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At the top of Pentonville Road 
I saw the sun setting 
The town laid out before me 
Looked beautiful to me 
Away from all the sighing 
The suffering and the dying 
I dreamed of the future 
The young and the free

Shane MacGowan



ABSTRACT

Adhesive bonding as an alternative method of joining materials together has many advantages over the 
more conventional joining methods such as fusion and spot welding, bolting and riveting. For example, 
adhesives can be used to bond dissimilar materials, adhesive joints have a high stiffness to weight ratio 
and the stress distribution within the joint is much improved. Stainless steels are commonly used in 
applications that would clearly benefit from adhesive bonding; architectural cladding, because of the 
large bond areas involved, and in the railway industry, due to improved acoustic insulation and greater 
fatigue resistance. The work presented in this thesis is concerned with adhesive bonding of stainless 
steels intended for structural applications.

As a starting point to the investigation, a review of the literature was conducted, covering the intrinsic 
mechanisms of adhesion, the significance of the chemical and physical nature of the adherend surface, 
the types of structural adhesives, the methods of testing adhesive joints and surface characterisation 
techniques. The first experimental stage, involved a screening programme to evaluate a number of 
candidate adhesive systems and adherend surface pre-treatments. Standard single overlap shear and 
floating roller peel tests conducted in ambient conditions were employed in the discrimination and the 
degree of compatibility between adhesive and adherend, as measured by the proportion of cohesive 
failure on the post-fracture face, was also considered. In the second stage of the experimental work, lap 
shear tests were used to evaluate the affects of surface contamination on joint strength. In addition, lap 
shear and peel tests were considered to assess the significance of the adhesive bondline and primer 
thickness. In order to assess the environmental durability of adhesive joints, lap shear and peel tests 
were conducted after ageing in ambient and high humidity environments. To compliment the data, 
Boeing wedge crack extension tests were also carried out on adhesive bonded joints incorporating 
adherends with different surface conditions, to investigate the contribution to joint strength in ambient 
and adverse environments afforded by surface pre-treatment. The next stage of the experimental work 
was designed to evaluate the significance of the adherend type and its thickness on initial lap shear 
strength. Several different commercial grades and gauges of stainless steel were used in the tests, which 
were conducted at room temperature. The final stage of the experimental work was concentrated on the 
room temperature creep and dynamic fatigue performance of adhesive joints. Throughout the course of 
study a number of different surface analytical techniques were employed to physically and chemically 
characterise the surfaces of pre-bonded adherends and to identify the locus of failure on post-fracture 
faces.

The single overlap shear and floating roller peel tests were able to differentiate between the candidate 
adhesives; epoxy systems, particularly the toughened variants, were considered the most suitable 
structural adhesives for bonding stainless steels in load bearing applications. However, these tests and 
subsequent tests using lap shear and peel, failed to discriminate conclusively between the different 
surface pre-treatments (except untreated or crudely prepared surfaces) and ageing environments. The 
Boeing wedge crack extension tests were found to be sensitive to the condition of the adherend surface 
and the environment in which the joint is located; roughening the surface of the adherend either 
chemically or physically was found to enhance joint durability in ambient, high humidity and sub-zero 
environments. The use of surface primers and coupling agents may protect the un-bonded surface and 
benefit joint durability, but excessively thick primer layers may reduce joint strength. The stiffness of 
the adherend material was found to significantly influence lap shear strength. Stiffer adherends, either 
thicker or inherently stronger, give higher joint strengths because they resist joint rotation and the peel 
stresses at the extremes of the overlap are minimised. Lap joints with low stiffness adherends will fail 
by peel-dominated, adherend-controlled failure and lap joints with high stiffness adherends will fail by 
shear-dominated, adhesive-controlled failure. Two elastic models were proposed for determining the 
elastic rotation and the line peel force as a function of the shear stress. The room temperature creep 
results showed an endurance limit of ~40% mean static failure load (design load = 250 N.mm'1). The 
dynamic fatigue results were favourable compared to those of spot welded and weldbonded joints and an 
endurance limit of ~ 40% mean static failure load (design load = 250 N.mm*1) was observed. Finally, 
leaving the hard fillets of cured adhesive squeeze-out, intact at the extremes of the overlap, will reinforce 
the joint and minimise the rotation-induced peel stresses that will lead to premature failure when the 
adherend plastically deforms under static or dynamic loading.
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NOMENCLATURE

a half grip-to-grip distance (mm)

b lap joint width (mm)

C compliance (MPa'1)

c half overlap length (mm)

h adherend thickness (mm)

I inertia for rectangular plane (mm4)

1 overlap length (mm)

M bending moment (kN.mm)

P load (kN)

Pa load amplitude (kN)

Pf line peel force (N.mm'1)

Pm mean load (kN)

P*■ max maximum load (kN)

P .A irrni maximum load (kN)

Pr load range (kN)

R load ratio

Re arithmetic average roughness (pm)

rf surface roughness parameter

Rp proof stress (MPa)

S equilibrium spreading parameter

t adhesive thickness (mm)

T glass transition temperature (Deg.)

wA thermodynamic work of adhesion (mN.m'1 (mJ.m'2))

Ys yield strength (MPa)

Yi surface tension (surface free energy) of a liquid in a vacuum (mN.m'1 (mJ.m'2))

Yiv surface tension (surface free energy) of a liquid (mN.m'1 (mJ.m'2))

Ys surface tension (surface free energy) of a solid in a vacuum (mN.m'1 (mJ.m'2))

Ysi interfacial tension (mN.m'1 (mJ.m'2))
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Ysv surface tension (surface free energy) of a solid (mN.m'1 (mJ.m'2))

6 crack opening displacement (mm)

E Young’s modulus of elasticity (MPa)

8 engineering strain

0 a advancing contact angle (Deg.)

0f contact angle on rough surface (Deg.)

0m rotation due to moment (Radians)

0p rotation due to peel stresses (Radians)

0r receding contact angle (Deg.)

0s contact angle on smooth surface (Deg.)

0TOTAL total rotation (Deg.)

equilibrium spreading pressure

CT engineering stress (MPa)

aP line peel stress (MPa)

CTs mean apparent shear strength (MPa)

viii



CONTENTS

1.0. INTRODUCTION 1

1.1. PROJECT OBJECTIVES 3

2.0. REVIEW OF LITERATURE 4

2.1. INTRINSIC ADHESION 5

2.1.1. MECHANISMS OF ADHESION 5

2.1.1.1. MECHANICAL INTERLOCKING 5

2.1.1.2. DIFFUSION THEORY 6

2.1.1.3. ELECTROSTATIC THEORY 6

2.1.1.4 ADSORPTION THEORY 7

2.1.1.4.1. PRIMARY BONDS 8

2.1.1.4.2. SECONDARY BONDS 9

2.1.1.4.2.1. INDUCED DIPOLE BONDS 9

2.U.4.2.2. PERMANENT DIPOLE BONDS 10

2.1.1.4.2.3. HYDROGEN BONDS 11

2.1.1.4.2.4. LONDON DISPERSION FORCES 11

2.1.1.4.3. DONOR-ACCEPTOR BONDS 12

2.1.2 INTERFACIAL CONTACT 12

2.1.2.1. SURFACE TENSION AND SURFACE FREE ENERGY 12

2.1.2.2. PARTIAL WETTING OF A SOLID SURFACE 13

2.1.2.2.1. EFFECT OF SURFACE ROUGHNESS ON CONTACT ANGLE 15

2.1.2.3. THERMODYNAMICS OF ADHESION 16

2.1.2.4. SURFACE FREE ENERGIES 17

2.2. PRACTICAL ADHESION 18

2.2.1. SURFACE CLEANLINESS 18

2.2.2. MECHANICAL PRE-TREATMENTS 19

2.2.3. CHEMICAL PRE-TREATMENTS 21

2.2.4. SURFACE PRIMERS 24

ix



25

25

27

33

33

33

33

34

35

35

35

36

36

36

37

38

39

39

40

43

45

45

45

45

46

47

86

SURFACE PREPARATION FOR STAINLESS STEELS 

AN INTRODUCTION TO STAINLESS STEELS 

SURFACE PRE-TREATMENTS

STRUCTURAL ADHESIVES AND ADHESIVE SELECTION

STRUCTURAL ADHESIVES

CHARACTERISTICS OF STRUCTURAL ADHESIVES

CHEMICALLY REACTIVE ADHESIVES

EVAPORATION OR DIFFUSION ADHESIVES

HOT MELT ADHESIVES

DELAYED TACK ADHESIVES

FILM ADHESIVES

PRESSURE SENSITIVE ADHESIVES

CONDUCTIVE ADHESIVES

CHEMICAL FAMILIES USED AS STRUCTURAL ADHESIVES

STRUCTURAL ADHESIVES FOR STAINLESS STEELS

ADHESIVE SELECTION

MECHANICAL TESTING OF ADHESIVE JOINTS

TEST GEOMETRY’S

JOINT DURABILITY

STATIC AND DYNAMIC FATIGUE TESTING 

SURFACE ANALYTICAL TECHNIQUES 

SURFACE CHARACTERISATION 

PHYSICAL CHARACTERISATION 

CHEMICAL CHARACTERISATION 

FAILURE ANALYSIS

ADHESIVE SCREENING

THE EFFECT OF WEAK BOUNDARY LAYERS ON THE 
MECHANICAL PERFORMANCE OF ADHESIVE-BONDED 
STAINLESS STEEL JOINTS

x



5.0. ENVIRONMENTAL DURABILITY OF ADHESIVE-BONDED 99
STAINLESS STEEL JOINTS

6.0. COMPARISON OF THE MEAN APPARENT SHEAR 112
STRENGTH OF STAINLESS STEEL LAP JOINTS 
INCORPORATING DIFFERENT GRADES AND
SURFACE FINISHES

7.0 STATIC AND DYNAMIC FATIGUE PERFORMANCE 136
OF ADHESIVE-BONDED STAINLESS STEEL LAP JOINTS

8.0. SURFACE CHARACTERISATION 150

9.0. DISCUSSION 168

10.0. CONCLUSIONS 179

11.0. FUTURE WORK 182

REFERENCES 184

xi



PLATES

Plate 3.1.
SEM micrograph showing evidence of stressing in DP 490 adhesive due to ballotini.

Plate 3.2.
Optical micrograph of DP 460 fracture face.

Plate 3.3.
Scanning electron micrograph of DP 460 fracture face. Showing cliff- like fracture edges. 

Plate 3.4.
Optical micrograph of 7823 S fracture face.

Plate 3.5.
Optical micrograph of 3532 B/A fracture face.

Plate 3.6.
Optical micrograph of DP 490 fracture face.

Plate 3.7.
Optical micrograph of 9323 B/A fracture face.

Plate 3.8.
Scanning electron micrograph of DP 490 fracture face. Showing cohesive 
failure within adhesive.

Plate 3.9.
Scanning electron micrograph of DP 490 fracture face. Showing cohesive 
and adhesive failure.

Plate 3.10.
Scanning electron micrograph of DP 490 fracture face. Showing cracking.

Plate 3.11.
Scanning electron micrograph of DP 490 fracture face. Showing interfacial failure.

Plate 3.12.
Scanning electron micrograph of 9323 B/A fracture face. Showing adhesive and 
cohesive failure.

Plate 3.13.
Scanning electron micrograph of 9323 B/A fracture face. Showing adhesive and 
cohesive Failure.

Plate 4.1.
Adhesive failure. Weak adhesion at the adhesive / adherend interface.

Plate 4.2.
CohesiveAdhesive failure. Weak cohesion within the bulk adhesive.

Plate 4.3.
InterfacialAdhesive failure. Weak cohesion within the surface adhesive.

Plate 4.4.
Interfacialoxide failure. Weak adhesion between metallic oxide and parent metal.

xii

58

73

73

74

74

75

75

76

76

77

77

78

78

94

94

95

95



Plate 8.1.
Scanning electron micrograph of AISI304L stainless steel with a 2B surface finish. 
Surface condition As Received (Ra = 0.1 pm).

Plate 8.2.
Scanning electron micrograph of AISI 304L stainless steel with Scotchbrite 
Abraded surface (Ra = 0.2 pm).

Plate 8.3.
Scanning electron micrograph of AISI 304L stainless steel with Alumina 
Blasted surface (Ra =1.1 pm).

Plate 8.4.
Scanning electron micrograph of AISI 304L stainless steel vdihAcid 
Etched (H2S04 - smut removed) surface (Ra = 1.8 pm).

Plate 8.5.
Scanning electron micrograph of AISI 304L stainless steel with 
Smutted (H2S04 - smut un-removed) surface.

Plate 8.6.
Scanning electron micrograph of AISI 304L stainless steel with 
Passivated surface.



1:0 INTRODUCTION

Structural adhesives are extensively used in the aerospace industry to join metals such as aluminium, 

titanium and their respective alloys and, increasingly, fibre-laminated adherends such as carbon-fibre 

and glass fibre reinforced plastics (1). Compared with joining by screws and riveting, adhesive bonding 

offers reduced fabrication costs, increased fatigue resistance of components, improved aerodynamics and 

considerable weight reduction (2). It was reported in 1986, that ~15% of the structural weight of 

aluminium constructed aeroplanes could be saved using bonding techniques as opposed to riveting and 

fastening with screws (2).

The construction of the modem car involves many different adhesive materials (3). However, their use 

to date can be considered as 'non-stmctural' since they have been mainly used in non-load bearing 

applications, or to supplement other joining methods (3), for example, sealing the seams in the 

manufacture of motor vehicle bodies (4). This situation is changing as developments in materials and 

processes are resulting in adhesives being used in both greater quantities and more demanding 

applications (3). Examples include; the bonding of the ring gear in a Renault differential, and the 

structural gasketting used in the Rover K Series engine (3).

In contrast with the structural adhesives used in aircraft, the development of adhesives for bonding steel 

has been governed not only by considerations of highest possible shear and peel strengths, and later, 

good durability, but more by the consideration of simple and economic processing properties (5). The 

search for increased efficiency and economy in the joining of assembled structures has historically 

moved from rivets to melt-weldments to spot-weldments to weld-bonding. The latest stage, weld- 

bonding, involves the combination of spot-welding and adhesive bonding (6,7).

In order to convince the engineering industry of the possibilities and benefits of adhesive joining it must 

be demonstrated that these joints can cany pre-calculated loads not only at the time of manufacturing 

but over the lifetime of the products. These time periods may vary from a few years to three to four 

decades. Static loads (tensile strength and room temperature creep strength) as well as dynamic (fatigue 

strength) loads are important. The environment in which the joint operates is equally important, and



structural joints would be expected to endure loads in diverse range of environments. Thus, testing the 

mechanical properties of adhesive-bonded joints should be done in different environments, over a 

temperature range from - 40°C to + 60°C.

Stainless steel alloys have often proved difficult to bond, because of the inherent passive, non-interacting 

surfaces which characterise these alloys. As a consequence of this, mechanical and/or chemical pre

treatments are often employed to modify the surface of stainless steel adherends, in order to improve 

joint performance (8, 9). The development of the toughened adhesives has, to some extent, helped 

alleviate the problem; toughened acrylic and single-part and two-part epoxies will bond these alloys 

well, giving high initial joint strengths (10). Abrasion followed by a solvent wipe may be sufficient for 

low load applications, although chemical treatments will almost invariably be necessary where good 

durability in demanding environments is a requirement (11).

The sponsor of the research program was Avesta Sheffield AB, a company formed in 1992 by a merger 

between Avesta AB and the Stainless Steel Division of British Steel pic. Avesta Sheffield is one of the 

world's leading manufacturers of stainless steel, accounting for 15 percent of the world's production; in 

1994, the Group produced 923,000 tonnes of stainless steel, an increase of 17 percent over the previous 

year (12). The Group have a commitment to research and development and have not over-looked the 

potential of adhesive bonding technology, particularly in structural applications such as architectural 

usage and, more specifically, as a possible alternative to spot welding the carriage panels of the ADtranz 

X2000 and the new X2 high speed trains. It is the potential of using adhesives for structural joining in 

applications such as this that was the main impetus of the research programme.

ADtranz Traction is one of largest manufactures of trains and carriage stock in Europe and it has 

recently entered the markets of the USA and Australia. The new X2 is based on the X2000 and its 

asynchronous operation and robust traction motors will guarantee performance to the maximum speed of 

210 km/h. The majority of the sections in the unit underfiame and the greater part of the car body are 

manufactured from stainless steel; the car bodies are currently spot welded, although ADtranz are

2



considering the potential offered by both weld-bonding and adhesive bonding, for economic reasons and 

because of the improved acoustic insulation.

The adhesives used in the research program are supplied by the Adhesives, Coatings and Sealants 

Division of 3M United Kingdom pic. 3M is a US company with a world-wide turnover exceeding $ 14 

billion and it is expanding; new products introduced within the last four years accounted for 30 % of 

sales. 3M have a commitment to research and development, investing over $ 1 billion in 1993.

1.1. PROJECT OBJECTIVES

1. - to evaluate a number of different adhesive systems, in order to find a structural adhesive that 

is compatible with stainless steel.

2. - to investigate the performance of simple adhesive - bonded stainless steel fabrications under

tensile shear and peel loading.

3. - to assess the environmental durability of the aforementioned joints.

4. - to appraise the dynamic durability of adhesive - bonded stainless steel joints.

5. - to consider the practicalities of using adhesives to bond stainless steels.

3



2.0 REVIEW OF LITERATURE

The literature review is divided in to five parts: 2.1. Intrinsic Adhesion', 2.2. Practical Adhesion', 2.3. 

Structural Adhesives and Adhesive Selection; 2.4. Mechanical Testing o f Adhesive Joints', and 2.5. 

Surface Analytical Techniques. The first part deals with the theoretical aspects of adhesive bonding; the 

mechanisms of adhesion and surface wetting. The second part is concerned more with the practical 

aspects of adhesive bonding; adherend surface preparation to enhance adsorption, and use of primers. 

Section 2.3. describes the different types of structural adhesives and considers those with the potential 

for bonding stainless steels. Section 2.4. summarises the different types of test methods and joint 

configurations, and finally, Section 2.5., summarises surface analytical techniques for surface 

characterisation and fracture analysis.

4



2.1. INTRINSIC ADHESION

2.1.1. MECHANISMS OF ADHESION

There are four main theories that have been proposed to explain the phenomenon of adhesion. Although 

the most widely accepted is the adsorption theory, each of the others is appropriate in certain 

circumstances, and may contribute to some extent to intrinsic adhesion. The adhesion mechanisms are 

explained in detail by a number of authors (11,13-19) and are briefly described in the following text. 

The four main theories are:

(i) Mechanical interlocking.

(ii) Diffusion theory.

(iii) Electrostatic theory.

(iv) Adsorption theory.

2.1.1.1. MECHANICAL INTERLOCKING

This theory proposes that the major source of intrinsic adhesion is a result of mechanical interlocking of 

the adhesive into the irregularities of the adherend surface. However, adhesion has been attained on 

perfectly smooth surfaces (20, 21) and optically smooth surfaces (22), which would suggest that 

mechanical interlocking is not one of the major mechanisms, at least not on a molecular level. There is 

no doubt that mechanical interlocking is the appropriate mechanism in certain circumstances, for 

example, it is responsible for securing the mercury amalgam in tooth cavities (11).

Mercury
Amalgam

5° Undercut

Figure 2.1. Mechanical interlocking: mercury amalgam in tooth cavity.
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Another example is the bonding of leather, where the outer layer of leather is removed to free the ends of 

the corium fibers so that they can embed in the adhesive and the adhesive penetrate between them (15). 

Roughening the substrate surface prior to bonding, either by physical or chemical means, is often carried 

out to improve joint strength, although the enhanced performance is more likely to be due to the more 

rigorous cleaning afforded by these techniques or because of the increased surface area available for 

surface adsorption which results from surface roughening, rather than the increase in strength being as a 

consequence of mechanical interlocking. Therefore, it was considered more appropriate to discuss 

mechanical interlocking and the significance of surface roughening in Section 2.2. Practical Adhesion, 

rather than under the heading of intrinsic adhesion.

2.1.1.2. DIFFUSION THEORY

Voyutskii (23) first proposed that diffusion is the major driving force for polymer autohesion i.e. 

adhesion of polymers to themselves and to each other (14). Autohesion involves the mutual diffusion of 

polymer molecules across the interface, and it requires that molecules, or chain segments, of the 

polymers (adhesive and adherend) possess sufficient mobility and are mutually soluble (11). The 

concept is quite simple; one end of the polymer molecule chain from one surface diffuses into the 

structure of the second surface so that the molecule forms a bridge or bond across the interface (13). 

This theory however, is only relevant in the adhesion of a material to itself or a similar material, and 

therefore, is not an appropriate model for polymer-metal (metal oxide) adhesion, and thus, it is only 

discussed briefly in this section.

2.1.1.3. THE ELECTROSTATIC THEORY

If the adhesive and the adherend have different electronic band structures there will probably be some 

transfer of electrons on contact in order to balance Fermi levels, which will result in the formation of a 

double layer of electrical charge at the interface (11). This theory was primarily proposed by Deryaguin 

et al (24-26), and suggests that the electrostatic forces for such contact or junction potentials may 

contribute significantly to intrinsic adhesion (11). The adhesive and the adherend are likened to the two 

plates of a capacitor, and the work of separation is equated to that required to separate the two charged



capacitor plates (13). There is considerable controversy associated with this theory and it is not widely 

accepted as of general importance, but the mechanism is likely to contribute to certain rather special 

instances of adhesion.

2.I.I.4. THE ADSORPTION THEORY

The adsorption theory is the most widely accepted theory, and adequately explains metal (metal oxide) - 

polymer adhesion. This mechanism proposes that materials will adhere because of the inter-atomic and 

intermolecular forces which are established between the atoms and the molecules in the surface of the 

adhesive and adherend (11). The most common forces are Lifshitz - van der Waals forces. These forces 

give rise to secondary bonds and are subdivided into: permanent dipole - dipole interactions; dipole - 

induced dipole interactions; and London dispersion forces (11). Hydrogen bonds can also be formed 

across the adhesive / adherend interface, and these are similarly classed as secondary bonds. Primary 

bonds across the adhesive / adherend interface are possible (chemisorption), which incorporates ionic, 

covalent, and metallic interfacial bonds (11). Donor acceptor bonds may also occur and they have a 

bond strength intermediate between primary and secondary bonds. These bonds are subdivided into 

Bronsted acid - base interactions and Lewis acid - base interactions (11). The types of bond and their 

bond strengths are given in Table 2.1.
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Table 2.1. Bond types and typical bond energies (27-29).

TYPE OF BOND BOND ENERGY 
(kJ.mol ’)

Primary Bonds

Ionic 600-1100
Covalent 60-700
Metallic 110-350

Donor - Accentor Bonds

Bronsted acid-base Interactions f  1000
(i.e. up to a primary ionic bond)
Lewis acid-base interactions t  80

Secondary Bonds

Hydrogen Bonds
Hydrogen Bonds involving fluorine t4 0
Hydrogen Bonds excluding fluorine 10-25

van der Waals bonds
Permanent dipole-dipole interactions 4-20
Dipole-induced dipole interactions <2
Dispersion (London) Forces 0.08-40

2.1.L4.1. PRIMARY BONDS

A pure ionic bond is one in which a positive ion and negative ion attract each other, each ion acting as a 

nucleus surrounded by a rigid spherical distribution of electrons (28). In covalent bonding stable 

electron configurations are assumed by the sharing of electrons between adjacent atoms. Two atoms that 

are covalently bonded will each contribute at least one electron to the bond, and the shared electrons may 

be considered to belong to both atoms (30). However, very few compounds exhibit pure ionic or 

covalent bonding, but rather, the inter-atomic and intermolecular bonds are usually partially ionic and 

partially covalent (30). When two atoms have different degrees of electronegativity, the bond between 

them will have at least partial ionic character. If the atomic orbitals of the two atoms are such that the 

(directed) orbitals may overlap, and if electrons are available to occupy the resulting orbitals the bond 

will have at least partial covalent character (28). Interfacial primary bonds, highly ionic in character, 

have been reported (31-33) between polymeric adhesives and metal oxides (11). Klein et al (34) found 

infrared evidence of primary covalent bonds between a polyurethane adhesive and epoxy-based primers, 

and such interactions gave the highest joint strength (11). The final type of primary bond is the metallic



bond. An ideal metal crystal consists of a regular array of ‘ion cores’ in a sea of valance electrons. The 

ion cores consist of atomic nuclei and the remaining non-valence electrons (30). The valance electrons 

are not attracted to any one particular atom and are, more or less, free to drift throughout the entire 

metallic mass. In addition to the interactions of the valance or ‘conduction’ electrons, there is a mutual 

attraction of the ion cores for each other; repulsion exists because the ion cores all have a net positive 

charge, and attraction exists due to the dispersion force of the non-valance electrons in the ion cores 

(28).

2.1.1.4.2. SECONDARY BONDS

The most common are Lifshitz van der Waals forces which exist between virtually all atoms and 

molecules. Lifshitz van der Waals bonds are much weaker than the primary bonds and their presence 

may be obscured if any of the primary bonding types are present (30). These secondary forces arise from 

atomic or molecular dipoles, which exist whenever there is some separation of positive and negative 

portions of an atom or molecule; the bonding results from the coloumbic attraction between the positive 

and negative ends of the dipole (30).

2.1.1.4.2.L INDUCED DIPOLE BONDS

A dipole may be induced in an atom or a molecule that is normally electronically symmetrical as shown 

in Figure 2.2. However, because atoms are continuously vibrating, instantaneous and short lived 

distortions of the electrical symmetry of the atoms or molecules occur, and thus, small electric dipoles 

are induced (30). One dipole can in turn produce a displacement of the electron distribution of an 

adjacent atom or molecule, thus a second dipole is induced that is weakly attracted to the first; this is one 

type of van der Waals bonding (30).
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atomic nucleus

+ ---------------

(a) (b)

Figure 2.2. Schematic representations of (a) an electrically symmetrical atom and (b) an induced

atomic dipole (30).

2.I.I.4.2.2. PERMANENT DIPOLE BONDS

Permanent dipole moments exist in some molecules by virtue of an asymmetrical arrangement of 

positively and negatively charged regions; such molecules are called polar molecules. Consider a HC1 

molecule (Figure 2.3.); a permanent dipole arises from the net positive and negative charges that are 

associated with the hydrogen and chlorine ends of the HC1 molecule (30).

H Cl

+ 4 *

Figure 2.3. Schematic representation of a polar hydrogen chloride molecule (30).

Polar molecules can also induce dipoles in adjacent non-polar molecules, and a bond will form as a 

result of the attractive forces between the two molecules. Lifshitz van der Waal forces will also exist 

between adjacent polar molecules and the associated binding energies will be significantly greater than 

bonds involving induced dipoles (30).
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2.1.1.4.2.3. HYDROGEN BONDS

The strongest secondary bonding mechanism is a special case of polar molecular bonding, the hydrogen 

bond. This occurs between molecules in which hydrogen is covalently bonded to an electronegative 

atom - usually fluorine, oxygen or nitrogen. In such cases the single hydrogen electron is shared with 

the other atom, thus, the hydrogen end of the bond is essentially a positively charged proton. This 

highly positively charged end of the molecule is capable of a strong attractive force with the negative end 

of an adjacent molecule. In essence, this single proton forms a bridge between two negatively charged 

atoms (30). The formation of hydrogen bonds across the interface appears to enhance the intrinsic 

adhesion and has often been observed by many authors, for example, Kusaka and Suetaka (35) employed 

‘Attenuated Total Reflectance Infrared Spectroscopy’ to study the interfacial bonding between a 

cyanoacrylate adhesive and an anodized aluminum substrate. They observed a lowering of the C = O 

stretching frequency and a shift in the anti-symmetric stretching vibration of the C - O - C group to a 

higher frequency in the infrared spectrum of the cyanoacrylate when it was adsorbed onto the surface of 

the aluminium. These changes were interpreted as being due to the formation of interfacial hydrogen 

bonds between the carbonyl groups on the cyanoacrylate adhesive and hydroxyl groups on the surface of 

the aluminium oxide (1 1 ).

H F H F

hydrogen bond

Figure 2.4. Schematic representation of hydrogen bonding in hydrogen fluoride (30).

2.I.I.4.2.4. LONDON DISPERSION FORCES

London dispersion forces explain the attraction between non-polar molecules (28). A succinct 

qualitative explanation of the forces was given by Hirschfelder et al (36). At any instant the electrons in 

molecule ‘a’ have a definite configuration, so that molecule ‘a’ has an instantaneous dipole moment
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(even if it possess no permanent electric dipole moment). This instantaneous dipole in molecule ‘a’ 

induces a dipole in molecule ‘b \ The interaction between these two dipoles results in a force of 

attraction between the two molecules. The dispersion force is then the instantaneous force of attraction 

averaged over all instantaneous configurations of the electrons in -molecule ‘a’.

2.1.1.4.3. DONOR - ACCEPTOR BONDS

Besides the Lifshitz - van der Waals interactions, there are short-range forces due to donor - acceptor 

interactions (14). Fowkes et al (29, 37-41) have argued that the formation of acid-based interactions 

between adhesive and substrate may represent a major type of intrinsic adhesion force that operates 

across the interface (11). This classification includes hydrogen bonds, which are considered as a sub-set 

of acid-base interactions. Liquid and polymer surfaces can have one of three types of hydrogen bonding 

capability (42): (a) proton acceptors (electron donors or bases); (b) proton donors (electron acceptors or 

acids);and (c) both proton acceptors and proton donors. If the intermolecular distance is short range (<3 

A ) a stronger molecular interaction can take place between a donor (acid) and an acceptor (base).

2.1.2. INTERFACIAL CONTACT

Interfacial contact and surface wetting has been comprehensively described by many authors 

(11,14,15,43), and the basic principle are explained in the subsequent text. Adsorption is believed to be 

one of the most important mechanisms in achieving polymer-metal adhesion. Thus, surface free 

energies and surface wettability are important factors to consider; since the extent of atomic or molecular 

interaction will increase as the degree of intimacy between adhesive and adherend increases. Before 

explaining wettability it is necessary to define surface tension and surface free energy.

2.I.2.I. SURFACE TENSION AND SURFACE FREE ENERGY

Within the bulk of a liquid the attractive forces exerted on molecules by adjacent molecules are balanced 

in all directions. However, at the liquid surface there is an imbalance of attractive forces which results 

in the surface molecules experiencing a net inward attraction towards the bulk liquid.
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Figure 2.5. The imbalance of attractive forces at a liquid surface gives rise to surface tension and 

surface energy (13).

This attraction tends to reduce the number of molecules in the surface region, which consequently 

increases the intermolecular distance. To bring new molecules into the surface region, work must be 

done, and therefore, surface molecules will have higher energy than those of the bulk liquid. This extra 

energy of the surface molecules is called ‘surface free energy’ or ‘surface energy’, and is expressed as 

energy per unit area (mj. m*2); this is the energy needed to create a unit area of new surface. The higher 

energy surface molecules make the liquid surface behave as if it were in tension, as if constrained by an 

elastic membrane, and this tension is expressed as force per unit length (mN. m*1). Surface energy and 

surface tension are numerically and dimensionally equivalent, and the terms are often used 

interchangeably.

2.1.2.2. PARTIAL WETTING OF A SOLID SURFACE

In 1805, Young (44) showed that the surface tensions acting at the surface of the three phase contact 

point of the liquid drop resting at equilibrium on a solid surface may be resolved in a direction parallel 

to the surface.
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Figure 2.6.

where ysv =

Yiv =  

Ysi =

> Ys

A liquid drop resting at equilibrium on a solid surface (11).

ysv = ysi + yiv COS6  The Young Equation

surface tension or surface free energy of the solid, 

surface tension of the liquid, 

interfacial tension.

(2.1.)

The term ysv is the surface tension or the surface free energy of the solid surface resulting from 

adsorption of vapour from the liquid, and will be lower than the surface energy of the solid surface in a 

vacuum, ys by an amount known as the equilibrium spreading pressure, 7ig.

y s v - y t v - T t s  (2.2.)

substituting into equation (2 .1 .),

ys = ysi + yiv cos0  + m  (2.3.)

When 0 > 0°, the liquid is non-spreading. But the liquid will spread spontaneously over the surface 

when, 9 = 0°. Thus, for complete wetting to occur,

ysv>ysi + yiv (2.4.)

ysv > ysi + yiv +  m  (2.5.)

These criteria may be expressed by defining a parameter termed the equilibrium spreading, S, where:

S  -  y s v - y si - y i v  (2 .6 .)

or alternatively,

S  = ys - y * i - y iv - m  (2.7.)
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When S > 0, the liquid will completely wet a solid surface. However, it is also possible for a liquid 

spread across a solid surface even when 0  > 0 °, but this will of course require an external pressure to 

forcibly spread the liquid (1 1 ).

2.I.2.2.I. EFFECT OF SURFACE ROUGHNESS ON CONTACT ANGLE

Figure 2.7. A liquid drop showing advancing and receding contact angles, where 0a is the 

advancing contact angle and 0 r is the receding contact angle.

Contact angle hysteresis occurs because solid surfaces are seldom smooth or chemically homogenous, 

and thus different values of the equilibrium contact angle, 0 , may be obtained depending upon whether 

the liquid drop is advanced or withdrawn across the solid surface. It has been shown (45) that surface 

roughness can change the apparent advancing contact angle and may be expressed by,

c o s#  = Tf cos 6s (2 .8 .)

Where, 0S is the contact angle of a liquid drop on a smooth surface,

0 f is the contact angle of a liquid drop on a rough surface, 

rf is a surface roughness parameter; = actual area / projected area.

If on a smooth surface 0S is less than 90°, then roughening the surface will further decrease the contact 

angle to 0f and thereby increase the wettability. However, if on a smooth surface 0S is greater than 90°, 

roughening the surface will only increase the contact angle to 0 f and thereby decrease the wettability.
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For a more detailed account on the dynamics and kinetics of wetting, the reader is referred to the work of 

de Gennes (43).

2.1.2.3. THERMODYNAMICS OF ADHESION

Ysi

Liquid-

Solid-

Yi

Figure 2.8. The physical representation of Dupre’s analysis (13).

In 1869, Dupre (46) considered the work needed to separate a liquid from a solid surface. He defined 

the thermodynamic work of adhesion, WA, as the sum of the surface free energies of the solid and liquid 

phases minus the interfacial energy, i.e. the energy of new surface created minus the energy of interface 

destroyed.

Wa = p  + f tv -p i  The Dupre equation (2.9.)

Note: In the Dupr6  equation (2.9), ys represents the surface free energy of the solid surface in a vacuum. 

But in the Young equation (2.1.), y^ is used, which represents the surface free energy of the solid surface 

in equilibrium with vapour. Thus, to make the two equations compatible, the Dupr6  equation may be 

rewritten, substituting ys for ysv using equation (2 .2 .)

Thus,

Wa -  pv + m  + p v - p i  (2.10.)

Now substituting ygv from the Young equation,

Wa = pv(l +  COS#) + 7Ts (2.11.)
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The above equation accurately describes the situation of a drop of liquid adhesive on a solid surface, but 

because surface energies do not change much on solidification, it also may be used to represent a drop of 

solid adhesive on a solid surface.

2.1.2.4. SURFACE FREE ENERGIES

Organic materials, such as polymers, are classified as low energy surfaces, with surface free energies 

usually less than 100 mJ.m'2. Metals, metal oxides and ceramics, with surface free energies typically 

greater than 500 mJ.nr2, are classified as high energy surfaces (11). Zisman et al (47-51) developed a 

empirical approach to characterising low energy surfaces. He established that, for low energy surfaces 

and a series of liquids, a rectangular relationship frequently existed between the cosine of the contact 

angle, cos 0, and the surface tension of the wetting liquid, yiv. Zisman defined a critical surface tension 

of wetting, yc, by the value to which yiv extrapolated as cos 0 tends to unity, i.e. as 0 tends to 0°. Thus, yc 

is the surface tension of a liquid which will just spread on the surface giving a zero contact angle ( 1 1 ). 

The work of Zisman and others is well documented and is detailed in most text books on the subject of 

theoretical adhesion. Contact angles on low energy surfaces are easily measured, however, it is much 

more difficult to achieve on high energy surfaces because they will always be covered with low surface 

energy contamination, although, many techniques have been used to determine the values of surface free 

energies of high energy surfaces (52-55).
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2:2 PRACTICAL ADHESION

The strength of an adhesive joint depends not only on the cohesive strength of the adhesive (or 

adherends), but also on the bond strength at the adherend / adhesive interface (56). Adhesion at the 

interface occurs within a layer of molecular dimensions and the presence of surface contaminants, which 

are themselves weakly adherent and which prevent contact between the adhesive and the adherend, can 

reduce the bond strength considerably. Certain adhesives are available which can tolerate contaminants 

such as light-machine or protective oils, but, even so, the type of contaminant needs to be carefully 

matched to the adhesive type and its thickness controlled, to enable the adhesive to dissolve and displace 

the contaminant adequately (11). Rosty et al (57) has claimed some success bonding oil-coated 1020 

steel using an epoxy adhesive.

Although in many applications no, or very little, surface pretreatment is employed to the substrate 

materials prior to adhesive bonding, to attain the maximum in joint performance some form of surface 

pre-treatment is almost always necessary and this is particular relevant to structural applications where 

durability is a very important consideration. Therefore, for optimum adhesion, the adherend materials 

must be cleaned or converted to a suitable condition prior to adhesive bonding and this is the purpose of 

all surface pre-treatments (56).

2:2:1 SURFACE CLEANLINESS

Metallic surfaces will almost certainly be contaminated with some form of grease or oil and a degreasing 

pre-treatment is therefore essential. Common pre-treatments for metallic surfaces range from, wiping 

the bond surface with a solvent-wetted cloth, to much more effective methods such as, solvent vapour 

degreasing or immersing the substrates in liquid solvent degreasing baths, often incorporating an 

ultrasonic agitator. Whatever method is adopted, the degreasing must be thorough and contaminants 

must not be re-deposited on the surface as the solvent evaporates.

Common organic solvents used include 1,1,1-trichloroethane or perchloroethylene. These solvents are 

very effective although they must be checked periodically for the formation of corrosive acid.
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Trichloroethylene and other organic solvents are becoming less favourable in industry due to their 

hazardous nature and indeed, in some countries their use is restricted or even prohibited.

Following solvent degreasing, residual inorganic contaminants are removed using alkaline cleaners or 

detergent solutions, which are commercially available or may be prepared from existing formulations. 

Uninhibited (etching type) strong alkaline cleaners are used for ferrous materials, titanium and certain 

copper alloys, whilst aluminium requires inhibited solutions if etching is to be avoided. Alkaline 

cleaning leaves the substrates non-receptive to many adhesives and is therefore often followed by a 

mechanical or chemical treatment (1 1 ).

2:2:2 MECHANICAL PRE-TREATMENTS

Mechanical treatments involve the abrasive action of wire brushes, abrasive pads, sand and emery 

papers, or shot/grit blasting techniques to remove weak surface layers which complicate the bonding 

operation. In addition to cleaning the substrates and removing weak oxide layers, abrasion techniques 

create a macro-rough surface, that increases the surface area available for bonding. Mechanical 

roughening also increases the surface activity of the surface, which enhances the bonding mechanism. 

The techniques of grit (sand) or shot blasting are preferred in industry (11), because they give the most 

reproducible results compared with other abrasion methods. Generally however, abrasion methods are 

less uniform and more difficult to control than chemical treatments, and they may produce a roughened 

surface which is susceptible to penetration by liquids and corrosive media (58).

The variables associated with grit blasting are grit size, pressure of blast, exposure time, angle of 

incidence, and distance between the blast nozzle and the adherend (59). A variety of abrasive media is 

available for grit/shot blasting processes; alumina, quartz and carborundum grits being the most suitable 

for steels and light alloys (58). The most favourable results are generally obtained with sharp-edged 

grits, as round blasting media such as iron shot and glass beads tend to create an unsuitable peened 

surface. The abrasive is typically angular chilled iron of size G04 to BS 254 or angular alumina of 

180/220 mesh (11). However, Atkins et al (60) has shown that variations in pressure in grit blasting, 

the angle of incidence of the jet, or the abrasive type have little influence on the resultant joint strength.
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Grit blasting may be a dry or wet process; dry abrasion produces dust which must be removed before 

bonding, and wet abrasion, although it is capable of rinsing away dust residues, must use water of 

sufficient purity to combat corrosion and prevent deposition of salt residues on drying. In each case it is 

important to degrease the surface before and after abrasion and to ensure that the abrasion medium is 

free of substances which are likely to contaminate the surface.

As referred to earlier, abrasion techniques produce a roughened surface which results in an increased 

surface area available for bonding. It might be expected therefore, that an improvement in joint strength 

will not only be due to the increased area available for bonding, but also due to the increased mechanical 

locking affect of the roughened surface. Jennings (61) conducted detailed comparisons between bonding 

to polished surfaces of aluminium and stainless steel substrates, and rough, machined or abraded 

surfaces. An epoxy-polyamide adhesive was employed to bond the adherends and the results from room 

temperature tests are shown in Table 2.2.

Table 2.2. Joint strength as a function of surface roughness. Jennings (61).

SURFACE CONDITION BUTT JOINT 
STRENGTH (MPa)

j COEFFICIENT OF 
VARIATION (%)

Aluminium Alloy (6061)
Polished 1 pm diamond paste 28.8 24.4
Abraded through 600 SiC paper 30.9 24.9
Abraded through 280 SiC paper 39.0 17.5
Abraded through 180 SiC paper 36.7 20.4
Sandblasted with 40 to 50 mesh SiC2  grit 48.5 14.4

Stainless Steel (AISI304)
27.8 2 0 . 8Polished 1 pm diamond paste

Regular machined grooves 35.2 2 0 . 0

Sandblasted with 40 to 50 mesh SiC2  grit 53.4 1 0 . 8

It may be seen that the rougher the surface the stronger the joint, with sandblasting giving the strongest 

joints. As the test temperature was increased, making the adhesive more ductile, the differences in joint 

strengths resulting from the smooth and rough surfaces disappeared. Jennings considered that the better 

wetting and increased surface area afforded by the roughened substrates probably made some 

contribution to the higher joint strengths, although this could not explain the observed effect of
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temperature; he suggested that the effect of surface topography on the local stress distribution was 

possibly the main factor. As Kinloch (11) explained: if the macroscopic surface was random as for 

sandblasting, it could be effective in preventing cracks aligning and propagating along any line of 

interfacial weakness in the joints. Such alignment and propagation are more likely for a smooth, 

polished substrate surface. Also, the effect of surface roughness on the ease of crack propagation would 

be expected to be less important as the adhesive becomes less brittle and more ductile.

Thus, it appears that roughening the surface of the substrates may lead to increased joints strengths, but 

that such improvements do not generally arise from simple mechanical locking (11). They may arise 

from the veiy effective cleaning action associated with the abrasion process, the increased surface area 

available for bonding, the increased surface energy, the often improved kinetics of wetting, and from the 

more subtle affects due to changes in the local stress distribution; for example, an increase in roughness 

may increase localised energy dissipation in the adhesive near the interface and prevent any cracks at, or 

close to, the interface from aligning and then readily propagating.

2:2:3 CHEMICAL PRE-TREATMENT

Chemical and electrochemical treatments are employed to chemically modify the surfaces of adherends 

in order to improve initial joint strengths and enhance durability. In addition to the cleaning action, 

chemical treatments can be used to increase the micro roughness of substrates, and may be employed to 

produce a strong, chemically resistant surface layer that, for example, may improve bond strength 

retention in service (56). The treatments involve immersing the substrates in reagents (which range 

from dilute or concentrated acid or alkaline solutions) at room or elevated temperatures. The acids and 

bases attack metal oxides preferentially to the base metal and remove these potential mechanically weak 

layers. With some metals, for example aluminium, further immersing under controlled conditions and 

with milder solutions such as add dichromates, may produce stable and mechanically strong oxide 

layers of controlled structure and thickness. Anodising is a common electrochemical pretreatment 

employed on aluminium and its alloys to develop preferred oxide layers on surfaces prior to adhesive 

bonding, and is used extensively in the aerospace industries. In anodising, the adherend acts as the 

anode and an inert electrode acts as the cathode; a typical electrolyte would be phosphoric acid.
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Anodising is performed only after the adherend has been etched, to enable a porous oxide layer to 

develop on top of that oxide layer formed after etching (59). This porous layer enables the adhesive (or 

primer) to readily penetrate the pores to form a strong bond. In the subsequent text, reference is made to 

the "anodising" of stainless steels, however, the term anodising is a misnomer when applied to these 

materials since the mechanism involved is one of passivation. The procedure, however, is essentially the 

same.

With nearly all high energy surfaces, in order to achieve the maximum durability to aqueous 

environments, a chemical pretreatment and/or a primer should be considered (11). Particular attention 

should be paid in the selection of chemical surface pre-treatment, with the practical and economic 

implications also being assessed. Chemical pre-treatment may require careful monitoring of the various 

baths and also, may present a waste disposal problem. It is also very important that the selected 

treatment does not adversely affect the adherend material being treated; certain titanium alloys and 

martensitic steels may become embrittled if hydrogen is generated during the process.

The ultimate performance of adhesive bonded stainless steel joints is observed when the substrates are 

chemically pre-treated (62-65). A typical pretreatment consists of degreasing and water rinsing, 

followed by etching in sulphuric acid (60°C), water rinsing, de-smutting in chromic acid (60°C), water 

rinsing and drying (1 1 ). Some workers (8 , 1 1 ) consider complete de-smutting (removal of iron oxide, 

formed during the etching process) to be essential if high joint strengths are to be realised, since the un

removed smut acts as a weak boundary layer. In the case of stainless steels little is known about the 

mechanisms, whereby a treatment such as the typical one given above leads to improved joint 

performance; especially as to why the environmental resistance at the interfacial regions is much 

improved in comparison with that observed when an abrasion treatment is employed. However, the 

effectiveness of the pretreatment appears to be very sensitive to the manufacturing path used for the steel 

(63-65), as may be seen from the data shown in Figure 2.9.
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Figure 2.9. Single-lap shear strength of joints prepared from stainless steels as a function of 

immersion time in water: Gettings et al (63). The stainless steels had nominally the same bulk 

chemical composition but had followed somewhat different manufacturing paths, as shown below. The

steels were etched in sulphuric acid and de-smutted in chromic acid prior to bonding.

Melting Rolling Flattening Heat Treatment
1st 2nd (In Air)

(a) In air Yes Roller level Air anneal and pickle 240-260 °C
(b) In vacuum No None Bright anneal (NH3 ) 340-360 °C
(c) In air Yes Stretch flatten Bright anneal (NH3 ) 340-360 °C

It was observed that, the relative amounts of austenite and martensite present, which are influenced by 

the manufacturing path, appear to control the rate of etching within the acid bath, and hence the 

topography of the etched substrate. Martensitic structures, lead to a faster etching rate and a rougher 

surface on the etched substrate, and also one which was a somewhat different chemical composition.

It is not only the material structure that may effect the etching rate, contaminants present in the 

treatment tanks may also have an effect: For several years Bell Helicopter Company (USA) have 

successfully used strong sulphuric acid solutions in the preparation of 300 series stainless steels for 

adhesive bonding (6 6 ). Although the solutions have proved very effective, problems of stainless steel 

weight loss, due to the heavy etching, have been experienced. Therefore, a new process, based on a 

mixture of sulphuric acid and sodium bisulphate, was developed, to produce a lightly etched surface that 

was still receptive to adhesives.
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Initial assessment work on the new process revealed no problems, however, after several weeks use, two 

effects were observed: (i) the etching action on some components was difficult to initiate; (ii) other 

components failed to etch uniformly. An investigation was carried out and small quantities of lead in 

the bisulphate etch solution (dissolved from the tank lead lining and the lead heating coils) were found 

to be responsible for changes in the characteristics of the etched stainless steel surfaces. The 

investigation concluded that as little as 5 ppm of lead will change the etching activity of the solution.

2:2:4 SURFACE PRIMERS

The use of primers as a pretreatment for high energy surfaces prior to adhesive bonding is becoming of 

increasing importance in industrial applications, where they are most commonly applied as the final 

stage in a multistage pretreatment operation (11). The main reasons why primers are employed are:

(i) To improve the performance of the bonded component

(a) Some adhesives, for example high-temp polyimides, have too high a viscosity to 

adequately wet the substrate. Therefore, a primer is formulated (essentially a solvent diluted 

version of the adhesive) and applied to the substrate prior to the application of the adhesive to 

ensure complete wetting of the surface. The primer may also incorporate ingredients to 

improve properties such as thermal stability and environmental resistance.

(b) The joint strengths of ’difficult to bond' substrates can be improved by employing a 

primer, where the role of the primer is to establish strong interfacial forces to both the adhesive 

and the substrate.

(c) In addition to improving the initial joint strength, primers may be used to improve 

joint durability; the primer may establish strong and moisture resistant interfacial bonds, 

protecting the substrate from hydration and corrosion which may form a weak boundary layer.
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(d) Joints incorporating brittle adhesive types often have poor peel strengths. However, 

the peel strength of the joint may be improved tty priming the substrate with a lower-modulus, 

tough primer.

(ii) To increase production flexibility in the bonding operation.

Following surface pretreatment, high energy substrates will readily adsorb atmospheric 

contamination as a consequence of the increased surface activity resulting from the surface 

pretreatment. After a certain surface exposure time, which may be only a few hours for 

chemically treated substrates, the contamination may be to such an extent that joint 

performance will be adversely affected, particularly with respect to durability (67-70). To 

overcome this problem the substrates may be treated with a primer, within a few hours of the 

surface pretreatment. Such primers are air-and/or oven-dried and are usually non-tacky and 

thus, may be then handled, and if necessary stored for several months prior to the application of 

the adhesive. These primers are typically based on epoxy polyurethane or phenolic materials 

and are often formulated so that they assist in providing good environmental resistance to the 

bonded component.

2.2.5. SURFACE PREPARATION FOR STAINLESS STEELS

2.2.5.I. AN INTRODUCTION TO STAINLESS STEELS

Iron and the usual iron alloy, steel, are from a corrosion view point relatively poor materials since they 

rust in air, corrode in acids and scale in furnace atmospheres. In spite of this there is a group of iron- 

base alloys, the iron-chromium-nickel alloys known as stainless steels, which do not rust in sea water, 

are resistant to hot, concentrated acids and which do not scale up to 1100°C. It is this largely unique 

usefulness, in combination with good mechanical properties and manufacturing characteristics, which 

gives the stainless steels their raison d’etre and makes them an indispensable tool for the designer (71).
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The four main types of stainless steel are so-called because of their room temperature microstructure; 

austenitic, martensitic, ferritic and duplex: the latter comprising a combined structure of austenite and 

ferrite. The type of microstructure produced is determined by the chemistry of the steel, and is 

responsible for the physical and chemical properties peculiar to these alloys, although, the physical 

properties of the steel can be influenced by the extent of mechanical working during production, for 

example by cold rolling. A convenient but very approximate method of relating composition and 

microstructure in stainless steels is by means of the Schaeffler diagram, given in Figure 2.10. (72). In 

this diagram, the elements that behave like chromium in promoting the formation of ferrite are 

expressed in terms of a chromium equivalent

Cr equivalent = (Cr) + (2Si) + (1.5Mo) + (5V) + (5.5A1) + (1.75Nb) + (1.5Ti) +(0.75W)

In a similar manner, the austenite-forming elements are expressed in terms of a nickel equivalent

Ni equivalent = (Ni) + (Co) + (0.5Mn) + (0.3Cu) + (25N) + (30C)

all concentrations being expressed as weight percentages.
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Figure 2.10. Schaeffler diagram.

Stainless steels are sub-divided into different grades, comprising carefully alloyed steels, chemically 

engineered to afford a diverse range of properties, for example, oxidation resistance at high 

temperatures, formability, and structural strength and toughness, etc. The chemical and physical nature 

of the inherent surface oxide, which helps to protect these alloys from corrosion, is also determined by 

the alloy chemistry and influenced by the subsequent production route, for example, acid pickling is used 

to create a dull, matt 2B surface finish and a reflective, bright annealed surface finish is achieved by 

annealing in cracked ammonia. Thus, the composition and structure of the intrinsic surface oxide will 

vary depending upon the particular grade of stainless steel and its production route.

2.2.5.2. SURFACE PRE-TREATMENTS

In 1965 Botrell (73) evaluated several pre-bonding treatments for stainless steel (FV 520 - martensitic 

stainless steel. The treatments employed were: vapour degreasing; mechanical abrasion; hydrofluoric- 

nitric acid etching, hydrochloric acid-formalin-hydrogen peroxide etching; and hydrochloric acid 

etching. He found that joints incorporating adherends subjected to mechanical abrasion and those
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treated by etching gave higher lap-shear strengths than joints including vapour degreased adherends. He 

attributed the increase in apparent lap shear strength to the increased surface roughness afforded by 

mechanical and chemical roughening.

Allen et al (62) investigated seven chemical treatments for stainless steel (FV 520 - martensitic stainless 

steel): sulphuric acid etching; sulphuric and oxalic acid etching; sulphuric acid and sodium sulphate 

etching; hydrochloric acid etching; hydrochloric acid and sodium chloride etching; hydrochloric acid 

and ferric chloride etching; and hydrofluoric etching. In each case the smut was removed by dipping in 

concentrated nitric acid. The adhesives used were an epoxy-phenolic, an epoxy, and a polyimide. The 

adhesive bond properties were tested in torsional shear using napkin ring test pieces, polished using 

successive grades of emery paper to 600 grit, then polished with diamond paste. Allen found that 

etching in any reducing acid would improve joint performance, especially sulphuric and hydrofluoric 

acids.

In 1983 Haak and Smith (74) evaluated the mechanical performance of adhesive-bonded stainless steel 

joints. No less than 19 surface pre-bonding treatments were considered. The adherend material 

employed was a duplex alloy (austenitic and martensitic) AM355. Wedge tests were performed 

according to ASTM-D3762 at 50°C and 100 % relative humidity; stress durability tests (ASTM D2919) 

at 60C and 100 % relative humidity and lap shear tests (ASTM 1002-72) were also carried out. The 

adhesive used was Hysol EA 9628H and the adherend surfaces were primed before applying the adhesive 

using Hysol EA 9210. The oxides formed on the steel as a result of the surface treatments were 

characterised using Auger Electron Spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), 

ellipsometiy, surface potential difference (SPD), photoelectron emission, and water contact angle 

methods. Considering hydrothermal-stress endurance, cost and simplicity, the optimum surface 

treatments for AM355 stainless steel were found to be sulphuric acid / sodium dichromate and nitric acid 

anodising (passivating). It was found that the bond endurance increases for those treatments that allow 

the formation of a stable (passive) chromium oxide layer. Mechanical interlocking was also thought to 

improve bond endurance, which resulted from the formation of a capillary network or micro-roughness 

layer if the treatment could selectively dissolve iron and re-precipitate a dendritic (micro-rough film).
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Pocius et al (65) observed a wide variation in the floating roller peel strengths of AISI 301 austenitic 

stainless joints, adhesively bonded with AF-163-2K/EC-3924 adhesive/pimer system; 0.88 N.mnr1 to 8.5 

N.mm1, at 152 mm.min'1. The stainless steel adherends were subjected to a surface treatment prior to 

priming and bonding; the samples were etched in sulphuric acid and sodium bisulphate solution, 

followed by de-smutting in a sulphuric acid and sodium dichromate. The workers used XPS and AES to 

examine the chemical nature of the etched surfaces and scanning electron microscopy (SEM) to evaluate 

the physical topography. Surface profilometry was also employed to measure the surface roughness of 

the etched steel surface, micro-hardness readings and electrochemical polarisation measurements were 

also taken. They concluded that the variation in peel strength was due to the variation in surface micro

roughness (increasing with increasing roughness) and the thickness of the adherend (increasing with 

increasing thickness). The variations in surface micro-roughness ( SEM magnification X 8,000) were 

attributed to variations in electrochemical reactivity of the surfaces, which in turn, were thought to be 

due to variations in the steel composition, i.e. variations in the relative amounts of austenite and 

martensite, the austenite being the predominant phase and the martensite generated as a result of work 

hardening during the cold rolling operations.

Gaillard et al (75) attempted to develop strong and durable stainless steel /epoxy adhesive joints, by 

subjecting the surfaces to various surface pre-bonding treatments. Surface characterisation was achieved 

by Low Energy Election Induced X-ray Spectrometry (LEEIXS), AES, XPS and SEM techniques, and 

the bond strengths were evaluated, after ageing under hydrothermal conditions (72 hours at 70°C and 

95% relative humidity), by means of a mechanical three-point flexure test. The adherend material 

employed was AISI 304 L austenitic stainless steel, acetone degreased in an ultrasonic bath and etched 

in a 5% hydrofluoric -15% nitric acid aqueous solution at 20°C for 5 minutes, in order to remove 

contaminants and residual oxides. The adhesive used was a two-component epoxy resin (Araldite 

AY103 with Hardener HY991 from Ciba-Geigy), which was applied at 20°C, 35% relative humidity and 

cured for 2  hours at 80°C. The pre-treatments considered were: (i) thermal oxidation in air at 600°C;

(ii) phosphating in an HCI-H3 PO4 -HF solution at 80°C; (iii) etching in 5 to 40% sulphuric acid

solutions at 30 to 90 °C (62, 76-78), followed by de-smutting in a sodium dichromate/sulphuric acid
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solution (62, 76); (iv) immersing in concentrated (400 gl" 1 KyC^Oy, 470 gl-* H2 SO4 ) sulpho-chromic 

solutions at 85 °C, followed by "anodising" in the same solution at 70 °C for 15 minutes (current density 

1mA cm-2); and (v) "anodising" in a 50 % nitric acid solution at room temperature.

As a result of the investigation Gaillard offered the following conclusions:-

(i) Surface and near-surface sensitive techniques, together with a mechanical three-point flexure 

test, allow determination of the optimum treatment conditions in order to produce strong, 

durable stainless steel/epoxy joints.

(ii) Thermal oxidation, phosphating and smut layer formation, all lead to the formulation of thick 

surface films, which undergo failure within a weak boundary layer, as determined by SEM and 

AES.

Although smut (iron oxide) removal is desirable and easily achieved by wire brushing and 

immersion in an sodium dichromate/sulphuric acid solution, any un-removed smut can be 

tolerated when epoxies are employed, with no adverse effects on subsequent joint performance 

(79).

(iii) Anodising in a nitric acid solution, immersing in a hot, concentrated sulpho-chromic bath, and 

especially anodising in this last medium, all lead to the formation of thick (up to 90 nm), highly 

chromium (as Cr (HI)) -enriched surface oxides, which exhibit good cohesion properties. The 

high surface chromium enrichment seems to be a predominant factor with respect to the bonded 

joint resistance, notwithstanding the oxide layer thickness (LEEIXS) or the surface morphology 

(SEM). A strong correlation exists between joint strength and the Cr/Fe intensity ratio 

(LEEIXS, AES and XPS).
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Gaillard's final comments included:- A possible mechanism for the improved durability is an 

improvement in corrosion resistance due to surface chromium enrichment (74). The nature of the 

surface pretreatment may also influence the properties of the adhesive itself (80), especially the cross 

linking near the interface; this last parameter being a great influence in water-induced bonded joint 

degradation (5). At last, it seems possible that the electronic properties of the substrate surface may play 

a great role in the mode of adhesive polymerisation (81).

Bouquet and others (9) evaluated the lap shear and peel performance of AISI 304 stainless steel joints, 

bonded with an epoxy system and incorporating adherends subjected to 15 surface pre-bonding 

treatments. The assembled joints were subsequently aged for 750 hours at 70°C and 98 % relative 

humidity before being mechanically tested. They found that joints incorporating nitric acid anodised 

and sulfuric/chromic acid anodised adherends gave the optimum performance in a moist, warm 

environment.

Gaskin et al (8 ) investigated the influence of four different surface pre-treatment on the low temperature 

peel strengths and durability of adhesive joints incorporating three types of stainless steel; a low 

chromium austenitic AISI 301, a high chromium austenitic with niobium AISI 347 and a martensitic 

precipitation hardened stainless steel AISI 15-5PH. Wedge crack extension tests were employed to 

assess joint durability; 24 hours at 60 °C and 100 % relative humidity. For each assembly the adhesive 

system used was a supported film adhesive AF163-2K and spray applied primer EC3917, manufactured 

by 3M. Specimens were bonded under 275 kPa pressure at 120°C for 1.5 hours. The surface pre

treatment investigated were: (i) Wet hone abrasion (WHA); (ii) Sulphuric acid pickle (SAP), followed tty 

a sodium dichromate de-smutting solution; (iii) Wet hone/sulphuric acid-nacconol etch (SANE), 

followed tty nitric-hydrofluoric acid de-smutting solution; and (iv) Ferric chloride-hydrochloric acid etch 

(FCHAE), followed tty a sodium dichromate de-smutting solution.

Gaskin found the SAP pretreatment to be the most successful compared to the FCHAE treatment for 

both the AISI 301 and 15-5 PH stainless steels, and the AISI 347 adhesive joints subjected to the SANE 

pretreatment, to be superior to the AISI 347 adhesive joints subjected to the other three treatments.
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However, no treatment proved particularly effective, since all failures were either adhesive or interfacial, 

i.e. occurring at the adhesive/adherend interface or occurring through the complex interfacial, 

primer/oxide, region. Like Kinloch (11), Gaskin considers the complete de-smutting to be essential for 

optimum joint performance and observed the nitric-hydrofluoric acid solution to be the most effective in 

removing the oxide residue (smut) produced by the etching pre-treatment. In later work (82), Gaskin 

incorporated an additional pretreatment; sulphuric acid pickle, followed by a nitric-hydrofluoric acid de- 

smutting stage (SAP II). This pretreatment proved to be most effective, in terms of peel and wedge 

crack extension tests, for the AISI 301 stainless steel.

De Lacy and Tavakoli (83) evaluated the shear performance of AISI 303 stainless steel bonded with two 

adhesives; an epoxy and an UV curing anaerobic system. Three surface pre-bonding treatments were 

consider; grit blasting with alumina, oxalic and chromic acid etching, and priming using a silane 

primer. Joints incorporating untreated adherends were also tested to act as controls. Initial joint 

strengths and those after ageing were determined The ageing conditions were 85C and 85% R.H. for 

up to 1000 hours with intermediate tests at 100 and 500 hours. They conclude that the durability of 

adhesive bonds to stainless steel components under exposure to severe damp heat conditions can be 

dramatically improved by the use of suitable pre-treatment of the metal surfaces prior to bonding.
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2:3 STRUCTURAL ADHESIVES AND ADHESIVE SELECTION

There is no single system that adequately classifies the many types of adhesives that are commercially 

available. However, some distinction may be made when classification is based upon criteria such as: 

physical form; chemical composition; method of application; processing factors such as curing 

mechanism; suitability for particular service requirements or environments; or end use such as metal-to- 

metal adhesives (56). this sub-chapter considers the factors which effect the selection of structural 

adhesives.

2:3:1 STRUCTURAL ADHESIVES

Although there is no accepted definition for structural adhesives and they may, to some extent, be 

classified by anyone of the above criteria (2.3.), they are usually defined in terms of their suitability for 

particular service requirements. Several definitions for a structural adhesive have been offered: a 

material used to transfer loads between adherends in service environments to which the assembly is 

typically exposed (84); one which is employed where joints or load-bearing assemblies are subjected to 

large stresses (56); an adhesive based upon a monomer composition which polymerises to give a high 

modulus, high strength adhesive, between relatively rigid adherends, so that a load bearing joint is 

constructed (1 1 ); a material of proven reliability in engineering structural applications in which the bond 

can be stressed to a high proportion of its maximum failing load for long periods without failure (85).

Most materials used in structural adhesives are thermosets, although some thermoplastics, for example 

cyanoacrylates and anaerobics, are used. Thermoplastics harden rapidly, but have limited heat and creep 

resistance. The advantage of thermosets as structural adhesives is their heat and creep resistance (84).

2.3.1.1. CHARACTERISTICS OF STRUCTURAL ADHESIVES

2.3.1.1.1. CHEMICALLY REACTTVE ADHESIVES

These adhesives are divided into two groups, one-component systems and two-component systems (84). 

One-component systems are sub-divided into systems that cure in the presence of moisture and systems 

that are heat-activated. Two-component systems are sub-divided into mix-in and no-mix systems.
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One-component systems that are activated by moisture, either from the surrounding air or from the 

adherend material itself, include; cyanoacrylates "super glues", polyurethanes and silicones. One- 

component, heat-activated systems, which eliminate the need for metering and mixing equipment, 

include; epoxies and epoxy-nylons, polyurethanes, polyimides, polybenzimidazoles andphenolics.

Anaerobic adhesives are also chemically reactive, one-component systems. However, they are considered 

to be a special case, since they harden in the absence of air, or more precisely oxygen, rather than in the 

presence of moisture or heat. Generally, anaerobics are based on methacrylates, acrylics and acrylic- 

ester co-polymers.

Two-component systems cure by chemical reaction as a result of intimate interaction between the 

adhesive and an hardening agent. Mix-in systems, as they are termed, require accurate proportioning 

and mixing prior to application; chemical families in this group include epoxies, modified acrylics, 

polyurethanes, silicones and phenolics. Some mix-in, two-component systems cure at room temperature, 

but heat is often applied to accelerate curing and improve bond quality. In no-mix systems, the adhesive 

is applied to one adherend and the accelerator to the other; since no mixing is required, careful metering 

is unnecessary. These systems will cure at room and elevated temperature; modified acrylics are 

included in this group.

2.3.I.I.2. EVAPORATION OR DIFFUSION ADHESIVES

These adhesives are divided into two groups; materials that are based on organic solvents and materials 

that are based on water (84). In solvent-based systems the solvent escapes by evaporation, and/or, 

absorption into the adherend material(s); for absorption to occur, it is usually required that at least one of 

the adherends be porous. However, non-porous materials, such as metals, can be bonded using these 

adhesives, although heat and pressure are usually required to activate the adhesive. Chemical families 

included in this group are natural, reclaimed and synthetic rubbers, phenolics, polyurethanes, vinyls, 

acrylics and other natural occurring materials. Water-base adhesives comprise materials that are 

entirely soluble (solutions) or dispersive (latex) in water. These adhesives do not have the toxicity and
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flammability problems that are associated with solvent-base adhesives, although they are slow setting 

and have poor water resistance.

23.1.1.3. HOT-MELT ADHESIVES

Hot-melt adhesives are 100% solid thermoplastics, remaining solid up to ~ 80 °C. These adhesives melt 

rapidly and are applied to the adherend materials in the liquid state, where cooling results in rapid 

setting (84). Hot-melt adhesives are loosely classified as structural, since most will not withstand 

elevated-temperature loads without suffering from creep. Chemical families included in this group 

include ethylene-vinyl acetate copolymers, polyolefins, polyamides, polyesters and thermoplastic 

elastomers. High-performance hot melts, including polyamides and polyesters, will withstand limited 

loads.

2.3.1.1.4. DELAYED-TACK ADHESIVES

These adhesives remain tacky following heat activation and cooling; tack can remain from minutes to 

days, and over a wide temperature range (84). Chemical families used in delayed-tack adhesives include 

styrene-butadiene copolymers, polyvinyl acetates, polystyrene and polyamides.

2.3.1.1.5. FILM ADHESIVES

Film adhesives are available as one-sided or double-sided films and tapes. They usually consist of a high 

molecular weight backbone polymer, which affords toughness, elongation, and peel strength; a low 

molecular weight cross-linking resin, such as an epoxy or a phenolic; and a curing agent for the cross- 

linking resin (84). The adhesives are either unsupported or are supported by a carrier, such as glass 

cloth, nylon or paper. Some film adhesives will cure at room temperature, but most require elevated 

temperature and nominal pressure. Chemical families used in making film adhesives include nylon- 

epoxies, elastomer-epoxies, nitrile-phenolics, vinyl-phenolics, epoxy-phenolics and high-temperature- 

resistant aromatics, including polyimides and polybenzimidazoles.
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2.3.1.1.6. PRESSURE-SENSITIVE ADHESIVES

These adhesives do not harden, but remain permanently tacky. They are capable of holding adherends 

together when they are brought into contact under brief pressure at room temperature (84). Like film 

adhesives, pressure-sensitive adhesives are either unsupported or are supported by various carriers, 

including paper, cellophane, plastic films, cloth and metal foil. Most pressure-sensitive adhesives are 

based on rubbers compounded with various additives, including tackifiers. Rubber-base materials, 

however, have poor ageing characteristics and thus, they are often replaced by polyacrylates or 

polyvinylalkylethers.

NB Tack is defined as the property of an adhesive that enables it to form a bond of measurable 

strength immediately after adhesive and adherend are brought into contact under low pressure (8 6 ). A 

tackifier is an additive to the formulation that promotes tack.

2.3.1.1.7. CONDUCTIVE ADHESIVES

These adhesives are used for structural applications where electrical and/or thermal conductivity is 

required (84). They contain flaked or powdered filler materials, such as gold, silver, copper or 

aluminium, to provided electrical conductivity and contribute to thermal conductivity. In addition, non- 

electrically conductive oxide fillers, such as aluminium oxide (alumina) and beryllium oxide (beryllia), 

are used to afford thermal conductivity to the adhesive. The chemical families that are used most often 

to provide electrical and/or thermal conductivity include epoxies, polyurethanes, silicones and 

polyimides.

2.3.1.2. CHEMICAL FAMILIES USED AS STRUCTURAL ADHESIVES

The chemically reactive adhesives most commonly used as structural adhesives are epoxies, 

polyurethanes, modified acrylics, cyanoacrylates and anaerobics (84). Epoxies provide strong joints and 

their excellent creep properties make them ideal for structural applications, but un-modified epoxies 

have only moderate peel and low impact strength. Whenever the absolute maximum performance is 

demanded, the toughened epoxies that incorporate a resilient rubbery phase must be considered to offer
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the ultimate in adhesive performance (10). The advantages and limitations of the five most popular 

structural adhesives are summarised in Table 2.3.

2.3.I.3. STRUCTURAL ADHESIVES FOR STAINLESS STEELS

The majority of workers who have investigated the adhesive bonding of stainless steels have used 

epoxies (8,9,61, 87,75). Brockmann (8 8 ), however, employed a diverse range of adhesives in his work 

on joint durability. The shear strengths of Cr/Ni 18/8 adhesive joints are shown in Figure 2.11.
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Figure 2.11. Shear strengths of Cr/Ni 18/8 stainless steel joints: Brockmann (8 8 ).

(a) Two-part, cold-cured epoxy; (b) Two-part acrylic; (c) Anaerobic acrylic; (d) Cyanoacrylate; (e) PVC 

plastisol; (f) One-part, hot-cured epoxy.

The cyanoacrylate on the sand blasted surface showed the highest initial joint strength (-22 N.mm'^),

however, after ageing the bond strength was reduced to ~15 N.mnT^. Similar reductions were observed 

for the ground, degreased and oiled surfaces, where the shear strengths after ageing were all less than 5

N.mnT^. The plastisol adhesive gave the poorest initial bond strength for all surface conditions, 

although the sand blasted and ground surfaces exhibited good durability. Both the two-part acrylic and 

anaerobic acrylic adhesives exhibited reasonable initial bond strengths and good durability, particularly 

the two-part acrylic used in conjunction with the oiled surface. The one-part, hot-cured epoxy showed 

reasonable initial bond strengths and good durability. The two-part, cold-cured epoxy, although having 

high initial bond strength, showed poor durability, with the exception of the sand blasted surface.
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From the above; cyanoacrylate and plastisol adhesives are not considered suitable for the adhesive 

bonding of stainless steels; the former having poor durability and the latter, although durable, having 

inadequate strength. However, both acrylic and epoxy systems are deemed worthy of consideration for 

stainless steel applications, particularly the durable one-part, hot-cured epoxy.

2.3.I.4. ADHESIVE SELECTION

Adhesive selection is influenced by many factors, which include; the materials to be bonded 

(compatibility of adherends and adhesives); the surface pre-treatment requirements; the desired joint 

design; the assembly, processing and storage requirements; the desired properties and service 

requirements (of both the adhesive itself and the joint); and the cost (56). Lees (10) and Shields (56) 

have both presented procedures designed to simplify adhesive selection, in terms of the most appropriate 

family or families of adhesives for a particular application. However, the specific characteristics and 

requirements of individual adhesive types must be weighed against factors such as cost, space 

requirement and any conflict of subsequent production processes. Discussion of these factors with 

adhesive manufacturers will help to secure the most suitable adhesive for a given application at the 

lowest overall cost for material and processing.

38



2.4. MECHANICAL TESTING OF ADHESIVE JOINTS

Before considering a test programme for assessing the mechanical properties of adhesive bonded joints, 

one should have knowledge of the type of loading and environment to which the assembled structures 

are likely to be exposed. For example, the assemblies may need to withstand impact and/or fatigue 

loading at high, low or fluctuating temperatures and/or in aggressive environments in which attack from 

moisture or chemicals is probable. In addition, it is also important to know the time scale over which 

the assembly is expected to satisfactorily perform under the particular service conditions.

Having defined the service conditions in terms of loading, environment and life expectancy, one should 

decide upon, or develop, a suitable test procedure that will provide reliable data that can be confidently 

applied in the design of the final assembly. However, there are complications associated with testing 

and design of adhesive assemblies: (i) any test on a bonded joint is not a test on a single material, but a 

test on a multi-component system (89). In the case of stainless steel adhesive joints this system is 

comprised of the adherends, adhesive, primer, surface oxides and the inter-phase regions which exist 

between the distinct phases. Thus, the overall joint performance is a measure of the performance of the 

system, where success or failure is determined by its weakest link; (ii) design is further complicated, 

because all adhesive joint test geometry’s are non-ideal, since they all give rise to complicated, non- 

uniform, three-dimensional stress distributions and most also exhibit singular stress fields at certain 

locations within the bond (89). Thus, considering the above points, it is essential to appreciate that the 

mechanical test results obtained will represent the adhesive system performance when used in the 

specific structure of the given test geometry (89).

2.4.1. TEST GEOMETRY’S

Test geometry’s such as the thin adherend, single lap-shear and the Boeing wedge crack extension tests 

are simple and inexpensive to manufacture and assemble. They are employed for qualitative 

comparison and preliminary screening purposes, for example, to allow discrimination between 

adhesives and/or surface pre-bonding treatments (90). When more accurate quantitative results for 

design use are required, thick adherend specimens are necessary. These are more expensive to
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manufacture than the above, and the loads required to test them may be higher and require more 

sophisticated methods of application and monitoring. Testing of structural configurations is employed 

as the final stage in a testing and design program for verification purposes. Although expensive and 

limited in terms of the extent of statistical data produced, this testing procedure is invaluable in 

assessing "fitness for purpose" of adhesive structural assemblies.

2.4.2 JOINT DURABILITY

Adhesive joints are notoriously prone to degradation with time, due to ageing of the adhesive and also, 

due to persistent attack from moisture which penetrates the interfacial regions, thus, it is necessary to 

assess the durability of adhesive joints. This is achieved by maintaining bonded joints for a certain 

period of time in a particular environment prior to testing, be it ambient, at high or low temperatures, 

either in air or submerged in water or some aggressive medium. However, more realistic results are 

obtained if the joints are stressed and aged in an appropriate medium simultaneously. The Boeing 

wedge crack extension test is ideally suited to this approach, since it is self stressing and, thus, can be 

sited in any environment immediately after the joint is loaded. Lap-shear specimens can be loaded in 

sustained load rigs, where a pre-loaded spring applies a constant load to several joints placed in series; 

these rigs can then be exposed to almost any environmental conditions. These rigs, however, are 

awkward to assemble and are cumbersome to work with, since whenever a joint fails it must be replaced 

with a dummy specimen in order to continue loading the remaining, non-failed joints. Thick adherend 

shear tensile, peel, creep and fatigue tests are particularly difficult to conduct in controlled 

environments, since special environmental chambers need to be constructed around the specimens. 

Although this can be achieved to a degree by wrapping the joints in, for example, wetted cotton wool, 

the problem of temperature control still remains. The most widely used durability tests are summarised 

in Table 2.4.
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Table 2.4. Summary of the most widely used durability tests: DTI Report (91).

.
GEOMETRY

_ --------

TEST
CHARACTERISTICS

1. WEDGE TEST 
ASTMD 3762-79

2. DOUBLE 
CANTILEVER 

(static and cycled) 
ASTMD 1062-78, 
3807-79,3433-75

3. WET PEEL 
ASTMD 1876-72 or 

D 903-49

4. UNSTRESSED 
LAP SHEAR 

ASTMD 1002

POPULARITY Widely adopted Not widely used in 
industry

Not widely used Very popular

UTILITY AND EASE 
OF USE

Some difficulties in 
interpretation; easy to 

use

Care required in 
testing and data 

analysis

Generally easy to 
carry out tests

Samples are easy to 
test

ACCURACY END 
REPRODUCIBILITY

Generally accurate; 
highly reproducible

Usually very good Unknown Generally good if well 
prepared

RELEVANCE TO
INDUSTRIAL
SECTOR

Very relevant, 
especially for QA

Only used where 
fracture mechanics is 

accepted

Used sometimes in 
preference to wedge 

tests

Geometry resembles 
some applications

LIMITATIONS ON 
MATERIALS

Not good for very 
tough adhesives or 
flexible adherends

Generally for linear 
elastic materials

Flexible adherends None

ENVIRONMENTAL 
AND SERVICE 
CONSIDERATIONS

Usually 55 °C and 
100% R.H.

Mostly exposed or 
aged specimens

Water immersed 
samples

Various, tropical, 
seacoast, jungle, etc.

IN-SERVICE
CORRELATION

Good Unknown Good Fan-

QUALITATIVE OR
QUANTITATIVE
DATA

Qualitative Quantitative Qualitative Qualitative

PARAMETERS
RECORDED

Crack growth Fracture toughness, 
crack growth

Peel force Lap shear strength; 
failure mode

INTERPRETATION 
AND USE OF 
INFORMATION

Quality/Process
control

Can be complex to 
interpret; used for 

design

Relatively
straightforward

Can be used for 
comparison o f 
adhesives, pre- 
treatment, etc.

ACCEPTANCE OR 
PASS/FAIL CRITERIA

Crack growth > 19 
mm in 1 hour

Fracture toughness > 
in-service stress 

intensity

Peel strengths > 
specified values

Lap shear strength > 
minimum specified, 

cohesive failure mode

COST Low High Low Moderate to low

LIMITATIONS OF 
PROCEDURE

Plastic deformation of 
adherends

Only linear elastic 
fracture conditions 

considered

Unknown None

TYPE OF TEST Standard/routine Analytical Developmental Standard/routine
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Table 2.4. (continued) Summary of the most widely used durability tests: DTI Report (91).

- GEOMETRY

TEST
CHARACTERISTICS

5. STRESSED 
LAP SHEAR 

(plain/perforated/ 
reduced area) 

ASTMD 1002

6. CLIMBING 
DRUM 

ASTMD 3167-76 
FLOATING 

ROLLER 
ASTMD 1781-76

7. HONEYCOMB 
SANDWICH 

PANEL 
FLEXURE 

ASTMD 1184-86

8. BUTT 
TENSILE 

or TORSION 
ASTMD 897, 

2094,299

9. OTHER, E.G. 
THICK 

ADHEREND 
SHEAR 

ASTMD 3983

POPULARITY Widely used by 
industry

Mainly aerospace 
material suppliers

Aerospace material 
suppliers and 

designers

Research/ 
engineering 
design data

Not widely used

UTILITY AND EASE 
OF USE

Commercial 
stressing rigs 

available

Commercial 
fixtures available, 
easy to carry out 

tests

Used to evaluate 
materials and 

design of panel

Difficulty of 
alignment, data 

analysis, etc.

Difficult to carry 
out good quality 
measurements

ACCURACY END 
REPRODUCIBILITY

Accurate and 
reproducible data

Dependent on 
peeling rates 

chosen

Dependent on test 
geometry and 

bonding conditions

Dependent on 
sample 

preparation

Very accurate but 
depends on 

sample 
preparation

RELEVANCE TO
INDUSTRIAL
SECTOR

Very relevant to 
industry

Laminated or 
honeycomb 

sandwich structures

Laminated or 
honeycomb 

sandwich structures

Not a realistic 
geometry

Not a realistic 
geometry

LIMITATIONS ON 
MATERIALS

None, mostly 
aluminium alloys 

studied

Honeycomb 
sandwich laminates

Honeycomb or 
laminated 

sandwich panels

Rigid adherends Rigid adherends; 
adhesives with G 

< 0.7 GPa

ENVIRONMENTAL 
AND SERVICE 
CONSIDERATIONS

Outdoor 
exposure, 

simulated freeze- 
thaw, salt spray, 

etc.

Various, 
DTD 5577 

specifies 
temperature 
limitations

Various Various Various

IN-SERVICE
CORRELATION

Excellent Good where data is 
available

Unknown Unknown Unknown

QUALITATIVE OR
QUANTITATIVE
DATA

Qualitative Quantitative Quantitative Quantitative Quantitative

PARAMETERS
RECORDED

Time to failure, 
strength, failure 

mode

Peel strength, 
failure mode

Flexural stiffness, 
failure mode

Shear modulus, 
strength, failure 

mode

Shear modulus, 
strength, failure 

mode

INTERPRETATION 
AND USE OF 
INFORMATION

Comparison of 
adhesives, pre- 
treatment, etc.

Quality control or 
materials 

specification

Design or materials 
specification

Design data or 
quality control

Design

ACCEPTANCE OR
PASS/FAIL
CRITERIA

Time to failure > 
specified value

Cohesive failure, 
peel strength > 
specified value

Stiffness > 
specified value, 
cohesive failure

Properties within 
manufacturers’ 
specification

Unknown

COST Exposure trials 
and correlation of 
results - moderate

Samples/testing 
straightforward - 

moderate

Samples expensive, 
tests can be 

difficult to get good 
data

Difficult to get 
good alignment

High

LIMITATIONS OF 
PROCEDURE

Geometry's 
limited to fit 
stressing rig?

Laminated
materials

Laminated or 
sandwich structures

Extensometry is 
required to get 
shear modulus

Accurate
extensometry

required

TYPE OF TEST Developmental Standard/routine Standard/routine Analytical Analytical
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2.4.3. STATIC AND DYNAMIC FATIGUE TESTING

Adhesive bonded joints may exhibit fatigue failure in service because of sustained or exposure to cyclic 

loads and hostile environments. In studying the fatigue behaviour of adhesive bonded joints, the 

following factors, which have the potential to affect joint durability, should be considered: the stress and 

strain levels and their modes of application with regard to time and joint geometry; exposure to thermal 

environments, including high- and low-temperature environments; exposure to water; exposure to 

chemicals; and exposure to radiation. In studying the durability of adhesively bonded joints under 

exposure to the above degradation parameters, one needs to consider three entities: the bulk of adhesive, 

which often exhibits viscoelastic constitutive behaviour; the inter-phase, which exists between the 

adhesive and the adherend (the region immediately adjacent to the interface within adhesive and 

adherend) and has properties different from that of the bulk adhesive because of the action of the 

mechanical and chemical adhesion process, adherend surface treatment, and surface topography; the 

adherend, which may act viscoelastically and can react to chemical and thermal environments. The 

nature of load transfer between the substrates by means of the adhesive and the inter-phase is quite 

complex, especially when any or all of the three constituents, adhesive, inter-phase, and adherend, 

exhibit viscoelastic behaviour.

Joseph et al (92) evaluated crack growth rates within epoxy/aluminium and epoxy/steel joints (using 

double cantilever beam specimens) as a function of: (a) surface pretreatment; (b) water soak; (c) fatigue 

cyclic rate; (d) adhesive thickness and; (e) type of epoxy adhesive. He found that for both adherends, 

aluminium and steel, the fatigue behaviour improved significantly with the incorporation of the 

mercaptoester coupling agent. After an eight day, 57°C water soak, the metal surfaces which were pre

treated with the coupling agent or by a phosphoric acid anodisation treatment still resulted in cohesive 

failure, and the crack growth rates were higher in the control samples and showed more scatter. A room 

temperature cured epoxy (Epon 828, Shell Chemicals) with coupling agent-treated aluminium showed a 

less dramatic improvement, probably because of a difference in the application procedure of the coupling 

agent, which resulted in different coupling agent thickness’, 50 A  for the room temperature cured 

adhesive compared with 150 A  for a heat-cured, one-component epoxy adhesive (FM-73, American 

Cyanamid Co.). For the steel joints and room temperature adhesive the improvement in the fatigue
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behaviour of coupling agent-treated samples was maintained after an eight day hot water soak. After 

water soaking the fatigue performance for the steel joints was even better than before exposure. This 

was attributed to the plasticising effect of the water on the room temperature curing epoxy system. A 

similar effect was observed with the anodised aluminium joints incorporating the room temperature 

cured epoxy. No significant change was found in the fatigue crack growth rate over a frequency range of 

1-5 Hz., but a significant change was found as a function of the bondline thickness; the greater the 

thickness, the higher the fatigue crack growth rate. The thickness bondline studied was 0.38 mm. The 

room temperature curing epoxy evaluated exhibited a much lower fatigue residence than the heat-cured 

commercial structural adhesive FM-73.

Su, et al (93, 94) carried out investigations into the effect of ageing and environment on the fatigue life 

of grit blasted, mild steel adhesive joints. Su observed that some adhesives (high strength, high fracture 

toughness, high Young's modulus epoxies, cured with a polyamine hardener) showed excellent 

durability properties and that the fatigue life of some specimens actually improved with age. Other 

adhesives (low strength, low Young's modulus epoxies, cured with polysulphide hardener) were 

adversely affected by environment, particularly high humidity (90% relative humidity at room 

temperature) or exposure to a natural environment (roof top conditions, Dundee).

Harris and Fay (95) investigated the fatigue behaviour of two adhesives (Elastosol M51, Evode and XW 

1012, Ciba-Geigy) intended for use in automotive body shell construction, using un-treated, oily mild 

steel single lap-shear test pieces. They found that, over a wide temperature range that included the glass 

transition temperature (Tg) of both adhesives, fatigue life was dominated by a crack initiation phase,

which was associated with the build up of creep deformation in the adhesive layer. It was also observed 

that thicker glue lines have a detrimental effect on static strength, over the range of -30 to 90°C, for both 

adhesives.
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2.5. SURFACE ANALYTICAL TECHNIQUES 

2.5.1. SURFACE CHARACTERISATION

It is necessary to characterise the surface of the adherends to be bonded, both physically and chemically, 

to allow the mechanical test results and the natures of the failure to be related to the surface condition. 

This section highlights surface analytical techniques used to physically and chemically characterise pre

bonded and post-fracture surfaces.

2.5.1.1. PHYSICAL CHARACTERISATION

The degree of surface roughening resulting from mechanical pre-bonding treatments (macro- 

roughening) can easily be characterised using Talysurf or laser profilometry, which will quantify the 

surface roughness in terms of, for example, Ra values (see 4:2:1 of Results). In order to characterise 

macro-rough surfaces and micro-rough surfaces resulting from chemical pre-bonding treatments, in 

terms of surface morphology and topography, it is necessary to employ Scanning Electron Microscopy 

(SEM), because of the high resolution and depth of field characteristics. Because of the scale of the 

micro-rough oxides generated by chemical passivating pre-bonding treatments, it is often necessary to 

use different techniques such as Transmission Electron Microscopy (TEM) or Scanning Transmission 

electron Microscopy (STEM). However, to observe the morphology and physical structure of these 

oxides by TEM or STEM, involves the development of surface replicas which is time consuming (96).

2.5.1.2. CHEMICAL CHARACTERISATION

Although Low Energy Electron Induced X-ray Spectrometry (LEEIXS) and Infra Red Spectroscopy 

(IRS) have been used to chemically characterise adherend surfaces prior to bonding (75, 8 8 ) the most 

commonly employed techniques are X-ray Photoelectron Spectroscopy (XPS); Auger Electron 

Spectroscopy (AES); Secondary Ion Mass Spectrometry (SIMS); and Secondary Neutral Mass 

Spectrometry (SNMS). The most widely used surface analytical techniques are summarised in Table

2.5.
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2.5.2. FAILURE ANALYSIS

Considerable information about fracture modes and natures of failure can be obtained by examining the 

physical appearance of the fracture surface once a specimen or component has completely failed (96). 

This can be achieved by visual inspection, SEM, STEM or TEM techniques. Chemical characterisation 

is possible using XPS, AES, SAM (Scanning Auger Microscopy) and IR (Infra Red) microscopy (98), 

although analysis is complicated by surface contamination of the fracture surfaces in the period between 

fracture and fracture analysis, and, for example, being unable to distinguish between interfacial failure 

and failure entirely within the oxide layer, due to the fact that freshly exposed metal will re-oxidise 

immediately on fracture (99). The three fracture modes, and the three types of failure associated with 

adhesive joints are given in Figures 2.12. and 2.13., respectively.

Figure 2.12. Fracture modes: Left to right: Mode I (tensile opening or cleavage mode); Mode II 

(in-plane shear mode); Mode III (tearing or antiplane shear mode).

Figure 2.13. Types of failure: Top to bottom: Cohesive failure; adhesive failure; interfacial failure.
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3.0. ADHESIVE SCREENING 

The Initial Shear-Tensile and Peel Strength of Adhesive-Bonded AISI304L Stainless Steel 

Joints and their Subsequent Fracture Surfaces

Abstract

Standard-single-overlap-shear tensile tests, and floating roller peel tests were conducted on AISI 304L 

stainless steel /  adhesive joints, to discriminate between six candidate adhesives considered to be 

suitable for bonding metals. To study the effects o f adherend surface preparation on joint performance, 

a number o f pre-bonding treatments were considered: Alkaline Degreasing; Mechanical Roughening; 

Alumina Blasting; Acid Rinsing; and Acid Etching. The highest mean apparent single-overlap-shear 

strengths were realised by the joints bonded with epoxy adhesive systems, and the highest mean peel 

strengths were given by the joints bonded with a polyurethane system. There was little evidence to 

suggest that surface modification contributed to the mechanical performance o f the bonded-steel joints, 

although heavy contamination on the surface o f the pre-bonded adherend was shown to adversely affect 

joint strength.
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3.1. INTRODUCTION

As a result of the literature review, and considering ‘adhesive-selection’ software and following 

discussions with 3M UK pic., six candidate adhesives representing three chemical families, epoxies, 

acrylics, and methanes, were considered to have the potential to bond stainless steels intended for 

structural applications, and a screening schedule incorporating these adhesives was devised. The 

primary objective of the screening program was to discriminate between the candidate adhesives in 

terms of the shear and peel strength performance of AISI 304L stainless steel / adhesive bonded joints. 

The subsequent fracture faces were also evaluated as part of the regime to access adherend / adhesive 

compatibility as measured by the extent of cohesive failure achieved; the preferred candidate would have 

both optimum shear and peel strength, and the locus of failure would be entirely cohesive within the 

adhesive, which would imply that the adhesive strength between adhesive and adherend was greater than 

the cohesive strength of the adhesive. The apparent standard lap-shear strength and floating roller peel 

strength of AISI 304L stainless steel / adhesive joints were determined in accordance with BS 5350: 

Parts C5 and C7, respectively, in conjunction with the American equivalents, ASTM D1002-94 and 

ASTM D3167-93. The subsequent fracture surfaces where examined, both visually and using SEM, to 

ascertain the loci of failure. The cost of the adhesives and practical aspects such as ease of application 

were also considered as additional criteria, to find the most suitable adhesive out of those considered, for 

bonding stainless steels. In order to investigate the role of the adherend surface condition in enhancing 

joint performance, different surface pre-bonding treatments were incorporated in the schedule. The 

introduction of more than one adherend surface condition necessitated some degree of surface 

characterisation, and this was achieved using surface profilometiy and SEM; the details and results of 

which are given in Chapter 8.0. Surface Characterisation.

The following account details adherend surfaces preparation, the bonding procedures, mechanical 

testing and fracture analysis of the failed surfaces. Any deviation from the original program, and there 

were several, have been, hopefully, clearly indicated and referred to.
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3.2. EXPERIMENTAL WORK

3.2.1. MEASUREMENT OF THE APPARENT SHEAR STRENGTHS AND 

PEEL STRENGTHS OF AISI 304L ADHESIVE-BONDED JOINTS

3.2.1.1. TEST MATERIAL PREPARATION AND JOINT 

CONFIGURATION

3.2.1.1.1. STANDARD LAP SHEAR

AISI 304L stainless steel strip with a matt surface finish, designation 2B; cold-rolled to 1.5 mm, and 

stretch-flattened to meet the flatness tolerances in BS 5350: Pt. C5, was supplied by Avesta Sheffield 

AB, Shepcote Lane works. Oversized blanks were pressed from the test material and the edges along the 

length of the specimens milled square. The milled blanks were guillotined to approximate length and 

the end faces milled square to the final length. The dimensions of the single lap shear test piece are 

given in Figure 3.1.

25

100

7"\
1.5

0.25
\S

12.5

Figure 3.1. Standard, single overlap, shear-tensile test-piece and section through joint. All 

dimensions in mm.

3.2.1.1.2. FLOATING ROLLER PEEL

A peel test piece consisted of a thin strip of adherend material (300 x 25 x 0.5 mm), bonded to a thicker 

strip of adherend material (300 x 25 x 1.5 mm). The two strips, the flexible adherend and the rigid

49



adherend, were bonded together along two thirds of the joint length; the remaining third was not 

bonded, to enable the flexible adherend to be peeled away from the rigid adherend during the test. The 

test material for the flexible adherend ((0.5 mm gauge with a 2B surface finish) was provided by 

Avesta-Sheffield AB, Avesta, Sweden. The dimensions of the test piece are given in Figure 3.2.

300

2 0 0

bonded area

0.25i 0.5 flexible adherend 

L5 rigid adherend

Figure 3.2. Floating peel roller test piece. All dimensions mm.

The first batch of test specimens were machined from pre-bonded coupons (300 x 100 mm). Two test 

pieces were prepared from each coupon; the test-pieces were guillotined to approximate size, away from 

the sides of the coupon to avoid edge effects, and then machined to the final dimensions. In addition, 

the coupons were held together during curing in specially constructed jigs. However, in subsequent 

batches, the test pieces were machined to the final dimensions prior to bonding, and the joints were held 

together during curing using special spring clips. The different methods are described in 3.2.1.3. Joint 

Assembly and highlighted in 3.3. Results.

3.2.I.2. SURFACE PRE-BONDING TREATMENTS

3.2.I.2.I. STANDARD LAP SHEAR

The machined test pieces were de-burred, washed in hot soapy water to remove heavy contamination, 

such as machine oil, and then allowed to dry over night. A line was scribed on each test piece; 12.5 mm 

from, and parallel to, the milled end-faces. This was to mark the area to be bonded. The 216 test pieces 

(sufficient to make 108 lap joints) were then divided into three batches for one of the following surface 

pre-treatments:
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Table 3.1. Initial pre-bonding treatments.

SURFACE TREATMENT STAGES

ALKALINE DEGREASING STAGE I ALKALINE DEGREASING 
STAGE H PRIMING

MECHANICAL ROUGHENING STAGE I ALKALINE DEGREASING 
STAGE II MECHANICAL ROUGHENING 
STAGE m  ALKALINE DEGREASING 
STAGE IV PRIMING

ACID RINSING STAGE 1 ALKALINE DEGREASING 
STAGE II ACID RINSING 
STAGE IV PRIMING

N.B. The individual stages are described in the subsequent text.

3.2.I.2.I.I. THE ALKALINE DEGREASING PROCEDURE

Samples were degreased using the surface engineering cleaning line at Sheffield Hallam University. 

The procedure is given in Table 3.2.
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Table 3.2. Alkaline degreasing procedure.

STAGE MEDIUM TEMPERATURE

(°C)

TIME

(MINUTES)

ULTRASONIC
AGITATION

Preliminary
degrease

Everclean™:
2 % HT 107 A, 
2 % HT 107 B, 
tap water

70 3 Yes

Rinse Tap water 23 0.5 No

Secondary
degrease

Bannerclean™ 16 
0.16%, 
tap water

70 3 Yes

Rinse Tap water 23 0.5 No

Tertiary degrease Bannerclean™ 13: 
0 . 16%, 
tap water

70 3 Yes

Rinse Tap water 23 0.5 No

Clean rinse De-ionised water 23 3 Yes

Soak De-ionised water 23 1 No

Dry Hot air blast 70 1 0 N/A

3.2.L2.1.2. MECHANICAL ROUGHENING

In order to evaluate and compare two different surface-roughening procedures simultaneously, the batch 

of test-pieces allocated for Mechanical Roughening was further divided: one half of the test pieces were 

blasted with alumina particles, and the other half abraded manually with Scotchbrite™, supplied by 3M 

UK pic. Adherends subjected to alumina blasting were bonded to adherends which had been abraded 

with Scotchbrite to make thirty-six Mechanically Roughened hybrid joints, i.e. one half of the lap joint 

being Alumina Blasted and the other Scotchbrite Abraded.
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3.2.1.2.1.2.L ALUMINA BLASTING

Thirty-six Alkaline Degreased test pieces were prepared; each test piece was masked below the scribed 

line, so only the bond area was exposed, and then blasted with in a jet of high purity alumina for several 

seconds.

Table 3.3 Grit blasting parameters.

Blast medium: High purity aluminium oxide (99.99%) BS 871

Blast pressure: -2
5 Kg cm

Blast distance: 300 mm

Blast angle: 0 °

Blast duration: 30 seconds

3.2.I.2.I.2.2. SCOTCHBRITE ABRADING

The bond areas of thirty-six Alkaline Degreased test pieces were roughened with Scotchbrite, in a 

direction parallel to the milled end-face (perpendicular to the tensile-axis), for a few minutes to 

uniformly abrade the bond area.

3.2.I.2.I.3. ACID RINSING

Seventy-two Alkaline Degreased test-pieces (sufficient for thirty six joints) were rinsed in hydrochloric 

acid solution at room temperature for several minutes. The test pieces were then rinsed in agitated de

ionised water to remove the acid residue, and finally dried by a hot air blast.
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Table 3.4. Acid rinsing procedure.

Bath composition: 50 % by vol. HC1 solution (S.G. 1 .6 ) 
bal. de-ionised water

Bath conditions: 23 °C for 30 min. (ultrasonically agitated)

3.2.1.2.L4. PRIMING

Since it is realistic to assume that primers would always be used in practical situations, all the substrates 

were primed following the pre-bonding treatments, unless otherwise specified. The primer chosen is 

commercially available, "off the shelf', from 3M UK pic and has been used successfully in adhesive 

bonded metallic applications. The silane based primer (3901) was supplied suspended in methanol, and 

it was simply applied with a clean lint-free cloth. The methanol evaporated from the steel surface within 

a few seconds, leaving behind a residue of primer, visible to the naked eye. The treated substrates were 

then wrapped in clean, dry cloth and stored overnight in a desiccator to allow the primer to dry 

completely. After 24 hours, the test pieces were wiped repeatedly with an acetone wetted cloth to 

remove the excess primer, they were then dried and stored in a desiccator, ready to be bonded. The 

primed surfaces were bonded within 4 days of priming.

3.2.1.2.2. FLOATING ROLLER PEEL

Three pre-bonding treatments were employed in the peel tests: Alkaline Degreasing, as for the lap shear 

evaluation; Alumina Blasting, to replace the hybrid mechanical treatment used in the lap shear tests; and 

Acid Etching, to produce a macro-rough surface by chemical means, instead of by mechanical 

roughening. Mechanical roughening was replaced by Alumina Blasting because in hind sight it was 

considered bad practice to attempt to evaluate two surface conditions simultaneously, and Acid Rinsing 

was subsequently replaced by Acid Etching in order to produce a chemically roughened surface of 

comparable roughness to those surfaces physically roughened by blasting with alumina.
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Table 3.5. Pre-bonding treatments.

ALKALINE DEGREASING STAGE I ALKALINE DEGREASING 
STAGE H PRIMING

ALUMINA BLASTING STAGE I ALKALINE DEGREASING 
STAGE D ALUMINA BLASTING 
STAGE m  ALKALINE DEGREASING 
STAGE IV PRIMING

ACID ETCHING STAGE I ALKALINE DEGREASING 
STAGE II ACID ETCHING 
STAGE ffl DE-SMUTTING 
STAGE IV PRIMING

N.B. The individual stages are described in the subsequent text.

3.2.I.2.2.I. ACID ETCHING

(i) The Etching Procedure

Table 3.6. Acid etching procedure.

Bath composition: 30 % by vol. H2 S04 (S.G. 1.85) 
bal. de-ionised water

Bath conditions: 80 °C for 5 min. (UT agitated)

Etching austenitic stainless steel in sulphuric acid under such conditions results in the formation of a 

black, velvety, iron oxide on the steel surface, referred to as smut. The smut is so weakly adhered to the 

surface that it is easily removed by wire brushing and is even easier to remove by chemical means. 

Thus, a de-smutting stage was introduced to remove the smut.
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(ii) The De-smutting Procedure 

Table 3.7. The de-smutting procedure.

Bath composition: 1 2  % by vol. H2 S0 4 (S.G. 1.85) 
2 % by volume K2Cr20 7 

bal. de-ionised water

Bath conditions: 80°C for 5 min. (UT agitated)

3.2.1.3. JOINT ASSEMBLY

3.2.1.3.1. STANDARD LAP SHEAR

The joints were assembled in purpose-built jigs to ensure accurate joint alignment along the length and 

width of the joints, and to maintain an overlap of 12.5 mm, marked by the scribed line referred to in

3.2.1.2. Surface Preparation Treatments. Mild steel weights were used to apply a nominal pressure to 

the curing joints; each weight (~1 K g ) applied a uniform pressure of 1.6 g mm ' 2 to two adjacent joints. 

Silicon-waxed, release paper was placed between the jigs and the curing joints, and between the curing 

joints and the mild steel weights; this facilitated easy removal of the cured joints.

3.2.13.1.1. BONDLINE CONTROL

The thickness of the adhesive, the bondline, was maintained at 0.25 mm. This was achieved by 

sprinkling tiny glass balls (ballotini), to act as spacers, into the adhesive immediately after its 

application to the joints. The diameter of the ballotini varied, although the maximum diameter was 0.25 

mm, and this was exactly the thickness of the desired bondline. To isolate the larger 0.25 mm diameter 

balls, approximately 15% by weight of the total, the ballotini were sieved through a 210 \x ( No. 72) 

sieve.

Figure 3.3. 0.25 mm diameter ballotini spacers.
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The 0.25 mm ballotini were applied using a small spatula containing a conical indentation stamped in 

one end. The spatula was first wiped dry with tissue paper, then dipped into the ballotini, removed, and 

then shaken to remove any excess, before adding the ballotini to the newly applied adhesive. In order to 

evaluate the repeatability of this method, 2 0  samples were taken using the spatula, and alternately 

examined under an optical microscope: the average number of balls /  sample was found to be 10.45; the 

median 10.5; the mode 10; and the range, 6  to 14. This was consider reasonable since even if  20 balls 

were delivered to the adhesive, the volume of the joint occupied by the ballotini, would still be only 0 .2 % 

of the total volume of the joint, and thus, not adversely effect the bond performance.

This method of controlling the bondline was used for the first sequence of tests, however for subsequent 

tests, a different method was employed; two, three millimeter lengths of steel wire, 0.25 mm diameter 

(No. 06 guitar string), were placed in each joint. The wires were positioned parallel to the joint length 

(tensile axis), at mid-overlap length, and at one quarter and three quarters of the overlap width, 

respectively.

I I

Figure 3.4. Position of wire spacers.

The problem with the glass ballotini was sticking ; be it due to surface tension, static charge, or because 

of the presence of moisture, the ballotini were difficult to separate from one another, and this resulted in 

clumps of unevenly distributed ballotini, which could have led to inconsistent bondlines. There also 

appeared to be a degree of incompatibility between the ballotini and the adhesive; SEM revealed 

evidence of stressing in the adhesive in areas adjacent to ballotini, possible due to the adhesive 

contracting around the ballotini as it cured; this effect is shown in Plate 3.1. There were no such 

problems experienced with the steel wire. Bryant et al (100,101), have used steel wire without it 

adversely affecting bond strength.
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Plate 3.1.

83:
_ A ‘ ' •• • .. < •: 5 .  .’’i :_

SEM micrograph showing evidence of stressing in DP 490 adhesive due to ballotini.

3.2.1.3.2. FLOATING ROLLER PEEL

3.2.I.3.2.I. METHOD I

The first batch of test-specimens were machined from pre-bonded coupons (300 x 100 mm), see Figure

3.5. Two test-pieces were produced per test-coupon. Piano wire, 0.25 mm diameter was situated in the 

coupons at positions A, B, and C, in order to control the bondline. The un-bonded section o f the test 

coupon was protected by masking the area using three layers o f 0.8 mm thick P.T.F.E. strip (D).

B

n o n - b o n d e d  a r e a b o n d e d  a r e a

n o n - b o n d e d  a r e a b o n d e d  a r e a

200

300

25
1 0 0

Figure 3.5. Method I test coupon. Dimensions mm.
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Jigs were constructed to hold the test-coupons together during curing, see Figure 3.6. Silicon release 

paper was placed between the coupons and the jigs to facilitate easy removal after curing. The loaded 

jigs were hand-tightened to apply sufficient pressure to hold the test-coupons together.

&

Figure 3.6. Jigs used in assembly Method I.

3.2.I.3.2.2. METHOD H

The remaining test-specimens were machined to the final dimension prior to bonding. The reason for 

the change in procedure was financial, although Method II did prove to be the simplest and quickest 

procedure. In Method II, small, steel spring-clips were employed to hold the curing joints together, see 

Figure 3.7. The clips were delivered by a device called the Superclip 40, which was the tool provided to 

position the spring-clips; it opened the jaws of the clip to enable it to be positioned. As with Method I, 

Method II used 0.25 mm piano wire and silicon release paper to control the bondline and facilitate easy 

removal of the cured joints, respectively. The joints bonded using Methods I and II are highlighted in 

3.3. Results section.

200

□  r o o
25

 7^-----
spring clips

n □  , □ .

3 0 0  bond area

Figure 3.7. Bonded peel test-piece (Method II) held together by spring-clips during curing.
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3.2.1.4. ADHESIVES APPLICATION AND CURING PROCEDURES

The candidate adhesives and their curing requirements are listed in Table 3.8.

Table 3.8. The candidate adhesives and their curing requirements.

ADHESIVE CURING REQUIREMENT

DP 460: Two-component, cold-cure epoxy 7 days at 23 °C

DP 490: Two-component, cold-cure epoxy 7 days at 23 °C

9323 B/A: Two-component, cold-cure epoxy 5 days at 23 °C

7823 S: One-component, heat-cure epoxy 40 minutes at 180 °C

3532 B/A: Two-component, cold-cure 
polyurethane

2 days at 23 °C

DP 801: Two-component, cold-cure 
modified acrylic

30 minutes at 23 °C

3.2.I.4.I. ADHESIVE APPLICATION AND WORKING LIFE

Both the DP 460 and DP 490 epoxies, were supplied in Duo-Pak’s, double-tube cartridges, 

incorporating the adhesive and the hardener. The adhesives were applied using a special gun applicator 

which forces the two components, in the correct proportions, through a pre-mixing nozzle attached to 

the cartridge (3M EPX applicator). For both the 9323 B/A epoxy and 3532 B/A polyurethane two- 

component, cold-cure adhesives, the two components were supplied separately and thus, manual mixing, 

by weight, in the correct proportions was necessary: 100 A : 101 B and 27 A : 100 B for the two 

adhesives, respectively. In each case, the adhesive was applied to each joint in excess of the theoretical 

volume required, 80.65 mm3 (25.4 mm x 12.7 mm x 0.25 mm). Thus, as the joints were closed the 

excess adhesive was squeezed out, and this ensured that the required volume was delivered to each joint. 

It is important to remember at this point, that this ‘squeeze-out’, as it is known, was allowed to cure and 

not removed at any stage, and thus, the joints were mechanically tested with the hardened squeeze-out 

intact.
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The epoxy adhesives DP 490, 9323 B/A, and 7823 S were sufficiently fluid to allow easy spreading, but 

were viscous enough to be retained within the required volume, and to resist sagging during the curing 

cycle. The DP 460 adhesive was much less viscous, and consequently more difficult to apply 

successfully; a number of the bondline dimensions were observed to be less than the desired 0.25 mm, as 

a result of adhesive escaping from the joint. The polyurethane adhesive 3532 B/A was difficult to apply, 

because of the low work life of this adhesives: the adhesive began to harden approximately 5 minutes 

after mixing, which meant that small amounts of the adhesive had to be mixed at regular intervals.

The modified acrylic EP 801 was so difficult to work with that this adhesive system was omitted from 

the screening program at a early stage; the adhesive was beginning to harden too quickly to allow 

satisfactory application of the adhesive.

3.2.I.4.2. CURING

After bonding, the cold-curing adhesives were allowed to stand overnight, before being stacked and 

stored for the appropriate time, until they were fully cured. The ambient temperature and relative 

humidity were recorded continuously throughout the application procedure and the curing cycle of the 

adhesives. The ambient temperature and relative humidity ranged from 19 °C to 25 °C and 40 to 60 %, 

respectively. For adhesives cured at the lower end of the temperature range, 19 °C, the curing period 

was extended to 10 days, to ensure complete curing. The heat-cured epoxy, 7323 S, was cured in a pre

heated oven. The mild steel weights for applying the nominal pressure, referred to in 3.2.1.3. Joint 

Assembly, were also pre-heated to minimize the re-heating time in the oven, once the joints had been 

loaded. The cured adhesive joints were all tested within 4 days of finishing the curing cycle, i.e. tested 

10 to 14 days after assembly.

N.B. When closing the joints just prior to curing excess adhesive was squeezed out, and this so-called

‘squeeze-out’ was left in position, allowed to cure, and the joints were subsequently tested with these 

squeeze-out fillets intact. However, it was suspected that the un-removed fillets may have contributed to 

the joint strength, and thus, in subsequent bonding the hardened fillets were removed prior to
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mechanical testing. The joints tested with the fillets intact and those tested with the fillets removed are 

clearly indicated in the results.

fillets of hardened 
sq u eeze  out

Figure 3.8. Squeeze cut occurring during joint assembly.

3.2.1.4.3 CO ST OF A D H E SIV E S

Table 3.9. Cost of the six candidate adhesives. Price list supplied by 3M UK pic, August 1997.

ADHESIVE SYSTEM SMALLER SIZE LARGER SIZE
UNIT COST ~ COST PER 

LITRE
UNIT COST ~ COST PER 

LITRE
DP 460 Epoxy

£11.62/3 7  ml £314 £54.70 / 400 ml £138
DP 490 Epoxy

£11.62/3 7  ml £314 £52.71 / 400 ml £132
9323 Epoxy

£56.50/1 £57 £1092.62 / 20 1 £55
7823 Epoxy (heat cured)

£31.47/ 150 ml £210 £1286.49 / 20 1 £64
3532 Polyurethane

£15.81/113 ml £139
DP 801 Acrylic

£9.92 / 50 ml £198 .

The most expensive adhesives are the DP 460 and DP 490 systems, particularly in the smaller sizes at 

almost £12 for 37 ml. The heat-cured epoxy (7823) costs about the same as the acrylic system (DP 801) 

at around £200 per litre; although the latter is only available in the smaller size, as is the polyurethane, 

which is moderately priced at just below £140 per litre. The most economical, however, is the 9323
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epoxy system, which is by far the cheapest and there is little difference in the ‘costs per litre’ between 

the two quantities, at round £60 per litre.

3.2.1.5. MECHANICAL TESTING

Single lap-shear tests were conducted in accordance with BS 5350: Part C5 (ASTM D1002-94). The 

specification states that a strain rate shall be adopted such that the joint is broken in a period of 65 ± 20 

seconds. However, this is impossible if comparisons between adhesives are to be made, since this would 

entail varying the cross-head speed for different adhesives to satisfy the above criteria. Thus, after initial

trials a test rate of 1.5 mm min1 was considered most appropriate. Temperature and relative humidity 

were recorded at the times of the tests. The results of the single lap-shear tests are given in 3.3. Results.

Floating roller peel tests were conducted in accordance with BS 5350: Part C7 (ASTM D3167-93). The 

test were carried out at the 3M Technical Centre in Bracknell, using a Instron hydraulic test machine. 

The rate of the tests used was 150 mm min1. The results of the floating roller peel tests are given in 3.3. 

Results.

3.2.I.5.I. TREATMENT OF RAW DATA

Mean apparent overlap shear strengths were obtained from a sample size of 6. A normal distribution 

was assumed and the standard deviation calculated. Accuracy was to ± 1 standard deviation, and the 

degree of scatter was monitored by calculating the coefficient of variation; the standard deviation as a 

percentage of the mean.

Mean peel strengths were estimated by bisecting the peel curve (as shown in Figure 3.9.) and also by 

taking the average of 20 readings of peel load at positions equally spaced along the peel length.
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peel load

estimated 
mean peel strength 

N/mm

25 mm 
peel width

peel length >
mm

Figure 3.9. Typical Peel Curve.

3.2.2. FR A C TU R E A N A LY SIS

The surfaces of the failed joints were evaluated physically to ascertain the type of failure, be it cohesive, 

adhesive or interfacial, and in addition, to identify the failure mechanism, be it Mode I, II, III or mixed 

mode. The physical evaluation was carried out by visual inspection and using scanning electron 

microscopy. The results of the fracture analysis are given in 3.3. Results.
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3.3. RESULTS

3.3.1. APPARENT SHEAR STRENGTHS OF ADHESIVE BONDED AISI304L 

STAINLESS STEEL JOINTS

The results of the lap shear tests are given in Tables 3.10. and 3.11., and represented graphically in 

Figures 3.10 and 3.11. Table 3.10. (Figure 3.10.) detail the mean apparent shear strength of the original 

adhesive / adherend joint combinations, tested with the fillets un-removed, and Table 3.11. (Figure

3.11.) detail the mean apparent shear strength of the adhesive / adherend joint combinations, tested with 

the fillets removed. Figure 3.12. compares the mean apparent shear strength of joints, tested with the 

fillets un-removed, and tested with the fillets removed.
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Table 3.10. Initial overlap shear strengths of AISI 304 L / adhesive joints with the fillets un- 

removed prior to testing.

ADHESIVE
SYSTEM

ADHEREND SURFACE 
CONDITION

MEAN
FAILURE

LOAD

S.D. MEAN 
APPARENT 

SHEAR ... 
STRENGTH

S.D. COEFFT. OF 

VARIATION

- M * io o
X

- _ _ - - <kN) (toO (N.mm‘2) (N.mrn'2) (%>
DP 460 Alkaline Degreased 9.5 0.7 30.3 2.3 7.6

Mechanical Roughened 9.4 0.7 30.2 2.3 7.5

Acid Rinsed 9.8 0 .8 31.5 2 .6 8 .1

DP 490 Alkaline Degreased 8 .0 0.3 25.6 1.0 3.8

Mechanical Roughened 8 .2 0.3 26.2 0.9 3.4

Acid Rinsed 8.7 1.1 27.7 3.4 1 2 .2

9323 B/A Alkaline Degreased 7.8 1 .6 24.9 5.0 2 0 .1

Mechanical Roughened 8 .8 0.4 28.0 1.3 4.8

Acid Rinsed 8.9 0 .8 28.5 2.5 8 .8

7823 S Alkaline Degreased 7.4 0 .8 23.8 2 .6 1 0 .8

Mechanical Roughened 7.0 0 .6 22.3 1.8 8 .1

Acid Rinsed 8 .0 0.4 25.6 1.3 4.9

3532 B/A Alkaline Degreased 3.8 1.0 1 2 .2 3.2 25.8

Mechanical Roughened 4.1 0.3 13.1 0.9 7.1

Acid Rinsed 4.4 0.4 14.1 1.2 8 .2

Table 3.11. Initial overlap shear strengths of AISI 304 L / DP 490 epoxy joints 

with fillets removed prior to testing.

DP 490 Alkaline Degreased 6 . 1 0 . 8 19.4 2.4 12.4

Alumina Blasted 7.7 0.7 24.6 2 . 2 9.0

Acid Etched 7.7 0.4 24.7 1.3 5.4
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Considering Table 3.10. and Figure 3.10.

The best performance in terms of mean apparent shear strength came from those joints bonded with the 

two-part, cold-cure epoxy system DP 460; the mean strength of the joints incorporating the Alkaline 

Degreased adherends and the Mechanically Roughened adherends was essentially the same at 30.3 (± 1 

standard deviation, ± 2.3) MPa and 30.2 (± 2.3) MPa, respectively. The joint incorporating the Acid 

Rinsed adherends performed only slightly better at 31.5 (± 2.6) MPa.

The joints bonded with the two-part, cold-cure epoxy system DP 490 performed well in the tests. The 

mean apparent shear strength of the joints incorporating the Alkaline Degreased, and the Mechanically 

Roughened adherends were similar at 25.6 (± 1.0) MPa and 26.2 (± 0.9) MPa, respectively. The joints 

incorporating the Acid Rinsed adherends performed slightly better at 27.7 (± 3.4) MPa, although this 

result was marred by the extent of the scatter displayed by these joints (c.o.v. 1 2 . 2  %).

The joints bonded with the two-part, cold-cure epoxy system 9323 B/A also performed well in the tests. 

The mean strengths of the joints incorporating the Mechanically Roughened adherends and the Acid 

Rinsed adherends were similar at 28.0 (± 1.3) MPa and 28.5 (± 2.5) MPa, respectively. The joints 

incorporating the Alkaline Degreased adherends gave a much poorer performance at 24.9 (± 5.00) 

MPa, and further more this result was marred by the degree of scatter displayed by these joints (c.o.v. 

20.1 %).

The heat cured system 7323 performed least well out of the epoxies considered. The joints incorporating 

the Acid Rinsed adherends gave the highest mean strength at 25.6 (±1.3) MPa. The joints including the 

Alkaline Degreased surfaces gave a slightly lower mean strength at 23.8 (±2.6) MPa. However, the 

poorest performance was displayed by the joints with the Mechanically Roughened adherends at 22.3 

(±1.8) MPa.

The poorest performance came from those joints bonded with the two-part, cold-cure polyurethane 

system 3532 B/A; 12.2 (± 3.2) MPa, 13.1 (± 0.9) MPa, and 14.1 (± 1.2) MPa for those joints
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incorporating the Alkaline Degreased, Mechanically Roughened, and Acid Rinsed adherends, 

respectively. Although a slight improvement was observed, the improvement was small, and the result 

was marred by the degree of scatter displayed by the joints incorporating the Alkaline Degreased 

adherends (c.o.v. 25.8 %).

Overall, the joints incorporating the adherends subjected to Acid Rinsing gave the highest mean shear 

strength, and generally, the lowest mean shear strength came from those joints including the Alkaline 

Degreased adherends; with two exceptions. The mean shear strength of the joints bonded with DP 460 

were essentially the same for joints including the Alkaline Degreased and the Mechanically Roughened 

adherends, 30.3 (± 2.3) MPa and 30.2 (± 2.3), respectively. For the joints bonded using the heat cured 

system, 7323, the joints with the Mechanical Roughened adherends gave the lowest mean shear 

strength at 22.3 (± 1 .8 ) MPa.

Considering Table 3.11. and Figure 3.11.

For those joints tested with the fillets removed prior to testing, the joints incorporating the Alumina 

Blasted and the Acid Etched adherends performed best at 24.6 (± 2.2) MPa and 24.7 (± 1.3) MPa, 

respectively. However, the joints incorporating the Alkaline Degreased adherends gave a relatively poor 

mean strength at 19.4 (± 2.4) MPa and displayed the highest degree of scatter at 12.4 %. The joints 

containing the Acid Rinsed adherends gave the least degree of scatter at 5.4 %.

The effect of removing the fillets prior to testing can be seen from Tables 3.10. and 3.11. and Figure

3.12. The mean shear strength of the joints bonded with DP 490 and incorporating the Alkaline 

Degreased adherends decreased by ~ 24 %, from 25.6 (±1.0) MPa to 19.4 (± 2.4) MPa, when the fillets 

were removed. This reduction in strength was accompanied by an increase in the degree of scatter; c.o.v 

3.8 % for the joints tested with fillets un-removed, compared with 12.4 % for the joints tested with the 

fillets removed. This is shown clearly in Figure 3.12., together with two other examples which show 

similar reductions in mean shear strength as a result of removing the fillets prior to testing. Joints 

incorporating Acetone /  Inhibisol Rinsed adherends showed a reduction of ~ 25 % in shear strength, 

28.0 (± 2.5) MPa to 21.1 (± 1.5) MPa. The joints incorporating Smutted adherends showed a reduction
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of ~ 22 % in shear strength; 27.6 (± 1.7) MPa to 21.6 (± 0.7) MPa. Acetone /  Inhibisol Rinsing and 

Smutting are detailed in Section 4.2.1.2. Surface Pre-bonding Treatments.

N.B. Although there were differences in the adherend surface conditions referred to as Mechanically 

Roughened and Alumina Blasted, both were induced by physical roughening of the substrate surface, and 

thus, some degree of comparison was thought justified. The mean strength of the joints incorporating 

Alumina Blasted adherends, when tested with the fillets removed, was only 6  % less than that of the 

joints incorporating Mechanically Roughened adherends, tested with the fillets un-removed, 24.6 (± 2.2) 

MPa and 26.2 (± 0.9) MPa, respectively. However, the degree of scatter was better for the joints tested 

with the fillets un-removed; c.o.v. 3.4 % compared with c.o.v. 9.0 %, respectively.

In addition, the mean shear strength of the joints tested with the fillets removed, incorporating Alumina 

Blasted and Acid Etched adherends, were both comparable with the mean shear strength of the joints 

incorporating the Alkaline Degreased adherends, but tested with the fillets un-removed; 24.6 (± 2.2) 

MPa and 24.7 (± 1.3) MPa, respectively, compared with 25.6 (± 1.0) MPa. This was a considerable 

achievement considering these joints were tested with the fillets removed, and therefore in a weakened 

state.

3.3.2 FLOATING ROLLER PEEL STRENGTHS OF ADHESIVE-BONDED 

AISI 304L STAINLESS STEEL JOINTS

The results of the floating roller peel tests are given in Tables 3.12. and 3.13. and represented 

graphically in Figures 3.13. and 3.14.

The first batch of peel test specimens to be assembled comprised three adhesives and three adherend 

surface conditions; two epoxy systems DP 460 and DP 490 and the urethane system 3532 were used to 

bond joints incorporating Alkaline Degreased, Alumina Blasted and Acid Etched adherends. These 

joints were machined to final dimensions from pre-bonded coupons and were held together using special 

jigs during curing, as described in 3.2.1.3.2.1. Floating Roller Peel: Method I. Identified in Tables
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3.12. and 3.13, and Figures 3.13. and 3.14. by M I (Method I). However, due to a logistical problem, it 

became impossible to produce the peel test specimens by this method and an alternative method was 

developed. Subsequent joints were machined to the final joint dimensions prior to bonding, and special 

spring clips were used instead of the jigs to facilitate curing, as described in 3.2.1.3.2.2. Method II. 

Identified in Tables 3.12 and 3.13, and Figures 3.13. and 3.14. by MII (Method II).

Considering Table 3.12. and Figure 3.13.

For joints assembled by Method I

The polyurethane system, 3532, clearly gives the best performance at 10.6 (± 1.3) N mm'1, 12.0 (± 1.3) 

N mm' 1 and 14.1 (± 1.4) N mm'1, for the Acid Etched, Alkaline Degreased and Alumina Blasted 

adherends, respectively. The poorest performance came from the joints bonded with DP 460 and 

incorporating the Alkaline Degreased adherends at 2.5 (± 0.9) N mm*1, although higher mean peel 

strengths were realised for those joints including Alumina Blasted and Acid Etched adherends at 4.5 (±

0.5) N mm*1 and 7.4 (± 0.9) N mm'1, respectfully. The joints bonded with DP 490 and incorporating the 

Alumina Blasted adherends gave essentially the same mean peel strength as those including the Acid 

Etched adherends at 5.5 (±1.2) N mm'1, and 5.4 (± 1.0) N mm'1, respectfully. However, the joints 

incorporating thq Alkaline Degreased adherends gave a lower mean peel strength at 4.1 (± 1.1) N mm"1.

For joints assembled by Method II

The joints incorporating the Alkaline Degreased adherends and bonded with the epoxy 9323, performed 

slightly better than those bonded with the heat cured system 7823 at 3.8 (± 0.3) N mm' 1 and 3.3 (± 0.3) 

N mm'1. However, these results could not be compared directly with the above results because of the two 

different methods involved during joint construction and assembly. Thus, to allow comparison, the 

mean peel strength of DP 490-bonded joints (Alkaline Degreased) assembled using Method II was 

determined and is given in Table 3.13. and Figure 3.14.

Considering Table 3.13. and Figure 3.14.

The joints assembled using Method II gave a mean peel strength almost 25% less than those joints 

assembled using Method I; 3.1 (± 0.3) N.mm' 1 and 4.1 (± 1.1) N.mm'1, respectively. However, there
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were two essential differences between Methods I and II: Firstly, in Method I the joints were machined 

from pre-bonded coupons, whereas, in Method II the joints were machined to size prior to bonding; and 

secondly, in Method I the joints were ‘jig-held’ dining curing, whereas, in Method II the joints were 

held together with spring clips. Therefore, it is difficult to say whether the reduction in mean peel 

strength observed between joints assembled using Method I and Method n  is due to the 

machining/bonding sequence, or whether, it is due to the type of fixture employed to keep the joints 

together during curing. Thus, in order to evaluate the significance of the type of holding fixture 

employed to facilitate curing, the mean peel strength was determined for joints incorporating adherends 

pre-machined prior to bonding but held together during curing using the jigs originally designed for 

holding coupons rather than individual joints. This was designated Method m  and is given in Table

3.13. and Figure 3.14.

Method I - joints machined directly to size from pre-bonded coupons and held in jigs during

curing.

Method II -joints bonded after machining and held together with spring clips during curing.

Method HI - joints bonded after machining (as with Method II) and held in jigs during curing (as

with Method I).

The mean peel strength of the joints, incorporating adherends pre-machined prior to bonding, were 

almost the same at 3.0 (± 0.2) N.mm' 1 and 3.1 (± 0.3) N.mm'1, for the joints held using spring clips and 

those jig-held, respectively (Methods II and HI). Thus, it would suggest that the reduction in strength 

observed between the joints assembled using Methods I and n , had little to do with the type of fixture 

employed to facilitate curing, but must be due to the machining/bonding sequence.

3.3.3. FRACTURE ANALYSIS

The fracture faces of the failed joints were examined visually and using SEM; the fractures were 

mounted and gold coated before SEM examination. Table 3.14. contains the estimated proportions of 

adhesive, cohesive, and interfacial failure; it is appreciated that these results are subjective. N.B. The
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terms adhesive, cohesive, and interfacial failure are often confused, thus, the following interpretations of 

the definitions are included to clarify the situation.

Table 3.14. Loci of Failures.

ADHESIVE
SYSTEM

LOCUS OF FAILURE IN SHEAR TEST SAMPLES LOCUS OF 
FAILURE IN 

PEEL SAMPLES
ADHESIVE

%
INTERFACIAL

%
COHESIVE

%
DP 460 75 2 0 5 ADHESIVE

DP 490 2 0 30 50 ADHESIVE

9323 B/A 60 25 15 ADHESIVE

7823 S 0 99 1 ADHESIVE

3532 B/A 50 40 1 0 ADHESIVE

Adhesive failure: - complete separation of adhesive and adherend.

Cohesive failure: - failure entirely within adhesive or failure entirely within adherend.

Denoted by cohesiveAdhesive or cohesiveAdherend •

Interfacial failure: - failure within the surface layer of adhesive, or, at adhesive / primer

interface. Denoted by interfacialAdhesive or interfacial̂ esive/primer.

- failure within primer, or, at primer / oxide interface. Denoted 

interfacialprimer or interfacialpnmert/oxide.

- failure within the oxide layer or, at oxide / bulk metal interface. Denoted by 

interfacialoxide Or interfhClUloxidc/adherend*
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Plate 3.2.

A I S I  304: ALK. DEG: DP 4 60 :  PREDOM. I / F A C IA L  FAILURE - 1 : 1

Optical micrograph of DP 460 fracture face. 

Plate 3.3.

Scanning electron micrograph of DP 460 fracture face. Showing cliff- like fracture edges.
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Plate 3.4.

A I S I  304: G8/SB: HEAT CURED. COH. FAILURE.

Optical micrograph of 7823 S fracture face. 

Plate 3.5.

A I S I  304: GB/SB: POLY.

Optical micrograph of 3532 B/A fracture face.
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Plate 3.6.

A IS  I 304: ALK. DEG: DP 4 90 :  PREDOM. I / C  FAILURE - 1 : 1

Optical micrograph of DP 490 fracture face. 

Plate 3.7.

titi' • ■

A I S I  304: GB/SB: 2 COMP.

Optical micrograph of 9323 B/A fracture face.
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Plate 3.8.

Scanning electron micrograph of DP 490 fracture face. Showing cohesive failure within adhesive. 

Plate 3.9.

Scanning electron micrograph of DP 490 fracture face. Showing cohesive and adhesive failure.
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Plate 3.10.

Scanning electron micrograph of DP 490 fracture face. Showing cracking. 

Plate 3.11.

Scanning electron micrograph of DP 490 fracture face. Showing interfacial failure.
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Plate 3.12.

x t t  O.a NttO.OS

Scanning electron micrograph of 9323 B/A fracture face. Showing adhesive and cohesive failure. 

Plate 3.13.

Scanning electron micrograph of 9323 B/A fracture face. Showing adhesive and cohesive failure.
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Plate 3.2.

The fracture faces of the failed lap shear joints bonded with the epoxy system DP 460 showed 

predominantly regions of adhesive failure. Remnants of the adhesive where observed, as large broken 

islands, on both halves of each joint, distributed evenly between the two halves, and to a height equal to 

that of the bondline (0.25 mm). These islands corresponded to similar shaped areas of exposed steel 

substrate on the opposite fracture face, and any two corresponding halves fitted together like jigsaw 

pieces. Both the surface of the adhesive and that of the adherend had a gloss lustre, as if the two 

materials had never been intimate. For the most part, the adhesive surface was smooth and featureless, 

although the edges of the islands had a distinct pattern, and were in fact clifi-like, see Plate 3.3.

Plate 3.4.

The fractures of the joints bonded using the hot-cured epoxy system 7823S, also had a distinct 

appearance. The adhesive, relatively smooth and featureless, was present on both corresponding faces of 

each joint, and it appeared to be a entirely cohesive failure within the adhesive. However on closer 

inspection it was apparent that failure had occurred within the near-surface layers of the adhesive, 

leaving a thin layer of adhesive on one half of the joint and approximately 0.25 mm of adhesive (almost 

the entire bondline thickness) on the other. The surface of the adhesive on both faces of each 

corresponding joint no longer had a gloss sheen, but was of a dull, matt appearance. This was 

characteristic of interfacialAdhesive failure, which was the predominant locus of failure observed on the 

post-fracture faces. This was attributed to peel stresses induced at the extremes of the overlap due to the 

elastic and plastic rotation of the joint. As the joint rotates, cracks due to peel propagate from both ends 

of the overlap towards the centre, where fast fracture occurs through the adhesive by shear as the joint 

rotation reaches a maximum and this results in cohesiveAdhesive failure. The latter explains the 1% 

cohesive failure reported from the post-fracture faces of joints bonded with the 7823S system (see Table

3.14.).
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  direction of crack propagation resulting in interfacialAdhesive failure

  point of fast fracture fracture resulting in cohesiveAdhesive failure

Figure 3.15. Locus of failure in 7823 S bonded joints.

Plate 3.5.

The fracture of the lap shear joints bonded with the polyurethane system 3532 B/A consisted of around 

50% adhesive failure, with approximately equal amounts of adhesive on the corresponding halves of 

each joint. The remainder consisted predominantly of interfacial failure, with discrete regions of 

cohesive failure, 40% and 10%, respectively.

Plate 3.6.

The fracture faces of the joints bonded with the epoxy system DP 490, showed a reduced proportion of 

adhesive failure, the remainder being predominately cohesive failure with associated interfacial failure, 

20% 50% and 30%, respectively. Less cohesive failure was observed on those joints incorporating the 

alkaline degreased adherends, than on those incorporating the mechanical roughened and the acid 

rinsed adherends, 35%, 60% and 50%, respectively. Plates 3.8. and 3.9. show areas of cohesive and 

adhesive failure.

Plate 3.7.

The fracture faces of the joints bonded with the epoxy system 9323 were very similar to those of the DP 

490 System, but with a higher proportion of adhesive failure (60% c.f. 20%), and a lower proportion of 

cohesive failure (15% c.f. 50%). The extent of interfacial failure was similar at 30% and 35%, 

respectively.
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Both the DP 490 and 9323 B/A systems displayed a similar pattern of cracking running perpendicular to 

the tensile axis at one edge and veering to approximately 45° to the tensile axis towards the centre of the 

fracture faces. In the DP 490 system the pattern was finer than that displayed by the 9323 system. The 

cracks in the DP 490 were angled at 45° to the tensile axis. The cracking pattern was not observed in 

any of the other adhesives. Plates 3.10. and 3.11., show the cracking in the DP 490, and Plates 3.12. 

and 3.13., show a similar pattern in the 9323 system.

plate 14

45 degrees

tensile axis

Figure 3.16. Locus of cracking observed in DP 490 and 9323 epoxy systems.
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3.4. DISCUSSION

It is clear from the results that it is possible to discriminate between different adhesive systems using a 

regime which includes single-overlap-shear testing. But, whether or not it is possible to differentiate 

between different adherend pre-treatments using this technique is less clear. A slight trend was 

observed, however, in favour of the lap shear joints incorporating the Acid Rinsed adherends, which 

might suggest that this cleaning procedure is more effective than Alkaline Degreasing or Mechanical 

Roughening, In addition, the lap shear strengths resulting from the joints incorporating the 

Mechanically Roughened adherends were the most consistent, and this might indicate that Mechanical 

Roughening removes contamination in a manner more uniform than that achieved by either Alkaline 

Degreasing or Acid Rinsing. Similarly, floating roller peel testing was able to discriminate effectively 

between different adhesive systems. But once again, it is less clear as to whether or not floating roller 

peel testing is capable of discriminating between different adherend surface conditions. Again a slight 

trend was observed, this time in favour of the joints including Alumina Blasted and Acid Etched 

adherends, and this may be attributed to the increased degree of mechanical interlocking, resulting from 

the physical and chemical roughening action of these techniques, or, it may simply be because these 

methods are more effective at cleaning than Alkaline Degreasing.

In the lap shear tests, the epoxy systems, as expected, performed much better than the polyurethane 

system, because of the high inherent shear strength associated with this family of adhesives. However, 

joints incorporating the polyurethane adhesive gave a much superior mean peel strength than any of the 

epoxy systems, which is probably due to the high flexibility commensurate with this family of adhesives. 

The joints incorporating the two-component epoxy DP 460 gave the highest mean apparent shear 

strength, although all the epoxy systems performed well in the lap shear tests. The poor performance of 

the polyurethane under shear loading, however, would limit the use of this adhesive type to non- 

structural applications. Although the peel performance of joints bonded with the epoxy systems were 

inferior to those bonded with the polyurethane, the strengths obtained were reasonable, and could be 

tolerated, providing the peel stresses within the joint were minimised by careful joint design.
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It is worth noting that peel strength appears to be sensitive to changes in the assembly procedure. The 

higher mean peel strength obtained from joints machined from pre-bonded coupons (Method I), 

compared with those of joints bonded from pre-machined adherends (Methods II and III), may be 

attributed to edge effects, such as the extent of which any mechanical clinching incurred during 

guillotining and machining contributed to peel performance. It may even be due to a plasticising effect 

of the machine oil or coolant on the DP 490 adhesive.

On the assumption that cohesive failure within the adhesive implies that the strength of adhesion at the 

adhesive / adherend interface is greater than the cohesive strength of the adhesive, the two-part epoxy 

DP 490 was considered to be the most ‘stainless-compatible’ system, since the subsequent fracture faces 

of the joints bonded with this system gave the highest percentage of cohesive failure within the adhesive.

The subsequent fracture faces of the lap shear joints revealed areas of adhesive failure at the adhesive / 

adherend interface, and areas of interfacial and cohesive failure within the adhesive, the approximate 

proportions of which are given in Table 3.14. The areas of adhesive failure observed on the fracture 

faces were generally restricted to the two extremes of the overlap, where the peel stresses would have 

been the greatest during the test, as a result of an induced bending moment. The areas of interfacial and 

cohesive failure, however, were located towards the centre of the fracture face where the peel stresses 

would have been minimal during the test. Thus, adhesive failure is likely to have initiated at both ends 

of the joint due to intense peel stresses induced by the bending moment, the adhesive finally failing, 

cohesively, as the two planar cracks approached one another.

With respect to the application of the adhesives and their curing requirements. The one-component 

heat-cured epoxy 7323 displayed a reasonable mean shear strength, just two horns after the joints were 

assembled, after allowing for the joints to cool down before testing. This, together with its indefinite 

working life at room temperature, would make this the ideal choice of adhesive for many applications. 

The main disadvantage with this type of system, however, is that a heat source is required, and this may 

be impractical or too expensive to accommodate. The two-component adhesives that required mixing by 

hand, the epoxy 9323 and the polyurethane system 3532 had the advantage of curing at room
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temperature, but reaching handling strength after 24 hours. The main problems with these systems were 

in the time taken, and the accuracy required, to mix the two components. In addition to this, the 

urethane 3532 had a short working life, so short the adhesive had to be mixed in very small quantities at 

a time. The adhesives considered the easiest to work with must be the two-component epoxies DP 460 

and DP 490; both reaching handling strength within 24 hours and with no weighing, proportioning and 

mixing required, as these adhesives are both supplied in a pre-proportioned, double cartridge, and 

applied with a gun and self-mixing nozzle. From the aforementioned adhesive the preferred choice 

would be the DP 490 system, because of its optimum viscosity, its sag resistance and its gap filling 

properties; sufficiently liquid to wet the surface, but sufficiently solid to be controlled.

From considered opinion, Table 3.15. gives a rating, from 1 to 5, from worse to best, for each of the 

candidate adhesives, as judged by the following criteria: Mechanical properties (apparent lap shear and 

floating roller peel strength); adhesive / adherend compatibility (degree of cohesive failure); application 

and curing; and cost.

Table 3.15. Adhesive ratings.

ADHESIVE
SYSTEM

SHEAR
RATING

PEEL
RATING

ADHESION
RATING

APPLICATION
RATING

COST
RATING

TOTAL
RATING

EPOXY 
DP 460

5 4 1 4 2 16

EPOXY 4 3 5 _ 5 1 18
DP 490 _
EPOXY
9323

3 2 4 2 5 16

EPOXY
7323

2 1 3 3 4 13

POLY.
3532

1 5 2 1 3 1 2

Finally, removing the fillets of hardened adhesive ‘squeeze-out’ from around the perimeter of the lap 

shear joints prior to mechanical testing, results in a dramatic reduction in apparent shear strength, up to 

25 %. This is probably because the fillets minimise the peel stress at the extremes of the overlap, and 

thereby, offset failure until a higher load.
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3.5. CONCLUSIONS

1. Apparent overlap shear strength tests and floating roller peel tests are useful methods for 

discriminating between different types of adhesive. However, these techniques are less sensitive to 

changes in the condition of the surface of the adherend.

2. Measured peel strength of is sensitive to manufacturing route.

3. If the bond performance is improved by roughening the surface, by physical or chemical means, 

it is more likely to be a result of the improved degree of cleanliness attained and/or the increase in 

surface area available for bonding, rather than from the contribution afforded by mechanical 

interlocking.

4. If stainless steels are to be joined using adhesives, with the intention of employing the resulting 

fabrications in structural applications, toughened epoxy systems must be considered. The epoxy system 

DP 490 would be the preferred choice out of those systems considered in this programme.

5. The surface condition of the adherend is important with respect to the degree of surface 

cleanliness attained. However, the contribution to bond strength afforded by physical and chemical 

induced modifications are considered negligible, and may be out-weighed by the economic 

considerations.

6 . Adhesive ‘squeeze-out’ fillets should be left un-removed in adhesive-metallic bonds to optimise 

performance. However, if aesthetic considerations are paramount, the fillets may be removed, but this 

will result in a subsequent reduction in the shear strength observed.
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4.0. The Effect of Weak Boundary Layers on the Mechanical performance of 

Adhesive-Bonded Stainless Steel Joints

Abstract

Shear tensile tests were conducted on AISI 304L stainless steel lap joints, bonded with a toughened 

epoxy system, DP 490, and incorporating adherends which had been pre-treated by a number o f 

different methods; As-Received surfaces were also included for comparison. The highest apparent 

shear strengths were obtained from those joints comprising adherends cleaned by mechanical and 

chemical roughening, and ones containing Acetone/Inhibisol Rinsed, Alkaline Degreased and Acid 

Rinsed surfaces. Joints incorporating adherends subjected to little or no surface preparation (As- 

Received and Dry Wiped surfaces) gave inferior mean apparent shear strengths; approximately 25 % 

lower. Single overlap shear and floating roller peel tests were also conducted on joints with different 

bondline thickness \ and on others incorporating adherends primed to different degrees. The mean 

apparent shear strength was found to decrease with increasing bondline thickness, although the mean 

peel strength stayed about the same. The presence, or absence, o f a surface primer appeared to make 

little difference to both the mean apparent shear strength and the mean floating roller peel strength.
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4.1. INTRODUCTION

Metallic surfaces are high energy surfaces and thus naturally susceptible to contamination. Air-borne 

contaminants, organic and inorganic, will be readily adsorbed by metallic surfaces, or more correctly, 

metallic oxide surfaces. Contamination will also come from more obvious sources; from handling, or as 

a result of the production process, for example, oil and coolant from machining, or grease from 

lubrication and storage. These surface contaminants can act as barriers to intrinsic adhesion, 

preventing, or impairing, intimate union between adhesive and adherend surface, by forming what are 

effectively weak boundary layers.

However, it is not only surface contamination that can act as weak boundary layers. Primers, employed 

to promote adhesion and/or to help protect ‘cleaned surfaces’ from re-contamination, may impart 

brittleness to the joint if the primer layer is excessive; in this case, the primer is the weak boundary 

layer. Inherent surface oxides, or those created or modified by chemical reaction (etching and 

anodising), can also constitute weak boundary layers. Indeed, the adhesive itself may act as the weak 

link, if the bondline thickness is too great.

In order to investigate surface contamination as a potential weak boundary layer, joints incorporating 

untreated As-Received material were prepared and the mean apparent shear strength determined. For 

comparison, similar tests were carried out on joints containing adherends that had received some degree 

of surface preparation, ranging from basic Dry Wiping to more comprehensive surface cleaning such as 

Acetone /  Inhibisol Rinsing or Acid Rinsing II. Stainless steel surfaces were also etched in sulphuric 

acid, before being bonded, to generate the black iron oxide known as smut, which has been observed to 

act as a weak boundary layer (62).

In order to evaluate the primer as a potential weak boundary layer, both the mean single-overlap-shear 

strength and mean floating roller peel strength were determined for joints incorporating under-primed 

and over-primed adherends. Similarly, to assess the bondline as a potential weak boundary layer, both 

the mean single-overlap-shear strength and mean floating roller peel strength were determined for joints 

incorporating reduced and increased bondlines, 0.1 mm and 0.5 mm, respectively.
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4.2. EXPERIMENTAL WORK

4.2.1. MEASUREMENT OF THE MEAN APPARENT SHEAR STRENGTH 

AND FLOATING ROLLER PEEL STRENGTH

4.2.1.1. TEST MATERIAL PREPARATION AND JOINT 

CONFIGURATION

AISI 304L stainless steel strip, with a matt surface finish (designation 2B), cold-rolled to 1.5 mm, was 

used as the adherend material for the single overlap shear joints, and as the rigid adherend for the peel 

joints; the flexible adherend used in the peel tests was made from AISI 304L, with a 2B surface finish, 

cold rolled to 0.5 mm. The adherends used in the lap joints and those used in the peel joints were 

manufacture to the same dimensions, and by the same methods, as those given and detailed in 3.2.1.1. 

Test Material Preparation and Joint Configuration.

4.2.1.2. SURFACE PRE-BONDING TREATMENTS

Prior to bonding, the adherends were subjected to a number of surface treatments, and these are given in 

Table 4.1., together with descriptions of the various stages involved.

4.2.1.3. JOINT ASSEMBLY

Single-overlap shear joints were constructed following the procedure detailed in 3.2.1.3. Joint Assembly, 

and floating roller peel joints were assembled by ‘Method IF, which is also described in 3.2.1.3. Joint 

Assembly. In order to control the bondline thickness of both lap shear and peel joints, 0.1 mm, 0.25 mm 

and 0.5 mm diameter wire (guitar strings) were carefully positioned into the lap and peel joints just prior 

to joint closure. All the joints were bonded using the toughened epoxy system DP 490, selected because 

of its performance in the screening program. The bonded joints were stored in a desiccator and allowed 

to stand for the appropriate curing period.
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4.2.1.4. MECHANICAL TESTING

Single lap-shear tests were conducted in accordance with BS 5350: Part C5 (ASTM D1002-94) at a rate

of 1.5 mm min. \  Floating roller peel tests were conducted in accordance with BS 5350: Part C7 

(ASTM D3167-93) at a rate of 150 mm min."1. The mean apparent shear strength was calculated using 

a sample size of six. The mean floating roller peel strength was calculated using a sample size of two, 

since the peel is a continuous test (see 3.2.1.5.1. Treatment o f Raw Data). N.B. All joints were tested 

with the fillets of hardened ‘squeeze-out’ un-removed, with the exception of the lap shear joints 

incorporating 0.1,0.25 and 0.5 mm bondline thickness’.

4.2.2. FRACTURE ANALYSIS

The surfaces of the failed joints were evaluated physically to ascertain the type of failure, be it cohesive, 

adhesive or interfacial, and in addition, to identify the failure mechanism, be it Mode I, II, III or mixed 

mode. The physical evaluation was carried out by visual inspection and using SEM.
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4.3. RESULTS

The results of the standard single-overlap shear tests are given in Tables 4.2. and 4.3., and Figures 4.1. 

and 4.2. The floating roller peel test results are given in Table 4.4. and Figure 4 .2 . Table 4.5. details 

the loci of failure observed under shear and peel loading.

Table 4.2. Mean apparent shear strength of AISI 304 L / adhesive joints, bonded with DP 490

toughened epoxy and incorporating adherends with different surface conditions. Fillets un-removed.

ADHEREND SURFACE 
CONDITION

ME W  
FAILURE 

LOAD

(kM

S.D. 
( ± 1  S.D.)

<kN)

. MEAN 
APPARENT 
.-SHEAR  
STRENGTH

( N .m m 2)

S.D.
(±1 S.D.) 

(N.mm'2)

_ COEFFICIENT 
OF VARIATION

— x m
X

(%)
AS-RECEIVED 6 . 8 1.4 2 1 . 8 4.5 2 0 . 6

DRY WIPED 
NO PRIMER

6.9 0.7 2 2 . 0 2.4 10.7

DRY WIPED 
STAND. PRIME

6.9 1.3 2 2 . 0 4.2 19.1

DRY WIPED 
OVER PRIMED

6 . 8 1 . 1 2 1 . 8 3.4 15.7

ACETONE/INHIBISOL
RINSED

8.7 0 . 8 28.0 2.5 9.0

ALKALINE DEGREASED 
(From Table 3.10.)

8 . 0 0.3 25.6 1 . 0 3.8

ACID RINSED 
(From Table 3.10.)

8.7 1 . 1 27.7 3.4 1 2 . 2

ACID RINSED II 8.4 0.3 26.9 1 . 0 3.9
MECHANICALLY 
ROUGHENED 
(From Table 3.10.)

8 . 2 0.3 26.2 0.9 3.4

SMUTTED 8 . 6 0.5 27.6 1.7 6.3
NB Standard prime (see 3.2.1.2.1.4. Priming)

Table 4.3. Mean apparent shear strength of AISI 304 L / adhesive joints, bonded with DP 490

toughened epoxy, showing the effect of increasing the bondline. Fillets removed.

ALKALINE DEGREASED 
0.1 mm BONDLINE

8.3 | 0.4 26.4 1 . 2 4.7

ALKALINE DEGREASED 
STAND. BONDLINE
(From Table 3.11.)

6 . 1  j 0 . 8 19.4 2.4 12.4

ALKALINE DEGREASED 
0.5 mm BONDLINE

4.3 | 0.9 13.7 2.9 20.9

NB Standard bondline = 0.25 mm
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Table 4.5. Loci of Failures.

TYPE
OF

TEST

ADHEREND SURFACE 
CONDITION

LOCI OF FAILURE

ADHESIVE
m i m a

INTERFACIAL
%

COHESIVE
%

LAP
SHEAR

AS-RECEIVED 85 1 0  (adhesive) 5

DRY WIPED 
NO PRIMER

75 2 0  (adhesive) 5

DRY WIPED 
STAND. PRIME

75 1 0  (adhesive) 15

DRY WIPED 
OVER PRIMED

75 2 0  (adhesive) 5

A CE TONE/INHIBISOL RINSED 45 35 (adhesive) 2 0

ACID RINSED II 1 0 50 (adhesive) 40

SMUTTED 0 95 (oxide) 5

ALKALINE DEGREASED 
0.1 mm BONDLINE

60 35 (adhesive) 5

ALKALINE DEGREASED 
0.5 mm BONDLINE

80 15 (adhesive) 5

PEEL ALKALINE DEGREASED 
NO PRIMER

1 0 0 0 0

ALKALINE DEGREASED 
OVER PRIMED

90 1 0  (primer) 0

ALKALINE DEGREASED 
0.1 mm BONDLINE

1 0 0 0 0

ALKALINE DEGREASED 
0.5 mm BONDLINE

1 0 0 0 0

Considering Table 4.2. and Graph 4.1.

Joints incorporating Acetone/lnhibisol Rinsed, Acid Rinsed II and, surprisingly enough, Smutted 

surfaces, gave high mean apparent shear strengths, comparable with those of joints comprising Alkaline 

Degreased, Mechanically Roughened, and Acid Rinsed adherends (see Section 3.0. Adhesive 

Screening). Joints with Acetone/lnhibisol Rinsed adherends gave a mean apparent shear strength 

slightly higher than that of joints incorporating adherends pre-treated by the more involved Alkaline 

Degreasing method, 28.0 (± 2.5) MPa and 25.6 (± 1.0) MPa, respectively. The mean apparent shear 

strength of joints including adherends rinsed in hydrochloric acid {Acid Rinsed ) was only slightly 

higher than that of joints incorporating surfaces rinsed in sulphuric acid {Acid Rinsed II), 27.7 (± 3.4) 

MPa and 26.9 (± 1.0) MPa, respectfully. Joints incorporating adherends, plastically deformed by
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Mechanically Roughening, also performed well, as indeed, did joints comprising surfaces chemically 

roughened by Smutting at 26.2 (± 0.9) MPa and 27.6 (± 1 .7 ) MPa, respectively. The lowest mean 

apparent shear strengths, and the largest scatter, came from joints incorporating adherends subjected to 

little or no surface preparation: 21.8 (± 4.5) MPa for joints incorporating As-Received surfaces; and 

22.0 (± 4.2) MPa for the joints incorporating Dry Wiped (standard prime) surfaces. Removing the 

primer stage, or deliberately adding excess primer, appeared to do nothing to adversely affect, or 

improve, mean apparent shear strength; 22.0 (± 2.4) MPa and 21.8 (± 3.4) MPa, for the joints 

incorporating Dry Wiped (no primer) and Dry Wiped (over-primed) surfaces, respectfully.

Considering Table 4.3. and Figure 4.2.

Higher mean apparent shear strengths were obtained from joints with smaller bondline thickness’; 26.4 

(± 1 .2 ) MPa, 25.6 (± 1 .0 ) MPa and 13.7 (± 2.9) MPa, for 0 . 1  mm, 0.25 mm and 0.5 mm thick bondlines, 

respectfully.

Considering Table 4.4. and Figure 4.2.

The mean peel strength of joints with 0.1 mm, 0.25 mm and 0.5 mm were similar at 3.00 (± 0.3) N.mm* 

\  3.1 (± 0.3) N.mm*1 and 2.8 (± 0.4) N.mm'1, respectively. There was also little difference between the 

mean peel strengths of joints incorporating non-primed, standard primed and over-primed adherends, 

2.7 (± 0.4) N.mm*1, 3.1 (± 0.3) N.mm*1 and 2.7 (± 0.3) N.mm*1, respectively. These results are not 

represented graphically.

Considering Table 4.5.

The lap shear fracture faces of the joints incorporating adherends which were subjected to little or no 

surface preparation {Dry Wiped and As-Received), revealed the largest proportion of adhesive failure. 

Whereas, the fractures of joints comprising adherends pre-treated by more sophisticated techniques 

{Acetone/lnhibisol Rinsing, Alkaline Degreasing, Acid Rinsing, Acid Rinsing 11, and Mechanical 

Roughening), revealed higher proportions of interfacial and cohesive failure.
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N.B. The loci of failure in fractured lap joints incorporating Alkaline Degreased (standard 0.25 mm 

bondline), Mechanically Roughened, and Acid Rinsed adherends, are not included in Table 4.5., because 

the loci of failure were originally determined from all lap joints considered in the adhesive screening 

regime that were bonded with the toughened epoxy DP 490, regardless of the surface condition of the 

adherend (see 3.3.3. Fracture Analysis). However, generally there was a high percentage of cohesive 

failure observed (~50%), and the remainder, comprised about equal proportions of adhesive and 

interfacial failure, ~20% and ~30%, respectively. For the same reason, the loci of failure in fractured 

peel joints of standard bondline and standard prime are not included in Table 4.5. In these cases, 100% 

adhesive failure was typical (see 3.3.3. Fracture Analysis).

Most of the interfacial failures observed were, clearly within the adhesive, but so close to the surface that 

it could not be deemed truly cohesive. However, the fracture faces of the Smutted surfaces showed pre

dominantly interfacial failure at the interface of the metallic oxide (smut) and the parent metal. There 

was also some evidence of interfacial failure within the primer layer, i.e. the characteristic hue of the 

primer, a shocking pink, was clearly visible on both sides of the peel joint. Plates 4.1. to 4.4. show 

examples of adhesive failure, cohesiveadhesive, interfacialadhesive, and interfacialoxide/adherend failure.
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Plate 4.1.

ADHESIVE FAILURE

Adhesive failure. Weak adhesion at the adhesive / adherend interface. 

Plate 4.2.

INTERFACIAL/COHESIVE FAILURE

CohesiveAdhesive failure. Weak cohesion within the bulk adhesive.
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Plate 4.3.

ADHESIVE FAILURE

InterfacialAdhesive failure. Weak cohesion within the surface adhesive. 

Plate 4.4.

INTERFACIAL FAILURE

Interfacialoxide failure. Weak adhesion between metallic oxide and parent metal.
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4.4. DISCUSSION

Considering the mean apparent lap shear strengths. It would appear that cleaning the surface of the 

adherend before bonding optimises the strength of the joint. The joints incorporating surfaces subjected 

to little or no surface pre-treatment, Dry Wiped and As-Received surfaces, showed a significant 

reduction in mean apparent shear strength (~ 25%). This suggests that heavy contamination, such as 

that likely to be present on as-received surfaces, can act as weak boundary layers preventing or marring 

adhesion, and wiping the surface with a clean, dry cloth will do little more than smear the contaminants 

from one place to another. The fracture faces of the failed joints supported this evidence; a greater 

proportion of adhesive failure was observed on the fractures of adherends subjected to the least stringent 

treatments, and a greater proportion of interfacial and cohesive failure was observed on the surfaces 

treated more thoroughly (the fractures in general, showed large proportions of adhesive failure at the 

extremes of the overlap where the peel stresses would have been at a maximum, with areas of interfacial 

and cohesive failure towards the middle of the fractures, more typical of failure by shear). In addition, 

the strength of the joints comprising adherends cleaned by more stringent methods gave higher, and 

generally more consistent, apparent shear strengths. It would seem that Acetone/Inhibisol Rinsing, 

Alkaline Degreasing, Acid Rinsing (in hydrochloric or sulphuric acid), and Mechanical Roughening, are 

all effective methods of preparing the pre-bonded surface of stainless steel. However, it is conceded that 

the strength of joints incorporating mechanical roughened adherends, may owe more to mechanical 

interlocking than to the cleanliness of the adherend surface.

The high mean apparent shear strength of joints incorporating Smutted surfaces was obfuscating, since it 

is reported to be such a weak boundary layer (62). Although failure did occur at the oxide interface, 

indicating that the smut is indeed very weakly adhered to the etched steel surface, the mean apparent 

shear strength attained was still one of the highest at nearly 28 MPa. It was probable that final failure 

occurred as a result of the intense peel forces acting on the extremes of the overlap as the joint rotated 

during the test, with rapid fracture occurring at the weakest point, the smut, even though a considerable 

strength was achieved before failure.
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Priming the surface of the Dry Wiped adherends prior to bonding did nothing to improve lap shear 

strength. On the other hand, deliberately over-priming the surface did nothing to weaken lap shear 

strength. The peel test results for joints incorporating Alkaline Degreased adherends with non-primed, 

standard prime and over-primed adherends were equally inconclusive. Perhaps the advantages of 

priming becomes more obvious with time, and therefore, durability testing might be a better approach to 

assessing the role of the primer. However, one thing is certain, when a surface primer is employed 

additional interfaces are created within the joint and this may complicate adhesion. From practical 

experience, it is considered very difficult indeed to control the amount and distribution of the primer, 

and very easy to deposit an layer of non-uniform thickness.

Increasing the bondline thickness of the lap shear joints resulted in a reduction in apparent shear 

strength, which would be expected since the bending moment, induced during the test, would increase 

with increasing bondline thickness. The peel tests, however, failed to discriminate between joints with 

reduced and increased bondlines.

Finally, if Alumina Blasting is used to physically roughen and/or clean stainless steel there is always the 

possibility that particles of alumina may be implanted in the steel surface, and thus, galvanic corrosion 

may result. In addition, Acid Etching stainless steels in sulphuric acid could prove very costly, because 

of the chromium and nickel lost during the violent exothermic reaction.

14.0

12.512.0

10.0 
re3
'§  8.0

6.0

1/5
S  4.0 

2.0

0.0
20 250 5 10 15

Etching time (minutes)

Figure 4.3. Affect of acid etching on stainless steel (weight % loss) (102).

97



4.5. CONCLUSIONS

1. Cleaning the adherend surface prior to bonding improves the mean apparent shear strength, 

and the cleaning procedure need not be as sophisticated as was first imagined, in fact, simple solvent 

degreasing e.g. Acetone / Inhibisol Rinsing will probably suffice.

2. Surface priming does little to enhance joint performance, or for that matter, detract from it. 

Certainly, it is not easy to apply, and controlling its thickness and distribution is difficult.

3. Increasing the bondline thickness of lap joints will result in a lower mean apparent shear 

strength. Optimum strength is realized at thinner bondlines.

4. Etching stainless steel in sulphuric acid can result in the formation of an iron oxide (smut) on 

the surface of the etched steel. Although high lap shear strengths may be realised, the oxide is weakly 

adhered to the metal surface, as the loci of failure were observed to be at the metal / metal oxide 

interface. The bond between the adhesive and the metallic oxide proved to be more resilient than the 

bond between the metal and its oxide.

5. Alumina Blasting will roughen and effectively clean stainless steel surfaces, but may not be 

suitable for treating stainless and carbon steels, because the subsequent joint will be susceptible to 

galvanic corrosion.

6 . Etching is an expensive pre-treatment for stainless steel. The inherent oxide present on the 

stainless surface is destroyed, or at least, compromised, and up to 1 2  % weight loss can occur within 2 0  

minutes.
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5.0. Environmental Durability of Adhesive Bonded Stainless Steel Joints

Abstract

Standard single overlap shear tests and floating roller peel tests were conducted on AISI304L stainless 

steel joints bonded with DP 490 toughened epoxy adhesive. The pre-bonded adherends were subjected 

to minimal surface preparation, i.e. Alkaline Degreasing and priming. Some o f the cured lap shear and 

peel joints were stored in a high relative humidity atmosphere (25 X), 95% R.H.) for up to 100 days and 

the remaining joints were aged in ambient conditions. Boeing wedge crack extension tests were also 

carried out on joints bonded with the toughened epoxy and a polyurethane system 3532. The bonded 

joints were loaded and kept; at ambient temperature and relative humidity, under high humidity 

conditions, at -16°C, or submerged in water. A number o f surface pre-treatment were considered: 

Alkaline Degreasing (with and without priming); Alumina Blasting; Acid Etching; and an acid 

anodising (Passivating) treatment. The lap shear and peel strengths recorded after ageing were 

comparable with those obtained initially, and the presence o f moisture seemed to do little to adversely 

affect joint strength. In the wedge tests, however, the surface condition o f the adherend material 

seemed to play an important role in joint durability, and the presence o f moisture appeared to have an 

adverse affect on performance. The epoxy adhesive gave better results than the polyurethane system in 

the Boeing wedge tests.
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5.1. INTRODUCTION

One of the major drawbacks to using adhesives for joining metal members intended for structural 

applications concerns the perceived poor environmental durability of the bonded structures. Metal-to- 

metal adhesive-bonded joints often give high initial shear strengths, but in time the strength of adhesion 

at the metal / adhesive interface may have deteriorated to zero; in a period of time which is much 

reduced by the presence of moisture. In order to evaluate the environmental durability of adhesive- 

bonded metal-to-metal joints, the overlap-shear tests and/or peel tests are often employed; joints are 

prepared and exposed to some deleterious environment for a certain length of time, and then 

subsequently removed and mechanically tested. However, it is much preferred if the joint is stressed and 

exposed to adverse environments, simultaneously. It is possible to test lap shear test-pieces using 

purpose-built jigs, in which several pre-bonded joints are mechanically fastened together in series. A 

tensile load is applied to the series by means of a relaxing, pre-compressed spring. The loaded jigs may 

then be placed into whatever environment is desired. The main problem with these devices is that if one 

of the joints fail, it must be replaced with a dummy-bar. This can be time consuming and results in an 

un-intended relaxation in the tensile load being applied to the other joints in series.

The Boeing wedge crack extension test, is an alternative method of exposing joints to detrimental 

environments and stress, simultaneously. Wedges are inserted into pre-bonded joints, and the joints are 

located in some harsh environment, for example, a humidity chamber. Providing no plastic deformation 

of the adherend occurs, a tensile load is generated and maintained at the tip of the crack that is initiated 

by the insertion of the wedge. The loaded joints are then exposed for a certain period and the resultant 

crack growth is monitored.

I

Figure 5.1. Loaded wedge test specimen.
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As the crack propagates the effective cleavage load (P) on it decreases because,

where, 8  is the crack opening displacement (COD) and C is the compliance. The decrease in effective 

load provides a self arrest capability for the wedge test, which enables the establishment of the threshold 

level (90) in terms of the Mode I load (P).

Single overlap shear tests and floating roller peel tests (exposed prior to testing) and wedge crack 

extension tests were used in this investigation as a means of assessing the environmental resistance of 

DP 490 toughened-epoxy and 3532 B/A polyurethane adhesive-bonded AISI 304L stainless steel joints. 

DP 490 was selected as a result of its overall performance in the screening programme, and the urethane 

(used only in the wedge crack extension tests) was chosen because of the excellent peel strength 

displayed by this adhesive during the screening schedule. This investigation also presented the 

opportunity to compare two different approaches to investigating durability, one a pre-exposed durability 

test, the other a sustained load test.
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5.2. EXPERIMENTAL WORK

5.2.1. MEASUREMENT OF SINGLE LAP-SHEAR STRENGTH AND 

FLOATING ROLLER PEEL STRENGTH

Single overlap shear joints and floating roller peel joints were assembled, following the same procedures 

detailed in 3.0 Adhesive Screening. AISI 304L stainless steel with a 2B surface finish was employed as 

the adherend material, and the joints were bonded with the toughened epoxy DP 490. The adherends 

were alkaline degreased, again by that procedure detailed in 3.0. Adhesive Screening. The bondline was 

kept constant at 0.25 mm. Seventy two single overlap shear joints were produced. Half of the joints 

were stored at 23 °C and 40 to 50 % relative humidity, and the other half were stored at 23 °C and 95 % 

relative humidity. Six joints, the sample size, were taken from each batch after 1 day, 5 days, 10 days, 

55 days, 84 days and 100 days from the day when the joints were assembled. The joints were 

subsequently tested and the resultant fracture faces analysed. N.B. the fillets of hardened squeeze out 

were removed prior to testing. Twenty eight peel test joints were also produced; fourteen of which were 

stored under ambient conditions, and the other fourteen were stored in a high humidity environment. 

Because the peel test is a continuous test a sample size of two was considered sufficient and two joints 

were removed from each batch after 1 day, 3 days, 4 days, 5 days, 10 days, 55 days and 100 days. The 

joints were subsequently tested and the resultant fracture faces analysed. The results of the lap shear and 

peel tests are given in 5.3. Results.

5.2.2. WEDGE CRACK EXTENSION TESTS

5.2.2.1. BATCH I

5.2.2.1.1. TEST MATERIAL AND JOINT CONFIGURATION

Two hundred blanks (sufficient for 100 joints) were laser cut from 1.5 mm gauge AISI 304L stainless 

steel with a 2B surface finish. Laser cutting was employed because of its simplicity, accuracy and cost; 

test pieces could be cut directly to size, ‘fash-free’, and relatively clean, i.e. there were no contamination 

from oil and grease that is usually associated with machining. A schematic of a wedge test specimen is 

given in Figure 5.2.
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Figure 5.2. Wedge crack extension specimen.

5.2.2.I.2. SURFACE PRE-BONDING TREATMENTS CONSIDERED

The adherends were divided into 5 sets, each containing 40 blanks (sufficient for 20 joints). Each set 

was subjected to a different pre-bonding treatment. Most of the treatments have been given previously, 

however, the passivating treatment is new. The different treatments are listed in Table 5.1. and the 

details of Passivating are given in Table 5.2.

Table 5.1. Surface preparation of the adherends for the wedge test joints. Batch I.

SURFACE CONDITION STAGES INVOLVED
ALKALINE DEGREASED STAGE I ALKALINE DEGREASING
STANDARD (SILANE) PRIME STAGE II PRIMING
ALKALINE DEGREASED STAGE I ALKALINE
NO PRIMER DEGREASING ONLY 

-NO PRIMER
ALUMINA BLASTED STAGE I ALKALINE
NO PRIMER DEGREASING

STAGE H ALUMINA BLASTING
STAGE IB ALKALINE 

DEGREASING 
-NO PRIMER

ACID ETCHED STAGE I ALKALINE
NO PRIMER DEGREASING

STAGE H ACID ETCHING
STAGE ffl DE-SMUTTING 

-NO PRIMER
PASSIVATED STAGE I ALKALINE
(NO PRIMER) DEGREASING

STAGE H PASSIVATING 
- NO PRIMER
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Table 5.2. Details of passivating stage.

Bath composition: 12% vol. H2 S0 4

5% K 2Cr20 7

bal. de-ionised water
Bath conditions: Temperature 75°C

Current density 1 mA m 2

Time 15 min
Agitated

5.2 .2 .I.3 . JO IN T A SSE M B L Y

The pre-treated adherends were bonded together to make 100 joints; 50 joints were bonded using the 

toughened epoxy system DP 490 and the remaining 50 were bonded using the polyurethane adhesive 

3532 B/A. The spring clips described in 3.0. Adhesive Screening, were used to hold the joints together 

during curing. A schematic showing the assembly method is given in Figure 5.3. The bonded joints 

were allowed to cure in ambient conditions for 10 days. The spring clips were then released and the 

excess adhesive removed from the edges. Correction fluid was applied to the edges of the joints, to make 

monitoring the crack growth easier. Finally the wedges were inserted and the initial crack growth 

recorded. The loaded joints were then placed in the appropriate environments and the crack extensions 

monitored with time. The results are given in 5.3. Results.

Figure 5.3. Assembly method for wedge crack extension test. Piano wire (0.25 mm diameter) was

placed at positions 1, 2 and 3.

S.2.2.2. BA TC H  n

When the bonded and cured joints from Batch I  were loaded, i.e. the wedges were inserted, some of the 

stainless adherends deformed plastically, and thus, a second batch of test pieces were prepared, this time 

incorporating 2 mm gauge adherends instead of 1.5 mm; in other respects the steel employed was the 

same grade as that used in Batch I, AISI 304L with a 2B surface finish.. The surface pre-treatments
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used have been detailed in previous sections, although an additional primer was introduced, Accomet C, 

the application of which is given below. The pre-bonding treatments considered were: Alkaline 

Degreasing (no primer); Alkaline Degreasing (standard silane primed); Alkaline Degreasing (Accomet 

primed); and Alumina Blasting (no primer).

5.2.2.2.I. ACCOMET PRIMING

The adherends wer& Alkaline Degreased and the clean substrates allowed to dry. The surfaces were then 

coated with a solution ( 2 0  % by volume) of Accomet C™ (Brent Europe Ltd.), which is essentially a 

chromic acid solution that has been used successfully to bond stainless steels (103). The primed 

adherends were dried using a hot drier and then stored in a desiccator for 24 hours before they were 

bonded.

The joints were bonded, cured and prepared by the same procedures used for Batch I. The joints were 

loaded and the initial crack extension recorded, and then they were placed in a domestic freezer (-16°C) 

for 24 hours, after which the joints were removed and submerged in de-ionised water at room 

temperature and left to stand for another 24 hours. The results are given in 5.3. Results.
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5.3. RESULTS

The lap shear and peel result are given in Tables 5.3. and 5.4., and in Figures 5.4. and 5.5. The Boeing 

wedge test results (Batch I) are given in Figures 5.6. to 5.9., and the results from (Batch II) are given in 

Figures 5.10. and 5.11. N.B. With respect to Table 5.4., data for samples aged for 55 days is limited 

because the peel curves were destroyed before they could be properly analysed.

Table 5.3. Mean apparent shear strengths of DP 490-bonded AISI 304L adhesive joints. Fillets

removed prior to testing.

E n v i r o n m e n t AGEING
TIME

(Days)

MEAN
FAILURE

LOAD

(kN )

S.D.
(± 1 S.D.)

(kN )

MEAN
APPARENT

SHEAR
STRENGTH

(N .m m 2)

S.D.
(± 1  S.D.)

(N .m m '2)

COEFFICIENT 
OF VARIATION

^ * 1 0 0

V o)
Ambient 
23°C and 

40-50% R.H.

1 4.4 0 . 1 14.0 0 . 2 1 . 2

5-6 6 . 1 0.5 19.7 1.5 7.6
1 0 6 . 1 0 . 8 19.4 2.4 12.4
55 7.2 0.3 23.0 1 . 1 4.7
84 7.4 0.5 23.7 1.5 6 . 2

1 0 0 6.5 0.4 20.7 1.4 6 . 6

23°C and 
95% R.H.

5-6 5.9 0 . 8 18.8 2 . 6 13.6
1 0 6 . 2 0.3 19.9 1 . 0 5.2
55 6 . 2 0 . 2 19.9 0.5 2.4
84 4.9 0 . 8 15.8 2.5 16.0

1 0 0 5.6 0 . 2 18.0 0.7 3.8

Table 5.4. Floating roller peel strengths of DP 490-bonded AISI 304L adhesive joints.

ENVIRONMENT AGEING
TIME

(Days)

PEEL
LENGTH

(MM)

PEEL LOAD 

(N)

MEAN PEEL 
STRENGTH
(N.m m 1)

S.D.
(± S.D.) 
(N.m m 1)

C.O.V.

(%)
MIN. MAX. MEAN

Ambient 1 160 1 1 0 176 143.8 5.8 0.5 8.9
23°C and 3 160 70 1 0 2 84.3 3.4 0.3 9.4

40-50% R.H. 4 140 69.5 94.5 78.5 3.1 0 . 2 4.7
5-6 160 6 6 140 96.3 3.9 0.7 19.3
1 0 150 62.5 91.5 76.5 3.1 0.3 8.3
55 3.1

1 0 0 2 0 0 65 1 0 2 83.3 3.3 0.3 8 . 1

23°C and 5-6 160 40 8 6 6 8 . 8 2 . 8 0.4 13.6
95% R.H. 1 0 160 42 93 6 8 . 6 2 . 8 0.4 15.4

55 2 . 2

1 0 0 2 0 0 55 92 72.5 2.9 0.4 1 2 . 6

NB C.O. V. = coefficient of variation
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Considering the lap shear performance.

The strength of the joints aged at ambient temperature generally showed an improvement with age, from 

14 to 20.7 N.mm'2, optimising at somewhere around 80 days (23.7 N.mm*2). Although generally lower 

than the above, the strength of the joints aged in the humid environment remained reasonably constant 

throughout ( ~18 to 20 N.mm'2), the exception being at 84 days, when 15.8 N.mm' 2 was recorded.

Considering the peel performance.

For the joints aged at ambient temperature, similar strengths were recorded between 3 and 100 days (3 to 

4 N.mm1). However, the strength recorded after only 1 day curing/ageing was surprising high at 5.8 

N.mm1. The joints aged in the humid environment gave slightly lower strengths than the above, 

although they remained generally constant with time (-2.8-2.9 N.mm1), the exception being at 2.2 

N.mm1 recorded after 55 days.

Considering the Boeing wedge tests 

Batch I: Bonded with DP 490

Ambient environment The joints incorporating Alumina Blasted, Acid Etched, and Passivated 

adherends proved to be very durable, the crack growth not exceeding 2  mm, with the crack arresting 

after only 1 day. The joints with the Alkaline Degreased (un-primed) surfaces also proved to be 

reasonably durable, although crack growth reached 11 mm before arresting. The joints incorporating 

the Alkaline Degreased (primed) adherends gave poor durability, with rapid crack growth occurring 

after 4 days, from 2 mm to 15 mm.

High humidity environment The joints incorporating Alumina Blasted and the Passivated 

adherends proved to be veiy durable, with crack growth not exceeding 2 mm. For joints with the Acid 

Etched adherends, the crack extension reached 20 mm before arresting, after about 2 days. The joints 

incorporating thq Alkaline Degreased adherends (primed and un-primed) proved to be the least durable, 

with rapid crack growth to about 40 to 50 mm in 1 to 2 days.
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Batch I: Bonded with 3532

Ambient environment All the joints showed rapid crack growth within the first day, up to around 1 0  

mm. After this time, gradual but continuous crack growth was observed. The joints with the Alumina 

Blasted adherends reached about 17 mm in 6  days before arresting. The cracks in the joints 

incorporating the Acid Etched adherends kept on growing, reaching 22 mm in 27 days. Similarly, the 

cracks in the joints incorporating the Passivated, the Alkaline Degreased (primed), and the Alkaline 

Degreased (un-primed) surfaces continued growing, reaching 28 mm, 33 mm, and 45 mm, respectfully, 

in 27 days.

High Humidity environment The joints incorporating the Alumina Blasted, Acid Etched and 

Passivated surfaces displayed rapid crack growth within the first 2 days, up to about 25 to 40 mm. The 

joints with the Alkaline Degreased adherends (primed and un-primed), gave an even poorer 

performance, the crack extension reaching about 60 mm, within 2  days.

Batch H: Bonded with DP 490

Sub-zero (-16°C) environment The joints with the Alkaline Degreased (un-primed) adherends 

performed poorly, showing significant crack growth (~ 5 mm) after only about 15 minute, after which 

time no further crack growth was observed. The joints incorporating the standard silane primed 

adherends and those with Accomet primed surfaces showed no crack propagation until almost 2  hours 

had elapsed, when gradual crack growths were observed. The joints with the Alumina Blasted surfaces 

performed extremely well, with hardly any crack growth observed at all after 24 hours.

Submerged in water at 23 °C Once again the joints incorporating the Alumina Blasted adherends 

gave an outstanding performing, with no crack growth whatsoever. The joints with the Alkaline 

Degreased adherends (standard silane primed and un-primed) performed about the same, showing 

considerable crack growth, starting after about 5 minutes and gradually increasing to -  30 mm after 24 

hours. The joints with the Accomet primed surfaces gave a moderate performance, showing gradual but 

steady crack growth with time. Generally, the crack extensions for the joints exposed to water were 

considerably greater than those of joints exposed to - 16°C.
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5.4. DISCUSSION

The mean apparent shear strengths of the stainless/epoxy-bonded joints stored in a dry environment 

appeared to improved with age, only giving inferior strengths when the joints were tested before the 

recommended curing period had elapsed. During curing the base resin and the hardener are cross 

linking, and most of the cross linking occurs quickly, within the first few days. However, the remaining 

cross linking will occur gradually, thus, testing prematurely means testing joints that are insufficiently 

cured and low joint strengths will be realised. The reason for the mean apparent shear strength 

increasing with age, probably means that good adhesion between the adhesive and adherend was 

achieved when the joints were first bonded, and this remained an intimate union because the ambient air 

was kept dry throughout the ageing period. The lap joints aged in a humid environment remained about 

the same strength throughout the ageing period and appeared not to be adversely affected by the 

presence of moisture, although the strength of joints aged under humid conditions were generally lower 

than those of joints aged in the diy environment. Thus, it is reasonable to assume that some weakening 

of the bond occurred as result of water impregnation.

The floating roller peel strengths remained reasonable constant throughout the ageing period, in both 

dry and humid environments. This indicates again that the adhesive must have been intimate with the 

adherend during bonding and a strong bond was thus achieved and maintained. However, the peel 

strengths were slightly lower for the joints aged in the presence of water, compared to the strengths of 

those aged in dry conditions. The disadvantage of lap shear and peel testing is that the joints are loaded 

after they have been aged, rather than being loaded and aged simultaneously, thus, the results may be 

misleading.

The wedge crack extension tests were much more conclusive. Joints incorporating mechanically or 

chemically roughened surfaces appeared to be much more durable than those joints with physically un

modified adherends, blasting with alumina seeming to be the optimum adherend pre-bonding treatment, 

out of the ones considered. The least durable, by far, were the joints incorporating adherends that had 

received minimal surface preparation, i.e. Alkaline Degreased, (primed and non-primed). Priming the 

surface did little to improve durability, in fact it may have proved detrimental, because there was some
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visual evidence on the fracture faces of failure within the primer layer (characteristic shocking pink 

observed on corresponding halves of fracture). The high durability of joints with physically modified 

adherends was attributed to surface roughening, in that the movement of the crack between adhesive and 

adherend under Mode I loading was somehow impaired by the peaks and troughs of the roughened 

surfaces, as shown in Figure 5.12.

•HE;

CRACK

ALl AS’ AC]

Figure 5.12. Schematic of crack propagation in wedge test; adhesive failure.

Alternatively, the improvement in durability may be attributed to the increased surface area available for 

bonding or because of the higher energy of the surfaces, both afforded by roughening the surface. It may 

even be due to an increased degree of mechanical interlocking, or simply, to the more rigorous cleaning 

action of the mechanical and chemical roughening treatments.

The wedge joints bonded using the toughened epoxy (DP 490) proved to be more durable than those 

bonded with the polyurethane system 3532, which was surprising considering the excellent performance 

of the urethane in the peel tests detailed in 3.0. Adhesive Bonding. The performance of the toughened 

epoxy, therefore, was attributed to the filler within the adhesive preventing or at least hindering crack 

growth. Joints bonded with the toughened epoxy gave excellent durability at sub-zero temperatures 

which was encouraging, although the durability displayed in the presence of moisture was generally 

poor, and independent of the adherend surface condition. The durability of joints bonded with the 

polyurethane system also deteriorated in the presence of moisture.
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5.5. CONCLUSIONS

Mean apparent shear strength was not adversely affected by ageing in a dry environment.

Mean apparent shear strength was only moderately affected by ageing in a humid environment.

Under cured lap joints (prematurely tested) gave low mean apparent shear strengths.

Floating roller peel strength was not adversely affected by ageing in a dry, or a humid, 

environment.

Floating roller peel strength reaches an optimum after curing for 24 hours.

Roughening the surface of the adherend prior to bonding, either by mechanical or chemical 

means, will impair crack propagation and thus improve joint durability.

Toughened epoxy system gave a better performance than polyurethane system.

Durability of adhesive joints under peel or Mode I loading was adversely affected by the 

presence of moisture.

AISI 304L stainless steel joints bonded with the toughened epoxy system DP 490 were durable 

at temperatures down to -16 °C for 24 hours.



6.0. Comparison of the Mean Apparent Shear Strength of Stainless Steel Lap 

Joints Incorporating Different Steel Grades and Surface Finishes

Abstract

Single-overlap-shear tests were carried out on adhesive-bonded stainless steel joints in order to 

evaluate the significance o f the adherend condition. Four distinct grades o f stainless steel, in two 

gauges and with three types o f surface finish, were incorporated in the schedule. The condition o f the 

surface appeared to have little effect on subsequent joint strength, although an increase o f ~25 % was 

observed between joints with 1.25 mm and 2 mm thick adherends. The greatest difference in strength, 

however, was observed between those joints incorporating the different grades; joints with the stiffest 

adherends gave the highest joint strengths.
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6.1. INTRODUCTION

At this point in the dissertation reference is made to the first of the project objectives (1.0 Introduction)'.

- to evaluate a number o f different adhesive systems, in order to find a structural adhesive that 

is compatible with stainless steel.

The mean apparent shear and floating roller peel strengths have been used as criteria, together with the 

locus of failure, ease of application and cost, to screen a number of adhesive systems considered to have 

the potential to bond stainless steels (3.0. Adhesive Screening). Thus, the first objective has in part been 

addressed. However in the screening programme and subsequent work, only one adherend material was 

considered; AISI 304L - a low carbon, austenitic grade. But stainless steels are a range of alloys of 

unique composition with a diverse range of physical and mechanical properties (2.2.5.1. An Introduction 

to Stainless Steels). Thus, the first objective has in part been neglected. To remedy the situation a 

testing schedule was devised which incorporated four different types of adherend material representing 

the main families of stainless steels: austenitic; ferritic; martensitic; and duplex.

Because the chemistry of the bulk stainless steel to a large extent determines the physical and chemical 

nature of the inherent surface oxide, which in turn may, or may not, influence adhesion, the four 

different families were selected to provide a diverse range of bonding surfaces, each chemically and 

physically unique. Different surface finishes were also considered in the investigation since the 

chemical and physical properties of the intrinsic oxide can also be influenced by the production route, 

which will also determine the macro-roughness of the surface, which may be significant to adhesion. 

During the lap shear tests carried out in previous work, the joints were observed to rotate under tensile 

loads to an extent sufficient to plastically deform the adherends, just prior to fracture. Thus, the stiffness 

of the adherends was thought to contribute to lap shear strength, and therefore, two adherend thickness’ 

were also considered in the investigation. The thickness and surface finish of the four grades of stainless 

steel evaluated was subject to availability rather than through design.
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The single overlap shear test was the mechanical test method selected to evaluate joint integrity, because 

of its ‘simplicity’ and cost, and because the single overlap configuration is typical in adhesive bonded 

fabrications. The surface pre-bonding treatment was kept to a minimum to avoid modifying the as- 

received surfaces and no surface primers were used for the same reason. The joints were simply cleaned 

and dried before they were bonded. The joint preparation, bonding and mechanical testing detailed in 

this chapter was carried out jointly with Margereta Groth-Ring at Lulea University.
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6.2. EXPERIMENTAL WORK

6.2.1. MATERIAL AND TEST PIECE DIMENSIONS

The test pieces were cut from sheet material using two different techniques, laser and a high pressure 

water jet. Both these methods proved to be accurate (± 0.05 mm) and cost effective; laser at £ 0.65 / 

sample compared with milling at £ 6.25 / sample. The test pieces cut using laser and water were also 

relatively clean compared to the milled test pieces, which were contaminated with machine oil, coolant 

and fash. This necessitated additional stages, to allow the heavy contamination and fash to be removed, 

before final cleaning and subsequent bonding, whereas, the laser and water cut test pieces were ready to 

clean and bond immediately. The test piece dimensions are given in Figure 6 .1.

40

0.4
--------------------------------------- 1-------------^ ------------------------------------

150

Figure 6.1. Single lap joint showing test piece dimensions (mm).

The material grades included in the regime were representative of the four main types of stainless steel. 

In addition, three surfaces finishes were represented, and two gauges considered. The stainless steels 

used are detailed are in Table 6.1. and the chemical composition and mechanical properties of the 

different grades are given in Tables 6.2. and 6.3., respectfully.

Table 6 . 1 . Stainless steel grades and surface finishes.

DESIGNATION GRADE GAUGE SURFACE FINISH

EN 1.4512 Ferritic 2  mm 2B
EN 1.4462 Duplex 2  mm 2D
AISI304L Austenitic 2  mm 2B
AISI304L Austenitic 1.25 mm 2B
AISI304L Austenitic 1.25 mm BA
AISI420 Martensitic 1.25 mm 2B
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Where 2B is the designation for a matt surface finish; BA represents a bright annealed surface finish; 

and 2D designates a semi-bright surface finish. Ninety six test pieces were produced, sufficient for forty 

eight lap joints: sample size 8  joints per condition.

Table 6.2. Chemical compositions of the stainless steels.

%C %Ni % Cr %Mn %Mo % Si %N % P %S
EN 1.4512 

Ferritic
0 . 0 2 - 1 2 . 0 - - - - - -

EN 1.4462 
Duplex

0 . 0 2 5.5 2 2 . 0 - 3.0 - 0.17 0.025 -

AISI304L 
Austenitic

0.04 9 18.5 - - - - 0.025 0 . 0 0 1

AISI 420 
Martensitic

0 . 2 1 0.4 13.2 0.45 - 0.4 - 0.025 0.015

Table 6.3. Mechanical properties of the stainless steels.

MATERIAL ___ 0.2% PROOF ■  
STRESS —

(MPa) -  1

1 ULTIMATE 
1 TENSILE 

STRENGTH 
1 (MPa)

YOUNG’S 
MODULUS OF 
ELASTICITY 

(GPa)
EN 1.4512 Ferritic 340 540 2 2 0

EN 1.4462 Duplex 540 780 2 0 0

AISI 304L Austenitic 310 620 195
AISI 420 Martensitic 1320 1670 2 2 0

Data and test material supplied by Avesta Sheffield AB and Uddeholm Strip (martensitic). The values 

given are for the cold rolled condition, with the exception those of the martensitic grade which are for 

the cold rolled, hardened and tempered condition.

Note: Because stress/strain curves for stainless steels exhibit no definite yield point, the proof stress is 

normally measured as an alternative to mark the onset of plastic deformation. The proof stress is 

determined by drawing a line parallel to the linear portion of the stress/strain curve at 0.2 strain. See 

Figure 6 .2 .
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0.2% proof stress (Rpo 2)

« 0.15%o

E = Young’s modulus of elasticity

0 .2 % strain 8

Figure 6.2. Typical stress/strain curve for stainless steels.

6.2.2. SURFA CE PR E -B O N D IN G  TR EA TM EN TS

Immediately prior to bonding, the adherends were subjected to minimal surface preparation by Solvent 

Wiping. They were first wiped with lint-free cloth wetted with isopropanol alcohol (IPA). The surfaces 

were then wiped with an acetone-wetted cloth. The cleaned substrates were wrapped in clean cloth and 

stored in a dry cabinet until they were needed for bonding.

6.2.3. JO IN T A SSE M B L Y

The joints were assembled manually using the modified epoxy DP 490. An assembled joint is shown in 

Figure 6.3. Piano wire, 0.4 mm diameter, was used to control the bondline (A) and the joints were held 

together during curing using bulldog clips (B). The assembled joints were allowed to cure for 10 days at 

23 °C and 40 % relative humidity.

Figure 6.3. Lap shear joint assembly procedure.
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6.2.4. MECHANICAL TESTING

The cured joints were tested at 1.3 mm. min. ' 1 in accordance with ASTM D1002 using a 50 kN servo- 

hydraulic MTS test machine. The subsequent fracture faces were examined visually and using SEM to 

ascertain the loci of failure. N.B. Hardened adhesive fillets around the perimeter of the joint resulting 

from ‘squeeze-out’ during joint closure were removed prior to testing.
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6.3. RESULTS

6.3.1. MECHANICAL TEST RESULTS

The mechanical test results are given in Table 6.4. and in Figure 6.4.

Table 6.4. Initial overlap shear strengths of adhesive-bonded stainless steel joints. Fillets

removed prior to testing.

TYPE OF 
STEEL AND 

DESIGNATION

SURFACE
FINISH

GAUGE 

. (mm)

MEAN APPARENT 
SHEAR STRENGTH 

(MPa)

S.D.

(MPa)

COEFFICIENT 
OF VARIATION 

<%)

EN 1.4512 
Ferritic

2B 2 16.0 1 . 0 6 . 1

EN 1.4462 
Duplex

2D 2 22.9 0.9 4.1

AISI304L 
Austenitic

2B 2 16.1 0.7 4.3

AISI304L 
Austenitic

2B 1.25 13.1 0.3 2 . 0

AISI 304L 
Austenitic

BA 1.25 12.5 0 . 2 1.7

AISI 420 
Martensitic

BA 1.25 23.9 0.7 2 . 8

Considering joints with 1.25 mm gauge adherends

No significant difference was observed between the joints including the 2B surfaces and those with the 

bright annealed surfaces, 13.1 (+ 0.3) MPa and 12.5 (± 0.2) MPa, respectively. The mean apparent 

shear strength of the bonded austenitic joints with the 2B finish were 13.1 (± 0.3) MPa and 16.1 (± 0.7) 

MPa, for the joints with the 1.25 mm and 2 mm adherends, respectively. An increase of 23 %.
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Considering joints with 2 mm gauge adherends

The mean apparent shear strength for the joints incorporating the ferritic adherends was almost identical 

to that of the joints with the austenitic adherends; 16.0 (± 1.0) MPa and 16.1 (± 0.7) MPa, respectively. 

The joints with the duplex adherends, however, performed much better at 22.9 (± 0.9) MPa. For the 

joints incorporating the 1.25 mm adherends. Similar values were observed between the austenitic grades 

(see above). The highest mean apparent shear strength was displayed by the joints with the martensitic 

adherends at 23.9 (± 0.7) MPa. An excellent performance, more than equaling that of the joints 

incorporating the 2  mm duplex adherends (see above).

6.3.2. LOCI OF FAILURE

Figure 6.5. shows a typical fracture face. Evidence of adhesive failure was observed at the extremes of 

the fracture faces, and the interfacial and cohesive failure was restricted to the central regions. 

InterfaciaUdhesive represents failure within the surface of the adhesive.

12.5 mm

Figure 6.5. Schematic of typical fracture face showing predominant loci of failure.

iL TENSILE 
AXIS

25 mm
4------------------------------------------------------------------------------------- ►

ADHESIVE FAILURE

INTERFACIALAdhesive / COHESIVE 
FAILURE

ADHESIVE FAILURE
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6.4. DISCUSSION

Generally, high joint strengths were realised even though the surface preparation of the pre-bonded 

adherends had been minimal, i.e. Solvent Wiping. The fracture faces also showed a high enough 

proportion of cohesive and interfacialAdh failure (within the adhesive) to suggest that a good bond had 

been achieved between the toughened epoxy and the steels. Thus, solvent wiping using IPA and acetone 

must be considered as adequate surface preparation for stainless steel adherends; at least with respect to 

initial joint strength.

The different surface finishes considered in the evaluation (2B, 2D and BA) would be expected to vary 

physically in terms of surface roughness (at least on a micro-scale), and in terms of the physical and 

chemical nature of the intrinsic oxide. But however great these variations might have been they did not 

observable contribute to, or detract from, the initial measured joint strength. Thus, the stainless steel 

surfaces were not characterised, either physically or chemically.

Before considering the thickness and yield strength of the adherend, it is worth noting that the mean 

apparent shear strengths recorded were much more consistent than those dealt with in previous chapters, 

even though the fillets of hardened adhesive (‘squeeze-out’) were removed prior to mechanical testing, a 

procedure that has been shown to adversely affect not only the joint strength but the consistency of the 

results (see Chapter 3.0. Adhesive Screening). The improved consistency was, therefore, attributed to 

the smoother operating mechanism of the hydraulic tensile test machine compared to that of the tensile 

test machine used previously that was mechanically driven.

Now considering the significance of the adherend thickness and its intrinsic yield strength, which are 

both factors that appeared to significantly influence the apparent shear strength of the lap joint.
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Consider a single overlap joint in tension: 

Grips

where a = half the grip-to-grip distance 
b=  joint width 
h = adherend thickness 
1 = length of overlap 
t = adhesive thickness 
p = applied load

Because the directions of the two forces (P <— > P) are not co-linear a bending moment is induced as 

the load is increased and the joint rotates to bring the line of action closer to the centre of the adherends 

in order to reduce the value of the bending moment. At this point the joint becomes analogous with the 

deflection of a fixed beam under load.

DEFLECTION IN FIXED BEAM

BENDING MOMENT IN LAP JOINT

(see below)

where 0  = angle of deflection / angle of rotation
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Resolving the components of the load at the centre of the overlap,

2

h + 1
2

\  P. cos0 = P .V l- 0 2 ~P

♦
P

The bending moment may be defined as,

(6 .1.)
2

Assuming that no rotation can take place at the grips, the rotation due to moment is given by,

_
Urn — ------------

E . l

where 0m = rotation due to moment,

E = Young’s modulus of elasticity of adherend,

I = inertia for a rectangular plane.

where inertia for a rectangular plane is,

12

Substituting (6.1.) and (6.3.) into (6.2.),

(6.4.)

Rotation due to peel stresses,

(6.5.)

where 0P = rotation due to peel stresses.
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Substituting (6.3.) into (6.5),

P . a 2
Op — 6 .---------- . Ototal

E.b.h

where ©total= total rotation.

Thus, O to ta l =  On — Op

P . ( h  +  t ) . a  P , a 2 _
Therefore, Ototal = 6 .—  ---- \------6 .---------Oto tal

E .b .h  E .b .h

Thus, Oto tal =
h  +  t

a . 1 + E . b M  
6. P . a 1

now, P  = (7s.b. I

where crg = mean apparent shear stress.

Therefore, Oto tal =
h  +  t

a. 1  +
E .h3

6.cxs.l.a

where h = 1.25 or 2.00 mm, 

a = 80 mm,

1 = 40 mm,

E « 190, 000 - 200, 000 MPa for all grades (assumed to be 200, 0 0 0  MPa).

(6.6.)

(6.7.)

(6.9)

(6 .10.)

(6.11.)
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Thus, joint rotation can be calculated as a function of the mean apparent shear stress using equation 

6.11., and this is represented in Figure 6 .6 . Note equation (6.11.) gives the rotation in radians which

180
are converted into degrees by multiplying ©total b y  •

n

Figure 6 .6 . The elastic model predicts that joints with 2 mm gauge adherends will rotate more than the 

joints with 1.25 mm adherends, which one would expect due to the increased asymmetry of the load 

axis. It can be seen that most of the joint rotation occurs at relatively low shear stress, and as the shear 

stress increases further the joint almost stops rotating. This would suggest that the elasticity of the 

adherend determines the joint rotation, but when the rotation stops the shear properties of the adhesive 

determine the point at which the joint will fail. However, this does not explain why the joints with 2 

mm duplex adherends failed at a higher shear stress than the joints with 2  mm ferritic and austenitic 

adherends, nor does it explain why the joints with 1.25 mm martensitic adherends failed at a higher 

shear stress than the joints with 1.25 austenitic adherends. In addition, this model assumes that all the 

joint rotation is elastic, which was certainly not the case.

Now continuing from (6 .11),

/
where ap = line peel stress at ±—.

Now,

/
where Pp = line peel force at +—.

Therefore,

Thus, the line peel stress and the line peel force can be plotted as a function of the mean apparent shear 

stress, and these plots are given in Figures 6.7. and 6 .8 ., respectively. The plots h = 1.25 and h = 2 are 

linear, because it was assumed that the only rotation to occur during testing was elastic.

Up — Us. Ototal

Up =  P f. y

P f  =  Up.— 
2

(6 .12.)

(6.13.)

(6.14)
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Figures 6.7. and 6 .8 . The elastic model predicts that as the shear stress increases the peel stress/force 

will also increase as a result of elastic rotation, and that the peel stress/force (and hence the extent of 

elastic rotation) will continue increasing with increasing shear stress until fracture, and thus, joint 

failure must be determined either by the elastic properties of the adherend, or by the shear properties of 

the adhesive, or by both. But this contradicts with Figure 6 .6 ., which shows that elastic joint rotation 

will be almost complete at much lower shear stresses than those represented in Figures 6.7. and 6 .8 . 

The simplification in the analysis of elastic rotation may introduce some errors in the elastic rotation.

However, it must be noted that the line peel stress and the line peel force in Figures 6.7. and 6 .8 .,

/
respectively, represent a nominal value at —. However, the peel stress distribution is at a maximum at

the extremes of the overlap, therefore the line peel force at the extremes of the overlap must be 

considered.

«•

BENDING MOMENT IN LAP JOINT

h

a

■ I

2 '

■>

peel stress distribution due to 
bending moment in single 
overlap shear test according to 
Goland and Reissner (104).

Figure 6.9. Transverse peel stresses in a single-lap joint (105).
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Now, P  =  <js.b.2c

where 2 c = 1.

P
Therefore, <Js = ------

2.b .c .

Thus,

\ 2 . P { h  +   ̂ 12.P { h  +  t ) ( a  +  c) \ 2 . P . 0 ( a - c f  \ 2 . P . 6 ( a  +  c f
~  4  .E .b .h 3 + 4 .E .b .h 3 4 .E .b .h 3 4 .E .b .h 3

Therefore,

i 1 2 . jP  /  2 2 \lH------------— 21# +C )
4 .£ .6 . / * 3 v '

12.P V.  V(h  + t ) ( 2 a )
4.E .b .h

Thus,

Y2.P
_ 2 JE M t

.a (h  + 1)

12..P / 2 2\1 + --------- - \ a 2 + c )
2 .E .b .h 3 v }

h + t
2  , 2 a  + c

a
1 +

6 .P (a 2 + c 2)y

Now,

PEEL LINE FORCE,

P(h +  t )

2 ( a 1 +  c \ - E . h 3
1 + / -

v ’  a 6.oi..2c.(a + c j

Therefore, Pf =
<js(h + 1)

( a 2 -b e2)
a . c

1 +
£ . / r

6.<js. .2 c .{a 2 +  c 2)

(6.15.)

(6.16.)

(6.17.)

6.18.)

(6.19.)

(6.20.)

(6.21.)

(6.22.)
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Equation 6.22. is a more detailed calculation with two equal line forces at the end of the adhesive layer. 

However, the resulting plot, line peel force f(shear stress) - Figure 6.10., does not differ more than 8 % 

from the nominal line peel force f(shear stress) shown in Figure 6 .8 .

Figures 6 .6 ., 6.7. and 6 .8 . correctly predict that as the shear stress increases the extent of elastic rotation 

increases and thus, the peel stresses within the joint increase. These models also account for the 

thickness of the adherend material, joints incorporating thicker adherends undergoing more rotation and 

thus, inducing greater peel stresses. The problem with this approach is that it assumes that the joints 

rotate only elastically, which is incorrect, and it cannot explain the higher shear strengths attained by the 

joints with duplex and martensitic adherends. Now, because plastic deformation does occur, then the 

point at which the adherend begins to deform permanently must be significant to the joint performance,

i.e. the yield strength of the adherend material must influence joint strength.

Now, it is interesting to compare the calculated normal stress of the adherend at fracture with the 

adherend yield strength (0 .2 % proof stress), or alternatively, compare the calculated shear stress of the 

joint at yield with the measured shear strength, see Table 6.5.
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Table 6.5. Theoretical shear stress at yield and the net section stress at fracture.

STEEL TYPE 
AND 

DESIGNATION

SURFACE
FINISH

GAUGE
h

(mm)

0.2% PROOF 
STRESS

-V;--: Ys

(MPa) -

NET 
SECTION 

STRESS AT 
FRACTURE 

A (MPa)

SHEAR
STRESS

AT
YIELD
(MPa)

MEASURED
SHEAR

STRENGTH
<*s

(MPa)
EN 1.4512 

Ferritic
2B 2 . 0 0 340 320 17 16.0

EN 1.4462 
Duplex

2D 2 . 0 0 540 458 27 22.9

AISI304L 
Austenitic

2B 2 . 0 0 310 322 15.5 16.1

AISI304L 
Austenitic

2B 1.25 310 419 9.7 13.1

AISI304L 
Austenitic

BA 1.25 310 400 9.7 12.5

AISI 420 
Martensitic

BA 1.25 1320 765 41.3 23.9

where,

NET SECTION STRESS AT FRACTURE = —  (MPa) (6.23.)
h

and,

Ys.h
SHEAR STRESS AT YIELD = ——  (MPa) (6.24.)

From Table 6.5. The austenitic adherends (irrespective of thickness and surface finish) would be 

expected to plastically deform prior to joint fracture, since the measured shear strength at fracture had 

exceeded the predicted shear strength at yield. Contrary to this, because the measured shear strength of 

the joints incorporating the ferritic adherends was slightly lower than the predicted shear stress at yield, 

the ferritic adherends would be expected to show no evidence of plastic deformation on fracture. 

Similarly, the duplex and the martensitic adherends would be expected to show no plastic deformation 

on joint fiacture, since the predicted shear stress at yield exceeded the measured shear strength at 

fracture, particularly in the case of the martensitic adherends (41.3 MPa c.f. 23.9 MPa). However, in 

reality all the adherends, with the exception of the martensitic, were plastically deformed during 

mechanical testing, see Table 6 .6 .
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Table 6.6. Theoretical elastic rotation compared to actual plastic rotation.

STEEL TYPE 
7  AND 
DESIGNATION

SURFACE
FINISH

GAUGE

(mm)

THEORETICAL 
ELASTIC. 

ROTATION 
- - (degrees) -

MEASURED 
PLASTIC 

ROTATION 
(degrees) -

TOTAL
ROTATION

(degrees)
EN 1.4512 

Ferritic
2B 2 . 0 0 1.61 3.0 4.61

EN 1.4462 
Duplex

2D 2 . 0 0 1.64 1.75 3.39

AISI304L 
Austenitic

2B 2 . 0 0 1.61 3.5 5.11

AISI304L 
Austenitic

2B 1.25 1.16 2.5 3.66

AISI304L 
Austenitic

BA 1.25 1.16 2.5 3.66

AISI420 
Martensitic

BA 1.25 1.17 0 1.17

The theoretical elastic rotation was estimated from Figure 6 .6 . and the plastic rotation, causing 

permanently deformation, was measured directly from the fractured joints. The total rotation was 

therefore, the sum of the elastic and plastic rotation. Tn each case the theoretical elastic rotation was 

much smaller than the observed plastic deformation, with the exception of the martensitic material 

which showed no plastic deformation at all.

Since the martensitic adherends showed no permanent plastic deformation, this meant that the joints 

must have failed at stresses lower than that of the yield strength of the martensitic stainless steel, and the 

only rotation to have occurred could only have been elastic. Contrary to this, all the other adherend 

materials had suffered some permanent deformation, and this meant that the yield strength of the steel 

had been exceeded prior to fracture. Because the joints incorporating martensitic adherends gave the 

highest shear strength and suffered no plastic deformation, it was assumed that the point at which the 

adherends in a single lap joint yield must mark the onset of rapid fracture, since the joint rotation on 

plastic deformation will dramatically increase the peel stresses at the extremes of the joint overlap. 

Thus, joints incorporating ‘low7’ yield strength adherends will fracture as a result of peel (peel dominated 

failure) immediately after the adherends plastically deform, and thus, there must be a critical peel stress 

and critical peel force at w'hich the joint fractures. However, in joints incorporating ‘high’ yield strength 

adherends, the adherends may not yield at all and higher joint strengths will be realised, until the joint
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finally fails by shear (shear dominated failure). Thus, in this case, there must be a critical shear stress at 

which the joint fractures. The assumed critical peel force and critical shear stress are given in Figure

6.10. at approximately 14 N.mm' 1 and ~24 MPa, respectively. The peel forces were calculated using the 

modified model - equation 6 .2 2 .

Figure 6.10. As the load increases the adherends begin to rotate elastically and peel stresses are 

introduced at the extremes of the overlap and they increase proportionately to the shear stress during 

elastic rotation - this is represented by the solid lines. The peel and shear stresses will continue to 

increase gradually, until failure eventually occurs either by peel at a critical peel force, or by shear at a 

critical shear stress. Thus, the elastic model explains the behaviour of the joints incorporating 

martensitic adherends since no plastic rotation was incurred; the joints failed by shear-dominated, 

adhesive-controlled failure at a critical shear stress of approximately 24 MPa. However, joints 

incorporating the other adherend materials all showed some evidence of plastic deformation, but the 

elastic model does not take into account the plastic rotation. Therefore, dotted lines are superimposed on 

Figure 6.10. to represent a sudden increase in the peel stresses due to plastic deformation of the 

adherend material to a critical point of rotation and explains the behaviour of joints with non-martensitic 

adherends; the joints failed by peel-dominated, adherend-controlled failure at an assumed critical peel 

force of approximately 14 N.mm'1.

The total peel force at fracture (critical peel force) was calculated from the total joint rotation (Table 

6 .6 .) and estimated to be somewhere between 10 and 29 N.mm"1 (see Table 6.7.). But, the critical peel 

force must be greater than 12.5 N.mm"1 to explain the plastic deformation of the duplex adherends (see 

Figure 6.10.). Thus, the critical peel stress was assumed to be approximately 14 N.mm"1, slightly higher 

than 12.5 N.mm'1.
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Table 6.7. Total peel stress and total peel force at fracture.

STEEL TYPE 
AND 

DESIGNATION

SURFACE 
FINISH and 

GAUGE

MEASURED
SHEAR

STRENGTH

(MPa)

ROTATION 
From Table 6 .6 .

(degrees)

TOTAL PEEL 
STRESS AT 
FRACTURE 

From 
Equation 6.12. 

(MPa)

TOTAL PEEL 
FORCE AT 
FRACTURE 

From 
Equation 6.14. 

(N.mm'1)
EN 1.4512 

Ferritic
2B 

2 . 0 0  mm
16.0 4.61 1.29 25.8

EN 1.4462 
Duplex

2D 
2 . 0 0  mm

22.9 3.39 1.35 27

AISI304L 
Austenitic

2B 
2 . 0 0  mm

16.1 5.11 1.44 28.8

AISI304L 
Austenitic

2B 
1.25 mm

13.1 3.66 0.84 16.8

AISI304L 
Austenitic

BA 
1.25 mm

12.5 3.66 0.80 16

AISI 420 
Martensitic

BA 
1.25 mm

23.9 1.17 0.49 9.8

From Table 6.7. the calculated peel force at fracture for the joints incorporating martensitic adherends 

(~10 N.mm1) is below the assumed critical peel force (Figure 6.10.) and therefore the joints would be 

expected to fail by shear-dominated, adhesive-controlled failure and not by peel-dominated, adherend- 

controlled failure. N.B. It is interesting to note that the total peel force at fracture for the joints with 

martensitic adherends (9.8 N.mm'1) agrees with the peel force at the critical shear stress (see Figure

6.10.), ~9 N.mm'1. The calculated peel forces at fracture, for joints incorporating non-martensitic 

adherends, however, are considerable higher than the assumed critical peel force. But, the measured 

rotations may not be reliable because of the crude nature of the measuring technique employed.

In summary, when a single lap shear joint is loaded in tension a bending moment is induced and the 

joint starts to rotate first elastically and then plastically in an attempt to attain a common axis. For 

joints incorporating adherends of low stiffness (either too thin or with too low a yield point), as the joint 

rotates the adherends begin to yield plastically and severe peel forces are generated at the extremes of the 

joint overlap. As the load increases the adherends rotate further and the peel stresses at both ends of the 

overlap increase until cracks are initiated at the adhesive/adherend interface (at the extremes of the 

overlap, at right angles to the tensile axis). As the load increases further and the adherends deform
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further, the approaching cracks propagate towards the centre of the joint at a critical peel force, where 

sudden failure occurs across the adhesive by shear as the two cracks approach one another.

Figure 6 .11. Loci of failure in lap joint due to joint rotation.

However, in joints incorporating stiffer adherends (thicker or of a higher yield point), as the joint rotates 

the adherends will elastically deform and may even plastically deform, but not to the critical peel stress, 

because the stiffness of the adherend prevents, or minimises, plastic deformation and the joint will tend 

to fail by shear when a critical shear stress has been exceeded. Since the only joints that did not 

plastically deform were those incorporating the martensitic adherends, it was assumed that the 

mechanism of failure in these joints was shear dominated failure within the adhesive and the joints 

failed when the critical shear stress was exceeded (-24 MPa). Since the other joints with the duplex, 

ferritic and austenitic adherends plastically deformed, the mechanism of failure in these joints was 

assumed to be controlled by the elastic/plastic behaviour of the adherend and to be peel dominated and 

fail at a critical peel force.

If the lap joints incorporating martensitic adherends failed due to the adhesive shearing and the 

remaining joints with the austenitic, ferritic and duplex adherends failed because of the peel stresses 

induced by plastic rotation, then surely it would be evident on the fracture faces. However, the fracture 

faces were almost identical; they all revealed a higher proportion of adhesive failure at the extremes of 

the joints which would suggest failure by peel. The central regions of the fracture faces, however, 

revealed predominantly interfacial failure with discrete areas of cohesive failure, more typical of shear 

failure.
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So far, the models proposed take into account the adherend stiffness in terms of its thickness, but the 

inherent yield strength of the adherend material is not considered and this is too significant to ignore. 

The model must, somehow, take account of the yield strength of the adherend material as this 

dramatically influences the apparent shear strength of the lap joint. The shear strength as a function of 

the yield stress is given in Figure 6 .12.

Critical shear stress (~24 MPa)
25

20

re

5

I  0
300 500 700 900 1100 1300 1500

Yield strength of stainless steel (MPa)

Figure 6.12. Mean apparent shear strength as a function of adherend yield strength.
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6.5. CONCLUSIONS

1. Subtle differences in the chemical and physical make-up of the inherent surface oxides on the 

different grades of stainless steel do not observable influence initial single overlap shear 

strength.

2. Solvent wiping is a minimal but adequate means of cleaning stainless steel adherends prior to 

adhesive-bonding using epoxy systems, and does not appreciably affect initial single overlap 

shear strength.

3. The surface finishes typical of commercial stainless steel grades (2B, 2D and bright annealed) 

do not observably influence initial single overlap shear strength.

4. The mechanism by which a single lap shear joint fails is largely determined by the stiffness of 

the adherend material. Single overlap shear joints with adherends of low stiffness are more 

likely to fail as a result of critical peel stresses induced by joint rotation and plastic deformation 

(peel-dominated, adherend-controlled failure). And, single overlap shear joints incorporating 

‘stiff adherends will resist plastic deformation to a higher stress, therefore the peel stresses will 

be minimised and joint failure is likely to be due to the adhesive shearing at a critical shear 

stress (shear-dominated, adhesive-controlled failure).

Joints incorporating thicker adherends should theoretically rotate more, but the stiffness 

imparted to the joint by the thicker adherends may be sufficient to resists plastic deformation. 

High yield strength adherends will impart stiffness to the joint, minimising the peel stresses at 

the extremes of the overlap, and thus, higher lap shear strengths will be obtained.

135



7.0. Room Temperature Creep and Dynamic Fatigue Performance of Adhesive- 

Bonded Stainless Steel Lap Joints.

Abstract

Room temperature creep tests were conducted on AISI 304L stainless steel standard single-lap shear 

joints and single-lap box specimens, bonded with toughened epoxy DP 490. In addition, dynamic 

fatigue tests were carried out on single-lap box joints with (i) the hardened fillets o f ‘squeeze-out ’ 

adhesive removed and (ii) with the fillets un-removed. All tests were carried out at room temperature 

and 40-50 % relative humidity. Both joint designs showed a lot o f scatter in the room temperature 

creep tests and the results were almost inconclusive. However, the box type specimens did exhibit a 

room temperature creep endurance limit at approximately 40% o f the static failure load in tensile shear. 

The S-N curves produced for the joints tested, with and without the fillets, were similar, although the 

joints with the fillets left un-removed gave much more consistent results.
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7.1. INTRODUCTION

Adhesive joints are often expected to operate adequately in adverse environments, either chemically 

detrimental, at extreme temperatures (high or low), or both. Adhesive joints, particularly in structural 

applications, will also be required to function satisfactorily under both static and dynamic loading. The 

work presented in this chapter considers adhesive bonded single overlap joints subjected to static (room 

temperature creep) and dynamic (high cycle fatigue) loads. However, all the tests were conducted at 

ambient temperature and relative humidity, thus the effects of extreme temperatures and corrosive 

environments on the strength and durability of adhesive joints is not discussed. Room temperature creep 

is failure that occurs some time after the application of a constant load, and it usually occurs at loads 

lower than that needed to cause fracture under monotonic loading (11). Dynamic fatigue is the failure of 

a material as a result of persistent cyclic loading and it is responsible for a significant proportion of in- 

service failures. Fatigue is particularly important because failure will occur at stress levels much lower 

than the component can withstand under monotonic loading (1 1 ), leading to unexpected and often 

catastrophic failure. The dynamic fatigue performance of adhesives joints is good compared to other 

joining methods such as riveting, spot welding and mechanical fastening, because of the improved stress 

distribution within the adhesive joint. As a consequence, adhesives are often the preferred choice for 

applications involving cyclic loading, and thus, the dynamic fatigue properties of adhesive joints are 

very important to the design engineer. Figure 7.1. compares the fatigue performance of adhesive bonded 

and spot welded joints.

single epoxv iadhesive

h toughened epoxy adhesive 

acrylic adhesive

" welded j-]----------------------------------------------    |  .spot welded, j

100 1000 10000 100000 1000000 10000000 

Cycles to failure

Figure 7.1. Dynamic fatigue of steel double-box hat structures (106).
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7.2. EXPERIMENTAL WORK

7.2.1. TEST MATERIAL AND PIECE DIMENSIONS

Standard single overlap specimens were prepared from AISI 304L stainless steel (2B finish) by the 

procedure detailed in 3.2.1.1.1. Single Lap Shear. The box test pieces, which were manufactured by 

ADtranz, Sweden, were prepared from AISI 304L austenitic stainless steel with a 2B mat surface finish. 

The dimensions of the ADtranz test piece and a schematic of a bonded box joint are given in Figure 7.2.

4

40

«I

135

40

M

40

lb)
Figure 7.2. (a) ADtranz test piece dimensions (mm) and (b) assembled box joint.
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7.2.2. SUBSTRATE SURFACE PRE-TREATMENT

The stainless steel substrates were cleaned thoroughly following the procedure detailed in 3.2.1.2.1.1. 

The Alkaline Degreasing Procedure. Upon cooling, the surfaces were primed using a silane surface 

primer 3091 (see 3.2.1.2.1.4. Priming). The primed surfaces were wrapped in clean paper towel and 

allowed to stand overnight. The surfaces were then wiped with an acetone-wetted cloth, to remove 

traces of residual primer, and allowed to diy. The primed adherends were bonded within four days of 

priming.

7.2.3. JOINT ASSEMBLY AND CURING

All joints were bonded using the toughened epoxy system DP 490. The single lap shear joints were 

assembled in accordance with the procedure given in 3.2.1.3.. Joint Assembly, and the ADtranz box 

specimens were assembled in a similar fashion: 50 mm lengths of steel wire (no. 06 guitar string) were 

used to maintain a constant bondline of 0.25 mm; the wires were equally spaced out, in a direction 

parallel to the intended tensile axis. Wooden jigs were employed to ensure true joint alignment and ~1 

kg weights were used to keep the bonded adherends together during the early stages of curing. Silicon- 

waxed release paper was located appropriately to prevent sticking in places where sticking was not 

desired.

The bonded joints were allowed to stand undisturbed until they reached handling strength (~24 hours), 

and then stored for 7 to 10 days, depending upon the ambient temperature and relative humidity 

(laboratory air 19 to 25 °C and 40 to 60 % R.H.). After the curing time had elapsed the hardened joints 

were prepared for mechanical testing. Approximately half of the cured joints intended for dynamic 

fatigue testing were left with the fillets of hardened adhesive (‘squeeze-out’) un-removed. And for the 

other half of the batch, the fillets of hardened ‘squeeze-out’ were removed mechanically.

7.2.4. MECHANICAL TESTING

Room temperature creep tests were conducted on a six-station rig in accordance with ASTM D 1780-94. 

Two joint types were tested: a standard 1.5 mm thick, single overlap shear joint (see Figure 3.1.) with a
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12.5 mm overlap (bond area 312.5 mm2), and a 4 mm thick box joint with a 40 mm overlap (bond area 

1600 mm2). The standard lap shear and the ADtranz box-lap shear joints were loaded in tension to a 

percentages of the mean static failure load under shear-tensile loading ( 8  kN and 50 kN, respectfully), 

pre-determined from a sample size of six. The loaded joints were monitored and the times of failure 

recorded. Just prior to loading, lines were inscribed on the box joints, across the bondline, perpendicular 

to the tensile axis. Thus, any movement as a result of the adhesive creeping, could be detected and 

noted. N.B. The hardened fillets of adhesive ‘squeeze-out’ were not removed prior to testing.

Dynamic fatigue tests were carried out on AISI 304L ADtranz box-lap shear joints bonded with 

toughened epoxy DP 490. A servo-hydraulic machine was used for the tests, which were conducted in 

accordance with ASTM D 3166-93. The joints were loaded in tension and subjected to a fluctuating 

load of constant frequency until such a time when the joints failed. The number of cycles to failure was 

recorded and subsequently plotted as a function of the load range of the cycle. The applied cyclic load is 

represented in Figure 7.3.

■oreo

Figure 7.3.

4

3

2

max
1

min m
0

•1 1 cycle

■2

Cycles

where, = maximum load 
Pxuin = minimum load 
Pr = load range 
Pm = mean load
Pa = alternating load or load amplitude

Repeated load cycle.
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A fluctuating load cycle is essentially made up of two components, a mean, or steady, load Pm , and an 

alternating, or variable, load Pa.

Where, the mean load is the algebraic mean of the maximum and minimum loads in the cycle,

_  P  max+ P  mm
Pm  =  --------------------  (7 .1 .)

2

and the alternating load, or load amplitude, is half the load range,

n  P rP a  — ----  (7 .2 )
2

where the load range Pr is given by,

Pr — P  max— P  min (7 .3 .)

Thus, the load amplitude,

P  max— P  min

2 (7A)

Another important quantity often presented in fatigue data is the load ratio,

„  P  min
R  = - r —  (7-5.)

The maximum load (Pmax.) was set at a percentage of the mean static failure load in uni-axial tension, 

determined previously from a sample size of six. The mean static failure load was 50 kN (mean 

apparent shear strength at failure 31.3 MPa). The minimum load (Pmin.) was then set to 10 % of the 

maximum load (R = 0.1).

Example:

Mean static failure load of ADtranz box-lap joints in tension at 1.5 mm.min. ' 1 = 50 kN

Maximum load at 80% of mean failure load

Pmax. = 50 (kN) x 0.8 = 40 kN
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Therefore, minimum load at 10% of maximum load

Pmin. = 40 (kN) X 0.1

Thus, load range

Pr = 40 (kN) - 4 (kN)

4 kN

36 kN

Thus, load amplitude

40(W )-4(jW ) 18 kN

Mean load

40(kN)+4(kN) 22 kN

load ratio

R 4(kN) 
40 (kn)

0.1

Fatigue tests were conducted at a constant test frequency of 20 Hz (1200 cycles per minute). The 

maximum load was set at a percentage of the mean static failure load (80, 70, 60, 50% etc.). S-N curves 

were then plotted; the number of cycles to failure as a function of the load range.
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7.3. RESULTS

Tables 7.1. and 7.2., 7.3. and 7.4. detail the parameters of the room temperature creep, and dynamic 

fatigue tests, respectfully. Figure 7.4. shows room temperature creep performance of both standard 

single overlap shear test specimens and the box-lap shear joints. The S-N curves for the joints tested, 

both without and with fillets, are given in Figures 7.5. and 7.6., respectively.

Table 7.1. Room temperature creep performance of DP 490 epoxy-bonded AISI 304L stainless steel

standard single overlap shear joints (t = 1.5 mm). Fillets un-removed.

PERCENTAGE OF 
MEAN STATIC 

FAILURE LOAD 
(%)

APPLIED LOAD _ 

(kN)

SHEAR STRESS 

(MPa)::

TIME TO FAILURE 

(hr.)
80 6.4 20.5 1

80 6.4 20.5 1

80 6.4 20.5 5.5
80 6.4 20.5 7
80 6.4 20.5 1 0

60 4.8 15.4 239
60 4.8 15.4 400
60 4.8 15.4 431
50 4.0 1 2 . 8 358

Table 7.2. Room temperature creep performance of DP 490 epoxy-bonded AISI 304L stainless

steel ADtranz box lap shear joints (t = 4 mm). Fillets un-removed.

PERCENTAGE OF APPLIED LOAD SHEAR STRESS TIME TO FAILURE
MEAN STATIC . •

FAILURE LOAD -

-  (%) (kN) (MPa) (hr.)
80 40 25 1 0

80 40 25 2 0

80 40 25 285
70 40 25 16
70 35 21.9 300
60 30 18.8 260
60 30 18.8 300
60 30 18.8 334
40 2 0 12.5 4032 t
2 0 1 0 6.3 4032 t
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Table 7.3 Dynamic fatigue performance of DP 490 epoxy-bonded AISI 304L stainless steel

ADtranz box lap shear joints. Fillets removed prior to testing. Test frequency 20 Hz. R = 0.1

PERCENTAGE OF 
MEAN STATIC 

FAILURE LOAD

(%) —

MAXIMUM
LOAD

-----------Pmax.: —&

(kN)

MINIMUM
LOAD
- Pmin.

(kN)

MEAN - 
LOAD - 

Pm

(kN)

LOAD
RANGE

Pr

(kN)

NUMBER 
OF CYCLES 

TO 
FAILURE 

(Nr) _
80 40 4.0 22 36 28,170
80 40 4.0 22 36 23,570
80 40 4.0 22 36 137,740
80 40 4.0 22 36 157,810
80 40 4.0 22 36 69,160
80 40 4.0 22 36 66,150
80 40 4.0 22 36 342,700
70 35 3.5 19.25 31.5 218090
70 35 3.5 19.25 31.5 382490
70 35 3.5 19.25 31.5 181470
60 30 3.0 16.5 27 494680
60 30 3.0 16.5 27 252370
50 25 2.5 13.75 22.5 650850
50 25 2.5 13.75 22.5 4825630 t
50 25 2.5 13.75 22.5 1812270
50 25 2.5 13.75 22.5 426440
40 20 2.0 11 18 10000000 t
20 10 1.0 5.5 9 10000000 f

Table 7.4. Dynamic fatigue performance of DP 490 epoxy-bonded AISI 304L stainless steel

ADtranz box lap shear joints. Fillets left un-removed during testing. Test frequency 20 Hz. R = 0.1

PERCENTAGE OF MAXIMUM MINIMUM MEAN LOAD NUMBER
MEAN STATIC LOAD LOAD LOAD RANGE OF CYCLES

FAILURE LOAD Pmnx. Pmin. Pm Pr TO
— - - •••■• ■ ; FAILURE

(%) (kN) (kN) (kN) (kN) (Nr)
70 35 3.5 19.25 31.5 94010
70 35 3.5 19.25 31.5 96070
70 35 3.5 19.25 31.5 62480
70 35 3.5 19.25 31.5 61680
70 35 3.5 19.25 31.5 110390
60 30 3.0 16.5 27 461400
60 30 3.0 16.5 27 486460
60 30 3.0 16.5 27 328860
50 25 2.5 13.75 22.5 1062770
50 25 2.5 13.75 22.5 1645870
50 25 2.5 13.75 22.5 939060
40 20 2.0 11 18 4641740 t
40 20 2.0 11 18 4378720 t
40 20 2.0 11 18 9999990 t
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7.4. DISCUSSION

Room temperature creep

At the time the joints were loaded, the standard lap shear joints deformed the moment the load was 

applied, although the extent of deformation did not worsen with time and it did not appear to affect the 

longevity of the joints. There was no obvious deformation of the box lap joints observed at any time 

during the trial. Neither the standard lap shear nor the box lap joint types showed any observable 

deformation within the adhesive layer and no longitudinal displacement was recorded. There was a lot 

of scatter from both specimen types, particularly at 80% of the applied load; because the mean static 

failure load used ( 8  kN and 50 kN for the standard lap shear and the box lap shear joint types, 

respectively) was estimated from a sample size of six, the degree of scatter at this load level was 

expected. Two box lap joints loaded at 20 and 40% of the mean static failure load sustained the loads 

remarkable well (over six months without failure) showing no apparent damage - perhaps an endurance 

does exist. An endurance limit may be defined as a value of the applied load below which joint failure 

will not occur. There is much debate as to the existence of an endurance limit: Lewis et al (107, 108) 

calculated that an endurance limit would be about 35 to 45% of the short term joint strength (static 

strength); Wake et al (109, 110) concluded that, from both theoretical and experimental considerations, 

whether an endurance limit really does exit or not has yet to be firmly established. The room 

temperature creep results presented in this chapter, of course, do not confirm the existence of an 

endurance limit, but they do not disprove the existence of such a limit either. If it is assumed that an 

endurance limit does exist and that it is approximately 40% of the mean static failure load (see Figure 

7.4.) then, with a safety factor of 2 this would provide the design engineer with a design load of about 10 

kN or 250 N.mm' 1 (10,000 N / joint width (40 mm)) for the ADtranz box specimens. Unfortunately, the 

joints loaded at 20 and 40% of the mean static load had to be dismantled (without fracture) after the 6  

month period had elapsed, because the tests had already had more than their fair share of machine time, 

one of the problems with creep testing.

Dynamic fatigue

Comparing the fatigue performances of ADtranz box lap joints with and without the fillets removed 

(Figures 7.5. and 7.6.). Removing the fillets of hardened squeeze-out prior to testing improved fatigue
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performance both in terms of consistency and longevity. The increase in life was attributed to the fillets 

reinforcing the joint by minimising the peel stresses at the extreme of the overlap and thus postponing 

peel initiated failure. The improved consistency (and improved longevity) suggests that lap joints are 

sensitive to changes in fillet condition, i.e. cracks will develop sooner in joints without fillets at points of 

high localised stress i.e. comers, see Figure 7.7., and consistency is likely to be affected because the time 

the crack starts and the position of the starting point will be more unpredictable, than in joints with the 

fillets left un-removed. Figures 7.5. and 7.6. propose a fatigue endurance limit at a load range of 

approximately 20 kN, with a safety factor of 2 this would provide the design engineer with a design load 

of about 250 N.mm"1.

crack initiation at 
highly stressed 
comer due to 

elastic rotation.

crack initiation at 
end of fillet - more 

distance (x) for 
crack to travel

cracks will start at 
imperfections at x

steel/adhesive interface, 
notches, undercut, etc.

Figure 7.7. Effect of fillet condition on crack initiation.

But how does the fatigue performance of adhesive joints compare with that of spot welded, or for that 

matter, weldbonded joints? Weldbonding, referred to in 1.0. Introduction, is a hybrid of spot welding 

and adhesive bonding. Conveniently, Linder and co-workers (111) at The Swedish Institute for Metals 

Research and Ring Groth (112), 1000 km north of Stockholm, at Lulea University of Technology, 

conducted dynamic fatigue tests on spot welded and weldbonded ADtranz box lap shear joints, 

respectfully. The S-N curves for spot welded (111), weldbonded (112) and adhesive bonded joints (113) 

are presented in Figure 7.8. It is possible to compare the results of the adhesive bonded and the 

w eldbonded lap joints because the bond areas were identical at 1600 mm2 (40 x 40 mm). As for the spot 

welded joints, the overlap area was 40 x 40 mm and the bond area, as defined by the diameter of the 

weld nugget, was 9 mm. Normal distances between spot welds in industrial, single-row7, spot welded 

joints are about 60 mm, about 1.5 times greater than the overlap of the adhesive bonded and weldbonded
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joints, however, in standard 2 -row spot welded joints, which are more common than single-row spot 

welded joints, the mean 2-row distance is approximately 40 mm. Thus, it is reasonable to compare the 

results of the spot welded joints with those of the adhesive bonded and weldbonded joints. The 

performance of the adhesive bonded joints (fillets un-removed) was attributed to the better stress 

distribution within the lap joint, compared to the spot welded and weldbonded joints. However, these 

test were all high cycle fatigue, but is joint behaviour any different at lower cycles?

The room temperature creep results for the ADtranz box lap shear joints (Figure 7.4.) showed the ability 

of reinforced lap joints to sustain low loads indefinitely, thus, time at load must be a very important 

factor and does it suggests that adhesive joints are highly frequency sensitive? Figure 7.9. compares the 

high cycle fatigue performance of ADtranz box lap joints (fillets un-removed - Figure 7.6.) (113) with 

the low cycle fatigue performance of single overlap joints (114). Crocombe’s results (114) were chosen 

for comparison with the those of the ADtranz box lap shear joints because they represented single 

overlap specimens tested at an R value of 0.1. Although the bond area was greater for the ADtranz box 

lap shear joints, comparison is possible because a normalised load range is considered. The load range 

was normalised by dividing it by the static failure load,

Pr_
Ps

where, Ps for standard single overlap joints with 0.6 mm thick bondline = 10.1 kN.

Ps for standard single overlap joints with 0.165 mm thick bondline = 13.7 kN.

Ps for ADtranz box lap shear joints with 0.25 mm thick bondline = 50.0 kN.

From Figure 7.9., it is clear that the fatigue performance was not significantly effected by differences in 

the bondline thickness, therefore, the improved performance displayed by the ADtranz box lap joints 

was attributed to the test frequency. The reason for the difference in performance is possibly explained 

by Kinloch (11) - in low frequency tests the adhesive tends to creep quite markedly, not only near the 

ends but throughout the overlap. This progressive increase in the strain in the adhesive, due to the creep 

loads, results in joint fracture after a relatively few cycles. However, when tested at high frequency, the 

load is always being removed before the adhesive has time to creep and the accumulated creep strain is
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low and the joint survives for a long time. Perhaps this does explain the differences in the dynamic 

fatigue performances observed, but it is important to note that there are many other variables to consider 

before accurate comparisons can be made, for example, the type of adherend material, the condition of 

the fillets at the extremes of the overlap; the grade of steel used in the standard overlap shear joints is 

not identified and more attention was paid to the condition of the fillets, i.e. they had specific radii. The 

standard single over lap joint had also been modified to include a chamfer and the crosshead speeds used 

in the static tests were much slower than those of used for the ADtranz box lap joints, 0.1 to 0.2 

mm.min"1 c.f. 1.5 mm.min'1.

148



7.5. CONCLUSIONS

The room temperature creep data obtained for both specimen types, standard lap shear and box 

lap shear, correlated well, however, it is unfortunate that more tests were not carried out, 

especially standard lap shear.

Single overlap shear joints can withstand low loads (~ 2 0  to 40% mean static failure load) for 

considerable periods of time without fracture. Providing design engineers with a design load 

of about 250 N.mmf1. There was good correlation between standard single overlap and 

ADtranz box overlap joints.

Single overlap shear type joints can withstand high cyclic loading at low loads (20 kN range) 

for a considerable number of cycles (107). Providing design engineers with a design load of 

250 N.mm'1. However, when considering adhesives it is likely that joints will be sensitive to 

frequency and joints subjected to low cycle loads may fracture prematurely at even relatively 

low loads. Thus, dynamic fatigue tests must be conducted at a diverse range of test frequencies.

Adhesive bonded lap joints give an improved fatigue performance compared to spot welded and 

weldbonded lap joints due to the improved stress distribution within the overlap.

Leaving the fillets of hardened adhesive squeeze-out un-removed prior to testing will improve 

the dynamic fatigue performance in terms of consistency and longevity, because the fillets will 

minimise the peel stresses induced due to the adherend elastically rotating.



8.0. SURFACE CHARACTERISATION

Abstract

AISI 304L stainless steel adherends, intended for DP 490 epoxy-bonded adhesive joints, were subjected 

to a number o f different surface pre-bonding treatments, in order to physically and/or chemically 

modify the surfaces, in an attempt to enhance the mechanical performance o f  the joints. The physical 

nature o f  the pre-treated adherends was characterised using Scanning Electron Microscopy (SEM) and 

surface profilometry, and the chemical nature was characterised using X-Ray Photoelectron 

Spectroscopy (XPS), Glow Discharge Optical Emission Spectroscopy (GDOES), and Energy Dispersive 

X-Ray Analysis (EDX). The subsequent fracture faces were examined using SEM and Fourier 

Transform Infra Red (FTIR) microscopy to determine the loci o f  failure.
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8.1. INTRODUCTION

The surface of the adherend is often treated prior to adhesive (metal-to-metal) bonding in order to 

optimise bond strength and prolong service life. Typical pre-treatments include degreasing to remove 

potential weak boundary layers, mechanical roughening to ‘key’ the surface, and chemical etching to 

promote a stable, resilient oxide. During the course of the experimental work, detailed in Chapters 3.0. 

to 7.O., a number of adherend surface pre-bonding treatments were considered. The pre-treatments used 

ranged from simple cleaning methods such as Dry Wiping to more thorough cleaning techniques such as 

Alkaline Degreasing and Acid Rinsing. While some of the substrates were just cleaned, other surfaces 

were physically modified, either by mechanical roughening in the form of Alumina Blasting or 

Scotchbrite Abrading, or by chemical roughening using, for example, Acid Etching. Thus, some form of 

surface characterisation was deemed necessary in order to investigate the contribution to, or detraction 

from, mechanical joint strength and durability afforded by the adherend surface condition. Surface 

profilometry and SEM were used to physically characterise the substrates in terms of surface roughness 

and the chemically nature of the surfaces was investigated using XPS, EDX, GDOES, and IR 

microscopy. The physical and chemical natures of the stainless steel substrates were examined prior to 

any surface pre-treatment and following pre-treatment, and the fracture faces of the failed joints were 

also examined using SEM and Infra Red microscopy to determine the loci of failure. The mechanical 

test results discussed in previous chapters (Chapters 3.0. to 7.0.) somewhat dictated the extent of the 

surface characterisation work carried out. From the results of the lap shear and peel tests it was 

impossible to discriminate between different surface pre-treatments, only contaminated (un-cleaned, As 

Received) surfaces adversely affected joint strength. It may be, however, that the lap shear and peel tests 

are insensitive to changes in the surface condition of the adherend, because in the wedge tests (see 5.0. 

Environmental Durability i f  Adhesive Bonded Stainless Steel Joints) discrimination between the 

different surface pre-bonding treatments was possible. During this project SEM was used extensively to 

physically characterise pre-bonded adherends and the subsequent fracture surfaces, however, the extent 

of chemical characterisation was limited. GDOES was employed to evaluate the cleaning efficiency of 

some of the pre-bonding treatments and FTIR microscopy to confirm interfacial failure within the 

adhesive (interfacialAdhesive) on the fracture faces. The XPS work carried out was limited due to lack of 

resources and financial restraint.
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8.2. EXPERIMENTAL WORK

8.2.1. PHYSICAL CHARACTERISATION

Samples of 1.5 mm gauge AISI 304L stainless steel, ~25 mm2, were mechanically roughened by 

Alumina Blasting or Scotchbrite Abrading, or chemically roughened using Acid Etching, Smutting or the 

Passivating treatment (the pre-treatments are detailed in Chapters 3.0. to 5.O.). After cleaning and 

drying the samples, surface roughness profiles were recorded over a 10 mm traverse using a Talysurf 

profilometer. As Received surfaces were also included for comparison. The surface roughness of the 

substrates that had incurred no physical modification, for example Alkaline Degreasing and Acid 

Rinsing, were assumed to have the same surface roughness as the As Received material. The 

microscopic physical appearance of the mechanically and chemically roughened surfaces were recorded 

using SEM. The Acid Etched, Smutted and Passivated surfaces were gold coated prior to examination 

to minimise charging. As Received steel samples were also examined for comparison. Finally, the 

subsequent fracture faces of the failed joints were also examined using SEM to help determine the loci of 

failure.

8.2.2. CHEMICAL CHARACTERISATION

8.2.2.1. XPS CHARACTERISATION OF PRE-BONDED ADHEREND

The Alkaline Degreased surface, in the primed and un-primed condition, and the Alumina Blasted 

surface in the un-primed condition were analysed by XPS, using the Microlab facility at S.H.U. Wide 

scans were obtained from the surfaces, together with specific elemental information where considered 

relevant.

8.2.2.2. GDOES CHARACTERISATION OF PRE-BONDED ADHERENDS

Undoubtedly, one of the most significant factors effecting the efficiency of adhesive bonding is the 

degree of surface cleanliness. In 1965, Krieger and Wilson (115) developed a technique that measured 

the extent of surface contamination by the success by which indium adhered onto another solid surface. 

However, although repeatable results were obtained, the technique is somewhat cumbersome and out 

dated; modem surface analytical techniques such as XPS and FTIR are now considered more suitable
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for quantifying surface contamination. However, if qualitative information will suffice, GDOES is a 

simple and quick means of evaluating surface cleanliness; it allows sampling of the surface analyte a few 

nanometers at a time and covers a penetration range of 0.005 pm to 500 pm. In this investigation 

GDOES was employed to qualitatively characterise the surface of AISI304L stainless steel, prior to and 

after pre-treatment, to assess the cleaning efficiency of a number of pre-bonding treatments. The 

treatments considered were: Solvent Wiping', Acetone/Inhibisol Rinsing', Alumina Blasting', Alkaline 

Degreasing', Acid Rinsing; and Acid Rinsing II. As Received surfaces were also included for 

comparison. N.B. The treatment methods are detailed in Chapters 3.0. to 4.0.

8.2.2.3. EXAMINATION OF FRACTURE FACES USING INFRARED 

MICROSCOPY AND EDX

FTIR microscopy was employed to chemically confirm the presence, or absence, of adhesive on some of 

the fracture faces in areas of suspected interfacial failure (interfacialAdhesive), observed both visually and 

using SEM. EDX was also used to confirm regions of interfacialAdhesive failure on the fracture faces.
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8.3. RESULTS

8.3.1. PHYSICAL CHARACTERISATION

8.3.1.1. SURFACE ROUGHNESS VALUES

Several surface pre-bonding treatments were considered in Chapters 3.0. to 7.0. Table 8 .1 . lists those 

treatments used to roughen the adherend surface (chemically or mechanically), together with their 

measured surface roughness value; Scotchbrite Abrading, Alumina Blasting, Acid Etching (H2 SO4 - 

smut removed), Smutting (H2S04 - smut intact), and Passivating. The surface roughness value of thesis 

Received surface is included for comparison and may be assumed to represent the surface roughness of 

all the remaining ‘non-physically modified’ surfaces.

Table 8.1. Surface roughness’ of pre-treated surfaces. Assessment length = 10 mm.

SURFACE CONDITION SURFACE ROUGHNESS PARAMETER Ra 
(pm)

As Received 0 . 1

Scotchbrite Abraded 0 . 2

Alumina Blasted 1 . 1

Acid Etched 1 . 8

Smutted NA

Passivated 0.4

Ra arithmetic average roughness = arithmetic average deviation from the mean line with assessment length. 

N.B. A reliable value could not be obtained for the Smutted surface, the oxide was not hard enough to tolerate the 

diamond stylus.

Using the surface roughness of the Alkaline Degreased surface as a control (Ra = 0.1 pm). Scotchbrite 

Abrading effectively doubled the surface roughness (Ra = 0.2 pm). However, this increase was 

inconsequential in comparison to that afforded by Alumina Blasting (Ra =1.1 pm) and, especially, by 

Acid Etching (Ra =1.8 pm). The Passivated surface was surprisingly smooth at Ra = 0.4 pm.
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8.3.I.2. SCANNING fcLECTRON MICROSCOPY

The physical nature of the As-Received surface is shown in Plate 8.1. Plates 8.2. to 8 .6 . show the affects 

of mechanical and chemical roughening, Scotchbrite Abrading, Alumina Blasting, Acid Etching, 

Smutting and Passivating.
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Plate 8.1.

Scanning electron micrograph of AISI 304L stainless steel with a 2B surface finish. Surface condition 

As Received (Ra = 0.1 pm).

Plate 8.2.

Scanning electron micrograph of AISI 304L stainless steel with Scotchbrite Abraded surface (Ra = 0.2 

pm).
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Plate 8.3.

Scanning electron micrograph of AISI 304L stainless steel with Alumina Blasted surface (Ra =1.1 pm). 

Plate 8.4.

Scanning electron micrograph of AISI 304L stainless steel with Acid Etched (H2 SO4 - smut removed) 

surface (Ra = 1.8 pm).
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Plate 8.5.

Scanning electron micrograph of AISI 304L stainless steel with Smutted (H2 S04 - smut un-removed) 

surface.

Plate 8 .6 .

Scanning electron micrograph of AISI 304L stainless steel with Passivated surface.
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Plate 8.1. The As Received surface consisted of re-crystallised, equi-axed austenite grains, 5 to 20 pm 

in size. The re-crystalisation occured during annealing after cold rolling, although the rolling direction 

can still just be made out in the micrograph, running bottom left to top right, transgranually engraved on 

the faces of flattened grains. The grain boundary areas showed signs of attack, i.e. the flattened grains 

were observed in relief, a result of the acid pickling process which was employed to produce the desired 

mat (2B) finish.

Plate 8.2. The Scotchbrite Abraded surface consisted of a plethora of scratches running in essentially 

the same direction; left to right in the micrograph.. Although the scratches were many, they were very 

fine (0.5 to 2 pm) and there appeared to be little penetration into the surface of the steel.

Plate 8.3. The Alumina Blasted surface showed heavy deformation; an explosion of new surface had 

been exposed by the action of the hard alumina grit. Large (~10 pm), flake-like areas of deformed steel, 

in random directions, dominated the surface of the steel.

Plate 8.4. and 8.5. On the Acid Etched surface, the extent to which the acid attacked the steel surface 

was such that the grain boundary network could no longer be discerned. Deep angular craters were 

observed in the surface (5 to 10 pm across), and the once whole grains showed heavy localised 

corrosion, pitting. The Smutted surface was very similar to that of the Acid Etched surface, showing the 

same signs of vigorous chemical attack.

Plate 8 .6 . The Passivated surface was very different from the Acid Etched and Smutted surfaces. The 

acid attack appeared to have been less vigorous; the surface consisted of nodular grains, generally < 5 

pm, with smooth, moulded features unlike the sharp, angular features observed on the Acid Etched and 

Smutted surfaces.
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8.3.2. CHEMICAL CHARACTERISATION

8.3.2.1. CHARACTERISATION OF PRE-BONDED ADHEREND

Figures 8.1. to 8.4. are XPS spectra obtained from the surface of AISI 304L stainless steel (2B finish) in 

the Alkaline Degreased (primed and un-primed) and Alumina Blasted condition.

Figure 8.1. shows a wide scan spectrum of a silane primed Alkaline Degreased surface. The counts for 

carbon and oxygen (at 280 and 535 eV, respectively), were higher than those from the un-primed surface 

and silicon was present at a binding energy of 155 eV; this was attributed to the silane primer. There 

was one significant difference between the spectra from the Alkaline Degreased surfaces and the 

Alumina Blasted surface, the Alumina Blasted surface gave counts for aluminium at a binding energy of 

120 eV (Figure 8.2.) and an increased oxygen count at 532 eV, (Figure 8.3.); this was attributed to 

residual aluminium oxide (AI2 O3 ) from the blasting process. It is worth noting that the presence of

aluminium in a stainless steel/adhesive structural assembly would be unacceptable, due to the potential 

for galvanic corrosion. Figure 8.4. shows two chromium peaks from the steel surface.

8.3.2.2. EVALUATION OF SURFACE CLEANING METHODS USING 

GDOES

The qualitative depth profile of the As Received surface and those of the surfaces pre-treated by Alkaline 

Degreasing, Acid Rinsing, Acid Rinsing II, Alumina Blasting, Acetone/Inhibisol Rinsing and Solvent 

Wiping are given in Figures 8.5. to 8.11. It is not possible to quantify surface contamination by GDOES, 

since the contamination layers, which are a only few nanometers in thickness, are beyond the resolution 

capabilities of this instrument. Thus, the spectra produced give only qualitative information, although, 

this is sufficient to allow discrimination between the different cleaning methods. The spectrum 

representing the As Received surface (Figure 8.5.) shows heavy contamination from carbon, oxygen, 

nitrogen, sodium, sulphur, hydrogen, chlorine, calcium, and silicon. The point at which the iron peak 

(from the bulk composition) becomes constant represents the extent of the surface layers. The spectrum 

representing the Alkaline Degreased surface (Figure 8 .6 .) shows light contamination with respect to 

carbon, silicon, and calcium. The Acid Rinsed surface (Figure 8.7.) gave a spectrum very similar to that
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obtained from the Alkaline Degreased surface, but showing less counts from carbon. The Acid Rinsed II 

treatment removed most of the contamination (Figure 8 .8 .), but high levels of carbon, sulphur and 

calcium were still present. The spectrum representing the Alumina Blasted surface (Figure 8.9.) showed 

the presence of calcium, sodium, carbon and sulphur, although the thickness was much reduced. The 

spectra obtained from the surfaces subjected to Acetone/Inhibisol Rinsing (Figure 8.10.) and Solvent 

Wiping (Figure 8.11.) were similar to that representing the Alumina blasted surface, although the 

reduction in thickness of the contamination was not as pronounced.

8.3.2.3. EXAMINATION OF FRACTURE FACES USING INFRARED 

MICROSCOPY AND EDX

During the visual examination of the fracture faces of the failed joints, a large proportion of interfacial 

failure within the sub-surface region of the adhesive (interfacialAdhesive failure) was recorded. FUR 

microscopy and EDX were employed to chemically verify that the thin interfacial layer was indeed 

adhesive. Figure 8.12. shows a FTIR spectrum taken from a fracture face with predominant 

interfacialAdhesive failure. The peaks between 2800 and 3000 wavenumbers are indicative of CH groups 

from the epoxy system DP 490. Figures 8.13a., 8.13b. and 8.13c. are EDX spectra taken from the 

adherend, the adhesive, and from an area of interfacialAdhesive failure, respectfully.
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Figure 8.13a. EDX analysis of AISI 304L stainless steel surface. Indicative of adhesive failure.
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Figure 8.13b. EDX analysis of DP 490 toughened epoxy on fracture surface. Indicative of

cohesiveAdhesive failure.
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Figure 8.13c. EDX analysis of suspected interfacial failure on fracture face. Indicative of

interfacialAdhesive failure.
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8.4. DISCUSSION

During the course of the project a number of adherend surface pre-treatments were implemented in an 

attempt to optimise the bond strength and enhance the mechanical performance of stainless steel 

adhesive joints, and this warranted some form of surface analysis to characterise the pre-bonded 

adherends, both physically and chemically. In addition to this, it was necessary to physically and 

chemically characterise the post-fracture surfaces to ascertain the nature and locus of failure.

Physical characterisation Surface profilometry was employed to measure the surface roughness’ of the 

pre-bonded adherends in order to equate these to the measured joint strengths. The Talysurf equipment 

used was reliable, quick (all surfaces measurements done in about 2 hours) and easy to operate. SEM 

was employed to evaluate and record the morphology and topography of pre-bonded surfaces and it was 

also used successfully to characterise the post-fracture surfaces as it proved to be an excellent means of 

examining fractures to determine the loci of failure; cohesiveAdhesive and adhesive failure were easily 

distinguishable under relatively high magnification, interfacialAdhesive, however, was more difficult to 

discern. One can be taught to drive an SEM after about 10-15 hours instruction, there is no, or very 

little, sample preparation necessary and the resulting micrographs provide a hard copy fingerprint of the 

adherend surface.

It was impossible to discriminate between the different surface pre-treatments using the mechanical test 

results (single lap shear and floating roller peel), with the exception of the As Received surfaces which 

gave inferior joint strengths. However, during the Boeing wedge crack extension tests, joints 

incorporating adherends, either mechanically roughened by Alumina Blasting or chemically roughened 

by Acid Etching or Passivating, performed much better than the other joints. This was thought to be 

due to the surface macro-roughness acting as a hindrance to crack propagation, i.e. the crack tip is 

forced to change direction against the peel stresses and follow the surface profile of the roughened 

adherend as it propagates between the adhesive and the adherend during adhesive failure. 

Complimentary to this, SEM revealed the increase in surface area available for chemical bonding and 

the depth of penetration available for mechanical interlocking, created by mechanical and chemical 

roughening, which would also explain the wedge test results.
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Chemical characterisation Although the equipment was not fully utilised XPS did provide some useful 

elemental information; the presence of silane primer on primed surfaces was chemically verified and 

traces of alumina were discovered on Alumina Blasted surfaces. GDOES analysis was found to be 

suitable for qualitatively evaluating surfaces subjected to different cleaning regimes. However, if 

quantitative analysis is required then XPS is a more appropriate technique; GDOES can provide 

quantitative information, but the elements to be quantified must be calibrated against a known standard. 

EDX analysis was used successfully to chemically verify interfacial failure within the adhesive 

(interfacialAdhesive) on post-fracture faces. IR spectroscopy was also employed to verify interfacialAdhesive 

failure. Loci of failure within the metallic surface oxide layer (interfacialoxide failures) would be difficult 

to detect using any of the surface analytical techniques discussed. The only way of accurately evaluating 

interfacialoxide failure is to fracture the bonded joint and examine the resultant fracture faces in situ 

under vacuum.
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8.5. CONCLUSIONS

1. Pre-bonded adherends can be physically characterised using SEM and surface profilometry, and 

post-fracture surfaces can be physically characterised using SEM.

2. For quantitative chemical characterisation of pre-bonded adherends and post-fracture surfaces 

XPS must be considered, however, if qualitative information will suffice, pre-bonded adherends 

can be characterised using GDOES. FTIR and EDX are suitable techniques for chemically 

evaluating post-fracture surfaces.

3. Interfacial failure within the surface layers of the adhesive (interfacialAdhesive) can be chemically 

verified using FTIR and EDX analysis.
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9.0. DISCUSSION

Adhesive screening At the start of this project a review of literature was undertaken to provide a 

background into adhesive bonding and to enable the starting point of the experimental work to be 

established. It soon became apparent from the literature that the epoxy family of adhesives offered the 

ultimate in terms of structural performance and that they have been, and are being, used successfully to 

bond metallic substrates. Unfortunately, the literature regarding adhesive bonding of metals was 

dominated by aluminium adhesive joints; occasionally there were references to mild steel adhesive 

joints, titanium adhesive joints and sometimes even stainless steel adhesive joints, but most of the time it 

was aluminium adhesive joints. This is not surprising because a lot of time, money and effort has been 

spent researching and developing aluminium adhesive joints for the aerospace industries, because of the 

weight saving benefits they offer. Aluminium, like stainless steel, is protected from corrosion by a very 

thin metallic oxide layer, which is self-repairing when damaged. In order to optimise the strength and 

durability of aluminium adhesive joints, the aluminium substrates (adherends) were chemically treated 

to modify and develop the inherent oxide into one much thicker and more tenacious, and this worked 

very well for aluminium. Thus, a starting point was established, a screening program. Six candidate 

adhesives or adhesive systems (4 epoxies (2 of which were toughened), a polyurethane and an acrylic) 

were selected; all adhesives supplied by 3M UK pic. One adherend material was chosen, a commercial 

grade austenitic stainless steel AISI 304L, but a number of adherend surface pre-treatments were 

included in the schedule. Two mechanical tests were decided upon, single overlap shear and floating 

roller peel, to discriminate between the different adhesives and the different adherend surface pre

treatments. The joints bonded with epoxy systems gave the highest shear strengths (Figure 3.10.), 

although the polyurethane-bonded joints gave an outstanding performance in the peel tests (Figure 

3.13.). One adhesive was finally selected, because of its shear and peel performance, its ease of 

application and cost, and also because of its compatibility with a stainless steel surface (measured by the 

proportion of cohesive failure on the post-fracture surface); toughened epoxy system DP 490. Although 

the adhesive screening procedure was relatively straight forward, the contributions to joint strength 

afforded by the adherend pre-bonding treatments was less conclusive. In the lap shear tests there was a 

slight improvement for those joints incorporating Acid Rinsed adherends, and modifying the surface 

roughness of the adherend proved to be of some benefit to peel performance, possibly due to an increase
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in the degree of mechanical interlocking. Generally, roughening the surface, mechanically or 

chemically, improved joint performance and consistency, and again, this was attributed to mechanical 

interlocking or to the cleaning proficiency of the roughening treatments. In conclusion, if stainless 

steels are to be joined using adhesives, with the intention of employing the resulting fabrications in 

structural applications, toughened epoxy systems must be considered, and physical and/or chemical 

modifications to the adherend surface may improve initial joint strengths and durability. N.B. there 

were two important observations in the screening schedule: the adherend material plastically deformed 

during the lap shear test; and removing the fillets of hardened adhesive ‘squeeze-out’ from the perimeter 

of the bonded lap joint prior to testing, resulted in a 25% reduction in the measured shear strength. The 

plastic deformation of the adherend was explained by the rotation of the lap joint in tension because of a 

bending moment induced due to the asymmetry of the load axis. This would give rise to intense tensile 

forces (peel forces) at the extremes of the overlap which may initiate premature joint failure, and this 

would explain the reduction in strength of joints with the fillets removed, i.e. the presence of the fillets 

must minimise the peel stresses at the extremes of the overlap.

The importance of surface cleanliness It is well know, not only by those in the adhesives community, 

but by everyone, that dirty surfaces are impossible, or at least, very difficult to stick together. Surface 

contamination can act as a weak boundary layer, preventing chemical intimacy between adhesive and 

adherend, and consequently adversely affecting bond strength. To investigate the extent to which weak 

boundary layers affected bond strength, single overlap shear tests were conducted on AISI304L stainless 

joints bonded with the toughened epoxy DP 490 and incorporating adherends subjected to different 

degrees of surface preparation (Figure 4.1.). Only joints incorporating As Received surfaces and those 

minimally cleaned by Dry Wiping gave inferior joint strengths. Joints with adherends cleaned using 

solvent degreasing and acid rinsing methods gave reasonable joint strengths, as did those with 

chemically and mechanically roughened adherends (Smutted and Alumina Blasted)-, in the latter case 

the joint strengths were attributed to mechanical interlocking and to the effective cleaning action of the 

roughening techniques. Etching stainless steel in 30% sulphuric acid at 70 °C results in the formation 

of a black, velvety oxide on the surface of the steel known as smut. Smut is easily removed, either 

chemically or mechanically, and it is thought by some (11) to adversely affect joint strength. However,
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as mentioned above, joints incorporating Smutted adherends gave reasonable joint strengths. At high 

magnification the Smutted surfaces appeared sponge-like and it was assumed that the joint strength was 

due to mechanical interlocking achieved as a result of the liquid adhesive deeply penetrating the smut 

layer before starting to harden. Although reasonable joint strengths were attained the loci of failure 

were predominantly within the oxide layer, proving that smut is indeed weakly adhered to the steel 

surface. Again the failure was thought to be initiated by peel stresses at the extremes of the overlap 

induced during joint rotation, resulting in failure at the weakest bond in the joint, the steel/oxide 

interface. Priming the surface of the adherend using a silane primer prior to bonding did little to 

improve the initial shear strength, or indeed, detract from it. The problem with priming metallic 

surfaces, however, is controlling the concentration, the amount and the uniformity of the primer applied, 

using primers, therefore, may be detrimental to joint strength, because excess primer may act as a weak 

boundary layer to adhesion if non-uniformly applied. In conclusion, surface contamination will provide 

a barrier to adhesion if present in sufficient quantities and will adversely affect bond strength. However, 

for stainless steels the cleaning procedure need not be that elaborate, degreasing using solvents and weak 

acids appears to be sufficient. Primers are reported to improve joint performance, particularly durability 

and this may be the case, but they may also be detrimental to bond strength if applied incorrectly; the 

thickness of the primer, its concentration and distribution are very important factors, for example, if the 

primer layer is too thick this can impart brittleness to the joint and consequently reduce the bond 

strength; this was the case during supplementary peel tests, where the loci of failure were observed on 

the post-peel fracture surfaces to be within the primer layer. The peel tests, like the lap shear tests, 

failed to conclusively discriminate between primed, non-primed and over primed surfaces. However, 

one of the advantages of priming is that it provides a protective layer on the surface of newly cleaned 

and prepared adherends, which means that treated adherends can be stored for sometime before they are 

bonded. During this stage of the experimental work, the significance of the adhesive thickness 

(bondline) was evaluated using single overlap shear and floating roller peel tests. Increasing the 

bondline in the lap shear tests resulted in a decrease in bond strength (Figure 4.2.). This, result was 

expected as the increased bondline would mean an increase in the magnitude of the bending moment 

which would adversely affect bond strength. However, the results of the peel tests were inconclusive and 

this was contrary to what was expected. The peel strength was expected to increase with increasing



bondline thickness (116-122); essentially as the thickness of the adhesive layer is increased in the peel 

test a larger volume of adhesive is subjected to deformation per unit area of detachment so that the total 

energy expended in peeling increases. However, at large thickness’ the energy dissipated during peel 

then becomes independent of the overall thickness of the adhesive, since the dissipation process no 

longer involves the entire layer of adhesive (1 1 ).

Environmental durability To investigate the environmental durability of adhesive bonded stainless 

steel, single overlap shear and floating roller tests were carried out before, during and after ageing. The 

joints were aged in ambient conditions and in a humid environment (98% R.H.). The adherend material 

used was AISI 304L (2B) stainless steel, pre-treated by Alkaline Degreasing and priming with a silane 

primer. Boeing wedge crack extension tests were also conducted using a number of different 

environments, ambient, humid, sub-zero, and immersed in water. The toughened adhesive DP 490 was 

the preferred adhesive selection, but the polyurethane was also considered in light of its excellent 

performance in the floating roller peel tests. The curing time recommended by 3M for the DP 490 

system, 7 to 10 days at 20°C proved to be about right, the lap shear tests gave low shear strengths when 

the joints were under-cured (one day), although handling strength had developed. Ageing the lap joints 

in ambient and at 98% R.H. did little to detract from the shear strength. A strong, durable bond must 

have been attained initially between the adhesive and the adherent and this intimacy had apparently 

remained un-compromised even within a humid environment. Similarly, the floating roller peel 

strength remained reasonably constant with time, appearing not to be affected even in high humidity 

conditions. However, peel tests conducted before the recommended curing cycle had elapsed (one day) 

gave higher peel strengths. This was attributed to the liquid adhesive adequately wetting the surface of 

the stainless steel and developing strong durable bonds during the initial stages of the curing cycle. 

However, as the curing cycle continued the subsequent increase in cross-linking may have resulted in the 

redundancy of some of the original durable bonds between the adhesive and the adherend, in order to 

facilitate cross-linking. Thus, the peel strength of a fully cured joint may be less than that of one 

partially cured. Although the results of the lap shear and peel tests were almost inconclusive, those of 

the Boeing wedge test were very different. In ambient conditions the joints bonded with the toughened 

epoxy DP 490 and incorporating adherends with mechanically or chemically roughened surfaces



(Alumina Blasted, Acid Etched and Passivated), experienced hardly any crack growth after about 1 

month of ageing (Figure 5.6.). This was attributed to surface roughness providing obstacles to crack 

propagation and sites for mechanical interlocking. In addition, the surface area and surface energy 

would be greater to accommodate more chemical bonds and render the surface more adhesive-receptive. 

The integrity of the bonds may also benefit from the degree of surface cleanliness provided by the 

roughening treatments. However, un-primed joints incorporating Alkaline Degreased adherends 

experienced slightly more crack growth , but the joints with Alkaline Degreased and primed adherends 

experienced about 13 mm crack growth after about 2 weeks. The was attributed to brittle failure within 

the primer layer (interfacialpnm.). Joints incorporating mechanically and chemically roughened 

adherends, aged in a high relative humidity environment (Figure 5.7.), proved to be more resistant or 

tolerant to the ingress of moisture, whereas joints with Alkaline Degreased adherends experienced 

greater crack growth and priming the surface did little to improve the durability of the joint. Joints 

bonded with the polyurethane system 3532 (Figures 5.8. and 5.9) generally gave a poorer performance 

than those bonded with DP 490, particularly in the high humidity environment. This suggests that the 

interfacial bond strength to resist crack propagation between adhesive and adherend is higher and less 

susceptible to the ingress of water in joints bonded with the epoxy DP 490, and that the DP 490 is 

inherently tougher than the polyurethane 3532. Once again, joints incorporating mechanically or 

chemically roughened adherends generally performed better for the same reasons as discussed above, 

with the exception of joints with Passivated adherends aged in ambient conditions, which gave a poor 

performance. Considering joints bonded with the toughened epoxy DP 490 at a sub-zero temperature of 

-16°C (Figure 5.10.). There was no crack extension in joints incorporating Alumina Blasted adherends 

and this was attributed to the toughness of the epoxy and to the extent of mechanical interlocking 

afforded by the roughened surface. The short term durability of joints incorporating A Ikaline Degreased 

surfaces was much improved by priming with the silane and the Accomet C primers; no crack 

extensions were observed after 120-180 hours at -16°C, respectfully. Although the primers became less 

effective with time and crack extensions were observed after ~1000 hours. Considering joints bonded 

with DP 490 immersed in de-ionised water at room temperature (Figure 5.11). Joints incorporating 

Alumina Blasted adherends proved by far to be the most durable, no crack extension was incurred after 

1000+ hours. Although, joints incorporating Alkaline Degreased adherends primed with Accomet C
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showed some crack growth, the extension was gradual, so the Accomet C primer must have contributed 

to the bond strength and the moisture resistance at the adhesive/adherend interface. Joints with Alkaline 

Degreased and un-primed adherends performed poorly under water, and priming with a silane primer 

did little to improve joint durability. In conclusion, the durability of adhesive joints will be improved by 

roughening the surface of the adherends, either by mechanical or chemical means. The integrity of the 

bond and the extent of bonding is determined by several factors: mechanical interlocking; surface 

cleanliness; surface energy; and surface area. Priming the surface of the adherend prior to bonding will 

to some extent improve joint durability tty increasing the strength and resistance of the chemical bonds 

at the adhesive/adherend interface. However, priming the pre-bonded surface may be detrimental to 

joint durability and impart brittleness to the joint if the thickness of the primer layer is excessive. 

Finally, the Boeing wedge crack extension test is a more suitable means of assessing joint durability than 

either the single overlap shear or the floating roller peel tests. This is because, in the wedge tests, the 

joints are stressed and aged, simultaneously, rather than tested at ambient temperature and relative 

humidity after a finite ageing time has elapsed; the former test is more typical of in-service life.

Significance of the adherend material The majority of the experimental work presented in this thesis 

has considered only one adherend material; a low carbon, austenitic stainless steel AISI 304L. However, 

because there are a number of different types of stainless steels, it was decided to compare the single 

overlap shear strengths of adhesive bonded stainless steel joints incorporating different grades of 

stainless steel. The grades considered; austenitic, ferritic, martensitic and duplex, were selected to 

represent the four main families of stainless steels. Two adherend thicknesses were considered, 2 mm 

and 1.25 mm. Only one adhesive was employed in the investigation, the toughened epoxy DP 490. The 

different grades of stainless steel had different surface finishes, i.e. 2B, 2D, and bright annealed, and the 

surfaces were only subjected to a minimal degree of surface preparation, Solvent Wiping. Reasonable 

joint strengths were obtained for all the joint combinations considered. The chemical and physical 

nature of the surfaces of the grades of the stainless steels included in the evaluation did not appear to 

enhance or detract from joint strength. In addition, Solvent Wiping was proven to be a sufficiently 

thorough cleaning procedure for stainless steels, at least with respect to initial joint strength. The shear 

strengths of joints with 2 mm thick adherends were approximately 25% higher than those of joints
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incorporating 1.25 mm adherends. The most surprising result of the tests, however, was the significant 

difference in lap shear strength observed between joints incorporating different grades of stainless steel.

Consider a single overlap joint loaded in tension. Because the directions of the two forces (P <— > P) 

are not co-linear a bending moment is induced as the load is increased and the joint rotates to bring the

At this point the joint becomes analogous with the deflection of a fixed beam under load. The elastic 

rotation was modeled as a function of the shear stress using equation 6.11. The derivation is given in 

Chapter 6.0.

The elastic model (Figure 6 .6 .) predicts that lap joints incorporating thick adherends will rotate more 

than joints with thinner adherends due to the increased asymmetry of the load axis. The model was also 

used to estimate the nominal line peel stress and nominal line peel force at the centre of the overlap as a 

function of the shear stress (Figures 6.7. and 6 .8 .). Equation 6.22. is a model that provides an 

alternative means of determining the line peel force at the extremes of the joint overlap.

Equation 6.22. is a more detailed calculation with two equal line forces at the end of the adhesive layer. 

However, the resulting plot, line peel force f(shear stress) - Figure 6.10., does not differ more than 8 % 

from the nominal line peel force f(shear stress) shown in Figure 6 .8 .

However, the problem with the two models is that plastic rotation is not considered. To help explain 

joint behaviour, the supposed plastic rotations are superimposed on the elastic model represented in 

Figure 6 .1 0 . Considering joints incorporating ‘high’ yield strength adherends such as martensitic 

stainless steel. As the load increases the joint will rotate elastically and peel stresses will be introduced 

at the extremes of the overlap. However, because the high yield strength of the adherend imparts

line of action closer to the centre of the adherends in order to reduce the value of the bending moment.

Ot o t a l  — — P
E .h*a . 1 + ----------

(6.11.)

(6.22.)
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stiffness to the joint, plastic rotation will be prevented or minimised and the peel stresses will not be 

critical, instead the joint will fail by a shear-dominated, adherend-controlled mechanism at a critical 

shear stress (the elastic model explains the behaviour of joints with martensitic adherends). Considering 

joints with ‘low’ yield strength adherends, however. As the load is increased the joint rotates and peel 

stresses are introduced at the extremes of the overlap due to elastic rotation. At higher loads plastic 

rotation occurs as the adherend yields and the peel stresses at the extremes of the overlap will increase 

dramatically, which will lead to peel-dominated, adherend-controlled failure at a critical peel force.

As the thickness of the adherend material increases the magnitude of the bending moment increases, but 

at the same time the increase in thickness imparts stiffness to the joint and elastic and plastic rotation is 

minimised, therefore, higher joint shear strengths will be realised in joints with thicker adherends 

because premature failure due to rotation-induced peel stresses will be avoided and failure will be 

controlled by the shear properties of the adhesive, when a critical shear stress is reached. Whereas, in 

joints with thinner adherends, although the bending moment decreases, adherends are susceptible to 

plastic deformation which will result in failure at lower loads due to peel.

In summary, lap shear strengths will be higher for joints incorporating stiffer adherends, where the 

stiffness of the joint is increased, by increasing the adherend thickness and/or by incorporating 

inherently stiffer, high yield strength, adherends. Although the bending moment will be greater in joints 

with thicker adherends, joint rotation will be less because the thickness of the adherend will impart 

stiffness to the joint and, therefore, resist rotation. Lap joints incorporating high yield strength 

adherends will also give higher joint strengths, because of the stiffness imparted to the joint by the 

inherent yield strength of the adherend material to resist rotation. Failure will be by shear-dominated, 

adhesive-controlled failure. However, joints with low yield strength and/or thin adherends, where the 

rigidity or stiffness of the joint is much reduced, will rotate plastically and premature failure by peel- 

dominated, adherend-controlled failure will ensue. N.B. The two different scenarios, shear-dominated, 

adhesive-controlled failure and peel-dominated, adherend-controlled failure, are extreme examples. In 

reality, joint failure will be partially due to a shear component and partially due to a peel component.
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Using the elastic model, Figure 9.1. shows the effect of adherend thickness on elastic joint rotation. It is 

clear that elastic rotation will increase to an optimum as the thickness of the adherend increases because 

of the increased asymmetry of the joint. However, at greater adherend thicknesses elastic joint rotation 

will be less due to the stiffness imparted to the joint by the thickness of the adherend. The experimental 

work carried out in this study considered only two adherend thicknesses and therefore it is impossible at 

this stage to confirm the prediction of the elastic model at large adherend thicknesses. Further 

experimental work is therefore necessary to determine the single overlap shear strengths for joints 

incorporating adherends of different thicknesses, ranging from 4 mm to 20 mm. Different stainless steel 

grades should also be incorporated in the test programme at investigate further the significance of the 

adherend yield strength. In addition, the actual rotation of the joints during testing must by measured 

accurately to compare with the predicted rotation.
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Figure 9.1. Effect of adherend thickness on elastic joint rotation:

1 - shear stress 25 MPa;

2 - shear stress 20 MPa;

3 - shear stress 15 MPa.

Room temperature creep and dynamic fatigue performance During the room temperature creep tests 

considerable scatter was observed, particularly with the standard single overlap shear tests (Figure 7.4.). 

The bending moment experienced by the standard single overlap shear was apparent, although the 

reinforced ADtranz test specimens gave no evidence of bending of the adherends during the tests. An 

endurance limit was observed, however, at approximately 40% of the static strength of the ADtranz

176



specimens. The dynamic fatigue tests were much more conclusive (Figures 7.5. and 7.6.). Considerable 

scatter was observed for the box lap shear joints with the adhesive fillets removed prior to testing, 

however, better and more consistent results were obtained from the fatigue tests of the ADtranz joints 

tested with the fillets left un-removed. This was attributed to the improved peel stress distribution at the 

extremes of the overlap because of presence of the adhesive fillets. A fatigue endurance limit was 

experienced for the ADtranz boxed joints, both with and without the hardened adhesive fillets, at a load 

range of approximately 20 kN, ~ 40% of the mean static strength. In comparison to spot welded and 

weldbonded joints, adhesive bonded joints performed much better and this was attributed to the 

improved stress distribution within the joint (Figure 7.8.). The results of the room temperature creep 

tests suggested that time at load is a veiy important factor, thus, dynamic fatigue performance is very 

likely to be sensitive to the test frequency. Figure 7.9. compares the high cycle fatigue performance of 

ADtranz box lap shear joints with the low cycle fatigue of standard single overlap shear joints. Possibly, 

joints will fail sooner at low test frequencies due to accumulated creep strain, which is much lower at 

high test frequencies and, thus, the joints will survive longer (11). The dynamic fatigue test programme 

presented in this thesis needs to be expanded to include tests conducted over a range of frequencies, from 

2 to 100 Hz.

Surface Characterisation Throughout the experimental work several stainless steel surface pre

treatments have been considered and thus a number of different techniques were employed to physically 

and chemically characterise the pre-bonded surfaces and the post-fracture faces. SEM and surface 

profilometiy are useful techniques for characterising the physical nature of pre-bonded adherends, and 

SEM is an excellent means of examining fracture faces to determine the loci of failure. IRS and EDX 

analysis were both used successfully to chemically verify the presence of a thin adhesive layer on post

fracture faces denoting interfacialAdhesive failure. XPS is used to provide elemental information of the top 

5 nm, and is widely employed to evaluate pre-bonded adherends, however, it is less suitable for post

fracture analysis because of problems with the adhesive charging. GDOES analysis was employed 

successfully to evaluate the cleaning efficiency of different pre-bonding treatments. However, if 

quantitative analysis is required then XPS is a more appropriate surface analytical technique. GDOES
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can provide quantitative information, but the elements to be quantified must be calibrated against a 

known standard.

In summary, the work presented in this dissertation has shown that toughened epoxy systems offer the 

ultimate in mechanical performance and are compatible with, and suitable for bonding, stainless steels. 

The surface of stainless steel must be cleaned prior to bonding to optimise the interfacial bond strength 

between adhesive and adherend, although the cleaning procedure need not be too stringent. Surface 

roughening by mechanical or chemical means is beneficial to joint durability because it increases the 

surface area available for chemical bonding, increases the surface energy to render it more adhesive- 

receptive, creates sites for mechanical locking, and cleans the surface of the steel sufficiently well. 

Priming the pre-bonded steel surface prior to bonding may promote and maintain stable chemical bonds 

between the adhesive and adherend, however, the primer may impart brittleness to the joint if the 

thickness of the layer is excessive. The thickness of the adherend will contribute to the stiffness of the 

joint, but the inherent yield strength of the adherend is much more significant. The degree of rotation 

experienced by lap joints in tension will greatly depend on the point at which the adherend plastically 

deforms, since this will immediately lead to a critical peel stress at the extremes of the overlap and the 

joint will fail prematurely by peel-dominated, adherend-controlled failure. However, if the yield strength 

of the adherend is sufficiently high to resist plastic rotation, then a higher joint strength will be reached 

before the joint fails by shear-dominated, adhesive-controlled failure. The peel stress distribution at the 

extremes of the overlap is also reduced by leaving the fillets of hardened squeeze-out intact. N.B. The 

contribution to joint stiffness afforded by the inherent yield strength of the adherend is in agreement 

with other workers (123, 124). Finally, in both room temperature creep and dynamic fatigue tests of 

single overlap shear joints an endurance limits were observed for the ADtranz box lap shear joints at 

40% of the mean static strength. In addition, adhesive bonded joints were shown to perform better than 

spot welded and weldbonded joints under dynamic loading, and are likely to be very dependent upon the 

test frequency; low cycle fatigue is possibly more detrimental to the fatigue life of the joint than high 

cycle fatigue.
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10.0. CONCLUSIONS

The results of the work presented in this thesis has led to the following conclusions:

1. Standard single overlap shear and floating roller peel tests can be used to discriminate between 

different adhesive systems, but these tests are less sensitive to the surface condition of the adherend and 

the test environment. The Boeing wedge crack extension test is more reliable for evaluating different 

surface pre-treatments and service environments.

2. If stainless steels are to be joined successfully using adhesives with the intention of employing 

the resulting fabrications in structural applications, toughened epoxy systems must be considered to be 

the ultimate adhesives, because of their high shear strength and ability to form strong, durable bonds 

with the stainless steel surface.

3. The surface condition of the pre-bonded stainless steel is an important consideration. A degree

of surface cleanliness is required to optimise the chemical intimacy between the adherend and the 

adhesive to ensure strong and durable bonds; roughening the surface of the steel prior to bonding by 

mechanical or chemical means will improve the environmental durability of adhesive bonded joints; 

surfaces primers are important for protecting the chemical integrity of freshly pre-treated adherends 

until the time when they are bonded, although care must be exercised during the application of the 

primer to control the thickness and distribution because an excessive primer layer can impart brittleness 

to the joint.

4. Etching stainless steel in sulphuric acid can result in the formation of an iron oxide (smut) on

the surface of the etched steel. Although high lap shear strengths may be realised, the oxide is weakly 

adhered to the metal surface, as the loci of failures was observed to be at the metal / metal oxide 

interface. The bond between the adhesive and the metallic oxide proved to be more resilient than the 

bond between the metal and its oxide.
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5. Although the results of the lap shear and peel tests after ageing in ambient and high humidity 

environments were high, the susceptibility of adhesive joints to moisture ingression was clear from the 

wedge test results. Surface pre-treatments can be employed to optimise joint durability, although there is 

still much work to be done in this area, for example, modifying adhesive formulations.

6 . The stiffness of the adherend material significantly influences lap shear strength. Stiffness is 

imparted to the joint by the thickness of the adherend and its inherent yield strength, and will resist joint 

rotation and, thus, minimise the peel stresses at the extremes of the overlap which will result in 

premature joint failure. Elastic rotation of the single overlap joint can be modeled as a function of the 

shear stress by:

h  +  t
Ot o t a l  =

a . 1  +
E.h3

6.<js. l .a 2

(6 .11.)

7. The line peel force and the line peel stress acting on the extremes of the overlap during elastic 

rotation of a single overlap joint can also be modeled as a function of the shear stress by:

(js{h  + /)
P f  =

( a 2 + c 2)
(6.22.)

1 +
E .h 3

a .c 6.<js.2 c . ( a 2 +c2)

8 . Single overlap shear joints with adherends of low stiffness are more likely to fail as a result of 

critical peel stresses induced by joint rotation and plastic deformation (peel-dominated, adherend- 

controlled failure). And, single overlap shear joints incorporating ‘stiff adherends will resist plastic 

deformation to a higher stress, therefore the peel stresses will be minimised and joint failure is likely to 

be due to the adhesive shearing at a critical shear stress (shear-dominated, adhesive-controlled failure).

Joints incorporating thicker adherends should theoretically rotate more, but the stiffness imparted to the 

joint by the thicker adherends may be sufficient to resists plastic deformation. High yield strength
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adherends will impart stiffness to the joint, minimising the peel stresses at the extremes of the overlap, 

and thus, higher lap shear strengths will be obtained.

9. Single overlap shear joints can withstand low loads (~40% mean static failure load) for 

considerable periods of time without fracture. Providing design engineers with a design load of about 

250 N.mm'1. There was good correlation between standard single overlap and ADtranz box overlap 

joints.

10. Single overlap shear type joints can withstand high cyclic loading at low loads (20 kN range) 

for a considerable number of cycles (107). Providing design engineers with a design load of 250 N.mm* 

\  However, when considering adhesives it is likely that joints will be sensitive to frequency and joints 

subjected to low cycle loads may fracture prematurely at even relatively low loads. Thus, dynamic 

fatigue tests must be conducted at a diverse range of test frequencies.

11. Dynamic fatigue performance of adhesive joints is favourable compared to that of spot welded 

(111) and weldbonded joints (112). However, adhesive bonded joints are likely to be sensitive to the test 

frequency and particularly susceptible at low test frequencies.

12. Removing the fillets of hardened adhesive squeeze-out from around the perimeter of the joint 

prior to testing will reduce the static strength and the dynamic fatigue strength of single overlap joints 

because the intensity of the peel stresses at the extremes of the overlap will be intensified.
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11.0. FUTURE WORK

1 . Comparative Analysis

Static tests The standard single overlap shear testing programme should be expanded to include a wide 

range of adherend thicknesses, from 4 to 20 mm, to confirm the predictions of the elastic model 

described in Chapter 6.0. Different stainless steel grades should also be incorporated in the schedule to 

further evaluate the contribution to joint stiffness afforded by the yield strength of the adherend.

Room temperature creep The room temperature creep work programme should be extended to firmly 

establish a room temperature creep endurance limit, and elevated temperature creep of standard overlap 

shear joints needs to be considered.

Dynamic fatigue The fatigue work programme should be extended to determine S-N data for adhesive 

bonded single overlap joints incorporating AISI304L stainless steel adherends tested over a full range of 

frequencies, to study the effect of test frequency on fatigue strength. S-N data should also be determined 

for adhesive bonded single overlap joints incorporating adherends of different thicknesses and made 

from different stainless steel grades to establish a relationship between adherend yield strength and 

fatigue strength: high and low cycle fatigue should be considered, i.e. two extreme test frequencies shall 

be used.

2. Fracture Mechanics Approach

A primary consideration in designing adhesive joints is the possibility of crack growth within the 

adhesive or at the interface, which can prove catastrophic if the fracture resistance of the adhesive or 

interface is exceeded. Thus, it is desirable to explain the fracture toughness in terms of a crack growth 

parameter that reaches a critical value for catastrophic growth. One such parameter is the strain energy 

release rate (G); the amount of energy dissipated per unit amount of crack extension. Strain energy 

release rate data should be obtained for adhesive bonded joints incorporating adherends made from 

different stainless steel grades over a range of test frequencies using double cantilever beam (DCB) 

specimens as shown in Figure 11.1.
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Figure 11.1. Double cantilever beam (DCB) specimen:

The DCB specimen operates under Mode I loading, but can be modified to operate in mode I/II and 

Mode I/III mixed modes, thus, the joint fracture toughness can be obtained for all three modes. This is 

important since any of the modes can operate and may lead to failure in adhesive assemblies. To model 

the dynamic fatigue behaviour of stainless steel adhesive joints, DCB tests, at a range of frequencies, 

should be run concurrently to the high and low cycle fatigue tests and should incorporate different 

stainless steel grades.
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