

(iii) simulating the VHDL program obtained in (ii) in a VHDL simulation

environment

2. selecting a system target architecture and the connections between hardware/

software components

3. dispatching time critical components to hardware implementations

4. analyzing the feedback from the performance evaluation and repeating tasks 2 and 3

In the iterative partitioning process outlined above, the conversion from Co-BSL to

VHDL program has been discussed in Chapter 3 and the work 2, 3 and 4 shall be the

focus of Chapter 5, which copes with the system performance evaluation i.e. design

feedback in Figure 4.2. Presented in this section, is the collection of profiling

information of a codesign system in VHDL simulations. The time critical system

components will accordingly be identified and dispatched to hardware implementations.

The example 4.1 below serves as a demonstrative example.

Example 4.1- Arithmetic Coding System

This example demonstrates the acquisition of profiling information from VHDL

simulations. The codesign system undertaken is Arithmetic Coding System [BCW91].

The arithmetic coding is widely used for information compression, which encodes

messages in an interval of real numbers between 0 and 1. While the message becomes

longer, the interval required to represent it becomes smaller and the number of bits

required to specify that interval grows. In other words, it replaces a stream of input with

a single floating-point number as output. This number can be uniquely decoded to

create the precisely same stream of message that comes through its original

construction. Although the concept has been known for a long time, only in recent years

were practical methods established to implement arithmetic coding on computers with

standard integer math. This is because floating-point math is not feasible in practice.

Further technical details can be found in [NG97].

The following piece of pseudo-code summarizes its encoding and decoding algorithms.

72

/* ARITHMETIC ENCODING ALGORITHM
/* Ensure that a distinguished “terminator” symbol is encoded last, then
/* send out any value in the range [low, high].

*/
*/
*/

EncodeSymbol (symbol, CumProb)
range := high - low;
high := low + range*CumProb[symbol - 1];
low := low + range*CumProb[symbol];

/* ARITHMETIC DECODING ALGORITHM */
/* Value is the number that has been received */
/* Continue calling DecodeSymbol until the terminator symbol is returned. */

DecodeSymbol (CumProb)
find symbol such that

CumProb[symbol] <= (value - low) / (high - low) < CumProb[symbol - 1];
/* This ensures that value lies within the new [low, high) range */
/* that will be calculated by the following lines of code. */

range := high - low;
high := low + range*CumProb[symbol - 1];
low := low + range*CumProb [symbol];
return symbol;

Data
Source

t - m -
source_contrl

Control_block

contrl_rmovernqov
Remover

expandr_rmoviyK

contrl_expandr

\ /rmovr_expandr

expandr_sinkoandr ^ — expanar_sinK
Expander^ B~)> [
 — -— Data

contrl_buildr

— >—

Data
Sink

/ \buildr_expandr

Building

Figure 4.3 Arithmetic Decoding

The codesign system depicted in Figure 4.3 is an arithmetic decoding system. Its

arithmetic encoded information has been created in advance and stored in a file, which

then feeds the system through the Data Source as stimuli. Notice that the stimuli are

encoded messages and the originals are unavailable at the decoding site. The decoding

process, however, needs the statistical information created during encoding process,

such as CumProb [symbol] and CumProb [symbol - 1] as used in the Decoding

Algorithm. Although an alternative coding scheme called Adaptive Arithmetic Coding

provides a solution to this problem, it complicates the matters unnecessarily in this

example. We therefore assume that the statistical information is added before the

encoded information. The process Model Building in Figure 4.3 is designed to receive

73

the statistical information and build its model. The process Controljblock is needed to

identify different types of information and dispatch them to relevant processes. Whereas

the process Expander retrieves the statistical model established by the Model Building

and expands the original information gradually, the process Remover assists this

procedure by decoding compressed bits from the Controljblock and sending back

decoded message back to the Expander. The expanded message is preserved in the

external process Data Sink.

Extra VHDL statements have been added to the VHDL program for collecting the

system profiling information.

For example, the following VHDL statement lines are used to lodge the communication

load from the process Controljblock to Expander.

—/ recording the communication from Controljblock to Expander/--
if contrl_expandr.status = active_source then

tmp := contrl_expandr.color.data2;
write(l, tmp, right, 1);
temp := temp + 1;
if temp >15 then

write(l, NOW, right, 15);
writeline(datafile,l);
temp := 0;

end if;
end if;

Besides, the following VHDL statements register the invocation time for the process

Controljblock.

—/ counting invoking time /--
write(l, t_times, right, 1);
t_times:= not t_times;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile,l);
t_count:= -1;

end if;
t_count:= t_count + 1;

System profiling information acquired from VHDL simulations has been attached to the

process graph in Figure 4.3 and shown in a new process graph illustrated in Figure 4.4.

The profiling information is divided in two groups: the invocation time for each process

74

and the communication overhead for each communication channel. One can easily

recognize that the Expander is most active process invoked for 570 times in total and

the expandrjrmover is the busiest channel, through which 65.5-KB’s message has

passed.

Data
Source s j o k l

I — K }>-
source_contrl

Control block

(270 times)

contrl_rm over

429 Bytes

ô e Remover
(540 timesI

65.5 KB
expandr_rmovp, ^

contrl_expandr r t
(570 timesj33 Bytes

:̂ ar

32.6 KB
^ m o v r_ e x p a n d r

expandr_sink
E x p a n d e r ^ ^ ^ J

Data
Sink6.31 KB

10.9 Ki

contrl_buildr

6.25 K ^

/ \b u ild r_expand r

Model
Building
(510 times)

Figure 4.4 Process Graph Showing Simulation Results

Individual VHDL program plus simulation results has been listed in Appendix D for

reference.

4.5 Partitioning and Component Allocation with Multiple Buses

Despite similarities between hardware/software partitioning and the partitioning of

either pure hardware or software system, the former represents a rather complex task

due to its heterogeneous nature. Moreover, the introduction of distributed target

architecture apparently complicates the matter further. For example, in Arithmetic

Coding System described in section 4.4, if a target architecture with two system buses is

chosen, six system’s processes (including two external entities) could have 26

assignment schemes. As the number of component increases, the number of alternatives

will explode, not to mention another explosive dimension in which the system

components can be allocated to either hardware or software implementation.

The philosophy in previous codesign methodologies is simple, i.e. to dispatch

computationally intensive component to hardware implementation in order to achieve

high system performance. There was no question of exploitation of component

allocation since only one system target architecture with single bus was available and

all components had to be linked to this system bus. However, hardware implementation

is only one of many solutions to improving system performance. One of the major

contributions from this thesis is to have addressed this shortcoming and provided a

75

platform (detailed in Chapter 5 and 6) for the codesigner to experiment with both

hardware/software partitioning and the allocation of component in the interest of system

performance.

Based on this new platform, the exploration of the design space extends beyond the

partitioning of hardware/software components. A new dimension is now established, in

which the system components are not only assigned to hardware/software

implementations but also dispatched to the appropriate places within the system target

architecture, i.e. in addition to being dispatched to hardware/software implementation, a

component can also be allocated to a specific bus layer in order to achieve high system

performance.

As stated earlier, this project is not aimed at automatic partitioning process. A heuristic

approach is instead adopted to facilitate the partitioning and allocation. With regard to

hardware/software partitioning, this research has been focused on:

Analysis of previously established partitioning methods

Identification of the shortcomings and problems in this domain

Proposal of solutions to those problems

While these tasks are mostly accomplished, we have left an advanced topic for future

research. It is to improve the system performance by exploiting the combination of

hardware/software partitioning and allocation of communication channels, which will

be one of the topics discussed in Chapter 7.

76

Chapter 5

The Performance Evaluation
This chapter deals with the system performance evaluation for codesign system. In our

project the system target architecture with layered bus communication structure is used

as a platform, on which the performance evaluation for codesign system is carried out.

In addition to the architecture model, we have also provided the implementation method

and the supporting tools in VHDL packages and libraries.

The content of this chapter has been published in [CRLOO] in an abridged version. This

chapter will detail the architecture model and the performance evaluation method

developed in our project. The chapter begins with a brief review on both emulation and

simulation techniques that are both widely utilized in the codesign school. The co

simulation technique and virtual prototyping are highlighted. Following this is the

rationale for the co-simulation and virtual prototyping technique, proposed in this

research project. In addition, the conversion from high-level system co-specification to

its low-level implementation is introduced and the bus protocol and VHDL packages

plus libraries are described in the following sections. Finally the co-simulation to

evaluate the system performance for codesign system is presented.

5.1 Performance Evaluation Techniques for Codesign

Improving system performance is an essential issue in the codesign of

hardware/software. It is a critical goal in codesign of hard real-time embedded system.

The system performance can be evaluated in the following three ways: implementation,

emulation, and simulation. The implementation is apparently less attractive due to its

huge cost and inflexibility. It is therefore not in the interest of this research. While the

emulation is carried out on its physical prototype platform, the simulation is instead

executed in software simulators. In the literature of codesign, this kind of simulation is

often referred to as co-simulation since it deals with heterogeneous systems with both

hardware and software components inside. Unlike a pure software or hardware system,

the system performance now involves both individual hardware and software

77

components and the communications that pass through homogeneous/heterogeneous

components.

In the codesign discipline, a great deal of effort has traditionally been spent on the

emulation technique of performance evaluation. One of the good reasons for this is that

a codesign system can be emulated on its prototype target architecture, which is

generally composed of microprocessors, ASIC (Application Specific Integrated

Circuits) components and buses. Hardware and software components communicate via

a global memory as a rendezvous. This approach has become feasible thanks to the

programmable hardware components, such as FPGA (Field Programmable Gate

Arrays), which are now commercially available [FPGAOO]. In FPGA, like its software

counterpart, the hardware components can be programmed and the trade off in hardware

and software becomes feasible. As a result, the system performance can be evaluated by

the emulation on its physical prototyping platform. The emulation could predict

accurate system performance but it is expensive and inflexible especially in terms of the

system target architecture. It can in fact proceed only when the prototyping hardware

components are available. In addition, the programmable hardware has various

constraints, such as size and interface, and it is therefore not always readily fitted in the

real system [IEEE92].

In contrast to emulation, the software simulation has the following variety of

advantages: low cost, flexibility, and short design turnaround time. Because of these

advantages, there has been a growing interest in co-simulation techniques. A part of

relevant publications in this realm can be found in [WDW94][BFS94][BFS96][BE97]

[PLCV97][HB97][LLV98][LLS99]. The co-simulation can be either software-based (in

C/C++ program) or hardware-based (in VHDL or other HDL simulators) but neither of

these two approaches can alone undertake the task. The software-based co-simulation

favours functional verification of individual software components but behaves

awkwardly when dealing with the performance of hardware components and the

communications between heterogeneous components. On the other hand, the hardware-

based co-simulation favours the performance evaluation for individual hardware

components but no mechanism supports the evaluation of those software counterparts

and the communications. Another drawback of the hardware-based co-simulation lies in

78

its simulation efficiency (simulation performance itself). As the density of hardware

circuit increases, driven by advancing technologies, traditional event-driven hardware

simulators become increasingly incapable of responding to a huge number of events,

which would have to take hours or even days to complete the simulation. To achieve

high-performance solutions, EDA vendors started to switch the interest to a new

technique, the cycle simulation, which does not take account of the detailed circuit

timing but computes the steady state response of the circuit at each cycle boundary

[Bha98]. On the other hand, the hardware-based co-simulation at the behaviour level

(i.e. high level) is not prone to this problem because of dramatically decreasing number

of event at this level.

Notwithstanding some of co-simulation tools which emerged during late 90’s, such as

the Seamless from the MentorGraphics [KN97], the system target architectures they

supported are primitive, all confined in the target architecture with single bus

communication system. It could easily fall into the communication bottleneck problem

inherited by this type of target architecture.

5.2 Justification for the Proposed Performance Evaluation Method

Within our methodology, we proposed a co-simulation technique [CRL00] that

encompasses the following:

1. The virtual prototyping model with layered bus architecture, which enables system

target architecture to be exploited as a new dimension to improve system

performance

2. The synthesis method, which maps the high-level co-specification to the low-level

implementation based on the target architecture indicated above

3. The asynchronous generic bus protocol plus its standard bus interface modules and

the VHDL packages & libraries, which have further materialized the proposal

The contents relevant to the bus protocol and VHDL packages and libraries are being

discussed in the following sections because of their complexities.

The significance of these features can be justified as follows. First, the system target

architecture of an embedded system has undergone consecutive changes as a result of

technology advance in hardware/firmware manufacture. Modem embedded systems are

79

no longer bounded by the single bus target architecture. A typical example can be found

in [SB91] and also referred to Figure 2.5. It has the target architecture with 4 layers.

The bottom two layers are custom boards, each having one or more programmable

processors. Each processor in turn coordinates a number of application specific slave

modules which can be either hardware or software components. This type of target

architecture employs the hierarchical bus organization that increases the communication

bandwidth. While it provides flexibility and scalability, the system performance

evaluation has to rely on the emulation technique, which is costly and some times

impossible before all the hardware components are constructed. Our project avoids this

problem by employing the virtual prototyping plus co-simulation technique.

Secondly, in codesign community, the current ad hoc transition from high-level co

specification to low-level implementation presents a major failure from Software

Engineering's point of view. The well-defined system structure created at the co

specification phase has broken down in the low-level implementation and no trace of

object-orientation remaining at this low level, which will induce troubles when the

codesign system is maintained at a later stage. Our research, however, tackles these

problems by introducing the consistent system synthesis method, which maps a high-

level co-specification to its low-level implementation with the property that the object-

based properties in the system co-specification phase are conceptually maintained.

As discussed in Chapter 1, the system target architecture previously adopted by other

researchers is, by default, the one, in which a single synchronous system bus undertakes

communications between hardware and software components. In this research,

however, we pursue the communications in different ways. First, an asynchronous bus

protocol is designed instead of a synchronous one, since hardware/software components

in codesign system are reasonably expected to be clocked independently

(asynchronous) and the number of components may change in line with the requirement

of cost-effective system performance. The asynchronous communication bus is well

suited to this environment. Second, the layered multi-bus architecture is to be trailed to

test the feasibility both in terms of conceptual model and the viability of co-simulations

in VHDL environment.

80

It should be pointed out here that the performance of a codesign system is mainly

concerned with its communication cost and the performances of individual components.

The structure of system target architecture certainly influences the analysis of

communication cost that is counted in the whole system performance together with the

performances of individual hardware/software components. At present some researchers

study the communication cost of codesign system by using statistical analysis based on

mathematical models [HB97][BKK+99] [KM98]. They provide the potential of

automatically estimating the communication cost and supply the heuristics in the

hardware/software partitioning phase. This research, however, is focused upon the

experimental perspective rather than statistical models. We prefer this approach because

of the following observations:

• Most codesign systems are hard real-time embedded system that is governed by

strict timing requirements. Co-simulation techniques could provide reliable and

accurate prediction in respect of system timing.

• The statistical analysis is proven to be effective in designing a general distributed

network system such as the Internet that incorporates communications via relay

mechanism through communication routes [CDK01]. However, it would make the

system performance difficult to evaluate if the co-simulation model was based on

the changeable or uncertain transmitting routes. On the other end of the spectrum,

target architectures in codesign system are static and so are the communication

routes, which indicates the communication in codesign system is relatively “well-

behaved” and thus able to be simulated based on its target architecture model.

One of the major contributions from our methodology is that in addition to the trade-off

in hardware/software implementations, a new dimension which is the trade-off in

system target architecture has been employed to improve the system performance in

codesign. The orthodox single-bus system target architecture commonly used in

codesign discipline has its fundamental flaw that is the communication bottle-neck

problem. Although the target architectures proposed in our methodology are relatively

simple, for the first time in codesign discipline, however, it allows the user to exploit

both hardware/software implementation and the system target architecture, which

increases the system throughput and hence improves the system performance. A

81

comprehensive example of improving system performance by the exploration of system

target architecture will be demonstrated in Chapter 6.

5.3 Layered Bus Prototyping Model

Figure 5.1 illustrates our prototyping model, in which the layered system buses with

diversified throughput undertake the communications in the system. The reason this

type of system model is selected is that it is straightforward and easy to implement in a

VHDL program. In addition, the communication throughput of this model is readily

extendable in adding more bus layers and/or designating different bus performances.

Based on this system model, hardware/software components are connected to different

buses with certain criteria so as to satisfy the system performance and/or hardware

costs.

Other Bus
H.C. Hardware Component

InterfaceH.C. 1 H.C. 2 H.C. n

Other Bus
Bus Interface

Module
Bus Interface

Module
Bus Interface

Module

Asynchronous Bus

Other
ProcessorsExternal Bus

Interface

ARM Processor

Figure 5.1 Distributed Target Architecture
with Layered Bus Structure

An extra bus interface component is designed to provide communication gateway over

buses [Kai93][Dav+94]. Each hardware/software component can only connect to a

system bus through Bus Interface Module (BIM) that has been designed and stored in a

VHDL library.

Although other communication mechanisms, such as direct hard-wired connections or

interrupts, are also viable in this model, they are not included at present for the

simplicity reason. In the diagram, we assume that the components destined for software

are allocated to ARM processors [Fur96][Som93] but it is not the prerequisite in this

model. Other embedded processors are also fit for the purpose. The reasons for adopting

the ARM processor arise from its software development environment i.e. the ARM SDT

82

[ARM97] available and its reputation for low power consumption in the embedded

system designs. In this module, the interface connection of software/hardware

components is unified. It is depicted in Figure 5.2 and 5.3. The internal details in the

module will be introduced in the next section.

Hardware
Component

ARM
Processor

~T\~7\
Signals

Bus Interface
ModuleBus Interface

Module

Bus
Requester

- \ Z -
Bus

Operating
Module

\7
Bus

Operating
Module

Bus
RequesterMonitorMonitor

Asynchronous Bus (Arbitration & Address & DataTransfer & Control Buses)Asynchronous Bus (Arbitration & Address & DataTransfer & Control Buses)

Figure 5.2 Interface for the ARM Figure 5.3 Interface for Hardware
Component

Asynchronous Bus_2

Other
Software

Component
Hardware

Component
Interface to
Other Bues

Asynchronous Bus_1

ARM
Processor

Co-
Processor

External Bus
Interface

On-Chip
RAM

ARM Advanced System Bus (ASB)

Bridge to Keypad

ARM Advanced Peripheral Bus (APB)

Figure 5.4 Layered Bus Structure

Figure 5.1 can be further refined in Figure 5.4, added internal details of ARM processor.

The ARM processor contains two on-chip buses. They are Advanced System Bus (ASB)

and Advanced Peripheral Bus (APB). The ASB is the main high-speed backbone

communication bus and the APB the low-speed and low-power peripheral bus. Besides,

there is a component, namely External Bus Interface (EBI) connected to the ASB,

communicating reciprocally with other components outside the ARM processor. In our

model, it has been replaced in the BIM , which is now a standard bus interface module.

One can see from the Figure 5.4 that the layered asynchronous buses plus the on-chip

buses inside the ARM processor do constitute a flexible communication model of

codesign system’s target architecture.

83

5.4 Asynchronous Bus Protocol and Bus Interface Module

Since this section is not intended to serve as a general introduction to bus protocols, it is

appropriate to only enclose most important and relevant details in the following content.

Those excluded can be referred to [Gia90], [VME82], and [Tex88]. Although it adopted

the common handshaking protocols previously published in other bus protocols, the

asynchronous bus protocol presented in this section is a new bus protocol specially

designed for the purpose of exploration of system target architecture to improve the

system performance. The differences from other bus protocols will be explained where

approperait.

The asynchronous system bus consists internally of four parallel sub-buses. They are

Data Transfer Bus (DTB), DTB Arbitration Bus, Control Bus (CB), and Address Bus

(AB) respectively. Figure 5.5 depicts the internal details of the bus interface module

that is an interface for connections between the sub-buses and hardware/software

components. The module is composed of three sub-components: Bus Requester, Bus

Operation Logic, and Bus Monitor. They communicate with each other through internal

signals. While the bus requester is connected to the arbitration bus to apply for control

of the DTB, the bus operation logic and the bus monitor are all connected to the DTB,

CB, and AB to complete handshaking and data transfer. This module along with other

modules introduced in the next section has been developed and integrated into a VHDL

library as the components to be integrated in user’s VHDL simulation programs. The

performance evaluators are therefore relieved from dealing with the complex

handshaking protocols.

The arbitration bus uses the following lines to request and grant DTB bus:

• BR16 (bus request lines, 16 bits)

• BG16 (bus grant lines, 16 bits)

• BBSY (bus busy line, 1 bit)

The width of arbitration bus indicates how many legitimate bus contenders can exist

Sixteen bus masters, in this case, are allowed and each request line has a corresponding

grant line.

The DTB, AB, and CB are defined as follows:

84

D32 (data path width: 32 bits)

A32 (address bus: 32 bits)

• A16 (address path width: 16 bits)

• S16 (segment path width: 16 bits)

Hardware/
Software

Component
DTB

Arbitrator
Clock

G enerator

Bus
Interface
Module

m onitor_enb
-------------------- > B U S

jnonitocdone Monitor

Bus
R equester

dgb dwb

B us Operation
Logic

dtack ready sa

address_bus

control_bus

data_bus

Figure 5.5 Schematic of the Bus Interface Module

C7 (Control Bus: 7 bits)

• c l: AS (address strobe)

• c2: DS (data strobe)

• c3: W/R* (read/write select)

• c4: DTACK (data acknowledge to master)

• c5: READY (indication of the transfer complete)

• c6: S/D* (indication of the DTB transfer through same or different bus)

• c7: S/A* (indication of the DTB transfer blocked or non-blocked)

Notice that apart from normal control lines typically adopted in other bus protocols two

extra control lines are defined here to clarify the following positions:

1. whether a DTB transfer occurs on the same/different bus ... (line sd in Figure 5.5)

85

2. whether a DTB transfer is blocked/non-blocked ... (line sa in Figure 5.5)

The address bus includes both address path and segment path. The latter is used for

future extension of bus layer and system functionality. Its usage in this prototype will be

reflected as the synthesis of the prototyping model is discussed in the next section.

5.4.1 DTB Acquisition

A potential DTB master has first to request the arbiter to grant its use of DTB and then

controls the DTB for data transfer. A Round Robin Select arbiter is chosen so that each

master connected to the DTB has same priority. This policy could be accordingly altered

to satisfy different priorities in different components to meet system constraint, but we

have left this topic as a future research topic.

DTB master DTB slave

1. present add ress and segm ent;
2. if bus-write then present data;
3. present rw, sd, and sa;
4. drive both a s and d s low;I__________________________

1. wait until both a s an a d s low;
2. if bus-read and the data available then
present data on DTB and drive ready low
e lse if bus-read and the data unavailable then
drive ready high
e lse if bus-write and the data exp ected then
drive ready low
e lse if bus-write and the data un exp ected then
download data from DTB and drive ready high;
3. drive dtack low; i

i ------ i
1. wait until dtack = 0; 1. wait until a s = 1 and d s = 1;
2. if bus-read and ready = 0 then 2. drive dtack high;
download data from DTB
e lse if ready = 1 start monitoring
and drive both a s and d s high;
4: release the DTB and wait until
monitoring procedure com plete;
5. read data from monitor if bus-
read;

Figure 5.6 DTB Handshaking Procedure

The low-level handshaking protocol for DTB arbitration is similar to those of VME’s.

Figure 5.6 serves as an example of the handshaking procedure for bus arbitration and

operation. It demonstrates two potential bus masters A and B competing for control of

DTB. Internal signals, dwb and dgb represent the statuses device wants bus and device is

granted bus. Three external signal lines br, bg, and bbsy are used for bus arbitration

handshaking. Assume, in this example, that master B is first granted the DTB and

completes data transfer. The Bus control is then handed over to master A that finishes

data transfer after obtaining DTB control.

86

5.4.2 DTB Operation

A typical DTB handshaking procedure is shown in Figure 5.6. Whereas its further

details have to be explained when combined with the synthesis of the prototyping model,

a general introduction of the procedure is given in Figure 5.7.

bus operation bug operation
logic A requester A logic B reguester B arbiter

drive high _
device wants

bus

drive high
device wants

bus
detect device
wants bus and
drive br1* low

detect device
wants bus and
drive br2* low detect br1‘ and br2*

low simultaneously and
drive bg2* to low

detect bg2‘ driven low -
drive bbsy* low V
drive br2* high

 (release br2‘)
and drive bus
granted high

detect bus granted high r—
perform data transfer r

driven device
wants bus to

low

detect bg2*
driven high

—4
detect device
wants bus low -
release bbsy
(drive bbsy’

high)

detect bus
granted driven

low

detect bg1 * low
driven bus

granted low

detect bbsy* driven low
drive bg2* to high

detect bbsy* high
detect br1* low

— drive bg1 * low

r

detect bg1 * driven low
drive bbsy* low

I
drive br1 * high

- (release br1*)
and drive busdetect bus grantedhigh

perform data transfer “ a
| *
| detect bg1 * driven high

drive device wants_______ I
bus to low H

detect device
wants bus low------
release bbsy*

(drive bbsy high)

I drive bus
| granted low

detect bus granted
driven low

detect bbsy* driven low
drive bg1 * to high

detect bbsy* high
wait for a bus request

Figure 5.7 Typical DTB Arbitration Procedure

The DTB handshaking is initiated by the bus master and replied by the bus slave. After

obtaining control of DTB, the master presents address signal on AB and data on DTB if

it is a bus writing operation. It then waits. After receiving the transfers acknowledge

from the slave, the master terminates the data transfer session by raising the as and ds up

to T s . The asynchronous nature of the DTB allows the slave to control the amount of

time taken for the data transfer. This feature has to be exploited with caution to prevent

component from holding up the DTB due to other party’s unreadiness or to avoid

deadlock. If, for example, several synchronous communication channels are allocated on

the same system bus, the synchronous communication could result in holding up the

87

system resource (in this case the system bus) for a long time or even forever (deadlock)

[And95]. In our protocol, therefore, the master is required to release the DTB no matter

whether the data transfer can complete. This feature is supported by a global memory

and a monitor, which are mentioned latter and fully discussed in the next section while

the synthesis of prototyping model is tackled.

5.4.3 DTB Monitor

Each bus interface module maintains regular surveillance on the system bus. While bus

monitoring is auxiliary in other bus protocols, it is a necessity in our protocol, which

prevents the DTB being held for a long time or even forever (deadlock) while

components communicate through those communication channels defined in Co-PARSE

specification and wait the other side of the communication channel to response. More

details will be given latter in the relevant places.

iaster waitini
^ for data ^

^ - ^ a s = 0 and ds =
and atb = atbjn and ad = sdjn
'^ '" -^ a n d sa = sajn

read data from the
data bus

end

Yes

Yes
No

No

Figure 5.8 DTB Monitoring Procedure

The monitoring procedure is illustrated in Figure 5.8. If a bus master can not get

satisfactory result from the bus slave, the bus is immediately released and the monitoring

procedure is triggered. Three unsatisfactory results could start this procedure:

a) synchronous channel’s sender blocked at the rendezvous because of the receiver

unready

b) synchronous channel’s receiver blocked at the rendezvous because of the data

unavailable

c) asynchronous channel’s receiver blocked at the rendezvous because of the queue

empty

Notice that only case b) and c) actually receive data from the DTB. Before entering this

procedure, the DTB has been occupied by other master through arbitration. We will

elaborate on this when the synthesis of prototyping model is introduced.

5.5 Synthesis of the Prototyping Model

As mentioned in previous chapters, during the hardware/software partitioning phase,

processes specified in the extended PARSE Process Graph and the Co-BSL program are

assigned to either hardware or software components. Software components are allocated

to ARM processors while hardware components are further refined in VHDL

description and automatically synthesized into VLSI chips by synthesis tools. The

remaining task now is to furnish communication channels with prototyping components,

i.e. mapping the communication channels to the physical prototyping model, which, in

this case, is the layered bus architecture. To demonstrate feasibility, we focus on

mapping communication channels to the target architecture with up to two

asynchronous system buses, although more bus layers are theoretically addible. The

following discussion is therefore divided in four topics that are denoted by the

combination of control lines sa and sd.

• synchronous channels on the came bus (sa = 0 and sd = 0)

• asynchronous channel on the same bus (sa = 1 and sd = 0)

• synchronous channels with two buses (sa = 0 and sd = 1)

• asynchronous channel with two buses (sa = 1 and sd = 1)

5.5.1 Synchronous Channels on the Sam e Bus

The key to implement synchronous channels lies in the employment of a global memory

[LW97] as the rendezvous for both the sender and the receiver of a synchronous

channel. Without loosing generality, we can assume that the message passing through

the synchronous channel is in integers each with 32-bit length. Other data types can

always be represented by integers. In addition, each synchronous channel is assigned a

number. Both sender and receiver place this number to the address bus when they

communicate. Obviously, all synchronous channels allocated on the same system bus

can be organized in a chunk of memory as shown in Figure 5.9. The global memory has

been enlarged in Figure 5.10 and each channel is allocated a 32-bit memory location as

89

data storage and 1-bit mark as an indication of either the sender waiting for message to

be accepted or the receiver waiting for the message sent to the channel.

Syn ch ron ous C hannels on Sam e B us

I i Global Memory

Synchronous
Channel
Gateway

A-KV /

The Global Memory marks
data n (32 bits) channel n
data n-1 (32 bits) channel_n-1

data 3 (32 bits) channel_3
data 2 (32 bits) channel 2
data 1 (32 bits) channeU

Figure 5.9 Synchronous Channels Figure 5.10 Synchronous
Channels’ Memory

start

No No
as = 0 and ds = 0 and
sd = 0 and sa = 0 and
clk’event and elk = 1

ds = 1

Yes

Yes
end

-Yes-

No

No

•Yes-

No

-Yes-

■No-

rw = 0 and
cemark(atb) =

rw = 0 and
[emark(atb) =

rw = 1 and
temark(atb) =

rw = 1 and
cemark(atb) =

dtack <= 1

dtack <= 0

■Yes— ► remark(atb) := 1
ready <= 1

remark(atb) := 0
ready <= 0

memory(atb) := dtb
remark(atb) := 1

ready <= 1

dtb <= memory(atb)
memory(atb) := 0
remark(atb) := 0

ready <= 0

Figure 5.11 Synchronous Channel Gateway

The component synchronous channel gateway described in Figure 5.11 is attached to

system bus and appointed as a bus slave. Its responsibilities include DTB data transfer

handshaking, data storage, and bookkeeping. The first two are easy to understand but the

last task needs explanation. A synchronous channel can only encounter one of the

situations below:

90

• sender side:

1. sending message while receiver is waiting (rw = 0 and remark(atb) = 1)

2. sending message while receiver is unready (rw = 0 and remark(atb) = 0)

• receiver side:

3. reading message while it is available (rw = 1 and remark(atb) = 1)

4. reading message while it is unavailable (rw = 1 and remark(atb) = 0)

These four situations are handled correspondingly as follows:

1. remove the mark and set ready to 0

2. establish the mark, retain the message in the memory, and set ready to 1

3. place the message on the DTB, remove the mark, and set ready to 0

4. establish the mark and set ready to 1

With regard to the foregoing introduction to the DTB data transfer protocol, a sender or

a receiver shall start its monitor if the receiver is unready or the message is unavailable.

Hence, there is no need for a sender to write the message into memory while the receiver

is waiting for it at the address because the receiver’s monitor will pick up the data from

the DTB automatically through surveillance. On the other hand, a receiver does not need

to inform the sender after the message has been taken out of the memory because the

sender’s monitor can observe the movement of the message through its own monitoring

procedure. This treatment immensely reduces the DTB traffic and improves the

efficiency of system communications.

5.5.2 Asynchronous Channel on the Sam e Bus

In asynchronous communication, the sender is never blocked because it can preserve the

massages in a queue, whereas the receiver has to wait if the queue is empty. At the

centre of this type of communication is therefore the queue that accommodates messages

in series from the sender. The implementation has been delineated in Figure 5.12 and the

global memory is also expended in Figure 5.13. The queue is constructed in a block of

global memory and organized as a circular storage as shown in Figure 5.13. Unlike the

synchronous channel, only one mark (bit) is now required to indicate if the receiver has

visited and been waiting at the queue due to the message unavailable.

91

The function of the component asynchronous channel gateway is displayed in Figure

5.14. Besides accomplishing DTB data transfer handshaking, it undertakes four tasks:

1. Establish mark and set ready to 1 if the bus master receiver finds the queue empty.

2. Take the head of the queue out off queue and set ready to 0 if the data is available.

3. Set both mark and ready to 0 if the sender finds mark has been set up.

4. Massage is entered into the queue and set ready to 0 if queue is not empty of the

data not yet wanted.

They correspond to four selections and their processes shown in Figure 5.14.

Global Memory

da ta n (32 bits)

d ata 2 (32 bits)

da ta 1 (32 bits)

An A sy n c h ro n o u s C han n e l O n S am e B us

/--\
Bus ()

■‘n Global Memory

Asynchronous a__k
Channel C ,— , /
Gateway

•

Figure 5.12 An synchronous Channel Figure 5.13 Asynchronous
Channel’s Memory

(start ~)

dtack <= 0

No^ a s = 0 and ds =
and sd = 0 and sa = 1 and
atb = q u e jd and clk’event

and elk = 1

ds = 1

dtack <= 1

end

rw = 1 and
queue is empty

mark := 1
ready <= 1

-Yes—►

No

rw = 1 and
[ueue is not empt

dtb <= the head of
q u e u e ; read <= 0

rw = 0 and
mark = 1

mark := 0
ready <= 0

-Yes-

No

rw = 0 and
mark = 0

dtb sent into the queue
ready <= 0

-Yes-

• No-

Figure 5.14 Asynchronous Channel Gateway
(on the same bus)

92

5.5.3 Asynchronous Channel with Two Buses

With two system buses, we assume that the sender of an asynchronous channel is

allocated to one bus and the receiver to the other. They have to negotiate with one bus

for write operation and another for read operation. Figure 5.15 exemplifies the sender of

an asynchronous channel being situated on bus_l and the receiver on bus_2. Its

opposite allocation is not discussed because same component can be used, except

connections to its symmetric bus signals.

Asynchronous Channel with Two Buses

Bus_1

Asynchronous
Channel

Gateway_1

queue

I X
Bus

Interface

Z E

Asynchronous
Channel

Gateway_2

Data

B us_2

Figure 5.15 Asynchronous Channel with Two Buses

Two queues are in fact needed for this implementation. The main queue is connected to

both buses through asynchronous channel gateway_l and asynchronous channel

gateway_2. Its memory organization is similar to the counterpart in the asynchronous

channel on same bus but it is noteworthy that the gateway_l is write-only and the

gateway_2 read-only with regard to the main queue. Besides, two channel gateways are

now involved in dealing with respective DTB data transfer handshaking and main

queue’s bookkeeping. Another queue is instead connected to bus_2 via the bus

interface. It feeds the bus interface with data from the gateway_l. Figures 5.16 and 5.17

exhibit the internal structures of both gateways concerned. Figure 5.18 shows the bus

interface.

Two queues are in fact needed for this implementation. The main queue is connected to

both buses through asynchronous channel gateway_l and asynchronous channel

gateway_2. Its memory organization is similar to the counterpart in the asynchronous

channel on same bus but it is noteworthy that the gateway_l is write-only and the

93

gateway_2 read-only with regard to the main queue. Besides, two channel gateways are

now involved in dealing with respective DTB data transfer handshaking and main

queue’s bookkeeping. Another queue is instead connected to bus_2 via the bus

interface. It feeds the bus interface with data from the gateway_l. Figures 5.16 and 5.17

exhibit the internal structures of both gateways concerned. Figure 5.18 shows the bus

interface.

Compared with the asynchronous channel on same bus, one of the four situations may

occur during the asynchronous communication across different buses:

1. The sender is sending message while the receiver is not waiting for it.

2. The receiver is demanding message while the queue is not empty.

3. The sender is sending message while the receiver is waiting for it.

4. The receiver is demanding message while the queue is empty.

(start)

mark = 0
No

Noas1 = 0 and ds1 = 0
and sd1 = 1 and s a l = 1 and
'-atbl = q u e jd and clk’everil-

^ ' ' \ a n d elk = 1

mark := 0;
releasing the critical

section;
Yes

Yes
Yes

apply for operating on
the bus interface queueapply for operating on

the critical section

No

Figure 5.16 Asynchronous Channel Gateway_1 (for two buses)

94

(start)

segm t2 /=
arbitra_id

No

as2 = 0 and ds2 = 0
and sd2 = 1 and sa2 = 1 and
-a tb2 = q u e jd and clk’everjl-

^ ' \ ^ a n d elk = 1

No

queue is
empty

•No-
Yes

Yes Yes
the head of queue

sen t to dtb2;
ready2 <= 0;

mark := 1;
ready2 <= 1

apply for operating on
the critical section

Yes

No
permission

o ra n te d . releasign the
critical section;

dtack2 <= 0

ds2 = 1 ■No- dtbl sen t to the tail of
the queue;

releasing the critical
 section_______

Yes

dtack2 <= 1

(end ~)

Figure 5.17 Asynchronous Channel Gateway_2 (for two buses)

q u eu e is
em pty

perm ission
^ g r a n t e d .

a s 2 <= 1;
d s2 <= 1

apply for the DTB
acquisition

apply for operating on bus
interface qu eu e

s e t dtb2, atb2, segm t2,
sa 2 , and sd2;

a s 2 <= 0;
d s2 <= 0

the head of bus interface qu eu e
sen t to temporary storage;

re lea se the bu s interface qu eu e

Yes

Yes

No

No

dtack2 = 0

Yes

No

Figure 5.18 Asynchronous Channel Bus Interface (for two buses)

But, its implementation is more complex this time due to the cross-bus operation and the

unsymmetrical gateway operations. First of all, those two queues are all critical regions.

For example, the main queue is accessed by two gateways that are attached to

completely independent buses. Thus this memory should not be approached

simultaneously by two gateway components. Similar principle applies to another queue.

Secondly, the situation three and four above-listed are entirely different from their

equivalents on the same bus. They need to be taken care of with caution.

95

The troubles stem mainly from the read and write operations that position on different

buses. The former version of surveillance in the monitor is not operative here. To

contend with this problem, a separate queue is required. If the sender finds the main

queue is empty and the receiver has paid a visit on the main queue (mark set to “ 1”), the

data is obviously required to be sent directly to the receiver not to the main queue. Since

the receiver is attached to another bus, its monitor, however, can not detect this data

transfer on the other bus, despite having been started after the failure of receiving data

from the main queue. This particular message has to be waiting in the another queue and

inform the waiting receiver of its arrival. A bus interface is also required to accomplish

the DTB handshaking and data transfer on bus_2. For convenience, the handshaking

takes place between the bus interface and the asynchronous channel gateway_2 because

receiver’s monitor can now sense the DTB data transfer that is indicated in the ATB.

Having clarified the background, we can now look into individual components:

asynchronous channel gateway_l, asynchronous channel gateway_2, and asynchronous

channel bus interface. They correspond to Figure 5.16, Figure 5.17, and Figure 5.18.

Connected to Bus_l, gateway_l is a read only component and responsible for admitting

data from the sender. The permission to operate on main queue has to be applied for

before any DTB handshaking takes place. The main queue is identified as critical

section in Figure 5.16. Inside the critical section, the valuable mark is checked. A zero

indicates that the receiver is not waiting for data and it can be sent into the main queue,

whereas a non-zero prompts data sent into the bus interface queue to inform the receiver

of arrival of the data. This queue is also a critical region because both accesses from

gateway_l and bus interface are operating concurrently.

Compared with gateway_l, gateway_2 is a write only component. Its responsibilities

are:

• completing handshaking with the bus interface

• taking data from the main queue and placing them on Bus_2

In much the same way as gateway_l, it has first to apply for permission to access the

main queue because of the concurrency between gateway_l and gateway_2. In addition

96

to the handshaking, it checks whether the main queue is empty and set the mark to “1”

if yes. This mark will be reset to “0” by gateway_l when the data arrives from the

sender. Notice the selection structure “segmt2 /= arbitra_id” in Figure 5.17. It

distinguishes the handshaking request from the receiver of this asynchronous channel

from a similar request but that comes from its own bus interface. The major difference

in reply to these two requests is that the request from its own bus interface is a mimic

handshaking. It is only used to inform the receiver of the arrival of the message, which

is being observed by receiver’s monitor.

The asynchronous channel bus interface illustrated in Figure 5.18 is a rather ordinary

bus interface component introduced earlier, except it acquires data from the interface

queue. It needs, therefore, the permit to operate on the queue thanks to the concurrent

operating from the gateway_l side. Other operations involved in the component are all

related to the DTB data transfer handshaking presented already.

5.5.4 Synchronous Channels with Two Buses

This is a relatively complex implementation in comparison with other three channels. It

includes two channel gateways, two bus interfaces, two interface queues, and one main

memory block as the main queue. Its internal design has been shown in Figure 5.19.

Synchronous Channels with Two Buses

Bus_1

Interface.!

Synchronous
Channel

Gateway.!

Synchronous
Channel

Gateway_2

Data Marks

lnterface_2

B u s _ 2

Figure 5.19 Synchronous Channels with Two Buses

Contrary to an asynchronous channel that must contain a queue in order to

accommodate a series of messages, all synchronous channels across the buses can be

pegged into a single global memory. Each synchronous channel has one entry and one

97

mark in it, which is the same structure as its fellow synchronous channel organization

on same bus. It is easy to find that component gateway_l, queue_2, and interface_2

form a synchronous communication path from Bus_l to Bus_2, while component

gateway_2, queue_l, and interface_l are amalgamated into its opposite path from

Bus_2 to Bus_l. This symmetrical structure enables us only to discuss the path from

Bus_l to Bus_2 below. . In fact, the designs for queue_2, and interface_2 are same as

the components in the asynchronous channel on same bus. The following content is

accordingly focused on the synchronous channel gateway_l.

Figure 5.20 represents the internal design of synchronous channel gateway_l. In

addition to executing DTB data transfer handshaking with its counterpart on Bus_l, this

component takes care of message storage and retrieval and bookkeeping. After a

component attached to Bus_l gains control of the DTB, it contacts the gateway_l

through a synchronous channel and the channel identity is specified in the ATB. The

following options must be taken into account:

1. The component is sending message and receiver is waiting (rw = 0 & remark(atb) =

1)

2. The component is sending message but receiver is unready (rw = 0 & remark(atb) =

0)

3. The component is receiving message while it is available (rw = 1 & remark(atb) =

1)

4. The component is receiving message while it is unavailable (rw = 1 & remark(atb) =

0)

It is understandable that both gateway_l and gateway_2 concurrently access the global

memory and the protection against data inconsistency should be imposed upon it.

Similar principle is applied to queue_l and queue_2.

Option one and two signify a bus-write operation mastered by the component at Bus_l.

In the case of option one, i.e. the message is waited for (remark(atb) = i) , the control

line ready 1 is set to “0” that will release the sender from waiting at Bus_l. Besides, the

remark in the concerning address is set to “0” and the message is directly sent to

queue_2. This message will be resent via interface_2 and acknowledged by the

gateway_2. Because both of them are attached to Bus_2, the DTB data transfer can be

98

detected by the receiver’s monitor that has bee started after it failed to receive message

from the global memory earlier. In the case of option two, the receiver is not ready

(remark(atb) = 0) and the massage is placed in the memory and the line ready 1 is

assigned to “1” that results in the sender having to wait until the receiver pays a visit at

the address.

(start)

No

Yes

segm tl /=
arbitra_id1 No

YesYes
Yes

No

Yes

Yes

No

No

Yes

No

Yes

NoNo

Yes

No

No
ds = 1

Yes

end

permission
.g r a n t e d .

rw = 1 and
remark(atbl) =

rw = 0 and
[emark(atbl) = 0,

rw = 0 and
cemark(atbl) =

lermission
a ra n te d .

lermission
.a r a n te d .

^ ^ a s 1 = 0 and ds1 = (T \ .
and sd1 = 1 and s a l = 0 and
' ' - ^ d k ’event and elk =

dtack <= 0

dtack <= 1

apply for operating on
the critical section

apply for operating on bus
interface queue2

rem arks(atbl) := 0;
releasing the critical section;

remarks(atb1 ;= 1; releasing
the critical section; readyl <= 1

apply for operating on bus
interface queue2

memory(atbl) := dtbl;
rem arks(atbl) := V, releasing the

critical section; readyl <= 1

dtb l, a tb l, sd1, and s a l sent into
bus interface queue2; releasing the
bus interface queue2; readyl <= 0

a tb l, sd1, and s a l sent into bus
interface queue2;

releasing bus interface queue2;
_________ readyl <= 0_________

dtbl <= memory(atbl);
memory (atbl) := 0;
rem arks(atbl) := 0;

releasing the critical section

Figure 5.20 Synchronous Channel Gateway_1 (for two buses)

On the other hand, a bus-read operation (which rw = 7) is undergoing. If the message is

available (remark(atb) = 7), the message is taken out of the memory and the remark is

deleted. In addition, the sender is to be informed of the event, which has been waiting

for release at Bus_2, but gateway_l needs to apply for access to queue_2 first because

99

interface_2 is running concurrently with gateway_l. If the message is unavailable

(remark(atb) = 0), both remark(atb) and readyl are assigned to “ 1”, which results in the

sender suspending itself on receipt of the readyl as “1”.

Finally, the selection “segmtl /= arbitra_idl” in Figure 5.20 is used to recognize

whether the bus event is initiated by interface_l or by other hardware/software

component from Bus_l. While the latter position has been dealt with above, the former

one is simpler. Only DTB handshaking occurs.

5.6 VHDL Packages and Libraries for Channel Communications

VHDL packages and libraries fostering the asynchronous bus protocol and

communication channels have been developed in this research. In addition to VHDL

packages introduced in Chapter 4, the package ESSENTIAL_DEFINITIONS is specially

designed to support the bus protocol handling. All VHDL Components discussed earlier

in this chapter have been tested and integrated into a VHDL library. It includes the

following components:

• Bus_Operating_Logic

• DTB_Arbitrator

• Clock_Generator

• Synchronous_Channel_Same (on same bus)

• Asynchronous_Channel_Same (on same bus)

• Synchronous_Channel_Differ (on two buses)

• Asynchronous_Channel_Differ (on two buses)

Their VHDL source files have been included in Appendix E for inspection. Some of the

components listed above contain sub-components that are written in concurrent VHDL

processes. For example, while its conceptual structure has been described in section 5.4,

the component: Synchronous_Channel_Differ is composed of the following concurrent

processes plus other invocations from the VHDL packages:

gateway_l

gateway_2

bus_requester_l

bus_requester_2

bus_interface_l

100

bus_interface_2.

Thanks to the VHDL packages and libraries introduced above, VHDL co-simulation

programs can be developed without the knowledge of communication protocol. The

VHDL components in the libraries and packages can be readily implanted in the

performance evaluation program. More important is that the VHDL packages and

libraries provided in this project have been properly designed and tested. They are all

generic components and can be reused across the developments of codesign

applications. Furthermore, communication channels can be synthesized in much the

same way as electronic device is produced from assembler line and supplied in the

hardware circuitry components. The VHDL programs in such a treatment tend to be

more robust, reliable and cheaper. This type of process also eliminates the need to build

each application from scratch and promotes the component reuse, which is an important

principle in the object-based methodology. These VHDL packages and Libraries,

therefore, constitute the part of developmental contributions in this thesis.

5.7 Integrated Performance Evaluation in the Co-simulation Technique

As mentioned earlier in this chapter, the performance evaluation for codesign system

relates to three factors: the performance of hardware component, the performance of

software component, and the communication cost. While section 5.5 targets the last, this

section caters for the other two. In addition, the integrated performance evaluation

technique cemented with three factors in VHDL co-simulation program is dealt with too

in this section.

5.7.1 Performance Evaluation for Software Component

Evaluating the performance of software component is relatively easy to execute due to

the fact that embedded processor is normally provided with development board and

software simulation tools. They facilitate the performance evaluation in

emulation/simulation. This research has adopted the ARM embedded processor [Fur96]

in respect that its software development toolkit is available. Consequentially, all

components dispatched to software implementation during hardware/software

partitioning phase are assumed to execute on ARMs and the following discussion is

focused on this processor though it does not make principal difference if other

processors are employed.

101

Our project uses the ARM Software Development Toolkit (SDT) supplied by the

Advanced RISC Machines Ltd., which supports the C cross-development for ARM

processors. It features a fully integrated development environment based on Windows

95/NT 4.0. A thorough description of the environment can be found in [ARM97]. The

following three facilities are included in the SDT:

code and data size

overall execution time

time spent on specific parts of an application

The performance evaluation discussed here is mainly concerned with overall execution

time and the time spent on specific parts of an application whereas the code and data

size are also highly beneficial to codesign, which will be exploited further in the

conclusion chapter.

It is worth mentioning that we have targeted at the distributed architecture with multiple

processors and the layered bus structure. Based on the single bus target architecture,

previous codesign approaches allocate all software components to a single processor.

These components, therefore, have to be bonded in a single C program, which is in fact

a reprogramming process. Moreover, the communications between software

components have to take place via parameter passing in C functions. Notwithstanding

its simplification of the software communication, it restrains the design space

exploration. On the other hand, the distributed target architecture increases the calibre

to design space exploration by allowing multiple processors and the flexible scheme of

allocation of software component. We would like, however, to leave this matter as one

of the future research topics.

The ARM C compiler and the linker check the C program and then create executable

code. The overall execution time and the time spent on specific parts of an application

can all be obtained by using debugger facility in the SDT. As a C program executes, the

SDT counts the total number of clock ticks taken, and reports this figure to user either

through the debugger’s $clock variable, or indirectly through a C library function such

as clockQ. In addition, because of debugger’s symbolic feature, any program section

102

can be accessed against its executing clock ticks, (i.e. the time spent on this particular

section), provided the following parameters are set up for the symbolic debugger:

The type and speed of the memory attached to the processor

The speed of the processor

An example is presented below to demonstrate the timing acquisition for a software

component.

5.7.2 Software Component Performance (an example)

The C program is designed to demonstrate the time taken by insertion sort algorithm.

The output from ARM SDT’s compiler and linker is displayed in Figure 5.21 and the

execution results in the ARM debugger are shown in Figure 5.22. As the Console

Window indicates the insertion sort took 1369 clock cycles. This is obtained through C

library function clock() and using processor ARM7D with clock speed 20 MHz and

2048 Mbytes on chip memory. According to the clock speed and clock cycles taken by

the function insert_sortQ, the time delay for this function is then decided, which is 450

nanoseconds. Alternatively, this can also be retained by setting Toggle Breakpoint in the

SDT Window Toolkit and using dynamic debugging facility.

__________________________ _ l-in|x|
{^1 Eile Edit yiew Eroject Options Jjfndow Help - Iff I x |

Bicifnl :h ‘M ̂I HlaMcil 1 |&Ib1*I >i|®li
Building...
ARMCC C:NARM202U\TESTS\SORT.C
"C:NARM202U\TESTS\SORT.C", line 37: Warning: character sequence / * inside comment
C:\ARM202U\TESTS\SORT.C: 1 warning. 0 errors, 0 serious errors
Linking (C:\ARM202U\TESTS\SORT) ...

code inline inline 'const' RW 0-Init debug
size data strings data data data data

Object totals 596 4 84 0 0 0 4456
Library totals 14224 236 640 128 740 1104 200
Grand totals 14820 240 724 128 740 1104 4656
Build Complete.

<1 I__________________________________ J
iCheck Complete. I I iNUM I

Figure 5.21 Output from the ARM Project M anager

5.7.3 Performance Evaluation for Hardware Component

The performance of hardware component is to be acquired through High-Level

Synthesis (HLS) for chips and hardware systems. The HLS has been a well-established

research area in the VLSI discipline since late 80’s [Cam90]. A preliminary discussion

will help appreciate the technical details described later in this section.

The following essential issues are involved in the HLS [Gaj92]:

[x^ARM Project Manager - [Sort.apj]

103

High-level formulation (i.e. theoretical foundations)

Design modelling and representations

Design quality measures

Synthesis algorithms

Design standardization and its supporting environments

Its research topics yet include:

Design representation and transformations

Partitioning

Scheduling

Allocation

l-|fl|x|
£ le Edit S e a rc h yiew E je cu te Options Item W ndow Help

I S C :\ARM 202UW ESTS\SORT - ARM D ebuggei

H "
r i r r — "™— —

j D l i S l
0x000092c4 S3 in t m am (vo id) A0x000092c8 EX I
e x i t 65 c h a r » s tr in g s [N] , " s t r i n g s copy[H];

0x000092d0 : 66 c h a r buffer[H »(LOG10_H +l)];
r t e x i t 67 ■ c h a r »p;

0x000092d8 68 c lo c k _ t s t _ t i * e , e d _ ti» e ;
0x000092dc 69 i n t i ;
0x000092e0 70
0x000092e4 71 p ■ b u f f e r ;
0x000092e8 72 f o r (i * 0 ; i < H ; i++) {
0x000092ec 73 s p r i n t f (p . H_F0RHAT. i) ;
QxQQ0Q92f0 74 s t r i n g s t i] ■ p ;
0x000092f4 75 p +- IOG10 H+l;
0x000092f8 " 76 >
0x000092fc 77 ra n d o m is e (s tr in g s . H):
0x80009300 78
0x00009304 79 S'* Do i n s e r t i o n s o r t • /
0x00009308 80 x e * c p y (s tr in g s_ co p y . s t r i n g s , s i z e o f (s t r i n g s)); i
0x0000930c 81 s t_ t i » e ■ c lo c k () ;
0x00009310 82 in s e r t_ s o r t (s t r i n g s _ c o p y . H>;
0x00009314 83 e d _ ti» e * c lo c k () ;
0x00009318 84 c h e c k _ o rd e r (“I n s e r t i o n " , s tr in g s_ c o p y , N):
__r t _ f i n a l i s 85 p r in t f (“I n s e r t i o n s o r t to o k kd c lo c k tic k sN n " , ed_ ti« ie - s t _ t i * e) ;
0x00009320 86 >
0x00009324
0x00009328

± J • h i <1 1

i n - _ | n |x |
I n s e r t i o n s o r t took 1369 c lo c k t i c k s

A - 1

= !

i f } .

Program terminated normally 1 f tU M l

Figure 5.22 Results from the Debugger

The performance evaluation concerned here fits into design quality measures and

synthesis algorithms. The former predict efficiencies of synthesized hardware design,

such as manufacturing, testing and maintenance costs, silicon area, wire delay, and the

performance, whereas the latter are developed to transform a high-level description into

its low-level counterpart that is represented in a set of connected storage and functional

units. Miscellaneous synthesis algorithms have been published [WC91] since late 80’s,

among which some of the algorithms have been incorporated in automatic synthesis

tools. Because of variant efficiencies and emphases in those algorithms, the synthesized

quality differentiates from one to another. Amongst synthesis algorithms, one particular

group, Scheduling Algorithms, assigns each operation to a point in time that is

104

sometimes called a control step. The number of control step derived from scheduling

algorithms to accomplish a task actually represents the performance of this component,

which is exactly the time delay in the component when it is simulated in VHDL.

A behavioural description (the VHDL program in this project) for a hardware

component specifies the operations to be performed by the synthesized hardware

circuitry. During the compilation in hardware synthesis, the behavioural specification is

converted into an internal representation, such as CDFG (Control/Data Flow Graph). It

is then divided into sub-graphs, each of which is executed in one control step that

accords with one state in the Finite State Machine (FSM) model with a Datapath. The

scheduling process dispatches operations in CDFG into states or control steps. The

ultimate goal of scheduling in hardware synthesis is to optimize the number of control

steps required to complete a function under the constraint of hardware resource or cycle

time. This research, however, does not intend to compete those published scheduling

algorithms. It, instead as an integrated part of the codesign approach, incorporates those

well-established algorithms in performance evaluation phase to determine the number

of control step, i.e. the performance of hardware component.

Two types of general scheduling algorithm exist at present: Time-Constrained

Scheduling and Resource-Constrained Scheduling. Although any scheduling algorithm

is theoretically practicable to be integrated into our methodology, the List Scheduling

Algorithm [CW91] has been chosen in this project due to its huge popularity and its

capacity of trading hardware cost for its performance. Besides, we only deal with the

basic scheduling algorithms with the following restrictions:

• Each operation takes just one control step.

• Each type of operation can only be performed by one type of function unit.

The List Scheduling Algorithm, outlined in Figure 5.23, is essentially a resource-

constrained scheduling algorithm. In this algorithm the operation types are from ti

through tm. This means that the number of different operator type is m. The resource

constraint for each operator type is given and reflected in the num(tj). For any operator

type tj in the design, its priority list, P_list(tj), is maintained. Any ready operation in the

design (i.e. all its predecessors are scheduled) is arranged into its priority list and

105

situated at an appropriate position according to its priority. The priority function could

be the mobility of an operation, i.e. the length of the longest path from the operation to

another operation with no immediate successor, or the number of immediate successor.

The last feature is used as the priority function in the following example.

The List Scheduling Algorithm operates on the DFG {Data Flow Graph) of a design,

i.e. an internal representation of the behavioural description (the VHDL program in this

case), which can be automatically converted by hardware synthesizer. The priority lists

are initialized by the function Initialize,_Priority_List(). Those operations without

predecessors are first put into the priority lists. The operations in the lists are gradually

scheduled into control steps. The number of control step is accumulated in the variable,

C_Step. During the course of scheduling, other operations that were originally not in the

priority lists may be added into the priority lists because of their predecessors arranged

into control steps and deleted from the priority lists. This process will continue in loops

until all operations of the design are scheduled.

Algorithm: List Scheduling

lnitialize_Priority_List(V, PJist(t,), PJist(t2) , ... PJist(tm));
C_Step = 0;
While((PJist(t1) /= 0 o r ... or PJist(tm) /=0) loop

C_Step = C_Step + 1;
for i in 1 to m loop

for j in 1 to num(t,) loop
if P Jist(t,) /= 0 then

Update_Schedule(S, First(PJist(t,)), C_Step);
PJist(ti) = Tail(PJist(ti));

end if
end loop

end loop
Update_Priority_List(V, PJist(t,), PJist(t2) , ... P_list(tm));

end loop

Figure 5.23 Algorithm for List Scheduling

Notice that the process in Figure 5.23 operates on DFGs that is compiled from the codes

with sequential structure. Other structures such as selection and repetition have to be

treated with their converted CDFG (Control/Data Flow Graph) structures. We will

clarify this issue in the following example.

5.7.4 Hardware Component Performance (an example)

In this example, scheduling a design in List Scheduling Algorithm and trading hardware

cost for its performance are demonstrated. First, we deal with individual DFG in List

106

Scheduling Algorithm. It is then extended to the general cases with selection and

repetition structures.

BEGIN P R O C E S S

t_tmp:= t_tmp +1;

if (t_tmp < 16) then
syn_receive(data_token, tjem p , 99999 ns);
temp:= t_temp.color.data2;

--/ processing 16 bits information /--
buf_reg:= buf_reg(1 to 15) & temp;
t_back:= syndrom(9);
t_forward:= temp;
syndrom:= (t_back xor tjorward) & (syndrom(O) xor tjorward) &

syndrom(1) & (syndrom(2) xor t_back xor tjorward) &
(syndrom(3) xor t_back xor tjorward) & (syndrom(4)
xort_back) & syndrom(5) & (syndrom(6) xor t_back) &
(syndrom(7) xor t_back xor tjorward) & (syndrom(8)
xor tjorward);

else
--/ sending off 16 bits information & 10 bits syndrom /--

data_buffer(0 to 31):= buf_reg(0 to 15) & syndrom(0 to 9) & "000000";
bus_called(clk, chanl_out, word_zero,

data_buffer, datajem p, ’O’, ’O’, ’O’,
a tb j, seg m tj, d tb j, rw j, s d j , s a j ,
e n b j , don ej);

--/ initializing the pm_16 again /--
tjm p:= -1;
syndrom:= (others => ’O’);
buf_reg:= (others => ’O’);

end if;

END P R O C E S S

Figure 5.24 Hardware Design in VHDL

1 | t_tmp:= t_tmp + 1

t_tmp < 16

2 | temp:= bus_read_operation|

bus_write_operation := data_buffer 5

dala_buffer(0 to 31):= buf_reg(0 to 15) &
syndrom(0 to 9) & "000000";

t_tmp:= -1;
syndrom:= (others => ’O’);
buf_reg:= (others => ’O’);

buf_reg:= buf_reg(1 to 15) & temp;
t_back:= syndrom(9);
tJorw ard:= temp;
syndrom:= (t_back xor tjorw ard) & (syndrom(O) xor tjorw ard) &

syndrom(1) & (syndrom(2) xor t_back xor tjorw ard) &
(syndrom(3) xor t_back xor tjorw ard) & (syndrom(4)
xor t_back) & syndrom(5) & (syndrom(6) xor t_back) &
(syndrom(7) xor t_back xor tjorw ard) & (syndrom(8)
xor tjorw ard);

Figure 5.25 Control-Flow Structure

The original VHDL design has been shown in Figure 5.24. Its control-flow structure is

illustrated in Figure 5.25. In the Control-Flow Structure, there are six rectangles

107

constituting sequential sections in the design. When these blocks are filled in their

DFGs they produce a complete CDFG for this design.

Figure 5.26 represents the DFG converted from the Block 4 in Figure 5.25. To this DFG

two algorithms demonstrated below are applied and outcomes are listed in Table 1.

syndrorrsyndrom syndromsyndrom syndrom syndrom syndrom syndrom syndrorr syndrom
temp

V.fxor

Figure 5.26 DFG for Block 4

In the table, node V2 represents the operation “XOR”. It has four immediate successors

so that its priority is assigned to four. Others are all ones because they have only one

immediate successor. The column “ASAP” shows the control steps, to which each

operation is assigned. This particular column results from application of the ASAP (As

Soon As Possible) scheduling algorithm. This fundamental scheduling algorithm, to

which many scheduling algorithms refer, is exactly an ultimate List Scheduling

Algorithm without resource-constraint. The List Scheduling Algorithm however

requires the constraint of resource designated in advance. The ASAP scheduling

algorithm here is used to find the maximum demand for hardware resource in a design

and derive the reasonable resource-constraints from it. They can then be applied to the

List Scheduling. For example, five “XOR” operations and one operation are

required in the ASAP algorithm, which implicates four other combinations as possible

resource-constraints. From Schd_l through Schd_4 forms individual scheduling scheme

in the List Scheduling Algorithm.

108

Table 1 includes both hardware costs (Components) and their corresponding

performances (Total Steps). As a byproduct, this can be used to trade hardware cost for

its performance for individual hardware component although it is not the focus of this

project. It is clear that Schd_2 is the most cost-effective scheduling scheme because it

reaches the highest execution speed, i.e. 10 control steps, and at the same time the least

hardware cost, compared with ASAP and Schd_l.

Table 1.
Node Priority ASAP Schd_1 Schd_2 Schd_3 Schd_4
V1 1 1 1 1 1 2
V2 4 1 1 1 1 1
V3 1 1 1 1 2 3
V4 1 2 2 2 3 6
V5 1 2 2 3 4 7
V6 1 2 2 3 4 8
V7 1 2 2 2 3 4
V8 1 3 3 3 4 5
V9 1 4 4 4 5 9
V10 1 5 5 5 6 10
V11 1 6 6 6 . 7 11
V12 1 7 7 7 8 12
V13 1 1 1 2 2 4
V14 1 1 2 2 3 5
V15 1 8 8 8 9 13
V16 1 9 9 9 10 14
V17 1 10 10 10 11 15
Total
Steps N/A 10 10 10 11 15

Compo 5 "XOR" 4 "XOR" 3 "XOR" 2 "XOR" 1 "XOR"
nents N/A 1 "&" 1 "&" 1 "&" 1 "&" 1 "&"

We have to extend the scheduling algorithm to take on general behavioural descriptions

with selection and/or repetition structures. The CDFG structures, as illustrated in Figure

5.25, will be used in the following discussion.

A selection structure corresponds to “if”, “if else” or “case” statement in the

behavioural description. Potential control-flow structures are drawn in Figure 2.27. As

demonstrated earlier, the List Scheduling Algorithm can help determine the control

steps and costs for individual sequential blocks such as A, B, Ai, through Am in Figure

2.27. Additionally, a scheduling algorithm has to allocate operators for evaluation of the

conditional expression and comparison. It is noticeable that although there may be

multiple threads inside a selection body, such as Ai through Am in a case statement, the

operators in a selection structure can be shared economically across the threads, for they

are mutually exclusive depending on the outcome of evaluating the conditional

109

expression. Bearing this in mind, we can treat a selection merely as a normal sequential

block. The only difference is that the total operator required in a selection is the union

of individual thread’s. This scheduling policy can be further applied to the CDFG in

Figure 2.25. Two extra control steps need to complete operation “t_tmp + 1” and

comparison “t_tmp < 16”. The hardware cost is the union of two threads’ costs that are

five “XOR”s and two “&”s, plus one adder and one comparator.

1 2 3 4 5 6 7 8 9 10

101 *

Figure 5.27 Control-Flow Structures Figure 5.28 Loop Scheduling

The performance of a selection, however, can not determined in scheduling phase since

the conditional expression is dynamically evaluated during simulation. This difficulty

does not pose a serious problem. It can be solved in co-simulation explained in the next

section.

On the other hand, a repetition structure corresponds to “while”, “for” or “loop”

statement in the behaviour description. A scheduling algorithm can only practically

schedule a loop with definite repetition time, such as for statement in VHDL.

Components with other repetition structures are deemed to implement in software.

There are three different ways of scheduling a loop [Gaj92]: Sequential Execution,

Partial Loop Unrolling, and Loop Folding. The first method is adopted in this project.

We assume that the loop has n iterations and each loop needs t control steps and

hardware cost c to complete. The total execution time is therefore nt. An example is

shown in Figure 2.28. Suppose the loop has 10 iterations and each needs t control steps

to finish. The total execution time is therefore lOt. The hardware cost is the cost in

repetition body.

It should be pointed out that the scheduling algorithm in this approach is not aimed at

synthesizing a hardware design into circuitry, which can well be accomplished by

commercial hardware synthesizers. The method introduced here is only used to

110

determine the hardware cost and the execution time wherever possible. Other unsolved

performance issues will be dealt with in the system co-simulation phase.

5.8 Performance Evaluation for Codesign System

We have so far furnished the methods purely to evaluate individual performances of

hardware/software components and the communications across the designated system

target architecture. These individual methods will be pieced together in this section to

create an integrated approach to performance evaluation for codesign system, which

provides a flexible approach to performance evaluation and is also the strength of our

methodology.

VHDL simulation (co-simulation here) plays a vital role in our approach. Compared

with previously published research, we pursued a hardware-based co-simulation

approach, i.e. the co-simulation supported by the VHDL simulation environment. This

route has been pursued because of the following reasons. First of all, VHDL language

supports hardware design. Its simulator provides the performance evaluation for

hardware components. Secondly, thanks to the VHDL synthesis tools, most of the

VHDL design can be automatically synthesized into hardware circuitry, which speedups

the time to market and improves design quality of hardware component.

VHDL supports three abstraction models: a behavioural model, a timing model, and a

structure model [Ash96j. Here, first two models are involved to support the co

simulation. A behaviour is a functional interpretation of a hardware system, while the

timing in hardware design designates the amount of time elapsed during simulation.

Simulating a design in VHDL concerns two separate issues: functionality and timing.

The first one is same as in software execution at the behavioural level, while the second

is unique in hardware simulation. The major difference between hardware and software

design is that a hardware designer has to handle the timing in a circuitry whereas the

timing in software design is handled by the operating system. Utilizing this feature

properly, however, one can fully manipulate the timing with regard to

hardware/software components and the communication between them, so that the

evaluation of the system performance can be achieved.

I l l

As aforementioned, while a behavioural design is evaluated for its functionality, it

makes no difference whether it is simulated by hardware simulator or executed by

operating system. This rationalizes the practice, in which a VHDL simulator undertakes

evaluations of functionality for both hardware and software components. The

performance of individual hardware/software component can be represented by

insertions of time delay statements (annotations) in the relevant places in VHDL the

program. In addition to those statements accomplishing the evaluation of functionality,

a VHDL co-simulation program thus includes timing annotations (time delays) for

individual hardware/software components and the time delay for communications that is

supported by the VHDL packages and libraries developed in this project. The

annotations for hardware component come from the result of scheduling process and the

time delay for software component is based on the clock cycles that are retained during

symbolic debugging in the ARM’s SDT. Since the simulation is positioned at the higher

level, it avoids the problems of simulation efficiency as mentioned in Section 5.1 and, at

the same time the performance evaluated in the co-simulation could be accurate to

system clock cycles.

The case study presented in Chapter 6 will demonstrate how the codesign approach

proposed in our research is applied to solving a codesign problem. The technical details

described in this chapter will become clear when they are applied to a comprehensive

case study.

5.9 Review

In terms of system target architecture previous research was focused on the

conventional target architecture, which is composed of a single processor, single bus,

and hardware component(s). The cosynthesis method involving this architecture is

rather straightforward, in which all software components are confined in the processor

and the communications between software components are simplified in the parameter

passing between procedures or/and functions. The communications between hardware

and software components are implemented in bus communications via an intermediate

global memory or system interruption. The evaluation of the system performance has to

be tied to this inflexible target architecture.

112

In order to increase the system throughput, current practice in codesign discipline is to

dispatch those computationally intensified components to hardware implementations.

But, those component does not always exist in codesign system. This causes the

problem in which hardware implementations do not necessarily improve the system

performance. It results from the fact that if the system communication dominates over

the computation load of individual component there is little effect on the system

performance by dispatching more system components to hardware implementation. The

research results published in [Edw97] support this point of view.

P2 A2
(80 ms)(50 ms)

B2
(60 ms)

P6 E4(50 ms)

Figure 5.29 System Process Graph

Our approach, however, goes beyond the conventional single bus system target

architecture. The methodology we developed allows system target architecture to be

exploited for higher communication throughput. This feature is supported by the layered

system bus structure described in this chapter. An example of exploration of bus layer

to improve the system communication throughput is shown in Figure 5.29 and Figure

5.30.

<

C

A1 A2
(50 ms) (80 ms)

(50ms)

System Bus

B2
(60 ms)

System Bus 1

(A)
A1

(50 ms)
A2

(80 ms)

|
>

BusGateway

System Bus 2

I
Bt

(50ms)
B2

(60 ms) (B)
)

Figure 5.30 Exploration of System
Target Architecture

113

In this example, we assume that the system being codesigned comprises four functional

components A I, A2, B l, and B2. They have similar computation loads as indicated

inside each function. External entities E l and E2 provide raw data for processing in the

system and E3 and E4 store the processed data. The synchronous communication paths,

PI through P7, are supposed to dominate over system’s computation. We also assume

that the communication loads in paths PI through P3 are higher than the loads in paths

P5 through P7. Besides, the communication load in P4 is much light than the loads in

other paths.

Although in the partitioning phase these four components can be all dispatched to

hardware implementations, the system performance does not significantly improve if

they are connected to the same system bus as shown in Figure 5.30 (A). This is because

the waiting time for each component to access to the system bus now overtakes the

execution time of individual component.

The system target architecture supported in our methodology is however flexible,

compared with the conventional architecture. Additional system bus can be added if the

communication throughput should increase. In Figure 5.30 (B), the system target

architecture with two bus layers is employed to increase the system communication

throughput. Furthermore, the allocation of components A I, A2, B l, and B2 within these

two buses also exerts impact on system’s performance. Because the communication

loads in paths PI through P3 are higher than the loads in paths P5 through P7, A I, A2,

E l, and E3 are assigned to the System bus 1 as shown in (B), which has higher

throughput. The components B l, B2, E2, and E4 are connected to the System Bus 2.

This allocation scheme can produce better system performance due to the second

system bus introduced to promote the system’s communication throughput.

While this example is dealt with in the principles introduced above, the next chapter

will use a case study to demonstrate the quantitative impact on system performance in

relation to the varied component allocation schemes.

Major contributions from this chapter are summarized as follows:

114

• The asynchronous bus protocol has been designed, based upon which the layered

system bus structure has been created. In addition the VHDL packages supporting

the virtual prototyping and co-simulation in VHDL programs are produced.

• The integration of the ARM SDT Tool Kit and the List Scheduling algorithm into the

proposed methodology and the cosynthesis method in which the system components

are allocated to the layered system bus structure have also been devised, which

together with the dispatch of system components towards hardware implementations

improves performances of both individual components and the whole system.

115

Chapter 6

Case Study
The feasibility and strength of our Co-PARSE Codesign Methodology is evaluated by a

case study: Codesign o f RDCS (Radio Data Computing System). The RDCS is a new

Radio Data Application System. It extends current RDS (Radio Data System)

technology by introducing the parallel channel processing and the data computing

techniques. The design of the RDCS has been supported by our codesign approach.

Tasks undertaken in this study are listed below:

• Co-specification of RDCS in Enhanced Process Graph and Co-BSL program

• Functional verification and system profiling in VHDL simulations

• Hardware/software partitioning and component allocation

• Performance evaluation for software components in ARM SDT

• Performance evaluation for hardware components in Listing Scheduling Algorithm

• Co-synthesis of interfaces of hardware/software with virtual prototyping technique

• System performance evaluation in VHDL co-simulations

• Analysis of the co-simulation results

6.1 Fundamentals of RDS

Since the RDC system is an extension of the RDS that is the cornerstone in this case

study, a general introduction to the RDS is first given to assist in understanding the

design details. Followed are the details of the RDCS itself.

The RDS [MW90] [RDS98] was originally designed to broadcast digitally encoded

information over Europe, including UK in late 80’s. It was especially intended to assist

the car receivers in the task of proper tuning. Because of the increasing demand for

information and the dramatic technology advance, its potential use has well been

beyond its original target. The European Standard EN 50067 has become the definitive

standard in Europe and the UK [Bri92]. It has been designed to be upwardly compatible

allowing the broadcaster and receiver manufacturer to add or to extend existing features

when the demand develops. This case study develops a new feature of RDS, which is

the Radio Data Computing.

116

The RDS technology was established on the fact that modulation bandwidth of

frequency modulated transmitter is typically about 90 kHz but the required bandwidth

for stereo sound signals is some 53 kHz, which provides an extra radio resource

carrying additional information in current analogue radio broadcasting channels. The

data signals are carried in a sub-carrier that is added to the normal VHF/FM radio signal

at the input to the ordinary VHF/FM transmitter.

The RDS broadcasting has been illustrated in Figure 6.1. Radio data signals are fed into

the radio data encoder. Encoded data signals are carried in a subcarrier, which is

amplitude-modulated by the shaped and biphase coded data signals, and then added to

the stereo multiplex signal inside the VHF/FM transmitter. After the radio (and data)

signals are demodulated in the VHF/FM receiver and prior to any de-emphasis, the

radio data signals are separated from the multiplexed signal by a sharp band-pass filter

and then demodulated and differentially decoded. Further data processing such as

synchronization or error correction takes place in the radio data decoder.

radio
broadcasting

radio data
input

Vrradio data
encoder V H F /F M

receiver
stereo sound

process
V H F /F M

transmitter

radio data
decoder

application
processaudio

program

Figure 6.1 Scenario of RDS Broadcasting

This case study is not concerned with radio broadcasting that is detailed in the physical

layer [Spe84]. It instead deals with data decoding and application, i.e. upwards from the

data-link layer. In data-link layer, the encoded data signals are organized in a 16-bit

word followed by a special 10-bit CRC error correction checkword [PW72], which

forms a 26-bit block. Four consecutive blocks produce a group that is the biggest unit in

the baseband structure as shown in Figure 6.2.

The radio data decoder in Figure 6.1 receives binary bits from the VHF/FM receiver

and performs error protection. The principle of error protection is as follows. Each

transmitted 26-bit block contains a 10-bit checkword that is primarily used by the radio

117

data decoder to detect and correct errors that occur during transmission. The checkword

is the sum of the following:

• The remainder after multiplication by 10x and then division (modulo 2) by the

generator polynomial g(x), of the 16-bit information word

• A 10-bit binary string d(x), called the offset word

Where the g(x) is given by:

g(x) = x10+ x 8 + x7+ x 5 + x4+ x 3+ 1

and where the offset values, d(x) is different for each block within a group. They are

listed in Table 1.

Group = 4 blocks = 104 bits
block 1 block 2 block 3 block 4

block = 2 6 bits

information word ch eck word + offset word

information word = 16 bits —► checkword = 10 bits
m 15 | m14

Figure 6.2 RDS Baseband Coding Schem e

An obvious difficulty is how effectively to implement the multiplication and division of

the polynomials introduced above. There are several methods published for this purpose

[PW72]. They are either hardware or software based technique. This study employs the

most popular approach based on the shift-register arrangement i.e. hardware based

method. An informative documentation about this technique can be found in [Spe84].

Table 1.

Offset Offset
Word

Blockl 0011111100
Block2 0110011000
Block3 0101101000
block4 0110110100

The session and presentation layers specify the message format and addressing structure

in the RDS. The message and addressing structure in a group is described in Figure 6.3.

Those relevant abbreviations are listed as follows: PI = Program Identification, PTY =

Program Type Code, Ba= Version Code, TP = Traffic Program (identification code) and

Check word + offset (10 bits). The purpose of offset word is to provide a group and

118

block synchronization mechanism in the receiver/decoder. The added offset is

reversible in the decoder and the normal additive error correcting and detecting

properties of the basic code are unaffected. All information or check words, binary

numbers or binary address values have their most significant bit transmitted first. There

is no gap between the groups or blocks.

Although the message format could be considerably complex by combination of binary

bits representing PI, PTY, Ba, and TP, it is simplified here because this study is not

designed to tackle other application issues. In addition, it is impractical to simulate

inclusively RDS applications due to huge quantity of special stimuli required. As a

result, several reasonable simplifications have been made.

one group = 104 bits

block 1 block 2 block 3 block 4

first transmitted
bit of the group

po TP

_ w _

last transmitted
bit of the group

PI code check word
+

offset A

PTY check word
+

offset B

check word
+

offset C

check word
+

offset D

Figure 6.3 Messaging and Addressing Structure of a Group

The data signals are designated in two types: numbers and text (ASCII code). The

addressing structure is as follows:

The PI Code of Block 1 in every group is presented in the binary code

“ 1100000000000000” .

The Group type Code is “ 1111” for numbers and “0000” for text in Block 3 and 4.

The PTY, B0, and TP are all set to 0s.

6.2 Radio Data Computing System

The RDS is designed to encompass variety of new applications. An experimental

application is charted in this project that is named Radio Data Computing (RDC). It is

designed to receive integers concurrently from two separate RDS transmitters (stations)

and perform designated numerical calculations. This new application enables us to

demonstrate the communications via the target architecture with layered bus system

aforementioned in Chapter 5. Particularly, we assume that the numerical calculation is

as follows:

C = Fa(A) * Fb(B)

119

3239 1244

Where functions Fa and Fb are applied to matrix A and matrix B respectively. The

matrix resulted from Fa(A) is then multiplied by the matrix Fb(B) and the product is sent

to matrix C. Elements of two matrices A and B are encoded and transmitted from station

A and B separately.

The RDC system is codesigned, in the codesign approach developed in this project. The

major codesign issues are addressed and the experimental results are displayed and

explained.

Transmitter R eceiver A&
.P rep rocesso r t

Data
Processing

Receivers &
P reprocessors,

Data
Storage

Transmitters

r_d_bData
Processing

Data
Storage Transmitter 'R e c e iv e r B &

.P rep rocesso r E

Figure 6.4. Top-Level Process Graph Figure 6.5. Second-Level
Process Graph

Transmitter

Data
Storage

Transmitter

Figure 6.6. Third-Level Process Graph

6.2.1 Co-specification of RDCS in Enhanced Process Graph

The RDC system has been specified in the Extended PARSE Process Graph, and then

gradually been refined as shown in Figure 6.4 through Figure 6.7. At the top level

(Figure 6.4), a function server (.Receivers & Preprocessors) and a control process (Data

Processing) represent the RDS decoders and application processes as illustrated in

Figure 6.1. All other irrelevant details are abstracted in two external entities,

Transmitters and Data Storage. The results from the Data Processing are preserved in

the external entity Data Storage through an asynchronous channel. A wire path is used

because the transmitters emit radio message regardless of the readiness of receivers.

The Co-BSL specifications in relation to the top-level process graph and the low-level

process graph are included in Appendix F, which forms the basis for the refinement that

subsequently results in the VHDL program shown in Appendix J.

The low-level process graph is depicted in Figure 6.7, in which two decoders and two

numerical processors are employed concurrently to process two data streams from

separate RDS transmitters. Function server PM_16_A/B processes the first 16-bit

information word, while the next 10-bit checkword is dealt with by PCW_10_A/B. In

addition, function server Corrector A/B executes the error check/correction, whereas

function servers FA(Xij) and F B(Xj,k) apply the functions Fa and Fb to elements in

matrices A and B. The matrix multiplication takes place in the control process Control

Matrix. Apart from wire paths and an asynchronous path, other inter-process

communications are all synchronous channels because of the waterfall style in data

process.

PM_16_A
(Processing

Transmitter trsmit_pm_1
corrtr_f_1

C orrecto r

' PCW _10_A ^\ PGW.corrtM
(Processing))

JO bits Check W o rd y '

contl_str
D ata

S to rag e
Control Matrix

pm corrtr_2PM_16_B
(Processing

16 bits M essage) f_2_contlTransmitter
trsmit_pm_2 corrtr_f_2

C orrecto r

trsmit_pcw_2
PC W _10_B ^\ Pcw_cqrrtr_2

(Processing)■ ' y
J 0 bits Check W o rd /

Figure 6.7. Low-level Process Graph

It is worth noticing that the specification here is neither hardware nor software biased

because the processes in the process graph are neutral and they could be dispatched to

either hardware or software implementation. In addition, the components in the design

are being mapped to their hardware/software counterparts with whole structures

retained. Therefore they can be reused in other codesign projects. It also supports

object-based properties such as encapsulation and abstraction.

121

6.2.2 Functional Verification and System Profiling (stage 1)

The work in this section corresponds to the stage 1 of our proposed codesign framework

as shown in Figure 2.6. The embedded system with time restraint compels that the

system must both work properly and perform within time constraints. However, these

two issues must be tackled separately. First, the VHDL program (V_l) is created for

system functional verification plus system profiling. It is converted from its Co-BSL

description (Appendix F) according to guidelines exhibited in Chapter 3. The major

body of the program has been attached to Appendix G for reference. Second, the

previously created program V_1 is converted to the VHDL co-simulation program

(V_2) for system performance evaluation, which will be discussed when the system

performance is evaluated later on. The major differences between these two programs

lie in the following:

• While V_1 is supported by the token passing protocol as discussed in Chapter 3,

V_2 is primarily based upon the layered bus protocol designed in Chapter 5.

• V_1 is used for verification of system functionality, independently of system

performance, whereas V_2 has to guarantee both functional correctness and

satisfactory performance.

• Extra VHDL statements attached to V_1 are those for system profiling (the usage of

individual component and the communicating overhead for communication

channel), but V_2 is attached by those only for time delays (annotations).

Two matrices, Aioxio and Biox5, are generated as simulation stimuli. The resultant matrix

Ciox5 from simulation proves that the correct system function has been achieved.

Besides, extra VHDL codes have created profiling information listed in Table 2 and 3.

Table 2 illustrates the channel communication loads whereas Table 3 indicates the

invocation time for individual process (component).

6.2.3 Hardware/software Partitioning and Component Allocation (stage 2)

The work in this section corresponds to the stage 2 of our proposed codesign framework

as shown in Figure 2.6. During the hardware/software-partitioning phase, processes in

the system are dispatched to either hardware or software implementation in accordance

with system criteria, which have been designated as both system performance and

122

hardware cost in this case study. In other words, the final codesign system shall be a

system with high performance and low hardware cost.

Table 2. Table 3.
Channel Communication

pm_corrtr_1 3.00 KB
corrtr_pcw_1 1.19 KB
pcw_corrtr_1 1.19 KB

corrtr_f_1 1.79 KB
f_1_contl 1.77 KB
contl_str 900 Bytes

pm_corrtr_2 1.54 KB
corrtr_pcw_2 624 Bytes
pcw_corrtr_2 624 Bytes

corrtr_f_2 936 Bytes
f_2_contl 918 Bytes

Comp. Name Invocation
PM_16_A 2.66 KB

PCW_10_A 1.69 KB
Corrector A 141 Bytes

FA(Xij) 141 Bytes
PM_16_B 1.37 KB

PCW_10_B 893 Bytes
Corrector B 47 Bytes

FB(Xj.k) 47 Bytes

Thanks to the new capacity for the system target architecture to be exploited in our

methodology, the design space exploration is now extended beyond the traditional

hardware/software partitioning. A new dimension has been established, which is the

component allocation. It decides where a component is dispatched. In addition to being

sent to hardware/software implementation, a component can be allocated to a specific

bus layer in order to achieve high system performance. To demonstrate this merit, the

system target architectures with up to two bus layers have been trailed in this study and

each target architecture has been allocated two processors.

As stated in Chapter 4, this research is not aimed at automatic partitioning process.

Instead a heuristic approach has been adopted to facilitate partitioning and allocation.

First of all, the process Control Matrix has to be dispatched to software implementation

because of its nested repetition structure that is naturally suitable for software

implementation. Other considerations are discussed in the interface co-synthesis.

Second, by the heuristic conveyed in Table 3, the processes PM_16_A/B and

PCW_10_A/B can be regarded as candidates for hardware implementations because of

their invocation frequency. Moreover, the heuristic conveyed in Table 2 indicates that

the channels connected to Transmitter A are much busier than channels connected to

Transmitter B. This indicates that an allocation scheme assigning those channels

connected to Transmitter A to a designated system bus could beat the communication

overhead.

123

Bearing in mind the partitioning schemes above, we will experiment with two allocation

schemes. The one is to connect all components to the single system bus in conjunction

with the target architecture with only one bus layer. The other is to assign process

PM_16_A, PCW_10_A, Correct A, and Fa to Bus A and the rest to bus B. Besides,

alongside the partitioning schemes aforementioned, a much wide range of partitioning

schemes will be tested in co-simulation, in order to verify the hypotheses made above.

Table 4.
No. PM_16_A PCW_10_A Corrector_A F_a PM_16_B PCW_10_B Corrector_B F_b

1 H H H s H H H H

2 H H H s H H H S

3 H H H s H H S S

4 H H H s H S S S

5 H H H s S H S S

6 H H H s S S S S

7 H H S s H H H H

8 H H S s H H H S

9 H H S s H H S S

10 H H S s H S S S

11 H H S s S H S S

12 H H S s S S S S

13 H S S s H H H H

14 H S S s H H H S

15 H S S s H H S S

16 H S S s H S S S

17 H S S s S H S S

18 H S S s S S S S

19 S H S s H H H H

20 S H S s H H H S

21 S H S s H H S S

22 S H S s H S S S

23 S H S s S H S S

24 S H S s S S S S

25 S S S s H H H H

26 S S S s H H H S

27 S S S s H H S S

28 S S S s H S S S

29 S S S s S H S S

30 S S S s S S S S

A careful consideration is here demanded. Since Control Matrix has been dispatched to

a processor, say processor B, sensible process dispatch can only follow the pattern with

which software implementations stretch gradually outwards, starting from the process

Control Matrix. Practical hardware/software dispatch schemes are illustrated in Table 4.

This necessity is also reflected in Figure 6.7, in which there is only one communication

channel connected to Control Matrix from each RDS channel. Any partitioning scheme

to dispatch two processes without direct connection to a same processor will result in

the regrouping of processes during the implementation stage, which fails to comply with

the principle of object-based development and the component may not be reused.

124

Besides, in the system target architectures and the processors discussed above, Table 4

forms all possible combinations of hardware/software partitions. The performance

evaluation phase will examine the system performance and the hardware cost for each

row in the table.

It is not difficult to understand that there is no clear cut between partitioning, allocation,

and interface co-synthesis. A definite partitioning and allocation scheme will certainly

affect the interface design at the interface co-synthesis stage, which will be mentioned

when the interface synthesized.

6.2.4 Performance Evaluation for Software Component (stage 5)

The work in this section corresponds to the stage 5 of our proposed codesign framework

as shown in Figure 2.6. As shown in Chapter 5, the ARM SDT has been integrated into

our codesign methodology assisting the assessment of software performance. But, this

first requires a C program to be converted from its Co-BSL description, which has been

presented in Chapter 3. In fact, this C program is a mirror program of the VHDL

program for functional verification introduced earlier. The C program source file has

been included in Appendix H.

In the C program, compared with its VHDL counterpart, differences exist but they are

reasonably allowed to remain. For example, VHDL’s process is used to implement the

process (components) specified in the Process Graph, whereas these processes are

embodied in functions/procedures in C program. In addition, the communication

between VHDL processes is by means of signal while it is via parameter passing in C

program. These differences do not have much significance here because a VHDL

process is simulated sequentially same as a C function is executed. The executable

statements in a process/function body dominate the performance of that component

(process/function). The ARM SDT debugger undertakes examinations for both the

performance of executable statements and the time spent on parameter passing.

On the whole, there are three types of communication interfaces in a codesign system:

1. software vs. software component

2. hardware vs. software component

125

3. hardware vs. hardware component

Type 2 and 3 relate to the communication via system bus(es) that will be discussed in

the interface co-synthesis in section 6.2.6. The problem with type 1 is associated with

software allocation policy. If all software components are dispatched to one processor,

the interface among them are simple, i.e. all communications are parameter passing. In

this project, however, the system target architecture is being exploited and the processor

in target architecture is addible. This difference results in a situation in which some of

the software interface could end up in bus communication if the sender and receiver are

allocated to different processors. The performance of software component, therefore,

should be cautiously assessed together with its interface.

Table 5.
Comp. Name EXEC. TIME
PM_16_A/B 483 us

PCW_10_A/B 316 us
Corrector A/B 136 us

F a /b 6 us

The result from ARM SDT debugger is shown in Table 5. Notice that although the

ARM debugger can theoretically examine the execution time accurate to individual

assembly instruction, the debugger we used in this research is a freeware version that

can not provide the precision up to a nanosecond. This means that the meaningful

examination has to be based on the whole function body instead of the individual

instruction as discussed in Chapter 5. Consequently, the accuracy of the co-simulation is

slightly compromised in terms of execution time. This treatment nevertheless does not

pose serious problem because the objective of co-simulation is to determine the impact

on system performance under various partitioning schemes. The most important

attribute here is the fidelity i.e. the percentage of correctly predicted comparisons

between different partitioning schemes. The fidelity is obviously not compromised.

6.2.5 Performance Evaluation for Hardware Component (stage 3)

The work in this section corresponds to the stage 3 of our proposed codesign framework

as shown in Figure 2.6. As discussed in Chapter 5, the performance of hardware

component is determined in the following procedure. First the Co-BSL specification for

individual component is converted to its equivalent VHDL entity description. The

entity’s behaviour body is a VHDL process. Next, CDFG and DFGs are constructed

from this behaviour description. Since the List Scheduling Algorithm was originally

126

designed to be applied to sequential parts in the behaviour description, an extended List

Scheduling Algorithm has to be employed to decide the performance of the whole

component. Different from the approach applied to software component, the

performance of hardware component is manually evaluated in our codesign approach

and its precision does not rely on the particular tool available so that the hardware

performance evaluated is more accurate than its counterpart in software components.

Appendix I presents the documentation resulted from the operations described above. It

is organized in the following fashion. There is an entry for each major component in the

RDC system. In each entry, a VHDL entity is first shown, followed by its CDFG and

main DFGs. Finally a table shows the performances and hardware costs under the

different hardware resource limits. These results come from the extended List

Scheduling Algorithm, which is applied to the CDFG and DFGs. Two external entities

and the control process Control Matrix are not supposed to be implemented in hardware

component. There is no entry for them.

It is noticeable that each table indicates miscellaneous hardware costs under various

resource constraints and their corresponding performances determined by the List

Scheduling Algorithm. In system performance evaluation phase we are mainly

concerned with the hardware cost in a codesign system with which its components have

been dispatched to hardware/software implementations. Only one resource constraint

that is ASAP is used during the system performance evaluation. Other costs listed in

tables provide a variety of choices. They are left over to the further research topic.

The actual performance is dynamically determined during co-simulations.

6.2.6 Co-synthesis for Interfaces of Hardware/Software (stage 4)

The work in this section corresponds to the stage 4 of our proposed codesign framework

as shown in Figure 2.6. Compared with traditional codesign approaches, the interface

co-synthesis in our methodology is more versatile due to the flexible communication

path available. As mentioned earlier, the interface co-synthesis closely relates to

partitioning and allocation schemes, so that a codesign system under various

partitioning/allocation schemes could have different interface designs. The following

127

discussion is built upon the previous assumptions, in which the system target

architecture has up to two bus layers and two processors are involved. All components

except Control Matrix that has been dispatched to software implementation have been

listed in Table 4 together with their implementation indications.

Analyzing the alternatives in Table 4, we can find that an interface in the codesign

system can be one of the following:

1. Software vs. software

2. Hardware vs. hardware

3. Hardware vs. software

The first case has been readily taken care by the parameter passing in C program during

the performance evaluation for software component. The last two interfaces are

synthesized in bus communication via the layered bus system. Required by the

asynchronous bus protocol developed in Chapter 5, each process has been given a

binary identification number for bus contention/arbitration and each communication

channel is also given a binary number for bus addressing. Figure 6.8 illustrates those

allocations in 16-bit binary numbers.

(1- 101)PM.16.A
(Processing

16 bits M essage)
^ (1..1011) _

Transmit

(1 .J011)

PCW_10_A
(Processing

10 bits Check Word)
sM T-10111>x/

(1 . .1011111)

(1- 101)D ata h
S to rage I

(1 ..1011111111111) (1..10111111) J

(Processing i
16 bits Message)

(1 ..10111111111),

(1..1011111111)

Transmit
..10111111111 (1..101111111)

C orrector B
' 1..1011111111 [1 . .101111111 '

/'PCW_10_&NS
(Processing

10 bits Check Word)

(1..101111111111)

Figure 6.8. Process Graph for Interface Co-synthesis

In practice, the VHDL entity enclosing a process declares generics objects for those

binary numbers to be instantiated later when the co-simulation program is constructed.

This added benefit naturally facilitates the component reuse. Another benefit from this

co-synthesis approach is that the system process graph is structurally maintained during

128

interface co-synthesis, which contrasts the interface synthesis in other codesign

approaches. Our interface co-synthesis method obviously promotes the component

reuse and alleviates the difficulty of system maintenance.

6.2.7 System Performance Evaluation (stage 6)

The work in this section corresponds to the stage 6 of our proposed codesign framework

as shown in Figure 2.6. The system performance evaluation phase is actually the

process involving both assembling and simulating in VHDL. The time delays acquired

from performance evaluations for hardware/software components are added to the

VHDL processes that are embedded in VHDL entities as shown in Appendix I. The

annotated VHDL processes representing hardware/software components in the RDC

system are assembled together with bus communication components and other

supporting system components such as clock generators. In the process, the VHDL

entities are bounded with behaviour bodies and the generics are instantiated by real

parameters.

In addition to the VHDL packages and libraries introduced in previous chapters, a new

VHDL package, namely RDSJUT1L1TS, has been developed. It contains definitions of

special constants used in the RDC system (such as the offset word) and

procedure/function definitions (such as encoding/decoding and error correction

processes in RDS). Supported by this package, the VHDL co-simulation program is

made concise, easy to develop, and less error-prone. Two typical simulation programs

have been tacked to Appendix J for reference. The first program is constructed on the

platform with one bus layer and the second one is with two bus layers. A series of

simulations have been carried out by using the ModelS/m EE/PLUS (version 5.2)

[MTI98].

With the exploitable target architecture, the system performance is now a function of

hardware cost and the bus layer. The simulations are therefore intended to discover the

following facts:

• The impact on system performance as hardware cost increases (i.e. software

components are gradually replaced by hardware implementations)

129

• The performative difference on two target architectures (one bus layer and two bus

layers) as hardware cost increases

6.2.8 Analysis of Simulation Results

The simulations have been conclusive in discovery of the facts aforementioned. Before

the results can be compared, we need to quantify the hardware cost. Table 6 shows

hardware costs quantified by the formulas listed in the last column, which enables

simulation results to be compared and charted.

Table 6.
Com. Name Operators required Cost Quantification

PM_16_A/B
5 "XOR", 1 V ,

1 "COMP.", 2 22 “XOR" <==> 1
“&“<==> 1

"COMP." <==> 5
•'+•'<==> 10
"*" <==> 15
T <==> 20

PCW_10_A/B
3 “XOR", 1 V \
1 "COMP.", 1 "&” 19

Corrector A/B
5 "XOR", 5 "COMP.",

1 "&" 31
F _ a/b 2 2 "+", 1 7" 70

Some of significant simulation results have been displayed in Table 7 through Table 10.

Especially, Table 7 and 8 compose a pair of comparable sets and so do Table 9 and

Table 10. In addition to tabular forms, Figure 6.9 illustrates a graphical relation between

hardware cost and system performance. Its data are extracted from Table 7.

80000000

oj 60000000 -

“ 40000000 -

20000000 -

COST 22 142

Hardware Cost

Figure 6.9 Performance vs. Hardware Cost

Figure 6.9 indicates that although it is not a linear relation between system performance

and hardware cost the performance on the whole improves as the hardware cost

increases (i.e. increasing number of component is implemented in hardware).

Furthermore, the most effective hardware dispatch scheme is for PM_16_A/B and

PCW_10_A/B to be assigned to hardware implementations, which can also be proven

by the execution time at rows numbered 1, 2, 3, 7, and 8 in Table 7. This conclusion

reflects a previous proposal from the hardware/software partitioning and component

allocation phase.

130

While Figure 6.9 shows the system performance as a function of hardware cost in

relation to a given target architecture, the comparison between Table 7 and Table 8

reveals how the system performance responds to variable system target architectures.

The only difference between Table 7 and 8 is the bus layer. In contrast to Table 7 that is

single bus-based, Table 8 is built on two bus layers. The shadowed components in Table

8 are duly allocated to bus A whereas others are left on bus B. Besides, the

hardware/software partitioning is deliberately kept in same order in both tables so as to

make the rows with same number posted in different table comparable. Other system

parameters remain same in both tables. They are as follows:

• The clock frequency in hardware is 20 MHZ.

• The clock frequency in ARM processor is 10 MHZ.

• All bus communication components are assumed to execute for 500 nanoseconds.

In comparison with Table 7, Table 8 shows a degree of performance improvement with

two bus-layers as the hardware/software partitioning and the component allocation are

carefully planned. This can be validated by a comparison with the first ten rows

between Table 7 and Table 8. The improvement is, however, not as significant as we

would expect. On the contrary, it becomes worse when the row number is in excess of

twelve. This declining performance has resulted from the fact that the system

performance depends upon both the overall performances of individual components and

the communication condition over bus layers. This feature can be expressed in the

formula, P = F(ci, C2) where ci is the overall performances of individual components

and C2 is the communication performance. Both increases will contribute to the whole

system performance P. As increasing number of components is dispatched to software

implementation (i.e. ci decreases), the number of component connected to the bus layers

is, at the same time, decreasing, which instead eases the pressure on the communication

overhead (i.e. C2 increases). The system performance could thus improve even if more

components are dispatched to software implementation, which is due to the gains of

communication performance outstrips the loss of overall performances contributed by

individual components.

131

T a b le 7 .
No. PM_16_A PCW_10_A Corrector_A F_A PM_16_B PCW_10_B Corrector_B F_B COST EXEC. TIME

(ns)
1 H H H S H H H H 214 4,982,150
2 H H H S H H H S 144 4,982,550
3 H H H s H H S S 113 11,016,350
4 H H H s H S S S 94 19,425,950
5 H H H s S H S S 91 28,427,350
6 H H H s S S S S 72 28,081,650
7 H H S s H H H H 183 15,506,450
8 H H S s H H H S 113 15,505,250
9 H H S s H H S S 82 21,444,550
10 H H S s H S S S 63 29,510,450
11 H H S s S H S S 60 37,690,150
12 H H S s S S S S 41 37,358,250
13 H S S s H H H H 164 31,980,850
14 H S S s H H H S 94 31,981,150
15 H S S s H H S S 63 37,919,350
16 H S S s H S S S 44 45,986,350
17 H S S s S H S S 41 54,166,650
18 H S S s S S S S 22 53,834,750
19 S H S s H H H H 161 49,403,550
20 S H S s H H H S 91 49,403,350
21 S H S s H H S S 60 55,101,550
22 S H S s H S S S 41 63,168,550
23 S H S s S H S S 38 71,349,350
24 S H S s S S S S 19 71,016,950
25 S S S s H H H H 142 48,712,650
26 S S S s H H H S 72 48,712,650
27 S S S s H H S S 41 54,423,450
28 S S S s H S S S 22 62,490,450
29 S S S s S H S S 19 70,670,750
30 S S S s S S S S 0 70,338,850

To support the theory above, further simulations have been carried out with only one

system parameter altered. The time delay in bus communication component,

Synchro_Same is now extended to 2000 nanoseconds which is compared with original

500 nanoseconds. Other system parameters remain unchanged. This particular extension

intends to examine the impact on system performance after the ratio of component’s

performance to communication’s changes. The simulation results have been listed in

Table 9 and Table 10 for comparison. Same as in Table 7 and Table 8, Table 9 is based

on one bus layer and Table 10 on two bus layers.

Compared with Table 9, the whole performance in Table 10 significantly improves

except last five rows. In addition to the improvement on overall performance, a greater

range of reduction in execution time has been observed. For example, when two bus-

lay ers are introduced, the execution time reduces 5800 nanoseconds in the first row

from Table 7 to Table 8 whereas it is boosted to 246800 nanoseconds from Table 9 and

Table 10.

132

T a b le 8 .

No. PM_16_A PCW_10_A Corrector_A F_A PM_16_B PCW_10_B Corrector_B F_B COST EXEC. TIME
(ns)

1 H H H S H H H H 214 4,976,350
2 H H H S H H H S 144 4,976,250
3 H H H S H H S S 113 11,011,250
4 H H H s H S S S 94 19,421,350
5 H H H s S H S S 91 28,423,250
6 H H H s S S S S 72 28,077,550
7 H H S s H H H H 183 15,504,250
8 H H S s H H H S 113 15,504,150
9 H H S s H H S S 82 21,442,850
10 H H S s H S S S 63 29,509,850
11 H H S s S H S S 60 37,690,150
12 H H S s S S S S 41 37,358,250
13 H S S s H H H H 164 31,981,350
14 H S S s H H H S 94 31,981,250
15 H S S s H H S S 63 37,919,950
16 H S S s H S S S 44 45,986,950
17 H S S s S H S S 41 54,167,250
18 H S S s S S S S 22 53,835,350
19 S H S s H H H H 161 49,403,850
20 S H S s H H H S 91 49,403,850
21 S H S s H H S S 60 55,102,150
22 S H S s H S S S 41 63,169,150
23 S H S s S H S S 38 71,349,450
24 S H S s S S S S 19 71,017,550
25 S S S s H H H H 142 48,713,150
26 S S S s H H H S 72 48,713,150
27 S S S s H H S S 41 54,424,550
28 S S S s H S S S 22 62,491,550
29 S S S s S H S S 19 70,671,850
30 S S S s S S S S 0 70,339,950

Table 9.
No. PM_16_A PCW_10_A Corrector_A F_A PM_16_B PCW_10_B Corrector_B F_B COST EXEC. TIME

(ns)
1 H H H S H H H H 214 5,824,350
2 H H H S H H H S 144 5,617,050
3 H H H s H H S S 113 11,522,450
4 H H H s H S S S 94 19,830,250
5 H H H s S H S S 91 28,829,350
6 H H H s S S S S 72 28,483,350
7 H H S s H H H H 183 16,079,750
8 H H S s H H H S 113 15,871,150
9 H H S s H H S S 82 21,730,950
10 H H S s H S S S 63 29,721,850
11 H H S s S H S S 60 37,898,550
12 H H S s S S S S 41 37,566,650
13 H S S s H H H H 164 32,332,550
14 H S S s H H H S 94 32,130,950
15 H S S s H H S S 63 37,996,350
16 H S S s H S S S 44 45,990,850
17 H S S s S H S S 41 54,169,650
18 H S S s S S S S 22 53,837,750
19 S H S s H H H H 161 49,514,950
20 S H S s H H H S 91 49,409,250
21 S H S s H H S S 60 55,175,050
22 S H S s H S S S 41 63,171,550
23 S H S s S H S S 38 71,352,350
24 S H S s S S S S 19 71,018,450
25 S S S s H H H H 142 48,832,750
26 S S S s H H H S 72 48,712,650
27 S S S s H H S S 41 54,495,450

133

28 S S S S H S S S 22 62,491,950
29 S S S S S H S S 19 70,670,750
30 S S S S S S S S 0 70,338,850

Table 10.
No. PM_16_A PCW_10_A Corrector_A F_A PM_16_B PCW_10_B Corrector_B F_B COST EXEC. TIME

(ns)
1 H H H S H H H H 214 5,577,550

2 H H H S H H H S 144 5,372,250
3 H H H s H H S S 113 11,315,750
4 H H H s H S S S 94 19,650,850
5 H H H s S H S S 91 28,652,750
6 H H H s S S S S 72 28,307,050
7 H H S s H H H H 183 15,997,450
8 H H S s H H H S 113 15,792,150
9 H H S s H H S S 82 21,662,250
10 H H S s H S S S 63 29,658,750
11 H H S s S H S S 60 37,837,550
12 H H S s S S S S 41 37,505,650
13 H S S s H H H H 164 32,328,650
14 H S S s H H H S 94 32,123,350
15 H S S s H H S S 63 37,993,450
16 H S S s H S S S 44 45,989,950
17 H S S s S H S S 41 54,168,750
18 H S S s S S S S 22 53,836,850
19 S H S s H H H H 161 49,509,350
20 S H S s H H H S 91 49,403,850
21 S H S s H H S S 60 55,174,150
22 S H S s H S S S 41 63,170,650
23 S H S s S H S S 38 71,349,450
24 S H S s S S S S 19 71,017,550
25 S S S s H H H H 142 48,831,750
26 S S S s H H H S 72 48,713,150
27 S S S s H H S S 41 54,496,550
28 S S S s H S S S 22 62,493,050
29 S S S s S H S S 19 70,671,850
30 S S S s S S S S 0 70,339,950

The simulation results in Table 7 through Table 10 do provide sufficient evidence for

the examination of system performance. In exploitation of target architecture, we can

conclude that when the communication overhead in a codesign system overtakes

computational expenses in individual components extra bus layers should be considered

so as to improve the system performance.

6.3 Evaluation of the Codesign C ase Study

This case study provides a basis for evaluation of our proposed codesign approach. The

process can be defined in the following way. During the course of codesign, the RDC

system is specified in the enhanced PARSE Process Graph and Co-BSL program

without prejudice on software/hardware implementations. The VHDL simulations for

system functional verification and profiling have proven the design valid and provided

the information heuristically for system partitioning. A number of partitioning schemes

134

has been planned to examine the impact on system performance as the hardware

implementation and the target architecture are both exploited. The problem with

evaluation of system performance is divided and conquered. The simulation in ARM

SDT and the List Scheduling Algorithm have determined the performances for

individual software/hardware components whereas the communication expense is

decided during the annotated VHDL co-simulation. The virtual prototyping technique

facilitates the smooth transition from the high level specification down to the low-level

implementation. It also simplified the interface synthesis. In utilization of this

technique, the system components are well preserved and reusable. Finally, the

simulation results have been analyzed and the definitive conclusions have been reached.

It has exemplified the strength and practicability of the codesign methodology proposed

in this project. It also demonstrates its sound theoretical bases and the potentials to be

applied to the developments of other real-time embedded systems. A summary of the

most significant features in our methodology is shown as follows:

• The co-specification of RDC System in Process Graph and Co-BSL program is

prejudiced on neither hardware nor software implementations.

• The VHDL simulation supported by token passing protocol has verified the design

in its functionality and produced abundant information heuristically for system

partitioning.

• The ARM’s SDT and List Scheduling Algorithm have examined performances for

software and hardware components.

• The co-simulations with system target architectures based on the layered bus

protocol have supplied plenty information to justify the hardware/software

partitioning and component allocation.

• The VHDL packages and libraries developed in this project have been fully utilized

and their practice and strength have been fully tested.

On the other hand, potential improvements emerged from this case study can be

summed up as below. First of all, further to promote the co-simulation accurate to

control cycles, the following problems have been envisaged:

• Current ARM’s SDT tools are not accurate enough.

• The performances of bus components are not precisely evaluated.

135

More accurate ARM’s SDT tools (nanosecond level) are required to solve the first

problem, while a commercial hardware synthesis tool could be the solution to the

accurate performance evaluations for bus components.

136

Chapter 7

Conclusions and Future Research Topics
Our research project is concluded in this chapter. A review on the research investigation

is first presented, followed by a summary of the project. In the summary, contributions

and dissatisfactions resulted from this project are given. Finally future research topics

are suggested.

7.1 Research Investigation

The significant progress in this project is summarized below. A thorough investigation

into the well-established codesign methodologies has been conducted, which covers a

wide range of contents in relation to codesign approaches and their supportive

tools/methods. During the course of investigation, special attentions have been focused

on:

• Codesign system specification and modelling

• Hardware/software partitioning method

• System performance estimation/evaluation technique

• System target architecture

The investigation has identified shortcomings and dissatisfactions in those previously

published codesign methodologies. An object-based codesign methodology: Co-PARSE

is thus proposed. It is embodied by successive phases, guidelines, and techniques to

support reaching a solution particularly to a real-time embedded system and at the same

time respecting the criteria of system performance and hardware cost. Tools have been

developed to support the use of the methodology.

To demonstrate the strength and practicability of the proposed codesign methodology

an extensive case study has been carried out. During the course of codesign of a new

RDC System, the proposed codesign phases are applied and the guidelines and tools

that are designed in support of the methodology are fully utilized. Especially, the

VHDL simulation with token passing protocol and the co-simulation with the virtual

prototyping have proven practical in verification of system functionality and evaluation

137

of performance satisfaction. Besides, the extensive VHDL simulations have produced

large volume of simulation results to support the hardware/software partitioning and

prove the system target architecture able to be exploited.

7.2 Summary of the Project

This project addressed the shortcomings and problems in other codesign methodologies

published to date. It then proposed a new objected-based codesign methodology, which

is indeed a combination of methods and techniques from diverse fields. It has

authentically engineered structured and coherent sets of methods, guidelines and tools

for solving the problems in codesign of hardware/software. Besides, the methodology

has itself been evaluated by an extensive case study. The results from the case study

have proven conclusive.

Contributions from this research project are hereby claimed as follows:

1. Analytical Contributions

• The system-level Codesign Behaviour Specification Language (Co-BSL) has

been designed. It is used to capture the overall dynamic aspects of codesign

system and the performative constraints (see Chapter 3). The most significant

feature with Co-BSL is its implementation neutrality. The Co-BSL not only

specifies the hierarchical structure of codesign system and its communication

paths but also provides a high level language for the codesigner to describe the

sequential behaviour of each primitive (i.e. non-decomposable) process object.

• The concept of exploiting system target architecture to improve the system

performance has been proposed in this thesis (see Chapter 5). Furthermore,

designing the asynchronous bus protocol and the layered bus communication

structure have materialized this concept. None of such approach has been

reported before in this research area.

• The co-synthesis method particularly used for synthesis of hardware/software

interface has been devised. The method guides through smooth transition from

path definitions in Co-BSL description to the system implementations, based on

the layered bus structure (see Chapter 5 and 6)

2. Developmental Contributions

138

• Six VHDL packages and one VHDL library have been developed and tested.

They provide a portable platform for future codesign research projects and they

are necessary to support the evaluation of the proposed codesign approach. They

include:

* Four VHDL packages designed to support, in hardware/software partitioning

phase, functional verification and system profiling, which facilitate the

template conversion from Co-BSL communication channels to the VHDL

simulation program (see Chapter 3)

* One VHDL package and one VHDL library, which provide communication

components and support the communication protocol in the interface co

synthesis phase (see Chapter 5)

* One VHDL package, which implements the major algorithms in the case

study, the Radio Data Computing System (see Chapter 6)

• The ARM SDT Tool Kit and the List Scheduling Algorithm have been integrated

into our co-design methodology at the system performance evaluation phase (see

Chapter 5)

3. Evaluative Contributions

The proposed Co-PARSE codesign methodology has itself been evaluated in a case

study. It has been applied to a real-time embedded system and used to design the

Radio Data Computing System (see Chapter 6). The case study has demonstrated the

strength and suitability of the proposed codesign methodology. The simulation

results have proven:

• The VHDL simulations with token passing protocol can both verify the system

design and produce the heuristics for the hardware/software partitioning and the

component allocation scheme.

• The annotated VHDL co-simulations can serve the purpose of performance

evaluation for codesign system. It can also help examine the impact on system

performance when both hardware cost and system target architecture are

exploited.

4. Disseminating Contributions

Part of the subject matters addressed in this thesis has been published in the

following conference proceedings and technical reports: [CLJ98a][CLJ98b][CLJ97]

[CLJ96a] [CLJ96b][LJC95][CLJ95a][CLJ95b] [CRLOO] (see References).

139

Despite these substantial contributions to knowledge, further improvements could be

made and some questions remain unanswered. Whereas those unanswered questions are

dealt with in next section, the following discussions focus on potential areas for

improvement.

First of all, the data structure RECORD in the Co-BSL programming language looks

rather awkward. It could have been better replaced by a CLASS as in an object-oriented

programming language. The problem stems from the inherited imperfection in PARSE

due to its lack of inheritance and polymorphism. This is the very reason we labeled our

methodology an object-based methodology instead of the object-oriented methodology.

Second, in the co-specification phase of our codesign approach we provide user with

five communication paths: synchronous, asynchronous, bi-directional, broadcast, and

wire. Although conversions of these communication paths to VHDL and C programs

introduced in chapter 3 have established a smooth transition route to components

interface synthesis and functional verification plus system profiling, the broadcast

communication path in the co-specification is currently not supported in the Bus

Interface Module, i.e. the low level components interface synthesis does not support the

broadcast communication path. Consequently the user has to design their own VHDL

components to implement this communication path supported in the co-specification.

Third, though the ARM’s debugger can theoretically examine the execution time

accurate to individual assembly instruction, the debugger we used in this project is a

freeware version because of which the precision of the simulations has been

compromised. The problem with the debugger results in the fact that the examination of

the system performance has to be based on the whole function body instead of the

individual instruction, which is ideally discussed in Chapter 5.

Finally the performances of the standard bus communication components such as

(A)Synchronous Channel Gateways we designed in Chapter 5 have not yet precisely

evaluated in a hardware synthesis algorithm or a hardware synthesis tool. The execution

times of these components are currently assumed as a given time period. While this

140

treatment does not affect selections of those hardware/software partitioning schemes

that can effectively improve the system performance, the accuracy of the co-simulation

results should be taken as caution.

7.3 Potential Research Directions

While considerable progress has been achieved in this project, some questions remain

unanswered. We present them below as potential directions for further research.

First, as pointed in this thesis, there has been very limited research conducted in

codesign society in relation to exploration of system target architecture to improve

system performance. Although this research has laid a foundation towards its final

solution, the conceptual model of the target architecture with a layered bus

communication structure proposed in this project only represents one of the possibly

practical models, which could be adopted as the target architecture in a codesign

discipline. In general, it is worthwhile to investigate further the possibility of

reclassifying system target architectures suitable for the codesign applications. The

classification could be conducted according to relevant application domains

characterised by their computational complexity and respective constraints. The system

target architecture could thus be delineated in a scientific and systematic (objective)

manner rather than through experience or prejudice (subjective).

Second, the system-partitioning criteria in this research are solely focused on the

hardware cost and system performance. Other criteria are, however, also potentially

exploitable in the system-partitioning phase in this codesign approach. For example, in

addition to the execution time, the software code/data size can be obtained additionally

from the ARM SDT debugging process. This value-added property from the integration

of ARM SDT tools could benefit dispatching components to software/hardware

implementation with the minimum memory occupation in the processor. The criteria of

system evaluation can then be extended to hardware cost and(/or) system performance

and(/or) software memory occupation i.e. system code and data size. On the other hand,

as indicated in the performance evaluation for hardware component, when the List

Scheduling Algorithm is applied, a number of alternative hardware resource constraints

were left unused in the system performance evaluation phase. Only the resource

141

constraint derived from the ASAP scheduling has been used, which leaves extra scope

for hardware resources to be further exploited in trading for the system performance.

Third, the operations: hardware/software partitioning, selection of system target

architecture, and the allocation of communication channels and hardware/software

components can all strike an impact on system performance. Close relations among

them can have clearly been perceived. Current research is however merely concentrated

on one particular aspect that is uniformly the hardware/software partitioning. A future

research direction aimed at revelation of those relations could introduce a new

dimension in exploration of design space and bring about great benefit to codesign

products. This new dimension changes the codesign framework as well. An indicative

codesign framework following this new direction has been illustrated in Figure 7.1,

which forms the basis for further work. This unorthodox framework emphasizes the

mutual impacts regarding hardware/software partitioning, communication channel and

component allocation, and selection of system target architecture. The bi-directional

arrows in the graph imply the interactive activities between them.

System
Specification

Functional Verification,
System Profiling,

Target Architecture
Selection

Hardware/Software
Partitioning,

Component Allocation,
System Performance
Estimation/Evaluation

Hardware Component
Evalation/Estimation

Software Component
Evaluation/EstimationInterface Co-synthesis

6 Software Development Target Architecture
Construction

Hardware Synthesis

Mixed System Implementation
System Evaluation

1,2 ,3 ,...?

Figure 7.1 New Codesign Framework

Finally, as hinted in Chapter 3 and five, our proposed codesign approach has the

potential for automation. Particularly, the Co-BSL specification could be automatically

transformed into VHDL and C programs that can in turn be compiled by VHDL and C

142

compilers to create the executable codes. The conversion from Co-BSL to VHDL/C is

composed by two separate issues. The one is the constructs. The other is the

communication channel. Although in this research the conversion from Co-BSL

description to VHDL and C programs are manually done following guidelines set up in

Chapter 3, the conversions are in fact established on mapping from Co-BSL design

constructs and individual statements to the equivalent VHDL/C counterparts. On the

other hand, the conversion of communication channels is also built on mapping from

Co-BSL communication channels to the construction of bus communication

components plus numbering, which has been described in Chapter 5. The conversion is

therefore a compilation. As seen in Chapter 3, the syntax of Co-BSL has been written

and examined by the YACC compiler. The remaining task for this purpose is to produce

the formal descriptions of semantics for the Co-BSL language, which describes how the

source language (Co-BSL) can be compiled into its target language (VHDL/C). A Co-

BSL compiler would be straightforward to develop.

Another automation issue is to integrate a commercial hardware synthesizer into our

codesign approach. The synthesizer can automatically accomplish the hardware

implementation. In addition, the synthesizer can schedule the VHDL description for

hardware component and provide vital information in relation to hardware cost and

system performance without manual operation in List Scheduling Algorithm as shown

in Chapter 5.

143

References
[AF+97]

[AG97]

[Ala90]

[And95]

[ARM97]

[Ash96]

[Ayl92]

[Bak93]

[BCW91]

[BE97]

[Ben90]

[BFS94]

A. Allara, S. Filipponi, W. Fomaciari. F. Salice and D. Sciuto,

Improving Design Turnaround Time via Two-Levels HW/SW Co-

Simulation, Proceedings o f International Conference on Computer

Design: VLSI in Computers and Processors, Austin, Texas, USA, 1997,

pp. 400-405

Samir Agrawal and Rajesh K. Gupta, “Data-flow Assisted Behavioural

Partitioning for Embedded Systems”, Proceedings o f 34th Design

Automation Conference, Anaheim, CA, USA, 1997

Alan M. Davis, Software Requirements analysis & specification,

Prentice-Hall International, Inc. 1990

Andrew S. Tanenbaum, Distributed Operating systems, Prentice-Hall

International, 1995

Advanced RISC Machines Ltd. (ARM), ARM Software Development

Toolkit, User Guide & Reference Guide, 1997

Peter J. Ashenden, The Designer’s Guide to VHDL, Morgan Kaufmann,

1996

H. Aylor et. al., “The Integration of Performance and Functional

Modelling in VHDL”, Performance and Fault Modelling with VHDL, J.

Schoen, ed., Prentice Hall, Englewood Cliffs, N. J., 1992, pp.22-145

Louis Baker, VHDL Programming with Advanced Topics, John Wiley &

Sons, Inc. 1993

Timothy C. Bell, John G. Cleary and Ian H. Witten, Text compression,

Prentice Hall, Englewood Cliffs, N. J., 1991

Matthias Bauer and Wolfgang Ecker, “H/S Co-Simulation in a VHDL-

based Test Bench Approach”, Proceedings o f 34th Design Automation

Conference, Anaheim, CA, USA, 1997

J. P. Bennett, Introduction to Compiling Techniques: a First Course

using ANSI C, LEX and YACC, McGraw-Hill, 1990

Antoniazzi, A. Balboni, W. Fomaciari and D. Sciuto, “The Role of

VHDL within the TOSCA H/S Codesign Framework”, Proceedings o f

EURO-VHDU94 , 1994, pp. 612-617

144

[BFS96]

[BG97]

[Bha98]

[BHL+94]

[BKK+99]

[Bra94]

[Bri92]

[BSV93]

[Buc94]

[Cal93]

[Cam90]

[CDK01]

[CGJ+94]

Antoniazzi, A. Balboni, W. Fomaciari and D. Sciuto, “Co-synthesis and

Co-simulation of Control-Dominated Embedded Systems”, Design

Automation for Embedded Systems, Kluwer Academic Publisher, 1996,

pp. 257-289

Smita Bakshi and Daniel D. Gajski, “Hardware/Software Partitioning

and Pipelining”, Proceedings o f 34th Design Automation Conference,

Anaheim, CA, USA, 1997

Murali Bharathala, “VHDL Times”, viewlogic Systems, In c ., 1998

J. Buck, S. Ha, E. A. Lee, D. G. Messerschmitt, “Ptolemy: a Framework

for Simulating and prototyping Heterogeneous Systems”, International

Journal o f Computer Simulation, special issue on “Simulation Software

Development”, April 1994, Vol. 4, pp. 155-182

J-Y. Brunei, E.A. de Kock, W.M. Kruijtzer, H.J.H.N. Kenter, W.J.M.

Smiths, “Communication Refinement in Video Systems On Chip”,

Proceedings o f Seventh International Workshop on Hardware/Software

Codesign, Rome, Italy, 1999 , pp. 142 146

Warrick Bradney, “PARSE Code Translator”, Master Degree Project

Report, University of Wollongong, November 1994

British standard of CENELEC EN 50067: Specification for Radio Data

System (RDS), 1992

Dr. K Buchenrieder, A. Sedllmeier, C. Veith, “HW/SW Co-Design With

PRAMs Using CODES, I I th IFIP International Conference, 1993

Klaus Buchenrieder, Hardware/Software Co-design An Annotated

Bibliography, IT Press Hartenstein, 1994

Jean Paul Calvez, Embedded Real-time Systems, Wiley, 1993

R. Camposano, “From Behaviour to Structure: High-Level Synthesis”,

IEEE Design & Test o f Computers, Oct. 1990, pp. 8-19.

George Coulouris, Jean Dollimore, and Tim Kindberg, Distributed

Systems, Concepts and Design, Addison-Wesley, 2001

Massimiliano Chiodo, Paolo Giusto, Attila Jurecska, Harry C. Hsieh,

Alberto Sangiovanni-Vincentelli, and luciano Lavagno, "Hardware-

Software Codesign of Embedded Systems", IEEE Micro, Vol. 14, No. 4,

August 1994, pp. 26-36.

145

[CLJ95a]

[CLJ95b]

[CLJ96a]

[CLJ96b]

[CLJ97]

[CLJ98a]

[CLJ98b]

[CRLOO]

Jianming CAI, D W Lloyd, and I E Jelly, "A Survey of Low-power

Multimedia Systems from the Prospective of Hardware/Software

Codesign", Sheffield Hallam University Technical Report Series CRC-95-

3

Jianming CAI, D W Lloyd, and I E Jelly, "A Brief Survey of the Recent

Developments in Hardware-Software Codesign", Sheffield Hallam

University Technical Report Series CRC-95-7

Jianming CAI, D W Lloyd, and I E Jelly, "Conversion from PARSE

Notations to VHDL Program Templates", Sheffield Hallam University

Technical Report Series CRC-96-3

Jianming CAI, D W Lloyd, and I E Jelly, "An Investigation into High

Level Specification for Codesign Systems", Sheffield Hallam University

Technical Report Series CRC-96-2

Jianming CAI, D W Lloyd, and I E Jelly, "Modelling Mobile

Communication Systems in the Integrated PARSE and VHDL

Environment", Proceedings o f The 9th International Conference on

Wireless Communications, 9-11 July 1997, Calgary, Alberta, Canada

Jianming CAI, D W Lloyd, and I E Jelly, "An Evaluation of Partitioning

Techniques for Hardware/Software Codesign", Proceedings o f The

Fourth Chinese Automation Conference in the UK (CACUK’98), 19-20

September, 1998, Leicester, UK, (ISBN 0953389006, Published by

Pacilantic International 1998)

Jianming CAI, D W Lloyd, and I E Jelly, "Modelling and Simulating

Radio Data Systems", Proceedings o f The 1st International Symposium

on Communication Systems and Digital Signal Processing, 6-8 April

1998, Sheffield, UK, (ISBN 0-86339-7719, Published by Sheffield

Hallam University Press and Learning Centre 1998)

Jianming CAI, I. E. Ritchie, and David W. Lloyd, "A Simulation

Technique for Codesign of Hardware/Software", Proceedings o f 2000

Summer Computer Simulation Conference, July 16-20, 2000, Vancouver,

British Columbia, Canada, (ISBN 1-56555-208-3, Published by The

Society for Computer Simulation International, Nov. 2000)

146

[CW93]

[CY91]

[Dav+94]

[Edw93]

[Edw97]

[EF94]

[EF96]

[EFW97]

[EH92]

[EHB93]

[EmbOl]

[EPD94]

Paul Camposano and Wayne Wolf (Eds.), High-Level VLSI Synthesis,

Kluwer Academic Publishers, 1991

Peter Coad and Edward Yourdon, Object-Oriented Analysis, Prentice-

Hall International, Inc. 1991, ISBN 0-13-630013-8

David A. Patterson et. al. Computer Organization & Design the

hardware/ software interface, Morgan Kaufmann, 1994

M. Edwards, “A Development system for Hardware/Software Co-

Synthesis using FPGAs”, Second IFIP International Workshop on HW-

SW CoDesign, May, 1993

M. Edwards, “Software Acceleration Using Coprocessor: is it worth the

effort ?”, Proceedings o f the Fifth Intl. Workshop on Hardware/Software

Codesign, IEEE Computer Society Press, 1997, pp. 135-139

M. Edwards and John Forrest, “A Development Environment for the

Cosynthesis of Embedded Software/Hardware Systems”, Proceedings o f

European Design Automation Conference, 1994, pp. 469-473

M. Edwards and John Forrest, “A Practical Hardware Architecture to

Support Software Acceleration, Microprocessors and Microsystems,

Vol. 20, No.3, pp. 167-174, 1996

M. Edwards, John Forrest, and A. E. Whelan, “Acceleration of Software

Algorithms Using Hardware/Software Co-Design Techniques, Journal o f

Systems Architecture, Vol. 42, No. 9/10, pp. 697-707, 1997

R. Ernst, J. Henkel, “Hardware-Software Codesign of Embedded

Controllers Based on Hardware Extraction”, IEEE Workshop on

Hardware-Software Co-Design, Estes Park, Colorado, Oct. 1992

R. Ernst, J. Henkel and Thomas Benner, “Hardware-Software

Cosynthesis for Microcontrollers”, IEEE Design & Test o f Computers,

December, 1993

The Embedded Marketplace, http://www.microcontroller.com. Jan. 2 0 0 1

Petru Eles, Zebo Peng, and Alexa Doboli, “VHDL system-Level

Specification and Partitioning in a Hardware/Software Co-Synthesis

Environment”, Proceedings o f the Third International Workshop on

Hardware/Software Codesign, IEEE Computer Society Press, 1 9 9 4 , pp.

4 9 -5 5

147

http://www.microcontroller.com

[FFSS97]

[For95]

[FPGAOO]

[FS96]

[FS99]

[Fur96]

[Gaj92]

[Gaj94]

[GB94]

[GG94]

[GGJ95]

[Gia90]

[GJC94]

[GJG93]

Allara, S. Filipponi, W. Fomaciari, F. Salice and D. Sciuto, “A Flexible

Model for Evaluating the Behaviour of H/S Systems”, Proceedings o f the

Fifth International Workshop on Hardware/Software Codesign, IEEE

Computer Society Press, 1997, pp. 109-114

John Forrest, “Implementation-Independent Descriptions Using an

Object-Oriented Approach”, Personal Communications, 1995

FPGA Related WWW Links, {http://www.mrc.uidaho.edu/fpga/

fpga.html}, July 2000

Balboni, W. Fomaciari and D. Sciuto, Hardware/Software Co-Design,

Kluwer Academic Publisher, 1996, pp. 265-294

W. Fomaciari and D. Sciuto, “HW/SW Co-design of Embedded

Systems”, Proceedings o f European Design Automation Conference,

1999, pp. 344-355

S.B. Furber, ARM System Architecture, Addison-Wesley, 1996

Daniel D. Gajski et al. High-Level Synthesis, Introduction to Chips and

System Design, Kluwer Academic Publishers, 1992

Daniel D. Gajski et al. Specification and Design of Embedded Systems,

PTR Prentice Hall, 1994

J. P. Gray and W. Bradney, “Behavioural Specification Language for

Parse process Graphs”, Tech. Report Parse-TR4a, Computer Science

Dept., University of Wollongong, Australia, 1994

Gert Goossens et al., Design of heterogeneous ICs for mobile and

personal communication systems. Proceedings o f ACM/IEEE

International Conference on Computer-Aided Design, 1994, pp. 524-3

I Gorton, J P Gray and I E Jelly, "Object Based Modelling of Parallel

Programs", IEEE Parallel and Distributed Technology Journal, Vol. 3,

No. 2,1995, IEEE Computer Society Press (1995)

Joseph Di Giacomo, Digital bus handbook, McGraw-Hill, 1990

I Gorton, I E Jelly and T Soon Chan, "Engineering High Quality Parallel

Software Using PARSE", Proceedings o f CONPAR, Sept 1994, Linz,

Austria, Springer Verlag LNCS (1994)

Gorton, I, Jelly, I E and Gray, J P, “Parallel software engineering with

PARSE”, in Pro. COMPS AC-17, IEEE International Computer Software

148

http://www.mrc.uidaho.edu/fpga/

[GM93]

[GJM94]

[Gra94]

[Gray95]

[GVN94]

[GVNG94]

[GZGHOO]

[HB97]

[HE97]

[HE98]

and Applications Conference, November 1993, Phoenix, Arizona, USA

(1993), PP 123-130

Rajesh K. Gupta and Giovanni De Micheli, “Hardware-Software

Cosynthesis for Digital Systems”, IEEE Design & Test o f Computers,

Vol. 10, No.3, September 1993, pp. 29-41

Rajesh K. Gupta, Claudionor N. Coelho Jr., and Giovanni De Micheli,

“Program Implementation Schemes for Hardware-Software systems”,

IEEE Computer, Vol. 27, No. 1, January 1994, pp. 48-55

I. Graham, Object Orientated Methods Second Edition, Addison-Wesley,

1994

Jonathan Gray, “Relational and Textual Representations of PARSE

Process Graphs”, Technical Report PARSE-TR-3b, June 1995

Daniel D. Gajski, Frank Vahid and Sanjiv Narayan, A System-Design

Methodology: Executable-Specification Refinement, Proceeding o f

European Design Automation Conference, 1994, pp. 458-463

Daniel D. Gajski, Frank Vahid, Sanjiv Narayan and Jie Gong,

Specification and Design of Embedded Systems, PTR Prentice Hall,

1994

A. Gerstlauer, S. Zhao, D. Gajski and A. Horak, “SpecC System-Level

Design Methodology Applied to the Design of a GSM Vocoder”,

Proceedings o f Ninth Workshop on Synthesis and System Integration o f

Mixed Technologies, Kyoto, Japan, April 2000

Ken Hines and Gaetano Borriello, “Dynamic Communication Models in

Embedded Systems Co-Simulation”, Proceedings o f 34th Design

Automation Conference, Anaheim, CA, USA, 1997

J. Henkel and R. Ernst, “A Hardware/Software Partitioner Using a

Dynamically Determined Granularity”, Proceedings o f 34th Design

Automation Conference, IEEE Computer Society Press, 1997

J. Henkel and R. Ernst, “High-Level Estimation Techniques for Usage in

Hardware/Software Co-Design”, Proceedings o f Asia and South Pacific

Design Automation Conference, IEEE Computer Society Press, 1999

149

[HG97]

[Hoa85]

[Hua85]

[HW96]

[ICSP93]

[IEEE92]

[IEEE94]

[IEEE98]

[JDV92]

[JE+94]

[JJ93]

[Joh80]

[Kai93]

L. Hu, I. Gorton, “A Performance Prototyping Approach to Designing

Concurrent Software Architectures”, in Software Engineering for

Parallel and Distributed Systems, Boston, 17-18 May 1997

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall,

Englewood Cliffs, N. J., 1985

J. P. Huang, “Modelling of software partition for distributed real-time

applications”, IEEE Transactions on Software Engineering, Vol. 11, no.

10, pp. 1113-1126, Oct. 1985

Junwei Hou and W. Wolf, “Process Partitioning for Distributed

Embedded Systems”, Proceedings o f the Fourth Intl. Workshop on

Hardware/Software Codesign, IEEE Computer Society Press, 1996, pp.

70-76

Proceedings of the First International Workshop on Hardware/Software

Codesign, IEEE Computer Society Press, 1993

IEEE Design & Test of Computers, September 1992, pp.3-30

Institute of Electrical and Electronics Engineers, IEEE Standard VHDL

Language Reference Manual, IEEE, 1994

Institute of Electrical and Electronics Engineers, IEEE Standard VHDL

Language Reference Manual, IEEE, 1998

Roy, N. Jumar, R. Dutta and R. Vemuri, " DSS: A Distributed High-

Level Synthesis System", IEEE Design and Test o f Computers, June

1992

Axel Jantsch, Peeter Ellervee, Johnny Oberg, Ahmed Hemani and Hannu

Tenhunen, “Hardware/software Partitioning and Minimizing Memory

Interface Traffic”, Proceedings o f European Design Automation

Conference, 1994, pp. 226-231

K. P. Juliussen and E. Juliussen, The 6th Annual Computer Industry

Almanac, The Reference Press, Austin, TX, 1993

Stephen C. Johnson, Yet Another Compiler’s Compiler, User Guide by

Bell Laboratories, 1980

Kai Hwang, Advanced Computer Architecture: Parallelism, Scalability,

Programmability, McGraw-Hill, Inc. 1993

150

[KAJW93]

[KAJW96]

[Kal96]

[KL93]

[KL96]

[KM98]

[KMA97]

[KN97]

[Kum94]

[Kum96]

[LG96]

Sanjaya Kumar, James H. Aylor, Barry W. Johnson, and Wm. A. Wulf,

“A Framework for Hardware/Software Codesign”, IEEE Computer, Vol.

26, No. 12, December 1993, pp.39-45

Sanjaya Kumar, James H. Aylor, Barry W. Johnson, and Wm. A. Wulf,

“The Codesign of Embedded Systems: A Unified Hardware/Software

Representation”, Kluwer Academic Publishers, 1996

Asawaree Prabhakar Kalavade, System-Level Codesign o f Mixed

Hardware-Software Systems, Ph.D. thesis, University of California,

Berkeley, 1996

Asawaree Kalavade and Edward A. Lee, “A Hardware-Software

Codesign Methodology for DSP Application”, IEEE Design & Test o f

Computers, Vol. 10, No. 3, September 1993, pp. 16-28

Chang, A. Kalavade and E. A. Lee, Hardware/Software Co-Design,

Kluwer Academic Publisher, 1996, pp. 187-212

Peter Voigt Knudsen and Jan Madsen, Communication Estimation for

Hardware/Software Codesign, Proceedings o f the Sixth Intl. Workshop

on Hardware/Software Codesign, IEEE Computer Society Press, 1998,

pp. 55-59

Robert H. Klenke, Moshe Meyassed, James H. Aylor, “An Integrated

Design Environment for Performance and Dependability Analysis”,

Proceedings o f the ACM Design Automation Conference, June 1997, pp.

184-189

Russ Klein and Ross Nelson, Seamless CVE™ Hardware/Software Co-

Verification Technology, http://www.mentorg.com/codesign, 1997

Gupta, Rajesh Kumar, Cosynthesis o f Hardware and Software fo r Digital

Embedded Systems, Ph.D. thesis, Stanford University, 1994

Gupta, Rajesh Kumar, “A Framework for Interactive Analysis of Timing

Constraints”, Proceedings o f the Fourth International Workshop on

Hardware/Software Codesign, IEEE Computer Society Press, 1996

Liu, I. Gorton, “Modelling Dynamic Distributed System Structures In

PARSE”, in 4th EUROMICRO Workshop on Parallel and Distributed

Processing, IEEE Computer Society Press, Braga, Portugal, January 24-

26th 1996, pp. 352-359

151

http://www.mentorg.com/codesign

[LJC95]

[LLS99]

[LLV98]

[LMB92]

[L096]

[LSU89]

[LW97]

[Mic94]

[Mic99]

[MP92]

[MTI98]

D W Lloyd, I E Jelly and Jianming CAI, "Evaluation of PARSE for

High-Level Codesign Specification", proceedings o f International

Conference on Recent Advances in Mechatronics, 14-16 August 1995,

Istanbul, Turkey

Marcello Lajolo, Mihai Lazarescu and Alberto Sangiovanni-Vincentelli,

“A Compilation-based Software Estimation Scheme for Hardware/

Software Co-Simulation”, Proceedings o f Seventh International

Workshop on Hardware/ Software Codesign, Rome, Italy, 1999 , pp. 85-

89

Jie Liu, Marcello Lajolo, and Alberto Sangiovanni-Vinventelli,

“Software Timing Analysis Using HW/SW Cosimulation and Instruction

Set Simulator”, Proceedings o f the Sixth Intl. Workshop on

Hardware/Software Codesign, IEEE Computer Society Press, 1998, pp.

65-69

John R. Levine, Tony Mason and Doug Brown, LEX and YACC,

O’Reilly & Associates, 1992

Mike Loukides & Andy Oram, Programming with GNU Software,

O’Reilly & Associates, 1996

Roger Lipsett, Carl Schaefer, and Cary Ussery, VHDL: Hardware

Description and Design, Kluwer Academic Publishers, 1989

Li and W. Wolf, “Allocation of Multirate Systems on Multiprocessors

with Memory Hierarchy Modelling and Optimization”, Proceedings o f

the Fifth International Workshop on Hardware/Software Codesign,

IEEE Computer Society Press, 1997

Giovanni De Micheli, “Hardware-Software Codesign”, IEEE Micro,

August 1994, pp. 10-16

Giovanni De Micheli, “Hardware Synthesis from C/C++ Models,

Proceedings o f the Design Automation and Test in Europe Conference,

1999,p p .382-383

Mouly and Marie-B. Pautet, The GSM System, Anne-Laure and

Guillaume, 1992

Model Technology Incorporated, Model Sim EE/PLUS Reference

Manual, 1998

152

[MW90]

[NG97]

[Nie91]

[PB96]

[Per94]

[PF92]

[PLCV97]

[PPTOO]

[Pre94]

[PTWP99]

[PW72]

[Rao90]

[RDS98]

[Red95]

Peter L Mothersole and Norman W White, Broadcast Data System,

Teletext and RDS, Butterworths & Co. (Publishers) Ltd., 1990

Mark Nelson and Jean-Loup Gailly, The Data Compression Book, M&T

Books, 1997

Matthias Niemeyer, “Simulation of Heterogeneous Models with a

Simulator Coupling System”, Proceedings o f SCS 1991 European

Simulation Multi. Conference, June 1991, pp. 388-393

P.J. Plauger and Jim Brodie, Standard C: a reference, Prentice-Hall, 1996

Douglas L. Perry, VHDL , McGraw-Hill, Inc. 1994

Martin K. Purvis and David W. Franke, “An Overview of

Hardware/Software Codesign”, Proceedings o f IEEE Symposium on

VLSI and Systems, 1992

Claudio Passerone, Luuciano Lavagno, Massimiliano Chiodo and

Alberto Sangiovanni-Vincentelli, “Fast Hardware/Software Co

simulation for Virtual Prototyping and Trade-off Analysis”, Proceedings

34th DAC, Anaheim, CA, USA, 1997

J. M. Paul, S. N. Peffers, and D. E. Thomas, “Frequency Interleaving as

a Co-Design Scheduling Paradigm”, Proceedings o f International

Workshop on Hardware/Software Co-Design, May 2000

Roger Pressman, Software Engineering: a practitioner’s approach,

McGraw-Hill, Inc. 1994

J. M. Paul, D. E. Thomas, S. J. Weber, and S. N. Peffers, “Hardware and

Software as Dual Languages for Computer System Modelling”, IEEE

Computer Society Annual Workshop on VLSI, April 1999

W. Wesley Peterson and E.J. Weldon, Error-Correcting Codes, MIT

Press, Cambridge Mass. Second Edition, 1972

Ramesh Rao, A Building Block Approach to Performance Modelling

Using VHDL, Centre for Semicustom Integrated Systems, University of

Virginia, 1990

RDS Forum - News, WWW address: http://www.org.uk/rdsupgrade.

html, 14th, Jan. 1998

An Introduction to GSM, Artech House, Inc. 1995

153

http://www.org.uk/rdsupgrade

[RPJL+96]

[RSJ95]

[Sad95]

[SB91]

[SC94]

[Sch92]

[SJA93]

[Som93]

[Spe84]

[Sri93]

[TA92]

S. Russo, S.J. Pateman, I.E. Jelly, D.W. Lloyd, P.C. Collingwood, C.

Savy, “PARSE and DISC Integration for Parallel Software

Development”, IEEE International Conference on Algorithms and

Architectures fo r Parallel Processing, Singapore, June 1996, IEEE-CS

Press

Russo S., Savy C. & Jelly I., “Petri Net Modelling of PARSE Designs”,

EUROMICRO ‘95 Como, Italy, Sept. 1995

D R Sadler, “ Hardware/Software Codesign of Parallel Processing

Arrays”, MSc Dissertation, Sheffield Hallam University, Sheffield UK,

Sept. 1995

Mani B. Srivastava and Robert W. Brodersen, "Rapid-Prototyping of

Hardware and Software in a Unified Framework", Proceedings o f

International Conference on Computer Aided Design , IEEE Press, 1991,

pp. 152-155

Sony Corporation. DVW-700P/700WSP, Digital BETACAM One-piece

Camcorder. Sony Corporation, 1994

Joel M. Schoen, Editor, Performance and Fault Modelling with VHDL,

Prentice-Hall, Englewood Cliffs, N. J., 1992

Maximo H. Salinas, Barry W. Johnson, and James H. Aylor,

“Implementation-Independent Model of an Instruction Set Architecture

in VHDL”, in IEEE Design & Test of Computers, Vol. 10, No. 3,

September 1993, pp. 42-54.

V. Someren, ARM Rise Chip A Programmer’s Guide, Addison-Wesley,

1993

Specification of the Radio Data System, RDS, for VHF/FM Sound

Broadcasting, Specification Tech. 3244-E, European Broadcasting

Union, Technical Centre, Geneva, 1984

Mani Bhuahan Srivastava, Rapid-Prototyping o f Hardware and Software

in a Unified Framework, Ph.D. thesis, University of California, Berkeley,

1993

Takashi Asaida et al. Digital Signal Processing for Broadcast TV

Cameras, International Broadcasting Convention, 1992

154

[TAS93]

[Tex88]

[TsaOO]

[VME82]

[VG92]

[VG95]

[WC91]

[WDW94]

[Wol94]

[YEBH93]

[YW95]

Donald E. Thomas, Jay K. Adams, and Herman Schmit, “A Model and

Methodology for Hardware-Software Codesign”, IEEE Design & Test o f

Computers, Vol. 10, No. 3, September 1993, pp. 6-15

Texas Instruments, Bus Interface Circuits: Applications and Data Book,

Texas Instruments Ltd., 1988

Jeff Tsay, “A Code Generation Framework for Ptolemy II”, ERL

Technical Report UCB/ERL No. MOO/25, Dept. EECS, University of

California, Berkeley, CA 94720, May, 2000

VMEbus Manufacturers Group, VMEbus Specification Manual, Aug.

1982

Frank Vahid and Daniel d. Gajski, “ Specification Partitioning for

System Design”, in 29th ACM/IEEE Design Automation Conference,

1992

Frank Vahid and Daniel d. Gajski, “Clustering for improved system-level

functional partitioning”, Proceedings o f IEEE International Symposium

on System Synthesis, pp. 28-33, 1995

Robrt A. Walker and Paul Camposano, “A Survey of High-Level

Synthesis Systems”, Kluwer Academic Publishers, 1991

Nam S. WOO, Alfred E. Dunlop, and Wayne Wolf, “Codesign from

Cospecification ”, IEEE Computer, Vol. 27, No. 1, January 1994, pp. 42-

55

Wayne H. Wolf, “Hardware-Software Co-Design o f Embedded

Systems”, Proceedings o f the IEEE, Vol. 82, No. 7, July 1994, pp. 967-

987

W. Ye, R. Ernst, Th. Benner, and J. Henkel, “Fast Timing Analysis for

Hardware-Software Co-Synthesis”, Proceedings o f International

Conference on Computer Design, 1993

Ti-Yen Yen and Wayne Wolf, “Performance Estimation of Distributed

Embedded Systems”, Proceedings o f ICCD’95, IEEE Computer Society

Press, 1995

155

Appendix A
%{

/* This is a YACC compatible syntax definition for the Codesign-BSL */
/* (Co-BSL). Descriptions in Co-BSL can be readily converted into */
/* VHDL or C program. */
/* */

/* Compared with the ordinary BSL, the Co-BSL is featured */
/* as follows: */
/* 1. all Co-BSL elements are user accessible, i.e. it does not */
/* separate the textual portion from the user accessible ones */
/* as in BSL [Bra94]. */
/* 2. its program portions are convertible to VHDL and C program */
/* counterparts. */
/* 3. a new communication channel by name WIR is introduced to model */
/* the communication between hardware components. */
/* 4. during cosynthesis stage, communication channels are */
/* transformed into a configuration with distributed target */
/* architectures for performance evaluations. */
/* 5. its data type and expression are flourished to comprise */
/* those specially for hardware properties. */
/* 6. statements asserting system constraints particularly on */
/* hardware aspects are enhanced. */
/* 7. conventional delimiters are used to make the program */
/* more readable. */
/* 8. both procedure and function are enclosed. */
/* 9. object-based features are preserved but those irrelevant to */
/* codesign process are dropped. */
/* 10. other minor changes are introduced. */

%}
%token CODESIGN END.CODESIGN CONSTANT
%token PATH SYNC ASYN BROD BIDI WIRE
%token PRIMITIVE PROCESS END_PROCESS
%token INPORT OUTPORT CONSTRUCTOR
%token DET NON.DET CONC VARIABLE
%token INT REAL BYTE BOOLEAN BIT
%token OCTAL HEX CHAR TIME
%token BEGIN END WAIT ON FOR UNTIL
%token BREAK CONTINUE RETURN SKIP STOP

156

%token IF THEN ELSE_IF END_IF
%token CASE IS END_CASE ON MOD REM
%token TRUE FALSE REM UMINUS
%token AND OR NAND NOR XOR XNOR NOT ABS
%token SLL SRL SLA SRA ROL ROR
%token WHILE DO END_WHILE FOR LOOP END_FOR
%token CLASSES D_CLASS END_CLASS
%token CONNECT_PATHS FROM TO CONNECT_PORTS
%token CALL EXTERNAL INPORTS OUTPORTS
%token INTERFACE END_INTERFACE
%token ARRAY RECORD END_RECORD AFTER
%token NAME NUMBER EXECUTION
%token FUNCTION PROCEDURE IO_NAME OF
%token FUNCTION_SERVER DATA.SERVER
%token CONTROL_PROCESS
%token RECEIVE SYN-SEND ASYN-SEND BR-SEND

%start codesign

%left
%left
%right UMINUS

%%

codesign:
CODESIGN codesign_name

constants
paths
primitives
classes
externals
executions
connections

END_CODESIGN

codesign_name:
undef_name

constants:
/* empty */

157

constant_list:

constant_dec:

paths:

path_list:

path_def:

path_type:

primitives:

primitive_list:

primitive_def:

| CONSTANT constant_list

constant_dec
| constant_list V constant_dec

undef_name ’=’ NUMBER

/* empty */
| PATH pathjist

path_def
| path_list path_def

undef_name path_type type

SYNC | ASYN | BROD | BIDI | WIRE

/* empty */
| PRIMITIVE primitiveJist V

primitive_def
| primitive_list V primitive_def

PROCESS process_name OF class_type time_indication
inports
outports
constructors
variables
function_declaration
procedure_declaration
main_sequence

158

END_PROCESS

9

process_name:
undef_name

9

time_indication:
/* empty */

| ’{’ expression ’}’

9

inports:
/* empty */

| INPORT port_def_list V

9

port_def_list:
port_descriptor

| port_def_list port_descriptor

9

port_descriptor:
port_id path_type type

port_id:

outports:

undef name

/* empty */
| OUTPORT port.defJist V

9

constructors:
/* empty */

| CONSTRUCTOR constructor_list V

9

constructorjist:
constructor_def

| constructor_list V constructor_def

9

constructor_def:
NAME constructor_type ’(’ priority_list y

9

constructor_type:
DETI NON DET I CONC

159

priority_list:

priority_entry

| priority_list V priority_entry

9

priori ty_entry:

NAME

9

variables:
/* empty */

| VARIABLE variableJist V

9

variable_list:
variable_def

| variable_list V variable_def

9

variable_def:
undef_name_list Vtype

9

type:
prim_type | composite_type

prim_type:
INT|REAL|BYTE|BOOLEAN

| OCTAL | HEX | CHAR | TIME | BIT

9

compositejype:

array_declarator | record_declarator

9

array_declarator:
ARRAY subscript prim_type

9

subscript:

’[’NUMBER TI V NUMBER T subscript

9

record_declarator:
RECORD element_declaration_list
END_RECORD

9

element declaration list:

160

element_declaration
| element_declaration_list element_declaration

element_declaration:
undef_name Vtype V

*

undef_name_list:
undef_name

| undef_name_list ’,’undef_name

undef_name:
NAME /* previously defined name */

def_name:
NAME /* undefined name */

y

function_declaration:
/* empty */

| FUNCTION function_specifier ’(’ association_list y

RETURN type
main_sequence V

procedure_declaration:
/* empty */

| PROCEDURE procedure_specifier ’(’ association_list y

main_sequence V

function_specifier:
undef_name

procedure_specifier:
undef_name

association_list:
undef_name

| association_list ’,’undef_name

>

main_sequence:
BEGIN statements END

161

statements:

statement
statements statement

statement:
/* empty */
wait_statement | BREAK | CONTINUE
RETURN | SKIP | STOP | assignment
signal_assignment | condition_statement
case_statement | loop | proc_call
io_operation

wait statement:

wait tail:

name list:

assignment:

element:

WAIT wait tail

ON name_list
UNTIL expression
FOR expression

def_name
namejist V def_name

element V =’ expression

def_name | def_name subscript_expr

signal_assignment:

wave form:

def_name ’<’ =’ =’ expression wave_form

/* empty */
AFTER expression

actural_parameter:
identifier list

162

identifier list:

identifier:

subscript_expr:

expression:

relation:

identifier
identifier V identifier_list

NAME I NUMBER

’[’ expression T
’[’ expression T subscript_expr

relation
j expression AND relation
| expression OR relation
| expression NAND relation
| expression NOR relation
| expression XOR relation
| expression XNOR relation

shift_expression
| relation ’<’ shift_expression
| relation ’=’ ’<’ shift_expression
| relation V shift_expression
| relation =’ V shift_expression
| relation ’<’ V shift_expression
| relation ’=’ shift_expression

shift_expression: simple_expression
SLL simple_expression
SRL simple_expression
SLA simple_expression
SRA simple_expression
ROL simple_expression
ROR simple_expression

simple_expression:
term

| sign term

163

simple_expression adding_operator term

sign:

V %prec UMINUS
| %prec UMINUS

*

adding_operator:

,+ T - , | ’& ’

*

term:
factor

| term multi_operator factor

multi_operator:
| REM | MOD

factor:

primary:

literal:

primary | primary ’A’ primary %prec UMINUS
NOT primary %prec UMINUS | ABS primary %prec UMINUS

NAME | literal | ’(’ expression y | function_call

NUMBER I TRUE I FALSE

function_call:
function_name ’(’ actural_parameter y

function_name:
def_name

condition_statement:
IF expression THEN statements END_IF

| IF expression THEN statements else_part END_IF

5

else_part:
ELSE_IF expression THEN statements

| else_part ELSE_IF expression THEN statements

164

case_statement:

caselist:

loop:

for_expression:

proc_call:

arglist:

single_arg:

io_operation:

io_name:

classes:

class_defs:

class_def:

CASE expression IS caselist END_CASE

ON expression statements

| caselist ON expression statements

WHILE expression DO statements END_WHILE

| FOR for_expression LOOP statements END_FOR

’(’expression ’;’expression ’;’expression y

CALL def_name ’(’ arglist y

/* empty */

| single_arg | arglist ’,’ single_arg

expression

io_name ’(’expression_list y

RECEIVE | SYN-SEND | ASYN-SEND | BR-SEND

/* empty */

| CLASSES class_defs

class_def

| class_defs ’;’ class_def

D_CLASS class_name OF class_type

inports

outports

165

class_name:

class_type:

externals:

extemal_list:

external_dec:

interface_io:

executions:

execution_list:

execution_dec:

constructors

paths

executions

connections

portconnects

END_CLASS

undef_name

FUNCTION_SERVER

| DATA_SERVER

| CONTROL_PROCESS

/* empty */

| EXTERNAL externalJist V

extemal_dec

| external_list V extemal_dec

INTERFACE NAME interfacejo END_INTERFACE

/* empty */

| INPORTS port_descriptor

| OUTPORTS port_descriptor

/* empty */

| EXECUTION executionjist

execution_dec

| execution_list ’;’execution_dec

166

def_class_name:

class_params:

expression_list:

connections:

path_instances:

path_instance:

path_name:

instance:

vname:

vector:

portconnects:

NAME V def_class_name class_params

def_name

/* empty */

| ’(’expression_list y

expression

| expression_list expression

/* empty */

| CONNECT_PATHS pathjnstances V

path_instance

| path_instances ’;’path_instance

path_name VFROM instance TO instance

def_name

vname

def_name

| def_name vector

’[’expression T

/* empty */

| CONNECT_PORTS port_connect_list V

167

port_connect_list:

port_connect:

formal_param:

port_connect

| port_connect_list V port_connect

formaLparam TO vname V vname

| vname ’.’NAMETO formaLparam

def_name

Appendix B
1. Bus Resolution Function (BRF)

FUNCTION protocol(input: token_vector) RETURN token is
variable source_token: token := def_source_token;
variable sink_token: token := def_sink_token;
variable i: integer;
variable no_source, no_sink: boolean := true;
begin

for i in input’low to input’high loop
if (input(i).status = active_source) then
source_token.status := input(i).status;
source_token.color := input(i).color;
no_source := false;
elsif (input(i).status = active_sink) then
sink_token := input(i);
no_sink := false;
elsif (input(i).status = inactive_source) then
source_token := input(i);
no_source := false;
elsif (input(i).status = inactive_sink) then
sink_token := input(i);
no_sink := false;
end if;
end loop;

if no_source then
return sink_token;

elsif no_sink then
return source_token;

elsif(source_token.status = active_source) then
if (sink_token.status = active_sink) then

return sink_token;
else

return source_token;
end if;

elsif (sink_token.status = active_sink) then
return source_token;

else
return sinkjoken;

end if;

end protocol;

2. Synchronous Sending Procedure

PROCEDURE syn_transmit(signal T: inout token; variable tt: in token;
delay:time; wit: time) IS

variable temp, tempi: token;
begin
if tt.color.condi = TRUE then
temp :=tt;
if not(token_removed(T)) then
wait until(token_removed(T) or time_out(wit));

end if;
if token_removed(T) then

169

place_token(T, temp, delay);
wait until (token_acked(T)) or time_out(wit);

end if;
if token_acked(T) then
release_token(T);

end if;
end if;
end syn_transmit;

3. Synchronous Receiving Procedure

PROCEDURE syn_receive(signal T: inout token; variable tt: out token;
delay.time; wit: time) IS

variable temp: token;
begin
if not(token_present(T)) then
wait until(token_present(T) or time_out(wit));

end if;
if token_present(T) then
tt := T;
ack_token(T, delay);
wait until (token_released(T)) or time_out(wit);

end if;
if token_released(T) then
remove_token(T);

end if;
end syn_receive;

4. Asynchronous Buffer Procedure

PROCEDURE asyn_buffer(signal TJn: inout token; signal T_out: inout token;
que_point: inout queptrjk; delayl: time; delay2: time;
wit: time) IS

variable temp: token;
variable tmp: token;
variable tmp1: integer;
begin
if token_present(T_in) then
tmp := TJn;
ackJoken(TJn, delay2);
in_queJk(que_point, tmp);
wait until (token_released(TJn) or time_out(wit));
if token_released(TJn) then

removeJoken(TJn);
end if;

end if;
if token_removed(T_out) then
number_of_que Jk(que_point, tmp1);
if (tmp1 > 0) then
out_queJk(que_point,tmp);
place_token(T_out, tmp, delayl);

end if;
end if;
if token_acked(T_out) then

releaseJoken(T_out);
end if;
end asyn_buffer;

170

5. Synchronous Procedure for Broadcast Communication

PROCEDURE bro_syn(signal T: inout token; wit: time) IS
begin
if not(token_present(T)) then
wait until token_present(T) or time_out(wit);

end if;
if token_present(T) then
ack_token(T);
wait until (token_released(T) or time_out(wit));

end if;
if token_released(T) then
remove_token(T);

end if;
end bro_syn;

6. Broadcast Buffer Procedure

PROCEDURE bro_buffer(signal TJn: inout token; signal T_out: inout token;
que_point: inout queptrjk; wit: time) IS

variable tmp: token;
variable tmpp: token;
variable tmp1: integer;
begin
if token_present(TJn) then
tmp := TJn;
ackJoken(TJn);
in_queJk(que_point, tmp);
wait until (token_released(TJn) or time_out(wit));
if token_released(TJn) then

removeJoken(TJn);
end if;

end if;
if token_removed(T_out) then

number_of_queJk(que_point,tmp1);
if (tmp1 > 0) then
out_queJk(que_point,tmpp);
placeJoken(T_out, tmpp);

end if;
end if;
if token_acked(T_out) then
releaseJoken(T_out);

end if;
end brojDuffer;

171

Appendix C
1. The Co-BSL Design for Handover

- The following Co-BSL design skeletonizes the Handover process in GSM communication
- To focus on the usage of Co-BSL, sequential behavioural descriptions inside primitives and
- some of program details are not included because they are not essentia/ in this example.
- The Co-BSL code has been broken into several files that can be invoked with
-- “#includefilename” and inserted into the desired places.

CODESIGN Handover

-- The Handover Process in GSM Mobile Communications

PATH
Notification ASYN RECORD name: ARRAY [32] CHAR;

number: INT;
area: BYTE;

END_RECORD;
Maintenance BIDl RECORD control: ARRAY [32] BIT;

number: INT;
area: BYTE;

END RECORD;
ControM BIDl ARRAY [114] BIT;
Control_2 BIDl ARRAY [114] BIT;
T raff ic_1 BIDl ARRAY [148] BIT;
MonitoM WIRE ARRAY [88] BIT;
Traffic_2 BIDl ARRAY [148] BIT;
Monitor_2 WIRE ARRAY [88] BIT;

PRIMITIVE

#include “co.prims”

CLASSES

#include “co.clases’

EXTERNAL

#include “co.externs”

EXCUTION
b: BSC;
b1: BTS1;
b2: BST2;
m: MS;
g: GMSC;
o: OMC;

CONNECT_PATHS
Notification: FROM b.outpl TO g.inpl;
Maintenance: FROM o.outpl TO b.inpl;

172

ControM: FROM b.outp2 TO b1 .inpl;
Control_2: FROM b.outp3 TO b2.inp1;
Traffic_1: FROM bl.outpl TO m.inp3;
Monitor_1: FROM instance TO m.inpl;
Traffic_2: FROM b2.outp1 TO m.inp4;
Monitor_2: FROM instance TO m.inp2;

END_CODESIGN

- “co.prims”
- primitive process descriptions

PROCESS BSC OF CONTROL_PROCESS
INPORTS
inpl BIDl RECORD control: ARRAY [32] BIT;

number: INT;
area: BYTE;

END_RECORD;

OUTPORTS
outpl ASYN RECORD name: ARRAY [32] CHAR;

number: INT;
area: BYTE;

END_RECORD;
outp2 BIDl ARRAY [114] BIT;
outp3 BIDl ARRAY [114] BIT;

CONSTRUCTORS
- constructor declaration

VARIABLES
-- variable declaration

BEGIN
-- sequential code

END

END_PROCESS

PROCESS BTS1 OF FUNCTION_SERVER
INPORTS
inpl BIDl ARRAY [114] BIT;

OUTPORTS
outpl BIDl ARRAY [148] BIT;

outp2 WIRE ARRAY [88] BIT;

CONSTRUCTORS
-- constructor declaration

VARIABLES
-- variable declaration

BEGIN
-- sequential code

END

END_PROCESS

PROCESS BTS2 OF FUNCTION_SERVER

173

INPORTS
inpl BIDl ARRAY [114] BIT;

OUTPORTS
outpl BIDl ARRAY [148] BIT;

outp2 WIRE ARRAY [88] BIT;

CONSTRUCTORS
- constructor declaration

VARIABLES
-- variable declaration

BEGIN
-- sequential code

END

END_PROCESS

PROCESS Transceiver OF FUNCTION_SERVER
INPORTS
inpl BIDl ARRAY [148] BIT;
inp2 BIDl ARRAY [148] BIT;
inp3 WIRE ARRAY [88] BIT;

CONSTRUCTORS
-- constructor declaration

VARIABLES
-- variable declaration

BEGIN
-- sequential code

END

END_PROCESS

PROCESS Monitor OF FUNCTION_SERVER
INPORTS
inpl WIRE ARRAY [88] BIT;
inp2 WIRE ARRAY [88] BIT;

OUTPORTS
outpl WIRE ARRAY [88] BIT;

CONSTRUCTORS
-- constructor declaration

VARIABLES
-- variable declaration

BEGIN
-- sequential code

END

END_PROCESS

-- “co.clases”
- decomposable class

174

D_CLASS Mobile_Station OF FUNCTION_SERVER
INPORTS
inpl WIRE ARRAY [88] BIT;
inp2 WIRE ARRAY [88] BIT;
inp3 BIDl ARRAY [148] BIT;
inp4 BIDl ARRAY [148] BIT;

CONSTRUCTORS
-- constructor declaration

PATH
Monitor_data WIRE ARRAY [88] BIT;

EXCUTION
t: Transceiver;
mr: Monitor;

CONNECT_PATHS
Monitor_data: FROM mr.outpl TO t.inp3;
inpl TO mr.inpl;
inp2 TO mr.inp2;
inp3TOt.inp1;
inp4 TO t.inp2;

CONNECT_PORTS

END_CLASS

-- “co.externs”
-- external interface objects

INTERFACE GMSC
INPORTS
inpl ASYN RECORD name: ARRAY [32] CHAR;

number: INT;
area: BYTE;

END_RECORD;

ENDJNTERFACE

INTERFACE OMC
OUTPORTS
outpl BIDl RECORD control: ARRAY [32] BIT;

number: INT;
area: BYTE;

END_RECORD;

ENDJNTERFACE

175

2. The VHDL Program Converted from its Co-BSL Design

- - Following the guidelines outlined in Chapter 3, the Co-BSL program shown earlier
-- in this appendix has been converted into the VHDL program shown below. Special
-- attention has been given to the preservation of object-based features within Co-BSL

-- design. All primitives in the original Co-BSL program have been converted

- into VHDL entities and their architecture bodies. They are supposed to be stored
-- in the component library WORK for future reuse.

entity BSC is
port (

in_bidi1: in RECORD control: ARRAY [32] BIT;
number: INT;
area: BYTE;

END_RECORD;
in_bidi2: out RECORD control: ARRAY [32] BIT;

number: INT;
area: BYTE;

END_RECORD;
out1_asyn: out RECORD name: ARRAY [32] CHAR;

number: INT;
area: BYTE;

END_RECORD;
out2_bidi1: in ARRAY [114] BIT;
out2_bidi2; out ARRAY [114] BIT;
out3_bidi1: in ARRAY [114] BIT;
out3_bidi2: out ARRAY [114] BIT);

end BSC;

architecture Behavior of BSC is
begin

process
variable

-- variable declaration
begin

-- behavioral description
end process

end Behavior;

entity BTS1 is
P °rt (

in_bidi1: in ARRAY [114] BIT;
in_bidi2: out ARRAY [114] BIT;
out1_bidi1: in ARRAY [148] BIT;
out1_bidi2: out ARRAY [148] BIT;
out2_wire; out ARRAY [88] BIT);

end BTS1;

architecture Behavior of BTS1 is
begin

process
variable

-- variable declaration
begin

176

-- behavioral description
end process

end Behavior;

entity BTS2 is
port (

in_bidi1: in ARRAY [114] BIT;
in_bidi2: out ARRAY [114] BIT;
out1_bidi1: in ARRAY [148] BIT;
out1_bidi2: out ARRAY [148] BIT;
out2_wire; out ARRAY [88] BIT);

end BTS2;

architecture Behavior of BTS2 is
begin

process
variable

-- variable declaration
begin

-- behavioral description
end process

end Behavior;

entity Transceiver is
port (

in1_bidi1: in ARRAY [148] BIT;
in1_bidi2: out ARRAY [148] BIT;
in2_bidi1: in ARRAY [148] BIT;
in2_bidi2: out ARRAY [148] BIT;
in3_wire: in ARRAY [88] BIT);

end Transceiver;

architecture Behavior of Transceiver is
begin

process
variable

-- variable declaration
begin

-- behavioral description
end process

end Behavior;

entity Monitor is
port (

in1_wire: in ARRAY [88] BIT;
in2_wire: in ARRAY [88] BIT;
out1_wire: out ARRAY [88] BIT);

end Monitor;

architecture Behavior of Monitor is
begin

process
variable

-- variable declaration
begin

-- behavioral description
end process

end Behavior;

-- Two externals (GMSC and OMC) are too converted into VHDL entity declarations

177

-- and architecture bodies. They are stored in the library WORK.

entity Ext_GMSC is
port (

in1_asyn: in RECORD name: ARRAY [32] CHAR;
number: INT;
area: BYTE;

END_RECORD);
end EXT_GMSC;

architecture Behavior of EXT_GMSC is
begin

process
variable

-- variable declaration
begin

-- the behavior depends on the design of test bed for simulation.

end process
end Behavior;

entity EXT_OMC is
port (

out_bidi1: in RECORD control: ARRAY [32] BIT;
number: INT;
area: BYTE;

END_RECORD;
out_bidi2: out RECORD control: ARRAY [32] BIT;

number: INT;
area: BYTE;

END_RECORD);
end EXT_OMC;

architecture Behavior of EXT_OMC is
begin

process
variable

-- variable declaration
begin

- the behavior depends on the design of test bed for simulation.

end process
end Behavior;

-- The class Mobile_Station is converted into a VHDL entity declaration and its
-- architecture body. The conversion reuses the components, which have been
-- converted from the primitives and stored in the library WORK.

entity CLASS_Mobile_Station is
port (

in1_wire: in ARRAY [88] BIT;
in2_wire: in ARRAY [88] BIT;
in3_bidi1: in ARRAY [148] BIT;

178

in3_bidi2: out ARRAY [148] BIT;
in4_bidi1: in ARRAY [148] BIT;
in4_bidi2: out ARRAY [148] BIT);

end CLASS_Mobile_Station;

architecture Behavior of CLASS_Mobile_Station is

component Transceiver
P°rt (

in1_bidi1: in ARRAY [148] BIT;
in1_bidi2: out ARRAY [148] BIT;
in2_bidi1: in ARRAY [148] BIT;
in2_bidi2: out ARRAY [148] BIT;
in3_wire: in ARRAY [88] BIT);

end Transceiver;

component Monitor
port (

in1_wire: in ARRAY [88] BIT;
in2_wire: in ARRAY [88] BIT;
out1_wire: out ARRAY [88] BIT);

end Monitor;

signal Monitor_data_wire: ARRAY [88] BIT;

begin
C1: Transceiver port map (in3_bidi1, in3_bidi2, in4_bidi1, in4_bidi2, Monitor_data_wire);
C2: Monitor port map (in1_wire, in2_wire, Monitor_data_wire);

end Behavior;

-- Now comes the Co-BSL program “Handover” (top-level description), converted
- into a VHDL entity declaration and architecture body. Its components have
- already been stored in the library WORK.

entity Handover is
- no port declaration I
end Handover;

architecture Behavior of Handover is

component BSC
port (

in_bidi1: in RECORD control: ARRAY [32] BIT;
number: INT;
area: BYTE;

END_RECORD;
in_bidi2: out RECORD control: ARRAY [32] BIT;

number: INT;
area: BYTE;

END_RECORD;
out1_asyn: out RECORD name: ARRAY [32] CHAR;

number: INT;
area: BYTE;

END_RECORD;
out2_bidi1: in ARRAY [114] BIT;
out2_bidi2; out ARRAY [114] BIT;
out3_bidi1: in ARRAY [114] BIT;

179

out3_bidi2: out ARRAY [114] BIT);
end BSC;

component BTS1
port (

in_bidi1: in ARRAY [114] BIT;
in_bidi2: out ARRAY [114] BIT;
out1_bidi1: in ARRAY [148] BIT;
out1_bidi2: out ARRAY [148] BIT;
out2_wire; out ARRAY [88] BIT);

end BTS1;

component BTS2
port (

in_bidi1: in ARRAY [114] BIT;
in_bidi2: out ARRAY [114] BIT;
out1_bidi1: in ARRAY [148] BIT;
out1_bidi2: out ARRAY [148] BIT;
out2_wire; out ARRAY [88] BIT);

end BTS2;

component CLASS_Mobile_Station
Port (

in1_wire: in ARRAY [88] BIT;
in2_wire: in ARRAY [88] BIT;
in3_bidi1: in ARRAY [148] BIT;
in3_bidi2: out ARRAY [148] BIT;
in4_bidi1: in ARRAY [148] BIT;
in4_bidi2: out ARRAY [148] BIT);

end CLASS_Mobile_Station;

component Ext_GMSC
port (

in1_asyn: in RECORD name: ARRAY [32] CHAR;
number: INT;
area: BYTE;

END_RECORD);
end EXT_GMSC;

component EXT_OMC
port (

out_bidi1: in RECORD control: ARRAY [32] BIT;
number: INT;
area: BYTE;

END_RECORD;
out_bidi2: out RECORD control: ARRAY [32] BIT;

number: INT;
area: BYTE;

END_RECORD);
end EXT_OMC;

signal Notification RECORD name: ARRAY [32] CHAR;
number: INT;
area: BYTE;

END_RECORD;
signal Maintenancel RECORD control: ARRAY [32] BIT;

number: INT;
area: BYTE;

END_RECORD;
signal Maintenance2 RECORD control: ARRAY [32] BIT;

180

number: INT;
area: BYTE;

END_RECORD;
signal Control_11 ARRAY [114] BIT;
signal ControM 2 ARRAY [114] BIT;
signal Control_21 ARRAY [114] BIT;
signal Control_22 ARRAY [114] BIT;
signal Traffic_11 ARRAY [148] BIT;
signal Traffic_12 ARRAY [148] BIT;
signal MonitoM ARRAY [88] BIT;
signal Traffic_21 ARRAY [148] BIT;
signal Traffic_22 ARRAY [148] BIT;
signal Monitor_2 ARRAY [88] BIT;

begin

T1: component BSC
port map (Maintenancel, Maintenance2, Notification,

ControM 1, ControM2, Control_21, Control_22);

T2: component BTS1
port map (Control_12, ControM 1, Traffic_11, TraffkM2, MonitoM);

T3: component BTS2
port map (Control_22, Control_21, Traffic_21, Traffic_22, MonitoM);

T4: component CLASS_Mobile_Station
port map (MonitoM, MonitoM, Traffic_12, Traffic_11, Traffic_22, Traffic_21);

T5: component Ext_GMSC
port map (Notification);

T6: component EXT_OMC
port map (Maintenance2, Maintenancel);

end Behavior;

181

Appendix D
1. VHDL Program

• Data Source

USE std.textio.ALL;
USE WORK.ESSENTIAL_DEFINITIONS.ALL;
USE WORK.token_definition.ALL;
USE WORK.token_passing.ALL;
USE WORK.par_vhdl_conversion.ALL;
USE WORK.arith_pack.ALL;

entity data_source is
port(sent_signals: inout token);

end data_source;

architecture behave_data_source of data_source is

signal data_temp: token_res;

file test_counts: byte_file; -- "test.counts"
file test_bits: bit_file; - "test.bits"

begin

encoder: process
variable temp: token;
variable tmp: integer;
variable tmp_bit: bit;
variable countsjnt: unsignedjnt;
variable counts_char: unsigned_char;
variable c_vector: bit_vector(0 to 15):=(others =>’0’);

begin

--/ sending off scaled_counts /--
file_open(test_counts, "test.counts", read_mode);
for i in 0 to 255 loop

read(test_counts, counts_char);
c_vector:= (others =>’0’);
c_vector(0 to 7):= unsignchar_to_bv(counts_char, 8);
counts_int:= bv_to_unsignint(c_vector);
temp.color.datal := countsjnt;
temp.color.condi:= true;
syn_transmit(sent_signals, temp, 2 ns, 99999 ns);

end loop;

file_close(test_counts);

--/ sending off arith_bits /--
file_open(test_bits, "test.bits", read_mode);
loopl:
loop
c_vector:= (others =>’0’);
fori in 0to 15 loop

if not endfile(test_bits) then
read(test_bits, tmp_bit);

182

c_vector:= c_vector(1 to 15) & tmp_bit;
else

tmp:= i;
exit loopl;

end if;
end loop;
temp.color.datal := bv_to_unsignint(c_vector);
temp.color.condi:= true;
syn_transmit(sent_signals, temp, 2 ns, 99999 ns);

end loop loopl;

--/ sending off remaining bits /--
for i in tmp to 15 loop

c_vector:= c_vector(1 to 15) & ’O’;
end loop;
temp.color.datal := bv_to_unsignint(c_vector);
temp.color.condi:= true;
syn_transmit(sent_signals, temp, 2 ns, 99999 ns);
wait for 2 ns;

file_close(test_bits);
wait;

end process;

end behave_data_source;

• Control_block

USE std.textio.ALL;
USEWORK.ESSENTIAL_DEFINITIONS.ALL;
USE WORK.token_definition.ALL;
USE WORK.token_passing.ALL;
USE WORK.par_vhdl_conversion.ALL;
USE WORK.arith_pack.ALL;

entity control_block is
port(in_16: inout token;

out_bit: inout token;
out_16: inout token;
out_rest: inout token);

end control_block;

architecture behave_control_block of control_b!ock is

begin
controLblock: process
variable t_out: token;
variable tmp: unsignedjnt;
variable t_times: bit:= ’O’;
variable t_count: integer:= 0;
variable marksl: integer:= -1;
variable marks2: integers -1;
variable marks3: integers -1;
variable t_in_counts: integer:= 0;
variable c_received: bit_vector(0 to 15);
file datafile: text open write_mode is "control.txt";
variable I: line;

begin

183

if (marksl = -1) then
--/ scaled_counts /--
syn_receive(in_16, t_out, 99999 ns);
t_out.color.condi:= true;
syn_transmit(out_16, t_out, 99999 ns);
t_in_counts:= t_in_counts + 1;
if (t_in_counts > 255) then

marksl := 0;
end if;

elsif (marks2 = -1) then
--/ first arith_coded 16-bit message /--
syn_receive(in_16, t_out, 99999 ns);
tmp:= t_out.color.data1;
c_received:= unsignint_to_bv(tmp, 16);
for i in 0 to 15 loop

t_out.color.data2:= c_received(i);
t_out.color.condi:= true;
syn_transmit(out_bit, t_out, 99999 ns);

end loop;
marks2:= 0;

elsif (marks3 = -1) then
--/ the remaining arith_coded message /--
syn_receive(in_16, t_out, 99999 ns);
tmp:= t_out.color.data1;
c_received:= unsignint_to_bv(tmp, 16);
for i in 0 to 15 loop

t_out.color.data2:= c_received(i);
t_out.color.condi:= true;
syn_transmit(out_rest, t_out, 99999 ns);

end loop;
end if;

--/ counting invoking time /--
write(l, t_times, right, 1);
t_times:= not t_times;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile.l);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process;

end behave_control_block;

• Model_BuiIding

USE std.textio.ALL;
USEwork.ESSENTIAL_DEFINITIONS.ALL;
USE work.token_definition.ALL;
USE work.token_passing.ALL;
USE work.par_vhdl_conversion.ALL;
USE work.arith_pack.ALL;

entity building_model is
port(in_counts: inout token; totaM: inout token);

end building_model;

architecture behave_building_model of building_model is

184

begin

building_model: process
variable totals: array_totals;
variable t_out: token;
variable scaled_counts: array_char;
variable tmp: unsignedjnt;
variable t_times: bit:= 'O’;
variable t_count: integers 0;
variable t_in_count: integer:= 0;
variable t_out_count: integer:= -1;
variable c_received: bit_vector(0 to 15);
file datafile: text open write_mode is "building.txt";
variable I: line;

begin
if (t_out_count = -1) then

--/ receiving scaled_counts from the decoder /--
syn_receive(in_counts, t_out, 99999 ns);
tmp:= t_out.color.data1;
c_received := unsignint_to_bv(tmp, 16);
scaled_counts(t_in_count):= bv_to_unsignchar(c_received(0 to 7));
t_in_count:= t_in_count + 1;
if (t_in_count > 255) then

t_in_count:= 0;
t_out_count:= 0;
--/ building totals /--
build_totals(scaled_counts, totals);

end if;
elsif (t_in_count = 0) then

--/ sending totals to the expander /--
t_out.color.data1 := totals(t_out_count);
t_out.color.condi := TRUE;
syn_transmit(total_1, t_out, 99999 ns);
t_out_count:= t_out_count + 1;
if t_out_count > 257 then

t_out_count:= -1;
end if;

end if;

--/ counting invoking time /--
write(l, t_times, right, 1);
t_times:= not t_times;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile,l);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process;

end behave_building_model;

• Expander

USE std.textio.ALL;
USEWORK.ESSENTIAL_DEFINITIONS.ALL;
USE WORK.token_definition.ALL;

185

USE WORK.token_passing.ALL;
USE WORK.par_vhdl_conversion.ALL;
USE WORK.arith_pack.ALL;

entity expander is
port(in_totals: inout token;

in_code: inout token;
out_data: inout token;
in_data: inout token;
out_store: inout token);

end expander;

architecture behave_expander of expander is

begin

expander: process
variable s: symbol;
variable c: unsignedjnt;
variable t_temp: token;
variable t_times: bit:= ’O’;
variable t_count: integers 0;
variable totals: array_totals;
variable scale_count: array_char;
variable t_in_counts: integers 0;
variable t_out_counts: integer:= -1;
variable high, low, code, count: unsignedjnt;
file datafile: text open write_mode is "expanding.txt";
variable I: line;

begin
if (t_out_counts = -1) then

--/ receiving totals /--
syn_receive(in_totals, t_temp, 99999 ns);
totals(t_in_counts):= t_temp.color.data1;
t_in_counts:= t_in_counts + 1;
if (t_in_counts > 257) then

t_in_counts:= 0;
t_out_counts:= 0;
--syn_receive(in_code, t_temp, 99999 ns);
--code:= t_temp.color.data1;
initialize_arithmetic_decoder(in_code, code);
low:= 0;
high:= 65535;

end if;
elsif (t_in_counts = 0) then

--/ decoding process /--
s.scale:= totals(257);
count:= get_current_count(s, high, low, code);
convert_symbol_to_int(count, c, s, totals);
t_temp.color.data1 := c;
t_temp.color.condi:= true;
syn_transmit(out_store, t_temp, 99999 ns);

--/ sending off the data /--
t_temp.color.data1 := s.low_count;
t_temp.color.condi:= true;
syn_transmit(out_data, t_temp, 99999 ns);
t_temp.color.data1 := s.high_count;
t_temp.color.condi:= true;

186

syn_transmit(out_data, t_temp, 99999 ns);
t_temp.color.data1 := s.scale;
t_temp.color.condi:= true;
syn_transmit(out_data, t_temp, 99999 ns);
t_temp.color.data1 := high;
t_temp.color.condi:= true;
syn_transmit(out_data, t_temp, 99999 ns);
t_temp.color.data1 := low;
t_temp.color.condi:= true;
syn_transmit(out_data, t_temp, 99999 ns);
t_temp.color.data1 := code;
t_temp.color.condi:= true;
syn_transmit(out_data, t_temp, 99999 ns);

--/ receiving the data-back /--
syn_receive(in_data, t_temp, 99999 ns);
high:= t_temp.color.data1;
syn_receive(in_data, t_temp, 99999 ns);
low:= t_temp.color.data1;
syn_receive(in_data, t_temp, 99999 ns);
code:= t_temp.color.data1;

end if;

--/ counting invoking time /--
write(l, t_times, right, 1);
t_times:= not t_times;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile,l);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process expander;

end behave_expander;

• Remover

USE std.textio.ALL;
USE WORK.ESSENTIAL_DEFINITIONS.ALL;
USE WORK.token_definition.ALL;
USE WORK.token_passing.ALL;
USE WORK.par_vhdl_conversion.ALL;
USE WORK.arith_pack.ALL;

entity remover is
port(in_bits: inout token;

in_unsigned: inout token;
out_unsigned: inout token);

end remover;

architecture behave_remover of remover is

begin
remover: process
variable t_temp: token;
variable s: symbol;
variable rangel: integer;
variable bit_tmp: bit;

187

variable t_times: bit:= ’O’;
variable t_count: integers 0;
variable markl: integers -1;
variable high, low, code: unsignedjnt;
variable bv16_high: bit_vector(0 TO 15);
variable bv16Jow: bit_vector(0 TO 15);
variable bv16_code: bit_vector(0 TO 15);
file datafile: text open write_mode is "removing.txt";
variable I: line;

begin
if (markl = -1) then

--/ receiving the data /--
syn_receive(in_unsigned, tjemp, 99999 ns);
s.low_count:= tJemp.color.datal;
syn_receive(in_unsigned, tjemp, 99999 ns);
s.high_count:= tjemp.color.datal;
syn_receive(in_unsigned, tjemp, 99999 ns);
s.scale:= tjemp.color.datal;
syn_receive(in_unsigned, tjemp, 99999 ns);
high:= tjemp.color.datal;
syn_receive(in_unsigned, tjemp, 99999 ns);
low:= tjemp.color.datal;
syn_receive(in_unsigned, tjemp, 99999 ns);
code:= tjemp.color.datal;

--/ initialising the process /--
rangel := INTEGER(high - low) + 1;
high:= low + unsignedjnt((range1 * INTEGER(s.high_count))

/ INTEGER(s.scale) -1);
low:= low + unsignedjnt((range1 * INTEGER(s.low_count))

/ INTEGER(s.scale));

--/ converting into bit_vectors /--
bv16_high := unsignintJo_bv(high,16);
bv16Jow := unsignintJo_bv(low, 16);
bv16_code := unsignintJo_bv(code,16);
markl := 0;

end if;

--/ starting to remove /--
if (bv16_high(0) = bv16Jow(0)) then

NULL;
elsif ((bv16Jow(1) = ’1’) AND (bv16_high(1) = ’0’)) then

bv16_code:= bv16_code XOR X"4000”;
bv16Jow:= bv16Jow AND X"3FFF";
bv16_high:= bv16_high OR XM4000";

else
markl :=-1;

end if;
if (markl = 0) then

bv16Jow:= bv16Jow sll 1;
bv16_high:= (bv16_high sll 1) OR XM0001M;
bv16_code:= bv16_code sll 1;
syn_receive(in_bits, tjemp, 99999 ns);
bitjmp:= tJemp.color.data2;
bv16_code(15):= bv16_code(15) OR bitjmp;

end if;

if (markl = -1) then

188

--/ recovering back into unsigneds /--
high:= bv_to_unsignint(bv16_high);
low := bv_to_unsignint(bv16Jow);
code:= bv_to_unsignint(bv16_code);

--/ sending back data /--
tjemp.color.datal := high;
t_temp.color.condi:= true;
synJransmit(out_unsigned, tjemp, 99999 ns);
tjemp.color.datal := low;
tJemp.color.condi:= true;
syn_transmit(out_unsigned, tjemp, 99999 ns);
tjemp.color.datal := code;
tJemp.color.condi:= true;
synJransmit(out_unsigned, tjemp, 99999 ns);

end if;

--/ counting invoking time /--
write(l, tjimes, right, 1);
tjimes:= not tjimes;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile,l);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process remover;

end behave_remover;

• Data_sink

USE std.textio.ALL;
USEWORK.ESSENTIAL_DEFINITIONS.ALL;
USE WORK.token_definition.ALL;
USE WORK.token_passing.ALL;
USE WORK.par_vhdl_conversion.ALL;
USE WORK.arith_pack.ALL;

entity data_sink is
port(in_text: inout token);

end data_sink;

architecture behave_data_sink of data_sink is

signal outjext: token_res;

begin

buf: process
variable que_point: queptr_tk:= creat_que_tk;
begin

asyn_buffer(in_text, outjext, que_point, 99999 ns);
wait on inJext, outjext;

end process buf;

store: process
variable c: character;
variable c1: integer;

189

variable t_temp: token;
variable code: unsignedjnt;
file datastore: text open write_mode is "test_received.txt";
variable IJine: line;

begin
--/ receiving text /--
syn_receive(out_text, t_temp, 99999 ns);
code:= tjemp.color.datal;
c1:= integer(code);
c:= CHARACTER’Val(cl);
if (c = ’#’) then

wait;
end if;
if (c = CR) then

writeline(datastore, IJine);
else

write(IJine, c, right, 1);
end if;

end process store;

end behave_data_sink;

2. Simulation Results

• Original Message Compressed in Arithmetic Encoding

a a
a a
a a
a a
a a
a a
bbb
c c
d
w xyz !
#

(The character ‘# ’ is used as a terminator.)

• Expanded Message in Arithmetic Decoding

a a
a a
a a
a a
a a
a a
bbb
c c
d
w xyz !

• Communications

1. source contrl

190

(limited space, omitted therefore)

2. contrl_buildr

(limited space, omitted therefore)

3. contrl_expandr

0111111100110000 512 ns

4. contrl_rmover

1101111011010100 514 ns
0010000100100101 516 ns
1101010000110011 518 ns
1001000011100011 520 ns
1101111011010011 522 ns
1001010111111010 524 ns
0011000100101101 526 ns
1001100100100100 528 ns
0101001000111001 530 ns
0010010110000101 532 ns
1110011101010110 534 ns
1111000000000000 536 ns
0000000000000000 538 ns

5. expandr_rmover

(limited space, omitted therefore)

6. rmover_expandr

(limited space, omitted therefore)

7. buildr_expandr

(limited space, omitted therefore)

8. expandr_sink

(limited space, omitted therefore)

58 ns
118 ns
178 ns
238 ns
298 ns
358 ns
418 ns
478 ns
538 ns

2. Model_Building

• Process Invocations

1. Control_block
010101010101010101010101010101
010101010101010101010101010101
010101010101010101010101010101
010101010101010101010101010101
010101010101010101010101010101
010101010101010101010101010101
010101010101010101010101010101
010101010101010101010101010101
010101010101010101010101010101

191

010101010101010101010101010101 58 ns
010101010101010101010101010101 118 ns
010101010101010101010101010101 178 ns
010101010101010101010101010101 238 ns
010101010101010101010101010101 298 ns
010101010101010101010101010101 358 ns
010101010101010101010101010101 418 ns
010101010101010101010101010101 478 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns

3. Expander
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 510 ns
010101010101010101010101010101 514 ns
010101010101010101010101010101 514 ns
010101010101010101010101010101 514 ns
010101010101010101010101010101 516 ns
010101010101010101010101010101 516 ns
010101010101010101010101010101 518 ns
010101010101010101010101010101 518 ns
010101010101010101010101010101 520 ns
010101010101010101010101010101 520 ns
010101010101010101010101010101 522 ns
010101010101010101010101010101 528 ns

4. Remover
010101010101010101010101010101 514 ns
010101010101010101010101010101 514 ns
010101010101010101010101010101 514 ns
010101010101010101010101010101 516 ns
010101010101010101010101010101 516 ns
010101010101010101010101010101 516 ns
010101010101010101010101010101 518 ns
010101010101010101010101010101 518 ns
010101010101010101010101010101 520 ns
010101010101010101010101010101 520 ns
010101010101010101010101010101 520 ns
010101010101010101010101010101 522 ns
010101010101010101010101010101 524 ns
010101010101010101010101010101 526 ns
010101010101010101010101010101 530 ns
010101010101010101010101010101 534 ns
010101010101010101010101010101 536 ns
010101010101010101010101010101 538 ns

192

Appendix E
1. Synchronous Channel’s Gateway on Same Bus

USE WORK.ESSENTIAL_DEFINITIONS.ALL;

ENTITY synchro_same IS
PORT (elk: IN BIT;

- address_bus signals --
atb: IN word;

-- data_bus signals -
dtb: INOUT or_lword_res BUS;

-- control_bus signals --
as, ds, rw, sd, sa: IN BIT;
dtack, ready: INOUT and_bit_res BUS := ’1’

);
END synchro_same;

ARCHITECTURE behave_synchro_same OF synchro_same IS
BEGIN
PROCESS
VARIABLE mem: mem_lword:= (others => Lzero);
VARIABLE remarks: mem_bit:= (others => ’O’);
VARIABLE tmpi: unsignedjnt;
BEGIN
-- bus signals setup --

dtb <= NULL;
dtack <= NULL;
ready <= NULL;

- wait for a synchronous channel activated --
WAIT UNTIL (as = ’0’ AND ds = ’0’ AND sd = ’0’ AND

sa = ’0’ AND clk’EVENT AND elk = ’1’);
- synchronous communications on the same bus --

tmpi:= bv_to_unsignint(atb);
IF (rw = ’1’) AND (remarks(tmpi) = ’1’) THEN

-- the data is available --
dtb <= mem(tmpi);
mem(tmpi):= l_zero;
remarks(tmpi):= ’O’;
ready <= ’O’;

ELSIF (rw = ’1’) AND (remarks(tmpi) = ’O’) THEN
- the data is not available --

remarks(tmpi):= ’1’;
ready <= ’1’;

ELSIF (rw = ’O’) AND (remarks(tmpi) = ’O’) THEN
-- the data is not on demand --

mem(tmpi):= dtb;
remarks(tmpi):= ’1’;
ready <= ’1’;

ELSIF (rw = ’O’) AND (remarks(tmpi) = ’1’) THEN
-- the data is on demand --

remarks(tmpi):= ’O’;
ready <= ’O’;

END IF;
dtack <= ’O’;
WAIT UNTIL ds = T;
dtack <= ’1’;

193

END PROCESS;

END behave_synchro_same;

2. Synchronous Channel’s Gateway on Different Buses

USE WORK.ESSENTIAL_DEFINITIONS.ALL;

ENTITY synchro_differ IS
GENERIC (arbitrajdl: word;

arbitra_id2: word);
PORT (elk: IN BIT;

-- No.1 bus signals --
-- address bus

atbl: INOUT or_word_res BUS;
segmtl: INOUT or_word_res BUS;

-- data bus
dtbl: INOUT or_lword_res BUS;

-- control bus
as1, ds1: INOUT and_bit_res BUS;
rw1, sd1, sal: INOUT or_blt_res BUS;
dtackl, ready!: INOUT and_bit_res BUS := ’1’;

-- arbitration bus
br1: INOUT and_word_res BUS:= word_high;
bg1: IN word;
bbsyl: INOUT and_bit_res BUS:= ’1’;

-- No.2 bus signals --
-- address bus

atb2: INOUT or_word_res BUS;
segmt2: INOUT or_word_res BUS;

-- data bus
dtb2: INOUT or_lword_res BUS;

-- control bus
as2, ds2: INOUT and_bit_res BUS;
rw2, sd2, sa2: INOUT or_bit_res BUS;
dtack2, ready2: INOUT and_bit_res BUS := ’1’;

-- arbitration bus
br2: INOUT and_word_res BUS:= word_high;
bg2: IN word;
bbsy2: INOUT and_bit_res BUS:= ’1’

);
END synchro_differ;

ARCHITECTURE behave_synchro_differ OF synchro_differ IS

-- the synchronous channels -
SHARED VARIABLE mem: mem_lword:= (others => Lzero);
SHARED VARIABLE remarks: mem_bit:= (others => ’O’);

-- the queue in intefacel -
-- III I the queue does not consider overflow I! //// --

SHARED VARIABLE mem1: mem_lword:= (others => Lzero);
SHARED VARIABLE remark1_atb: mem_word:= (others => word_zero);
SHARED VARIABLE remark1_sa: mem_bit:= (others => ’O’);
SHARED VARIABLE remark1_sd: mem_bit:= (others => ’O’);
SHARED VARIABLE headl, taill: INTEGER:= 0;

194

-- the queue in interface2 --
-- //// the queue does not consider overflow!! IIII -

SHARED VARIABLE mem2: memJword:= (others => Lzero);
SHARED VARIABLE remark2_atb: mem_word:= (others => word_zero);
SHARED VARIABLE remark2_sa: mem_bit:= (others => ’O’);
SHARED VARIABLE remark2_sd: mem_bit:= (others => ’O’);
SHARED VARIABLE head2, tail2: INTEGER:= 0;

-- singals for exclusive accesses to shared memories --
SIGNAL proceed_mem: permit_res;
SIGNAL proceed_que1: permit_res;
SIGNAL proceed_que2: permit_res;

-- signals to synchronize the bus requests --
SIGNAL dwbl, dwb2, dgbl, dgb2: BIT:= ’O’;

BEGIN

gatewayl: PROCESS
VARIABLE tmpi: unsignedjnt;
BEGIN
-- No.1 bus signals setup --

dtbl <= NULL;
dtackl <= NULL;
readyl <= NULL;

-- wait for a synchronous channel activated --
WAIT UNTIL (as1 = ’0’ AND ds1 = ’0’ AND sd1 = ’1’ AND

sal = ’0’ AND clk’EVENT AND elk = ’1 ’);
-- No. 1 Bus event --
IF (segmtl /= arbitra_id1) THEN

tmpi:= bv_to_unsignint(atb1);
-- applying for operating on the critical section --

proceed_mem <= (1, NOW);
WAIT ON proceed_mem UNTIL (proceed_mem.idnumber = 1);

-- enter the critical section -
IF (rw1 = ’1’) AND (remarks(tmpi) = ’1’) THEN

-- the data is available --
dtbl <= mem(tmpi);
mem(tmpi):= Lzero;
remarks(tmpi):= ’O’;

-- releasing the critical section --
proceed_mem <= (0, NOW);

-- informing the countpart waiting at bus2 --
- applying for operating on the critical section --

proceed_que2 <= (1, NOW);
WAIT ON proceed_que2 UNTIL (proceed_que2.idnumber = 1);
remark2_atb(tail2):= atbl;
remark2_sd(tail2):= sd1;
remark2_sa(tail2):= sal;
tail2:= tail2 + 1;
IF tail2 > mem_size THEN

tail2:= 0;
END IF;

- releasing the critical section --
proceed_que2 <= (0, NOW);
readyl <= ’O’;

ELSIF (rw1 = ’1’) AND (remarks(tmpi) = ’O’) THEN
- the data is not available --

remarks(tmpi):= ’1’;

195

-- releasing the critical section --
proceecLmem <= (0, NOW);
readyl <= T;

ELSIF (rw1 = ’O’) AND (remarks(tmpi) = ’O’) THEN
-- the data is not on demand -

mem(tmpi):= dtbl;
remarks(tmpi):= ’1’;

-- releasing the critical section --
proceed_mem <= (0, NOW);
readyl <= ’1’;

ELSIF (rw1 = ’O’) AND (remarks(tmpi) = ’1’) THEN
-- the data’s been on demand --

remarks(tmpi):= ’O’;
-- releasing the critical section --

proceed_mem <= (0, NOW);
-- informing the counterpart at bus2 --
-- applying for operating on the critical section --

proceed_que2 <= (1, NOW);
WAIT ON proceed_que2 UNTIL (proceed_que2.idnumber = 1);
mem2(tail2):= dtbl;
remark2_atb(tail2):= atbl;
remark2_sd(tail2):= sd1;

1 remark2_sa(tail2):= sal;
tail2:= tail2 + 1;
IF tail2 > mem_size THEN

tail2:= 0;
END IF;

-- releasing the critical section --
proceed_que2 <= (0, NOW);
readyl <= ’O’;

END IF;
END IF;
dtackl <= ’O’;
WAIT UNTIL ds1 =’1’;
dtackl <= ’1’;

END PROCESS;

gateway2: PROCESS
VARIABLE tmpi: unsignedjnt;
BEGIN
-- No.2 bus signals setup --

dtb2 <= NULL;
dtack2 <= NULL;
ready2 <= NULL;

-- wait for a synchronous channel activated --
WAIT UNTIL (as2 = ’0’ AND ds2 = ’0’ AND sd2 = ’1 ’ AND

sa2 = ’0’ AND clk’EVENT AND elk = ’1’);
-- No.2 Bus event --
IF (segmt2 /= arbitra_id2) THEN

tmpi:= bv_to_unsignint(atb2);
-- applying for operating on the critical section --

proceed_mem <= (2, NOW);
WAIT ON proceed_mem UNTIL (proceed_mem.idnumber = 2);

-- enter the critical section --
IF (rw2 = ’1’) AND (remarks(tmpi) = ’1’) THEN

-- the data is available --
dtb2 <= mem(tmpi);
mem(tmpi):= Lzero;
remarks(tmpi):= ’O’;

-- releasing the critical section --

196

proceed_mem <= (0, NOW);

-- informing the countpart waiting at bus1 --
-- applying for operating on the critical section --

proceed_que1 <= (2, NOW);
WAIT ON proceed_que1 UNTIL (proceed_que1.idnumber = 2);
remark1_atb(tail1):= atb2;
remark1_sd(tai!1):= sd2;
remark1_sa(tail1):= sa2;
tail1:= taill + 1;
IF taill > mem_size THEN

taill := 0;
END IF;

-- releasing the critical section --
proceed_que1 <= (0, NOW);
ready2 <= ’O’;

ELSIF (rw2 = ’1’) AND (remarks(tmpi) = ’O’) THEN
-- the data is not available --

remarks(tmpi):= ’1’;
-- releasing the critical section --

proceed_mem <= (0, NOW);
ready2 <= ’1’;

ELSIF (rw2 = ’O') AND (remarks(tmpi) = ’O’) THEN
-- the data is not on demand --

mem(tmpi):= dtb2;
remarks(tmpi):= T;

- releasing the critical section --
proceed_mem <= (0, NOW);
ready2 <= ’1’;

ELSIF (rw2 = ’O’) AND (remarks(tmpi) = ’1’) THEN
-- the data’s been on demand --

remarks(tmpi):= ’O’;
-- releasing the critical section --

proceed_mem <= (0, NOW);
-- informing the counterpart at bus1 --
-- applying for operating on the critical section -

proceed_que1 <= (2, NOW);
WAIT ON proceed_que1 UNTIL (proceed_que1 .idnumber = 2);
mem1(tail1):= dtb2;
remark1_atb(tail1):= atb2;
remark1_sd(tail1):= sd2;
remark1_sa(tail1):= sa2;
taill := taill + 1;
IF taill > mem_size THEN

taill := 0;
END IF;

-- releasing the critical section --
proceed_que1 <= (0, NOW);
ready2 <= ’O’;

END IF;
END IF;
dtack2 <= ’O’;
WAIT UNTIL ds2 = T;
dtack2 <= ’1 ’;

END PROCESS;

bus_request1: PROCESS
BEGIN

br1 <= NULL;
WAIT UNTIL (dwbl =’1’);

197

br1 <= arbitra_id1;
WAIT UNTIL (bg1 = arbitrajdl);
bbsyl <= ’O’;
dgbl <=’1’;
br1 <= NULL;
WAIT UNTIL (bg1 = word_high AND dwbl = ’O’);
bbsyl <= ’1’;
dgbl <= ’O’;

END PROCESS;

bus_request2: PROCESS
BEGIN

br2 <= NULL;
WAIT UNTIL (dwb2 = ’1’);
br2 <= arbitra_id2;
WAIT UNTIL (bg2 = arbitra_id2);
bbsy2 <= ’O’;
dgb2 <=’1’;
br2 <= NULL;
WAIT UNTIL (bg2 = word_high AND dwb2 = ’O’);
bbsy2 <= ’1 ’;
dgb2 <= ’O’;

END PROCESS;

interfaced: PROCESS
VARIABLE tmp_dtb: l_word;
VARIABLE tmp_atb: word;
VARIABLE tmp_sd, tmp_sa: BIT;
BEGIN
atbl <= NULL;
segmtl <= NULL;
dtbl <= NULL;
rw1 <= NULL;
sd1 <= NULL;
sal <= NULL;
as1 <= NULL;
ds1 <= NULL;

-- applying for operating on the critical section --
proceed_que1 <= (1, NOW);
WAIT ON proceed_que1 UNTIL (proceed_que1.idnumber = 1);
IF headl /= taill THEN

tmp_dtb:= mem1 (headl);
tmp_atb:= remark1_atb(head1);
tmp_sd:= remark1__sd(head1);
tmp_sa:= remark1_sa(head1);
headl := headl +1;
IF headl > mem_size THEN

headl := 0;
END IF;

-- releasing the critical section --
proceed_que1 <= (0, NOW);

-- sending the message to the monitor --
dwbl <=T;
WAIT UNTIL (dgbl =’1’);
atbl <= tmp_atb;
segmtl <= arbitrajdl;
dtbl <= tmp_dtb;
sd1 <= tmp_sd;
sal <= tmp_sa;
as1 <= ’O’;

198

ds1 <= ’O’;
WAIT UNTIL dtackl = ’O’;
as1 <=’1’;
ds1 <= ’T;
dwbl <= ’O’;

END IF;
END PROCESS;

interface_2: PROCESS
VARIABLE tmp_dtb: l_word;
VARIABLE tmp_atb: word;
VARIABLE tmp_sd, tmp_sa: BIT;
BEGIN
atb2 <= NULL;
segmt2 <= NULL;
dtb2 <= NULL;
rw2 <= NULL;
sd2 <= NULL;
sa2 <= NULL;
as2 <= NULL;
ds2 <= NULL;

-- applying for operating on the critical section --
proceed_que2 <= (2, NOW);
WAIT ON proceed_que2 UNTIL (proceed_que2.idnumber = 2);
IF head2 /= tail2 THEN

tmp_dtb:= mem2(head2);
tmp_atb:= remark2_atb(head2);
tmp_sd:= remark2_sd(head2);
tmp_sa:= remark2_sa(head2);
head2:= head2 + 1;
IF head2 > mem_size THEN

head2:= 0;
END IF;

-- releasing the critical section --
proceed_que2 <= (0, NOW);

-- sending the message to the monitor --
dwb2 <=T;
WAIT UNTIL (dgb2 = T);
atb2 <= tmp_atb;
segmt2 <= arbitra_id2;
dtb2 <= tmp_dtb;
sd2 <= tmp_sd;
sa2 <= tmp_sa;
as2 <= ’O’;
ds2 <= ’O’;
WAIT UNTIL dtack2 = ’O’;
as2 <=T;
ds2 <=’1’;
dwb2 <= ’O’;

END IF;
END PROCESS;

END behave_synchro_differ;

3. Asynchronous Channel’s Gateway on Same Bus

USEWORK.ESSENTIAL_DEFINITIONS.ALL;

199

ENTITY asynchro_same IS
GENERIC (quejd: word);
PORT (elk: IN BIT;

-- address_bus signals --
atb: IN word;
segmt: IN word;

-- data_bus signals --
dtb: INOUT or_lword_res BUS;

-- control_bus signals --
as, ds, rw, sd, sa: IN BIT;
dtack, ready: INOUT and_bit_res BUS := ’1’

);
END asynchro_same;

ARCHITECTURE behave_asynchro_same OF asynchro_same IS
BEGIN
PROCESS
VARIABLE tmpj: INTEGER;
VARIABLE tmp_que_mem: mem_of_que;
VARIABLE que_point: queptr:= creat_que;
VARIABLE mark: BIT:= ’O’; -- not visited --
BEGIN
dtb <= NULL;
dtack <= NULL;
ready <= NULL;
WAIT UNTIL (as = ’O’ AND ds = ’O’ AND sd = ’0’ AND

sa = ’1’ AND atb = quejd AND
clk’EVENT AND elk = ’1’);

-- this asynchronous channel is activated --
number_of_que(que_point, tmpj);
IF (rw = ’1’) AND (tmpj = 0) THEN

-- queue is empty & set up the mark --
mark:= ’1’;
ready <= ’1’;

ELSIF (rw = ’1’) AND (tmpj > 0) THEN
- queue is not empty & data is ready --

out_que(que_point, tmp_que_mem);
dtb <= tmp_que_mem.dtb;
ready <= ’O’;

ELSIF (rw = ’O’) AND (mark = ’1 ’) THEN
-- deleting the marking --

mark:= ’O’;
ready <= ’O’;

ELSIF (rw = ’O’) AND (mark = ’O’) THEN
-- the data goes into queue--

tmp_que_mem.dtb:= dtb;
in_que(que_point, tmp_que_mem);
ready <= ’O’;

END IF;
dtack <= ’O’;
WAIT UNTIL ds = T;
dtack <= ’1 ’;

END PROCESS;

END behave_asynchro_same;

200

4. Asynchronous Channel’s Gateway on Different Buses

USE WORK.ESSENTIAL_DEFINITIONS.ALL;

ENTITY asynchro_differ IS
GENERIC (arbitrajd: word; quejd: word);
PORT (elk: IN BIT;

- No.1 bus signals --
-- address bus --

atbl: IN word;
segmtl: IN word;

-- data bus --
dtbl: IN l_word;

-- control bus --
as1, ds1: IN BIT;
rw1, sd1, sal: IN BIT;
dtackl, readyl: INOUTand_bit_res BUS := T;

-- No.2 bus signals --
-- address bus --

atb2: INOUT or_word_res BUS;
segmt2: INOUT or_word_res BUS;

-- data bus --
dtb2: INOUT or_lword_res BUS;

-- control bus --
as2, ds2: INOUT and_bit_res BUS;
rw2: IN BIT;
sd2, sa2: INOUT or_bit_res BUS;
dtack2, ready2: INOUT and_bit_res BUS := ’1’;

-- arbitration bus --
br2: INOUT and_word_res BUS:= word_high;
bg2: IN word;
bbsy2: INOUT and_bit_res BUS:= ’1’

);
END asynchro_differ;

ARCHITECTURE behave_asynchro_differ OF asynchro_differ IS

-- //// the queue does not consider overflows I! //// --
-- the main queue for an asynchronous channel --

SHARED VARIABLE mem: mem_lword:= (others => Lzero);
SHARED VARIABLE mark: BIT:= ’O’; -- not on demand --
SHARED VARIABLE head, tail: INTEGER:= 0;

-- the queue in the bus inteface --
-- //// the queue does not consider overflows I! //// --

SHARED VARIABLE memjntjace: mem_lword:= (others => Lzero);
SHARED VARIABLE mark_atb: mem_word:= (others => word_zero);
SHARED VARIABLE mark_sa: mem_bit:= (others => ’O’);
SHARED VARIABLE mark_sd: mem_bit:= (others => ’O’);
SHARED VARIABLE head_int_face, tailjntjace: INTEGER:= 0;

-- signals to synchronize the bus requests -
SIGNAL dwb, dgb: BIT:= ’O’;

-- singals for exclusive accesses to shared memories --
SIGNAL proceed_mem: permit_res;
SIGNAL proceed_mem_int: permit_res;

201

BEGIN
asynch_gateway1: PROCESS

BEGIN
-- No.1 bus signals setup --

dtackl <= NULL;
readyl <= NULL;
WAIT UNTIL (as1 = ’0’ AND ds1 = ’0’ AND sd1 = ’1’ AND

sal = ’1’ AND atbl = quejd AND
clk’EVENT AND elk = ’1’);

-- this asynchronous channel is activated --
-- applying for operating on the critical section --

proceed_mem <= (1, NOW);
WAIT ON proceed_mem UNTIL proceed_mem.idnumber = 1;
IF mark = ’0’ THEN -- the data is not on demand --
-- enter the critical section --

mem(tail):= dtbl;
tail:= tail + 1;
IF tail > mem_size THEN

tail:= 0;
END IF;

-- releasing the critical section --
proceed_mem <= (0, NOW);

ELSE
-- deleting the marking --

mark:= ’O’;
-- releasing the critical section --

proceed_mem <= (0, NOW);
-- applying for operating on the bus interface queue --

proceed_memJnt <= (1, NOW);
WAIT ON proceed_memJnt UNTIL (proceed_memJnt.idnumber = 1);
memjntjace(tailjntjace):= dtbl;
mark_atb(tailjntjace):= atbl;
mark_sa(tailjntjace):= sal;
mark_sd(tailjntjace):= sd1;
tailjntjace:= tailjntjace + 1;
IF tailjntjace > mem_size THEN

tailjntjace:= 0;
END IF;

-- releasing the critical section --
proceed_memJnt <= (0, NOW);

END IF;
readyl <= ’O’;
dtackl <= ’O’;
WAIT UNTIL ds1 =’1’;
dtackl <= ’1 ’;

END PROCESS;

asynch_gateway2: PROCESS
BEGIN
-- No.2 bus signals setup -

dtb2 <= NULL;
dtack2 <= NULL;
ready2 <= NULL;
WAIT UNTIL (as2 = ’0’ AND ds2 = ’0’ AND sd2 = ’1 ’ AND

sa2 = ’1’ AND atb2 = quejd AND
clk’EVENT AND elk = ’1’);

-- applying for operating on the critical section --
proceed_mem <= (2, NOW);
WAIT ON proceed_mem UNTIL proceed_mem.idnumber = 2;

-- enter the critical section --

202

IF (segmt2 /= arbitrajd) THEN
IF head /= tail THEN -- the data is available --

dtb2 <= mem(head);
head := head + 1;
IF head > mem_size THEN

head:= 0;
END IF;
ready2 <= ’O’;

ELSE
mark:= ’1’;
ready2 <= ’1 ’;

END IF;
END IF;

-- releasing the critical section --
proceed_mem <= (0, NOW);
dtack2 <= ’O’;
WAIT UNTIL ds2 = T;
dtack2 <= ’1’;

END PROCESS;

bus_request: PROCESS
BEGIN

WAIT UNTIL (dwb = T);
br2 <= arbitrajd;
WAIT UNTIL (bg2 = arbitrajd);
bbsy2 <= ’O’;
dgb <=T;
br2 <= NULL;
WAIT UNTIL (bg2 = word_high AND dwb = ’O’);
bbsy2 <= ’1 ’;
dgb <= ’O’;

END PROCESS;

asynjntjace: PROCESS
VARIABLE tmp_dtb: l_word;
VARIABLE tmp_atb: word;
VARIABLE tmp_sd, tmp_sa: BIT;
BEGIN
atb2 <= NULL;
dtb2 <= NULL;
segmt2 <= NULL;
sa2 <= NULL;
sd2 <= NULL;
as2 <= NULL;
ds2 <= NULL;
br2 <= NULL;

-- applying for operating on the queue of bus interface --
proceed_memJint <= (2, NOW);
WAIT ON proceed_memJnt UNTIL (proceed_memJnt.idnumber = 2);
IF headjntjace /= tailjntjace THEN

tmp_dtb:= memjntjace(headjntjace);
tmp_atb:= mark_atb(headjntjace);
tmp_sa:= mark_sa(headjntjace);
tmp_sd:= mark_sd(headjntjace);
headjntjace:= headjntjace + 1;
IF headjntjace > mem_size THEN

headjntjace := 0;
END IF;

-- releasing the critical section --
proceed_memJnt <= (0, NOW);

203

dwb <=T;
WAIT UNTIL (dgb = T);
dtb2 <= tmp_dtb;
atb2 <= tmp_atb;
segmt2 <= arbitrajd;
sa2 <= tmp_sa;
sd2 <= tmp_sd;
as2 <= ’O’;
ds2 <= ’O’;
WAIT UNTIL dtack2 = ’O’;
as2 <=’1’;
ds2 <=T;
dwb <= ’O’;

END IF;
END PROCESS;

END behave_asynchro_differ;

Appendix F
1. The Top-Level Co-BSL Specification

- - The Co-BSL specification of the top-level process graph illustrated in Figure 6.4 is listed
-- below. Although some of program details are not included, the program has adequately
- demonstrated the usage of Co-BSL as a specification tool in the codesign methodology.

CODESIGN RDSC

-- The top-level Co-BSL descriptions for RDC System

PATH
t_r WIRE BIT;
r_d SYNC INT;
d_d ASYN INT;

PRIMITIVE

#include “co.prims”

EXTERNAL

#include “co.externs”

EXCUTION
r: R_P;
d: D_P;
tt: Transmitters;
ds: Data_Storage;

CONNECT_PATHS
t_r: FROM tt.outpl TO r.inpl;
r_d: FROM r.outpl TOd.inpl;
d_d: FROM d.outpl TO ds.inpl;

END_CODESIGN

- “co.prims”
-- primitive process descriptions

PROCESS D_P OF CONTROL_PROCESS
INPORTS
inpl SYNC INT;

OUTPORTS
outpl ASYN INT;

VARIABLES
-- variable declaration

BEGIN
-- sequential code is to be added in subsequent refinements

END

205

END_PROCESS

PROCESS R_P OF FUNCTION_SERVER
INPORTS
inpl WIRE BIT;

OUTPORTS
outpl SYNC INT;

VARIABLES
-- variable declaration

BEGIN
-- sequential code is to be added in subsequent refinements

END

END_PROCESS

-- “co.externs”
-- external interface objects

INTERFACE Transmitters
OUTPORTS
outpl WIRE BIT;

ENDJNTERFACE

INTERFACE Data_Storage
INPORTS
Inp1 ASYN INT;

ENDJNTERFACE

2. The Low-Level Co-BSL Specification

- The Co-BSL specification of the low-level process graph illustrated in Figure 6.7 is listed
- below. Although some of program details are not included, the program has adequately
-- demonstrated the usage of Co-BSL as a specification tool in the codesign methodology.

CODESIGN RDSC

-- The low-level Co-BSL descriptions for RDC System

PATH
trsmit_pm_1 WIRE BIT;
trsmit_pm_2 WIRE BIT;
trsmit_pcw_1 WIRE BIT;
trsmit_pcw_2 WIRE BIT;
pm_corrtr_1 SYNC ARRAY [16] BIT;
pm_corrtr_2 SYNC ARRAY [16] BIT;
pcw_corrtr_1 SYNC ARRAY [10] BIT;
pcw_corrtr_2 SYNC ARRAY [10] BIT;
corrtr_pcw_1 SYNC ARRAY [10] BIT;
corrtr_pcw_1 SYNC ARRAY [10] BIT;
corrtrJ_1 SYNC INT;
corrtrJ_2 SYNC INT;

206

f_1_contl SYNC INT;
f_2_contl SYNC INT;
contl_str ASYN INT;

PRIMITIVE

#include “co.prims”

CLASSES

#include “co.clases”

EXTERNAL

#include “co.externs”

EXCUTION
pm_a: PM_16;
pm_b: PM_16;
pcw_a: PCW_10;
pcw_b: PCW_10;
c_a: Corrector;
c_b: Corrector;
f 1: F_A;
f2: F_B;
c: ControLMatrix;
t1: Transmitter_A;
t2: Transmitter_B;
d: Data_Storage;

CONNECT_PATHS
trsmit_pm_1: FROM t1 .outpl TO pm_a.inp1;
trsmit_pm_2: FROM t2.outp1 TO pm_b.inp1;
trsmit_pcw_1: FROM t1 .outp2 TO pcw_a.inp2;
trsmit_pcw_2: FROM t2.outp2 TO pcw_b.inp2;
pm_corrtr_1: FROM pm_a.outp1 TO c_a.inp1;
pm_corrtr_2: FROM pm_b.outp1 TO c_b.inp1;
pcw_corrtr_1: FROM pcw_a.outp1 TO c_a.inp2;
pcw_corrtr_2; FROM pcw_b.outp1 TO c_b.inp2;
corrtr_pcw_1: FROM c_a.outp1 TO pcw_a.inp1;
corrtr_pcw_2: FROM c_b.outp1 TO pcw_b.inp1;
corrtr_f_1: FROM c_a.outp2 TO f1 .inpl;
corrtr_f_2: FROM c_b.outp2 TO f2.inp1;
f_1 _contl: FROM f 1 .outpl TO c.inpl;
f_2_contl: FROM f2.outp1 TO c.inp2;
contl_str: FROM c.outpl TO d.inpl;

END_CODESIGN

-- “co.prims”
-- primitive process descriptions

PROCESS ControLMatrix OF CONTROL_PROCESS

INPORTS
f_1_contl SYNC INT;
f_2_contl SYNC INT;

OUTPORTS
contl_str ASYN INT;

207

VARIABLES
tmp: INT;
buffer_c: ARRAY(0 TO 9, 0 TO 4) OF INT;
buffer_a: ARRAY(0 TO 9) OF INT;
buffer_b: ARRAY(0 TO 9) OF INT;
m_b: ARRAY(0 TO 4) OF BIT;

BEGIN
FOR (i= 0; i < 10; i + 1) LOOP

--/ input one row from transmiter a /--
FOR 0= 0; j < 10; j + 1) LOOP

RECEIVE(f_1_contl, buffer_a[j]);
END_FOR;

--/ input one column from transmiter b /--
FOR (j= 0; j < 5; j + 1) LOOP

IF m_b(j) = ’0’ THEN
FOR (k = 0; k < 10; k + 1) LOOP

RECEIVE(f_2_contl, buffer_c[k,j]);
END_FOR;
m_b[j] := ’1’;

ENDJF;

FOR (k = 0; k < 10; k + 1) LOOP
buffer_b[k]:= buffer_c[k,j];

END_FOR;

tmp:= 0;
FOR (k = 0; k < 10; k +1) LOOP

tmp:= buffer_a[k] * buffer_b[k] + tmp;
END_FOR;

ASYN-SEND(contl_str, tmp);
END_FOR;

END_FOR;

END

END PROCESS

PROCESS pm_16 OF FUNCTION_SERVER

INPORTS
trsmit_pm: BIT;

OUTPORTS
pm_corrtr: ARRAY [26] BIT;

VARIABLES
temp: BIT;
t_tmp: INT;
t_back: BIT;
t_forward: BIT;

data.buffer: ARRAY [26] BIT;
buf_reg: ARRAY [16] BIT;

208

syndrom: ARRAY [10] BIT;

BEGIN
t_tmp:= t_tmp + 1;

IF (t_tmp <16) THEN
RECEIVE(trsmit_pm, temp);

--/ processing 16 bits information /--
buf_reg:= buf_reg[1 to 15] & temp;
t_back:= syndrom[9];
t_forward:= temp;
syndrom:= (t_back XOR tjorward) & (syndrom[0] XOR tjorward) &

syndrom[1] & (syndrom[2] XOR t_back XOR tjorward) &
(syndrom[3] XOR t_back XOR tjorward) & (syndrom[4]
XOR t_back) & syndrom[5] & (syndrom[6] XOR t_back) &

(syndrom[7] XOR t_back XOR t_forward) & (syndrom[8]
XOR tjorward);

ELSE
--/ sending off 16 bits information & 10 bits syndrom /--

data_buffer(0 to 31):= buf_reg(0 to 15) & syndrom(0 to 9);
SYN-SEND(pm_corrtr, data_buffer);

--/ initializing the pm_16 again /--
tjmp:= -1;

ENDJF;

END

END_PROCESS

PROCESS PCWJO OF FUNCTION_SERVER
INPORTS
inpl SYNC ARRAY [10] BIT;
inp2 WIRE BIT;

OUTPORTS
outpl SYNC ARRAY [10] BIT;

CONSTRUCTORS
-- constructor declaration

VARIABLES
-- variable declaration

BEGIN
-- sequential code

END

END_PROCESS

PROCESS Corrector OF FUNCTION_SERVER
INPORTS
inpl SYNC ARRAY [16] BIT;
inp2 SYNC ARRAY [10] BIT;

OUTPORTS
outpl SYNC ARRAY [10] BIT;

209

outp2 SYNC INT;

CONSTRUCTORS
- constructor declaration

VARIABLES
-- variable declaration

BEGIN
-- sequential code

END

END_PROCESS

PROCESS F_A OF FUNCTION_SERVER
INPORTS
inpl SYNC INT;

OUTPORTS
outpl SYNC INT;

CONSTRUCTORS
-- constructor declaration

VARIABLES
-- variable declaration

BEGIN
-- sequential code

END

END_PROCESS

-- “co.clases”
-- decomposable class

D_CLASS Receivers OF FUNCTION_SERVER
INPORTS
inpl WIRE BIT;
inp2 WIRE BIT;

OUTPORTS
Outpl SYNC INT;

CONSTRUCTORS
-- constructor declaration

PATH
pm_corrtr SYNC ARRAY [16] BIT;
corrtr_pcw SYNC ARRAY [10] BIT;
pcw_corrtr SYNC ARRAY [10] BIT;

EXCUTION
p16: PM_16;
p10: PCW_10;
c: Corrector;

CONNECT_PATHS
pm_corrtr: FROM p16.outp1 TO c.inpl;
corrtr_pcw: FROM c.outpl TO p10.inp1

210

pcw_corrtr: FROM p10.outp1 TO c.inp2

CONNECT_PORTS

END_CLASS

- “co.externs”
-- external interface objects

INTERFACE Transmitter_A
OUTPORTS
outpl WIRE BIT;

ENDJNTERFACE

INTERFACE Transmitter_B
OUTPORTS
outpl WIRE BIT;

ENDJNTERFACE

INTERFACE Data_Storage
INPORTS
Inpl ASYN INT;

ENDJNTERFACE

Appendix G
1. The VHDL Simulation Program for Verification and Profiling

--/ here are definications for VHDL packages and libraries /--

ENTITY top_rdc IS
END top_rdc;

ARCHITECTURE behave_top_rdc OF top_rdc IS

COMPONENT transmit_a
port(sent_16s: inout token;

sent_10s: inout token);
end COMPONENT transmit_a;

COMPONENT transmit_b
port(sent_16s: inout token;

sent_10s: inout token);
END COMPONENT transmit_b;

COMPONENT pm_16
generic (file_name: string);
port(receiv_16s: inout token;

out_s: inout token);
END COMPONENT pm_16;

COMPONENT pcw_10
generic (file_name: string);
port(receiv_1 Os: inout token;

receiv_syndrom: inout token;
out_s: inout token);

END COMPONENT pcw_10;

COMPONENT corrector
generic (file_name: string);
port(in_pm: inout token; in_pcw: inout token;

out_pcw: inout token; corrected: inout token);
END COMPONENT corrector;

COMPONENT f_a_block
PORT(in_16: inout token;

out_16: inout token);
END COMPONENT f_a_block;

COMPONENT f_b_block
PORT(in_16: inout token;

out_16: inout token);
END COMPONENT f_b_block;

COMPONENT control_block
PORT(in_f_a: inout token;

in_f_b: inout token;
data_storage: inout token);

END COMPONENT control_block;

COMPONENT store
port(in_text: inout token);

END COMPONENT store;

212

SIGNAL trsmit_pm_1, trsmit_pcw_1: token_res;
SIGNAL trsmit_pm_2, trsmit_pcw_2: token_res;
SIGNAL pm_corrtr_1, pm_corrtr_2: token_res;
SIGNAL corrtr_pcw_1, pcw_corrtr_1: token_res;
SIGNAL corrtr_pcw_2, pcw_corrtr_2: token_res;
SIGNAL corrtr_f_1, corrtr_f_2: token_res;
SIGNAL f_1_contl, f_2_contl, contl_str: token_res;

BEGIN
T1: transmit_a

port map(trsmit_pm_1, trsmit_pcw_1);

T2: transmit_b
port map(trsmit_pm_2, trsmit_pcw_2);

T3: pm_16
generic map ("pm_16_a.txt")
port map (trsmit_pm_1, pm_corrtr_1);

T4: pm_16
generic map ("pm_16_b.txt")
port map (trsmit_pm_2, pm_corrtr_2);

T5: pcw_10
generic map ("pcw_10_a.txt")
port map (trsmit_pcw_1, corrtr_pcw_1, pcw_corrtr_1);

T6: pcw_10
generic map ("pcw_10_b.txt")
port map (trsmit_pcw_2, corrtr_pcw_2, pcw_corrtr_2);

T7: corrector
generic map ("corrector_a.txtM)
port map (pm_corrtr_1, pcw_corrtr_1, corrtr_pcw_1, corrtr_f_1);

T8: corrector
generic map ("corrector_b.txt")
port map (pm_corrtr_2, pcw_corrtr_2, corrtr_pcw_2, corrtr_f_2);

T9: f_a_block
port map (corrtr_f_1, f_1_contl);

T10: f_b_block
port map (corrtr_f_2, f_2_contl);

T11: controLblock
port map (f_1_contl, f_2_contl, contl_str);

T12: store
port map (contl_str);

R1: process(pm_corrtr_1)
file datafile: text open write_mode is "pm_corrtr_1.txt";
variable I: line;
variable temp: unsignedjnt;
variable counter: integer:= 0;
variable buf: bit_vector(0 to 15);

begin

213

if pm_corrtr_1 .status = active_source then
if counter = 0 then

temp:= pm_corrtr_1 .color.datal;
buf:= unsignint_to_bv(temp, 16);
fori in Oto 15 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile,l);
counters 1;

else
temp:= pm_corrtr_1 .color.datal;
buf:= unsignint_to_bv(temp, 16);
for i in 0 to 9 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile.l);
counter:= 0;

end if;
end if;
end process;

R2: process(pm_corrtr_2)
file datafile: text open write_mode is "pm_corrtr_2.txt";
variable I: line;
variable temp: unsignedjnt;
variable counter: integer:= 0;
variable buf: bit_vector(0 to 15);

begin
if pm_corrtr_2.status = active_source then

if counter = 0 then
temp:= pm_corrtr_2.color.data1;
buf:= unsignint_to_bv(temp, 16);
for i in 0 to 15 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile.l);
counter:= 1;

else
temp:= pm_corrtr_2.color.data1;
buf:= unsignint_to_bv(temp, 16);
for i in 0 to 9 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile.l);
counters 0;

end if;
end if;
end process;

R3: process(corrtr_pcw_1)
file datafile: text open writejnode is "corrtr_pcw_1 .txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if corrtr_pcw_1 .status = active_source then

temp:= corrtr_pcw_1 .color.datal;

214

buf:= unsignint_to_bv(temp, 16);
for i in 0 to 9 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile,l);

end if;
end process;

R4: process(corrtr_pcw_2)
file datafile: text open write_mode is "corrtr_pcw_2.txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if corrtr_pcw_2.status = active_source then

temp:= corrtr_pcw_2.color.data1;
buf:= unsignintJo_bv(temp, 16);
for i in 0 to 9 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile.l);

end if;
end process;

R5: process(pcw_corrtr_1)
file datafile: text open writejnode is "pcw_corrtr_1 .txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if pcw_corrtr_1 .status = active_source then

temp:= pcw_corrtr_1 .color.datal;
buf:= unsignintJo_bv(temp, 16);
for i in 0 to 9 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile,l);

end if;
end process;

R6: process(pcw_corrtr_2)
file datafile: text open writejnode is "pcw_corrtr_2.txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if pcw_corrtr_2.status = active_source then

temp:= pcw_corrtr_2.color.data1;
buf:= unsignintJo_bv(temp, 16);
for i in 0 to 9 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile.l);

end if;
end process;

R7: process(corrtrJ_1)

215

file datafile: text open write_mode is "corrtr_f_1 .txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if corrtr_f_1 .status = active_source then

temp:= corrtr_f_1 .color.datal;
buf:= unsignint_to_bv(temp, 16);
for i in 0 to 15 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile,l);

end if;
end process;

R8: process(corrtr_f_2)
file datafile: text open write_mode is "corrtr_f_2.txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if corrtrJ_2.status = active_source then

temp:= corrtrJ_2.color.data1;
buf:= unsignintJo_bv(temp, 16);
for i in 0 to 15 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile,l);

end if;
end process;

R9: process(f_1_contl)
file datafile: text open write_mode is "f_1_contl.txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if f_1_contl.status = active_source then

temp:= f_1_contl.color.data1;
buf:= unsignintJo_bv(temp, 16);
fori in 0 to 15 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile,l);

end if;
end process;

R10: process(f_2_contl)
file datafile: text open write_mode is "f_2_contl.txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if f_2_contl.status = active_source then

temp:= f_2_contl.color.data1;
buf:= unsignintJo_bv(temp, 16);

216

for i in 0 to 15 loop
write(l, buf(i), right, 1);

end loop;
writeline(datafile,l);

end if;
end process;

R11: process(contl_str)
file datafile: text open write_mode is "contLstr.txt";
variable I: line;
variable tmp: integer;
variable temp: unsignedjnt;
variable buf: bit_vector(0 to 15);
begin
if contl_str.status = active_source then

temp:= contl_str.color.data1;
buf:= unsignintJo_bv(temp, 16);
for i in 0 to 15 loop

write(l, buf(i), right, 1);
end loop;
writeline(datafile,l);

end if;
end process;

END behaveJop_rdc;

217

Appendix H
1. The C Program for Assessment of Software Performance

#include <stdio.h>

FILE *spa16;
FILE*spa10;
FILE *spb16;
FILE *spb10;

/* these are in correspondence to the VHDL transmit_a */
unsigned short tmit_a_16(void) {

char readjn;

readjn = fgetc(spa16);
return (readjn ? 1 : 0);

} /* end of tmit_a_16() */

unsigned short tmit_a_10(void) {
char readjn;

readjn = fgetc(spalO);
return (readjn ? 1 : 0);

} /* end of tmit_a_10() */

r these are in correspondence to the VHDL transmit_b */
unsigned short tmit_b_16(void) {

char readjn;

readjn = fgetc(spb16);
return (readjn ? 1 : 0);

} /* end of tmit_b_16() 7

unsigned short tmit_b_10(void) {
char readjn;

readjn = fgetc(spblO);
return (readjn ? 1 :0);

} /* end of tmit_b_10() 7

I* this is in correspondence to VHDL pm_16_a 7
void pm_16_a(unsigned short message[], unsigned short syndrom[])
{
int i, j;
unsigned short feed_back, feed Jorward;

/* receiving 16 bits of information 7
for (i = 0; i < 16; i++) {

feed Jorward = message[i] = tmit_a_16();

feed_back = syndrom[9];

218

/* a rotation of the syndrom 7
for (j = 9; j > 0; j--)

syndrom[j] = syndrom[j-1];

- syndrom[9] A= feedjorward;
syndrom[8] = syndrom[8]A feed_back A feedjorward;
syndrom[7] A= feed_back;
syndrom[5] A= feed_back;
syndrom[4] = syndrom[4]A feed_back A feedjorward;
syndrom[3] = syndrom[3]A feed_back A feedjorward;
syndrom[1] A= feedjorward;
syndrom[0] = feed_back A feedjorward;

j = 9;

} /* end of for loop 7

} /* end of pm_16_a() 7

/* this is in correspondence to VHDL pcw_10_a 7
void pcw_10_a(unsigned short syndrom[])
{
int i, j;
unsigned short feed J>ack, feedjorward, temp;
static int tmp_offset = 0;
static unsigned short offset_a[] =

{0, 0,1,1,1,1,1,1,0, 0};
static unsigned short offset J>[] =

{0,1,1,0, 0,1,1,0, 0, 0};
static unsigned short offset_c[] =

{0,1,0,1,1, 0,1,0, 0, 0};
static unsigned short offset„d[] =

{0,1,1,0,1,1, 0,1,0, 0};

/* receiving 10 bits of check word 7
for (i = 0; i < 10; i++) {

temp = tmit_a_10();

switch (tmp_offset) {
case 0:

feedjorward = offset_a[i]A temp; break;
case 1:

feedjorward = offsetjD[i]A temp; break;
case 2:

feedjorward = offset_c[i]A temp; break;
case 3:

feedjorward = offset_d[i]A temp; break;
}
feed_back = syndrom[9];

/* a rotation of the syndrom 7
for (j = 9; j > 0; j--)

syndrom[j] = syndrom[j-1];

syndrom[9] A= feedjorward;
syndrom[8] = syndrom[8]A feed_back A feedjorward;
syndrom[7] A= feed_back;
syndrom[5] A= feed_back;
syndrom[4] = syndrom[4]A feed_back A feedjorward;

219

syndrom[3] = syndrom[3]A feed_back A feedjorward;
syndrom[1] A= feedjorward;
syndrom[0] = feed J>ack A feedjorward;

} /* end of for loop */

if (tmp_offset++ > 3)
tmp_offset = 0;

} /* end of pew J 0_a() */

/* this is in correspondence to VHDL pmJ6_b */
void pmJ6_b(unsigned short message[], unsigned short syndrom[])
{
int i, j;
unsigned short feedJ>ack, feedjorward;

/* receiving 16 bits of information */
for (i = 0; i < 16; i++) {

feedjorward = message[i] = tmit_b_16();

feed J>ack = syndrom[9];

/* a rotation of the syndrom */
for G = 9; j > 0; j--)

syndrom[j] = syndrom[j-1];

syndrom[9] A= feedjorward;
syndrom[8] = syndrom[8]A feed_back A feedjorward;
syndrom[7] A= feed_back;
syndrom[5] A= feed_back;
syndrom[4] = syndrom[4]A feed_back A feedjorward;
syndrom[3] = syndrom[3]A feed_back A feedjorward;
syndrom[1] A= feedjorward;
syndromjoj = feed_back A feedjorward;

} /* end of for loop */

} /* end of pm J 6_b() */

/* this is in correspondence to VHDL pcw_10_b */
void pcw_10_b(unsigned short syndrom[])
{
inti, j;
unsigned short feed_back, feedjorward, temp;
static int tmp_offset = 0;
static unsigned short offset_a[] =

{0 , 0 , 1, 1, 1, 1, 1, 1, 0 , 0};
static unsigned short offset J>[] =

{0 , 1, 1, 0 , 0 , 1, 1, 0 , 0 , 0};
static unsigned short offset_c[] =

{0 , 1, 0 , 1, 1, 0 , 1, 0 , 0 , 0};
static unsigned short offset_d[] =

{0 , 1, 1, 0 , 1, 1, 0 , 1, 0 , 0};

/* receiving 10 bits of check word */
for (i = 0; i < 10; i++) {

temp = tmitJMOQ;

220

switch (tmp_offset) {
case 0:

feedjorward = offset_a[i]A temp; break;
case 1:

feedjorward = offsetJ>[i]A temp; break;
case 2:

feedjorward = offset_c[i]A temp; break;
case 3:

feedjorward = offset_d[i]A temp; break;
}
feed J>ack = syndrom[9];

/* a rotation of the syndrom 7
for (j = 9; j > 0; j--)

syndromO] = syndrom[j-1];

syndrom[9] A= feedjorward;
syndrom[8] = syndrom[8]A feed_back A feedjorward;
syndrom[7] A= feed_back;
syndrom[5] A= feed_back;
syndrom[4] = syndrom[4]A feed_back A feedjorward;
syndrom[3] = syndrom[3]A feed J>ack A feedjorward;
syndrom[1] A= feedjorward;
syndrom[0] = feed_back A feedjorward;

} /* end of for loop 7

if (tmp_offset++ > 3)
tmp_offset = 0;

} /* end of pew J 0_b() 7

/* this is in correspondence to VHDL corrector_a 7
unsigned short corrector_a(void)
{
int i;
unsigned short buffer = 0;
unsigned short m_ssage[16];
unsigned short s_ndrom[10];

for (i = 0; i < 16; i++)
m_ssage[i] = 0;

for (i = 0; i < 10; i++)
s_ndrom[i] = 0;

pm_16_a(m_ssage, s_ndrom);
pew J 0_a(s_ndrom);

/* corrections go here 7
for (i = 0; i < 16; i++) {

buffer «= 1;

if (s_ndrom[0] | s_ndrom[1] | s_ndrom[2] | s_ndrom[3] | s_ndrom[4]) {
if (m_ssage[i] == 0)

buffer &= 0177776;
else

buffer |= 01;
}

221

else {
/* corrections are needed 7
if ((s_ndrom[9]A m_ssage[i]) != 0)

buffer |=01;
else

buffer &= 0177776;
}

} /* end of for loop 7

return (buffer);

} /* end of corrector_a() 7

/* this is in correspondence to VHDL corrector_b 7
unsigned short corrector_b(void)
{
int i;
unsigned short buffer = 0;
unsigned short m_ssage[16];
unsigned short s_ndrom[10];

for (i = 0; i < 16; i++)
m_ssage[i] = 0;

for (i = 0; i < 10; i++)
s_ndrom[i] = 0;

pm_16_b(m_ssage, s_ndrom);
pcw_10_b(s_ndrom);

/* corrections go here 7
for (i = 0; i < 16; i++) {

buffer «= 1;

if (s_ndrom[0] | s_ndrom[1] | s_ndrom[2] | s_ndrom[3] | s_ndrom[4]) {
if (m_ssage[i] == 0)

buffer &= 0177776;
else

buffer |= 01;
}

else {
/* corrections are needed 7
if ((s_ndrom[9]A m_ssage[i]) != 0)

buffer |= 01;
else

buffer &= 0177776;
}

} /* end of for loop 7

return (buffer);

} /* end of corrector_b() 7

/* this is in correspondence to VHDL f_a 7
unsigned short f_a(void)
{
unsigned short a;

222

a = corrector_a();

a = ((a * a + 1) * (a + 1)) / (a * a + 2);

return (a);

/* return (++a); */
}

/* this is in correspondence to VHDL f_b 7
unsigned short f_b(void)
{
unsigned short b;

b = corrector_b();

b = ((b * b + 1) * (b + 1)) / (b * b + 4);

return (b);
}

/* this is in correspondence to VHDL storage 7
void storage(int store, FILE *fp)
{
static int i = -1;

if (++i < 5)
fprintf(fp, "%8uM, store);
else

{fprintf(fp, "\n%8u", store); i = 0;}

}

/* this is in correspondence to VHDL control_block 7
int main(void)
{
int i, j, k, sum;
short int mark_b[] = {1,1,1,1,1};
unsigned short buffer_a[10], buffer_b[10], buffer_c[10][5];
FILE *sp;

sp = fopen("store.txtM, "w");
spa16 = fopen(Mtmita16", "r");
spa10 = fopenftmital 0", "r");
spb16 = fopen(,,tmitb16,,l "r");
spb10 = fopen("tmitb10", "r");

for (i = 0; i < 10; i++) {

/* input one row from transmiter a 7
for (j = 0; j < 10; j++)

buffer_aU] = f_a();

for 0 = 0; j < 5; j++) {

if (mark_b[j] == 1) {

I* input one column from transmiter b */
for (k = 0; k < 10; k++)

buffer_c[k][j] = f_b();

223

mark_b[j] = 0;

for (k = 0; k < 10; k++)
buffer_b[k] = buffer_c[k][j];

for (sum = 0, k = 0; k < 10; k++)
sum += buffer_a[k] * buffer_b[k];

storage(sum, sp);

fclose(sp);
fclose(spa16);
fclose(spalO);
fclose(spb16);
fclose(spb10);

} /* end of main */

224

Appendix I
1. PM_16_A/B

• VHDL Program

---/ here are definitions for VHDL packages and libraries /--

entity pm_16 is
generic (file_name: string);
port(receiv_16s: inout token;

out_s: inout token);
end pm_16;

architecture behave_pm_16 of pm_16 is

begin
decoder: process

begin
t_tmp:= t_tmp + 1;
if (t_tmp < 16) then

syn_receive(receiv_16s, t_temp, 99999 ns);
temp:= t_temp.color.data2;

--/ processing 16 bits information /--
buf_reg:= buf_reg(1 to 15) & temp;
t_back:= syndrom(9);
t_forward:= temp;
syndrom:= r_decode_sydrom(syndrom,t_back,t_forward);

else
--/ sending off 16 bits information /--

t_temp.color.data1 := bv_to_unsignint(buf_reg);
t_temp.color.condi:= TRUE;
syn_transmit(out_s, t_temp, 99999 ns);

--/ sending off 10 bits syndrom /--
t_temp.color.data1 := bv_to_unsignint(syndrom);
t_temp.color.condi:= TRUE;
syn_transmit(out_s, t_temp, 99999 ns);

--/ initializing the pm_16 again /--
t_tmp:= -1;
syndrom:= (others => ’O’);
buf_reg:= (others => ’O’);

end if;

--/ counting invoking time /--
write(l, t_times, right, 1);
t_times:= not t_times;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile,l);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process;

225

end behave_pm_16;

• CDFG

t_tmp:= t_tmp + 1

t jm p < 16

| temp:= bus_read_operation|

bus_write_operation := data_buffer

data_buffer(0 to 31):= buf_reg(0 to 15) &
syndrom(0 to 9) & '000000*

t_tmp:= -1;
syndrom:= (others => ’O');
buf_reg:= (others => ’O’);

buf_reg:= buf_reg(1 to 15) & temp;
t_back:= syndrom(9);
t_forward:= temp;
syndrom:= (t_back xor t_forward) & (syndrom(O) xor t_forward) &

syndrom(1) & (syndrom(2) xor t_back xor tjo rw ard) &
(syndrom(3) xor t_back xor t jo rw ard) & (syndrom(4)
xor t_back) & syndrom(5) & (syndrom(6) xor t_back) &
(syndrom(7) xor t_back xor tjo rw ard) & (syndrom(8)
xor tjo rw ard);

• DFGs

I syndrom I
buf_reg(0 to 15) Syndrom(0 to 9)

000000 but_reg
11 J m p |

syndrorrsyndrom syndrom syndrom syndrom syndrom syndrom syndrom syndrom
lemp

v,5r&; hemp"

V'« K

226

• Hardware Cost and Performance for the Main DFG

Node Priority ASAP Schd_1 Schd_2 Schd_3 Schd_4
V1 1 1 1 1 1 2
V2 4 1 1 1 1 1
V3 1 1 1 1 2 3
V4 1 2 2 2 3 6
V5 1 2 2 3 4 7
V6 1 2 2 3 4 8
V7 1 2 2 2 3 4
V8 1 3 3 3 4 5
V9 1 4 4 4 5 9

V10 1 5 5 5 6 10
V11 1 6 6 6 7 11
V12 1 7 7 7 8 12
V13 1 1 1 2 2 4
V14 1 1 2 2 3 5
V15 1 8 8 8 9 13
V16 1 9 9 9 10 14
V17 1 10 10 10 11 15
Total
Steps N/A 10 10 10 11 15
Total 5 "XOR" 4 "XOR" 3 "XOR" 2 "XOR" 1 "XOR"

Compnts N/A 1 "&" 1 "&" 1 "&" 1 "&" 1 "&"

2. PCW_10_A/B

• VHDL Program

--/ here are definitions for VHDL packages and libraries /--

entity pcw_10 is
generic (file_name: string);
port(receiv_1 Os: inout token;

receiv_syndrom: inout token;
out_s: inout token);

end pcw_10;

architecture behave_pcw_10 of pcw_10 is

begin
decoder: process

--/ here are definitions for variables and signals /--

begin
t_tmp:= t_tmp + 1;
if (t_tmp < 1) then

syn_receive(receiv_syndrom, t_temp, 99999 ns);
tmp:= t_temp.color.data1;
syndrom:= unsignint_to_bv(tmp, 10);

end if;
if (t_tmp < 10) then

syn_receive(receiv_10s, t_temp, 99999 ns);
temp:= t_temp.color.data2;

227

--/ processing checkword /--
t_back:= syndrom(9);
case tmp_offset is

when 1 =>
t_forward:= temp xor off_a(t_tmp);

when 2 =>
tjorward:= temp xor off_b(tJmp);

when 3 =>
tjorward:= temp xor off_c(tJmp);

when others =>
tJorward:= temp xor off_d(tJmp);

end case;
syndrom:= r_decode_sydrom(syndrom,t_back,tjorward);

else
--/ sending off 10 bits syndrom /--

tjemp.color.datal := bvJo_unsignint(syndrom);
tJemp.coior.condi:= TRUE;
synJransmit(out_s, tjemp, 99999 ns);

--/ initializing the pew J 0 again /--
tjmp:= -1;
tmp_offset:= tmp_offset + 1;
if tmp_offset > 4 then

tmp_offset:= 1;
end if;

end if;

--/ counting invoking time /--
write(l, tjimes, right, 1);
tjimes:= not tjimes;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile.l);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process;

end behave_pcw_10;

228

• CDFG

|t_tmp:= t_tmp + 1 |

t tmp < 1

syndrom(0 to 9):= bus_read_operation

t tmp < 10

temp:= bus_read_operation

t_back:= syndrom(9)|

|t_lorward:= temp xoroff_a(t_tmp)| |tJorward:= tamp xorotf_d(tJmp)|

t_tmp:= -1;
tmp_oftset:= tmp_ottset + 1;

bus_write_operation := syndrom(0 to 9)

|t_torward:= temp xorotl_b(t_tmp)| | t j otward:= temp xorott_c(t_tmp)|

syndrom:= (t_back xor Uorward) & (syndrom(O) xor tjorward) &
syndrom(1) & (syndrom(2) xor t_back xor tjorward) &
(syndrom(3) xor Lback xor tjorward) & (syndrom(4)
xor t_back) & syndrom(5) & (syndrom(6) xor t_back) &
(syndrom(7) xor t_back xor Uorward) & (syndrom(8)
xor Uorward);

• DFGs

syndrom syndrom syndrom syndromsyndrom syndrom syndrom syndrom syndrom syndrom

229

Hardware Cost and Performance for the Main DFG

Node Priority ASAP Schd_1 Schd 2
V1 3 1 1 1
V2 1 1 1 3
V3 4 2 2 2
V4 1 2 3 5
V5 1 3 4 7
V6 1 3 4 8
V7 1 3 5 9
V8 1 3 4 6
V9 1 4 5 7

V10 1 5 6 10
V11 1 6 7 11
V12 1 7 8 12
V13 1 8 9 13
V14 1 1 2 4
V15 1 2 3 6
V16 1 9 10 14
V17 1 10 11 15
V18 1 11 12 16

Total
S teps N/A 11 12 16
Total 3 "XOR" 2 "XOR" 1 "XOR"

Com pnts N/A 1 "&" 1 "&" 1 "&"

3. Correctr A/B

• VHDL Program

--/ here are definitions for VHDL packages and libraries /--

entity corrector is
generic (file_name: string);
port(in_pm: inout token; in_pcw: inout token;

out_pcw: inout token; corrected: inout token);
end corrector;

architecture behave_corrector of corrector is

begin
corrector: process

--/ here are definitions for variables and signals /--

begin
--/ receiving 16 bits information /--

syn_receive(in_pm, tjemp, 99999 ns);
tmp:= t_temp.color.data1;
buf_reg:= unsignint_to_bv(tmp, 16);

--/ receiving 10 bits syndrom /--
syn_receive(in_pm, t_temp, 99999 ns);
-- tmp:= t_temp.color.data1;

--/ sending off the 10 bits syndrom /--

230

-- t_temp.color.data1 := tmp;
t_temp.color.condi:= TRUE;
syn_transmit(out_pcw, t_temp, 99999 ns);

--/ receiving 10 bits check word /--
syn_receive(in_pcw, t_temp, 99999 ns);
tmp:= t_temp.color.data1;
syndrom:= unsignint_to_bv(tmp, 10);

--/ the correction goes here /--
for i in 0 to 15 loop

if five_nor(syndrom(0 to 4)) = ’1’ then
corrected jesult(i):= buf_reg(i);
t_back:= syndrom(9);
syndrom:= r_encode_sydrom(syndrom, t_back);

else
corrected_result(i):= syndrom(9) xor buf_reg(i);
syndrom:= ’0’ & syndrom(0 to 8);

end if;
end loop;

--/ sending off the corrected 16 bits information /--
t_temp.color.data1 := bv_to_unsignint(corrected_result);
t_temp.color.condi:= TRUE;
syn_transmit(corrected, t_temp, 99999 ns);

--/ counting invoking time /--
write(l, t_times, right, 1);
t_times:= not tjimes;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile,l);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process;

end behave_corrector;

231

• CDFG

>15

syndrom(O) * T or syndrom(1) m 'l'o r
syndrom(2)* ’J ’o r sy n d ro m fj)* T o r ,
• y n d r o m ^) « ‘7 ’

five_or

:= 0

data_buffen= bus_read_operation

correctedjesuttO):* syndrom{9) xor buf_reg(i);
syndrom :- *0’ & syndrom(0 to 8);

bus_wrile_operation := syndrom(0 to 9)

syndrom(0 to 9):= bus_read_operation

bus_write_operation := corrected_result(0 to 15)

buf_reg(0 to 15):= data_buffer(0 to 15);
syndrom(0 to 9):= data_buffer(16 to 25);

correct ed_result(i):= buf.reg(i);
t_back:» syndrom(9);
syndrom:* L back & syndrom(0 to 1) & (syndrom(2) xor

t_back) & (syndrom(3) xort_back) & (syndrom(4) xor
t.back) & syrxJrom(5) & (syndrom(6) xor
t_back) & (syndrom(7) xor t_back) & syndrom{8);

• DFGs

0 I I svndromfO to Bill svndromf91 Ifbuf reotitl

syndrom syndrom syndromsyndrom syndromsyndrom syndrorr
(0 to 1)

syndrom syndrom

232

• Hardware Cost and Performance for the Main DFG

Node Priority ASAP SchdJ Schd_2 Schd_3 Schd_4
V1 1 1 1 1 1 1
V2 1 1 1 1 1 2
V3 1 1 1 1 2 3
V4 1 1 1 2 2 4
V5 1 1 2 2 3 5
V6 1 1 2 2 3 6
V7 1 2 2 2 2 3
V8 1 3 3 3 3 4
V9 1 4 4 4 4 5
V10 1 5 5 5 5 6
V11 1 6 6 6 6 7
V12 1 7 7 7 7 8
V13 1 8 8 8 8 9
Total
Steps N/A 8 8 8 8 9
Total 5 4 "XOR" 3 "XOR" 2 "XOR" 1 "XOR"

Compnts N/A
"XOR"
1 "&" 1 "&" 1 "&" 1 "&" 1 "&"

4 . F _ a

• VHDL Program

--/ here are definitions for VHDL packages and libraries /--

entity f_a_block is
port(in_16: inout token;

out_16: inout token);
end f_a_block;

architecture behave_f_a_block of f_a_block is

begin
f_block: process

--/ here are definitions for variables and signals /--

begin
syn_receive(in_16, tempjn, 99999 ns);
f_a:= integer(temp_in.color.data1);

f_a:= ((f_a * f_a + 1) * (f_a + 1)) / (f_a * f_a + 2);

temp_out.color.data1 := unsigned_int(f_a);
temp_out.color.condi:= true;
syn_transmit(out_16, temp_out, 99999 ns);

--/ counting invoking time /--
write(l, tjimes, right, 1);
tjimes:= not tjimes;
if t_count >= 29 then

write(l, NOW, right, 15);

233

writeline(datafilej);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process;

end behave_f_a_block;

• CDFG

f_a:= bus_read_operation

bus_write_operation := f_a

f_a:= ((f_a * f_a + 1) * (f_a + 1)) / (f_a * f_a + 2)

• DFGs

• Hardware Cost and Performance for the Main DFG

Node Priority ASAP Schd_1 Schd_2 Schd 3
V1 1 1 1 1 1
V2 1 2 2 2 2
V3 1 1 1 1 1
V4 1 3 3 3 3
V5 1 4 4 4 4
V6 1 1 2 1 2
V7 1 2 3 3 3

Total
Steps N/A 4 4 4 4
Total 2 2 " + 11 -j i i * n 2 m^ . m 2 *j , | ^ m - | l l * l l - | l i^ _ l l

Compnts N/A 1 r 1 7" 1 7" 1 T

234

5. F_b

• VHDL Program

entity f_b_block is
port(in_16: inout token;

out_16: inout token);
end f_b_block;

architecture behave_f_b_block of f_b_block is

begin
f_block: process
begin

syn_receive(in_16, tempjn, 99999 ns);
f_b:= integer(temp_in.color.data1);

f_b:= ((f_b * f_b + 1) * (f_b + 1)) / (f_b * f_b + 4);

temp_out.color.data1 := unsigned_int(f_b);
temp_out.color.condi:= true;
syn_transmit(out_16, temp_out, 99999 ns);

--/ counting invoking time /--
write(l, Mimes, right, 1);
t_times:= not tjimes;
if t_count >= 29 then

write(l, NOW, right, 15);
writeline(datafile,l);
t_count:= -1;

end if;
t_count:= t_count + 1;

end process;

end behaveJ_b_block;

• CDFG

f_b:= bus_read_operation

bus_write_operation := f_b

f_b:= ((f_b * f_b + 1) * (f_b + 1)) / (f_b ‘ f_b + 4)

235

• DFGs

• Hardware Cost and Performance for the Main DFG

Similar as F_a ’s .

236

Appendix J
1. Co-simulation Program (one bus layer)

LIBRARY communication;
USEcommunication.ESSENTIAL_DEFINITIONS.ALL;
USE communication.token_definition.ALL;
USE communication.token_passing.ALL;
USE communication.par_vhdl_conversion.ALL;
USE communication.RDSJJTILITIES.ALL;
USE std.textio.ALL;

ENTITY rds_matrix_1 IS
END rds_matrix_1;

ARCHITECTURE behave_rds_matrix_1 OF rds_matrix_1 IS

COMPONENT bus_arbiter
PORT (

- arbitrat_bus --
br: IN word;
bg: OUT word:= word_high;
bbsy: IN BIT

);
END COMPONENT;

COMPONENT synchro_same
PORT (elk: IN BIT;

-- address_bus signals --
atb: IN word;

-- data_bus signals --
dtb: INOUT or_lword_res BUS;

-- control_bus signals --
as, ds, rw, sd, sa: IN BIT;
dtack, ready: INOUT and_bit_res BUS := ’1’
);

END COMPONENT;

COMPONENT asynchro_same
GENERIC (quejd: word);
PORT (elk: IN BIT;

-- address_bus signals
atb: IN word;
segmt: IN word;

-- data_bus signals
dtb: INOUT or_lword_res BUS;

-- control_bus signals
as, ds, rw, sd, sa: IN BIT;
dtack, ready: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT clk_gen
GENERIC (delayjength: TIME);
PORT (elk: inout BIT);

END COMPONENT;

COMPONENT transmit_a

237

P0RT(sent_16s: inout token;
sent_10s: inout token);

END COMPONENT;

COMPONENT transmit_b
PORT(sent_16s: inout token;

sent_10s: inout token);
END COMPONENT;

COMPONENT pcw_10_h
GENERIC (bjd: word;

chanljn: word;
chanl_out: word);

PORT (elk: IN BIT;
data_token: INOUT token;

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT or_lword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT pm_16_h
GENERIC (bjd: word;

chanl_out: word);
PORT (elk: IN BIT;

data_token: INOUT token;
-- address bus --

atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT or_lword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT corrector_h
GENERIC (bjd: word;

chanljnl: word;
chanljn2: word;

238

chanl_out1: word;
chanl_out2: word);

PORT (elk: IN BIT;
-- address bus --

atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT or_lword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’T;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT f_a_s
GENERIC (bjd: word;

chanljn: word;
chanl_out: word);

PORT (elk: IN BIT;
datajoken: inout token;

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT orJword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := wordjiigh;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT f_b_h
GENERIC (bjd: word;

chanljn: word;
chanl_out: word);

PORT (elk: IN BIT;
-- address bus --

atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT orJword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;

239

sa_glob: INOUT or_bit_res BUS;
-- arbitration bus --

br_g!ob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT control_block
GENERIC (bjd: word;

chanljnl: word;
chanljn2: word;
chanl_out: word);

PORT (elk: IN BIT;
datajoken: inout token;

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT orJword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus -
br_glob: INOUT and_word_res BUS := wordjiigh;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT store
GENERIC (bjd: word;

chanljn: word);
PORT (elk: IN BIT;

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT orJword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := wordjiigh;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

— Ill Global Bus Signals III —
-- adress bus -
SIGNAL atb: or_word_res BUS;
SIGNAL segmt: or_word_res BUS;
-- data bus --

240

SIGNAL dtb: or_lword_res BUS;
- control bus --
SIGNAL as, ds: and_bit_res BUS := ’1’;
SIGNAL dtack, ready: and_bit_res BUS := ’1’;
SIGNAL rw: or_bit_res BUS;
SIGNAL sd: or_bit_res BUS;
SIGNAL sa: or_bit_res BUS;
-- arbitration bus --
SIGNAL br: and_word_res BUS:= word_high;
SIGNAL bg: word:= word_high;
SIGNAL bbsy: and_bit_res BUS:= ’1’;

SIGNAL transmit_11, transmit_12: token_res;
SIGNAL transmit_21, transmit_22: token_res;
SIGNAL fa_control: token_res;

—III other signals III—
SIGNAL clk_syn, clk_asyn, clk_corrector1, clk_corrector2,

clk_pm1, clk_pcw1, clk_pm2, clk_pcw2, clk_contrl,
clk_f_a, clk_f_b, clk_storage: BIT:=’0’;

BEGIN

syn_ck_1: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_syn);

asyn_clk: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_asyn);

pm_clk1: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_pm1);

pm_clk2: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_pm2);

pcw_clk1: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_pcw1);

pcw_clk2: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_pcw2);

corect_1: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_corrector1);

corect_2: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_corrector2);

f_a_clk: clk_gen
GENERIC MAP(50 ns)
PORT MAP(clk_f_a);

f_b_clk: clk_gen

241

GENERIC MAP(25 ns)
PORT MAP(clk_f_b);

contl_ck: clk_gen
GENERIC MAP(50 ns)
PORT MAP(clk_contrl);

stor_clk: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_storage);

bus_a1: bus_arbiter
PORT MAP (br, bg, bbsy);

synchro: synchro_same
PORT MAP (clk_syn, atb, dtb, as, ds, rw, sd, sa,

dtack, ready);

asynchro: asynchro_same
GENERIC MAP ("1111111111111101")
PORT MAP (clk_asyn, atb, segmt, dtb, as, ds, rw,

sd, sa, dtack, ready);

- Ill Individual Modules in the System III --

Transmiter_A: transmit_a
PORT MAP (transmit_11, transmit_12);

Transmiter_B: transmit_b
PORT MAP (transmit_21, transmit_22);

PM_16_A: pm_16_h
GENERIC MAP ("1111111111111011", "1111111111111101")
PORT MAP (clk_pm1, transmit_11, atb, segmt, dtb, as, ds,

dtack, ready, rw, sd, sa, br, bg, bbsy);

PM_16_B: pm_16_h
GENERIC MAP ("1111110111111111", "1111111011111111")
PORT MAP (clk_pm2, transmit_21, atb, segmt, dtb, as, ds,

dtack, ready, rw, sd, sa, br, bg, bbsy);

PCW_10_A: pcw_10_h
GENERIC MAP ("1111111111110111", "1111111111111011",

"1111111111110111")

PORT MAP (clk_pcw1, transmit_12, atb, segmt, dtb, as, ds,
dtack, ready, rw, sd, sa, br, bg, bbsy);

PCW_10_B: pcw_10_h
GENERIC MAP ("1111101111111111", "1111110111111111",

" 1111101111111111")
PORT MAP (clk_pcw2, transmit_22, atb, segmt, dtb, as, ds,

dtack, ready, rw, sd, sa, br, bg, bbsy);

corrector_A: corrector_h
GENERIC MAP ("1111111111101111", "1111111111111101",

"1111111111110111", "1111111111111011",
"1111111111101111")

PORT MAP (clk_corrector1, atb, segmt, dtb, as, ds,
dtack, ready, rw, sd, sa,
br, bg, bbsy);

242

corrector_b: corrector_h
GENERIC MAP ("1111111011111111", "1111111011111111",

"1111101111111111", "1111110111111111",
"1111111101111111")

PORT MAP (clk_corrector2, atb, segmt, dtb, as, ds,
dtack, ready, rw, sd, sa,
br, bg, bbsy);

f a* f a s
~ GENERIC MAP ("1111111111011111", "1111111111101111",

"1111111111011111")

PORT MAP (clk_f_a, fa_control, atb, segmt, dtb, as, ds,
dtack, ready, rw, sd, sa,
br, bg, bbsy);

Lb: f_b_h
GENERIC MAP ("1111111101111111", "1111111101111111",

"1111111110111111")
PORT MAP (clk_f_b, atb, segmt, dtb, as, ds,

dtack, ready, rw, sd, sa,
br, bg, bbsy);

control: control_block
GENERIC MAP ("1111111110111111", "1111111111011111",

"1111111110111111", "1111111111111101")
PORT MAP (clk_contrl, fa_control, atb, segmt, dtb, as, ds,

dtack, ready, rw, sd, sa,
br, bg, bbsy);

storage: store
GENERIC MAP ("1111011111111111", "1111111111111101")
PORT MAP (clk_storage, atb, segmt, dtb, as, ds,

dtack, ready, rw, sd, sa,
br, bg, bbsy);

END behave_rds_matrix_1;

2. Co-simulation Program (two bus layers)

LIBRARY communication;
USE communication.ESSENTIAL_DEFINITIONS.ALL;
USE communication.token_definition.ALL;
USE communication.token_passing.ALL;
USE communication.par_vhdl_conversion.ALL;
USE communication.RDSJJTILITIES.ALL;
USE std.textio.ALL;

ENTITY rds_matrix_2 IS
END rds_matrix_2;

ARCHITECTURE behave_rds_matrix_2 OF rds_matrix_2 IS

COMPONENT bus_arbiter
PORT (

-- arbitrat_bus --
br: IN word;
bg: OUT word:= word_high;
bbsy: IN BIT

);

243

END COMPONENT;

COMPONENT synchro_same
PORT (elk: IN BIT;

-- address_bus signals --
atb: IN word;

-- data_bus signals --
dtb: INOUT or_lword_res BUS;

-- controLbus signals -
as, ds, rw, sd, sa: IN BIT;
dtack, ready: INOUT and_bit_res BUS := ’1’

);
END COMPONENT;

COMPONENT asynchro_same
GENERIC (quejd: word);
PORT (elk: IN BIT;

-- address_bus signals
atb: IN word;
segmt: IN word;

-- data_bus signals
dtb: INOUT orJword_res BUS;

-- controLbus signals
as, ds, rw, sd, sa: IN BIT;
dtack, ready: INOUT and_bit_res BUS:= ’1’
);

END COMPONENT;

COMPONENT synchro_differ
GENERIC (arbitra_id1: word;

arbitra_id2: word);
PORT (elk: IN BIT;

-- No.1 bus signals --
-- address bus

atbl: INOUT or_word_res BUS;
segmtl: INOUT or_word_res BUS;

- data bus
dtbl: INOUT or_lword_res BUS;

-- control bus
as1, ds1: INOUT and_bit_res BUS;
rw1, sd1, sal: INOUT or_bit_res BUS;
dtackl, readyl: INOUT and_bit_res BUS := ’1’;

-- arbitration bus
br1: INOUT and_word_res BUS:= word_high;
bg1: IN word;
bbsyl: INOUT and_bit_res BUS:= ’1’;

-- No.2 bus signals --
-- address bus

atb2: INOUT or_word_res BUS;
segmt2: INOUT or_word_res BUS;

— data bus
dtb2: INOUT or_lword_res BUS;

-- control bus
as2, ds2: INOUT and_bit_res BUS;
rw2, sd2, sa2: INOUT or_bit_res BUS;
dtack2, ready2: INOUT and_bit_res BUS := ’1’;

-- arbitration bus
br2: INOUT and_word_res BUS:= word_high;
bg2: IN word;

244

bbsy2: INOUT and_bit_res BUS:= ’1’
);

END COMPONENT;

COMPONENT clk_gen
GENERIC (delayjength: TIME);
PORT (elk: inout BIT);

END COMPONENT;

COMPONENT transmit_a
PORT(sent_16s: inout token;

sent_10s: inout token);
END COMPONENT;

COMPONENT transmit_b
PORT(sent_16s: inout token;

sent_10s: inout token);
END COMPONENT;

COMPONENT pcw_10_h
GENERIC (bjd: word;

chanljn: word;
chanl_out: word);

PORT (elk: IN BIT;
data_token: INOUT token;

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT or_lword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus -
br_glob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT pm_16_h
GENERIC (bjd: word;

chanl_out: word);
PORT (elk: IN BIT;

data_token: INOUT token;
-- address bus --

atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT or_lword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --

245

br_glob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT corrector_h
GENERIC (bjd: word;

chanljnl: word;
chanljn2: word;
chanl_out1: word;
chanl_out2: word);

PORT (elk: IN BIT;
-- address bus --

atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT orJword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_blt_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT f_a_s
GENERIC (bjd: word;

chanljn: word;
chanl_out: word);

PORT (elk: IN BIT;
datajoken: inout token;

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT orJword_res BUS;

-- control bus --
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := wordjiigh;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

COMPONENT f_b_h
GENERIC (bjd: word;

chanljn: word;
chanl_out: word);

PORT (elk: IN BIT;

246

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT or_lword_res BUS;

-- control bus -
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= T;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= T

);
END COMPONENT;

COMPONENT control_block
GENERIC (bjd: word;

chanljnl: word;
chanljn2: word;
chanl_out: word);

PORT (elk: IN BIT;
datajoken: inout token;

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT orJword_res BUS;

-- control bus -
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := word_high;
bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’
);

END COMPONENT;

COMPONENT store
GENERIC (bjd: word;

chanljn: word);
PORT (elk: IN BIT;

-- address bus --
atb_glob: INOUT or_word_res BUS;
segmt_glob: INOUT or_word_res BUS;

-- data bus --
dtb_glob: INOUT orJword_res BUS;

-- control bus -
as_glob, ds_glob: INOUT and_bit_res BUS:= ’1’;
dtack_glob, ready_glob: INOUT and_bit_res BUS:= ’1’;
rw_glob: INOUT or_bit_res BUS;
sd_glob: INOUT or_bit_res BUS;
sa_glob: INOUT or_bit_res BUS;

-- arbitration bus --
br_glob: INOUT and_word_res BUS := wordjiigh;

247

bg_glob: IN word;
bbsy_glob: INOUT and_bit_res BUS:= ’1’

);
END COMPONENT;

--- III Global Bus1 Signals III —

-- adress bus1 --
SIGNAL atbl: or_word_res BUS;
SIGNAL segmtl: or_word_res BUS;
-- data bus -
SIGNAL dtbl: or_lword_res BUS;
-- control bus1 --
SIGNAL as1, ds1: and_bit_res BUS := ’1 ’;
SIGNAL dtackl, readyl: and_bit_res BUS := ’1’;
SIGNAL rw1: or_bit_res BUS;
SIGNAL sd1: or_bit_res BUS;
SIGNAL sal: or_bit_res BUS;
-- arbitration bus1 --
SIGNAL br1: and_word_res BUS:= wordjiigh;
SIGNAL bg1: word:= wordjiigh;
SIGNAL bbsyl: and_bit_res BUS:= ’1’;

— Ill Global Bus2 Signals III —

-- adress bus2 --
SIGNAL atb2: or_word_res BUS;
SIGNAL segmt2: or_word_res BUS;
-- data bus2 --
SIGNAL dtb2: orJword_res BUS;
~ control bus2 --
SIGNAL as2, ds2: and_bit_res BUS := ’1’;
SIGNAL dtack2, ready2: and_bit_res BUS := T;
SIGNAL rw2: or_bit_res BUS;
SIGNAL sd2: or_bit_res BUS;
SIGNAL sa2: or_bit_res BUS;
- arbitration bus2 --
SIGNAL br2: and_word_res BUS:= word_high;
SIGNAL bg2: word:= wordjiigh;
SIGNAL bbsy2: and_bit_res BUS:= ’1’;

SIGNAL transmit_11, transmitjl 2: token_res;
SIGNAL transmit_21, transmit_22: token_res;
SIGNAL fa_control: token_res;

—Ill other signals III—
SIGNAL clk_syn_same1, clk_syn_same2, clk_syn_differ, clk_asyn,

clk_pm1, clk_pcw1, clk_pm2, clk_pcw2, clkj_a, clkj_b,
clk_corrector1, clk_corrector2, clk_contrl, clk_storage: BIT:=’0’;

BEGIN

syn_ck_1: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_syn_same1);

syn_ck_2: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_syn_same2);

248

syn_ck_d: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_syn_differ);

asyn_clk: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_asyn);

pm_clk1: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_pm1);

pm_clk2: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_pm2);

pcw_clk1: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_pcw1);

pcw_clk2: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_pcw2);

corect_1: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_corrector1);

corect_2: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_corrector2);

f_a_clk: clk_gen
GENERIC MAP(50 ns)
PORT MAP(clk_f_a);

f_b_clk: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_f_b);

contl_ck: clk_gen
GENERIC MAP(50 ns)
PORT MAP(clk_contrl);

stor_clk: clk_gen
GENERIC MAP(25 ns)
PORT MAP(clk_storage);

bus_abi1: bus_arbiter
PORT MAP (br1,bg1,bbsy1);

bus_abi2: bus_arbiter
PORT MAP (br2, bg2, bbsy2);

s_same_1: synchro_same
PORT MAP (clk_syn_same1, atbl, dtbl, as1, ds1, rw1,

sd1, sal, dtackl, ready 1);

s_same_2: synchro_same
PORT MAP (clk_syn_same2, atb2, dtb2, as2, ds2, rw2,

249

sd2, sa2 , dtack2, ready2);

s_difer: synchro_differ
GENERIC MAP ("1110111111111111", "1110111111111111")
PORT MAP (clk_syn_differ,

atbl, segmtl, dtbl, as1, ds1, rw1, sd1, sal,
dtackl, readyl, br1, bg1, bbsyl,
atb2, segmt2, dtb2, as2, ds2, rw2, sd2, sa2,
dtack2, ready2, br2, bg2, bbsy2);

asynchrol: asynchro_same
GENERIC MAP ("1111111111111101")
PORT MAP (clk_asyn, atb2, segmt2, dtb2, as2, ds2, rw2,

sd2, sa2, dtack2, ready2);

-- III Individual Modules in the System III -

Transmiter_A: transmit_a
PORT MAP (transmit_11, transmit_12);

Transmiter_B: transmit_b
PORT MAP (transmit_21, transmit_22);

PM_16_A: pm_16_h
GENERIC MAP ("1111111111111011", "1111111111111101")
PORT MAP (clk_pm1, transmit_11, atbl, segmtl,

dtbl, as1, ds1, dtackl, readyl, rw1,
sd1, sal, br1, bg1, bbsyl);

PM_16_B: pm_16_h
GENERIC MAP ("1111110111111111", "1111111011111111")
PORT MAP (clk_pm2, transmit_21, atb2, segmt2,

dtb2, as2, ds2, dtack2, ready2, rw2,
sd2, sa2, br2, bg2, bbsy2);

PCW_10_A: pcw_10_h
GENERIC MAP ("1111111111110111", "1111111111111011",

"1111111111110111")
PORT MAP (clk_pcw1, transmit_12, atbl, segmtl,

dtbl, as1, ds1, dtackl, readyl, rw1,
sd1, sal, br1, bg1, bbsyl);

PCW_10_B: pcw_10_h
GENERIC MAP ("1111101111111111", "1111110111111111",

"1111101111111111")
PORT MAP (clk_pcw2, transmit_22, atb2, segmt2,

dtb2, as2, ds2, dtack2, ready2, rw2,
sd2, sa2, br2, bg2, bbsy2);

rn rort A’ f'nrrpptnr h
GENERIC MAP ("1111111111101111", "1111111111111101",

"1111111111110111", "1111111111111011",
"1111111111101111")

PORT MAP (clk_corrector1, atbl, segmtl,
dtbl, as1, ds1, dtackl, readyl, rw1,
sd1, sal, br1, bg1, bbsyl);

corect_B: corrector_h
GENERIC MAP ("1111111011111111", "1111111011111111",

"1111101111111111", "1111110111111111",

250

"1111111101111111")
PORT MAP (clk_corrector2, atb2, segmt2,

dtb2, as2, ds2, dtack2, ready2, rw2,
sd2, sa2, br2, bg2, bbsy2);

f a* f a s
~ GENERIC MAP ("1111111111011111", "1111111111101111",

"1111111111011111")
PORT MAP (clk_f_a, fa_control, atbl, segmtl, dtbl, as1, ds1,

dtackl, readyl, rw1, sd1, sal, br1, bg1, bbsyl);

f_b: f_b_h
GENERIC MAP ("1111111101111111", "1111111101111111",

" 1111111110111111")
PORT MAP (clk_f_b, atb2, segmt2, dtb2, as2, ds2,

dtack2, ready2, rw2, sd2, sa2, br2, bg2, bbsy2);

contl: controLblock
GENERIC MAP ("1111111110111111", "1111111111011111",

"1111111110111111", "1111111111111101")
PORT MAP (clk_contrl, fa_control, atb2, segmt2, dtb2, as2, ds2,

dtack2, ready2, rw2, sd2, sa2, br2, bg2, bbsy2);

stor: store
GENERIC MAP ("1111011111111111", "1111111111111101")
PORT MAP (clk_storage, atb2, segmt2, dtb2, as2, ds2,

dtack2, ready2, rw2, sd2, sa2, br2, bg2, bbsy2);

END behave_rds_matrix_2;

251

