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Abstract

The results from a com putational investigation of plastic deform ation and fracture 
in austenitic steel are presented. A la ttice  model representing the  continuum  me
chanical behaviour in three-dim ensions is developed. The model is shown to  recover 
the governing equations for continuum  elasticity theory and is extended to  include 
plasticity through the  localised reduction of elastic m oduli, and  the  application of 
internal forcces in order to  m aintain  stress continuity. The properties of the  bonds 
constitu ting  the la ttice are varied in different regions in order to  sim ulate m ulti-phase 
m aterials. The resulting system of equations retains its linearity  and  is, therefore, 
solvable using a conjugate gradient algorithm . F racture is in troduced through the 
iterative removal of bonds, where clusters of bonds norm al to  a po ten tial fracture 
plane are considered.

The model gives reasonable agreem ent w ith theoretical predictions for the  elas
tic fields generated by a spherical inclusion, although for small particle sizes the 
discretisation of the  underlying la ttice  causes some departures from the  predicted 
values. Results are presented for a spherical inclusion in a  plastic m atrix  and are 
found to  be in good agreem ent w ith predictions of W ilner [1].

The deform ation and fracture of inclusions due to  particles characteristically  em
bedded in austenitic steel are considered. The deform ation fields w ithin spherical 
particles are found to  depart from uniform ity in the presence of p lastic ity  in the  m a
trix, and their decohesion is in accord with experim ental expectations. T he model 
accounts for the internal fracture characteristics of elongated m anganese sulphide 
particles when orientated  parallel to  the tensile direction. The in teraction between 
two iron carbide particles or two voids are also investigated, and found to  be po ten 
tially  detrim ental.

Random  voidal m icrostructures are sim ulated, w ith subsequent results analysed us
ing Weibull sta tistical analysis. The m axim um  stress levels, w ith respect to the 
applied stress, are considered and the system size dependence is found to  be charac
teristic  of a Weibull d istribution. The effects of varying the volume fraction of voids 
is observed to have a deleterious effect on both  the  streng th  and toughness of the 
simulations.



“...to investigate is to admit prejudice; that nobody has ever really investigated any 

thing, but has always sought positively to prove or disprove something that was con 

ceived of, or suspected, in advance. ”

Charles Fort.

“The trouble with computers, of course, is that they’re very sophisticated id io ts .”

The Doctor.
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Chapter 1

Intoduction.

The deform ation and fracture processes w ithin steels are particu larly  significant be

cause of their im portance in assessing the  safety and reliability of engineering struc

tures. They are also of academ ic interest. M aterial heterogeniety has a  direct, and 

predom inantly  detrim ental, influence on the  deform ation fields, dam age in itia tion , 

and eventual failure of load bearing com ponents. In order to  elucidate th e  physics 

of crack initiation and propagation, in non-dilute heterogeneous system s, num eri

cal m ethods are required. The principal objective of the research described in this 

thesis is the development of a quasi-static model of fracture in engineering steels, 

incorporating plasticity and allowing for interactions between particles, nucleated 

voids and crack growth.

The failure mechanisms in complex m aterials are invariably com plicated, often in

volving a variety of processes over a wide range of length and  tim e scales. On
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the continuum  mechanical length scale, analytical m athem atical models are lim

ited to  the study of an isolated particle or a single non-propagating  crack, often 

precluding plastic deform ation. The investigation of increasingly com plicated phe

nom ena is becoming more accessible w ith com puter sim ulations; i.e. elucidation of 

the  dependence of macroscopic behaviour upon m icrostructura l features, through 

micro-mechanical modelling.

In this thesis, a model is presented which, subsequent to  validation w ith respect to 

theoretical and alternative num erical results, is shown to be capable of modelling 

the effects of constituents upon the deform ation fields of an engineering steel. The 

subsequent dam age accum ulation is investigated, and the  results are found to  be 

consistent with experim ental observations, whilst providing unique insights into the 

fracture mechanisms w ithin engineering steels.

A review of the relevant research work which has been published is considered in 

chapters 2 and 3. The fracture behaviour of steels, and the influence of constituents, 

are reviewed in chapter 2, and the com putational techniques employed in sim ulating 

deform ation and fracture are reviewed in chapter3. In particu la r th e  use of L attice 

Spring Models (LSMs) in the  sim ulation of heterogeneous (generally two-dim ensional 

elastically brittle) m aterials is surveyed in chapter 3; the developm ent of a three- 

dimensional model incorporating plasticity  and subsequent dam age is presented in 

chapter 4.

The simulation of the inhom ogeneity problem  is described in chapter 5, where the 

results are compared to  the  theoretical analysis of Eshelby [2-4]. T he incipient plas



tic deform ation in the  m atrix  surrounding the  inhom ogeneity is investigated, w ith 

the results showing reference to  alternative num erical techniques in the  literature.

In chapter 6, the model is applied to  the sim ulation of particu la te  systems, cor

responding to  an austenitic  steel. The deform ation and fracture processes associ

ated  w ith single inclusion systems are analysed; systems m odelling the  in teraction 

between two inclusions are also considered. The m icro-m echanical sim ulation of 

particu la te  systems, incorporating plasticity, allow the  deleterious effects associated 

w ith microscopic constituents to  be investigated and the L attice  Spring Model is 

shown to  give results consistent with experim ental observations.

In chapter 7, a statistical study is undertaken of the  m acroscopic response of a  m a

terial through the direct sim ulation of underlying random  m icrostructural features. 

The model appears to  exhibit reasonable agreem ent w ith th e  expected theoretical 

size dependency, and the detrim ental consequences of increasing the void volume 

fraction is observed.

The last chapter draws conclusions from the  results presented, and com m ents on the 

potential developments th a t may fu rther improve this avenue of research.

3



Chapter 2

Literature Review: Experim ental.

2.1 Fracture.

Fracture can be defined as the failure of a body by the action of mechanical forces, 

and may incorporate a wide variety of phenom ena. B rittle  fracture is characterised 

by the relatively small am ount of energy absorbed prior to  rup ture, and is associated 

w ith little  or no preceding plastic deform ation. The strength  of a b rittle  m aterial is 

characterised by its resistance to  fracture, and can be quantitatively  defined as the  

critical value of stress a t which fracture occurs [5].

D uctile fracture involves the absorption of substantially  g reater levels of energy (gen

erally involving large plastic deform ations), and occurs in three stages: nucleation of 

internal cavities (often through the fracture of non-m etallic inclusions or the  deco

hesion of the  inclusion-m atrix interface); the  grow th of these cavities w ith continued
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deform ation; and finally the ir coalescence to  produce m aterial rup tu re  [6,7]. This 

mechanism is often referred to  as fibrous fracture, dim pled rup tu re  or microvoid 

coalescence, and can occur locally during b rittle  fracture.

2.1.1 Brittle Fracture.

B rittle  fracture is considered to  in itia te  a t a stress concentrator, such as a notch or 

a pre-existing crack; fracture mechanics assumes th a t these flaws are large in com

parison w ith the characteristic m icrostructure and therefore the  m edium  is assum ed 

to  be a homogeneous continuum  [8]. Griffith proposed th a t a crack will propagate 

when it is energetically favourable; the  elastic energy released by the spreading of 

the crack in a th in  plate, exceeding the surface energy gained by the  creation of the 

crack [9].

In structu ra l m aterials there are always some inelastic deform ations around a crack 

front th a t would make the assum ption of a linear elastic m edium , w ith infinite stress 

at the crack tip, questionable, although an additional term  m ay be added to  account 

for dissipative energy a t the crack tip. G riffith’s criterion is valid if the  p lastic  zone 

a t the crack tip  is very small com pared with the crack size. I t is then  reasonable 

to assume th a t the energy flowing into the crack tip  fracture zone comes from the  

elastic bulk of the m aterial [8].

McMahon and Cohen [10] established th a t the cracking of cem entite particles, lo

cated at ferrite grain boundaries, is a prim ary  in itia to r of b rittle  fractu re in ferritic
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steel; although alternative m aterials may depend upon different s ta tistical factors. 

As the  volume of b rittle  m aterial considered increases, the  probability  of finding 

larger sized flaws (e.g. sta tistically  unfavourable particle d istribu tions) in the  struc

tu re  increases, resulting in lower fracture stresses. S tatistically  th is is often repre

sented through the weakest link theory; the probability  of failure in a  chain consisting 

of a num ber of links, is based upon the proposition th a t the  entire chain fails if any 

one of its parts fail [11].

The weakest link theory can be described m athem atically  by considering the  prob

ability of a random  observation, X, having a value equal to  or greater than  some 

value x, being given by

P ( X  <  x) =  c(x) =  1 — exp [—$(a;)] (2.1)

where the function $ (x ) characterises the form of the d istribu tion . This d istribu tion  

can be used to  describe the probability  of failure, or more im portan tly  the size 

dependency of failure. If P  represents the probability  of failure of a single link, 

the probability  of nonfailure of a chain of n links, (1 — Pn), is equivalent to the  

sim ultaneous nonfailure of all the links, (1 — P ) n. W hich is given by

(1 — P ) n =  exp [—n $ (# )] (2.2)

Therfore, the probability of failure of n links is of the  form

Pn =  1 -  exp [ -n $ ( r r ) ]  (2.3)

The function §(x )  must be a positive, nondecreasing function and vanish a t a given 

value, a, which is not necessarily zero; a simple function satisfying these conditions



IS
m

(2.4)

and thus

(2.5)

This is the  Weibull distribution, where b is the  scale param eter, m  is the Weibull 

m odulus, a is the  location param eter and n is the num ber of links (volum etric 

variation). T he distribution function has no theoretical basis, b u t is considered 

applicable to  a num ber of populations, finding particu lar popularity  in describing 

the b rittle  failure of m aterials. An alternative sta tis tica l model, proposed by R itchie, 

K no tt and Rice [12], identifies significant distances ahead of the  crack tip , where 

critical levels of stress may cause cleavage fracture to  occur.

2.1.2 Ductile Fracture.

D uctile fracture in m etals invariably involves plastic deform ation as a result of the 

movement of dislocations along the slip planes of the  crystalline la ttice. D islocations 

exist th roughout the crystalline la ttice  in the form of low-density networks. The dis

location density is increased as a result of increasing th e  plastic straining, im peding 

further movement of dislocations and raising the effective yield stress [13]. D uring 

plastic deform ation, voids are nucleated th roughout the m aterial; the growth and 

eventual coalescence of these voids results in m aterial rupture.

The classic dull fibrous appearance in a low-carbon steel specim en can be seen in
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figure 2.1 [13], which shows the  typical ‘cup and cone’ fracture surface. As the  

m agnification is increased the dim pled rup tu re  appearance is observed, resulting 

from internal necking of the  m atrix  between decohered carbide particles.

Figure 2.1: Varying m agnifications of the ductile fracture surface of a low-carbon 
steel specimen taken from Thom ason [13]. T he fractographs (b) and (c) are increased 
m agnifications of the area of fibrous fracture w ithin the  rectangular box in (a).

Void nucleation may be in itia ted  a t particles, blocked slip bands, grain boundary  

trip le points or boundary irregularities [14], although non-particle related  void nu

cleation is not as prevalent as particle related  cavitation [7]. Particles can in itia te



dam age through interface decohesion or particle fracture; inclusions w ith large aspect 

ratios may undergo m ultiple internal fracturing, w hilst spherical inclusions alm ost 

always nucleate voids by interfacial separation [15].

Tanaka et al [16] proposed a simple criterion for void nucleation by com paring 

the  energy before and after cavitation. I t was found th a t  cavitation  is energetically 

favourable a t inclusions larger than  0.02 — 0.03gm  (for various m aterials), alm ost 

upon yielding, b u t for larger particles decohesion occurs a t a critical norm al stress a t 

the  p artic le /m atrix  interface [13]. D islocation loops are em itted  from the  interface in 

order to  reduce the local shear stresses, resulting from the  discontinuity in the elas

tic properties; reverse pile-ups are responsible for increasing interfacial stresses [17]. 

D iscrete dislocation analysis is required for small particles, a lthough when the  dis

location spacing is much sm aller th an  the particle size (generally considered to  be 

diam eters greater than  a micron in size) continuum  analysis of plastic deform ation 

is applicable [13,15].

Void nucleation is a continuous process w ith increasing strain ; it is generally ob

served th a t larger particles decohere or fracture a t lower stresses and strains, th an  

sm aller particles [6]. Argon et al [15] described the detrim ental effect of increasing 

the particle size, even for a constant global volume fraction, resulting from p a rti

cle interactions in regions of locally increased volume fraction. Cox and Low [18] 

explained such findings in term s of the variability in fracture streng th  due to  s ta tis 

tically d istribu ted  internal flaws.

The second stage of ductile fracture is the growth of voids, be they  already present in



the m aterial or nucleated a t particles. A triax ial stress s ta te  accelerates void growth, 

due to  the  im position of surface trac tions on the void surface [6]. Stresses norm al 

to  the free surfaces of the void m ust be zero, increasing the m axim um  shear stresses 

near the  surface of a void and resulting in increased plastic deform ation. Increased 

triax iality  th roughout the m atrix  increases the  longitudinal stress required to  cause 

plastic flow, resulting in intense deform ation around the voids and enhanced void 

growth [18]. The continuum  analyses of M cClintock [19] and Rice and Tracey [20], 

found an exponential dependence of void growth ra te  w ith stress triaxiality , for a 

long cylindrical void and a spherical void respectively. E xperim ental verification of 

theoretical analysis is difficult, due to  the  im practicalities in m easuring th e  void size 

as a function of strain  [21].

Void coalescence is the  final and m ost difficult stage of ductile fractu re to  experi

m entally investigate; void in itia tion  and growth are stable processes, which tend  to  

progress gradually, whereas void coalescence is a catastrophic event which occurs 

rapidly [22]. There are three basic modes of void coalescence (see figure 2.2), de

pending upon the stress s ta te  w ithin the m aterial; norm al rup tu re , shear rup tu re  

and tearing  [23]. The dimples on the fracture surfaces are either circular (norm al), 

elongated in opposite directions (shear), or elongated in the sam e direction (tearing); 

tearing is m ost likely to  occur in a notched specimen.

The plastic strain  is a maxim um  at an angle of 45° with the prospective crack plane, 

and voids are nucleated in areas of high plastic strain . D uctile fracture therefore 

propagates along alternative shear planes, through microvoid coalescence, following

10
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Figure 2.2: The three basic modes for the  coalescence of voids, depicting the  m aterial 
stressed alm ost to  rupture (right), local rup tu re  (centre), and the  directional sense of 
dimples on the  rup tu re  surface, taken from Beachem [23]. The modes are a) norm al 
rup ture, b) shear rupture, and c) tearing.

a zigzag course in a continuous m anner. This phenom ena produces periodic ridges 

and valleys, on w hat is an otherwise, m acroscopically flat fracture surface [24]. This 

is especially the case in m aterials exhibiting low strain-hardening and high yield 

stress [25] and two-dimensional problem s [26].

2.2 Steel and Associated Constituent Properties.

2.2.1 Introduction.

Steel is a generic term  for m aterials w ith a large range of complex com positions, 

bu t is essentially an alloy of iron and carbon containing up to  roughly 2.0% carbon. 

As the carbon content of a steel increases so does its hardness; iron carbide, a hard  

substance, is precipitated  from the steel upon cooling due to  the  difference in its

11



solubility in high tem pera tu re  FCC (2.0% C) and low tem pera tu re  BCC (0.02% C) 

iron phases. The carbon content of ferrite (Fe and less th an  0.02% C) can greatly 

influence the mechanical properties by opposing the movement of dislocations [27]. 

O ther elements can be added (i.e. nickel, chromium and m olybdenum ) to  the steel 

in order to  vary the  mechanical properties further or in troduce new properties (such 

as corrosion resistance), although the m icrostructure exerts an appreciable influence, 

especially the presence of second-phase particulates.

2.2.2 Particles.

Steels may contain a large variety of particles, such as carbides, sulphides and ox

ides. The detrim ental effect of particle volume fraction in copper is shown in figure

2.3 [13], although other factors such as shape, orientation w ith  repect to  the  tensile 

direction, and interfacial strength , can be influential [7]. Larger particles may be in 

a dam aged sta te  (partial debonding or internal cracking) subsequent to  production 

processes [13].

Differential therm al contraction between particu la tes and m a trix  can result in tes- 

selated stresses, as the  steel is cooled to  operational tem peratu res. B rooksbank [28] 

investigated the detrim ental effects of particulates, w ith lower expansion coefficients 

than  the m atrix , upon steel and found th a t alum ina particles are the  m ost dele

terious; alum inates and titan ium  nitride particles are also dam aging, w hilst oxides 

were found to exert a negligible effect. M anganese sulphides are unusual in having 

a greater expansion coefficient than  the steel m atrix , and therefore voids may be

12
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Figure 2.3: The detrim ental effect of particle, or void, volume fraction in copper on 
the true tensile strain  a t fracture; taken from Thom ason [13].

created around such inclusions. Equilibrium  occurs a t high tem peratu res during 

processing, and therefore the MnS particle is expected to  shrink to  a greater ex tent 

than the steel m atrix  upon cooling to  operational tem peratures. T h a t said, for a 

particu la te system to  be susceptible to  such an effect, the  interfacial s treng th  would 

have to be particu larly  weak [22].

Iron carbide particles {Fe^C) are a source of fracture, either through in ternal fracture 

of the particle or interfacial decohesion. Internal fracture is favoured in th e  lower 

shelf region, and in high strength  and low toughness steels [10], where larger particles 

are also more likely to  fracture [6]. The elastic properties of iron carbide particles are 

E  =  26SGPa  (Young’s m odulus) and v  — 0.3 (Poisson’s ratio) [14]. Jun  et al [29] 

calculated the fracture strength  of spherical carbide particles in steel, based on an

13



energy balance condition, to  be 2027 M Pa. Jun  [30] has also estim ated th e  interfacial 

decohesion strength  to  be 1024 M Pa, although o ther au thors have obtained values 

varying between 950 and 1800 M Pa [31].

M anganese sulphides (MnS) are one of the  m ost common sources for void nucle

ation in low-alloy steels [6]. D uring the process of hot rolling, MnS in steel can be 

elongated by plastic deform ation [32]. Longitudinal (to working) tensile specimens 

are more likely to  fail by cracking across the particle perpendicular to  the tensile 

direction, whilst transverse tensile specimens have a propensity  to  decohere from 

the m atrix  [33]. The toughness and ductility  are greater in the  direction of working 

than  in the  direction transverse to working; therefore particles aligned perpendicular 

to  the tensile axis are considered more detrim ental [22]. The aspect ra tio  can vary 

greatly [33], bu t the particles are generally several tens of m icrons long and  several 

microns in the o ther dimensions [34].

The Young’s m odulus of MnS is 137 G Pa [35], bu t plastic deform ation has been 

observed; the slip planes in the ferrite alter direction to  coincide w ith the  slip planes 

in the inclusion, indicating the greater ability for dislocations to  cross-glide in m etals 

than  in ionic solids, as can be seen in figure 2.4 [32]. It is th is lim it in the  p a rti

cles ductility  which allows internal particle fracture to  occur when the  particles are 

orientated in the tensile direction. The ferrite-M nS interface is generally considered 

weak, although this is not necesarily the case [36]. Berem in et al [37] estim ated 

the interfacial strength , in the transverse direction, to  be 810 + / -  50 M Pa and the  

fracture strength , in the  longitudinal direction, to  be 1120 + / -  60 M Pa. This was

14
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Figure 2.4: Slip on the  external surface of a steel containing a MnS particle, taken 
from Wood and Van Vlack [32]. Slip occured in both  the ferrite and MnS phases, 
although the greater ductility  of the  ferrite  is exhibited through the  redirection of 
slip planes to  coincide w ith the  slip planes in the  MnS particle. T he coherent slip, 
between the m atrix  and particle, is indicated  by the arrow and th e  dark  region in 
the  centre of the figure is the MnS particle.

calculated through the  application of an elastic analytical theory  to  a p lastically  

deforming m atrix , identifying plastic equivalent elastic constants, and is therefore 

dubious.

2.2.3 Void Sheet Coalescence.

In a m aterial consisting of a dual population  of particulates, a prim ary  population  

(such as M n S)  and a secondary population (such as F e 3C ), void sheet coalescence 

may occur [18]. The prim ary population has the controlling influence on th e  condi

tions for incipient ductile fracture. As the  voids in itia ted  a t the prim ary  particles
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grow, localised internal necking between these voids will produce bands of intense 

additional plastic strain  im pinging on the secondary population of particles. Co

alescence will subsequently occur by secondary void form ation in these bands [6]. 

Both these bands and, ultim ately, the  fracture path  develop a t 45° to  the  tensile 

direction [18]. A typical void sheet coalescence fracture surface, taken from Cox
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Figure 2.5: Electron fractograph from AISI4340 steel, taken from [18]: large dim ple 
indicated by L, nucleating M n S  particle indicated by X.

and Low [18], is shown in figure 2.5. This depicts a large dim ple, resulting  from the  

decohesion of a MnS particle, and the subsequent void growth. Sm aller dim ples,
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produced during the  coalescence of larger voids, are a consequence of the ductile 

fracture of surrounding regions, which are populated  w ith Fe$C  particles.
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Chapter 3

Literature Review: Numerical 

M odelling.

3.1 Introduction.

C om puter sim ulations are a valuable technique for elucidating the  fundam ental 

physics associated with deform ation and fracture processes, and revealing insights 

which cannot be obtained from experim entation. C om putational m odelling enables 

the  variation of constituent properties to  be investigated, w ithout the arduous task  

of additional m aterials specification and production. The length scales over which 

fracture processes are discerned varies from the atom istic to the  continuum , and  th e  

choice of model reflects the phenom ena studied.

The investigation of fracture in steels, and m any other m aterials, requires an under
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standing of the m icromechanical response of heterogeneous systems. Macroscopic 

deform ation and fracture properties can be related to  the m aterials m icrostructural 

features (e.g. grain size, second phase particle characteristics and volume fraction), 

and homogenised characteristics of the heterogeneous m aterial can be obtained and 

subsequently applied in continuum  models. A lternatively, microm echanical sim ula

tions can ascertain the  spatio-cooperative dependence of m icrocracking in heteroge

neous m aterials upon local strength  and toughness variations.

In this chapter a brief review of models addressing the sim ulation of fracture is 

presented. The fundam ental fracture process is in itia ted  a t the atom ic level, and a 

review of such techniques is given. M icromechanical m odelling is usually achieved 

through the  application of continuum  based theories to  the sim ulation of m icrostruc

tural phenom ena, and a review of models incorporating th is approach is also pre

sented, including a review of Eshelby’s inhom ogeneity problem , F in ite  Elem ent 

M ethods and L attice Spring Models.

3.2 Atom istic simulations of fracture.

Atom istic sim ulations predict the behaviour of a given num ber of atom s, governed by 

their m utual interactions, where either the atom ic m otion is sim ulated, or the  equi

librium atom ic configuration is obtained as a function of applied stress. A tom istic 

simulations are defined by the interactive na tu re  of the atom ic s tructu re ; e ither ab- 

initio electronic-structure calculations or classical in ter-particle poten tials. A b-initio
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calculations provide a quantum  mechanical description of the atom ic in teraction, 

allowing for strongly environm ent-dependent characteristics [38]. A less com puta

tionally dem anding quantum  mechanical representation can be achieved through 

tight-binding form ulations (a semi-empirical electronic s tructu re  description of m a t

ter) [39], although in fracture sim ulations em pirical interaction potentials are m ore 

common.

Systems governed by em pirical in teraction potentials are com putationally  less expen

sive than  those employing quantum  mechanical m ethods. If only pairw ise in teractive 

potentials are assumed, the  energy of a collection of atom s can be w ritten  in the 

form,

were Uij describes the dependence of the interaction energy between the  atom  p a ir i 

and j ,  upon the relative displacem ent vector r^ .  The sim plest pairwise po ten tial is 

harm onic in nature, producing linear force interactions [40], although m any others

interactions of an inert gas [41], is widely used for atom ic system s in com putational 

physics, possessing an in teraction potential of the form

where d is the equilibrium  inter-atom ic spacing and eo is the  energy well depth.

Reasonable results have been obtained, in condense m a tte r physics, using pairw ise 

potentials, the resultant elastic constants satisfying the Cauchy relations [42] (assum 

ing every atom  occupies a centre of sym m etry). Since there is a Cauchy discrepancy

(3.1)

exist. The Lennard-Jones 12:6 poten tial, originally derived for the Van der W aals

(3.2)



in some m aterials, such potentials present an elastic deficiency [43]. A ttem pts to  

rectify this problem  lead to  m any-body potentials being considered, such as a vol

ume dependent term  [44]. A rb itrary  m any-body potentials, may lead to  am biguities 

when considering fracture surfaces; e.g. volume is indefinable. A m ore physically 

meaningful poten tial includes an additional term , F(p i) ,  defined as the energy re

quired to  place a particle % in an electron gas of density pi, in conjunction w ith the 

usual pair potential [45,46]

This is defined as the Em bedded Atom M ethod (EAM ), and has been modified

interatom ic potentials are fitted to  bulk properties (and reproduce those properties 

well), the atom ic coordination a t the crack tip  differs substantially  from the  bulk 

environm ent, and therefore the applicability of em pirical in teratom ic poten tials to  

the sim ulation of fracture is questionable.

A tom istic sim ulations are com putationally  expensive, bu t in order to  increase the 

sim ulation scope the crack tip  may be modelled using a different approach from those 

used in the bulk. A quantum  mechanical description of the crack tip  is thought to  be 

necessary fully to  capture the bond breaking phenom ena, and the subsequent recon

structions of the internal surfaces of the  crack [48]. Therefore sim ulations consisting 

of a crack tip  described by either ab initio calculations or tight-binding form ulations, 

an interm ediate outer shell described using em pirical in teratom ic poten tials and an 

outerm ost region of linear elasticity are becom ing increasingly popular [48-50].

(3.3)

to  include additional angular term s [47]. I t should be noted th a t w hilst em pirical
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The com petition between dislocation generation and crack advancem ent [51], la ttice 

trapp ing  phenom ena [48] and rapid b rittle  fracture [49] are com putationally  acces

sible problems with atom istic sim ulations, bu t the m icromechanical length scales of 

interest in this study are in tractab le.

3.3 Inhomogeneity problem.

The m icrostructural constituents of in terest, w ithin the present study, are second- 

phase particles and nucleated voids. Eshelby [2-4] modelled inclusions by deriving 

an analytical m ethod for calculating the  pertu rba tions in an elastic m edium  when 

a region w ithin it underwent a change in form (transform ation field), which would 

be uniform if the surrounding m aterial were absent. This is known as the  transfor

m ation problem , and solutions for the  elastic field both  in the  m a trix  and in the 

inclusion were obtained. T he inhom ogeneity problem is m athem atically  identical 

and was studied for an isolated ellipsoidal inhom ogeneity (a region of differing elastic 

constants) is em bedded in an infinite isotropic elastic solid. Incorporation of plastic 

flow, through the application of a uniform plastic stress-free transform ation  strain , 

has been a ttem pted  [52]; such approaches incorrectly assume a uniform  elastic field 

w ithin the particle. In order correctly to  extend Eshelby’s analytical work to  include 

plastic deform ation an integral equation approach has been adopted, requiring an 

iterative solution [53,54]. The integral equation approach assumes a uniform  elastic 

stress field a t infinity and is, therefore, only applicable to  d ilu te heterogeneous sys

tems were there is negligible particu la te  interaction; assum ing elastic deform ation a t
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infinity, lim its the analysis to  the  incipient stages of plastic developm ent. An elastic 

spherical inclusion in an infinite elastic-plastic m atrix  was investigated by W ilner [1] 

using a variational m ethod. W ilner established a general solution for axisym m etric 

deform ation of elastic prolate spheroidal regions. This solution is then employed 

to  represent the field w ithin the  particle as well as to  suggest the  form of a trial 

field to  be used in the elastic-plastic m atrix . For a given tria l field in the  exterior 

dom ain, the displacem ents on the  boundary of the  inclusion can be determ ined and 

corresponding (exact) field w ithin the  particle can be evaluated from the  general 

solution. In this way the  accuracy of the numerical scheme is dependent only upon 

the  tria l field w ithin the m atrix , and since the representation for the  solution w ithin 

the  m atrix  is com plete and contains as a special case the  solution for an elastic m a

trix , an accurate solution to  the  boundary value problem  can be achieved In order 

to  investigate complex phenom ena, more com plicated com putational m ethods are 

required.

Comparisons between the analytical results of Eshelby and results obtained from 

LSM sim ulations are m ade in chapter 5, and therefore a review of Eshelby’s inho

mogeneity problem and the necessary formulae for obtaining the elastic fields due 

to  the deform ation of a system containing a spherical inhom ogeneity are now sum 

marised.

In the present notation repeated suffixes are to  be repeated over axes x, y, z and 

suffices following a com ma denote differentiation w ith respect to  the  cartesian coor

dinates. It is convenient to  use /  =  fa  and /^- =  to  denote the  scalar
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and deviatoric com ponents of the second order tensors in the  following analysis. In 

this way, the com ponents of the  transform ation strain  field (uT) can be related  to  

the applied far field strain  (uA) using

uT =  A u a ufj =  Bufj (3.4)

where the  values of A and B are given by the relations

_  _______K p  ~  K r n _______ _  Aly  ~  l ^m  / o  r \

(■^■m ^ p )  ®  (/^m P p )  f t  p m

The subscripts p  and m  denote paticle and m atrix  characteristics respectively, and

K  and p  are the bulk and shear modulus respectively. The constants .a and ft are

defined in term s of the Poisson’s ratio  of the m atrix

1 1 T  J'm Q 2 4 — 5vm ( ^
a = o - , --------  ft =   ---------- (3.6)

3 1 î m 16 1 um

The external constrain t displacem ent field can now be derived in term s of the  tran s

form ation strain  field using the expression

c  =  ,o 7)
*' 8?r (1 — up) 2tt 4tt (1 — up) y ’

where $  is the harm onic potential and T  is the  biharm onic poten tial. In the  case of

a sphere, of radius a, these are given in term s of the distance from the centre of the

inclusion r by

$  =  $  =  T o 1 (-2- +  - )  (3.8)
3 r  3 \5  r a )

The external constrain t field can therefore be obtained from the  standard  definition 

of the strain  tensor. The internal constrain t field is constant, due to  the  uniform  

applied field and can be obtained directly from the transform ation  field

uc — a u T ufj =  ftufj (3.9)

24



The strain  field throughout the  system  is of the form, Uij =  ufj +  th e  stress 

tensor can further be derived form the  strain  tensor using the  s tandard  relation.

3.4 Finite Element M ethod.

The F inite Elem ent M ethod (FEM ) is the  dom inant continuum  discretisation tech

nique employed in m icromechanical modelling; the displacem ent field over the  entire 

body is replaced by a collection of elements w ith individual displacem ent fields of 

reduced complexity. The elements th roughout the  model are connected a t nodes, 

each of which possessing the necessary degrees of freedom, in term s of which the  con

stitu tive response of each element is expressed. The system is subject to  appropria te  

boundary conditions and the resu ltan t equations of equilibrium  solved.

3.4.1 Particles.

FEM  micromechanical sim ulations generally employ unit cell m ethodology or an 

axisym m etric approach; these models possess translational and reflective sym m etry  

respectively. Utilising both  unit cell and axisym m etric systems, C hristm an et al [55] 

and Llorca et al [56] have investigated SiC ceramic whisker- and particle-reinforced 

alum inium  composites. The effect of clustering was addressed through the  sys

tem atic displacem ent of reinforcement position from the uniform ly d istribu ted  con

figuration in axisym m etric sim ulations. Llorca et al sim ulated dam age in itia tion , 

although due to  the  natu re  of the  boundary  conditions, the  particu la te  d istribu tion
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and in itia ted  dam age were translationally  repeated in an infinite array.

Horn and McMeeking [57] employed a un it cell sim ulation of a cubic array of rigid 

spheres in a elastic-perfect plastic m atrix  (no hardening), b u t acknowledged th a t 

the sim ulation was unrealistic as real particles are not spherical, of uniform  size, or 

regularly arranged.

Xu et al [58] sim ulated the  deform ation of an array of particles in a plastically 

deforming m atrix , using an axisym m etric FEM  form ulation. T he stress gathering 

capability of the particle (defined as the  ratio  of the axial stress w ithin the  particle 

to  the far field value) was initially  reduced a t the onset of p lastic  deform ation due 

to  localised plastic relaxation around the particle. Subsequent to  stra in  hardening 

effects, the overall response of the m atrix  becomes more p lian t, resulting  in large 

stress concentrations and increasing the  stress gathering capability.

The stress field associated w ith cubic particles was found by W att et al [59] to  be 

higher than  th a t for spherical particles. Sim ilarly to  the approach of Llorca et al [56], 

the particles were displaced towards axisym etric boundaries in order to  investigate 

clustering effects.

A regular d istribution of three clustered particles in an infinite system  was m od

elled using an axisym etric system by Thom son et al [60]. A repeated  p a tte rn  of 

particles allowed clustering effects to  be considered, whilst particle decohesion was 

accounted for through the use of a trac tion-separation  relation sim ilar to  Needle- 

man [61]. Simulations addressing significantly larger collections of particles were
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perform ed by Gusev et al [62], in which a periodic elastic system , containing up 

to  sixty four spherical particles, was used to  calculate the overall elastic constants. 

Recently a sim ilar m ulti-particle system has been considered by Bohm [63], inwhich 

systems containing twenty particles where deformed (~  1% stra in ) and the m atrix  

exhibited plasticity.

The inherent anisotropy of three-dim ensional un it cells, and the  inability  to  address 

large scale fracture, lim its the  applicability of such models in sim ulating the stress 

transfer and dam age accum ulation in heterogeneous systems. The num ber of par

ticles th a t can be sim ulated is lim ited by the com putational expense of the FEM  

technique, and so sim ulation sizes of the order of representative volume elements are 

currently unobtainable in dam aged systems or system s exhibiting p lasticity  [63].

3.4.2 Fracture.

The element elim ination technique is a prevalent m ethod in the  sim ulation of fracture 

in FEMs; the stress carrying capability of an element is removed as a consequence 

of fulfilling the adopted failure criteria [64]. Elem ent removal confines the fracture 

zone size to th a t of the FE  grid.

A large num ber of fracture criteria exist, such as the  criticality  of p lastic  strain , 

Von Mises stress, hydrostatic stress, stress triaxiality , and various com binations of 

these param eters [65]. Gurson [66] and la ter Tvergaard et al [67] developed a widely 

used constitutive relation for d ilatent p lasticity  which describes ductile void growth
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w ithin a confined cell, exhibiting the resu ltan t reduction in stiffness and its eventual 

inability to  carry stress. Considering each elem ent to  contain a single void, the  effects 

of ductile fracture were accounted for [68], bu t clustering effects were ignored.

C om putational dam age mechanics and the  local approach to  fracture take into con

sideration m aterial dam age through stiffness degradation [69]. Here, the  voids and 

micro-cracks are considered homogenised w ith respect to  the size of the  element, 

and the natu re  of the dam age which causes the  reduction in stiffness is disregarded. 

Investigation of stable crack growth prior to  unstab le  cleavage has been achieved 

through the coupling of Weibull s ta tistics and a model derived from the G urson- 

Tvergaard potential [70]. In this approach the  probability  of an element failing is 

m ade to  depend upon the com petition between two criteria; it proved possible to  

tune these to  yield the desired macroscopic effects.

The choice of fracture criteria appears to  be a m a tte r  of predilection or of tria l and 

error; crack growth cannot be explained purely in term s of averaged quan tities and 

an understanding of the fracture process m ust be based on the relationship between 

m aterial dam age and inhomogeneities.

Ghosh et al [71] developed the concept of hybrid finite elements which represent basic 

s tructu ra l elements which contain one second phase constituent, either a partic le  or a 

void; the particle is considered either to  crack com pletely or debond instan taneously  

as crack propagation within a particle is unobtainable.

The ductile process from initial debonding to  com plete separation and subsequent
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void growth has been sim ulated using a cohesive zone model by Needlem an [61]. 

Hence the interface is assigned an independent constitutive relation which, for in

creasing interfacial separation, requires a trac tive force to  go through a m axim um  

value before dim inishing to  zero, allowing debonding to  be incorporated.

One of the m ajor lim itations to  FEM  sim ulations of fracture is the  mesh modification 

which is thought to  be necessary in m odelling crack propagation. T he use of m ulti

phase elements can alleviate the need for mesh regeneration. In th is approach, 

different phase properties are assigned to  different integration points in th e  elements, 

removing the mesh dependence of phase boundaries [64]. The sharp transition  in 

phase properties a t element boundaries is however substitu ted  w ith steep gradients 

between integration points, resulting  in a loss of geometrical definition [65].

3.5 Lattice Spring M odels.

This section reviews lattice spring models; a m ethod of discretising continuum  elas

tic media in the sim ulation of deform ation and fracture. A la ttice  spring model 

consists of a two-dimensional or three-dim ensional network of m athem atical in terac

tive elements, which can be either one-dim ensional springs or solid beam s. G radual 

changes in the  boundary conditions, such as the  increm ental application of uniform  

stress or strain  fields, drive the system . Through the localised variation of elastic 

properties for different elements, the effects of m icrostructural defects and features 

can be studied. L attice spring models are particu larly  useful for e lucidating  the
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physics of stress transfer and stress field red istribu tion  in systems, incorporating 

inhomogeneities and dam age accum ulation, the  la tte r  being sim ulated through ele

m ent removal. Subsequent to  crack evolution (removal of an element) the  system is 

relaxed to  its m inimum energy configuration, allowing stress red istribu tion  from a 

removed element to  the rem aining bonds in the  system, and the criterion for fu rther 

element removal is re-applied. Due to  the  re-equilibriation of the  system during 

crack propagation, these models are inclined tow ards the sim ulation of quasi-static 

fracture; although some workers have studied the dynam ics of fracture [72].

3.5.1 Lattice M odels of Elasticity.

Lattice models of elasticity were first conceived as a structu ra l engineering technique 

for use in understanding systems unsolvable using pure m athem atical analysis [73]; 

com putational capabilities have recently allowed system s of increasing size and com

plexity to be sim ulated. The different form ulations of la ttice spring models can be 

categorised by the kind of H am iltonian associated w ith nodal interactions.

Scalar models can be viewed as an electrical equivalent, and are often referred to  as 

fuse network models [74,75]. The equations of equilibrium  are sim iliar to  m echani

cal laws of elasticity, except th a t they are scalar as opposed to  vectorial, the  system 

being solved as a set of equations sim iliar to  K irchoff’s law (where one-dim ensional 

force is com parable to current, one-dimensional displacem ent to  voltage and stiffness 

to  conductance) [76,77]. Such systems have been used extensively in the study  of 

avalanche phenom ena and scaling laws in fracture [78-80]. Conceptually and nu
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merically such systems are simpler to  im plem ent th an  other la ttice  spring networks, 

bu t due to  the  scalar natu re  of these systems, the  Poisson’s ratio  is fixed a t zero. 

These models may be of interest, per se, to  s ta tis tica l physicists, bu t they are of 

lim ited application in the study of real m aterials and therefore of lim ited value to  

m aterial scientists.

Hookean spring models are networks of springs which obey Hookes law. In order to 

achieve elastic isotropy (and a Poisson’s ra tio  greater th an  zero), triangular networks 

of nearest neighbour interactions or square networks of bo th  nearest and next-nearest 

neighbour interactions are usually considered [81-85]. The H am iltonian for such a 

system consists of central force interactions, and is ro ta tionally  invariant [86],

H  =  ^  X ^ y [ ( U i  -  u ,)  • ry ]2 (3.10)
ij

in which kij is the central force constant between nodes i and j, u* is the vectorial 

displacem ent of node i, and fy  is the un it vector connecting nodes i and j. The Pois

son’s ratio  obtained in such systems is generally lim ited by the  geom etry (typically 

its value is a th ird  in two-dimensional systems and a q uarte r in three-dim ensional 

system s), although it can be varied in two-dim ensional system s through the  con

struction  of a triangular la ttice from the superim position of three hexagonal (and 

isotropic) lattices [87,88]. In such systems the Poisson’s ratio  can be varied between 

a th ird  and one, although the effect this has on localised stresses in heterogeneous 

system s is unknown.

Hookean spring models have been used to  investigate d ilu ted  systems [83,89], p a r

ticu late  composites [88,90], and recently a three-dim ensional Hookean spring model
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has found applicability in the sim ulation of hum an trabecu lar bone [91,92]. D espite 

th is utility, Hookean spring models are incapable of possessing a varying Poisson’s 

ratio  in three-dim ensions, and sim ulations involving triangu lar system s have led to 

spurious fracture characteristics [89]. The la tte r  is a result of bonds parallel to  the 

applied force being initially removed and the  rem aining bonds along the  crack path  

undergoing artificial shearing in order to  align w ith the  applied force [93]; ro tation  

of bonds in a Hookean spring model are not energetically penalised in any way.

In order to  penalise the free ro tation  of bonds from their initial orientation a Born 

spring model can be employed [82,94]; th is is a  macroscopic equivalent of the  Born- 

H uang model for microscopic elasticity [42]. The H am iltonian takes into considera

tion the  lack of ro tational freedom through the  introduction of a non-central force 

constant, c^-, between nodes i and j [95],

I  v -[
H  =  — — C t j ) [ ( u * — R ? )  * * i j ]  T  2  ^  v c i j ( u i ~  u j )  • ( 3 - - D )

i j  i j

R otation  of this system from the networks original orientation results in a restoring 

force, although the configuration is otherw ise unchanged. This lack of ro ta tional 

invariance is considered negligable for small displacem ents [82], for which th is model 

can be shown to be equivalent to the m athem atical theory of an isotropic elastic 

continuum  [96]. This model allows reasonable crack morphology to  be obtained [82] 

and has been used to  investigate two-dim ensional and three-dim ensional fracture 

surfaces [97,98].

An alternative to the Born model, which also employs a non-central force constant, 

is the K irkw ood-Keating spring model. K eating  proposed an alternative to  the  Born
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model of atom ic interaction, to  avoid the  anomolous dependence of the bulk modulus 

on the  non-central force constant; under hydrostatic  pressure only the  interatom ic 

distances should change, all angles rem ain constant [99]. K irkwood had earlier 

introduced an angular term  into the  H am iltonian for a chain segm ent of N atom s,

tf = ̂ E(Arn)2 + irD Aa>>)2 (3-12)
n = 2 n = 2

where A rn is the extension of a chain segment, and A a n is the  variation in the 

angle (therefore introducing a three-body term ) between two chain segments from 

the initial equilibrium  configuration [100]. A num ber of la ttice  spring models have 

utilised this ham iltonian [101-103]. The three-body term  accounting for the angular 

variation, is often w ritten  as the deviation of the  cosine of the  angle from equilibrium  

[93,104,105],

H  =  |  E ( r « "  r °)2 +  \  Y ^ ( coseijk -  cosdaf.  (3.13)
ij ijk

The natu ra l extension of this model to  th ree dim ensions can be achieved in a num ber 

of different ways; A rbabi et al [106,107] m aintained a sim iliar H am iltonian to  th a t 

employed by Kirkwood, whilst Chen et al [108] adopted a more com putationally  ex

pensive ham iltonian which involved a four-body in teraction corresponding to  torsion 

angles in the system. It is also not clear if the nonlinearity  in troduced through the 

angular term s, when linearised for subsequent solution, offer any advantage over the 

Born model. The K irkw ood-K eating form ulation is ro tationally  invariant and there

fore preferred, but perhaps the im plem entation is more equivalent to the  iterative 

ro tation  of equilibrium orientation in a Born model, in which case the  additional 

com putational expense is unw arranted.
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Elasticity  can also be sim ulated through beam  models, consisting of nodes con

nected by solid s truc tu ra l elements which can incorporate norm al and shearing 

forces [109,110]. This requires each node to  possess th ree degrees of freedom in 

two dimensions (two displacem ent and one ro ta tional), and six degrees of freedom 

in three dimensions (three displacem ent and three ro ta tional). T he forces and mo

m ents w ithin the system  arise through the in teractions between these param eters. 

Investigation of fracture in concrete structures have led to  good com parisons with 

experim ental da ta  [111,112].

A variety of beam  models which include random  geometry, known as rigid-body- 

spring networks, partition  the system into an assembly of rigid convex polygons 

connected along the ir boundaries through discrete springs positioned midway along 

each segment. In a regular square la ttice th is is equivalent to  a s tandard  beam  model 

[113]. Such models are capable of combining the ability  to  model a uniform strain  

field (unabtainable w ith general random  geom etry beam  m odels), and be isotropic 

w ith respect to  po ten tial cracking directions (problem atic in regular lattices) [113, 

114].

In order to  sim ulate the fracture of th in  layers of a m aterial supported  by a substrate , 

surface cracking models have emerged, consisting of two-dim ensional la ttice  spring 

models w ith appropria te boundary conditions. These boundary  conditions involve 

elastic connections w ith either fixed points [115] (rigid substrates) or points which 

are displaced [116] (deform able substrates). Such models are ideally suited to  the  

studies of such system s as th in  films of paint on varying surfaces, desicated fracture
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and layers of rock in the  ea rth ’s crust [117]. In system s where short range correlations 

are dom inant, a m inim al fracture model has em erged where non-broken nearest 

neighbour bonds of the ju st removed bond are dam aged [118]. It is assumed th a t 

local friction between the surface and the sub stra te  is th e  only source of stress and 

th a t the  surface is incapable of long range stress relaxation; therefore the  system  

does not require driving boundary conditions or system  re-equilibriation.

3.5.2 Damage Accumulation.

In order to  sim ulate fracture in la ttice spring m odels bonds are removed and therefore 

a criterion for removing bonds m ust be conceived. In scalar models the criterion is 

invariably a critical force, or current, w ithin a bond which d ictates its removal; 

in other models such determ inistic criticality  is also common. The given elastic 

sta te  of a bond induces breakage through either critical strain  [83], stress [82], or 

energy [102]. It has been argued th a t an energy criterion is advantageous due to  its 

generality, allowing contributions from both  tensile and shear deform ation [93].

At each iteration, prior to  m inim isation of the system  to  its lowest energy configura

tion, either a single bond or multiple bonds can be removed [82]; the la tte r  im plying 

th a t the fracture process can occur in short enough bursts th a t stress relaxation has 

not transpired . The distinction between breaking a single bond or m ultiple bonds is 

the size of the meso-scopic portion th a t is removed prior to  stress relaxation in the  

m aterial, and m ust have direct im plications on the  discretised quasi-static  n a tu re  

of the model. It has also been observed th a t large steps in the  driving boundary
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conditions can result in too  m any bonds breaking in a given iteration , obscuring 

crack form ation and propagation [108].

Jago ta  [119] envisioned separate  energy criteria  for bond removal, depending on 

w hether such removal was contributing to  crack tip  propagation, or constitu ted  the 

nucleation of an isolated crack. Dual breaking criteria seem physically unrealistic, 

bu t using the same criteria for all areas of the  sim ulation was reported  to  lead to 

very low values of critical nucleation stresses. It was observed, in sim ulations con

tain ing  a single breaking criterion, th a t fracture was biased away from th e  crack tip  

when heterogeneities were present; it is not s ta ted  why such behaviour is considered 

unreasonable. The identification of ’crack t ip ’ bonds is problem atic as bonds in the 

wake of a crack, adjacent to  a void or constitu ting  a b lunt crack are indeterm inate. 

Despite this, it is argued in [119] th a t in order to  properly establish bo th  fracture 

toughness and nucleation criteria there is no alternative.

The removal of bonds can be considered as a random  process, often em ploying 

a kinetic rup tu re  criterion based on the absolute reaction ra te  theory  of Eyring 

[115,120,121]. Considering bond failure as a chemical process, the  ra te  of chemical 

reactions can be extended to  m aterial breakdown, and the average tim e required 

for this failure to  occur can be obtained [122,123], therefore in troducing  chronology 

into the system (quantitative agreem ent w ith real system is either fortu itous or is a 

result of tun ing  the sim ulation param eters [115]) . The use of stochastic  breaking 

criteria can lead to substantial dam age being sustained in the  m ateria l, p rio r to  a 

m ajor crack occurring.
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The bonds in the  system are meso-scopic representations of the  m aterial, and can 

therefore be considered as dam aged prior to failure. T he gradual accum ulation of 

dam age is assumed to  occur over a num ber of iterations, until the  dam age associated 

with an element reaches a threshold  value [115]; this m ay be accom panied by a 

reduction in the  elastic m oduli of the  elements [124].

3.5.3 Randomisation.

In a regular la ttice  devoid of random isation the fracture p a th  is d ic tated , not ex

clusively by the  direction of applied stress, bu t also by the geom etry of the la ttice  

used by the spring network [93]; in a triangular la ttice  the crack propagates a t a 

direction which is not perpendicular to  the tensile direction [89,119]. I t is this 

anisotropy, present in the  regularly discretised lattice, which necessitates the  need 

for random isation in the system. It is also, as a consequence of quenched disorder 

in real m aterials, th a t random isation may be desirable in sim ulations.

Isotropy, with respect to  potential fracture paths, can be obtained  through the 

replacement of a regular la ttice  w ith an orientationally  random ised lattice. This can 

be achieved through random ly displacing the original positions of the  nodes prior 

i to  sim ulation [119]; application of random  internal force a t nodal sites will have a 

similiar effect [76]. R andom  lattices can also be obtained through th e  use of Voronoi 

diagram s [110], or grown by adding flexible fibres onto a growing deposit [125].

A simpler m ethod of introducing random isation into la ttice  spring models is th rough
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the d istribution of elastic m oduli or failure thresholds [84]. T he random isation of 

elastic moduli results in localised deviations from isotropic behaviour, which can 

result in stress concentrations in directions away from the  geom etrically preferred 

potential crack path . Failure thresholds can be assigned th rough  W eibull, normal 

or power-law d istributions (no distinction between the  exact sta tis tica l d istribution 

and global behaviour is apparent [79,116]) which potentially  increases the fracture 

toughness in the preferential direction and decreases the  fractu re toughness in alter

native directions.

The anisotropy of a  regular la ttice  in fracture may not be im p o rtan t if the  crack path  

becomes dom inated by localised stress concentrations as a result of random ly dis

tribu ted  ’m icro-cracks’ (diluted systems) [83,89], or inhom ogeneities [126,127]. The 

requirem ent th a t random isation be incorporated into the  sim ulation of homogeneous 

m aterials may not be as im portan t in the sim ulation of heterogeneous m aterials.

3.5.4 Inelastic Effects.

The introduction of plasticity  into la ttice spring m odels is usually through the in

troduction of residual stresses upon bond failure [128]. Such behaviour is natu ra lly  

suited to  scalar models, where upon reaching a threshold  level, the force is m ain

tained as a constant value [129]. Similar systems have been proposed in which 

the elastic moduli is reduced [96] and the equilibrium  lengths of the bonds are 

increased [130,131]. Visco-elastic effects have been considered through the  in troduc

tion of an element which consists of a dashpot in series w ith a spring [132]; th is also
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has the  effect of introducing a variable bond length into the system . In troducing  

plasticity, through one-dim ensional bond effects, results in anisotropic deform ation 

and a lack of volum etric conservation. In order to  rectify th is problem  a novel 

m ethod is introduced in section 4.2, in which the plastic deform ation is in troduced 

locally a t the la ttice  nodes; th is produces a plastic deform ation which is isotropic, 

bu t not volume conserving.

3.5.5 Particles.

T he m ajority  of p articu la te  sim ulations have been two-dim ensional investigations of 

circular [133-137] and fibre [138,139] inclusions, although a spherical partic le  has 

been investigated in a three-dim ensional sim ulation [140]. The regularity  of LSM 

networks can result in stress anom alies along the particle surface [135]; po ten tially  

alleviated through the  in troduction of interfacial bonds whose characteristics are ap 

portioned according to  the weighting of the  partia l lengths of the bond th a t  straddles 

the respective dom ains [137,141].

3.5.6 Dynam ic Effects.

Q uasi-static LSMs are assumed to  be fracturing  under ad iabatic conditions; the 

stress field is locally equilibrated at each ite ra tio n ,, therefore the  model involves 

no tim e scale, bu t a sequence of equilibrium  states. D ynam ical features can be 

included through the association of mass w ith nodal points [142], the  in teraction  be
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tween which involves dissipative viscoelastic properties [143]. The propagation and 

instab ility  of a crack is severely influenced by such viscous effects, and in m aterials 

which exhibit rapid fracture processes dynam ical effects are significant.

3.6 Conclusions.

A tom istic sim ulations can provide invaluable inform ation regarding the  onset of 

fracture, especially the com petition between dislocation emmision and crack ad 

vancement, bu t is incapable of providing micromechanical insights. T he FEM  is 

a powerful technique for sim ulating deform ation and fracture, bu t com putational 

lim itations restric t the  system sizes th a t  can be achieved, and hence th e  num ber of 

in teracting  particles considered.

The Boundary Elem ent M ethod (BEM ) [144] and the Elem ent-Free Galerkin (EFG) 

m ethod [145] are alternative, though less established, com putational techniques 

which may be applicable to  micro-mechanics. The BEM involves the  solution of lin

ear boundary value problems with known green’s function solutions; th e  technique is 

expensive, the resulting linear system is dense, unbanded and often non-sym m etric, 

and nonlinear constitutive relations are problem atic [146]. The E FG  m ethod is a 

gridless technique for the solution of partia l differential equations which employ 

moving least square in terpolants [145]. The natu re  of the EFG  m ethod requires the 

solution of a system of equations sim ilar to  FEM s, and therefore the com putational 

expense is expected to be similar.
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The LSM, whilst not fully cap turing  the  geom etric definition of the  particles or crack 

surface with the  same precision as o ther micromechanical techniques, provides an 

opportunity  for investigating stress transfer in m ultiple p articu la te  system s incorpo

rating  substantial dam age accum ulation.
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Chapter 4

The M odel.

The model, used in the study undertaken in subsequent chapters of th is thesis, 

consists of the discretisation of space into regularly spaced points (nodes), whose 

interactions can be m anipulated to allow the  emergence of continuum  m echanical 

behaviour for a given m aterial specification. In the present nota tion  repea ted  suf

fixes are to  be repeated over axes x, y, z and suffices following a com m a denote 

differentiation with respect to  the cartesian coordinates.

4.1 Elasticity

The elastic model is taken from the two-dim ensional work previously undertaken  a t 

SHU [96]. The m aterial is represented by an array of ‘springs’ which occupy the 

nearest and next nearest neighbour bonds of a simple cubic la ttice  (see F igure 4.1).
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The energy associated w ith a node m  in the  la ttice  is taken to  be of the  form,

Em =  2  ^  ^ n ) ‘M m n '( ^ m  ^ n )  ( ^ T )
n

where the  sum m ation is over all the  neighbouring nodes, n, a ttached  to  m  by a 

spring, u m is the displacem ent of node m , and M mn is a sym m etric m a trix  which 

introduces the elastic properties of the  springs. I t is shown in the subsequent parts  of 

th is section th a t this system  of springs obeys, to  first order in the  displacem ent, the 

equations of continuum  elastic theory for an isotropic elastic m edium  whose elastic 

constants can be determ ined in term s of the  elements of the m atrices M mn.

X  { p Q i }

X { 1 0 0 }
1 j  {010}

Figure 4.1: Interconnectivity of the la ttice  spring model is depicted; nearest {100} 
and next-nearest {110} neighbour spring interactions are considered.

The harm onic form of the energy (4.1) results in forces which are linearly dependent
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upon the  displacem ent of the  nodes and the  resulting set of sparse linear equations 

are solved by a conjugate gradient m ethod to  find the equilibrium  configuration 

which corresponds to  no net force a t each node. The response of the  system  is 

determ ined by iteratively increasing the  applied forces a t the  boundary nodes and 

determ ining the equilibrium  s ta te  of th e  springs.

4.1.1 Form of the spring matrices

It is assum ed th a t the m atrix  associated w ith the spring in the  [100] direction is of 

the  form

M[ioo] —

f  \
ki  0 0

V

0 Ci 0

0 0 Ci /

(4.2)

In th is m atrix , k\ and Ci correspond, respectively, to  the central and non-central force 

constants. M atrices corresponding to  the  springs in the equivalent sym m etry direc

tions are constructed by a sim ilarity transform ation  of the form, M ' =  R .M .R t , 

where R  is the ro tation  m atrix  which ro ta tes a vector in the [100] direction into the  

required direction. In addition, the m atrices corresponding to  the set of directions 

{110} have the force constants (&i,Ci) replaced by (/c2,c 2). Hence, for exam ple, the  

m atrix  corresponding to  the  [110] direction is

M[no] —

2 (^2 +  c2) \  (&2 — c2) 0

2 (&2 ~  C2 ) 7; {k,2 +  C2 ) 0

0 o c2

(4.3)
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In the following analysis a homogeneous m aterial is considered in which only the 

force constants (k\, /C2 , Ci, C2 ) are used. It is now shown how these constants may be 

chosen in order to  recover an isotropic elastic medium.

4.1.2 Free energy

In order to  represent the  elastic properties of a m edium  which is characterised by 

the spring model described above, the free energy norm ally associated w ith an elas

tic medium was previously generalised [147] to  include contributions from an an ti

sym m etric strain  tensor because the model is not ro tationally  invariant [96]. This 

arises because the bond bending term s give rise to  an energy which depends upon 

the absolute orientation of the bonds. The problem  may be avoided [104] by express

ing the energy in a form which depends only upon the  angles between the  bonds 

ra ther than  the  absolute orientation, as is used in equation (4.1). However th is la t

ter approach requires solution of a significantly more complex set of equations and 

becomes com putationally  prohibitive when fracture in heterogeneous m aterials in 

the presence of plasticity  is considered.

The m ost general quadratic  form of the free energy of an elastic continuum  which is 

not ro tationally  invariant may be w ritten  in the form

, 1  1 1 . ^
-A '^Aiklm'U'ik'U'lm T  ~̂ r) ik lm ^ ik ^ lm  T  '^ lik lm ^ ikV 'lm

where Uik is the sym m etric strain tensor, is the  an ti-sym m etric stra in  tensor 

and the three tensors XikimiJikim and are m aterial param eters. For a th ree
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dim ensional system w ith simple cubic symmetry, it is possible to  show th a t th is 

equation reduces to

A Axx x x  / 2 , 2 , 2 \ , \ t , , \
A  2  V^xx d~ 'U'yy d "  ^ z z )  d~ ^•xxyyy^xx'^yy d~ UyyUzz  -f- Uz z UXx )

+2^xyxy{uly +  U2yz +  u\x) +  ^Jxyxyi^ly +  ^yZ +  <^L) (4'5)

where the term  pre-m ultiplied by %:yxy introduces anti-sym m etric contributions to  

the stress tensor. Extending s tandard  argum ents, [147], it can be shown th a t

dA =  - S d T  +  aff.dunc +  afkdojik (4.6)

where S  is entropy, T  is tem peratu re, the superscripts S  and A refer to  sym m etric 

and anti-sym m etric tensors, and the  stress tensor is given by, =  afk +  afk w ith 

the sym m etric and anti-sym m etric contributions being given from equation (4.6) by

a? ( _dA_\  cta __ ( _M_\ (4.7)
ik duik)  T ik  ̂duik)  T

At equilibrium , in the absence of body forces the relation, F{ =  aik,k — m ust be 

satisfied, which results in the  following Lame equations

^■xxxx^x .xx  d~ ( ^ x x y y  d- Axyx y  ^ x y x y )  { ^ y , x y  d- Uz,xz )  d- (d -8 )

i^xyxy  d - ^xyxy)  {^x,yy  d - Ux ẑ z ) —  0 

AxxxxMy,yy  d~ (A xxyy  d~ A xyxy  I f x yxy)  { ^ x , x y  d" ^ z , y z ) d~

(Axyxy  d~ ' Jxyxy) ( 'Uy,xx  d- Uy. zz )  =  0  

A x x x x ^ z , z z  d- (A xxyy  d" A xyxy  ' Jxyxy)  {Fx , x z  d" ^ y . y z ) d-

(Axyxy  d* '7xy x y )  (^ z , xx  d" UZyyy)  0
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For a m edium w ith a free energy given by equation (4.5) undergoing a uniaxial 

extension, it can be shown th a t the Young’s m odulus and Poisson’s ratio  (assum ing 

isotropy and therefore Xxxxx -  \ xxyy -  2Xxyxy 0) are given by [147]

  2(Ararx— \ x x y y ) { —1L:̂ LX--ir^xxyy)_______________ ______ A xxyy (4-9)
A xxxx~\~^xxyy Ami+A xxyy

If the identifications Xxxxx =  A 4 - 2/x,  Xxxyy =  A and Xxyxy =  /x are m ade, where A 

and /x, are the Lame coefficients, the s tandard  results for the  Young’s m odulus E  

and Poisson’s ratio  v  for a three dim ensional isotropic m aterial are recovered

e = h (3X +  2h) „ =  (410)
( A  +  / / )  2 ( A  +  f i )

4.1.3 Mapping of the spring m odel onto continuum equa

tions

In order to  m ap the spring model onto th e  continuum  equations the  Taylor approx

im ation is utilised

Um -  u n «  (emn.V )u  +  ^ ( e mn.V )2u  (4.11)

where u  is the vector displacem ent field of a three dim ensional continuum  m aterial 

and cmn are the bond vectors (not un it vectors). This expansion in the  expression, 

F m =  Yin M mn-(um — u n) for the force on node m, is used to  derive the  form of the 

Lame equations for the spring model. A lternatively, an expression for the  energy 

density can be derived using the Taylor approxim ation (4.11) in the energy Em given 

by equation (4.1). If the coefficients in these equations are equated w ith those for 

the elastic continuum  (equations (4.5) and (4.9)), and assum ing the  prim itive cell of
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the simple cubic la ttice  has un it side, the  following relationships between the  elastic 

constants of the  continuum  and spring models are obtained

Axxxx — 4~ 2/̂ 2 4" 2C2 Xxxyy =
(4.12)

Xxyxy — 2̂ 4 ^  4~ C2 “Ifxyxy ~  ~2 4" 2C2

It is im portan t to  note th a t although the term  7 xyxy associated w ith the  an tisym m et

ric contribution to  the free energy does not affect the elastic constants, it is essential 

for this term  to  be included if the  m apping onto the continuum  equations using the 

free energy expression and the  Lam e equations are to  be consistent. In order for 

the spring model to  become isotropic it is required th a t Xxxxx — Xxxyy — 2Xxyxy —> 0 

and for sim plicity &2 =  k\ and C2  =  C\ are chosen. A pplying these, the  spring model 

obtains the  following properties

A =  ( k - c )  /i =  i(2 /c4 -3 c ) (4.13)

and hence

5k(2k 4~ 3c) k — c 3A 4~ 2 fi 5/c , .E  =  — L.---------L v  —  x  = ----------   =  —  (4.14)
4/c 4 * c c 4 * 4 k 3 3

where K  is the bulk m odulus, and is independent of non-central force in teractions. 

The Poissons’ ratio  has a notable upper bound of a quarter, in the  absence of non- 

central interactions, where it can be seen th a t the Cauchy relation holds (Xxxyy =

Axyxy) •
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4.2 Plasticity

In order to expand the  range of m aterials th a t can be sim ulated using th is LSM, 

the  present form ulation is extended to  include continuum  plasticity. In reality, the 

shape of the yield surface has a complex load history dependence [148], and th is 

results in anisotropic hardening characteristics. For simplicity a system is considered 

which undergoes isotropic hardening, in which the  yield surface expands isotropically 

(proportional loading) [149]; th is is valid, providing th a t variations in the  principal 

directions of applied stress rem ain small.

The Ram berg-Osgood stress-strain  relation is adopted from W ilner [1 ], and utilised 

in section 5.4. This incorporates a p lastic strain  field, tt?-, of the  form

p  ^ n 1 d j j  ( a 1 r \

< '  = u \ T )  ~E ( 4 - 1 5 )

where a  is the plastic resistance, n is the hardening exponent, and the  equivalent 

stress, a e(?, is defined by aeq =  ( |cq ; cr-) (often referred to  as the  Von Mises stress), 

where the deviatoric stress tensor is of the form a'ij =  Cy — ^dijdu.

The Hencky-Mises relationship [148] is also adopted (in chapters 6  and 7), incorpo

rating  a plastic strain  of the form

<■ =  ■ ^ r ^ ± 7 r L)n^  (4-16)2de q Oi

where ay is the stress a t yielding and the angular brackets d ic ta te  th a t negative 

values are not considered. The main difference between the two is th a t the  R am berg- 

Osgood relation deviates from elasticity instantly, w hilst the Hencky-Mises relation
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only exhibits p lastic  deform ation a t stresses greater than  the  yield stress. This 

allows the Hencky-Mises relation to  capture the  change in gradient a t the  yield 

point, although such effects can still pose com putational difficulty.

The plastic response of the  m aterial depends upon the equivalent stress and the  

deviatoric stress tensor both  of which are undefined for a single bond. A tte m p t

ing to  introduce plasticity  through bond dependent criterion results in anisotropic 

plasticity and, therefore, in this work the  plastic response is controlled by th e  stress 

fields calculated a t each node.

In order to  m aintain the  linearity of the  algorithm  defined in section 4.1, the  plastic 

response of the m aterial is modelled by decreasing the elastic m oduli locally w hilst 

m aintaining stress continuity. Thus the  force constants of the springs are modified 

a t each iteration, w ith the  m odifications being determ ined by the  elastic fields from 

the previous iteration. The continuity of stress is achieved by incorporating  in ternal 

forces applied a t each node. The force constant for each spring is calculated from 

the elastic fields a t its term inal nodes as shown below.

A fter each iteration the stress field, o^-, is calculated at each node and hence the 

equivalent stress, aeq. These quantities are used to  determ ine the required value 

of the strain  tensor in the  presence of plastic deform ation from the rela tion  uij =

uij +  uPij where

and the constants K  and fi determ ine the  elastic response of the  ta rg e t m ateria l. In 

order to mimic the combined elastic and plastic response, the  force constants of the
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bond are set to be kl and cf which are chosen to be equivalent to a material which

obeys the relation

(4.18)

This recovers the required differential response of the stress-strain  curve. In order 

to  m aintain continuity of stress as the  bond param eters are modified, an additional 

force is applied to each end of the  spring whose value -0 mn is given by

force which is currently carried by the  bond.

The assum ption of proportional loading is inaccurate, as the principle stress direc

tions w ithin the sim ulations are found to  vary considerably. T he uniaxial stress th a t 

is applied to the system m ay induce proportional loading in a homogeneous system . 

A lthough the effects of adding inclusions, especially in the presence of fracture, will 

lead to  severe variations in bo th  the  principle stress direction and the  yield surface 

which are not accounted for in the  current model.

The Ram berg-Osgood form ulation describes non-linear elastic, and not p lastic defor

m ation, which predom inantly consists of an irreversable com ponent. C urrently  upon 

unloading an equivalent elastic response is therefore adopted which, assum ing small 

changes in the forces w ithin the considered region, corresponds to  the  strain  th a t 

would be experim entally expected. This is incorporated iteratively, and is there

fore extremely inaccurate when considering the sudden reduction of locally applied 

stress. The equivalent elastic response, which is adopted during  the reversal of ap

^'Pmn — R  rnn U n )run (4.19)

where is the bond m atrix  w ith the force constants k1 and c*, and  F mn is the



plied stresses, does not allow for the finite residual plastic deform ation intrinsically, 

therefore when the stress is com pletely removed the  deform ation retu rns to  zero. 

This is especially problem atic in the wake of a crack, where the newly created sur

faces cannot support stresses norm al to  the  surface, and m ust therefore experience 

a dram atice decrease in local stresses. The only alternative is to  consider im pos

ing constant displacem ent conditions in these regions, although this is currently  not 

possible w ithin the model.

W ith  increasing plastic deform ation, the Poisson’s ra tio  is found experim entally 

to  increase to  a value close to  half and hence corresponds to  a volume conserving 

deform ation. However the current model has a Poisson’s ra tio  w ith an upper bound 

of a quarter and hence the  observed deform ation in this scheme is isotropic, bu t 

not volume conserving. In order to  rectify th is problem , a volume conservation 

term  will be required [44]. However, the dom inant aspect of plastic deform ation 

is assumed to  be the reduction in Young’s m odulus and, therefore, the present 

procedure is considered adequate for the situations considered here. It should be 

noted, however, th a t the inability of the  model to  posses a Poisson’s ratio  greater 

than  a quarter raises com pressibility issues, in p articu la r the  problem s of constrain t 

around particle inclusions. The lack of volume conserving plastic deform ation will 

result in less severe triaxial deform ations around inclusions and ahead of propagating  

cracks. This will inhibit local plastic deform ation and subdue plasticity  effects.

52



4.3 Fracture.

The creation of a fracture surface may be achieved through the  iterative removal 

of springs. A dopting a criterion for each individual bond can lead to  unrealistic 

phenom ena, as the current model consists of a dual com bination of { 1 0 0 } and { 1 1 0 } 

bonds. If a critical force based criterion was considered then only bonds orientated 

in the tensile direction would initially  satisfy the breaking criterion and regions 

depleted of these bonds would result. The crack would then propagate through 

these depleted regions via the  removal of bonds not orientated , yet possessing a 

com ponent, in the  tensile direction. I t is for this reason th a t a fracture criterion 

which enables a surface to  be created, through the removal of an assembly of bonds, 

is considered. B oth a stress based criterion, more befitting b rittle  fracture, and a 

strain  based criterion, more befitting ductile fracture, are determ ined below.

The relative displacem ent of node m  w ith respect to  node n, in the  presence of a 

uniaxial applied stress in the direction n , is of the form

rirrin oc (cmn • n) fl U (cmn (Cmn ' h ) fl) (4.20)

where cmn is the bond vector, and v  is the Poisson’s ratio. The forces which con

trib u te  to the stress field in a given direction can be obtained from the displacem ent 

field and plastically assigned forces, and therefore the contribution of the  bonds in 

overcoming the cohesive strength  of the  m aterial can be ascertained.

A critical normal force is adopted for each bond considered to  contribu te  tow ards the
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critical stress needed to create a fracture surface in a given direction. The directions 

in which a crack can propogate are defined as norm al to  the nearest and next- 

nearest interactions; bonds whose vectors have positive com ponents in this direction 

(cmn • n  >  0 ) are considered.

m

Figure 4.2: Bonds which contribute (black) tow ards the creation of a fracture surface 
are depicted.

An example of the bonds considered in the  [100] direction between nodes m  and n 

are depicted in figure 4.2. In order for the  surface to  be created all of the  contribu ting  

bonds m ust a tta in  the necessary critical force. In the [100] direction the [100] bond 

m ust have a force greater than 0.4<jc (where oc is the strength  of the m ateria l), whilst 

the {110} bonds m ust a tta in  0.15crc. In th is event all of the con tribu ting  bonds are 

sim ultaneously removed.

A strain  based criterion is defined through the  a tta inm en t of a critical relative dis
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placem ent between neighbouring nodes; in which case all of the  bonds whose vectors 

have positive com ponents in th is direction are removed. I t is not necessary to  con

sider all of these bonds in the fracture criterion explicitly as they do not directly 

contribute to  the calculation of the  strain  tensor. Due to  the  different na tu re  of 

the two criterion, both  are sim ultaneously considered, and clusters of bonds may 

therefore be removed for both  ductile and b rittle  fracture.

4.4 Bits and bobs.

The model may be extended to  include regions of differing elastic constants. Bonds 

contained w ithin a certain region, usually spherical, are assigned different elastic 

properties from those in the  m atrix . In the  current model only the  ,m atrix  is as

sumed to  exhibit plastic deform ation. Bonds which stradd le  two phases are assigned 

linearly in terpolated  values between the two elastic characteristics; in the  presence 

of plasticity  an equivalent elastic response is considered.

The strain  tensor can be obtained through a finite difference approxim ation of the 

displacement field. A central difference approxim ation can be used

r ~ u {i+2, j ,k)  +  &u ( i +l , j , k )  ~  +  U ( i - 2 , j , k ) ^  0 1 ^
o x U(i , j t  k) = ------------------------------------------^ ------------------------------------------  (4.21)

where is the displacem ent field a t coordinates i, j ,  k, and h is the  initial dis

tance between adjacent nodes; alternatively forward or backward approxim ations are 

considered a t system boundaries and fracture surfaces. The stress tensor is directly
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obtainable from the forces acting on a node (the centre of a cubic un it cell) [93],

V  F
an  =  ~ m ~  11 (4.22)

Here, represents a sum over the cube surfaces, Fm is the force on any surface 

m  of the cubic cell, while n™ is a un it vector either norm al or parallel to  the surface 

m, and A  is the surface area.

In order to  distinguish real trends from anom olies as a consequence of discretisation 

effects a t the particle surface, a weighted moving average is som etim es applied to  

the  stress field results (only the  contours in section 6 .1 ); the  strain  field calculation 

includes inform ation from neighbouring sites and therefore discontinuity effects are 

less apparent. The weighted average stress field is of the  form

^  W m  (4.23)
£ i = l  w i

where the sum m ation is over neighbouring sites, crz- is the  stress field a t site i and W{ 

is the weighting given to the stress field a t site i (taken as 1  for the central site and 

0.5 for neighbouring sites).

The applied stress is only increm ented if no dam age is accum ulated in the preceding 

iteration. In this m anner the applied stress is escalated until the  crack continuously 

propagates w ith no fu rther stress increm ents occurring; a t th is stage the  fracture 

process is considered catastrophic. The strength  of the m aterial being sim ulated 

is a ttribu ted  to  the m axim um  stress level a tta ined , whilst the  toughness of the 

simulation is given by the  numerical in tegration, of the global stress-strain  relation, 

up to the point of catastrophic crack propagation.
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Chapter 5

Simulation of the Inhom ogeneity  

Problem.

An investigation into the effects of an elastic particle em bedded, bo th  in an elastically 

deforming m atrix  and one exhibiting in itia l plastic deform ation, were perform ed in 

order to  ascertain  the range of validity of th e  la ttice  spring model in the  sim ulation 

of dilute heterogeneous m aterials. In order to  replicate the far field effects of the 

deforming m atrix , a uniform stress tensor was imposed upon the  boundary. The 

far field stress tensor adopted was uniaxial (constant forces applied in the  tensile 

direction, and free boundaries in perpendicular directions) and, in th e  purely elastic 

systems, corresponded to  a deform ation strain  of four percent. This section consid

ers the discretisation of a spherical particle, and the variation of particle size and 

characteristics in order to make com parison w ith the theoretical predictions of Es- 

helby [2-4] for an elastic m atrix. R esults are also presented for a spherical inclusion



in a plastic m atrix  and are found to  be in reasonable agreem ent w ith predictions 

obtained by W ilner [1 ].

5.1 Discretisation of a Spherical Particle.

The systems consisted of 813 nodes and particles were included through the  varia

tion of bond characteristics in a localised region of the m aterial; th e  ratio  of Young’s 

m odulus was =  4, where p and m denote particle and m atrix  characteristics 

respectively, and the Poisson’s ratio  m aintained a t vp =  v m =  0.25. A central node 

and radius were defined, and any bonds contained w ithin th is radius were allocated 

particle characteristics, w hilst bonds which crossed the radius of the  spherical par

ticle were considered interface bonds and initially  assigned the  sam e properties as 

particle bonds. Due to  the  discrete na tu re  of the lattice, the radius can d ic ta te  how 

accurately the spherical particle is approxim ated. In order to  evaluate the  elastic 

field disturbances, these are p lo tted  as a function of the  position along the  tensile 

direction (X x is the tensile direction), relative to  the radius of the  particle (denoted 

by R). A diagram  depicting the  particle, and the loading direction is given in figure 

5.1.

D eviations from spherical properties produce stress concentrations, as a consequence 

of geometrical discontinuities and particle bonds p ro trud ing  into the  m atrix . The 

la tte r  is dem onstrated in figure 5.2, which shows elastic fields taken along the tensile 

direction through the pole of the particle whose radii varies from 10.0 to  10.9; field
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X,

Figure 5.1: The line of loading through the  centre of the particle, in the  tensile 
directions. The position currently adopts the  centre of the particle as the  origin, 
and loading is applied in the  X x direction.

variations are greatest in th is direction. The irregularity  observed in a particle of 

radius 1 0 . 0  un it lengths has lead to  substan tial stress concentrations.

T he deviations in the strain  field were not as pronounced, as the  s tra in  tensor was 

calculated from a central difference approxim ation of the  displacem ent field over 

four unit lengths. In order to  alleviate the concentrations due to  th e  discrete natu re 

of the particle the interface bonds were assigned values in between the particle 

and m atrix  characteristics; point of intersection of the  particle radius through the 

bond is used to  determ ine â  linear interpolation between the  m a trix  and particle 

characteristics (defined as being spherically sm oothed). The subsequent effect upon 

the stress concentrations, as a result of particle protrusion, can be seen in figure 

5.3, which in contrast to  5.2 shows a relatively subdued response to  the non-integer 

effects of the particle radius. It is noted th a t the  most accurate  representation 

of a sphere is obtained with a particle of radius 10.4 un it lengths, and therefore 

the non-integer portion is taken as 0.4 unit lengths, for varying particle sizes; the 

optim um  spherical representation is alm ost certainly radius dependent, bu t w ith no
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Figure 5.2: Relative norm al stress and strain  profiles (defined as being in the  tensile 
direction), for varying particle radii, along the  tensile direction th rough the  pole. 
The closed form theoretical solutions taken from eshelby [2-4] are provided for com
parison. The fields are depicted relatice to  the  far field theoretical response, as 
indicated by the  zero superscript.
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m athem atical proof to  d ic tate  the exact non-integer portion, th is is considered a 

reasonable approxim ation.

Stress concentrations, resulting from spherical discretisation, are not only due to  

protrusion effects, bu t also the geom etrical discontinuities. M axim um stresses occur 

away from the poles of the particle as a consequence of cubic characteristics present 

in the discretised sphere. Such effects were significantly reduced by the  linear in ter

polation, as can be seen in the elastic field profiles in figures 5.4, which shows bo th  

particle representations, for a particle radius of 10.4 un it lengths.

The stress concentrations are more pronounced a t the  interface between the particle 

and the  m atrix; there are significant reductions in the particle, which possesses 

varying interfacial properties. In reality  particles may not possess perfect spherical 

geometry, and such stress concentrations may be influential; th is can po ten tially  be 

im posed upon the geom etry of the particle, b u t should not occur as an a rtifac t of 

discretisation.

5.2 Variation of Particle Size.

The size of the inhomogeneities considered ranged from 3.4 to  10.4 unit lengths; 0.4 

unit lengths being m aintained as the  non-integer portion. The effects of varying 

the particle size are com pared to the theoretical predictions for a perfectly spherical 

particle. The elastic properties =  4 and vp =  v m =  0.25) are retained.
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Figure 5.3: Relative norm al stress and strain  profiles, for varying partic le  radii, 
along the tensile direction through the pole. The interface elastic properties are 
assigned values between the  particle and m atrix  characteristics. The closed form  
theoretical solutions taken from eshelby [2-4] are provided for com parison. T he 
fields are depicted relatice to  th e  far field theoretical response, as ind icated  by the 
zero superscript.
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Figure 5.4: Contour plots of (a) relative norm al stress and (b) relative norm al strain  
d istributions. Left contour plots depict elastic fields for a particles w ith interfacial 
bonds assigned particle characteristics, whilst the  contour plots on the right exhibit 
the sm oother elastic fields associated with assigning the interface bonds linearly 
interpolated force constants, between particle and m atrix  characteristics.
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Figure 5.5: Relative norm al stress profile, for varying particle radii, along the tensile 
direction through the pole. The closed form theoretical solutions taken from eshelby 
[2-4] are provided for com parison. The fields are depicted relatice to  the  far field 
theoretical response, as indicated by the  zero superscript.

Increasing the  particle size results in a more accurate representation of the  stress 

field in the vicinity of the  particle (figure 5.5), although the far field response of the  

sim ulation deviates from theoretical expectations. The former is a  consequence of 

the  improved spherical approxim ation of the  discrete particle, w hilst the  la tte r  is a 

result of the im posed stress field a t the sim ulation boundaries; increasing the  system  

size will reduce th is effect.

The far field response of the norm al stra in  field (figure 5.6) is reasonably accurate, 

as the boundary in the tensile direction is allowed to  deform, and therefore accom 

m odate the effects of the particle to  some degree. In the vicinity of the  particle 

the strain  field undergoes a  discontinuous change; the  strain  tensor is calculated 

from inform ation over a range of nodes, and therefore the  discontinuity  is averaged 

out. Selective application of either a  narrower central difference approxim ation , or
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Figure 5.6: Relative norm al strain  profile, for varying particle radii, along the  tensile 
direction through the pole. The closed form theoretical solutions taken from eshelby 
[2-4] are provided for com parison. The fields are depicted relatice to  the  far field 
theoretical response, as indicated by the zero superscript.
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Figure 5.7: Relative free energy profile, for varying particle radii, along the  tensile 
direction through the  pole. The closed form theoretical solutions taken from eshelby 
[2-4] are provided for com parison. The fields are depicted relatice to  the  far field 
theoretical response, as indicated by the  zero superscript.
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Figure 5.8: Relative von M ises’ stress profile, for varying particle radii, along the 
tensile direction through the pole. T he closed form theoretical solutions taken from 
eshelby [2-4] are provided for com parison. The fields are depicted relatice to  the  far 
field theoretical response, as indicated by the  zero superscript.
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Figure 5.9: Relative hydrostatic  pressure profile, for varying particle radii, along the 
tensile direction through the pole. The closed form theoretical solutions taken from  
eshelby [2-4] are provided for com parison. T he fields are depicted relatice to  the  far 
field theoretical response, as indicated by the  zero superscript.
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appropria te  forw ard/backw ard difference approxim ations may facilita te  the  capture 

of such discontinuities.

The free energy, von Mises’ stress and hydrostatic  pressure are also com pared w ith 

sim ilar characteristics to  the stress and strain  profiles emerging (figures 5.7 to  5.9). 

A reasonable replication of the  theoretical elastic fields, bo th  in th e  vicinity of the  

particle and in th e  surrounding m atrix , is obtained w ith a particle of radius 7.4 unit 

lengths; increasing the  system size will allow larger particles to  be included with 

greater accuracy.

5.3 Variation of Particle Characteristics.

Considering a particle of radius 7.4 un it lengths, the effects upon varying the  ra tio  of 

elastic modulii have been investigated. The effects of varying the Y oung’s m odulus 

between the  particle and m atrix  (corresponding to  ratios of 2, 4 and 8 ), are 

shown in figures 5.10 to  5.14; the Poisson’s ra tio  is m aintained a t a quarter. The 

effect of decreasing the ratio  of elastic moduli appears to a tten u a te  the  deviations 

in the sim ulation results, from theoretical calculations.

A particle is likely to  have a different Poisson’s ra tio  than  th a t of the m atrix . The 

effects of a ltering the particu la te ’s Poisson’s ratio  is not found to  be significant, in 

com parrison w ith the  effects of varying the Y oung’s m odulus.
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Figure 5.10: Relative norm al stress profile, for varying p a r tic ip a te  Y oung’s m odulus, 
along the tensile direction through the pole. The closed form theoretical solutions 
taken from eshelby [2—4] are provided for com parison. The fields are depicted relatice 
to  the far field theoretical response, as indicated by the zero superscript.
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Figure 5.11: Relative norm al strain  profile, for varying p a r tic ip a te  Young’s m odulus, 
along the tensile direction through the pole. The closed form theoretical solutions 
taken from eshelby [2-4] are provided for com parison. The fields are depicted relatice 
to  the far field theoretical response, as indicated by the  zero superscript.
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Figure 5.12: Relative free energy profile, for varying p a r tic ip a te  Young’s m odulus, 
along the tensile direction through the pole. The closed form theoretical solutions 
taken from eshelby [2-4] are provided for com parison. The fields are depicted relatice 
to  the far field theoretical response, as indicated by the  zero superscript.
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Figure 5.13: Relative von M ises’ stress profile, for p a r tic ip a te  Y oung’s m odulus, 
along the tensile direction through the  pole. The closed form theoretical solutions 
taken from eshelby [2-4] are provided for com parison. The fields are depicted  relatice 
to  the far field theoretical response, as indicated  by the zero superscript.
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Figure 5.14: Relative hydrostatic pressure profile, for partic lu late  Young’s m odulus, 
along the tensile direction through the pole. The closed form theoretical solutions 
taken from eshelby [2-4] are provided for com parison. The fields are depicted relatice 
to  the  far field theoretical response, as indicated by the zero superscript.
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5.4 Elastic inclusion in plastic matrix

In th is section we present results for an elastic inclusion em bedded w ithin a plastic

m atrix . O f particu lar im portance in real m aterials is the  inability  of elastic inclu

sions to  deform to  the  same extent as a plastically  deforming m atrix . This can be 

the source of internal necking in particu la te  systems, leading to  p rem ature failure. 

In order to  incorporate the  micromechanical behaviour of such system s into a LSM, 

plasticity  m ust first be introduced. Here, the  incipient stages of p lastic deform ation 

around an elastic inclusion are sim ulated. The system considered is d irectly  com pa

rable to  th a t studied by W ilner in which equation (4.15) reduces, for uniaxial stress 

strain  behaviour, to  the relation [1 ]

The ductility  of a nondim ensional Ram berg-Osgood stress-strain  relation (a  is unity) 

is dependent upon the hardening exponent, n, which is assigned a values of 19, 

characteristic of a considerably ductile response. The initial elastic properties are

as being a region were the Mises stress is greater than  the plastic resistance; in 

order to  make comparison with the results of W ilner (which displayed a Mises stress 

contour of one), only Mises stress values in the  range 0 .99a to  1.01a are considered 

in Figure 5.15. From sym m etry it is only necessary to  present d a ta  for one quadran t 

of the contour map.

(5.1)

also taken from W ilner and consist of particle to  m atrix  Young’s m oduli ratio  of

two and a Poison’s ratio  of a quarter for bo th  phases. The plastic zone is defined
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The onset of plastic deform ation is related to  a critical Mises stress and, therefore, 

the initial plastic zone is expected to  develop where the  m axim um  Mises stress occurs 

(Figure 5.8); this is generally observed in the litera tu re  a t a position separate  from 

the particle [53,54,150]. In the  present sim ulation this phenom enon is no t fully 

captured, due to  the  discretisation of the  particle, and the  plastic zone develops a t the  

interface of the particle (Figure 5.15a). Increasing the applied stress (Figures 5.15b, 

5.16a, and 5.16b) results in fu rther growth of the plastic zone along the  line of 

loading, and hence a local increase in deform ation, causing an increase in Mises 

stress a t roughly r / a  ^  2  in the equatorial plane. Com parable phenom ena have 

been observed using FEM s [56,57], bu t the numerical results of W ilner [1 ] (based on 

a variational m ethod), show a more pronounced effect than  the LSM sim ulations 

presented here; th is is a ttr ib u ted  to  the  lack of volume conservation in th e  plastic 

zone along the  tensile po lar axis. A nother discrepancy w ith the  results of W ilner 

is the effect of the boundary  conditions on the Mises stress profile. In the  LSM, 

the applied far field imposes a constant norm al stress contour along the  boundary, 

which curbs the Mises stress profile. T h a t said, the model captures the  essential 

features of the evolution of the plastic zone and are very sim ilar to  those reported  

by W ilner [1].

The tin  •ee-dimensional surface contours, w ith sim ilar param eters as the  above sys

tem, are considered in figure 5.17, which depicts surfaces of constan t equivalent 

stress equal to  the plastic resistance. The surface profiles appear to  exhibit no sig

nificant discretisation effects and the onset of plastic deform ation is equivalent in 

all directions perpendicular to  the tensile direction. In figure 5.17a th e  partic le  is
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at a higher Von Mises stress than  the m atrix , and is therefore contained w ithin the  

surface of constant Von Mises stress, along w ith polar region on the  particle surface; 

external regions are a t a lower Von Mises stress. Increasing the  applied stress (fig

ures 5.17b and 5.17c) results in an increase in volume which is considered yielded, 

this can be in terpreted  from the  funnel of constant Von Mises stress em inating in 

the polar direction from the  particle surface. Surface effects are also noticable in 

this region. Increasing the applied stress further (figures 5.17d) results in an area of 

lower Von Mises stress being contained w ithin the surface contour, w hilst th e  sur

rounding outer region is greater than  th e  plastic resistance, and therefore considered 

yielded.

5.5 Conclusions.

Numerical sim ulation of the elastic inhom ogeneity problem , u tilising a LSM, has 

been undertaken and it is found th a t the  analytical solutions of Eshelby are reason

ably replicated, although the discretisation of a spherical particle results in elastic 

field anomalies a t the partic le-m atrix  interface. In reality the particles m ay no t be 

perfect spheres (or ellipsoids), and the consequences of stress concentrations resu lt

ing from geom etric anomolies may be more significant than  discretisation effects.

It is found th a t the onset of plastic deform ation agrees well w ith th a t determ ined 

using alternative m ethods. The sim ulation does exhibit surface effects, bu t th e  

discretisation does not appear to  hinder the ability of the model to  cap tu re  th e
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three-dim ensional yield characteristics.
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Figure 5.15: Comparison between LSM (left) and W ilner [1] (right) of th e  Mises 
stress profile exhibiting the onset and growth of plastic zone (defined as a e(] =  a).  
The ratio  of particle to  m atrix  Y oung’s m odulus is two, bo th  phases are assigned 
a Poisson’s ratio  of a quarter, and the  hardening exponent is nineteen. W ith in  the 
LSM the particle d iam eter is th irteen  un it lengths, and the vertically applied stresses 
are a) o j a  — 0.95, b) a / a  =  0.9975. Mises stress values in the range 0 .99a(w hite) to  
l.O la(b lack) are presented in 20 contours in the LSM results, w hilst a single contour 
a t a eq =  a  is presented from W ilner.
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(b)

Figure 5.16: Comparison between LSM (left) and W ilner [1 ](right) of the Mises 
stress profile exhibiting the onset and growth of plastic zone (defined as aeq =  a).  
The ratio  of particle to  m atrix  Young’s m odulus is two, bo th  phases are assigned 
a Poisson’s ratio  of a quarter, and the hardening exponent is nineteen. W ith in  the 
LSM the particle d iam eter is th irteen  un it lengths, and the  vertically applied stresses 
are a) a / a  =  1.0, b) a / a  =  1.005. Mises stress values in the range 0 .99a(w hite) to  
l.O la(b lack) are presented in 20 contours in the LSM results, whilst a single contour 
at a eq =  a  is presented from W ilner.
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(a) (b)
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Figure 5.17: Surface of constant Von Mises stress exhibiting the onset and grow th of 
plastic zone (defined as aeq =  a) .  The ra tio  of particle to  m a trix  Young’s m odulus 
is two, bo th  phases are assigned a Poisson’s ratio  of a  quarter, and th e  hardening 
exponent is nineteen. The particle d iam eter is fifteen un it lengths, and the  applied 
stresses (in the x-direction) are a) a / a  =  0.95, b) a / a  =  0.9975, c) a / a  =  1.0, and 
d) a / a =  1.005.
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Chapter 6

Particulate system s in steel.

T he effects of incorporating three different varieties of heterogeniety w ithin a m atrix , 

whose continuum  mechanical behaviour corresponds with th a t of austen itic  steel, are 

investigated in this current chapter. T he resulting deform ation fields for system s 

containing a single inclusion are elucidated. The subsequent dam age accum ulations, 

through either particle decohesion or fracture, are explored. The single inclusions 

considered are a spherical iron carbide (Fe3C) particle, a spherical and an elongated 

spherocylindrical m anganese sulphide (MnS) particle, and a spherical void.

Both the theoretical investigation, and sim ulation, of ductile fracture often considers 

a uniform distribution of inclusions, along with the assum ption of sim ultaneous 

nucleation of voids a t all particles. In th is chapter the detrim ental effects of inclusion 

interaction through the sim ulation of the  deform ation and dam age accum ulations 

in three-dim ensional systems, containing two inclusions (either Fe3C or voids) are
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studied. The sim ulation of MnS particles are not undertaken as the  effects of particle 

debonding and nucleated void interactions are expected to  be sim ilar in bo th  Fe3C 

and MnS particle systems.

T he plasticity  algorithm , described in section 4.2, is now utilised to  describe the  con

tinuum  mechanical behaviour of an austenitic  steel. The experim ental stress-strain  

tensile behaviour, provided by Rolls-Royce Associates, is best approxim ated by the 

Hencky-Mises relation. The curve th a t best describes the experim ental behaviour 

exhibits quite severe yielding which can result in com putational difficulties. The 

sudden onset of plastic deform ation, accom panying yielding, can shield neighbour

ing regions (i.e. reduce the  stress by deforming to  a greater degree in an adjacent 

region); a resu ltan t rippling effect ensues consisting of low (shielded) and high de

form ation bands w ithin the sim ulation. This effect is unrealistic and therefore a 

gradual onset of plastic deform ation is sought, w ith the Ram berg-Osgood relation 

being applicable, providing as it does, a continuous functional form. The Ram berg- 

Osgood relation notoriously fails to  capture the  stress-strain  curve a t the initial 

onset of yielding, and therefore a compromise is obtained by applying the  Hencky- 

Mises relation, bu t m athem atically  considering a lower yield strength . The resu ltan t 

theoretical stress-strain  behaviour, adopted in the present analysis, along w ith the 

experim ental d a ta  is presented in figure 6.1. The non-dim ensional stress is nor

malised to  the  yield strength  of the austenitic steel (525M Pa), whilst the  strain  is 

intrinsically non-dim ensional. It should be noted th a t m athem atically , whilst de

term ining the  constitutive Hencky-Mises relation, <jy is redefined as half the  yield 

stress bu t elsewhere in the study unity  is chosen for norm alisation purposes.
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Figure 6 .1 : Theoretical Hencky-Mises relation and experim ental stress-strain  ten 
sile relation. The uniaxial behaviour is of the form, u =  ^  +  ( ^ ^ L)n* The non- 
dim ensional param eters are as follows: E  (Young’s m odulus) is 400, ay (yield stress) 
is 0.5, a  (plastic resistance) is 1.8 and n (hardening exponent) is 4.86 .

The constituent properties, for iron carbide and m anganese sulphide particles, are

obtained from the  lite ra tu re  and are sum m arised in the  following tab le

P aram eter D im ensional value Non-dim ensional value
Youngs’M odulus of Steel 210 G Pa 400

Youngs’Modulus of Fe3C [14] 268 G Pa 510.5
Youngs’M odulus of MnS [35] 137 G Pa 260.9
Fe3C interfacial strength  [30] 1024 M Pa 1.95c7y
Fe3C fracture strength  [29] 2027 M Pa 3.86cry

MnS interfacial strength  (JL a) [37] 810 M Pa 1 .54<Jy
MnS fracture strength  (|| a) [37] 1120 M Pa 2.13 (Ty

It should be noted th a t whilst a critical strength  is applicable to  the  b rittle  fracture

of inclusions, and to  interfacial debonding, this is not the case when considering the 

fracture of the ductile m atrix  and therefore a strain  based criterion is considered; 

the critical strain  in the present study corresponds to 60% deform ation.
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6.1 Deformation of single particle systems.

Spherical inclusions of radius 7.5 un it lengths were sim ulated in a system  of 613 

nodes; in th is section dam age accum ulation is no t considered. The inclusions con

sidered were a Fe3C particle, a MnS particle and a void. Contours though th e  centre 

of the particle are considered in the  three-dim ensional system, as the deform ation 

fields perpendicular to  the tensile direction are equivalent in all radial directions from 

the polar axis (through the particle centre, in the tensile direction). The stress con

centration factor is investigated, being defined here as the  ratio  of the  stress w ithin 

a particle to  the  far field stress. The one-dim ensional stress and strain  profiles along 

the polar axis are also examined.

The Fe3C particle possesses a greater Y oung’s m odulus than  the  steel m a trix  and 

therefore is unable to  deform to  the  sam e extent. This results in the  non-dim ensional 

norm al stress and norm al strain  fields (where norm al refers to  the  fields in the  tensile 

direction and non-dim ensional means the fields are divided by the yield stress) given 

in figure 6 .2 , which shows the elastic fields prior to  plastic deform ation (applied 

stress =  0.5<Ty). The stress and strain  fields in the  m atrix  are concentrated a t the  

pole of the particle in the tensile direction, and reduced a t the  particle surface in 

the equatorial plane. The stress is concentrated in the particle, whilst the  strain  in 

the particle is abated.

The stress field w ithin the Fe3C particle is initially  uniform , as theoretically  expected 

in the elastic regime, but in the presence of p lastic  deform ation the field becomes
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(a) (b)

Figure 6 .2 : 2D C ontour plots, taken through the Fe3C partic le  centre, of non- 
dim ensional (a) norm al stress and (b) norm al strain d istribu tions in a  Fe3C partic 
ulate stystem . The applied stress, in the horizontal direction, is 0.5cry.

increasingly non-uniform . The stress and equivalent stress fields, a t an applied stress 

of 1.5(Ty, are shown in figure 6.3. The non-uniform ity has been m entioned w ithin 

the  litera tu re  [1,53], where one-dim ensional profiles along the  po lar axis reveal th a t 

the stress is greater a t the  centre of the particle and reduces tow ards the  particle 

interface. W hilst th is phenom ena is present in the figure 6.3, it is also noted th a t 

the  two-dimensional profile reveals an additional development; concentrations in 

norm al stress w ithin the  particle in the equatorial plane tow ards the  interface and 

radial concentrations of equivalent stress towards the particle interface w ith a local 

m inimum at the centre.

In contrast with the  Fe3C particle, the MnS particle possesses a lower Y oung’s 

m odulus than  the steel m atrix , and hence the resu ltan t elastic fields are therefore 

dissim ilar to the Fe3C particu la te  system. The norm al stress and norm al s tra in  fields 

are presented in figure 6.4, and are qualitatively opposite from th e  fields associated
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Figure 6.3: 2 D C ontour plots, taken through the  Fe3C particle centre, of non- 
dim ensional (a) norm al stress and (b) equivalent stress d istributions in a Fe3C par
ticu late  stystem . The applied stress, in the horizontal direction, is 1 .5 <7 y.

with the Fe3C particle. The MnS particle is capable of deform ing to  a greater extent 

than  the steel m atrix , and therefore the norm al strain  field is concentrated w ithin 

the particle w hilst th e  norm al stress is reduced. T he elastic fields w ithin th e  m atrix  

are intensified in the  equatorial plane and suppressed in the tensile direction.

Increasing the  applied stress has the effect of increasing the  plastic deform ation and 

therefore the m atrix  is able to  deform to  a greater extent th an  the  particle. This 

shifts the regions of stress concentration and relaxation as indicated in figure 6.5. As 

the applied stress is increased further, the profiles exhibit the sam e characteristics 

as the  profiles from the  sim ulation containing a Fe3C particle.

The rem aining inclusion considered is a void and therefore does not sustain  a stress 

or strain  field. The elastic fields in the m atrix  are concentrated in the  equatorial 

plane, as shown in figure 6 .6 . As the stress is increased the  regions of stress and strain
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(a) (b)

Figure 6.4: 2 D C ontour plots, taken through the MnS particle centre, of non- 
dim ensional (a) norm al stress and (b) norm al d istributions in a MnS particu la te  
stystem . The applied stress, in the horizontal direction, is 0.5ay.

concentration and relaxation rem ain similar, bu t the form varies. T he m ain feature 

of interest is the extension of the  region of strain  concentration in th e  equatorial plane 

with increased plasticity; potentially  significant when two voids (both  orien tated  in 

the others equatorial plane) are positioned in close proximity.

The stress gathering capability  of a particle (defined as the ra tio  of stress w ithin the 

particle to  the  far field applied stress) is considered to  be an indicative param eter 

when assessing the  detrim ental effects of particu la te  system s [58]; it would appear 

th a t the stress in the  particle is usually quantified as the level of stress w ithin the 

centre of the particle. One-dimensional profiles of the stress and stra in  fields along 

the tensile polar axis, w ith increasing applied stress, are presented in figures 6.7 and 

6 .8 . The fields are norm alised with respect to  the far field.

The norm al stress field in the Fe3C particle is shown in figure 6.7a. The m agnitude
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0.995

m h

(c) (d)

Figure 6.5: 2 D C ontour plots, taken through the MnS particle centre, of non- 
dimensional (a) norm al stress a t an applied stress of cry, (b) norm al s tra in  a t an 
applied stress of ay, (c) norm al stress a t an applied stress of 1.5ay, and (d) norm al 
strain a t an applied stress of 1 .5 (7 ^; loading is in the horizontal direction.
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(c) (d)

Figure 6 .6 : 2 D C ontour plots, taken through the centre of the  void, of non- 
dim ensional (a) norm al stress a t an applied stress of 0 .5ay, (b) norm al stra in  a t 
an applied stress of 0.5ay, (c) norm al stress a t an applied stress of 1 .5 t7y, and (d) 
norm al strain  at an applied stress of 1.5cry; loading is in the horizontal direction.
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of the stress w ithin the  particle, relative to  the far field stress, is constant during 

the  elastic regime and increases w ith plastic deform ation. Stress reduction w ithin 

the  particle, near the  particle interface, becomes increasingly severe w ith escalating 

applied stress. The strain  field (figure 6.7b) reveals a large increase in concentration 

w ithin the m atrix , and decrease in the particle.

The transition  between the  MnS particle acting a stress relaxer, and acting as a 

stress concentrator, is evident in figure 6 .8 a. This transition  m ay have im portan t 

im plications regarding the  uncertain ty  concerning the interfacial streng th  of the  MnS 

particle; i.e. which position on the particles surface initially  exhibits debonding? 

The strain  field (figure 6 .8 b) is originally greater w ithin the particle, during elastic 

deform ation, bu t as the  m atrix  plastically deforms the fields becomes increasingly 

sim ilar to  those in the Fe3C particle.

The stress gathering capability  was observed by Xu [58] to  decrease in the  incipient 

stages of plastic deform ation and then continually increase w ith applied stress. The 

system considered by Xu corresponded to  a silicon carbide particle in an alum inium  

m atrix; a particle system  has been considered here, where the  particle to  m atrix  

ratio  is 6.4, which is identical to  th a t of Xu. The stress concentration w ithin the 

particle decreases in a sim ilar m anner to  th a t reported by Xu, were a region of 

intense plastic deform ation essentially shields the particle (figure 6.9). T he gradual 

increase in stress gathering  capability reported by Xu is a ttr ib u tab le  to  the  functional 

form of the stress-strain  curve. In the Hencky-Mises relation considered here the 

gradient continues to  decrease, even after substan tial plastic deform ation, w hilst it
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Figure 6.7: One-dimensional norm alised (relative to  far field) profiles of the  (a) 
norm al stress and (b) norm al strain  fields along the  tensile polar axis, w ith increasing 
applied stress are presented for a Fe3C particle.
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Figure 6 .8 : One-dimensional normalised (relative to far field) profiles of the  (a) 
norm al stress and (b) norm al strain  fields along the tensile polar axis, w ith increasing 
applied stress are presented for a MnS particle.
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is suspected th a t the  relation considered by Xu approaches a constant gradient.

Two systems are considered: the  first possesses m atrix  characteristics which are 

non-linear and obey the Hencky-Mises relation, w hilst the second in itially  follows 

the  same relation bu t a t some point (a =  2 ay) is assumed to exhibit linear hardening 

characteristics (see inset of figure 6.9). The particle em bedded in the non-linearly 

hardening m atrix  is continually shielded by a region of much greater plastic defor

m ation, w ith respect to  the  rest of the  m atrix , and therefore does not exhibit a 

gradual increase in stress concentration w ith large plastic deform ation. In contrast, 

the  particle em bedded in the  linearly hardening m atrix  experiences an increase in 

stress concentration, as w ith increasing deform ation the m atrix  essentially possesses 

sim ilar behavior th roughout the  system. Therefore the  particle is no longer shielded 

by a region of intense plastic deform ation, bu t is still unable to deform to  the  sam e 

extent as the surrounding m atrix , hence a steady increase in the stress concentration 

factor.

6.1.1 Summary.

Regions where deform ation fields are concentrated, and the m agnitudes of these 

concentrations, due to  both  the misfits in elastic properties between the particle and 

m atrix , and the ensuing variations in p lastic  deform ation, have been identified as 

a function of applied stress. It was observed th a t the system considering a Fe3C 

particle possessed both  stress and strain  concentrations a t the  poles of the particle 

in the tensile direction, the system containing a void possessed stress and strain
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Figure 6.9: One-dimensional normalised (relative to  far field) profiles of the norm al 
stress fields along the tensile polar axis, for bo th  non-linearly and linearlly hard 
ening m aterials, are presented; the particle elastic m oduli is 6.4 tim es greater than  
the m atrix  elastic moduli. The stress-strain  bexaviour for bo th  m aterials are also 
presented.

concentrations in the equatorial plane, whilst the  system  containing a MnS particle 

exhibited a variation in the regions of stress and stra in  field concentrations w ith 

increasing plastic deformation.

The stress fields w ithin a particle, whilst being initially  uniform in the elastic regime, 

become increasingly irregular with the onset, and intensification, of p lastic deform a

tion. W hilst the norm al stress pertu rba tions along the polar axis have been previ

ously observed in the literature  [1,53], the  stress concentrations in the equatorial 

plane, and the radial concentrations in the equivalent stress contours, would appear 

to  be undocum ented.
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6.2 Particle decohesion and fracture.

This section considers the fracture of particles, and the ir decohesion from the  steel 

m atrix . It should be noted th a t the  results presented here invariably lack sym m etry, 

although the original deform ation fields are sym m etric. The reason for th is is the  

quasi-static definition of fracture in the current model; only a single fracture surface 

may be created a t a given iteration  for a given criteria. It is therefore im possible for 

fracture to  sim ultaneously occur on bo th  sides of the  sim ulation (although sim iliar 

fracture characteristics may occur sequentially). The only alternative would be to  

vary the num ber of surfaces to  be created in a given iteration in order to  reflect the  

sym m etry of the  system.

The study of interfacial decohesion of bo th  a Fe3C and a MnS spherical particles, of 

radius 5.5 un it lengths in a three-dim ensional system  of 413 nodes, are now presented; 

the  special case of a spherocylindrical MnS particle was also investigated. T he 

dam age algorithm , resulting in the  removal of bonds, has been described in section 

4.3, and the constituent properties given above. T he definition of dam age in th is 

study is taken to  be the num ber of bonds broken in the  sim ulation.

The broken bonds, norm al stress and norm al strain  fields depicting the interfacial 

decohesion of a Fe3C particle are considered in figures 6.10 and 6.11. In the  previ

ous section the stress concentrations concerning the  deform ation of a Fe3C partic le  

were investigated, and in figure 6 .1 0 a the initial debonding a t the polar regions of 

the particle interface in the tensile direction is observed. The consequent loss of
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stress carrying capability a t these dam aged regions has resulted in stress and strain  

concentrations in the m atrix , ahead of the  propagating cracks.

T he crack, although developing, cannot be described as catastrophic as it is still 

required for the  applied stress to  be increased in order for the  crack to  progress. In 

figure 6.10b the applied stress has reached a m axim um  of 1 .6 9 ^ , for th is sim ulation, 

and this is illustrated  by the growth of the  crack into the m atrix . Once a crack 

extends into the m atrix  it can generally be considered catastrophic, in the  present 

model, as the crack tip  does not possess the ability to  blunt.

The larger crack extension on the left side of the particle has resulted in intensified 

stress and strain  concentrations in th is region; th is is now the  dom inant source of 

crack advancem ent. In a sym m etrical system  the  choice of region, where fractu re is 

in itia ted , is a consequence of the  quasi-static  natu re  of the dam age algorithm , and 

rounding error variations between the breaking criterion in differing regions.

The ductile growth of the crack into the m atrix  and the more extensive continuation 

of interfacial debonding occur sim ultaneously in this model, as can be seen in figures 

6.11. The interfacial decohesion over alm ost the  entire left side of the  particle has 

resulted in stress and strain  concentrations above and below the  particle, m aking the 

particle increasingly redundant to  crack growth. In figure 6.11b the crack advance

ment no longer consists of interfacial decohesion and progresses entirely through the 

ductile fracture of the surrounding m atrix.
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It should be noted th a t the particle rem ains partia lly  coupled to  the  m atrix; the 

deform ation required to  separate the particle from the  m atrix  is sufficiently severe to 

allow the propagating crack to  extend into the surrounding m atrix  prior to  com plete 

particle debonding.

The interfacial strength  of a MnS particle is considered lower than  th a t of a Fe3C 

particle, and therefore the separation of the  particle and m atrix  begins a t the  lower 

applied stress of l .2§ay (figure 6.12a). The initial debonding occurs in the same 

regions; a t the poles of the particle, in the tensile direction. It should be noted 

here th a t the interfacial strength  of the  MnS particle is questionable (the interfacial 

strength  of an elongated particle from [35] is assumed here), therefore debonding 

may occur a t a different level of applied stress. If the  interfacial strength  was found 

to  be less th an  the  yield stress of th e  m atrix , then debonding m ay occur a t the 

particle surface in the equatorial plane.

In figure 6.12a the  initial debonding once m ore produces stress and strain  concentra

tions in regions perpendicular to  the  tensile direction, and adjacent to  the dam aged 

regions. In the present sim ulation, the deform ation fields associated w ith initial in

terfacial decohesion are not large enough for ductile fracture to  be in itia ted  in the 

m atrix , and in figure 6.12b the crack is shown to  propagate along the partic le-m atrix  

interface.
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The largest concentrations in the  stress and stra in  fields, whilst occurring above and 

below the particle, are not large enough for the  crack to  propagate into the  m atrix . 

T he stresses w ithin the particle, and a t the  regions of the interface still connecting the  

particle w ith the m atrix , and are not sufficiently pronounced to  allow fu rther particle 

decohesion. Therefore the applied stress is perm itted  progressively to  increm ent; as 

it does, the interfacial regions, while no t com prising the m ost stressed or deformed 

regions of the sim ulation, increasingly satisfy the  local failure criterion and in figure 

6.13a the  particle can be observed to  be alm ost completely debonded.

The stage of the sim ulation depicted in figure 6.13a is more analogous to  the  sim ula

tion of a void; although the effects of interfacial decohesion have had a detrim ental 

consequence, as the strength  of a sim ilar system  containing a void is 1.67ay, w hilst 

the  current sim ulation reaches a m axim um  stress of 1.58. This level of stress is 

a tta ined  a t the stage of the sim ulation depicted in figure 6.13b, which shows the  

incipient stages of crack propagation into the  m atrix .

The common case of an elongated MnS is now investigated. The particle is assum ed 

to  be a spherocylindrical and possesses a radius of 2.5 unit lengths in the  transverse 

direction and a half-length of 15.5 un it lengths in the longitudinal direction. The 

system size reflects the elongated n a tu re  of the  inclusion and is 71 x 25 x 25 nodes.

Prior to  dam age accum ulation and plastic  deform ation the particle is capable of 

deforming to a greater extent than  the m atrix , whilst with the onset of plastic 

deform ation the situation is reversed. F igure 6.14 shows the norm al stress and 

norm al strain  fields for applied stresses of 0.9 and 1. An im portan t feature is the

99



i !  0.84

20

15

10

5

0 10 20 30 40 50 60 70

(a) (b)

1 .os

1.06

1.04

(c) (d)

Figure 6.14: 2D Contour plots, taken through the  spherocylindrical MnS particle 
centre, of non-dimensional (a) norm al stress a t an applied stress of 0.9ay, (b) norm al 
strain  a t an applied stress of 0.9ay: (c) norm al stress a t an applied stress of cry, and
(d) normal strain  at an applied stress of cry; loading is in the  horizontal direction.
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m anner in which the norm al stress, subsequent to  plastic deform ation, displays a 

peak in the  centre of the  particle.

The broken bonds, norm al stress and norm al stra in  fields associated w ith th e  ensu

ing fracture of the longitudinally elongated MnS particle are given in figures 6.15 

and 6.16. The stress concentration a t the  centre of the  particle is responsible for 

in itia ting  fracture of the particle a t th is point (figure 6.15a). The crack is capable of 

propagating through the particle until it reaches the  m atrix , when it would appear 

to  be arrested. The resu ltan t stress field reveals two peaks; the two halves of the  

fractured particle bo th  concentrating stresses in the ir centres. F racture is in itia ted  

in these regions, upon applied stress elevation, as can be observed in figure 6.15b, 

and the  particle bifurcates into four segments. Once m ore the cracks are arrested 

upon reaching the m atrix , and while the  pre-existing cracks are allowed to  become 

m ore dam aged, no new cracks are in itia ted  until the  stress is increm ented further.

In figure 6.16a the stress has been increm ented to  a level where internal fracture of 

the  particle is allowed to  occur once more; the particle now being com prised of six 

segments.

Eventually the strain  in the m atrix , adjacent to  the  cracked particle, is sufficiently 

large to  enable crack propagation into the  m atrix  and the fracture process is con

sidered catastrophic. Sim ilar phenom enon, concerning the  internal cracking of elon

gated MnS particles, has been observed by Jaffrey [36]. Experim entally  the particle 

is not a perfect sperocylinder, but the  essential characteristics rem ain the sam e 

(figure 6.17).
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Figure 6.17: A large MnS stringer showing m ultiple transverse cracking; taken from 
Jaffrey [36].

T he effects of varying the aspect ra tio  of an elongated MnS particle upon the  bifur

cation characteristics of the  internal fracture are investigated. Systems considering 

MnS spherocylindrical particles whose radii in the  transverse direction are 2 un it 

lengths, whilst the longitudinal half-lengths are 4, 8, and 16 un it lengths are consid

ered; representing aspect ra tio ’s of 2, 4, and 8 un it lengths. The sim ulations consist 

of 61 x 21 x 21 nodes.

T he relative one-dimensional stress profiles through the centre of the particle in the 

tensile (longitudinal) direction are presented in figure 6.18, for bo th  an applied stress 

above and below the yield stress. It is observed th a t the  longer particle exhibits a 

m ore severe influence on the  stress field pertu rba tions, especially in the  presence of 

plasticity, where the stress concentration in the centre of the particle increases. The 

increase in stress concentration in the  centre of the  more elongated particle results
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Figure 6.18: The relative one-dim ensional stress profiles th rough the centre of the 
particle in th e  tensile direction. Applied stresses above (<r =  1.1 ay) and below 
(a =  0.9cry) the  yield stress are considered.

in in ternal cracking occuring at lower levels of energy in th e  system (figure 6.19); 

the subsequent dam age accum ulation is substantially  greater in the  longer particle.

The internal fracture in the particle, whose aspect ra tio  is two, is given in figure 

6.20a along with the accom panying stress field. The crack arrests a t the m atrix  

interface subsequent to  the propagation of an internal crack through the centre of 

the particle. W ith  increased energy in the system  the particle experiences increased 

dam age accum ulation about the internal crack, and surrounding partic le-m atrix  

interface, before catastrophically  failing (figure 6.20b).

The system containing a particle, whose aspect ra tio  is four, is again observed inter-
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Figure 6.19: The dam age accum ulated (broken bonds) as a function of the energy 
absorbed (integration of the stress-strain  curve) for various partic le  aspect ra tio ’s. 
The particles are elongated in the tensile direction. The arrows indicate th e  energy 
absorbed prior to  catastrophic failure.
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(b)

Figure 6.20: The broken bonds (left), and 2D norm al stress contours through the 
centre of the elongated MnS particle (right) are presented for two stages of the 
sim ulation; (a) applied stress is 1.28cry and dam age is 76, (b) applied stress is 1.66cry 
and dam age is 456. The particle aspect ra tio  is two.

nally to  fracture through the particle centre, although a t a  lower level of absorbed 

energy, th an  in the previous system. The particle experiences fu rther in ternal frac

ture; the  particle bifurcates into four sections as depicted in figure 6.21. In ternal 

fracture does not subsequently occur, w ith increasing energy, until the previously 

cracked regions become increasingly dam aged and the p ropagating  fracture spreads 

catastrophically  into the m atrix  (figure 6.21c).

Considering the particle, of aspect ra tio  equal to  eight, the  internal fracture follows 

a sim ilar p a tte rn  as before, with the particle fracturing  into first two and then four 

segments as depicted in figure 6.22a; the fu rther increase in particle fracture can 

be observed in figures 6.22b and 6.22c. The particle is observed to  undergo fu rther 

internal cracking, into eight segments, a t relatively low levels of energy ( ^  0.05),
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(c)

Figure 6.21: The broken bonds (left), and 2D norm al stress contours th rough the 
centre of the elongated MnS particle (right) are presented for two stages of the 
simulation; (a) applied stress is 1.26cry and dam age is 76, (b) applied stress is l.58<jy 
and dam age is 228, (c) applied stress is 1.68(7^ and dam age is 734. The particle 
aspect ratio  is four.
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(c)

Figure 6.22: The broken bonds (left), and 2D norm al stress contours th rough  the  
centre of the  elongated MnS particle (right) are presented for two stages of the  
sim ulation; (a) applied stress is 1.2ay and dam age is 228, (b) applied stress is 1.4cry 
and dam age is 484, (c) applied stress is 1.7ay and dam age is 1368. T he particle 
aspect ra tio  is eight.

although with increased levels of energy, extensive dam age is observed w ithin the 

particle, abou t the  internal cracks and a t the particle-m atrix  interface.

The energy absorbed prior to ca tastroph ic failure increases w ith increased aspect 

ratio , even though the initially higher levels of internal stress cause p rem atu re  in

ternal particle fracture. The increased num ber of resu ltan t concentrators (in ternal 

cracks) would appear to  have less influence on the local deform ation fields; th is  may 

be a consequence of m utual shielding effects between the in ternal cracks.
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6.2.1 Summary.

The in itial fracture characteristics have been elucidated for systems containing both  

Fe3C and MnS particles. The propensity  of weakly bonded spherical MnS particles 

to  debond w ith significantly lower levels of applied stress, than  system s considering 

strongly bonded Fe3C particles, was observed. The Fe3C particle only exhibited 

partia l interfacial decohesion w hilst the  MnS particle com pletely debonded. The 

increased level of applied stress in the  Fe3C particu la te  system, subsequent to  void 

nucleation, indicates a higher strength  and ductility  in such systems. The transverse 

cracking of an elongated MnS, orientated  parallel w ith the  tensile direction has been 

successfully replicated in the current model. An investigation into the  consequence 

of varying the  particle aspect ra tio  of elongated particles indicates th a t the  longer 

particles are substantially  less deleterious. In real systems more elongated particles 

may be expected to  have higher levels of internal dam age, assosciated w ith th e  m a

terial processing, and therefore m ight not display the same characteristics observed 

here.

6.3 Interactions between two voids.

The effects of o rientation and distance between two voids, of radius 2.5 un it lengths, 

upon the resu ltan t fracture characteristics, are now investigated. The ductile  frac

tu re  criterion in the  current model is the  a tta inm en t of a critical strain , therefore 

the strain  field is of principle im portance in the poten tial coalescence of voids. T hree
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orientations of the two voids are considered: parallel, perpendicular and diagonal (45 

degrees) alignm ents w ith respect to  the  tensile direction. The inter-void distances 

considered are 2, 5, and 10 un it lengths; the resulting strength  and toughness of the 

system s are given in figure 6.23. T he inter-void distances for the  diagonal system  

do not correspond w ith the  integer values given, as in order to  m ain tain  the  same 

discretisation effects, the voids are always centred on la ttice nodes. T he diagonal 

inter-void distances correspond to  2.1, 4.9 and 9.1 unit lengths; th is difference is 

assumed to  be insignificant to  the  in terpreta tion  of trends. The effect of increas-
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..................... — x —
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T o u g h n e ss :  H orizontal.
0.22
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Inter-void d is ta n c e  (unit le n g th s).

Figure 6.23: The nondim ensional streng th  and toughness, for different void align
ments, as a function of void separation. The tensile direction is considered to  be 
horizontal.

ing the separation, between two voids orientated  parallel w ith respect to  the  tensile 

direction, upon the norm al strain  field is shown in figure 6.24. The norm al strain  

fields for void separations of 2 and 10 un it lengths are depicted, and th e  variation in
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separation is seen to  have little  effect on the strain  concentrations in the  equatorial 

plane abou t the voids. W hen in close proximity, the voids are found to  shield each 

other, bu t the resu ltan t strength  and toughness is insensitive to  the separation.

(a) .(b)

Figure 6.24: 2D C ontour plots, taken through the  centre of bo th  voids (aligned 
parallel to  tensile direction), of non-dim ensional norm al strain  for void separations 
of (a) 2 and (b) 10 un it lengths. The applied stress, in the horizontal direction, is 
1.4cry.

The effects of void separation upon either the  crack morphology, or the  toughness 

and strength  of the system, is found to  be inconsequential. The broken bonds and 

norm al strain  fields depicting the growth of one of the voids (separated by 2 un it 

lengths) are given in figure 6.25; sim ilar results are found for systems of increased 

void separation. The regions in the equatorial planes of the  two voids, in close 

proxim ity to  the voids, satisfy the critical strain  based criterion, and therefore a 

fracture surface is created, at one of the voids, in such a region. The crack would 

ra ther propagate through the extension of th is newly formed fracture surface th an  

create new surfaces, either about the void currently growing or the  a lternative void.



As the void grows the  strain  concentrations associated with th is crack propagation 

increase, and the effects of the second particle, being initially  negligible, become 

redundant.

The effects of orien tating  voids perpendicular, w ith respect to  the tensile direction, 

are now considered. The stress and strain  concentrations th a t exist in th e  equatorial 

plane of a  void are poten tially  reinforced, as bo th  voids share their equatorial plane. 

This is depicted in figure 6.26, where the  strain  fields for two undam aged system s, 

containing two voids separated by distances of 2 and 10 unit lengths, are presented. 

In the case where, the  voids are in close proxim ity the  strain  field exhibits a strong 

concentration between the  two voids.

The subsequent dam age, in itia ted  in the  system considering the  two voids in close 

proximity, is shown in figure 6.27. The voids coalesce (figure 6.27a), and th e  grow th 

of the resu ltan t void occurs (figures 6.27b and 6.27c). The plane of fracture rem ains 

the equatorial plane of the two voids, and the growth of the  single resu ltan t void 

progresses catastrophically. The initial strain  concentration between the  two voids 

has a detrim ental effect upon the system , as indicated by the resu ltan t decrease in 

toughness and strength.

The broken bonds and normal strain  field for a system containg two voids o rien tated  

perpendicular to  the tensile direction, bu t separated  by a distance of 5 u n it lengths 

is condidered in figure 6.28. In figure 6.28a the crack begins to  propagate from the  

upper void down towards the second void. This is not thought to be a consequence 

of intrinsic void coalescence in the system , as in figure 6.28b the  crack can be seen
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(c)
Figure 6.25: The broken bonds (left), and 2D norm al strain  contours th rough the  
centre of both  voids (aligned perpendicular to  tensile direction w ith avoid separation  
of 2 unit lengths), are presented for three stages of the sim ulation; applied stress is 
1.81cry and dam age is (a) 228, (b) 574, and (c) 1268.
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Figure 6.26: 2D C ontour plots, taken through the  centre of bo th  voids (aligned 
perpendicular to  tensile direction), of non-dim ensional norm al strain  for a void sep
aration of (a) 2 and (b) 10 un it lengths. The applied stress, in the  horizontal 
direction, is 1.4cry.

to  propagate around the  upper void, and propagate equally bo th  tow ards the second 

void and away from it. The strain  field a t this stage of th e  sim ulation does show 

a concentration between the  growing upper void and the s ta tic  lower void. The 

crack propagating from the  upper void now appears to  coalesce w ith the  second 

void, although the  crack propagation is already considered to  be catastrophic, and 

therefore it would appear th a t  the presence of two particles w ithin the  system has 

had little  detrim ental effect. This is also evident from the relative invariance of the 

strength  and toughness for systems containing voids separated  by 5 and 10 unit 

lengths (figure 6.23).

The rem aining configurations considered consist of two voids diagonally aligned with 

respect to the tensile direction. The initial norm al stra in  fields, prior to  dam age 

accum ulation are given in figure 6.29, which shows system s corresponding to  void
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(c)
Figure 6.27: The broken bonds (left), and 2D norm al strain  contours (right) through 
the centre of bo th  voids (aligned parallel to  tensile direction w ith a void separation  
of 2 unit lengths), are presented for three stages of the sim ulation; applied stress is 
1.74uy and dam age is (a) 222, (b) 971, and (c) 2858.
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(c )
Figure 6.28: The broken bonds (left), and 2D norm al strain  contours (right) through 
the centre of bo th  voids (aligned parallel to  tensile direction with a void separation  
of 5 unit lengths), are presented for three stages of the sim ulation; applied stress is 
1.79(7y and dam age is (a) 187, (b) 858, and (c) 1200.
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separations of 2.1 and 9.1 un it lengths. The norm al strain  range does not exhibit 

any significant variability between the  systems considered, although th e  fields are 

calculated using a central difference approxim ation, w hilst the  strain  based criterion 

is assessed in a localised region between two nodes. The differences are exhibited 

by the onset of crack propagation, hence the  variations in streng th  and toughness 

of the systems, and the resu ltan t crack morphology.

(a) (b)

Figure 6.29: 2D Contour plots, taken through the centre of bo th  voids (aligned di
agonally to tensile direction), of non-dim ensional norm al strain  for a void separation 
of (a) 2.1 and (b) 9.1 un it lengths. The applied stress, in the  horizontal direction, 
is \ A a y.

The dam age and norm al strain  fields, displaying void coalescence in the  system  w ith 

a void separation of 2.1, are presented in figure 6.30. The voids coalesce through the 

diagonal propagation of a crack between them ; once the voids have am algam ated , 

the resultant void grows perpendicular to  the tensile direction. This is m ore evident 

in the system which considers a greater void separation of 4.9 un it lengths (figure 

6.31); the crack m orphology is sim ilar, bu t the extent of diagonal crack propagation
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(c)
Figure 6.30: The broken bonds (left), and 2D norm al strain  contours through the  
centre of both voids (aligned diagonally to  tensile direction w ith a void separation 
of 2.1 unit lengths), are presented for three stages of the sim ulation; applied stress 
is 1.69(7^ and dam age is (a) 250, (b) 921, and (c) 2273.
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Figure 6.31: The broken bonds for two voids aligned diagonally to  tensile direction 
w ith a void separation of 4.9 un it lengths; the  applied stress is 1.76ay and dam age 
is 2244.

is increased. Extending the  void separation to  9.1 un it lengths results in the  growth 

of one of the  voids transverse to  the  tensile direction, exhibiting no propensity  for 

coalescence. This is reflected in the  strength  and toughness of the system s, where 

the diagonal orientation w ith respect to  the  tensile direction is more detrim ental 

than  either the parallel or perpendicular alignm ents. The effects of reducing the 

inter-void distance is g reater for the  diagonal configurations. Sim ilar effects have 

been observed experim entally, where in ductile fracture the crack has been observed 

to propagate in a zigzag m anner [24], and in void sheet coalescence the secondary 

population of particles debond in bands of intense shear between voids, created via 

the decohesion of the prim ary population of particles, a t 45° to  the tensile direction 

[18].
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6.3.1 Summary.

Systems consisting of voids aligned parallel w ith the tensile direction do not exhibit 

any appreciable depletion in streng th  or toughness w ith varying void separation. 

In contrast, the strength  and toughness of systems containing voids, bo th  aligned 

perpendicular and a t 45° w ith the  tensile direction, exhibit a  dependence on void 

separation; voids positioned in close proxim ity are significantly m ore detrim ental.

6.4 Interactions between two Fe3C particles.

T he detrim ental effects of alignm ent and particle separation upon the  streng th  and 

toughness of a two spherical Fe3C particle system  is investigated. The alignm ents 

and inter-particle distances are identical to  those of the previous section; para l

lel, perpendicular and diagonal alignm ents w ith respect to  the  tensile direction and 

particle separations of 2, 5, and 10 un it lengths (2.1, 4.9, and 9.1 un it lengths for 

diagonally aligned particles) are investigated. The resulting strength  and toughness 

of the  systems considered are depicted in figure 6.32, which reveals the  consequences 

of varying both the alignm ent and particle separation. It is found th roughout th is 

section th a t the resulting crack morphology is very sim ilar to  previously considered 

systems containing voids, although the effects and characteristics of void nucleation 

can be of im portance. As the failure criterion for interfacial decohesion is the  a t ta in 

m ent of a critical stress, and this is the  principle phenom ena of in terest, the  stress 

field is considered to  be of greater relevence.
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Figure 6.32: The nondim ensional streng th  and toughness, for different Fe3C particle 
alignm ents, as a function of particle separation. The tensile direction is considered 
to  be horizontal.

The dam age acquired by the  system  as a function of the  energy absorbed (num erical 

integration of the stress-strain  curve) is presented in figure 6.33, for system s of two 

particles aligned parallel w ith the tensile direction. Such plots were not considered 

for voided systems as dam age accum ulation occurs a t the onset of catastroph ic 

failure, whilst in particle systems the  processes of particle fracture and decohesion 

may result in dam age accum ulation w ithout incurring catastroph ic failure. The 

incremental nature of the relation is due to  the spasmodic accum ulation of dam age 

within the system, and subsequent arrest of propagating cracks. On th ree occassions 

the curves can be observed to plateau: a t the approxim ate dam age accum ulation of 

185, 440, and 670 broken bonds. T he resulting phenom ena are sim ilar for all three 

particle separations, and therefore only the  case where the partic le  separation  is 2
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un it lengths is elaborated. The broken bonds and norm al stress contours associated 

w ith the  three p lateaux in the  dam age-energy curves, for the  system  considering a 

particle separation of 2 unit lengths, are given in figure 6.34.
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Figure 6.33: The dam age accum ulated (broken bonds) as a function of the  energy 
absorbed (integration of the stress-strain  curve) for various particle separations. The 
particles are aligned parallel w ith the  tensile direction.

At the  first plateau the particle on the  left can be observed to  have partia lly  

debonded, and the propagating crack is arrested a t the  interfaces w ith the m atrix  

in the equatorial directions (figure 6.34a). As the energy of the system is fu rther 

increased (through the increase in applied stress) the particle becomes capable of 

com pletely debonding from the m atrix . The particle on the  right is shielded by the 

nucleated void on the left, and is therefore incapable of debonding. As the energy 

of the sytem  is again increased the particle on the right a tta in s  a sufficient level of 

stress a t the  interface for partia l debonding to  occur; full decohesion of the particle



(c)
Figure 6.34: The broken bonds (left), and 2D norm al stress contours (right) th rough 
the centre of both  particles (aligned parallel to  the  tensile direction with a particle 
separation of 2 unit lengths), are presented for th ree  stages of the sim ulation; (a) 
applied stress is 1.55cry and dam age is 185, (b) applied stress is 1.68<ry and dam age 
is 431, and (c) applied stress is L 8 ay and dam age is 661.
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is in terupted  by the catastrophic propagation of fracture into the m atrix.

The m ost intriguing phenom ena appears to  be the  shielding effects as a consequence 

of the  initial debonding of one of the particles (debonding of bo th  particles sim ulta

neously is im probable in this sim ulation, due to  quasi-static  aproxim ation of crack 

propagation). The effects of the in ter-particle distance is profound; the stress and 

strain  concentrations acom panying the deform ation of a Fe3C particle have been 

found to  be a t the poles of the particle, in the tensile direction, and therefore p a rti

cles aligned parallel to  the tensile direction may experience a concentration in stress. 

This stress concentration results in prem ature debonding, when particles are in close 

proximity, bu t the  subsequent shielding effects are also more pronounced. This is 

evident in figure 6.33, where a reduction in particle separation, results in void nu- 

cleation abou t the  first particle occuring a t lower energies, bu t the decohesion of the 

second particle, and subsequent catastrophic failure, occuring a t higher energies.

The dam age accum ulation in systems possessing two particles, orientated perpendic

ular w ith respect to  the tensile direction, are considered in figure 6.37. D ecreasing 

the particle separation has a detrim ental effect upon the  system; both  upon the  

initial debonding and the onset of catastrophic fracture. The process of debonding 

varies with the inter-particle distance, as indicated by the different p lateau levels in 

the  simulations.
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Figure 6.37: The dam age accum ulated (broken bonds) as a function of the  energy 
absorbed (integration of the stress-strain  curve) for various particle separations. The 
particles are aligned perpendicular w ith the tensile direction.

The broken bonds, norm al stress contours and norm al strain  contours associated 

w ith the two pla teaux  in the dam age-energy curves, for the  system considering a 

particle separation of 2 unit lengths, are given in figure 6.35. The first p lateau 

occurs subsequent to the partial debonding of bo th  particles; the dam age to  which 

occurs on the same side. The fracture arrests prior to  com plete debonding and the 

energy in the system is incremented, until th e  ductile fracture of the  in term ediate 

region occurs and the two voids initially coalesce (figure 6.35b). The fracture arrests 

a t this stage, incapable of progressing further, since the  region of high deform ation 

inbetween the partially  debonded particles was highly localised. F urther increm ents 

in the system energy result in the eventual growth of the resultant void into the 

m atrix , and catastrophic fracture.

128



The plateaux, for the  system considering a particle separation of 10 un it lengths, 

occur a t different regions of the dam age-energy curve, and the broken bonds, norm al 

stress contours and norm al strain  contours for these two regions are given in figure 

6.36. The first p lateau occurs after the partia l debonding of one of the  particles; 

the resu ltan t stress and strain  concentrations, in the equatorial plane of the  nucle

ated  void, do not appear initially  to  affect the  second particle. The energy w ithin 

the system is increm ented further until the  second particle begins to  debond, and 

is capable of com plete decohesion prior to  the arrest of dam age accum ulation, a t 

the second plateau. C atastrophic failure eventually occurs w ith the a tta in m en t of 

sufficient energy in the system  for void growth; through crack propagation from one 

of the  voids into the m atrix .

The final configurations to  be investigated consider the particles to  be aligned di

agonally, a t 45° with respect to  the tensile direction. The interfacial decohesion 

occurs in a sim ilar m anner for all three in ter-particle distances considered; although 

the final crack morphology follows th a t of the voided system (coalescence associated 

with particle separations of 2.1 and 4.9 un it lengths, and the independent grow th 

of one of the nucleated voids for a particle separation of 9.1 un it lengths). T he 

dam age-energy curves for the systems considered are given in figure 6.39. T here are 

two plateaux, which exist a t roughly the sam e level of dam age, for all three system s.
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Figure 6.39: The dam age accum ulated (broken bonds) as a function of the  energy 
absorbed (integration of the  stress-strain  curve) for various particle separations. The 
particles are aligned diagonally w ith respect to  th e  tensile direction.

The system containing particles separated by a distance of 2.1 un it lengths is inves

tigated; the  broken bonds and both  norm al stress and norm al strain  contours are

presented in figure 6.38, corresponding to  the same stages in the sim ulation as the

plateaux. The first p lateau occurs after the partia l decohesion of one of th e  p a rti

cles, the crack propagates along the partic le-m atrix  interface and is arrested , in the

equatorial plane, a t the  m atrix . Following subsequent increase in the energy of the

system, the other particle a tta in s the capability to  debond completely, as indicated

by the sudden rise in dam age accum ulated. At th is stage of the sim ulation, the

system possesses insufficient energy for void growth, bu t w ith increasing the  sys

tem  energy, crack growth occurs between the  two particles before catastrophically

continuing into the m atrix.
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6.4.1 Summary.

The systems considering the in teraction of Fe3C particles elucidate the  complex in

teractions between void nucleation and subsequent void growth. W hen particles are 

orientated  parallel to  the tensile direction the  stress concentrations, between p a rti

cles in close proximity, result in p rem ature decohesion, w hilst the  resu ltan t nucleated 

voids show evidence of a shielding effect. The more detrim ental configurations, con

sisting of particles orientated  bo th  perpendicular and diagonally w ith the  tensile 

direction, can result in com plicated phenom ena (such as partia l particle decohesion) 

occurring.

The effects of diagonally orien tating  particles would appear more detrim ental a t 

separations of «  5 un it lengths, th an  in system s where the particles are orientated 

perpendicular to  the tensile direction. This trend  does not continue w ith reduced 

separation, where the perpendicularly  orientated  particles are found to  be more 

deleterious. The discretisation effects, although lim ited through the  consideration 

of constant particle size, may exhibit a variable influence in different directions, and 

the effects upon particle decohesion, in the  diagonal directions, may differ from those 

in directions along the lattice.

6.5 Conclusions.

In this chapter the deform ation fields, and the prelim inary onset of fracture, have 

been investigated for an austenitic  steel p articu la te  system. The deform ation fields,
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in the presence of plastic deform ation, have been explored, and the  regions of stress 

and strain  concentrations (pertinent to  fractu re  in itia tion) have been identified. The 

irregularity  of the stress field w ithin the  particles, as a consequence of plastic defor

m ation, presents a key deviation from the  previously considered elastic behaviour.

The prelim inary decohesion of spherical Fe3C and MnS particles would appear con

sistent w ith experim ental expectations; MnS particles debond a t lower stress levels, 

as indicated by the lower interfacial strength , and com pletely debond prior to  void 

growth. The Fe3C particle, in contrast, debonds much later, a t higher stress levels, 

a t which point the  deform ation fields are sufficiently large to  enable the nucleated 

void (partially  debonded particle) to  spread into the m atrix .

The sim ulation of an elongated MnS particle appropriately  predicted the  character

istic particle fracture, as observed experim entally. The effects of varying the  aspect 

ratio  of an elongated MnS inclusion where two fold: firstly the  stress concentration 

in the  centre of the particle increases w ith the aspect ratio , resulting in in ternal 

fracture a t lower stresses, and secondly the strength  and toughness of the m ate

rial increases w ith the particle aspect ratio. W hether the increase in strength  and 

toughness is a consequence of the m utual shielding of the voids, nucleated through 

internal fracture, or an artifact of the  model, is unknown.

The interaction between two inclusions in a uniaxially deformed system were in

vestigated and it was found th a t generally when diagonally orientated  inclusions, 

w ith respect to the tensile direction are considered, the  system  exhibits a d e tri

m ental reduction in both  strength  and toughness; although in the  p articu la te  sys
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tem , considering particles in close proximity, th is does not appear to  be the case. 

The strength  and toughness of system s initially containing voids (and therefore not 

including particle decohesion) are consistently higher than  corresponding systems 

containing particles, indicating th a t void nucleation has a detrim ental effect.
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Chapter 7 

The Random Dispersion of 

Inclusions.

The size and positioning, of particle inclusions, appreciably influence the  strength  

and toughness of steels; the sca tte r in m ateria l properties is thought to  be a con

sequence of the random  distribution of particles. In order to  investigate the effects 

of particle dispersion, and volume fraction of inclusions, the la ttice spring model is 

applied to the  sim ulation of random  heterogeneous systems.

In order to  effectively analyse the ability  of LSM ’s to  describe macroscopic phenom 

ena through the sim ulation of m icrostructural features the probability  of finding a 

maxim um  stress intensity for a given system size is investigated. The probability  of 

a given level of m axim um  stress occurring in a given volume depends upon th e  s ta 

tistical d istribu tion  of constituents. The larger the system considered the  m ore void
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interactions th a t may occur, and hence the  greater the  probability  of a m axim um  

stress level occurring. An effective m ethod of analysing the  s ta tistics of extrem e 

events is the  W eibull distribution; the  d istribution is best fitted  using the  m axim um  

likelihood m ethod

The variation of the average volume fraction of voids between different d istribu tions 

is also expected to  result in variations in the extrem e levels of deform ation fields. 

In section 7.2 the  initial crack propagation is considered, and the  strength  and 

toughness of the  system s investigated.

T he m aterial under investigation is an austenitic weld steel, and the  inclusions are 

assumed to  be debonded; the sim ulation of voids is therefore undertaken. The 

distributions of spherical particle sizes and the num ber of inclusions found in a 

lOO/im2 sectioned area are given in the  following tables (obtained from Rolls-Royce 

Associates).

Spherical size d istribution Probability
<  0.5fim 52.4%

0.5 —y 1/irn 36.6%
1 —» 1.5/2712 8.4%
1.5 —> 2/2771 1.6%

>  2/2771 1.0%

N um ber of Inclusions (per lOO/irn2) P robab ility
<  100 2%

100 -> 150 25%
150 200 45%
200 250 25%
250 -> 300 3 %

The voids are random ly placed w ithin the  sim ulation according to  the  sam e s ta tis ti

cal d istributions as found experimentally. The positioning of voids in close proxim ity
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to  a boundary, such th a t the separation between the void and the  sim ulation bound

ary is less than  the voids radius, are rejected. This can bias the system as larger 

voids do not occur near the boundaries, although the sta tistica l d istribu tion  favours 

sm aller voids, and therefore this is not considered significant. The distance between 

voids is given a lower bound of two un it lengths; void overlap is therefore forbidden 

and plastic deform ation is allowed for in the in term ediate region.

In a system of 413 nodes the average num ber of voids is chosen to  be 8; enough voids 

to  enable the investigation of void interactions to  occur, whilst allowing sufficient 

void sizes (in un it lengths) to  capture the  necessary field disturbances. The average 

num ber of particles observed in a sectioned area of 100/im2 is 175, and the average 

particle radius (R ave) is |/xm , therefore 175 particles were detected in an volume of 

100/im2 x 2 x \ ( im  — 100/xm3. The non-dim ensional volume over which particles 

are positioned corresponds to  the  effective length, LeJ f  =  L* — 2R*ve, as particles 

positioned less than  the particle radius from the boundary are prohibited. Note 

th a t non-dim ensional quantities are denoted by a star. The length of a {100} bond 

in the model corresponds with a distance, d =  -jyn, as the  non-dim ensional length 

of a {100} bond is unity. The dim ensional size of the sim ulation is given by L3 =  

8 x -10̂ g— L =  7.7(i. In a system of size L* =  40 the  effective non-dim ensional 

system size, LeJ f  =  35.4, the average non-dim ensional radius, R “ve =  2.3, and the 

length of a {100} bond, d =  0.22(im. I t should be noted th a t the  sim ulations are 

independent of the  absolute dimensions of the  system, as the  behaviour is governed 

by continuum  mechanics.
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The em pirical cum ulative d istribution functions, corresponding to  the  s tatistical 

properties of the  non-dim ensional particle sizes and the  num ber of particles in a 

system  of size L * =  40, are given in figure 7.1. The random  num bers generated, 

in d ic ta ting  the void population and sizes, are governed by these functions. The 

corresponding experim ental da ta  is also presented, in h istogram m atic form, and it 

should be noted th a t particle sizes in the range <  0.5fim are in terpreted  as 0.25 —> 

0.5fim w ithin the sim ulation. This is to  restric t the radius of particles to  a lower 

bound of 0.25fim, or 1.15 un it lengths, as adequate sim ulation of sm aller voids 

is considered im practical. The statistical evaluation of the num ber of particles is 

also biased, as zero or single particle systems are considered profitless and therefore 

rejected; the  probability  of such an occurrence is small. Results from the  sim ulation 

of voided systems, obeying the correct sta tistical properties associated w ith real 

heterogeneous systems, are now presented.

7.1 System  size dependence.

The various system sizes considered, along w ith the average num ber of particles 

expected, is given in the following table.

System size (unit lengths) Average num ber of particles
30 2.96
35 5
40 8
45 11.9
50 16.9
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Radius o f particles (micrometers).

Radius o f particles (unit lengths).

(a)

0 50 100 150 200 250 300
Number o f particles.

Number o f  particles.

(b)

Figure 7.1: The em pirical cum ulative d istribution functions, corresponding to  the 
particle size d istribution and the  num ber of particles (L* =  40). E xperim ental data , 
in histogram m atic form, is also presented.
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The extrem e levels of the  deform ation fields are considered relevent to  th e  fracture 

process and therefore the  m axim um  stress field in the system is investigated, as a 

function of applied stress.

Sets of twenty sim ulations are conducted for each size and the  d istribu tions of ap 

plied stresses corresponding to  levels of m axim um  stress are obtained; as fracture is 

associated with the extrem e values of the  deform ation fields, the  question is: w hat 

is the probability  of a given level of m axim um  stress occuring for a given applied 

stress?

The size effect on failures in solids has been investigated by W eibull [11], th rough the 

in troduction of weakest link statistics; based upon the proposition th a t a chain as a 

whole has failed if any of its parts  has failed. The cum ulative d istribu tion  function 

is of the form

which upon differentiation results in the  following probability  density function

where b is the scale param eter, m  is the W eibull m odulus, a is the  location param eter 

and n is the num ber of links (volum etric variation). The dependence of the  W eibull 

distribution function on the system size can be in terpreted as a size dependency 

within the scale param eter, therefore becomes 6™, where the  suffix j  denotes size 

dependence.

(7.1)

(7.2)



The distribu tion  is com m only fitted to  experim ental d a ta  via the  following re la tion

ship

where a straight line fit of ln(x — a) against In In produces a gradient of

m, and an in tercept of —m \nb j .  In order for the least-square estim ator to  be un

biased, the  errors in one observation should be uncorrelated w ith those from other 

observations, and errors should be norm ally d istribu ted  w ith zero m ean and con

stan t variance [151]. This is not the case in the  Weibull d istribu tion  function, and 

therefore the m ethod of maxim um -likelihood estim ation is adopted.

The m ethod of m axim um  likelihood consists in taking as the estim ators those values 

of the param eters which m aximise the likelihood of the  observations [152]. The 

likelihood of a single observation is given by p(xij),where Xjj is the  i th observation in 

a system whose size is indicated  by j ,  and with the likelihood of a series of observation 

being given by A =  Yl<i,j>Pix ij)- C om putationally, it is m ore convenient for the  

logarithm  of the likelihood to  be considered; since In A is an increasing function of 

A they will bo th  possess a m axim um  a t the same param eter values. The m axim um  

is obtained through the  differentiation of In A with respect to  the  param eters. The 

three param eter W eibull d istribution  is com putationally  difficult to  solve d irectly  

(systems consisting of more than  one nonlinear equation are particu larly  difficult to 

solve numerically [153]).

The tw o-param eter W eibull d istribution is obtained through the  su bstitu tion  of tij =  

Xij — a, therefore rem oving the functional dependence upon the  location param eter;

(7.3)
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Figure 7.2: The variation of the  logarithm  of the  likelihood, for a single sytem  size 
as a function of b and m.  Contours corresponding to  95% confidence (In A =  34.8), 
90% confidence (In A =  35.6), and 80% confidence (In A =  36.4) are displayed; the 
m axim um  corresponds with In A =  37.8

the subsequent solution is consequently a function of the initial value of a. The 

logarithm  of the likelihood is of the form

where £ is the num ber of observation, per system size (currently tw enty). The 

variation of the logarithm  of the  likelihood, for a single sytem size as a function of 

b and m  is given in figure 7.2. The differentiations, with respect to  the  param eters 

m  and bj , are given

where N  is the num ber of observations, regardless of system size (currently  one 

hundred). M axim isation is obtained by setting  the  above equations to  zero; the

lnA  =  £  d n ( j r )  +  J 2  [(m -  1) (In i y - I n  &,•)] +  ^  -  ( | A  (7.4)
<j> *- \  3 /  J <i,j> <i,j> \  3 /  -

d in  A _  N
d m  m

(7.5)

(7.6)



following relations ensue [151]

d F { m )  _  N
d m  m ‘m 2

(7.7)

(7.8)

The size dependency w ithin bj is no longer present, and therefore m  is solved for all 

sizes simultaneously. The N ew ton-Raphson m ethod is utilised to  obta in  the  optim um  

estim ator of m (for which bo th  the  function and its derivative are required [153]), 

which upon substitu tion  into equation 7.6, gives the  estim ates of the  size dependent 

quantities bj. The constants m  and bj are therefore obtainable, as a function of a, 

and therefore the estim ation of a can be perform ed using the bisection m ethod.

In order to  estim ate the location param eter, the  following derivative is considered

upon setting  to  zero, th is equation can be solved through the bisection m ethod  [153], 

as the param eters m  and bj can be obtained as functions of a. In order to  solve 

the above expression the upper and lower bounds of a m ust be determ ined. As 

the param eter a represents the  lowest value of stress in the d istribu tion  curve, the 

value m ust be positive (zero probability of a tta in ing  a given stress in the  system  if 

no stress is applied) and less than  the minim um  observed value (probability  of an 

observation occuring m ust be non-zero). The necessary bounds are therefore zero, 

and the minimum observed value.

The empirical cum ulative d istribution  function is obtained by considering th e  d a ta  

in ascending order and assigning cum ulative probabilities as c(x) =  ^-j-, w here i is

(7.9)
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the rank of the specimen in order of increasing m easured value of x  [151]. The d a ta  

corresponding to  the a tta inm en ts of a m axim um  stress (m axim um  stresses of 0.5, 1, 

1.5, and 2 are considered) are given in figures 7.3 and 7.4, along w ith the  numerical 

fits using the technique described above. The four figures correspond to  the  same 

systems, bu t for different levels of stress, and are therefore sim ilar.

The d a ta  reveals an expected shift of the curves towards the  left w ith increasing 

system size; the d a ta  corresponding w ith system sizes of 45 and 50 un it lengths, do 

not adhere to  this trend, although the  fitted curves are very close, and th e  raw d a ta  

exhibits appreciable scatter. T he small sam ple size is thought to  be responsible for 

this scatter.

The size dependence of bj , assigned earlier, dictates th a t th e  variation of bj1 w ith 

the  inverse of the volume should be linear and possess no in tercept. T he volum e 

considered here is not the volume of the  system, bu t the active volume over which 

interactions between voids m ay occur; defined as (L* — 4R “ve)3.

The confidence in h™ is obtained from the confidence levels of the  param eters b and 

m, with the use of partia l differentials, from the relation

The confidence levels in the param eters b and m  can be estim ated by following 

sim ilar arguem ents to  those in the  sequential probability ratio  test [154]. T he test 

is based upon the comparison between two hypotheses, in order to  ascertain  w ithin 

a given confidence which hypothesis is true. In the current case the  two hypotheses

(7.10)
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Figure 7.3: The em pirical cum ulative d istribu tion  functions from sim ulation d a ta  
corresponding to the a tta inm ent of a m axim um  norm al stress of (a) 0.5 and (b) 1.0, 
and the estim ated functional forms obtained via the  m axim um  likelihood m ethod.
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are:

• H I  :- the hypothesis to  be accepted, w ithin various confidences, is th a t the 

estim ators arrived a t through the  m axim isation of the likelihood function are 

true.

•  H 2 the  hypothesis to  be rejected considers the estim ators to  be true, except 

for the estim ation of one param eter, which is varied.

The te st is based upon the ratio  of two likelihoods (corresponding to  the  two hy

potheses) being less than  a given constant, A. The constant is estim ated from the 

relation A  «  where a  is the prescribed strength  (for 95% confidence a  =  0.05) 

of H I  being accepted when H2  is true, and (3 is the  prescribed strength  of H 2 be

ing accepted when H I  is true  (both a  and (3 are assum ed to  be the  same). The 

value of the logarithm  of the likelihood, a t which a given confidence is estim ated, 

lies on the contour In A =  lnA maa; — In ( ~ a ). In figure 7.2 contours corresponding 

to  95% confidence (In A =  34.8), 90% confidence (In A =  35.6), and 80% confidence 

(In A =  36.4) are estim ated; the m axim um  In Amax =  37.8.

In order to  obtain confidence levels, for a given param eter, the  value of the  param ter 

is increased, or decreased, until the logarithm  of the likelihood is found to  cross the 

contour of prescribed confidence (this is achieved via the bisection m ethod). In this 

m anner positive and negative confidence levels of all param eters are obtained, and 

therefore the positive and negative confidence levels of b™.
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The variation of 6J1 w ith the  inverse of the  volume is shown in figures 7.5 and 7.6, and 

the  error bars correspond w ith estim ated confidence levels of 95%, 90% and 80%. A 

straight line fit, w ith zero intercept (independent of confidence levels), is included. 

The general trend  does appear linear, although the  da ta  points corresponding with 

system sizes 45 and 50 un it lengths deviate from this trend . The error bars are 

substantial, due to  the small sample sizes considered and the  resu ltan t scatter in the 

data . T h a t said, the results are in reasonable agreem ent, and the  effects of system 

size upon the  system would appear to  be in line w ith theoretical expectations.

7.2 Volume fraction variation.

The effects upon varying the volume fraction of voids are investigated. The systems 

considered, are of size L* =  40, and consist of voids belonging to  the  same size 

d istribution  as depicted in figure 7.1a. The num ber of particles are drawn from four 

d istributions, proportionally  related to  the  d istribution considered in figure 7.1b, 

bu t possessing an average num ber of voids of 4, 8, 16, and 32. The d istribu tion  

of strength  and toughness in the system s is investigated and an estim ate of the 

lower bound is obtained. The effects of volume fraction upon the strength  and 

toughness are ascertained. Twenty system s are considered for each volume fraction 

distribution, therefore eigthy sim ulations were conducted altogether.

The statistical likelihood of large voids occurring, whilst sm all, is not insignificant 

and as larger void volume fractions are considered th is can result in s ta tistical bias-
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Figure 7.5: The variation of the estim ated system size dependence (bm) w ith the  
inverse of the volume from sim ulation d a ta  corresponding to  the a tta inm en t of a 
m axim um  stress of (a) 0.5 and (b) 1.0. The error bars correspond w ith estim ated 
confidence levels of 95%, 90% and 80%. A stra igh t line fit, w ith zero in tercept 
(independent of confidence levels), is included.
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maximum stress of (a) 1.5 and (b) 2.0. The error bars correspond w ith estim ated 
confidence levels of 95%, 90% and 80%. A straight line fit, w ith zero intercept 
(independent of confidence levels), is included.
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ing. In order confidently to  sim ulate the inclusion of voids, a m inim um  separation 

between voids is presum ed in order to  exclude void overlap, w hilst voids are pre

cluded from the perim eter of the  sim ulation to  minimise surface effects. As the 

quantity  of voids considered is increased, it is not necessarily possible to  include 

m ultiple voids of larger dimensions. This can bias the  s ta tis tica l evaluation of the 

volume fraction; whilst a t low volume fractions a single large void can occur, in more 

dense systems the num bers of large voids are lim ited. This effect could be reduced 

by considering increased system  sizes.

In the previous section the size effects of the sim ulation were theoretically  predicted 

to  only modify the scale param eter of the  W eibull function (responsible for dispersion 

effects), whilst the Weibull m odulus (responsible for shape effects) is invariant with 

system size. This is no longer necessarily the  case, w ith system s considering different 

distributions in the num ber of voids. The location param eter provides a m inim um  

value of the d istribu tion  (a lower bound) and, assum ing th a t th is is a consequence 

of unfavourable void interactions, is therefore the same in all systems.

The natural logarithm  of the likelihood function is now given by

lnA  =  n]n  ( t 1)  +  H  t(m i ~  - | n ^ ) ] +  (7-n )
<i> L V / J <id> <tj> L J

where j  now represents the d istribu tion  dependence; th e  N ew ton-Raphson m ethod is

employed to  maximise the likelihood function, w ith respect to  the scale param eters

and the Weibull moduli, whilst the bisection m ethod is subsequently applied to

obtain the location param eter. It should be noted th a t the N ew ton-raphson m ethod

is applied four times, for each of the  d istribution dependent sets, bu t m axim ising of
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the likelihood of each of these sets results in an overall m axim isation of the  likelihood 

function.

The em pirical cum ulative d istribu tion  function, of bo th  the  strength  and toughness 

from the sim ulations, and the estim ated cum ulative d istribu tion  function, obtained 

via the  m axim um  likelihood m ethod, are presented in figures 7.7. T he different 

d istributions correspond to  the  average num ber of voids in the system: A) 4 voids, 

B) 8 voids, C) 16 voids, and D) 32 voids. T he resu ltan t form of the  d istribu tions are 

varied (a consequence of allowing variations in the  Weibull m oduli), w hilst the  scale 

param eter decreases w ith increasing volume fraction, indicating lower dispersions.

The lower bound strength  and toughness are given by the location param eters. The 

estim ator of the  location param eter for th e  streng th  d istributions is 1.29, and for 

the toughness d istributions is 0.067; these correspond, in dim ensional quantities, to  

677M Pa and 35M Pa respectively.

The detrim ental effects of increasing the volume fraction of voids is depicted in 

figures 7.8, which exhibit the variantions in streng th  and toughness. The variations 

in volume fraction for the four distributions considered are presented and, despite 

considerable scatter, the  detrim ental trends in bo th  strength  and toughness, w ith 

respect to  increasing volume fractions, are discernable.
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7.3 Conclusions

A lattice spring model reflecting the  s tatistical natu re  of the m icrostructural defects 

(voids in th is case) has been im plem ented in order to  elucidate macroscopic trends. 

The probability  of finding a given stress intensity  in systems of varying size, as a 

function of applied stress, have been investigated. The size dependency was found to  

be w ithin reasonable agreem ent w ith theoretical expectations, despite considerable 

scatter. S tatistical trends in the sim ulation d a ta  are therefore distinguishable when 

small sam ple sizes are considered.

The effects upon varying the volume fraction of voids in an austen itic  steel have 

been investigated; the  consequence of void nucleation, and the  resu ltan t degradation 

th a t may ensue, have not been considered. Assuming a critical norm al stra in  of 

60% in the m atrix , the m aterial specific lower bound strength  and toughness where 

ascertained. The deleterious effect upon increasing the void volume fraction was 

elucidated, although as a consequence of small system  size and tensile nonlinearity  

the scatter in toughness d a ta  is considerable.

The potential for employing a LSM in m odelling statistically  variable macroscopic 

param eters, such as the strength  and toughness of a given m aterial, has been suc

cessfully established. The m ethod could be used for the large scale study  of the  

effects of voids or particles, although particu la te  system s are more com putationally  

expensive as extensive dam age is accum ulated prior to  catastrophic failure.
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Chapter 8

Conclusions and future work.

8.1 Conclusion.

A three-dim ensional model of the deform ation and quasi-static  fracture of hetero

geneous system s has been presented w ithin this thesis. The model is governed by 

continuum  mechanics and is therefore size independent, unless directly related to  the 

dim ensional quantities of a real m aterial. The results are, consequently, applicable 

to  m any classes of m aterials.

8.1.1 Inhom ogeniety problem.

The ability of the model to  replicate the  elastic deform ation fields of a single particle 

system have been validated with respect to  the analytical results of Eshelby. A 

comparison was m ade between results from a discrete approxim ation to  a spherical
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particle and the  theoretical results which assume a perfectly spherical particle. It 

was found th a t the model predicts the correct stress and strain  fields w ith reasonable 

accord, bu t is sensitive to  the  size of the  particle. The agreem ent of the  m odel w ith 

theoretical expectations is also dependent upon the  ratio  of particle to  m atrix  elastic 

m oduli. The development of incipient plastic deform ation fields in the  m a trix  abou t 

a single inclusion have com pared well w ith alternative numerical results which were 

obtained from the literatu re, principally those of W ilner [1].

8.1.2 Simulation of inclusions in austenitic steel.

The model has been applied to  the  investigation of the  ductile fracture of particle 

systems, typical of those found in austen itic  steels. The deform ation fields were 

investigated around three spherical inclusions: a Fe3C particle (stiffer th an  m atrix ), 

a MnS particle (initially softer th an  the  m atrix , bu t subsequent to  plastic defor

m ation, becomes stiffer) and a void (softer than  m atrix). In teresting non-uniform  

stress fields w ithin the stiffer particles, subsequent to  plastic deform ation in the  sur

rounding m atrix , were observed. The concentration of the norm al stress field in the 

centre of the particle, and the reduction in the  tensile direction tow ards the  particle- 

m atrix  interface has been rem arked upon in the literature. The concentrations in 

the equatorial plane have not been m entioned, and therefore it is unknown if th is 

effect is an artefact of the sim ulation technique, or is a genuine phenom enon. A 

discrepancy between the concentration of stress w ithin the particles sim ulated  here, 

and those sim ulated by Xu et al [58], was accounted for th rough the  sim ulation of
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a harder particle (corresponding to  the  ra tio  of elastic m oduli of A1 to  SiC) and 

im posing a linear hardening regime upon the  plastic flow relation of the  m atrix; the 

choice of the constitu tive relation was found to  have a profound effect on the  stress 

concentration factor.

The observed decohesion of spherical Fe3C and MnS particles, and in ternal frac

tu re  of elongated MnS particles, were found to  be concordant w ith experim ental 

observations, whilst providing unique insights into both , v ia processes of dam age 

accum ulation and the accom panying deform ation fields. T he spherical MnS p a rti

cle was observed to  debond a t a lower applied stress than  the  Fe3C particle, and 

then continued to  debond completely; in contrast the Fe3C particle only underw ent 

partia l decohesion prior to  crack propagation into the  steel m atrix .

T he sim ulation of internal fracture w ithin elongated MnS particles revealed th a t  the 

governing phenom enon was the  stress concentration in the  centre of the  particle. 

Particles possessing larger aspect ratios were observed to  fracture a t lower levels of 

applied stress, as expected, bu t result in stronger and tougher m aterials. This mech

anism, in which internal fracture creates a series of voids which shield each other, 

could be relevent to  real m aterials. The dam age accum ulation abou t th e  internal 

cracks in the particle, subsequent to  particle bifurcation and preceding crack prop

agation into the m atrix , may also be influential. The fracture criterion employed 

in the current model is based upon critical norm al stress and strain  fields perpen

dicular to  the fracture surface being formed. If shearing forces (or an energy based 

criterion) were to  be considered, once the internal fracture of the partic le  reached
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the interface, dam age m ay not be fu rther accum ulated in the  particle. The shearing 

forces a t the interface may alternatively  enable decohesion of the particle from the 

m atrix  in the regions surrounding the internal cracks. This could have the  effect of 

dissipating the stress and strain  concentrations in a different m anner. I t should also 

be noted th a t poten tial dam age of the  particle or the interface prior to  deform ation, 

as a consequence of m aterial processing, has not been accounted for.

The interaction between two inclusions was investigated; system s contained either 

two voids or two Fe3C particles. O rien ta ting  the inclusions a t 45 degrees to  the 

tensile direction was generally observed to  have a detrim ental effect upon bo th  the  

stress fields and toughnesses of the system s considered. The system  containing two 

Fe3C particles in close proxim ity proved the  only exception to  this: here, particles 

orientated norm al to  the  tensile direction appeared to  be m ore deleterious. In order 

to minimise discretisation effects w ithin the  sim ulations of system s containing two 

inclusions, the inclusions were always centred on a node and were of consistent size, 

bu t it should be noted th a t the  discretisation of the inclusions along the axis of the  

sim ulation ({100} directions) will be different from the discretisation in a diagonal 

direction ({110} directions).

The voids do not possess interfacial properties, unlike the particles which possess 

properties in terpolated  between the  particle and m atrix  characteristics, and are 

therefore slightly larger. D espite th is difference in size, the  system s containing 

particles are consistently observed to  possess lower strength  and toughness. It is 

therefore concluded th a t the void nucleation process of particle decohesion is signif
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icant; regional variations in stress and strain  concentrations m ay be th e  influential 

factor.

8.1.3 Simulation of random microstructures.

R andom  m icrostructures have been considered which correspond to  those found 

experim entally in austenitic weld steels; the  inclusions are assum ed to  be voids. It 

is generally considered th a t inclusions, whose size are of the order of a micron, are 

the  sm allest th a t can be modelled w ith continuum  theory. The voids th a t have been 

considered here range upwards from around half a micron, bu t th is is not believed 

to  be significant.

The system  sizes were varied and the  level of m axim um  stress in a num ber of ran 

domly generated m icrostructures, were considered as a function of applied stress. 

T he probability  of a maximum level of stress occurring in the sim ulation, for a given 

applied stress, was investigated through the  application of W eibull sta tistics. The 

system size dependence is in good agreem ent w ith theoretical expectations, despite 

only twenty samples being considered and the  resulting  uncertainty, associated w ith 

the estim ation of the size dependent param eters, being significantly large.

The effects of varying the average num ber of particles whilst m ain tain ing  the  sam e 

system size allowed the effects of void volume fraction to be studied. T he system  

is deformed until catastrophic fracture occurs; as the  system only consists of voids, 

and crack tip  blunting is not considered, only relatively small levels of fracture are
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required. A detrim ental effect, upon the  strength  and toughness of a m aterial, was 

generally observed as the  volume fraction of voids was increased.

The volume fractions were lim ited due to  the size of the system considered. In order 

to  correctly model the  p lastic deform ation between inclusions a m inim um  separa

tion of a unit length m ust be im posed; the  plastic deform ation between two m atrix  

nodes m ust be perm itted . As the  system  size is increased, either the  num ber of voids 

considered or the accuracy w ith which the  system is sim ulated m ay be increased. In

creasing the num ber of particles will also allow larger particles (although sta tistica lly  

less likely than  sm aller particles) to  occur more often. C urrently  the  probability  of 

two large voids occurring does not appear to  be twice the probability  of a single 

large void occurring in th e  system , as it is logistically difficult to  fit m ultiple large 

inclusions in the sim ulation.

In order to  gain s tatistical d a ta  from particu la te  systems, such as streng th  and tough

ness, the dam age accum ulation preceding catastrophic failure m ust be sim ulated. 

The sim ulation of particle debonding or fracture will increase the  com putational 

expenditure, bu t not prohibitively.

8.2 Future work.

The plastic deform ation employed w ithin the current study is isotropic, bu t not 

volume conserving. W hilst th is may prove adequate for incipient p lastic deform a

tion, the large levels of plastic deform ation sim ulated in the  current s tudy  requires
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a Poisson’s ratio  greater th an  a quarter. It m ay be possible to  include such effects 

by rem oving the  inherent sym m etry of the  model, and therefore the  isotropic con

ditions th a t are imposed; for example, m aking bonds orientated perpendicular to  

the local principle stress vector softer than  bonds which are orientated  parallel. Al

ternatively  m ulti-body potentials could be considered, although th is would increase 

the com putational expense of the technique.

The plasticity  algorithm  upon unloading assumes a linear response, the  elastic m od

uli corresponding to  the current stress level divided by the m axim um  deform ation 

previously experienced. W hilst this is adequate for gradual unloading, during large 

plastic deform ation in the m atrix  this can result in negative spikes in the  deform a

tion fields subsequent to  bond removal. A lthough th is affects the  wake of the  crack, 

and does not appear to  influence the propagation of fracture (currently  propagation 

into the m atrix  is invariably catastrophic) it m ay be possible to  identify such areas 

and trea t them  separately; presum ably through trea tin g  the area as a boundary  and 

im posing constant relative displacements.

The deform ation a t the crack tip  is lim ited in resolution to  the spacing of the under

lying lattice, and therefore crack tip  b lunting  is a difficult effect to  incorporate. I t 

may be possible to  modify the fracture criteria, possibly through the incorporation 

of the derivatives of the displacem ent fields, to  replicate crack tip  b lun ting  effects. 

This is an area which may benefit from inform ation gained through sim ulations at 

sm aller length scales, using alternative m odelling techniques.

The fracture criteria used in this thesis were based on either a critical norm al stra in



(ductile m atrix) or a critical norm al stress (b rittle  particle and interface). As m en

tioned above, the  criteria could be extended to  include shearing com ponents of the 

deform ation fields. A lthough alternative fracture criteria may be considered in the 

future; for example, the  nonlinear interfacial p roperty  described by Needleman [61] 

could be adopted.

The sim ulation is currently driven through the  iterative application of constant forces 

a t the system boundaries. In order to  vary the  boundary  conditions to  allow the 

system to  be driven by strain  increm ents, the  conjugate gradient solver currently 

employed would have to  be modified to  solve the resulting asym m etric m atrix , which 

describes the system; th is would consequently enable the  extension of the boundary 

conditions to  introduce periodicity. The boundary conditions could poten tially  be 

in terpolated  from a region w ithin another sim ulation, which models the macroscopic 

fields of a notched specimen.

In summary, the  continuum  mechanical bahaviour of an austen itic  steel has been 

represented by a la ttice model, where nonlinear deform ation and fracture have been 

considered, whilst m aintaining the linearity  of the  model. Reasonable agreem ent 

between both  theoretical and experim ental expectations, and the  results obtained 

from LSM sim ulations, have been observed in the  m odelling of heterogeneous sys

tems. The com putational efficiency of the L attice Spring Model is considered to  be 

the principal advantage over alternative numerical m ethods.
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