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ABSTRACT

A technique known as ion mobility spectrometry (IMS), which has been under 
development for about thirty years, has been shown to be capable of detecting 
hydrazines at low concentrations but with interference from ammonia. Ammonia is 
usually present in hydrazine environments, as a breakdown product or a by-product of 
the human metabolism.

This project was undertaken to investigate mechanical and chemical parameters 
for improved detection of these hydrazines in the presence of ammonia, and for the 
detection of nitrogen dioxide, by IMS. The subject areas investigated were compatibility 
of detector cell construction materials with the analytes, detector temperature, 
comparison of membrane versus direct inlet systems under their optimum conditions, 
pneumatics configurations for the spectrometer, and the investigation into the effects of 
different ion molecule chemistry regimes for the improvement of selectivity, sensitivity, 
and response and recovery times.

The optimum spectrometer operating conditions, for the detection of hydrazine, 
methylhydrazine, and 1,1-dimethylhydrazine in the presence of ammonia, and for the 
detection of nitrogen dioxide, were incorporated into a hand portable instrument (linked 
to a computer) capable of near real-time detection. Ammonia is still an interferent in the 
ion mobility spectrometry detection of the parent hydrazine.

The use of ketones as dopant chemicals has been shown to be effective in the ion 
mobility spectrometric determination of the hydrazines. However, the mobility of the 
ion-molecule clusters formed from these hydrazines are in the reverse order to that 
expected. In order to gain insight to the ion-molecule chemistry of the 
hydrazines/ketones systems molecular modelling and IMS coupled with tandem mass 
spectrometry studies were undertaken to investigate ion cluster formations of the 
hydrazines with an homologous series of symmetrical ketones. A fluorinated ketone was 
also studied by IMS-MS-MS to determine the effect of electron withdrawing groups 
upon ion cluster formation. The ion-molecule clusters formed were shown to be 
concentration dependent, with gas phase reaction recorded between the dopants and 
analytes at low ketone concentration.
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Chapter 1

INTRODUCTION

1

1.1 Background

P
ossibly the most well known use of hydrazine (HZ) is as a rocket propellant 

utilised, for example, in the German rocket-powered ME-163 fighter 

plane(1), but it is also used extensively in other areas. In addition to fuel cells 

and general utilisation in the aerospace industry, hydrazine is also used as a dissolved 

oxygen scavenger in boiler waters, a corrosion inhibitor and anti-oxidant, and in the 

manufacture of agricultural pesticides and plant-growth regulators, polymers, dyes, 

explosives, and pharmaceuticals (including hydrazine salts(2)). More recently hydrazine 

has been investigated for the anisotropic etching of silicon(3). Monomethylhydrazine 

(MMH, methylhydrazine) and 1,1-dimethylhydrazine (UDMH, unsymmetrical 

dimethylhydrazine) are also used as fuels and propellants. HZ and MMH have been 

mixed together during their evaluation as a bipropellant in a regeneratively cooled 

engine(4). Nitrogen dioxide is sometimes used in conjunction with hydrazines fuel 

systems, as an oxidant.

These hydrazines are hazardous by virtue of their flammability and toxicity. The 

genotoxic(5), mutagenic(6), and hepatotoxic(7'9) effects of HZ have been investigated in 

rats. Both HZ and MMH have been shown to be bacterial mutagens(10) and the 

teratogenicity of HZ has also been called into question(11). The adverse effects of these 

hydrazines on the human body are well documented(12'17). The vapours are irritating to 

the upper respiratory tract and can cause dizziness and nausea; itching, burning, and 

swelling of the eyes may develop over a period of hours, severe exposure causing 

temporary blindness lasting for about 24 hours(17). Problems have also been recorded in
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the nervous, lymphoreticular, haemepoietic, cardiovascular, genitourinary, 

integumentary, and musculoskeletal systems of humans following exposure to 

hydrazines(11). In 1993 acute intoxication by a hydrazine-like gas, of workers in a 

garbage dump, was reported(18); the main complaints of those affected were dyspnoea, 

nausea and eye burning. Following occupational exposure to HZ at concentrations of 

one to ten parts per million by volume (vpm) during production at a factory between 

1945 and 1971, a subsequent report(19) suggested that there was insufficient evidence for 

the carcinogenicity of HZ in humans, however, all three hydrazines are now listed as 

human carcinogens. One publication(20) has stated that “agents with a hydrazine 

functionality are metabolised to toxic intermediates capable o f damaging cellular 

macromolecules and stimulating proteolysis.... Hydrazines and the substituted alkyl and 

aryl hydrazines undergo oxidation by oxyhaemoglobin or cytochrome 450 to yield 

highly reactive oxygen and organic free radical species. These highly reactive 

electrophiles are capable o f damaging cellular DNA and protein. ” The report also 

suggested that the hydrazines damage protein in human red blood cells and stimulate the 

rate of protein degradation; their toxicity ranges from autoimmune tissue injury to 

carcinogenesis and leukemogenesis. A newspaper article(21) reported the death of a 

cancer research doctor who died following work with UDMH.

Due to their hazardous nature there is a need to monitor for the presence of these 

hydrazines wherever there is a possibility that people will be exposed to their vapours. 

There are various exposure limits, cited in literature(22'29), ranging from 10 to 1000 parts 

per billion by volume (vpb), depending on the governing body and the hydrazine of 

interest. Ten years ago it was not possible to estimate a no-observed-adverse-effect level 

(NOAEL) from the available human data on HZ(28). In 1990 the Occupational Safety and 

Health Administration (OSHA) [of the United States of America (USA)] permissible
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exposure limits (PELs)(22'23} were 100(l2), 200(26) and 500(27) vpb for HZ, MMH, and 

UDMH respectively. In 1992 a legal ruling declared the OSHA limit of 100 vpb for HZ 

as unlawful, following a law suit by a US company contesting the exposure limit. 

OSHA was forced to revert to the previous exposure PEL of one vpm. The American 

Conference of Governmental Industrial Hygienists (ACGIH) threshold limit values 

(TLVs)(13) corresponded to the OSHA PELs. The National Institute of Occupational 

Safety and Health (NIOSH) [also of the USA] recommended exposure limits (RELs)(24'27) 

were 30, 40, and 60 vpb respectively. As recently as 1996 the Health and Safety 

Executive (HSE) [United Kingdom] listed the long term exposure limit (LTEL) for HZ, 

for an eight hour time-weighted average reference period(29), as 100 vpb, but this limit 

was also under review and is now 20 vpb(30). Although not a legislative body, ACGIH 

has recommended to the OSHA that the level for all three hydrazines be lowered to 10 

vpb(31’32).

The author’s main areas of consideration for monitoring are for hydrazines used 

in the aerospace and energy industries. Ideally, a hand-portable monitoring system, 

capable of detecting down to one tenth of the exposure limit, would be required to be of 

use for the purposes of occupational hygiene and propellant leakage, and should be 

capable of responding in near real-time. Ammonia, which is a breakdown product of 

hydrazines and is also emitted from humans as a natural product of metabolic processes, 

is usually present in hydrazines environments, so any monitoring equipment would have 

to be unaffected by the presence of ammonia. Typical levels of ammonia that are 

causing concern in the practical real-time determination of HZ are in the range of two to 

ten vpm. There is also a requirement to monitor for ammonia at a concentration of less 

than one vpm, possibly 0.3 vpm if the detection level is assumed to be one tenth of the 

current HSE long term exposure of 3 vpm(30). At the outset of this work, commercial
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bench instrumentation was capable of monitoring only down to one vpm of the 

hydrazines and nitrogen dioxide, with slow response. Below this level no suitable 

instrumentation was available with the necessary performance characteristics of 

selectivity, sensitivity, and response and recovery times, at the detection levels required.

1.2 Review of hydrazines monitoring techniques

1.2.1 Titrimetry

Quantification of HZ was reviewed by Audrieth and Ogg in 1951(33). Various titrimetric 

methods detailed were wet chemical analyses, used typically for the determination of the 

purity of HZ, all of which have a low degree of sensitivity and are unsuitable for the 

determination of low concentrations of hydrazines in the atmosphere. Electrochemical 

titrations have been considered (section 1.2.4).

1.2.2 Spectrophotometric methods

Spectrophotometric analyses for the determination of hydrazines fall into two 

categories, colorimetric and fluorescence determinations. Colorimetric methods are used 

as wet chemical methods in the laboratoiy and also adapted for field use, employing 

paper tape technology and detector tubes.

Laboratory methods for HZ determination include reaction with picryl chloride 

in chloroform to produce bis-trinitrophenylhydrazine which, when buffered with borate, 

gives a red colour on the addition of alcoholic potassium acetate(34). Pyridyl is also used 

for the detection of HZ but has insufficient sensitivity for the detection of UDMH. The 

reduction of phosphomolybdic acid to molybdenum blue has been used for the 

determination of UDMH(27) and MMH(26). A kinetic method, based on the measurement 

of the rate of reaction between HZ and Mo(IV) in the presence of hydrochloric acid, 

monitors the redox reaction spectrophotometrically at 710 nm. This method(35) is quoted
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as being sensitive to 10‘4 M. The reduction of phosphomolybdic acid is unsuitable in the 

presence of other reducing agents(36). Due to the non-specificity of this reaction, 

Pinkerton et a lP6) developed a method which reacted UDMH with trisodium 

pentacyanoaminoferrate to give a red complex:

Na3[Fera(CN)5NH2] + H2NN(CH3)2 -» Na3[Fera(CN)5NH.N(CH3)2]+ NH3 1.

Pesez and Petit(37) recorded that HZ reacted with 4-dimethylaminobenzaldehyde to give 

a characteristic yellow to orange-red colour, in hydrochloric acid solution, which could 

be used for photometric determination. Further work by Pilz and Stelzl(38) cited 8 % 

sulphuric acid as a more efficient collecting medium than hydrochloric acid, which was 

only 78% effective. The dehydration reaction forms an azine from HZ:

H —  C =  O

2

N

+ H2NNH2

h 3c CH,

H —  C ~  N N =  C —  H

H3C

N
/  \

c h 3 h 3c

N

/  \
CH,

This method of determination has also been used for the detection of MMH, but due to 

the presence of only one primary amine group it can only react with one molecule of

4-dimethylaminobenzaldehyde. The product is a smaller molecule than the azine formed 

from reaction with HZ and has a lesser degree of conjugation. The method of 

measurement is visible spectrophotometry which depends upon the degree of 

conjugation and therefore the reaction is less sensitive for MMH than it is for the parent
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HZ molecule. The measurement wavelength is 455 nm for both HZ and MMH reaction 

products. This method is unsuitable for the detection of UDMH. The process has been 

adapted for the determination of trace amounts of hydrazine in boiler feed water(39).

HZ has also been complexed with 4-dimethylaminobenzaldehyde in acetic 

acid(25) to form a quinoid derivative of 4-dimethylaminobenzaldazine. The reaction of 

HZ with 2,4-dimethylaminobenzaldehyde to form the hydrazone has been investigated 

for the continuous flow monitoring of HZ in water, using a flow gradient for 

calibration(40). Reactions of HZ and its derivatives with various other aldehydes, 

including benzaldehyde and salicylaldehyde, are used for their quantification^ . 

Another method(12) details the collection of HZ on sulphuric acid coated Gas Chrom R, 

desorption with water and analysis with colorimetric screening, again using

4-dimethylaminobenzaldehyde, or an HPLC procedure involving treatment with 

benzaldehyde solution and sodium borate, a method developed further by the HSE(41).

Another condensation reaction uses 3,4-dimethoxybenzaldehyde as the 

reagent(42), in acid medium. The product is again yellow, but the measurement 

wavelength is 410 nm.

Fluorescent detection of HZ through derivatization with 2,3-naphthalene 

dicarboxaldehyde (NDA)(43) has been shown to be selective against ammonia. The 

method is sensitive, at 500 nm, to 50 ng.f1 HZ at pH 2.5, and sensitive to 120 ng.l' 1 

MMH and 40 /ig.l’1 UDMH. O-phthalaldehyde (OPA) and anthracene-2,3- 

dicarbaldehyde (ADA) produce fluorescence emission at 376 and 549 nm 

respectively(44). By control of the pH and aromatic dicarbaldehyde chosen, it is possible 

to differentiate quantitatively between HZ, MMH, and UDMH in the same sample.

Field deployable methods have also included the reduction of phosphomolybdic 

acid to molybdenum blue, employed for determination using paper tape technology.



7
Detector tubes make use of colorimetric methods of determination for the monitoring of 

the hydrazines, including neutralisation of HZ by sulphuric acid, which turns pH 

indicator from pink to yellow(45):

N2H4 + H2SO4 -> (NH3)2S0 4 3.

Other amines and ammonia produce a similar stain by themselves and cause positive 

errors when co-existing. In a similar reaction, HZ reacts to give a hydrazinium salt 

which changes bromophenol blue indicator from yellow to blue(46). This reaction is also 

non-selective. A more selective detector tube method involves the reaction of the 

hydrazines with a silver compound, producing a colloidal silver brownish-grey product 

on the originally white crystals(46). The tubes were designed to react specifically with HZ 

but also react with MMH to ±50% accuracy. The indication with UDMH is diffused and 

is difficult to evaluate. Hydrogen sulphide produces a similar colour change and 

although sulphur dioxide is not indicated, its presence interferes with the detection of 

HZ and results in low readings.

1.2.3 Chromatographic methods

Gas chromatographic determination of HZ and MMH has been achieved at 0.1 to 50 

ppm, in aqueous solution, following their reaction with 2,4-pentanedione to form 

substituted pyrazoles(47) prior to analysis. Separation of HZ mixtures and water has been 

effected using a stationary phase that is chemically similar to HZ(48). Neither method is 

suitable for UDMH.

Another method(49) details detection of HZ and its methyl and phenyl derivatives 

by entrapment onto sulphuric acid coated silica gel, after which the sorbent is treated 

with water to desorb the hydrazines. Reagent, containing sodium acetate and 

2 -furaldehyde, is added and the resulting derivatives are extracted into ethyl acetate and
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analysed by gas chromatography with flame ionisation detection. The method is most 

sensitive to HZ, with a lower limit of detection of 0.2 jjg.

HZ in human plasma may be determined by HPLC using a reversed-phase 

(octadecylsilane) column and methanol-water (60:40) as the mobile phase(50). Samples 

are denatured with trichloroacetic acid and derivatized with 4 -hydroxybenzaldehyde to 

form an azine, which is determined by ultraviolet detection at 340 nm.

HPLC with electrochemical detection has been successful for the detection of 

selected HZ and hydrazide derivatives of 2,5-dihydroxybenzohydrazide(51) but it was not 

investigated for the hydrazines of interest in this research.

(52) •Prechromatographic derivatization of HZ with 2 -nitrocinnamaldehyde m 

combination with a preliminary solid-phase extraction (C-18 sorbent) has enabled 

sensitive and selective determination of HZ to be performed.

Gas chromatography is used for the simultaneous determination of all three of 

the hydrazines of interest, by separation of their acetone derivatives and subsequent 

detection using a nitrogen specific detector. The method(53) was developed to be 

sensitive to atmospheric, part per billion concentrations. This idea was pursued for the 

detection of HZ in boiler feed water, with the derivatization of the amine in situ and its 

subsequent recovery from the aqueous sample(54).

1.2.4 Electrochemical methods

Coulometric determination of HZ and substituted hydrazines in the 3 to 5 mg range has 

been achieved by reaction with bromine(55), and has been used for the continuous 

measurement of UDMH(56), in air, utilising a four electrode potentiostat with pH 8.0 

buffer electrolyte. Coulometric oxidation / reduction titrations of HZ with 

electrogenerated lead(IV) acetate or manganese(III) acetate in acetic acid(57) have been 

reported, and another redox titration of HZ with p-carboxybenzenesulphone-
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dichloroamide(58) has also been proposed. A coulometric method(59) employing 

galvanostatic titration, with bromine as the intermediate, and amperometric end-point 

detection is capable of detecting HZ and MMH to less than 25 ng per titration sample 

(equivalent to 2 ppb in air). Amperometric determination utilising potassium iodate as 

the titrant(60) has been used for the determination of HZ and its salts in the range 4 x 10‘7 

to 4 x 10'3 M; with manganese (]H) pyrophosphate and use of a rotating platinum 

electrode(61) amperometric determination is sensitive to less than 1 mg of HZ in 

solution. Due to the similar oxidation potentials of HZ and UDMH on a platinum 

electrode in an aqueous sulphate medium, a method using their reaction products with 

2 -propanone was investigated for determination of their mixtures(62), again, using 

amperometric end-point detection.

Amperometric flow-injection analysis(50,63) has been applied to the determination 

of HZ in solution, by electrocatalytic oxidation of the HZ at a cobalt 

tetraphenylporphyrin, heat-treated, modified glassy carbon electrode; the method is 

sensitive to 0.1 ng. Similarly, glassy carbon electrodes have been treated with 3,4- 

dihydroxybenzaldehyde(64) where low picogram quantities of HZ have been determined 

and for remote monitoring using a 50 ft. long shielded cable(65), nafion / ruthenium 

oxide pyrochlore(66), polymeric cobalt phthalocyanine(67,68), and an electrode 

electrochemically pretreated with an alumina slurry(50) have been used for the 

determination of hydrazines separated by liquid chromatography. Following capillary 

electrophoresis, a platinum-modified carbon fibre electrode has been used for 

amperometric detection(69) of HZ, and a palladium-modified microdisk array 

electrode(70) has been used for the detection of both HZ and MMH.

Potentiometric / flow-injection determination of trace HZ in boiler water(71) was 

successful at 10 ppm in solution. Details of experimental work for the use of an
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electrochemical cell for real time analysis of the hydrazines(72), but with interference 

from possible atmospheric contaminants, was published as early as 1979. A 

commercially available HZ monitor(73), for the detection of HZ concentrations in boiler 

waters, uses a polarographic redox electrode, and requires monthly refilling of the 

potassium chloride reagent. Solutions containing both HZ and ammonia have been 

quantified(74), by the use of potentiometric determination of the HZ reacted with 

bromine in acid medium, followed by amperometric determination of the ammonia 

reacted with BrO' formed from hypobromite in alkaline medium.

Disposable screen-printed electrodes incorporating cobalt phthalocyanine or a 

mixed valent ruthenium cyanide coating have been evaluated for environmental and 

industrial monitoring of HZ compounds(68) and could be capable of on-site real-time 

environmental monitoring for hydrazine.

1.2.5 Miscellaneous methods o f hydrazines detection

Chemiluminescence has been shown to be capable of detecting HZ in solution and in 

air. An automatic injection analysis method with chemiluminescence detection is 

sensitive to 20 ng.mT1. Colloidal platinum catalytically oxidises HZ to form an 

intermediate oxidising agent, which subsequently oxidises the luminol(31) in the system, 

thus generating a chemiluminescence signal which is proportional to the atmospheric 

HZ concentration, a process sensitive to sub ppm concentrations.

Modulated photoionization detection(75) has been reported to be successful for 

the determination of MMH at less than 100 vpb, even in the presence of ammonia, but 

because the measurement is differential any background signal drift must be eliminated 

from the system, and span drift would have to be overcome in the design of the 

modulator and the sample matrix considered.
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A monoamine oxidase biosensor has also been considered for HZ monitoring(76) 

but, so far, specificity has been poor. A tyrosinase-based inhibition biosensor has been 

evaluated for the determination of hydrazines(77), and a double-stranded DNA biosensor 

has been demonstrated for HZ and MMH determinations(78), in water, and may be 

developed for atmospheric monitoring.

A passive sampling device was developed for the detection of MMH(79), but the 

badges were affected by tobacco smoke and strong sunlight. The MMH content of the 

samplers had to be determined by either coulometric or colorimetric analysis in the 

laboratory.

1.2.6 Summary o f hydrazines detection

The methods of detection mentioned so far are based on laboratory techniques rather 

than portable instrumentation, and require relatively complex sample preparation or 

considerable technical support in the form of buffer or electrolytic solutions. In general 

they lack sensitivity and / or selectivity, and the instrumentation is not commercially 

available with the required performance characteristics necessary for the simultaneous 

detection of all three hydrazines of interest. Hence, an alternative technique which 

addresses these deficiencies is required.

Ion mobility spectrometry (IMS) is a technique concerned with the formation of 

ion-molecule clusters in air(80), or other gases(81,82) and their movement in an electric 

field at, or just below atmospheric pressure. Instrumentation used for this procedure has 

been shown to be capable of detecting the hydrazines (in the positive ion mode) at sub- 

vpm levels(83'85). As a result of this earlier work, it seemed appropriate to further 

investigate IMS for application to the problem of monitoring hydrazines in the presence 

of ammonia, and for the detection of nitrogen dioxide (in the negative ion mode).
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1.3 Basic theoretical principles of ion mobility spectrometry

1.3.1 Basic design o f an ion mobility spectrometer

An ion mobility spectrometer cell consists of two sections(86'88). Firstly there is a ion- 

molecule reaction chamber, incorporating the ionisation region. This is coupled via a 

shutter to the second major part of the assembly, the drift region, which contains a 

screen grid and an ion collector. A typical cell consists of metal guard rings, separated 

by insulators, connected to a resistance network with a high voltage attached to one end 

of the resistor chain, to produce a uniform electric field along the cell, usually 250 

V.cm'1, at atmospheric pressure(89). In theory this can be altered to vary the drift time 

but, typically, commercially available cells do not have this facility.

63Clean carrier gas is ionised, usually by irradiation with P‘ rays from a Ni 

radioactive source (corona discharge(90) photoemissive(91), and photo-ionisation(92,93) 

sources have also been used), and a number of stable long-lived positive and negative 

ions, known as reactant ions, are formed. (Ions of only one polarity are formed with a 

corona discharge source, depending on the polarity of the discharge(94).) Alternative ion- 

molecule chemistry can be achieved by the introduction of a dopant chemical, at a 

controlled rate of emission, from a temperature controlled chamber. If trace vapours are 

introduced into the carrier gas they may react with the parent (reactant) positive or 

negative ions to form product ions. The equilibrium concentrations of the product ions 

are governed by the proton affinity or electron affinity of the species and the 

concentration of the trace vapour in the carrier gas. If these ions are introduced into an 

electric field they will migrate according to their polarity and that of the applied field. 

For determining compounds with high proton affinity the source is held at high positive 

potential with the collector electrode at ground; for compounds with high electron 

affinity the polarity is reversed. Each individual ion has a component of acceleration in
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the direction of the applied field between collisions. The bulk effect on all the ions 

appears as a constant ion drift velocity in the direction of the field(95). In the ion- 

molecule reaction region the ion-molecules drift under the influence of the applied field 

until reaction has reached equilibrium. The ions are drawn by the electric field towards 

the shutter which is pulsed to allow a finite number of ions into the drift region.

The shutter is a Bradbury-Nielsen grid, made up of two planar grids of parallel 

wires, used to produce a transverse field by applying an offset voltage to one set of wires 

(the “moving” grid) and coupling the other set (the “fixed” grid) to the appropriate part 

of the resistor chain. Applying a voltage pulse to the moving grid removes the transverse 

field and allows ions to pass through for the duration of the pulse, under the influence of 

the continuously applied longitudinal field(96,97). Operation of this shutter starts the 

timing sequence which measures the drift time. Ideally, in the drift region, ion-molecule 

reactions are quenched by a counterflow of clean drift gas. The screen grid shields the 

collector electrode from an approaching ion cloud, which would otherwise induce a 

charge on the electrode and consequently distort the shape of the current peak. The 

collector electrode is a Faraday plate(87), from which the current peak is amplified, and 

the drift time, from the opening of the shutter, measured. The complete mobility 

spectrum is generated by monitoring the collector electrode from the instant the voltage 

pulse is applied to the grid. By repetitively pulsing the grid the mobility spectrum can be 

continuously generated. Typically, twenty milliseconds is sufficient to allow all ions to 

drift from the grid to the collector electrode. Only small ion currents are involved, 

therefore the signal is relatively noisy. The signal to noise ratio may be improved by 

averaging the signal over several scans, the ratio increasing as the square root of the 

number of spectra averaged(98). This process is sufficiently rapid that near real-time 

analysis(96) is achieved.
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1.3.2 Sample acquisition

An ion mobility spectrometer detects materials in the gaseous or vapour phase, which 

may be introduced into the instrument either directly, as in an atmospheric sample, or by 

transfer to an alternative gaseous medium. A semi-permeable membrane is a means of 

achieving the latter and has the advantage of reducing the amount of interferent species 

taken into the system. For this process to be effective the membrane must have a higher 

permeability to the vapour than to potentially interfering species(99). The use of a 

membrane may reduce the amount of sample taken into the detector, but it may also 

diminish the amount of possible interferents, including water vapour. Another advantage 

of a membrane based inlet, coupled with a recirculating system, is the ease with which 

alternative ion molecule chemistry can be established with stable vapour levels of 

dopant chemicals(I00). The permeability of a polydimethylsiloxane membrane, to the

hydrazines, decreases with increase in temperature(101). Direct inlet systems can allow

more water into the spectrometer which may lead to larger ion clusters, loss of 

resolution, and reduced sensitivity(98).

1.3.3 Ion mobility

Average ion velocity, Vd, is related to the magnitude of the electric field, E, through 

which the ion is travelling(95) by the equation

vd = KE 4.

The constant of proportionality, K, refers to the mobility of the ions, which is 

characteristic of a particular ion species in a specified drift gas, and may be calculated 

indirectly from drift time(102), td, which is related to drift velocity through the equation

td = Id/Vd 5
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where Id is the drift length.

For the calculation of mobility the Mason-Schamp equation is(87,95’103,104)

K = (3e/16N)(l/m+l/M)“(2jt/kTf[(l+A)/7crm2a (11)] 6

where,

e = electronic charge

N = molecular number density

m = ionic mass

M = molecular mass of the neutral species in the drift tube

k = Boltzmann constant

T = absolute temperature

A = correction term for higher approximations

bn = position of minimum potential for interaction

Q(U) = first order collision integral

Values for rm, Q(I1), and A, are not readily available, so experimental work is required to 

give accurate values for mobility. Since the collision integral is proportional to the 

transport cross section, the mobility, and consequently ion drift velocity, is dependent 

upon(93) mass, size, shape, and polarizability. If drift gas, electric field gradient, 

temperature, pressure, and therefore molecular number density remain constant, 

mobility depends only on ion charge, qj, reduced mass, and collision cross section,

q (95,105).

K a  {qi/[mM/(m+M)fn} 7.

Mobility is related to the diffusion coefficient by the Nemst-Townsend-Einstein(89) 

relationship, i.e.

K = qjD/kT 8
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where,

k = Boltzmann's constant

D = diffusion coefficient

The collision processes undergone by the ions during their drift time are subject 

to normal gas laws and are affected by variations in temperature, T, and pressure, P, in 

the drift region. Ion cluster formation and fragmentation are governed by temperature(94). 

Therefore, mobility of ions is normally recorded as the reduced mobility, Ko, where the 

mobility of the ions is normalised for temperature and pressure(89,95,102):

Ko = Kx(760/P)(T/273) 9.

Note: In some texts K and Ko are replaced by /u and jlio respectively. The units of 

mobility are cm2.V'1.s’1(104).

In commercial ion mobility spectrometers, software programmes have been 

written for peak searching routines, designed to obviate the need to measure temperature 

and pressure, by taking the ratios of the reactant ion and product ion peak positions(106). 

More recent instrumentation has integral temperature and pressure compensators for 

calculation of reduced mobilities.

1.3.4 lon-molecule chemistry

A radioactive Ni foil emits 6 " rays, with maximum energy of 67 keV and an average 

energy of 20 keV(107), which produce secondary electrons on collision with gas 

molecules, e.g.:

B“ + N2 -> N2+ + e- + B- 1 0 .
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These electrons then react with other gas molecules and the process continues until low 

energy thermal electrons attach themselves to oxygen, resulting in

e" + 0 2 0 2 1 1*

The initial distribution of positive and negative ions, a maximum of 8 x 1011

1 3 ♦ions.s' .cm' , is modified by various chemical reactions. Positive ions are subject to 

proton transfer, nucleophilic attachment, hydride or hydroxide extraction, and oxidation; 

while negative ions are subject to electron capture, charge transfer, dissociative capture, 

proton abstraction, and electrophilic attachment; both positive and negative ions may 

undergo complex rearrangement(86,87).

The most abundant ion clusters(80’96,108) are [H+(H2 0 )x(N2)y] and

[(02)z(N 2)y(H20 ) x]-. Molecules with greater proton or electron affinity than the reactant 

ions, react to form product ions thus(96):

H+(H20)x(N2)y + P -> [PH+(H20 )x(N2)y] 12

reactant nucleophilic monomer product
sample

[PH+(H20)x(N2)y] + P -> [P2H+(H20)x(N2)y] 13

dimer product

where x = 2 to 4 (80’109)? and y = 0 to 3(80)

[(02)z(N2)y(H20)x]- + E -> E[(02)z(N2)y(H20 )x]-

electrophilic
sample

where(80) z = 1 to 3, x = 0 to 2, and y = 0 or 1.
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Water plays an important part in ion-molecule chemistry, therefore the amount 

of water vapour must be controlled(96). Better spectra are obtained with low vpm levels 

of water vapour, in which case the number of water molecules combined in an ion 

cluster is limited to two(97). A greater number of water molecules gives rise to peak 

broadening; the greater the number of water molecules attached to an ion species, the 

slower the inter-ion reactions (due to a partially shielded ion) which also produces peak 

broadening. Low water vapour levels may be achieved by constantly recirculating the 

carrier gas through chemical filters, e.g. molecular sieve.

Specific chemicals may be added to the carrier gas, in trace quantities, in order to 

alter the ion-molecule chemistry so that an enhancement of the selectivity, 

resolution(87,95,110) and detection limits, may be achieved. Such chemicals are referred to 

as dopants. For example, addition of a small quantity of ammonia gas to the air, prior to 

ionisation, allows selective detection of amines in the presence of many other 

compounds, because the major reactant ion becomes NH4+(H2 0 )x(N2)y(111), and only 

compounds with a higher proton affinity than that of N H / cluster ions will 

react(95,108,111,112) as shown in the following equation, where P is an amine:

[NH4+(H 20 ) x(N 2)y] +  P  - »  [P H +(H 20 ) x(N 2)y] +  N H 3 15.

Lighter, more mobile ions, with a smaller collisional cross section, drift faster 

than heavier ions, and so separation occurs in the drift region. For chemically dissimilar 

materials the correlation between mass and mobility is weak(94). Ions from closely 

related structural isomers can produce molecular ions of differing mobilities(89). Ions of 

branched structure have a smaller cross sectional area for collision and, therefore, higher
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mobility, as shown by the n-hexylamine, di-«-propylamine, triethylamine series(113). 

Mobilities are inversely proportional to collision cross section, therefore separation is 

based on a size to charge ratio rather than a mass to charge ratio(86). Almost all 

compounds yield positive ion mobility spectra, usually containing peaks of greater 

intensity than negative ion mobility spectra, which are obtainable only from compounds 

prone to electron capture. More accurate and reliable identification of analytes is 

achieved when both positive and negative ions are considered(111). Sample overloading 

leads to disappearance of the reactant ion peak (RIP), multiple analyte peaks, and dimer 

product ions and cluster ions(95).

1.4 Historical development of ion mobility spectrometry

IMS was originally referred to as plasma chromatography(86,95). It is a technique 

concerned with the formation of ion-molecule clusters in air, or other gases(80) and their 

movement in an electric field(89) at, or close to, atmospheric pressure(114). The technique 

is extremely sensitive, so only small quantities of sample are necessary for detection.

The first instruments were developed, by the Franklin GNO Corporation in 

1965, to generate information concerning negative ions produced from specific 

compounds in air under atmospheric pressure conditions. This early instrumentation 

soon found much wider application for the analysis of ultra-trace quantities of many 

organic molecules(88) forming either positive or negative ions. The first instrument 

patent(115) was issued in the USA in 1971. With improved understanding of the 

technique plasma chromatography became known by the more appropriate term, ion 

mobility spectrometry(86) (IMS). Much progress has been made in the development and 

application of IMS, progress which has occasionally been reviewed in publications.
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These reviews, and the various components affecting the performance of ion mobility 

spectrometers, are discussed in the following sections.

1.4.1 Ion mobility spectrometry reviews

In 1984 a book edited by Carr(116) reviewed the fundamental theory, instrumentation, 

and applications of IMS, while in that same year Spangler et tf/.(87) reassessed 

developments in IMS. A year later Witkiewicz & Stryszak reconsidered the analytical 

applications of IMS(111). Hill et al. have published numerous papers on IMS and 

hyphenated IMS techniques including their applications and, in 1990, published a paper 

which reviewed studies and applications up to 1990(95). Later, a book by Eiceman and 

Karpas(118) re-evaluated the historical development of IMS, the theory behind the 

technique, and examined IMS applications. Chronologically the review started with 

fundamental research in the 1890s, which concerned studies of the ionisation of air, 

through the production of the first ion mobility spectrometers in the 1970s, the present 

applications of IMS and hyphenated IMS techniques and, finally, considered future 

trends of IMS and integrated topics. Karpas is preparing a review of the forensic 

applications of IMS(117).

1.4.2 Fundamental ion mobility spectrometry studies

Most ions encountered in the drift tube are clusters in local equilibrium. The cluster 

distribution is dependent upon temperature, pressure, composition and purity of the gas 

streams, and the applied drift voltage.

The temperature dependence of ion mobility spectra has been considered during 

experiments evaluating the reduced mobility of organic compounds. The majority of 

substances tested did not show temperature dependence, but benzene, toluene, and 

phenol did show a mild dependence(119) which produced less than 10% variation in all 

cases. The difference in mobility of small ions is independent of temperature effects
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other than due to their different reaction rates. There have been studies involving the 

measurement of ion-molecule reaction rate constants at atmospheric pressure, using a 

kinetic ion mobility mass spectrometer(120).

Research into the effects of pressure has not been so well documented, but the 

effects of pressure differences due to the change in altitude have been considered. The 

decrease in the electric mobility ratio observed between measurements at ground level 

and altitudes of 3 to 5 km is mostly a consequence of the reduction of absolute humidity 

at low temperature(121).

The carrier gas used in IMS is generally air or nitrogen. The use of carbon 

dioxide(81) and helium(82) has been recorded for improved resolution for specialised 

techniques. The change in mobility recorded for a given species in different carrier gases 

is due to the alteration of ion-molecule chemistry and collisional cross sections of the 

different species. An alternative to changing the carrier gas, in order to improve species 

resolution, is the use of tandem ion mobility spectrometers022). The dependence of ion 

mobility on a size to charge basis, rather than a mass to charge ratio, has been revealed 

through the use of IMS coupled to tandem mass spectrometry (IMS-MS-MS) studies of 

two structurally different ions which had identical ion mass(123). In a given carrier gas 

these two ions had different mobilities. In general terms, the lighter and more compact 

an ion is, the greater is its mobility022).

Space charge effects in IMS°24) have also been considered and the relationship 

between the diffusion and mobility of gaseous ions in strong electric fields025) has been 

studied. Peak broadening, due to the space charge field, increased proportionally with 

longer opening times of the shutter grid. The dependence of ion mobility on electric 

field intensity has been researched for an homologous series of tertiary amines, in 

conjunction with a radioactive p' ionisation source and a surface ionisation source(I26).
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The conclusions were that the mobility spectra were discrete for each of the substances 

tested, the surface ionisation procedure improved the limit of detection, and the mobility 

of ions in nitrogen was independent of the intensity of the electric field but due instead 

to the polarisation interaction of the ion with the drift gas.

Karpas proposed 2,4-dimethylaniline as a standard reference material for the 

mobility scale in positive IMS studies013) but because of these dependencies mentioned 

above an ion mobility standard has not been accepted002). However, a table of reduced 

mobility values has been produced for ambient pressure IMS027).

1.4.3 Ionisation sources

An ionisation source is required to produce the electrons which react to establish the 

thermal electrons necessary for the formation of ion-molecules in the ionisation region 

of the mobility spectrometer. Tritium ionisation sources, which have lower radiation 

hazards than 63Ni sources°28), have a high ionisation efficiency, which may improve the 

overall efficiency of ion mobility spectrometers. Alternative ion sources for IMS have 

been investigated in order to eliminate the reactant ion peak°29) and overcome the 

problems associated with radioactive sources(91), for example, laser produced ions°30), in 

which laser radiation at wavelengths greater than 200  nm will not ionise air at power 

levels required to ionise organic compounds.

Photoionization using a krypton lamp°29), with nitrogen carrier gas, has also 

been investigated. Photoionization in air, using a hydrogen discharge lamp(92), for IMS 

is problematic due to the oxygen quenching of photons, but has proved advantageous for 

an on-axis source. A photoemissive ionisation source based on ultraviolet irradiation of 

a thin gold layer has an energy of 4.5 eV(91) in which, in theory, the electron 

concentration can be controlled by changing the incident light intensity. The 

experimental work incorporated the use of a pulsed xenon light source eliminating the
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shutter grid. The performance of the photoemissive source was constrained by mutual 

ion repulsion degrading the ion resolution, a problem which might be overcome by 

wider bore systems reducing the ion density. Photoionization sources have a larger 

volume than Ni ionisation sources and are concentration dependent, therefore the 

larger cell volume reduces the sensitivity of the detector(129).

Electrospray IMS(,31'134) and coronaspray nebulisation(135) with ionisation has 

been used for IMS detection of liquid samples of non-volatile and high molecular 

weight compounds, following separation of the analytes by microbore liquid 

chromatography, capillary zone electrophoresis, flow injection analysis, or field flow 

fractionation. Electrospray IMS has also been used for ionisation of samples eluting 

from gas chromatographs(I36), prior to detection by IMS.

1.4.4 Reactant ion chemistry

As mentioned in section 1.3.4, dopant chemicals may be added to the carrier gas, in 

trace quantities, in order to enhance the selectivity, resolution and detection limits of an 

ion mobility spectrometer, through alteration of the ion-molecule chemistry. The dopant 

chemical must be capable of reducing the amount of interferent species whilst 

maintaining suitable ion-molecule chemistry for detection of the analyte. The chemicals 

are chosen for their respective proton or electron affinities, a higher value than the 

interferent species but lower affinity than that of the analyte is required, thus increasing 

selectively. Alteration of the ion-molecule chemistry can also effect selectivity through 

improved resolution and subsequent data manipulation. Cohen’s patent for IMS 

detection of a trace substance(115) originally specified reaction of the sample with a 

different species of reactant ion [other than water], and identified halocarbon gases to be 

used as reagents to look for other halocarbons. Formation of chloride ions has also 

proven to be particularly beneficial for the detection of ethylene glycol dinitrate(110). The
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addition of ammonia to form ammonium reactant ions(112) has been successful for 

improved resolution and selectively for the detection of alkylamines.

Alternate reagent ion chemistry has also been investigated for GC-IMS, 

specifically for complex mixtures. The reagent chemicals evaluated(137) were acetone, 

dimethylsulphoxide (DMSO), and pyridine, which resulted in sequentially improved 

selectivity gained from the use of the first two chemicals but no advantage observed 

through use of the last.

1.4.5 Ion-molecule chemistry

The addition of dopant chemicals alters the ion-molecule chemistry with respect to the 

reactant ions. When sample ions enter into the system the ion-molecule chemistry is 

altered again with product ions resulting. Ion distribution profiles in the drift region of 

an ion mobility spectrometer(107) have been studied. The mobility and ion structure of 

protonated aminoazoles(138), protonated diamines and polyamines(139) have also been 

examined.

1.4.6 Resolution and peak identification

Resolution is defined(I07) as R= t/dt, where t is the drift time of the ion and dt is the 

width of the peak at half the maximum height. Resolution has also been recorded as 

R = td/tw(140) and R = td/w(141). Resolution is governed by the shutter pulse, molecular 

diffusion, ion / molecule reactions in the drift region, electric field geometry particularly 

approaching the collector plate, ion-ion repulsion, induced charge on the collector 

electrode, and spectral processing.

A Gaussian deconvolution algorithm can be used to separate peaks where drift 

times differ by as little as 100 jus(,42) for analysis of ion mobility spectra obtained for 

mixed vapours. Moisture content of the drift gas(143) is a dominant factor in determining 

peak shape and the success of deconvolution. Other factors involved in determining
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resolution are relative proton affinities, concentrations, differences in drift times 

between the mobility peaks of the components and chemical interactions among them.

Research with neural networks(144'147) for analysis of ion mobility spectra 

indicated that peak location was the most important factor(147) in automated 

identification routines. Further work in this area(148) showed that algorithms used to 

identify compounds under conditions of low signal to noise ratio may overcome 

interference from incomplete resolution, but not from chemical interferences in the ion 

formation processes, however, detailed knowledge of the ion chemistry of the measured 

system is not required(148).

1.4.7 Concentration dependency and sample introduction

Studies of vapour concentration dependency of ion mobility spectra(149) with pulsed and 

steady state sampling showed the latter to yield time-stable improved resolution 

mobility spectra, with no evidence of bond breaking and recombination. Advanced IMS 

performance through combination with high-speed vapour sampling, preconcentration 

and separation techniques(150) (e.g. gas chromatography) for the detection of parts per 

trillion concentrations have been recorded.

1.4.8 Hyphenated ion mobility spectrometry techniques

Due to the need for improved selectivity of IMS instrumentation for monitoring 

compounds with similar mobilities, hyphenated IMS techniques, for example GC- 

IMS(151), have been employed to provide preseparation of the analytes before analysis by 

IMS. IMS is suitable for detection of compounds separated by GC(152) provided that 

solvent effects, matrix interferences, and column bleed are addressed, particularly in the 

positive mode as positive reactant ions react with almost all organic compounds. 

Elimination of a sample transfer line by using direct axial sample introduction from a 

GC column(I09,153) has produced satisfactory ion mobility spectra. GC-IMS has been
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evaluated for the detection of vinyl chloride(154), and with helium carrier gas has been 

investigated for the determination of Ci to C4 alkanes(82).

IMS has also been evaluated and deemed a successful detection technique when 

interfaced to other chromatographic techniques including supercritical fluid 

chromatography(81,I05,155,156) (SFC), and high performance liquid chromatography 

(HPLC)(151); the latter provided detection down to tens of picograms for halogenated 

compounds. These preseparation techniques can also act as preconcentration methods, 

improving the limits of detection of IMS and / or the associated technique. HPLC- 

IMS(157) has a lower limit of detection than HPLC combined with a UV detector. IMS 

has undergone some development towards being a unified detector(158) for capillary GC, 

SFC, and liquid chromatographic (LC) analyses. Laser desorption(159) has been used as a 

means of acquiring samples from solids in a form acceptable for analysis by IMS.

Another way to improve detection by IMS and hyphenated IMS techniques is 

data manipulation. Fourier transform-IMS(160) and the use of apodisation functions(161) 

have allowed collection of a complete mobility spectrum of a high-resolution 

chromatographic peak during its short residence time in an ion mobility spectrometer. 

Fourier transform coupled with electrospray IMS(162) enhanced the signal to noise ratio 

and the IMS resolving power.

1.4.9 Applications o f ion mobility spectrometry as an analytical instrument 

IMS has been applied to general and more specific environmental monitoring 

requirements and has also been used to address particular problems not normally 

associated with environmental issues. Since the applications of IMS are varied they have 

been divided into categories to assist with classification in this text. These categories 

have been selected in order to demonstrate the leading applications of IMS, namely,
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environmental monitoring, detection of explosives, detection of illicit drugs, the 

determination of potential pollutants in liquid media, and a miscellaneous section. 

Environmental monitoring. IMS has been investigated as a sensor for environmental 

analytical chemistry0 63). Environmental and industrial applications are directed toward 

monitoring for toxic chemicals, and chemicals considered to be hazardous to man or the 

environment. Amongst these are included acid and stack gases, amines, isocyanates, 

halogens, solvents, anaesthetics, fuels, and gases used in the semiconductor industry.

The major application of ion mobility spectrometers as environmental monitors 

is for chemical agent monitoring(80,164,165) by the military. A brief demonstration study of 

ion-molecule behaviour of selected agents and interferents has been made with the 

atmospheric IMS-MS(80). Modifications of the hand-held CAM™ chemical agent 

monitor (Figure 1.1) led to the Otto fuel monitor (OFM™), used for detecting fuel leaks.

Figure 1.1: CAM chemical agent monitor; a hand-held ion mobility spectrometer
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Figure 1.2 depicts an OFM kit complete 

with its protective carrying case and spare 

consumables. The CAM was also 

developed for fixed installation continuous 

monitoring of chemical warfare agents 

(Figure 1.3), on board surface ships, and 

some work has been carried out on 

development of a continuous monitor for 

Otto fuel. Figure 1.2: OFM kit

.

Figure 1.3: Ion mobility spectrometer for the continuous monitoring of chemical warfare
agents
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IMS has been evaluated for near real-time environmental monitoring of dimethyl 

sulphate(97) and toluene diisocyanate(96,97), cyanide(166), nicotine(167), polychlorinated 

biphenyls(168), organophosphorus compounds(104,169), benzene(170), hydrocarbons(171), 

hydrogen fluoride(172), perfluoroisobutene(173), aromatic ketones(174), aliphatic and 

aromatic amines(113,126), ethers(149), anaesthetics in air and respired gases(175), volatile 

organic compounds used in the semi-conductor industry(176), and a mixture of organic 

compounds(I77). Investigation of UDMH detection in the presence of ammonia(84) 

proved it worthy of further development, as did the determination of other amine fuels, 

HZ and MMH with ammonia present in air, using either acetone or 5-nonanone reagent 

gases(I78). An airborne vapour monitor (AVM™) based on IMS was found to be more 

sensitive to HZ than to MMH(32), with slow response and recovery giving rise to 

differences in the responses to repeat exposures of the analytes; ammonia interfered 

with the detection of HZ. Projected uses for IMS include screening for hazardous wastes 

and toxic chemicals.

Explosives. Ion mobility spectrometers are used qualitatively to detect contraband 

explosives, for example, at customs sites or potential terrorist targets, where the 

detection of explosives is critical. Some explosives have been detected by their vapours, 

others have very low vapour pressure at room temperature and require identification 

through the use of tagging agents (taggants), or preconcentration of the sample. 

Detection of trace explosives by IMS has been investigated for RDX(179,180), XNT(88,179‘ 

181), PETN(179’180), NG(179’180), ammonium nitrate(179), 2,4-DNT(88>180), EGDN(180), 

HMX(I80), and tetryl(180), including identification of trace levels of explosives in the 

presence of complex matrices(180). Commercially available instruments for the detection 

of explosives include the Plastec™ (Graseby Dynamics Ltd., Watford, UK).
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Drugs. The detection of illicit drugs is important for forensic and law enforcement 

purposes. Heroin and cocaine were targeted first of all, and have been detected

simultaneously. Target drugs have been detected in luggage and mail, on people, on

books kept by drug dealers, and on paper money. Due to the low vapour pressures of 

contraband drugs, detection is based upon the entrapment of microparticles which may 

have drugs on them which are subsequently evaporated at an elevated temperature, in a 

furnace leading directly into the spectrometer.

Such instruments, for example the 

Ionscan™ (Barringer Research Ltd.,

Ottawa, Canada), and the Narcotec™

(Graseby Dynamics Ltd., Watford, UK) 

shown in Figure 1.4, are available 

commercially.

Concentration and temperature studies have been performed for IMS used to detect 

drugs of abuse in customs scenarios082). Other classes of drugs detected by IMS include 

barbiturates, amphetamines and LSD. Further uses for drug identification have been for 

the characterisation of benzodiazepines014) in blood and urine, and of tablets and 

containers.

Determination o f analytes in liquid media. IMS has generally been associated with the 

detection of atmospheric pollutants because the technique involves analysis of samples 

in the gaseous or vapour phase. The need to detect pollutants in liquid media is 

becoming more desirable, and IMS is playing an increasingly important role in this area 

due to the ease of operation and low limits of detection obtainable. The application of

WASCO T£C

Figure 1.4: Illegal drugs detector, 
the Graseby Narcotec
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IMS to this problem requires a means of separation of the analyte from the liquid 

medium, usually in the form of a selectively permeable membrane. Analysis by IMS 

proceeds once the analyte has been transferred from the liquid to the vapour phase.

IMS has been developed as a continuous flow monitor for aniline in hexane and 

water(I83), an important analysis due to the toxicity of this compound to aquatic life. 

Solid-phase enrichment followed by thermal desorption and IMS has been evaluated for 

field screening of organic pollutants in water(184), particularly alkyl phthalates. The IMS 

determination of aqueous ammonia(185) has also been achieved, providing information 

about water quality in rivers, waste water processing, and in drinking water treatment 

facilities. A complete sample handling and IMS detection system for on-site monitoring 

of ammonia is shown in Figure 1.5. Electrospray-IMS has been investigated for the 

determination of alkylamines in liquid waste streams, for the prevention of possible 

pollution.

IMS has also been investigated for the detection of bacteria in water and waste 

water sources(186), an application suitable for medical and clinical services. The 

biodetection potential of IMS has been extended to immunoassays(187).

With the addition of a specialised membrane inlet IMS has been used for on-line 

measurement of ethanol during yeast fermentation(I88) for a potential market in the 

alcoholic beverages manufacturing industry. GC-IMS has been used to quantify 

mammalian lignans in biological fluids(189).

Miscellaneous. Other potential IMS applications are in the forestry industry, which 

requires the identification of different timbers before processing. Fast thermolysis-IMS 

proved successful for certain wood species(190). This technique was also favourable for 

the detection of Northern Red Oak wetwood(191). (Wetwood is an abnormal condition of 

wood from both deciduous and coniferous trees, caused by bacterial infection.)
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Figure 1.5: Ammonia in water monitor

IMS detection of coliforms is an important development for the food industry, 

indicating the microbiological quality and environmental contamination of processed 

foods(192), and automated bacterial identification and quantification0 93) of headspace 

samples has been attempted.

Laser desorption-IMS has been investigated for the characterisation of 

polymers0 59), with a view to sorting plastics for recycling.



33
1.4.10 Portable instrumentation

Originally, commercial ion mobility spectrometers actively tracked the reactant ion peak 

(RIP) so that product peak positions were always measured relative to an updated RIP. 

Therefore the reference to normalised peak positions provided a better understanding of 

the identification through the software programme, which enabled field portable 

instruments to be deployed under varying ambient conditions of temperature and 

pressure. More modem instrumentation includes temperature and pressure 

compensators, so that mobilities are corrected for varying ambient conditions, allowing 

absolute mobilities to be the defining criteria. Although some(194) have considered IMS 

to be a rather sophisticated technique more suitable for laboratory use than for portable 

monitors, hand-held instruments have been in use for a number of years, for example, 

the CAM and the OFM, both of which are commercially available. The advanced 

chemical agent detector and alarm, ACADA, is another portable instrument undergoing 

development for use by the US Department of Defence. Portable CAM-based 

instrumentation has also been used to demonstrate the effectiveness of IMS for the 

detection of nicotine in air(195), providing useful information on air quality and for 

determining patient compliance with non-smoking medical regimes.

In 1994, a futuristic approach (“the birth of the tricorder”(196)) depicted the 

qualifying requirements for field-portable hyphenated instrumentation. Hyphenated IMS 

techniques are already undergoing development. A portable hand-held GC-IMS(197) 

(Figure 1.6) has been evaluated for the determination of phosphates, phosphonates, alkyl 

ketones, and chlorophenols, and found to be feasible for most of the compounds 

investigated.
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Figure 1.6: Hand-held GC-IMS

This instrument was developed from the EVM™ (environmental vapour monitor) 

shown in Figure 1.7, with recorded ion mobility spectra displayed on a connected 

computer terminal. GC-IMS has also been considered for environmental monitoring for 

solvent vapours, for example, a mixture of four isomeric butanol compounds098), 

(poly)chlorophenols(197), alcohols097), phosphate / phosphonate mixtures0 97), ketone 

mixtures0 97), drug synthesis / purification solvent mixture0 97), amine mixtures0 98), an 

illegal drug synthesis / purification solvent mixture, volatile carboxylic acids and their 

compounds050), and explosives.



Figure 1.7: EVM with ion mobility spectra displayed on a connected computer terminal

GC-IMS has been investigated for cabin atmosphere monitoring of the Space Shuttle 

and International Space Station Alpha(200) and as a volatile organic analyser for Space 

Station Freedom1201}, now designated International Space Station. A photograph of a 

volatile organic analyser, situated in a shuttle, is shown in Figure 1.8. Figure 1.9 shows 

the use of an IMS in an air lock on board a space shuttle.
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Figure 1.8: Volatile organic analyser (two units at centre top) on board a space shuttle

Figure 1.9: Use of an ion mobility spectrometer in an air lock on board a space shuttle
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Miniaturisation of ion mobility spectrometers is being sought through decreased 

dimensions and integration of drift channel and signal acquisition in a silicon wafer1163) 

directly connected to a high speed portable computer.

Further miniaturisation of hyphenated 

IMS(199) instrumentation is being 

considered through the use of an 

absorption pumping system, 

eliminating the need for a pumped air 

flow, and a direct sample ingestion 

system, the combination of which 

reduces power consumption, size, and 

weight of the instrument. Such a 

miniature, palm-held ion mobility 

spectrometer is shown in Figure 1.10.

Improved performance is also being sought through the use of microvolume 

preconcentrators / thermal desorption modules1150) to increase the limits of detection. A 

computer controlled variable sampling time technique1150), and automatic attenuation 

control, are also being investigated. Automation of responses would require a peak 

height detection algorithm to limit the RIP depletion.

Figure 1.10: Miniature ion mobility 

spectrometer
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1.5 Research considerations

1.5.1 Quantitative interpretation o f ion mobility spectra

The sensitivity of ion mobility spectrometers, i.e. change in response with increase in 

concentration, depends on the compound being monitored. The results may be due, not 

only to the detector response, but also to the method and efficiency of sample ingress.

Little information regarding precision data has been recorded for ion mobility 

detection, but relative standard deviations (RSDs) for hexane, dialkylphthalates, and HZ 

vapour ranged from 3 to 11%, 6 to 27%, and 3 to 16% respectively(118), using hand-held 

instruments. The reproducibility of reduced mobilities has not been studied 

systematically, to date, but generally when measured under similar conditions of 

temperature and humidity, with respect to a standard reference, they are reproducible to 

within 1 to 2%(113).

The only documented evidence of stability refers to data concerning the long 

term stability of a hand-held IMS unit used on the space shuttle, which produced results 

of between 5 to 10% variation over a six week period(178).

A description of the quantitative response in IMS involves both the principles of 

the formation of ion-molecule clusters and their characterisation by mobility, under 

known conditions. In the formation of ion-molecule clusters, as outlined in section 

1.3.4, the reactions are relatively slow. The population of reactant ions formed reaches a 

finite number, at equilibrium, which is dependent upon the rate of generation of the beta 

radiation. Because the number of reactant ions is limited by these processes, as the 

molecules collide with neutral analyte molecules, the RIP decreases in magnitude as the 

product ion peak increases proportionally. This phenomenon can also be observed in the 

apportioning of ions between monomer and dimer peaks. Only a negligible amount of 

ions or neutral molecules is lost in the drift process, enhancing the sensitivity of the
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technique, for which only small volumes of sample are required for analysis at vpb 

concentrations, equivalent to low picogram levels. The detection limits are good 

because of the ion density in air at atmospheric pressure, which is governed by the 

radioactivity of the source. Eiceman et alSm) have already detected HZ and MMH at 

low vpb concentrations.

The linear range of the detector is limited because the mobility spectrum 

comprises a constant total number of ions, regardless of proportion. Linear ranges of 

orders of magnitude of 10 to 100 have been reported for IMS(58), compared with 

values(202) of 50 and 500 for electron capture detectors with tritium and nickel 63 

sources respectively, 103 for the alkali flame ionisation detector and gas density balance, 

104 for the thermal conductivity detector, helium ionisation detector, and cross section 

detector, and 107 for the flame ionisation detector. Sample overloading in an ion 

mobility spectrometer leads to the disappearance of the RIP, multiple analyte peaks, and 

dimer product ions and cluster ions(95). The linear range is satisfactory for targeting ions 

over a narrow concentration band providing that the working range is tailored to the 

desired level.

It has been assumed that provided that the beta radiation source maintains a 

constant concentration of ions, and the monitoring of the analytes is performed under 

reproducible conditions, the precision and stability of the spectrometer should be 

satisfactory. However, these parameters could be affected if the ion-molecule chemistry 

and construction materials are inappropriate and adversely alter the response and 

recovery characteristics.

In order to investigate this possibility, during investigation of the simultaneous 

monitoring of the hydrazines and nitrogen dioxide by IMS during this research project, 

an ion mobility spectrometer was designed and constructed and its optimum operating
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conditions determined experimentally. The project also required the generation and 

quantification of dynamic atmospheres of the hydrazines and nitrogen dioxide at the 

appropriate concentrations. Ammonia is usually present in hydrazines’ environments, as 

a breakdown product, and as a natural emission from human metabolic processes, and 

may interfere with the ion mobility detection of the hydrazines. Therefore, ammonia was 

generated at low vpm levels. The reagents, equipment, generation and determination of 

the required test atmospheres and the design features of the ion mobility spectrometer 

breadboard are detailed in chapter 2.

1.5.2 Response and recovery characteristics

Response and recovery characteristics are governed by the factors of surface adsorption, 

equilibration time of the membrane (if used), efficiency of removal of material from the 

ionisation region, and signal averaging effects(98). Chemicals with low surface sorption 

will pass through the system relatively unhindered, although the equilibration time of 

the membrane will produce a time lag due to diffusion of the analyte in the membrane 

material, and will be affected by the thickness of the membrane.

Hydrazines have a high proton affinity and are subject to surface adsorption 

phenomena, which causes practical problems in their real time detection. The hardware 

and ion-molecule chemistry of the monitoring system needs to be tailored to minimising 

response and recovery times. In order to obtain information regarding the optimum 

conditions for satisfactory response and recovery characteristics, the experimental work 

for the project was designed to investigate the effects and compatibility of different 

detector cell construction materials, the most effective means of sample ingress through 

comparison of different sample inlet systems under optimum operating conditions, 

detector cell temperature, and pneumatics configurations for the detector cell. The 

response and recovery characteristics studied included response and recoveiy times,
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selectivity, and sensitivity. The overall effects of these contributory factors have been 

defined in order to provide the most efficient combination of spectrometer parameters 

for the detection of the stated materials, in a hand-portable instrument (linked to a 

computer), as assigned in chapter 3. The experiments are detailed in chapter 2, with 

results and discussion following in chapter 3.

1.5.3 Ion-molecule regimes

Ion mobility spectrometers respond to a broad range of compounds with various 

functional groups, which, if present in the same sample, can compete for the reactant 

ions, if they have a greater proton or electron affinity than the reactant ions or the 

analyte of interest. These matrix effects are common in undoped systems i.e. with water 

based reagent gas chemistry. More accurate and reliable identification of analytes is 

achieved when ions of both polarities are considered(111). Selectivity may be improved 

with the introduction of appropriate dopant chemicals into the detector carrier gas, in 

trace quantities, thereby altering the degree of affinity required for reaction, increasing 

resolution, sensitivity, and response and recovery times.

Cluster ions are formed when analyte molecules diffuse from the ionisation 

region into the drift region, followed by their consequent association reactions with the 

product ions. The reduced mobilities observed for these ions are weighted averages of 

the reduced mobilities of all the individual or cluster ions participating in a localised 

equilibrium between the ion swarm and the neutral molecules they encounter as they 

traverse the drift region(42).

None of the dopants previously examined(83’101,178) have given satisfactory 

resolution of the hydrazines, with sufficient sensitivity and overall selectivity from 

ammonia. Although it appeared that the three hydrazines and ammonia peaks were all 

resolved with an undoped system (i.e. water chemistry), previous experience has shown
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that there are many chemical species present in air which have sufficient proton affinity 

to produce product ions. An ion mobility spectrometer using water chemistry was found 

to be unsuitable for quantifying the hydrazines at low concentration levels, because of 

the widely varying chemical composition of ambient air causing problems of 

interference by altering the hydrazines’ product ions.

Since ammonia is present as a normal constituent of ambient air, it was 

previously considered as a dopant to overcome the problem of its probable interference 

in the detection of hydrazines(101). With ammonia, all three hydrazines produced two 

peaks, the first of which, in each of the spectra, had similar mobilities, and if only this 

peak was present at low concentration then it would not be possible to determine which 

of the hydrazines was present. The possibility of loss of sensitivity to hydrazines with 

ammonia as dopant has not been investigated.

Ketones are known to be effective in the separation of HZ, MMH, and UDMH 

by IMS, when the ketones are present in large excess as vapour in the IMS drift tube. 

The drift times for product ions of these hydrazines are affected by vapour concentration 

of the ketone and the resolution of ammonia from these hydrazines is not effected under 

all conditions.

In an acetone doped system all three hydrazines produced two peaks. Ammonia 

produced a single peak close to both HZ and MMH, giving rise to uncertainty in 

identification and quantification. An acetone doped system was apparently more 

sensitive towards UDMH, and was dependent upon dopant concentration.

A publication by Eiceman et alSm \  regarding the ion-molecule chemistry of 

hydrazines with 5-nonanone as dopant, reported sufficient limit of detection of HZ and 

MMH in the presence of ammonia, and partial resolution of the HZ and ammonia 

product ion peaks.
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During this work different chemicals, covering a variety of classes of chemical 

compounds, were evaluated for use as dopants in an ion mobility spectrometer 

breadboard (chapter 2). The ketones remained the most favourable class of compound 

for the determination of the hydrazines and ammonia; the detection of nitrogen dioxide 

did not prove problematic (chapter 4, part 1) and so further investigation of the ion- 

molecule chemistry of nitrogen dioxide systems was not considered.

A previous investigation into the detection of the hydrazines and ammonia with 

5-nonanone reagent gas(178) highlighted the complex nature of ion-molecule reactions. 

The degree of resolution of peaks in a mobility spectrum was shown to be dependent 

upon the concentration of dopant within the system. The peaks were shown to comprise 

a combination of a protonated sample molecule, or a protonated sample molecule with 

either one or two molecules of dopant attached. A low concentration of dopant, a high 

proton affinity, or a high temperature favoured an equilibrium between the protonated 

sample molecule and the protonated molecule with one molecule of dopant. Increasing 

the amount of 5-nonanone, a low temperature, or a low proton affinity sample favoured 

an equilibrium between a protonated molecule with either one or two molecules of 

dopant attached. Partial resolution of HZ and ammonia was reported but prediction of a 

specific dopant for improved resolution has not been achieved.

These discoveries raised other questions. For example, why should 5-nonanone 

be any more effective than ketones lower down the homologous series in the separation 

of HZ and ammonia? Referring to equation 6, the inference was that mobility was due, 

in part, to the collisional cross section of the molecules. Empirical findings thus far have 

shown that the hydrazines traverse the drift tube of an ion mobility spectrometer in 

reverse order to that expected. The greater the degree of methyl substitution on the 

parent HZ molecule the higher was the mobility. The prediction would have been that
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HZ should have the higher mobility due to the more compact nature of the molecule. So 

far, no explanation has been hypothesised for this anomaly. If the resolution achieved 

with 5-nonanone is concentration dependent, could the concentration control of other 

ketones render them as effective? What are the characteristics of these chemicals, e.g. 

their thermodynamic properties? Can the choice of dopant chemical become a 

predictable science through the use of molecular modelling?

Empirical findings suggest that resolution was dependent upon vapour 

concentrations of ketones in excess of 1 vpm(178). In order to obtain knowledge with 

respect to the incomplete resolution of HZ and ammonia product ion peaks molecular 

modelling was undertaken to determine cross sectional diameters of ion-molecule 

clusters. Preliminary studies with molecular modelling using HyperChem (see chapter 4, 

part 2), of a series of symmetrical ketones with the hydrazines and ammonia 

individually, provided no obvious assistance in rationalising the observed trends in ion 

drift times and further studies in ion-molecule chemistry were deemed necessary. 

Therefore, IMS-MS-MS studies were performed (see chapter 4, part 3).

These further studies of ion-molecule chemistry of the hydrazines and ammonia, 

with the homologous series of ketones, were undertaken to investigate ion cluster 

formation, and any trends which might appear as a result of the differences in size of the 

ketones and the effect of methyl substitution of the hydrazines. For this reason, 

tetramethylhydrazine (TMH) was included in the research programme. The number of 

carbon atoms in the chains of the ketones in the series was limited to nine, due to the 

mass range of the spectrometer, but in keeping with the original work with 5-nonanone. 

A fluorinated ketone was also studied to determine the effect of electron withdrawing 

groups upon ion cluster formation. Acetone and other small ketones underwent ion-
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molecule clustering and reactions with the ketone vapour to produce hydrazones and 

azines which in turn formed clusters with other ions.

A model proposed by Stone(203) suggested that the number of ketone molecules 

clustering with the sample ion-molecules generally decreased with the increase in 

methyl substitution from HZ through MMH to UDMH. Hence, protonated ammonia 

would be expected to have four molecules of dopant attached to its core, HZ would have 

three molecules, MMH and UDMH would have two and one molecule(s) respectively. 

An extension of this model, proposed by the author, relates to the symmetrical nature of 

the fully methyl subsistuted TMH. As with the symmetrical nature of the parent HZ 

molecule, there would also be protonation predominantly at one of the two core nitrogen 

sites. This would lead to the attachment of one molecule of the ketone. Within these 

restrictions, the higher the dopant concentration, the greater would be the number of 

ketone molecules attached to the protonated sample species, a phenomenon which may 

be predicted from the application of the principles of Le Chatelier:

H+[A] + [K] <-> [A]H+[K] 16

[A]H+[K] + [K] «-> [A]H+[K]2 17

where,

[A] = analyte, H+ = proton, and [K] = ketone.

The findings with these and other large molecular weight ketones suggested that 

the identity of cluster equilibria in the drift region were controlled by the number of 

protons on the core nitrogen and this provided the essential mechanism for
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distinguishing the sample ions and controlling resolution in conjunction with vapour 

concentration.

In summary, the factors affecting the IMS detection of hydrazines and ammonia 

in the positive mode, and nitrogen dioxide in the negative mode of operation, have been 

investigated: namely, the comparison of sample inlet systems, detector cell construction 

materials, optimum detector operating temperature and flow configurations, and ion- 

molecule chemistry, through experimental trials, molecular modelling, and IMS-MS-MS 

studies.

Due to the number of parameters under investigation, the experimental areas 

overlapped so that a particular research topic may not always have been evaluated under 

optimum conditions. For this reason, some areas have been investigated under different 

regimes to try to ensure that the observed results were due to the parameter under test, 

and not coincidental.
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EXPERIMENTAL

2.1 Materiel

2.1.1 Reagents

A
ll of the reagents acquired for the experiments were used as received, 

without further purification. For the purposes of calculations, used in the 

preparation of standards and general use in the IMS experimental trials, 

purity of the reagents was taken as the minimum assay value. The reagents were: [Shell 

Chemicals UK] acetone (2-propanone); [Aldrich Chemical Company] ammonium 

carbamate 99%, 2-butanone (methyl ethyl ketone) 99.5% HPLC grade, anhydrous HZ 

98%, MMH (methylhydrazine) 99%, 4-methyl-2-pentanone (methyl isobutyl ketone) 

99.5%, 5-nonanone (dibutyl ketone) 98%; [British Oxygen Company] ammonia gas 

99.98%; [BDH] 0.880 concentrated ammonia (35%) GPR MMH 98%,

4-dimethylaminobenzaldehyde (specially prepared for HZ determinations) 99%,

2-methylpyridine (2-picoline) 98%; [Lancaster Chemicals] diisopropyl methane 

phosphonate 98%, 3,5-heptanedione, 2,2,6,6-tetramethyl-3,5-heptanedione; [Koch-Light 

Laboratories Ltd] UDMH “pure”; and de-ionised, distilled water.

The hydrazines used for IMS-MS-MS experimentation, at NMSU, were HZ, 

MMH, UDMH, and TMH, the first three of unspecified origin previously decanted and 

stored under nitrogen. Ammonia was produced by evaporation from ammonium 

hydroxide solution. The ketones used were acetone, 3-pentanone, 4-heptanone,

5-nonanone, and 1,1,1-trifluoroacetone. The chemicals were tested for identification and 

purity as specified in section 2.1.2.5. The only significant contamination of the
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chemicals was found to be in the HZ, which contained approximately 4% aniline. The

3-pentanone contained several minor contaminant peaks which were too low in intensity 

to identify with any degree of certainty. Due to the production of low vpm 

concentrations of vapours of the chemicals involved, the levels and nature of these 

impurities were considered to be insignificant with respect to the IMS-MS-MS studies.

2.1.2 Equipment and test methods

2.1.2.1 Ion mobility spectrometer experimental breadboard

The ion mobility breadboard was designed and built to a customised specification, in 

order to facilitate the alteration of the operating conditions. The spectrometer comprised 

a number of features (see Figure 2.1 [page 50], and a photograph following on Plate 1).

A choice of sample inlet systems allowed transfer of sample across a semi- 

permeable membrane, or direct introduction to the spectrometer through a pinhole 

transfer line.

A dopant generation system was incorporated, consisting of a dopant chamber, 

which could be heated to increase the dopant vapour concentration output, and a split 

flow line which allowed the reabsorption of a portion of the dopant vapour.

Due to the reactive nature of hydrazines, and ammonia, two ion mobility 

detector cells were constructed with different insulation materials and were evaluated to 

determine their suitability for the detection of these compounds. The basic difference 

between the two cells was the use of either ptfe or ceramic insulators, used in 

conjunction with gold plated internal metal surfaces. The metal surfaces were gold 

plated in an effort to make the detectors as inert as possible. Their maximum operating 

temperatures were governed by their respective components. Included in these 

components were the insulating materials, and although these insulators alone did not 

dictate the maximum temperatures, reference to these temperatures provided an easy
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method of differentiation between the two detectors. The maximum operating 

temperature of the cell with ceramic insulators was 225°C (HITIMS detector) compared 

with only 60°C for the cell with ptfe components (LOTIMS detector).

The ion mobility spectrometer breadboard was designed and constructed to 

allow one detector cell to be operational with doped carrier gas flowing through, while 

the other cell was maintained in a stand-by mode with undoped carrier flowing through. 

When experiments were to be conducted on the stand-by cell, the four flexible gas lines 

were disconnected from the operational cell at ptfe fittings close to the cell, and were 

reconnected at corresponding positions on the stand-by cell.

A pneumatic system provided flow through the inlet, ionisation and drift regions 

of the detector, and could be arranged to provide different flow patterns, either 

unidirectional or bi-directional. Using unidirectional flow, air entered the detector in the 

region of the collector electrode and flowed through the drift region to the ionisation 

region, from where it was exhausted. The sample stream was introduced at a much 

lower flow rate, and mixed with the carrier gas in the ionisation region. This 

configuration could only be used with a direct inlet system. The bi-directional system 

had a similar flow pattern, in which the air (the drift flow) flowed from the collector 

electrode, in the drift region, to the ionisation region, from where it was exhausted, but 

in addition a comparable and opposing flow (the source flow) was introduced into the 

ionisation region, where the two flows mixed. The source flow could be introduced 

directly from the detector side of a membrane inlet, or with the sample flow from a 

direct inlet system. All flows were controlled by fine metering valves (Nupro) and the 

flow rates indicated by integral flow meters (Platon). Both the flows and the operating 

pressure within the detector could be adjusted.
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Figure 2.1: Schematic diagram of the ion mobility spectrometer breadboard pneumatic 
system, depicting bi-directional flow and membrane inlet systems



Pjate 
1: Ion 

m
obility 

spectrom
eter breadboard



51
Electronic circuitry necessary for the control of various heaters, signal 

amplifiers, pumps, and the generation of electrical high tension and gating grid supplies 

was incorporated into a printed circuit board (pcb).

2.1.2.2 Generation o f hydrazine, methylhydrazine, and 1,1 -dimethylhydrazine 

vapours with varied percentage relative humidity levels

Standard Graseby Ionics vapour generators, model GI10, were used for the generation of 

the HZ, MMH, and UDMH atmospheres, however they were modified to incorporate 

nitrogen as the source gas.

Air used for the diluent gas was supplied from a compressor, at 100 psi, and 

passed through an air dryer unit (Balston model 75-20) for the provision of clean, dry 

compressed air to -70°C Pressure Dew Point. A humidifier assembly was connected into 

the generation system. This was constructed using a split air supply comprising dry and 

water saturated air lines, each with a needle valve control, which was recombined and 

connected to the diluent gas line of the vapour generators. Adjustment of the two air 

flows allowed the attainment of a range of relative humidity levels in the air used as the 

diluent gas. A flow-through humidity sensor cell, connected to a Protimeter Dew Point 

Meter Model DP383RK, was employed in line to enable a continuous check on 

humidity levels to be made.

Ptfe permeation tubes, containing the requisite materials, were used to generate 

low vpb concentrations of each of the hydrazines, individually.

2.1.2.3 The production o f humidified ammonia and nitrogen dioxide gases

The production of vpm levels of ammonia and nitrogen dioxide was achieved with the 

use of sequential dilution apparatus. The dilution rigs were constructed using Chemcon 

flow meters with glass and ptfe components, including tubing, to connect the various 

flow meters. A humidifier system was incorporated into each of the dilution rigs, prior
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to the final dilution stage, in order to provide humidified gas streams as required. The

tVi •dilution was based on the principle of multiple dilution to the n stage according to the

. (204)
equation :

c = 100X {qai/(qal+qD1)}{qa2/(qa2+qD2)}...{qan/(qan+qD„)} 18

where,

c = resultant concentration (per cent)

qai,2»—,n = flow rate of contaminant 'a' at stage l,2,...,n (l.min'1)

qDi,2»—»n = flow rate of diluent gas at stage 1,2,...,n (l.min'1)

X = contaminant purity (mole fraction)

Ammonia was also generated from ammonium carbamate contained in a ptfe 

permeation tube, installed in a vapour generator, with the facility for humidified air, as 

described in section 2.1.3.

2.1.2.4 Ion mobility spectrometer breadboard dopant chemical vapour generation 

Dopant chemicals were contained in small glass vials, either open for diffusion of the 

chemical (e.g. a mixed dopant and 5-nonanone), or closed with a polymeric membrane 

for vapour permeation of the chemical into the carrier gas. A silicone disc was also used 

on an additional 5-nonanone permeation source. All other sources had ptfe as the 

permeation membrane.

The dopant sources for each test material were installed into the dopant chemical 

chamber, to facilitate their introduction into the carrier gas.

The spectrometer breadboard components were cleaned and refurbished in order 

to produce a clean air RIP between each dopant trial. The following chemicals were 

evaluated for use as dopants: acetone, 5-nonanone, 4-methyl-2-pentanone, [ketones];

3,5-heptanedione [a dione], 2,2,6,6-tetramethyl-3,5-heptanedione [a methyl substituted



53
dione]; 2,2,6,6-tetramethyl-3,5-heptanedione with 4-dimethylaminobenzaldehyde [a 

methyl substituted dione with an aromatic aldehyde as a mixed dopant]; and diisopropyl 

methane phosphonate [a phosphonate].

For the initial dopant trials, the instrument was configured with the high 

temperature detector cell (HITIMS), and a direct inlet system. A membrane inlet was 

utilised during the 3,5-heptanedione trials, and also during the acetone trial with 

ammonia. Unidirectional flow was employed for the trials involving acetone, 

5-nonanone, 3,5-heptanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, and the 

2,2,6,6-tetramethyl-3,5-heptanedione / 4-dimethylaminobenzaldehyde mixed dopant. A 

bi-directional flow system was used when performing preliminary studies with acetone,

5-nonanone, and during a detailed study using 4-methyl-2-pentanone as the dopant.

2.1.2.5 Determination o f hydrazine, methylhydrazine, and 1,1-dimethylhydrazine 

vapour concentrations

Sampling pumps capable of producing a stable through-put at a low flow rate were 

necessary to ensure precision in sampling, as low flow rates were involved. Sampling of 

individually generated atmospheres of the hydrazines was achieved using a single low 

flow adjustment holder connected to an SKC Universal Flow Sample Pump, Model 

PC224-EX7. The sampling medium of acetone containing 1 pl.mT1 of acetic acid, and 

0.5 jul.l'1 of 2-picoline as internal standard was contained in a standard micro-impinger 

(SKC Inc) submerged in a salt-water / ice bath, which was maintained at sub-zero 

temperatures by use of a cold plate (Aldrich Stirkool model SKI2). The derivatized 

samples were analysed using a gas chromatograph (Perkin-Elmer AutoSystem) 

employing a nitrogen / phosphorus detector, and using helium carrier gas (at 15 psi inlet 

pressure) through a 25 metre, quartz coated capillary column with a 0.25 pm slightly 

polar stationary phase, designed for low bleed (SGE catalogue reference 25QC2/BPX5).
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The injector and detector temperatures were 240 and 150°C respectively. The oven 

temperature was set at 40°C for the determination of UDMH, and 65°C for HZ and 

MMH. The expected accuracy and precision figures for the analytical method were 

± 10%.

The quantification of vapour source concentrations required information on the 

temperature and barometric pressure at the place and time of sampling. Temperatures 

were measured with a type K thermocouple connected to a digital thermometer (CP 

Instruments model PI 8013). Barometric pressures were measured with a digital 

barometer (Prosser Weathertrend).

2 A,2.6 Determination o f ammonia and nitrogen dioxide gas concentrations 

The concentration of ammonia gas was determined with the use of detector tubes, type 

Drager 2/a, range 2 to 30 vpm. The reaction of ammonia with an acid to form an 

ammonium salt, was indicated by the colour change of bromophenol blue, from yellow 

to blue. This method was sufficiently accurate to determine the low vpm levels 

necessary for the initial qualitative work, involving ammonia as a potential interferent in 

the detection of hydrazines by IMS. The resultant concentrations from the dilution rig 

were typically twice the theoretical amounts, calculated from equation 18, probably due 

to memory effects, so the diluent flows were adjusted to provide the required vapour 

concentrations.

Detector tubes, type Drager 0.5/c, range 0.5 to 25 vpm, were used to determine 

nitrogen dioxide levels, indicated by reaction of [pale grey] N,N-diphenylbenzidine to 

form a bluish grey product.

The manufacturer quoted the RSD for the detector tubes as 15% at the lower end 

of the range, and 10% at the higher range of each type of tube, and these statistics were 

accepted without verification.
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The humidity of the two gas streams was measured with a humidity meter 

(Solexpress model 5065).

2.1.2.7 Experimentation using the ion mobility spectrometer breadboard

Once a stable RIP had formed, the ion mobility detector was exposed to generated vpb 

concentrations of the hydrazines, and vpm levels of ammonia and nitrogen dioxide, in 

turn, and the resultant spectra were recorded (see section 2.1.2.8).

2.1.2.8 Acquisition o f ion mobility data

Ion mobility spectra were collected using digital signal averaging via an Advanced 

Signal Processor (ASP) interface board, installed into an IBM-AT compatible computer 

(Carrera 486 DX 33 MT), and processed using the corresponding Waveform Analysis 

Software Package (WASP). Parameters selected with the ASP software included the 

number of scans per spectrum, 256, and the number of sample data points per spectrum, 

512.

2.1.2.9 Molecular modelling

Optimum geometric configurations of the molecular models of neutral molecules and 

ion-molecules, involving the hydrazines and ketones, were calculated using 

HyperChem™ release 4.5 software with the following set of parameters for semi- 

empirical calculations. PM3 calculations were performed using the Polak-Ribiere 

optimiser algorithm, in vacuo, with accelerated convergence and a convergence limit of

0.1, an RMS gradient of 0.01 kcal.A‘l.mol'1 and unrestricted Hartree Fock (UHF) 

calculations.

2.1.2.10 Determination o f purity o f ketones and hydrazines for IMS-MS-MS studies 

All of the ketones and hydrazines were screened by GC-FID for qualitative purposes. 

The chromatographic conditions were: initial temperature 35°C; final temperature,
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250°C; initial time, 5 minutes; temperature program rate, 8°C.min"1; injection 

temperature, 250°C and FID temperature, 275°C. The conditions for the recording 

integrator were: peak width, 0.4; threshold, 5; area reject, 1x10s; and attenuation, 26; 

quantitative determinations were made using integrated areas under peaks. 0.5 to 1 jj\ of 

neat liquid ketone was injected using split injection. The hydrazines were added to 

acetone prior to chromatographic analysis.

Principal and minor components of the reagents were also screened by GC-MS 

to confirm their identities and to determine the identity of impurities that might have 

caused inteference in the IMS-MS-MS studies. A Hewlett-Packard (HP) Model 5890 

gas chromatograph was equipped with a 25 m capillary column with slightly polar phase 

(5% phenyl, 95% methylpolysiloxane). Conditions for analysis were: injector 

temperature, 250°C; column temperature, 35 to 250°C at 8°C.min'1; an HP5971 mass 

selective detector was employed. The MS conditions were: start scan 3 minutes; stop 

scan 8 minutes; scan rate 1.5 scans.s'1 ; threshold 150.

Two approaches to acquiring mass spectra were used in order to obtain high 

quality spectra both for major and minor components of the chemicals. In the first 

method, neat liquid was injected under split conditions; in order to avoid sample 

overload, the mass spectrometer filament was switched off during the elution of the 

principal component, always the ketone of interest. In a second screening, 6 to 10 jj\ of 

ketone was diluted into 200 p\ of n-tetradecane, generally, or in the instance of

6-undecanone, n-hexadecane. Under these conditions, high intensity spectra were 

obtained for the principal components, without overloading the mass spectrometer.

2.1.2.11 IMS-MS-MS instrumentation

A TAG A 6000 tandem mass spectrometer (MS-MS) (Sciex Inc. Toronto, Ontario, 

Canada) was used in IMS-MS and collision induced dissociation (CID) studies to
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determine the identity of ion clusters created in the IMS. The MS-MS was operated 

under standard conditions with the exception that the corona discharge source was 

replaced with a CAM drift tube. The end of the drift tube was an insulator which was 

placed against the plate used for corona discharges; the last conducting ring in the drift 

region was placed at 1400 V and was 1 cm from this plate (at + 650 V). A photograph of 

the equipment is shown on Plate 2. The ion mobility spectrometer was at ambient 

temperature, and the ion shutter was opened fully at all times during the experiment in 

order to provide an improved ion yield to the mass spectrometer. The latter was 

achieved by providing an electrical short to the one of the two sets of parallel wires, 

thereby maintaining a constant and equivalent voltage to both sets of wires, the gate 

open configuration. This process allowed the continually scanning triple quadrupole 

mass spectrometer to be used to collect data from the ion mobility spectrometer, which 

would not have been possible if the ion mobility spectrometer had been used in the 

normal pulsed mode. The IMS-MS-MS was used only for identification of ions created 

in the IMS under conditions similar to those in the hand-held units. In MS-MS studies, 

an ion was selected in the first quadrupole, injected into an argon gas curtain in a second 

quadrupole at 2 x 10'5 Torr, and the product ions were analysed in the third quadrupole. 

Mass axis calibration was nominally good for one mass but, because of the age of the 

quadrupoles (c. 1981), the mass calibration was only calibrated to within ± 3 amu. 

Consequently, MS-MS experiments were used extensively in assigning ion identities.

The IMS instruments employed in the laboratory had ketone vapours added 

intentionally to the gas flow before their return to either just the ion source region or 

both the ion source and the drift regions of the ion mobility spectrometer. Operating 

parameters for the IMS were established as a 10 mCi 63Ni source; a 36 mm long drift 

region; drift gas flow, 200 ml.min'1; field strength, 244 V.cm'1; inlet sample flow, 0.5



Pl
ate

 
2: 

TA
G 

A 
60

00
 

IM
S-

M
S-

M
S 

In
st

ru
m

en
ta

l i
on



58
l.min'1; shutter pulse width, 180 ps; shutter repetition rate, 40 Hz; and drift tube 

temperature, ambient. The IMS was operated in positive polarity mode. The inlet nozzle 

allowed direct transfer of the analyte to the ion source region through a pinhole of 

diameter approaching 100 pm, and was maintained at approximately 40°C.

2.2 Experimentation

The following trials were performed in order to determine the most efficient 

combination of spectrometer operating parameters for the quantification of HZ, MMH, 

and UDMH without interference from ammonia, in the positive mode, simultaneously 

with nitrogen dioxide in the negative mode. Several factors affecting the IMS detection 

of these compounds were investigated. The experiments were designed for the 

comparison of sample inlet systems under their optimum conditions, detector cell 

construction materials, optimum detector operating temperature and pneumatic 

configurations, and ion-molecule chemistry. The effects of different ion-molecule 

chemistry regimes were investigated through experimental trials, molecular modelling, 

and IMS-MS-MS studies.

2.2.1 Detector cell construction material compatibility

The two cells were exposed to HZ, MMH, and UDMH, in turn. The nominal 

vapour concentrations were 15, 50, and 40 vpb respectively. The LOTIMS detector cell 

was also tested with ammonia, at about 10 vpm. (Ammonia was not available for testing 

when the high temperature detector was examined with the same dopant.) Each sample 

product ion peak amplitude was measured at its equilibrium response. Nitrogen dioxide 

was not tested.

In order to determine the suitability of the two basic cell construction materials, 

the two detectors were operated under comparable conditions to enable direct
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comparison of their performance characteristics. The combination of low detector 

temperature and 5-nonanone dopant was used because previous research had shown that 

lower temperatures favoured a lower concentration limit of detection with the use of

5-nonanone(178) as dopant. The operating parameters are listed in Table 2.1.

Table 2.1 : Operating parameters for the ion mobility spectrometer breadboard

Operating parameter Setting
Sample exhaust flow 190 ml.min'1

Detector cell temperature 27°C
Detection mode +ve

Source flow 85 ml.min"1
Drift flow 105 ml.min'1

Detector pneumatic configuration Bi-directional
Dopant chemical 5-nonanone

Dopant carrier flow 100 ml.min'1
Dopant flow split ratio 1:1

Dopant chamber temperature 23°C
Detector exhaust flow 400 ml.min'1

Cell pressure differential -16.4 mBar
Standby flow 115 ml.min'1

Sample inlet system Direct
Sample inlet flow rate 9.2 ml.min"1

Sample relative humidity 50%

2.2.2 Detector operating temperature

The optimum operating temperature for an ion mobility detector should be high enough 

to prevent surface contamination from surface active chemicals but not high enough to 

cause decomposition of the analytes passing through the detector system. In order to 

determine the optimum detector cell temperature the high temperature detector was set
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at different temperatures, over a given range (between 25°C and 170°C), in conjunction 

with individual dopants, as detailed in Table 2.2.

Table 2.2: Detector temperature test conditions

Detector temperature 
(°C)

Pneumatic configuration Dopant chemical

Unidirectional Acetone
87 Unidirectional Acetone
66 Unidirectional Acetone
178 Unidirectional DIMP
152 Unidirectional DIMP
102 Unidirectional DIMP
58 Unidirectional 5-nonanone
57 Unidirectional 5-nonanone
35 Unidirectional 5-nonanone
31 Unidirectional 5-nonanone
51 Bi-directional 5-nonanone
38 Bi-directional 5-nonanone
25 Bi-directional 5-nonanone

DIMP = diisopropyl methane phosphonate

2.2.3 Pneumatics o f a direct inlet system

The flow rate of a sample entering the detector cell has to be fast enough to provide 

sufficient sample for ionisation, and subsequent detection by the collector electrode. 

Flow rates through the direct inlet were set using a Chemcon RS1 Ruby flow meter, at 

roughly integer divisions from 1 to 4 scale units (approximately 5 to 20 ml.min-1). The 

flow rate was optimised whilst employing an acetone doped ion mobility detector at a 

temperature of 66°C. The vapour sample streams were humidified to 45% relative 

humidity (RH), using distilled, de-ionised water. The effect of direct inlet flow rate upon 

sensitivity was investigated at different temperatures. Because direct inlet systems are 

more prone to the effects of humidity, c.f. sample acquisition, section 1.3.2, the
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percentage RH was altered whilst observing the effect upon the spectra generated during 

experiments using UDMH at a set concentration.

2.2.4 Membrane operating temperature

The temperature of a semi-permeable membrane must be set to allow the maximum 

amount of sample through the membrane, without degradation of the sample through 

excessive heat, or condensation of the analyte on / in the membrane material through 

insufficient heat. The permeability of a membrane is affected by the properties of the 

membrane material, its thickness and surface area, solution and diffusion factors The 

optimum membrane temperature was determined during the assembly of the breadboard 

and commissioning with the membrane inlet system, by Graseby Dynamics Ltd.

2.2.5 Detector cell pneumatics configurations

The pneumatic configuration of an ion mobility detector can have considerable 

influence upon the sensitivity of the instrument. This is due to the efficiency of sample 

ingress through the ionisation region to the drift region, and the effectiveness of the 

counter flow of drift gas maintaining a relatively interferent-free environment. The 

measurement of all the analytes, the hydrazines and nitrogen dioxide, was investigated 

during a set of four tests, using combinations of 5-nonanone and 2,2,6,6-tetramethyl-

3,5-heptanedione dopants, with the spectrometer breadboard configured for both 

unidirectional and bi-directional gas flows, as described in section 2.1.2.1.

2.2.6 Miniaturisation o f the IMS breadboard for hand portable use

The optimum detector operating parameters were concluded from the results of the 

experimental work and were re-designed into a miniaturised, hand-portable ion mobility 

spectrometer.
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2.2.7 Investigation into the effects o f ion-molecule regimes

Following the test methods detailed in sections 2.2.3 and 2.2.4, in which the HZ, MMH, 

and UDMH concentrations were approximately 15, 50, and 40 vpb respectively, except 

for the 4-methyl-2-pentanone and diisopropyl methane phosphate trials, when the 

concentrations were roughly three to five times greater, the following parameters were 

measured from recorded spectra.

• Detection levels. Response was measured directly as the amplitude of the peak in 

mV.

• Selectivity. Due to the movement of peak times with change in temperature the RIP 

was assigned an arbitrary value of 100. The positions of sample (product ion) peaks 

were calculated as a ratio of measured peak times compared to the RIP (a 

normalisation process) in order to produce an indication of resolution comparative 

with 100.

• Response and recovery characteristics. The results of a visual examination of 

recorded contour spectra was listed for fast, medium, or slow response, and recovery 

times, in relative terms.

2.2.8 Molecular modelling

Models of the neutral molecules of HZ, MMH, UDMH, ammonia, and a series of 

symmetrical ketones were constructed. In order to examine the effects of steric 

hindrance straight chain and branched aliphatic ketones were considered. The ketones 

studied were acetone, 3-pentanone, 4-heptanone, 5-nonanone, 6-undecanone, 

2,4-dimethyl-3-pentanone (diisopropyl ketone), 2,2,4,4-tetramethyl-3-pentanone 

(di-r-butyl ketone), 2,2,6,6-tetramethyl-4-heptanone (dineopentyl ketone), 2,6-dimethyl-

4-heptanone (diisobutyl ketone), and 2,8-dimethyl-5-nonanone (diisopentyl ketone). 

Ion-molecules of the hydrazines and monomer and dimer ion-molecules of the ketones



63
were also constructed. The optimised molecules were used as building blocks to form 

protonated molecules of the hydrazines with either one or two molecules of each ketone 

in turn. These compiled ion-molecule clusters were also optimised. The longest 

diameter of each of the neutral molecules, ion-molecules, and ion-molecules clusters 

was measured, the total energy and the heat of formation of each optimised molecule / 

cluster were recorded.

2.2.9 IMS-MS-MS studies

Studies of the ion-molecule chemistry of an homologous series of ketones and the 

analytes, ammonia and the hydrazines (HZ, MMH, UDMH, and TMH), followed a 

common procedure. The analytes were introduced into a unidirectional flow IMS drift 

tube and ketone vapours were added either in the ionisation region only or at the 

detector end of the drift region (and thus throughout the drift tube). The vapours of the 

dopants and analytes were introduced into the gas stream by flowing air, at constant 

rates, across open vials containing the individual chemicals. Concentrations of the 

ketones were obtained from calculations based upon vapour pressures and gas flows. 

The IMS data were recorded as follows:

• A mass spectrometric scan of background ions i.e. those produced in clean air 

conditions, was recorded.

• A second scan was recorded when the analyte entered into the ion source of the IMS 

drift tube.

• A third scan was recorded when the analyte and one of the ketones was introduced to 

the ion source of the IMS drift tube, simultaneously. Ions with high intensity, created 

during these studies, were subjected to CID for MS-MS analysis. Product ion scans 

were recorded.
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A final scan of the analyte (introduced via the ion source region) with ketones 

introduced at the detector end of the drift region, was recorded. The high intensity 

ions created during these studies were also subjected to CID for MS-MS analysis. 

Again, product ion scans were recorded.



Chapter 3

OPTIMISATION OF EQUIPMENT

3.1 Choice of detector cell

T
he choice between the detector cells was determined from consideration of 

the degree of sensitiveness and the response and recovery characteristics. 

The low temperature cell, with ptfe insulators, showed improved limits of 

detection for the detection of MMH and UDMH compared with the high temperature 

cell which had ceramic insulators. The recorded amplitudes for HZ detection were 

similar for both detector cells, at the concentration tested. Sample product ion peak 

amplitudes are recorded in Table 3.1; response and recovery characteristics are also 

recorded.

Table 3. 1: Results of sensitiveness, response and recovery, for two detector cells

Detector
cell

Sample
material

Product ion 
peak 

amplitude 
(mV)

Response time 
<s)

(Initial, 90%, 
100%)

Recovery 
time (s) 
(90%, 
100%)

Normalised 
peak 

position 
(RIP = 100)

HITIMS HZ 22 6 ,44, 56 - 131
LOTIMS HZ 17 12, 38, 100 12 , 12 129
HITIMS MMH 57 30,42, 66 12 , 12 108
LOTIMS MMH 124 2 2 , 8 6 , 110 38, 70 107
HITIMS UDMH 295 12, 18, 30 62, 62 84
LOTIMS UDMH 825 20, 58, 126 74, 216 83
LOTIMS Ammonia 373 24, 228, 282 » 4  hr. 129

The results indicated that the responses were generally slightly slower with the LOTIMS 

cell configuration, and the recovery times were significantly longer; the UDMH product 

peak took several minutes to clear down (see Figures 3.1 and 3.2).
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Amplitude

RIP 
16.15 ms

UDMH 
13.59 ms

Time

Drift time

Figure 3.1: High temperature cell response and recovery characteristics to UDMH 
exposure, 25°C, 5-nonanone doped system

Amplitude
UDMH 

10.711 ms

RIP 
12.843 ms

Time

Drift time

Figure 3.2: Low temperature cell response and recovery characteristics to UDMH
exposure, 27°C, 5-nonanone doped system
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The LOTIMS detector cell was also tested with ammonia, at about 10 vpm. The 

detector was very slow to respond to ammonia and even slower to recover; full recovery 

took several hours.

An indication of the slow recovery time can be perceived from the almost stable 

ammonia peak recorded during the recovery period, shown in Figure 3.3, when equated 

with the comparatively fast response and recovery times of the detectors as shown, for 

exposure to UDMH, in Figures 3.1 and 3.2.

REP 
12.843 ms

Amplitude

Ammonia 
16.584 ms

Time

Drift time

Figure 3.3: Low temperature cell recovery characteristics to ammonia exposure, 27°C,
5-nonanone doped system

At this point it was realised that there was a problem, not only with the detector 

materials, but also with the design of the cell, which allowed the mixing of the gas flows 

near the grid area where there were more metal surfaces. This appeared to cause 

problems with hang-up of the sample materials on the cell walls. As a result, the inlet 

system was redesigned.
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For the low temperature detector cell, the slight increase in detection levels at low 

part per billion concentrations was offset against the increased response and recovery 

times. The time taken for the UDMH product ion peak to recover was relatively long. 

The time taken for the detector to recover from ammonia was unacceptably long, with 

several hours having elapsed before the detector was cleared of ammonia. The long 

recovery time meant that this detector could not be considered a viable proposition for 

near real-time analysis.

An overriding concern was a report issued by Graseby Ionics(205) which detailed 

the effect of long term storage of IMS detectors assembled for the detection of organic 

compounds. The report detailed degradation of the negative mode RIP, which was 

considered to be due to radiolysis of the cell’s front end plastic components i.e. those in 

proximity to the radioactive source. The use of the lower temperature cell would not be 

advisable, in the long term, without design modifications with respect to the 

construction materials used.

Overall the high temperature cell appeared to be the more acceptable detector for 

the simultaneous detection of the hydrazines and ammonia.

3.2 Optimum detector temperature

The detector was heated to various temperatures and exposed to the hydrazines’ 

vapours, ammonia, and nitrogen dioxide, to enable the optimum detector operating 

temperature to be determined. Assuming that the optimum temperature with one dopant 

in the system might not be the same as that observed with an alternative dopant, this 

trial was carried out with three different dopant chemicals in the gas streams, each tested 

during separate experiments.

Previous research10I) showed that the use of acetone as the dopant chemical in an 

ion mobility detection system produced insufficient resolution of the reactant and
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product ion peaks of interest. However, an acetone based system provided a greater 

operational stability than water based ion-molecule chemistry, sufficient to enable a 

comparative evaluation of the two types of inlet system to be performed. Trends in 

sensitiveness were investigated at different temperatures combined with the use of a 

variety of dopants, namely, acetone, diisopropyl methane phosphonate, and 5-nonanone. 

The effect of temperature on mobility was also investigated, by comparing peak relative 

positions, with the RIP assigned an arbitrary value of 100.

The acetone doped system showed increased detectability of HZ and MMH as the 

temperature decreased (see Figure 3.4) i.e. the detector was more sensitive to HZ than to 

MMH. Figures 3.5 to 3.7 show the effect of temperature on the detection of HZ.

Response and recovery times were acceptable for the hydrazines. The nitrogen 

dioxide response decreased slightly with decrease in temperature, but the response and 

recovery times were rapid at all three temperatures tested (for an example, see Figure 

3.8). UDMH and ammonia were not studied with the acetone doped system as they were 

not available at the time of this set of experiments.
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Figure 3.4: The effect of detector temperature on peak amplitude, acetone doped system
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Time

Drift time
Figure 3.5: High temperature cell response and recovery characteristics to HZ exposure,

at 105°C, acetone doped system
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HZ 
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8.55 ms
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Drift time

Figure 3.6: High temperature cell response and recovery characteristics to HZ exposure,
at 87°C, acetone doped system
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Amplitude

Time

Drift time

Figure 3.7: High temperature cell response and recovery characteristics to HZ exposure,
at 6 6°C, acetone doped system

Nitrogen 
dioxide 
6.71 ms

Amplitude

RIP 
7.43 ms

Drift time

Figure 3.8: High temperature cell response and recovery characteristics to nitrogen
dioxide exposure, at 65°C, acetone doped system
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HZ produced two product ion peaks. Generally, mobility decreased with decrease in 

temperature i.e. the peaks shifted to the right. The results in Table 3.2 are based on 

normalised peak times, using 100 as the reference value for the RIP; the major product 

ion peak in each case is the peak used for the calculation of relative positions. The trend 

in results for MMH was as expected; the increase in temperature increased the speed of 

the samples to produce faster transportation times. However, an unexplained result was 

the lower mobility of HZ at 105°C, compared to 87°C, this result being atypical of the 

trends observed for the other analytes.

Table 3.2: The effect of detector temperature on peak resolution; acetone doped system

Detector
temperature

(°C)

Sample material Sample RIP 
time 
(ms)

Sample peak 
time 
(ms)

Normalised 
peak position 
(RIP = 100)

105 HZ 8.15 9.55 117
87 HZ 8.55 9.31 109
66 HZ 9.03 10.19 113
105 MMH 8.15 6.83 84
87 MMH 8.47 9.15 108
66 MMH 9.03 10.15 112
105 Nitrogen dioxide 6.59 5.75 87
87 Nitrogen dioxide 6.91 6.07 88
66 Nitrogen dioxide 7.43 6.71 90

For the preliminary work using diisopropyl methane phosphonate dopant, while 

using a direct inlet system and unidirectional detector flow configuration, no response 

was obtained for the hydrazines at the temperatures investigated (see Table 3.3). The 

result for ammonia was increased peak amplitude with decrease in temperature. A single 

product ion peak was recorded at 102°C and two product ion peaks were visible in the 

spectrum recorded at 58°C (see Figures 3.9 and 3.10).
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Table 3.3: The effect of detector temperature on peak amplitude; high temperature cell, 

diisopropyl methane phosphonate doped system

Detector Peak amplitude
temperature (mV)

(°C) HZ MMH UDMH Ammonia Nitrogen
Dioxide

178 No response No response No response No response 50
152 No response No response No response No response 438
102 No response No response No response 54 1512
58 No response No response No response 180 1341

Amplitude

Ammonia 
13.23 ms

Time

Drift time

Figure 3.9: High temperature cell response and recovery characteristics to ammonia 
exposure, at 102°C, diisopropyl methane phosphonate doped system

For nitrogen dioxide detection the temperature went through an optimum stage at about 

100°C (see Table 3.3). The difference in response obtained from that at 152°C was 

marked, but the decrease in peak amplitude from 102 to 58°C was less significant. At 

58 °C the nitrogen dioxide product ion peak was resolved from the RIP. (See Table 3.4 

for summary of results.)
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Amplitude

Ammonia 
15.67 ms

Time

Drift time
Figure 3.10: High temperature cell response and recovery characteristics to ammonia 

exposure, at 58°C, diisopropyl methane phosphonate doped system

Table 3.4: The effect of detector temperature on peak resolution; diisopropyl methane
phosphonate doped system

Detector
temperature

(°C)

Sample material Sample RIP time 
(ms)

Sample peak 
time 
(ms)

Normalised 
peak 

position 
(RIP = 100)

178 Ammonia 8.67 No response -

152 Ammonia 9.07 No response -

102 Ammonia 9.99 13.23 132
58 Ammonia 11.15 15.67 141
178 Nitrogen dioxide 5.51 3.43 62
152 Nitrogen dioxide 5.79 3.71 64
102 Nitrogen dioxide 6.47 4.83 75
58 Nitrogen dioxide 6.27* 5.71 91

* This normalised peak position for the nitrogen dioxide product ion peak was based 
upon the background RIP time, due to saturation of the detector with the sample.

The normalised peak position for the nitrogen dioxide product ion peak (Table 3.4), is 

based upon the background RIP time, due to saturation of the detector with the sample.
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At 58°C an unresolved doublet RIP was evident in the negative mode, which was 

deemed to be impractical for peak searching routines.

Comparisons of the effects of temperature on peak amplitude, resolution, response 

and recovery, using 5-nonanone as the dopant chemical, were carried out using the ion 

mobility spectrometer breadboard in both the unidirectional and bi-directional flow 

configurations. Typically, with the spectrometer set for either pneumatic configuration, 

the detection ability of the high temperature detector to hydrazines increased with 

decrease in temperature (see Figure 3.11), although in the unidirectional configuration 

the response to UDMH appeared to improve with increased temperature. The results 

may have been affected by the formation of two product ion peaks (see Figure 3.12).
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Figure 3.11: The effects of detector temperature on peak amplitude; 5-nonanone doped
systems
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RIP 
15.47 ms

UDMH 
12.99 ms

UDMH 
19.67 ms
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Drift time

Figure 3.12: High temperature cell response and recovery characteristics to UDMH 
exposure, at 35°C, 5-nonanone doped system

However, two product ion peaks were formed for UDMH with the instrument 

configured for either of the pneumatic flow systems, for MMH in the bi-directional 

system and ammonia in the unidirectional system. The addition of the two peak 

amplitudes in the relevant spectra confirmed the observed trends; the detection of 

UDMH in the unidirectional flow configuration was the only result to show an increase 

in peak amplitude with increase in temperature. As stated previously, UDMH could not 

be tested with the ammonia doped system, at the same time as the temperature effects on 

the other analytes were tested. Also, none of the hydrazines were detected with the 

diisopropyl methane phosphate doped system. Therefore, it is unclear whether this 

observation would be repeated with alternative ion-molecule chemistry. The results for 

ammonia, with the instrument in the unidirectional configuration, were ambiguous due 

to the formation of multiple, unresolved peaks, but the indications were that ammonia 

detection increased with decrease in temperature for the bi-directional system.
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The conclusions drawn from this set of experiments were that lower detector 

temperature favoured increased sensitivity to the hydrazines and ammonia, independent 

of both the dopant chemical used to effect ion-molecule regimes and, in general, 

detector flow configuration. For nitrogen dioxide, the peak amplitude increased slightly 

with increase in temperature below ~100°C. Above this temperature the detection level 

decreased rapidly.

Although for the detection of the hydrazines and ammonia, the lower operating 

temperature produced greater sensitivity, consideration must be given to the 

miniaturisation of the spectrometer. The limit on how low the temperature of the 

detector may be operated is dependent upon the ambient conditions. For effective 

operation in warmer temperatures e.g. ~30°C, maintaining the detector temperature 

would require the use of cooling circuitry, which is expensive, and might lead to 

increased weight and bulk; not acceptable for an instrument designed ultimately to be 

hand-held. The most convenient low temperature limit would be in the region of 50°C. 

This would allow a reasonable compromise for the simultaneous detection of the 

hydrazines, ammonia, and nitrogen dioxide without the need for bulky, heavy 

equipment.

3.3 Optimum flow for the direct inlet

The flow through the direct inlet system was altered by changing the detector exhaust 

flow setting. Allowing a faster or slower exhaust flow facilitated a respective change in 

the inlet flow rate. An increase in the inlet flow rate increased the amount of sample per 

unit time that entered the detector, and also the amount of water vapour. In theory, the 

former may lead to an increase in response but this may be offset by the humidity effect 

(i.e. increase in humidity may reduce detection capability). Very high flow rates may
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affect the flow patterns around the grid area and might even lead to water vapour 

entering the drift region.

Although a direct inlet system would be easier to maintain, the increase in water 

vapour content of the sample stream leads to larger ion clusters, loss of resolution and 

reduced sensitivity. High concentrations of samples can produce both dimer and trimer 

ion peaks which can reduce the linear range and produce more complex ion mobility 

spectra(150). The added complication of the effect of humidity can aggravate the situation 

further.

The flow rate of the direct inlet system was varied to determine the effect of inlet 

flow rate upon the detector sensitivity and peak resolution. Using an acetone doped ion 

mobility cell at 66°C, the optimum flow rate appeared to vary according to the 

contaminant being monitored (see Figure 3.13).
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Figure 3.13: The effect of direct inlet flow rate on peak amplitude; acetone doped
system
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The fastest of the flow rates was required for UDMH, at 4 scale units, and the 

slowest for HZ, at 2 scale units (HZ was not detected whilst the inlet flow setting was at 

1 scale unit). The optimum flow setting for both MMH and nitrogen dioxide was 

approximately 3 scale units. There were negative peaks (i.e. peaks which dipped below 

the baseline) observed in the negative mode spectra during the detection of nitrogen 

dioxide. These peaks were due to the signal processing electronic gain controls and the 

problem has since been rectified.

The effect upon UDMH and nitrogen dioxide appeared to be less significant than 

for HZ and MMH. The response and recovery times for all of the test vapours were fast, 

typically less than 12 seconds for both response and recovery. Ammonia was not 

available for testing at this time, due to delays from the supplier. Overall, the optimum 

setting was deemed to be 3 scale units, equivalent to approximately 15 ml.min’1.

Table 3.5: Peak times and normalised peak position at various direct inlet flow settings, 
acetone doped high temperature cell, 6 6°C

Inlet flow 
setting

Material Sample RIP 
time 
(ms)

Sample peak 
time 
(ms)

Normalised peak 
position (RIP = 

100)
rn m m m w m m HZ 8.71 - -

HZ 8.71 9.75 112
3.1 HZ 8.79 9.83 112
4 HZ 8.87 9.91 112
1 MMH 8.71 9.35 107
2 MMH 8.75 9.35 107

3.1 MMH 8.79 9.79 111
4 MMH 8.87 9.91 107
1 UDMH 8.71 9.15 105
2 UDMH 8.71 9.15 105

3.1 UDMH 8.75 9.19 105
4 UDMH 8.83 9.27 105
1 n o 2 6.99 6.35 91
2 n o 2 7.11 6.47 91

3.1 n o 2 7.07 6.43 91
4 n o 2 7.03 6.39 91
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The results in Table 3.5 indicated that the internal flow patterns were disturbed by 

the alteration of the sample inlet flow rate; the faster inlet flow rates produced longer 

drift times. Although this result seemed contradictory initially, the increased amount of 

sample which entered the detector may have affected the drift time due to increased 

probability of collision. The slower flow rates produced better results for the detection 

of HZ, but the different flow rates required to achieve comparable peak amplitudes for 

different hydrazines’ species, indicated that there was probably another factor to be 

accounted for, for example surface activity. However, the position of the product ion 

peaks, normalised against an RIP value of 100, remained constant for individual species. 

Thus, peak identification would not be a problem.

The results obtained from the work which used 5-nonanone dopant and 

bi-directional flow, combined with various direct inlet flow rates and different detector 

temperatures, are listed in Table 3.6.

Table 3.6: The effect of direct inlet flow rate on peak amplitude; 5-nonanone doped high
temperature cell

Direct inlet flow rate 
CmJ.min'1)

Detector temperature 
(°C)

Sample material Peak amplitude 
(mV)

51 HZ 19
9.2 51 HZ No response
13.0 51 HZ No response
12.0 31 HZ No response
9.2 27 HZ 109
6.8 51 MMH No response
9.2 51 MMH No response
13.0 51 MMH No response
12.0 31 MMH 76
9.2 27 MMH 57
6.8 51 UDMH 133
9.2 51 UDMH No response
13.0 51 UDMH No response
9.2 31 UDMH 119
12.0 31 UDMH 130
9.2 27 UDMH 295
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The general trend was for maximised peak amplitudes at an inlet flow rate of about 

7 ml.min' 1 for HZ at 51°C, with improved detection limits at the lower temperature of 

27°C, even with a higher flow rate of 9 ml.min'1. As 7 ml.min' 1 was the lowest rate 

tested at the time, determined by the stability of the delivery system, it is not possible to 

estimate whether the HZ detection levels would have improved with an even lower inlet 

flow rate. For MMH a higher sample flow rate of about 12 ml.min'1, as recorded at 

31°C, produced a higher peak amplitude without improved detection at lower 

temperature. The results for the detection of UDMH were more complicated. At 51°C 

the slower flow rate of 7 ml.min*1 provided a greater amplitude, but at the lower 

temperature of 37°C the flow rate had to be increased to 12 ml.min"1 in order to achieve 

a comparable peak amplitude. At a flow rate of 9 ml.min' 1 and a detector temperature of 

27°C the UDMH peak amplitude more than doubled. The critical feature from this set of 

experiments was that response was affected by the combined effects of dopant, detector 

temperature and sample inlet flow rate. Further work indicated that the detector was 

more sensitive to the hydrazines at lower temperatures.

The diameter and length of a direct inlet system can be altered to produce the 

desired flow rate through that inlet, according to Poiseulle’s equation

p2v = (pi2 - p22) 7t a4 / 1 6 i\\ 19

where,

pi = inlet pressure absolute (Nm"2)

p2 = outlet pressure absolute (Nm'2)

v = flow rate through inlet (l.min'1)

a = radius of inlet (cm)

rj = viscosity of air (g.cm^.s"1)

1 = length of inlet (cm)
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3.4 The effect of humidity in conjunction with a direct inlet system

As stated in the section 3.3, direct inlet systems allow more water vapour into the 

spectrometer which may lead to larger ion clusters. The effect of the presence of 

variable concentration of water vapour was investigated by varying the degree of 

relative humidity entering the detector, with a constant concentration of the analyte 

species. UDMH vapour was selected for this study because it produced the highest 

peaks with the best resolution of the hydrazines at ppb levels, under the set conditions, 

including 5-nonanone as the dopant. Therefore, any changes in the peak amplitude of 

the UDMH product ion peak, as a result of changes in humidity levels, were easier to 

observe.

Changes in humidity produced only a negligible effect upon the detector 

sensitivity to UDMH. The maximum amplitudes recorded at equilibrium of the UDMH 

product ion peak at 5, 50, and 95% RH were 113, 121, 122 mV respectively. The 

equilibrium responses were monitored over a period of minutes and provided average 

peak amplitudes of 108, 115, and 113 mV respectively. The minimum values recorded 

were 101, 110, and 104 mV with 5, 50, and 95% RH respectively. The coefficient of 

variance for each set of humidity conditions was less than 5%, an acceptable level.

3.5 Optimum membrane temperature

3.5.1 Membrane permeability

Membranes are usually made of polymeric material, the desirable properties of which 

are high selectivity, high permeability, and mechanical and thermal stability. Polymers 

which have a high permeability usually have a low selectivity, and vice versa(206).
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The polymer chosen for this work was polydimethylsiloxane which has a high 

permeability, is readily available, and has thermal properties characteristic of inorganic 

polymers.

The amount of solute which permeates through an homogeneous membrane is 

dependent upon solution and diffusion factors(206), which are determined mainly by 

permeability, concentration of the solute, and any forces acting on the solute, namely, 

chemical potential between the phases separated by the membrane.

Gradients in the chemical potential of a component in a membrane can be caused 

by a difference in temperature, pressure, or concentration, between the two phases either 

side of the membrane(99). Figure 3.14 depicts part of a membrane with a solute, whose 

concentration is expressed in terms of partial pressures, pi and p2, which permeates 

through the membrane at rate q.

Pi

t i Cl

I C2 I
P2

Figure 3.14: Factors affecting permeation of vapours through a membrane

The concentration in the boundary layer, c, is dependent upon the solubility coefficient, 

S, and the partial pressure of the solute on the feed side, i.e.:

Ci = Spi 20.

The permeation rate, defined as the transfer of a mass of a solute through the 

membrane, per unit time, is determined by the permeability, Pe, of the membrane, and 

the difference in the partial pressures of the solute on either side of the semi-permeable
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membrane. The permeation rate is also proportional to the area, and inversely 

proportional to the thickness of the membrane:

q = Pe(Pi-P2>A/l 21<a>7)

but the permeation rate is also proportional to the diffusion coefficient and the 

difference in concentrations at the boundary layer, therefore,

q  = D(ci - c 2) A / 1  22

Combining equations 21 and 22,

Pe(Pi - P2) = D(ci - c2) 23

and from equations 20 and 23,

Pe(Pi - P2) = DS(pi - p2) 24

from which is derived,

Pe = DS 25.

Diffusive selectivity results from separation of components, through a polymer 

matrix, on the basis of size and shape. Solubility selectivity is determined by the 

chemical and physical interactions between the permeate and the polymer(206,208).

The products of diffusion coefficient and solubility, in terms of the Arrhenius 

equation, are:

D = ki(exp-Eo/RT) 26

where Ed is the activation energy of diffusion and ki is a constant, and

S = k2(exp-AHs/RT) 27

where k2 is a constant and AHs is the enthalpy of solution.

Combining equations 25, 26 & 27

Pe = k{exp-(ED+AHs)/RT} 28

where k = ki x k2, and,

In Pe = In k -{ (E d  + AHS)/R}(1/T) 29
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Thus, assuming that over the experimental temperature range Ed and AHs are constant, a 

plot of In Pe against 1/T should produce a straight line graph of which the gradient is 

equal to -(E d + AHs)/R, and the intercept equivalent to In k. Although this assumption is 

frequently adopted it must be noted that Ed and AHs can be functions of temperature, so 

that there may be circumstances where the foregoing assumption is not valid.

The diffusion coefficient increases with temperature, therefore higher 

temperatures favour a faster diffusion rate and more rapid equilibrium, but temperature 

also determines the solubility of the analyte in the membrane, which alters according to 

the heat of solution. An operating temperature must be selected which will allow the 

most acceptable combination of rate of equilibrium versus permeability(98). The 

permeability of a polydimethylsiloxane membrane to the hydrazines was found, 

experimentally, to decrease with increase in temperature(101). Membrane premeability 

varied for the different analytes, HZ > MMH > UDMH.

3.5.2 Experimentally determined optimum membrane temperature

Previous work(101) concerned with the membrane permeability to the hydrazines showed 

greater permeability with decrease in temperature towards ambient. However, during the 

assembly and commissioning of this experimental ion mobility spectrometer breadboard 

by the manufacturer (Graseby Dynamics Ltd.), the optimum membrane operating 

temperature was determined to be 108°C, due to improved performance at this higher 

membrane temperature (120°C was the highest practical operating temperature of the 

membrane). The higher temperature was assumed to be necessary because of different 

construction materials and configurations used in these experiments compared with the 

trials referred to in section 3.5.1. This operating temperature was not subjected to any 

further experimental evaluation, but was used for all research involving a membrane 

inlet.
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3.6 Selection of the inlet system

With the optimum direct inlet flow rate determined, and the optimum membrane 

temperature known, the two inlet systems were compared, in order to determine the 

more efficient method of sample ingress, into the ion mobilirty spectrometer. The 

experimentation was performed whilst using acetone, 3,5-heptanedione, and 5-nonanone 

as the dopants.

The overall effects of the membrane at optimum temperature and the direct inlet at 

optimum flow rate were compared in terms of detection levels, resolution, response and 

recovery times. Summaries of peak amplitudes, response and recovery times, for the two 

inlet systems, employed in an acetone doped detector, have been compiled in Tables 3.7 

and 3.8.

Table 3. 7: Comparative sensitiveness using the two inlet systems high temperature
detector, 66°C, acetone doped system

Material Peak amplitude (mV; 
Membrane

at optimum setting 
Direct (flow setting)

410 300 (2)
MMH 126 217 (3)

UDMH Not tested 670 (4)
Ammonia 873 Not tested

Nitrogen dioxide 1273 1528 (3.1)

Table 3.8 : Response and recovery times for the two inlet systems, high temperature
detector, 66°C, acetone doped system

Material Response time (s) Recovery time (s)
Membrane inlet Direct inlet Membrane Direct inlet

in et
Initial >90 100 Initial >90 100 >90 100 >90 100

% % % % % % % %
HZ 7 115 223 42 42 42 34 265 62 62

MMH 6 62 310 50 418 28 >40 94 660
UDMH - - - 14 14 14 - - - -

n o 2 20 42 110 210 256 434 19 19 60 410
Ammonia was not tested. 
NO2 = nitrogen dioxide.
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The direct inlet system at optimum flow rate for individual materials, provided generally 

comparable or better sensitivity than the membrane inlet, although the HZ peak 

amplitude was lower.

The initial response and recovery times recorded for the hydrazines were fast, 

typically less than one minute, while using either inlet system. For the detection of HZ, 

the direct inlet system was slower to produce an initial response, but immediately 

reached its maximum amplitude, a phenomenon also achieved for the detection of 

UDMH whilst employing a direct inlet system in the spectrometer (UDMH was not 

tested with the membrane inlet, acetone doped system). Initial recovery was faster when 

using a membrane inlet, but slower overall for complete recovery. The membrane inlet 

system allowed faster detection of nitrogen dioxide, and detector recovery was also 

quicker; however, sensitivity was impaired slightly, which probably accounted for the 

faster response times.

Comparable sensitivity, together with fast response and recovery times, suggested 

that there was no significant loss of sensitivity or degradation of resolution when 

comparing a direct inlet system with a membrane inlet system.

The spectra obtained with a membrane inlet appeared to be more stable than those 

collected when using a direct inlet. The membrane system took longer to reach 

equilibrium. The instability with the direct inlet could have been due to an unstable 

vapour source, varying acetone dopant concentration, or more probably the 

configuration of the inlet design. Due to the results obtained, the direct inlet system was 

improved to enhance performance. If a spectrometer, with a direct inlet, were to be used 

to detect more than one of the hydrazines, a compromise concerning optimum flow rate 

would have to be made, due to the variation in the optimum for each of the hydrazines 

tested.
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Whilst using 3,5-heptanedione as the dopant chemical, with a membrane inlet, 

relatively good response, recovery, and sensitivity were achieved in the positive mode 

for the detection of UDMH, but not for HZ; acceptable sensitivity was obtained for 

nitrogen dioxide in the negative mode, but the response was unstable. The use of 3,5- 

heptanedione showed that sensitivity could be a function of the dopant chemical and not 

just the inlet system. The lack of sensitivity to HZ was due partly to insufficient peak 

resolution.

Amplitude

RIP, 794 mV 
at 14.07 ms

Spurious product 
ion peaks,

17 & 35 mV at 
9.59 & 9.99 ms

HZ, 50 mV 
at 16.15 ms

Drift time

Figure 3.15: High temperature cell response and recovery characteristics to hydrazine 
exposure, at 65°C, 5-nonanone doped system. Spurious peaks recorded to the left of the

RIP

During the period when 5-nonanone was being investigated for use as the 

dopant, with the membrane inlet incorporated into the system, spurious peaks were 

observed to the left hand side of the RIP (Figure 3.15). The unresolved doublet 

increased in amplitude over a period of days, and the dopant concentration appeared to
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alter, being discernible from the RIP drift time and peak shape. After removing the 

membrane inlet from the detection system, and transferring to the direct inlet sampling 

mode, these spurious peaks disappeared. Examination of the permeation source revealed 

that the silicone membrane disc had also been affected, becoming more translucent and 

swollen.The spurious peaks observed with 5-nonanone dopant, in conjunction with a 

membrane inlet, underlined the importance of the chemical stability of membrane 

materials. The extraneous peaks were the result of interaction with, or degradation of, 

the membrane in the presence of 5-nonanone. Therefore, this chemical could not be used 

as the system dopant while a polydimethylsiloxane membrane was used. If a membrane 

was required for use with 5-nonanone as dopant, a different membrane material would 

be required. Polydimethylsiloxane membranes were chosen because of their relative 

permeability. An alternative material would probably have a different degree of 

permeability to the hydrazines and, therefore, any change of membrane material would 

require investigation into the effects upon sensitivity of the detection system as a whole.

The differences in the peak amplitudes measured at equilibrium were due, in part, 

to the positioning of the window cursors on the baseline. The measurements varied by, 

typically, ± 7 mV due to baseline noise. Therefore, the variation in peak amplitude, due 

to different % RH levels, was negligible. The various optimum flow settings, for 

maximum sensitivity of the detector to the analytes, meant that a compromise had to be 

made for the inlet flow. It was decided to set the intake flow between 10 and 15 

ml.min'1.

The indications are that there are no significant penalties involved in using a direct 

inlet system rather than a membrane inlet system (see Table 3.7). The direct inlet system 

would offer advantages in terms of ease of maintenance, and cost.
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3.7 Optimum detector pneumatic configuration

The pneumatics incorporated into the ion mobility spectrometer breadboard allowed two 

different configurations to be effected, producing unidirectional or bi-directional flow 

patterns in the detector (see section 2.1.2.1). Both configurations were examined for 

their effect on sensitivity, resolution, response and recovery times. Resolution was 

examined in the tests because massive flow disturbances in the drift region might have 

led to peak broadening, thus reducing resolution.

A schematic diagram of the original IMS breadboard pneumatic circuit design, 

with bi-directional flow, is shown in Figure 2.1. Due to the sensitiveness of the detector, 

any background contamination, for example, from the components of the breadboard, 

sample tubing etc., had to be eliminated. Where possible, inert fittings and tubing were 

used for this purpose. Needle valves and flow meters containing elastomeric o-rings had 

to be replaced, due to lubricants that desorbed into the carrier gas. In the case of fine 

metering valves, which were necessary to regulate gas flows through the various 

sections of the spectrometer, sieve packs were inserted to absorb any leachates.

A conversion to version 2 of the spectrometer was carried out as follows: (1) a 

fine metering valve and sieve pack were inserted in-line prior to the heated dopant 

chamber. (2) The dopant and dopant sieve flow meters were removed. (3) The fine 

metering valves, positioned after the dopant chamber, were replaced with fixed 

restrictors. (4) The source and drift flow controls, and all sections in-line after this point, 

were removed from the dopant line outlet and connected to a tee leading directly from 

the air inlet line, and the output from the dopant section was attached to the inlet lines of 

the source and flows. The final configuration of version 2 of the breadboard is shown in 

Figure 3.16.
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Figure 3.16: Schematic diagram of the ion mobility spectrometer breadboard pneumatic 
system, version 2, depicting bi-directional flow and membrane inlet systems



92
In order to gain final control of the dopant concentration, the restrictors were replaced 

with relatively inert ptfe fine metering valves, which did not contain o-rings.

The source and drift flows could be configured to enable the introduction of 

separate or combined flows into the detector cell. The 1/8” o.d. ptfe inlet tubing was 

wrapped in heating tape and insulated to facilitate heating of the sample tubing, with the 

aim of decreasing the amount of wall adsorption of the sample vapours.

Figure 3.17 schematically depicts version 3 of the breadboard, with the direct inlet 

configuration. The two systems were evaluated whilst using 5-nonanone and 2,2,6,6- 

tetramethyl-3,5-heptanedione dopants. The performance characteristics recorded for the 

two detector flow configurations, for version 3 of the spectrometer breadboard, with the 

detector set at various temperatures, are listed in Table 3.9. For convenience, 2,2,6,6- 

tetramethyl-3,5-heptanedione is referred to as TMHD in the table of results.

Overall, the flow configuration best suited for the analysis of hydrazines was the 

bi-directional system, although for MMH, with a 5-nonanone doped system the 

difference was less well defined. The sensitivity results were inconclusive; 5-nonanone 

produced better results for the detection of HZ but, although 2,2,6,6-tetramethyl-3,5- 

heptanedione produced higher peak amplitudes for both MMH and UDMH, no response 

was recorded during tests with HZ. The response times were also inconclusive. 

5-nonanone was better for the detection of HZ, 2,2,6,6-tetramethyl-3,5-heptanedione 

was better for the detection of MMH, and either of the two dopants was acceptable for 

response times for UDMH determination. A similar pattern was followed for the 

recovery times, although 5-nonanone produced marginally improved recovery times 

during the monitoring of UDMH.
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Figure 3.17: Schematic diagram of the ion mobility spectrometer breadboard pneumatic 
system, version 3, depicting unidirectional flow and direct inlet systems
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Table 3.9: The effects of detector flow configuration on performance

Detector Dopant Detector Sample Peak Peak Response
configu- chemical temp. material amplitude resolution and

ration (°C) (mV) recovery
i i i i i i i i 5-nonanone 35 HZ 46 Broad

peak
B 5-nonanone 35 HZ 102 Better than 

U
Slow

response
U TMHD 67 HZ No

response
B TMHD 67 HZ No

response
U 5-nonanone 35 MMH 35 Poor Slow

response
B 5-nonanone 35 MMH 36 Slightly

better
Better

response
U TMHD 67 MMH 172 Slower
B TMHD 67 MMH 208 Fast
U 5-nonanone 35 UDMH 184 Multiple

peaks
Fast R & 

R
B 5-nonanone 35 UDMH 222 Multiple

peaks
Fast R & 

R
U TMHD 67 UDMH 406 Fast

response,
slow

recovery
B TMHD 67 UDMH 539 Slightly

better
U 5-nonanone 35 Ammonia 288 Broad

peak
Slow

recovery
B 5-nonanone 35 Ammonia 404 Multiple

peaks
Very
slow

recovery
U TMHD 67 Ammonia 98 Fast 

response, 
very slow 
recovery

B TMHD 67 Ammonia 53 Slightly
worse

U 5-nonanone 35 Nitrogen
dioxide

500 Poor RIP Fast R & 
R

B 5-nonanone 35 Nitrogen
dioxide

1226 Poor
resolution

Fast R & 
R

U TMHD 67 Nitrogen
dioxide

370 Multiple
peaks

Fast R & 
R

B TMHD 67 Nitrogen
dioxide

No
response

” “

TMHD = 2,2,6,6-tetramethyl-3,5-heptanedione 
R & R = response and recovery
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For the detection of ammonia, the unidirectional system appeared to give better 

results with 2,2,6,6-tetramethyl,-3,5-heptanedione, but the 5-nonanone doped system 

produced improved limits of detection in the bi-directional pneumatic system. Despite 

the greater sensitivity to ammonia with a 5-nonanone doped bi-directional system, 

multiple peaks were formed and the recovery time was very long, however, the recovery 

time of the 2,2,6,6-tetramethyl,-3,5-heptanedione system was also very long. For the 

detection of nitrogen dioxide a 2,2,6,6-tetramethyl,-3,5-heptanedione doped system 

produced no response in the bi-directional mode.

The same system resulted in a better RIP and higher sensitivity with a 5-nonanone 

doped detector, compared with the unidirectional set-up. The overall results favoured 

the spectrometer configured with the bi-directional pneumatic system. However, it 

would be advisable to recheck the sensitivity of the final instrument configuration with 

the ultimate choice of dopant.

3.8 Summary of optimised spectrometer design features

Having determined the optimum operating conditions for the ion mobility spectrometer, 

it was found that much of the experimental breadboard could be reduced in size, with 

some parts becoming redundant. The bulky, heavy parts of the equipment required for 

flow control and measurement could be replaced with small fine control valves, pre-set 

to produce the required flow rates. Only one of the two detector cells was required; the 

membrane housing was no longer necessary; and the sieve packs were reduced in 

number, due to the improved design. Having decided upon these modifications a hand 

portable spectrometer was designed, in consultation with Graseby Dynamics Ltd.
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3.8.1 Sample inlet system

The direct inlet system produced sensitivity, response, and recovery characteristics, 

comparable to the membrane inlet system, and appeared not to be affected to any 

significant degree by changes in humidity levels. If a membrane inlet system was used, 

the membrane material would have to be compatible with the chosen dopant chemical. 

A direct inlet system would be easier to maintain and more cost effective. A 

compromise on optimum direct inlet flow rate would have to be made if an ion mobility 

detector was to be used for simultaneous monitoring of more than one of the hydrazines’ 

vapours. Hence, the direct inlet system was considered to be the better choice for sample 

ingress.

3.8.2 Spectrometer insulator material

The increase in sensitivity, apparent in the low temperature detector cell compared with 

the high temperature detector, was out-weighed by the excessive increase in response 

and recovery times, and the possibility of radiolysis degradation in the long term. The 

decision went in favour of the high temperature detector.

3.8.3 Detector operating temperature

The hydrazines had improved limits of detection with decrease in temperature, but to 

avoid the use of a cooling system in ambient conditions above 30°C, it was decided that 

the detector operating temperature should be set at 50°C.

3.8.4 Detector pneumatics configuration

A bi-directional flow system was considered to be the most suitable configuration for a 

combined HZ, MMH, UDMH, ammonia and nitrogen dioxide monitor, with a suitable 

choice of dopant chemical.
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3.8.5 Dopant chemicals for the detection o f the hydrazines, ammonia, and nitrogen 

dioxide

As dopant chemicals were required to enable the operating conditions of the ion 

mobility spectrometer to be optimised, a review of the dopants used so far seemed 

appropriate. The results were complicated due to the use of different dopant chemicals 

for the various trials, performed for the optimisation of the equipment. In order to 

evaluate the results fully, further study of the data was deemed necessary, and is 

described in chapter 4, part 1.

3.9 Miniaturised ion mobility spectrometer

The miniaturised breadboard comprised two sections, both hand portable. The detector 

module (see Figure 3.18) consisted of a direct inlet system coupled to a high 

temperature detector cell configured with a bi-directional pneumatic system, the 

requisite preamplifier and appropriate pcb for control of the detector, flow controls, 

operational mode switch, and umbilical gas line and electrical cable to the base unit. The 

base unit (Figure 3.19) contained the dopant chamber and control pcb, sieve packs, air 

pump, filters, air flow control valves, power supply and switch. The overall view of the 

combined pneumatic system is shown in Figure 3.20. The detector operating 

temperature was set at 50°C.

The hand unit was 380 x 240 x 160 mm; the base unit was 430 x 260 x 130 mm. 

The approximate weights were 3.1 and 6.6 kg respectively.

A photograph of the units is shown on Plate 3, following page 98.
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To base unit

IMS Drift cell

Mode switch

Needle valve gas flow controlsSample in

Figure 3.18: Schematic diagram of the miniaturised ion mobility spectrometer hand held
unit (cover holding the pcb removed)

Heated dopant pack 
with sieve pack 
(underneath)

Mains in and 
on/off switch

N eedle valve 
gas flow  controlsDopant

heater_
PCB

Inlet sieve

Air pump

Pump in lei 
filtter

Exhaust
charcoal
container

Power
supply Clean, dry 

air suuplyTo hand unit

Figure 3.19: Schematic diagram of the miniaturised ion mobility spectrometer base unit
(cover removed)
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Needle valve gas flow controls

Sieve pack

IMS cell

Air pump

Heated dopant pack

Inlet sieve

Exhaust charcoal 
container

Sample in

Figure 3.20: Schematic diagram of the miniaturised ion mobility spectrometer hand and
base units’ combined pneumatic system
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Chapter 4

ION-MOLECULE CHEMISTRY 

Part 1

Evaluation of dopant chemicals with different functional groups

It was suspected that the use of different dopant chemicals, in the ion mobility 

detection system, might produce different effects with regard to resolution, 

response and recovery times, and possibly limits of detection. Therefore, some 

further studies, employing different ion-molecule chemistry, were carried out, using the 

ion mobility spectrometer breadboard configured with the direct inlet system. The tests 

involving the evaluation of different ion-molecule chemistry regimes were performed 

prior to and during the period when the miniaturised ion mobility spectrometer was 

being fabricated.

The chemicals used to produce alternative ion-molecule chemistry regimes were 

acetone, 3,5-heptanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, a mixed dopant 

prepared from 4-dimethylaminobenzaldehyde with 2,2,6,6-tetramethyl-3,5- 

heptanedione, diisopropyl methane phosphonate, 4-methyl-2-pentanone, and 

5-nonanone. These chemicals were evaluated as dopant chemicals because their use, by 

a commercial ion mobility spectrometer manufacturer, was under consideration. The 

dopant chemical vapours were generated as described in section 2.1.2.4, and once a 

stable RIP was established (section 2.1.2.7) spectra were recorded according to the 

details in section 2.1.2.8. The response characteristics, as described in section 2.2.7 were 

recorded. The results are listed in Tables 4.1 to 4.4, and are discussed below. For 

convenience, in the tables of results, the above list of chemicals is referred to as follows:
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acetone 3,5-HD (3,5-heptanedione), TMHD (2,2,6,6-tetramethyl-3,5-heptanedione), 

mixed (4-dimethylaminobenzaldehyde with 2,2,6,6-tetramethyl-3,5-heptanedione), 

DIMP (diisopropyl methane phosphonate), MIBK (4-methyl-2-pentanone), and 

5-nonanone, respectively.

Table 4.1: Normalised peak positions

Ammonia HZ MMH UDMH Nitrogen
dioxide

Acetone 113 113 111 105, 112 91
3,5-HD Not tested NR* 81 84, 92 70
TMHD 102 NR 78 79 73
Mixed 109 NR NR 83 73
DIMP 111, 134 133 111, 131 110 94
MIBK 120 120 94, 113 92, 110, 117 96

5-Nonanone 124 126 104 84, 105 76
NR = no response 
*Change in RIP only

Table 4.2: Peak amplitudes

Ammonia
(mV) (mV)

MMH .
(mV)

UDMH
(mV)

Nitrogen 
dioxide (mV)

Acetone 873 165 217 446, 99 1528
3,5-HD Not tested NR 190 466,18 300
TMHD 38 NR 172 447 370
Mixed 150 NR NR 42 267
DIMP 15,272 35 59, 52 57 263
MIBK 512 170 61, 204 65,401,21 1214

5-Nonanone 288 46 35 84, 20? 500
NR = no response

Table 4.3: Response times

Ammonia HZ MMH UDMH Nitrogen
(s) (s) (s) (s) dioxide (s)

% 90 100 90 100 90 100 90 100 90 100
Acetone S S 150 150 468 500 60 60 256 792
3,5-HD NT NT 230 378 40 94 28 28 12 12
TMHD 54 80 NR NR 244 362 54 68 34 34
Mixed 18 18 NR NR NR NR 12 18 26 32
DIMP 18 24 24 30 66 96 96 126 18 24
MIBK 24 30 90 120 60 120 54 96 12 18

5-Nonanone 12 68 144 144 18 18 18 58 26 32
S = too slow to measure; NT = not tested; NR = no response



Table 4.4: Recovery times
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*1J'. . ' : '  V' ' Ammonia Hydrazine MMH UDMH Nitrogen
(s) (s) (s) (s) , dioxide (s)

% 90 100 ; 90 100 90 100 90 100 90 100
Acetone S S 56 160 60 60 138 686 104 466
3,5-HD NT NT 14 176 28 112 28 54 12 12
TMHD S S NR NR 472 472 714 1020 34 20
Mixed 18 30 NR NR NR NR 18 32 6 6
DIMP 66 126 18 30 66 72 66 72 6 12
MIBK 72 78 156 156 78 84 204 288 12 18

5-Nonanone 410 >25
min

32 38 * * 44 88 32 88

S = too slow to measure; N1f = not tested; MR = no response
* Unable to measure accurately as the peak was positioned on the tailing edge of the RIP

4.1 Detection o f ammonia

Diisopropyl methane phosphonate, 4-methyl-2-pentanone, and 5-nonanone, were the 

only three dopants to produce well resolved peaks. The acetone doped system was the 

most sensitive to ammonia. The 5-nonanone system was the next most sensitive, 

followed by the 4-methyl-2-pentanone and mixed dopant systems, which produced 

sensitivity comparable with ammonia (with the results normalised approximately for 

concentration). The sensitivity of these systems was much higher than in the 2,2,6,6- 

tetramethyl-3,5-heptanedione system, which produced an unresolved doublet peak with 

the RIP (see Figure 4.1). The sensitivity of the diisopropyl methane phosphonate system 

was greater than that of the 2,2,6,6-tetramethyl-3,5-heptanedione system but not as good 

as the other systems. Ammonia was not available for testing with the 3,5-heptanedione 

system.

The mixed dopant produced the fastest response and recovery times for ammonia 

exposure. The 2,2,6,6-tetramethyl-3,5-heptanedione doped system produced a fast 

response but an unacceptably long recovery time; the acetone system was also slow to 

respond and recover. The product ion peaks formed from the 5-nonanone system were
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broad, and the recovery time from exposure to ammonia rendered the 5-nonanone 

system unsatisfactory. The 4-methyl-2-pentanone, mixed dopant, and diisopropyl 

methane phosphonate systems produced acceptable response and recovery 

characteristics and satisfactory peak amplitudes, but as the resolution of both the 

4-methyl-2-pentanone and diisopropyl methane phosphonate systems was higher than 

the mixed dopant system, either of these two dopants would be considered for the 

detection of ammonia.

Amplitude

Ammonia 
16.95 ms

Product ion 
peak 

13.65 ms

RIP 
16.65 ms

Time

Drift time
Figure 4.1: High temperature detector response and recovery characteristics to ammonia 

exposure, 66°C, 2,2,6,6-tetramethyl-3,5-heptanedione doped system

4.2 Detection o f hydrazine

Resolution for the four dopants which produced product ion peaks was satisfactory; 

acetone, diisopropyl methane phosphonate, 4-methyl-2-pentanone, and 5-nonanone 

doped systems produced product ion peaks resolved from the RIP. The diisopropyl 

methane phosphonate system provided the highest resolution.
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For the detection of HZ, 2,2,6,6-tetramethyl-3,5-heptanedione and the mixed 

dopant were unsatisfactory due to lack of response i.e. formation of an observed product 

ion peak. 3,5-Heptanedione was unsuitable as the only indications of response were a 

slight decrease in the RIP amplitude and broadening of the RIP at the tailing edge (see 

Figure 4.2).

Amplitude Removal 
from HZ 
vapour

Exposure to 
HZ vapour

\ I
RIP

13 65 ms

Broadened peak 
observed at 

tailing edge of 
RIP, due to the 
presence of HZ

Drift time
Figure 4.2: High temperature detector response and recovery characteristics to HZ

exposure, 67°C, 3,5-heptanedione

As stated in section 2.2.7 (page 61), tests with 4-methyl-2-pentanone and 

diisopropyl methane phosphonate doped systems were performed using higher 

concentrations of the hydrazines analytes. The peak amplitudes recorded in Table 4.2 

were not corrected for concentration because the response characteristics of the 

spectrometer were unknown. Therefore, the diisopropyl methane phosphonate and

4-methyl-2-pentanone doped systems required a higher concentration of HZ to produce
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peak amplitudes comparable with alternatively doped systems. When the peak 

amplitudes for the 4-methyl-2-pentanone doped system were normalised using an 

estimated linear response this dopant still showed improved sensitivity over most of the

3,5-heptanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, and mixed dopant systems 

which, as can be seen from Table 4.2, gave an essentially zero response. The acetone 

doped system was the most sensitive.

The response times for 90% and 100% peak amplitude were all less than four 

and seven minutes respectively. There was a general trend for increased sensitivity with 

increased response and recovery times. The 5-nonanone doped system required a longer 

equilibration time for the attainment of peak amplitudes comparable with that of the 

other ion-molecule systems of similar sensitivity. The choice of dopant chemical was 

narrowed down to acetone, 4-methyl-2-pentanone, diisopropyl methane phosphonate, 

and 5-nonanone. Acetone would be the preferred dopant because of sensitivity, response 

and recovery times and 4-methyl-2-pentanone would be the second choice.

4.3 Detection o f methylhydrazine

The normalised MMH product peak amplitudes decreased from the acetone doped 

system through the 3,5-heptanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, and

4-methyl-2-pentanone systems. The mixed dopant was unsatisfactory as no response 

was achieved for the detection of MMH. These results combined with the slower 

response and recovery times for the acetone and 2,2,6,6-tetramethyl-3,5-heptanedione 

systems eliminated these two chemicals from the list of possible dopants. 5-Nonanone 

was also eliminated because of insufficient resolution. The 3,5-heptanedione system 

produced greater sensitivity, and a single peak, compared with the diisopropyl methane 

phosphonate and 4-methyl-2-pentanone systems, which each produced two product ion 

peaks, and so 3,5-heptanedione was the chosen dopant.
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4.4 Detection o f 1,1-dimethylhydrazine

The UDMH product ion peaks were unresolved from the acetone RIP.

3,5-Heptanedione, 2,2,6,6-tetramethyl-3,5-heptanedione, diisopropyl methane 

phosphonate, and 5-nonanone all produced well resolved peaks. Although the 

normalised peak positions for one of the UDMH product ion peaks in each of the 

acetone and 5-nonanone systems corresponded, the peak amplitudes were higher in the 

acetone system and consequently overlapped with the RIP; baseline resolution was 

achieved with the lower peak amplitude of the 5-nonanone system. The waterfall spectra 

showing the response and recovery of the higher mobility UDMH product ion peak in 

the 3,5-heptanedione doped system have been reproduced in Figure 4.3.

A
Amplitude

UDMH 
11.55 ms

Drift time

Figure 4.3: High temperature detector response and recovery characteristics to UDMH
exposure, 67°C, 3,5-heptanedione doped system
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The acetone, 3,5-heptanedione, and 2,2,6,6-tetramethyl-3,5-heptanedione 

systems produced comparable peak amplitudes for UDMH. Even taking into account the 

higher concentration of 4-methyl-2-pentanone, the peak amplitude was comparatively 

higher than that achieved for the 5-nonanone doped system. The diisopropyl methane 

phosphonate and mixed dopant systems had lowest sensitivity. The 4-methyl-2- 

pentanone system produced multiple peaks.

The system doped with diisopropyl methane phosphonate was relatively slower 

to respond; it took at least twice as long as the remaining doped systems to reach 

equilibrium response. The mixed dopant and 5-nonanone systems had fast response 

times for UDMH exposure. The acetone doped system was slow to recover fully, but 

still much faster than the 2,2,6,6-tetramethyl-3,5-heptanedione system. 4-Methyl-2- 

pentanone had a longer recovery time than the 3,5-heptanedione, mixed, diisopropyl 

methane phosphonate, and 5-nonanone. Due to the longer response and recovery times 

of the 4-methyl-2-pentanone and diisopropyl methane phosphonate systems, the other 

sensitive system with satisfactory resolution, 3,5-heptanedione, was considered the most 

satisfactory of the dopant chemicals evaluated. The second choice of dopant was

5-nonanone.

4.5 Detection o f nitrogen dioxide

The acetone system produced the highest sensitivity, with a sharp peak in excess of 

1500 mV partially resolved from the RIP. 3,5-Heptanedione, and the mixed dopant 

produced unstable nitrogen dioxide peaks; multiple peaks were formed with

3,5-heptanedione, one being a doublet with the RIP. 5-Nonanone produced a poor RIP 

(low amplitude and broad) but a sharp product ion peak. 2,2,6,6-Tetramethyl-3,5- 

heptanedione produced multiple unresolved peaks (see Figure 4.4). The mixed dopant 

produced a sharp product ion peak with a much smaller peak on the tailing edge.
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Amplitude

Broad multiplet RIP, 
two main peaks at 

8.11 & 9.95 ms
Nitrogen 
dioxide 
7.23 ms

Drift time

Figure 4.4: High temperature detector response to nitrogen dioxide exposure, 66°C, 
2,2,6,6-tetramethyl-3,5-heptanedione doped system

Diisopropyl methane phosphonate produced a peak which was poorly resolved from 

multiple shallow RIPs. 4-Methyl-2-pentanone produced high sensitivity but an 

unresolved response to nitrogen dioxide. With peak amplitudes corrected for 

concentration, the diisopropyl methane phosphonate system showed poor sensitivity. 

The peak amplitudes increased in the following order of dopant systems: diisopropyl 

methane phosphonate < mixed < 3,5-heptanedione < 2,2,6,6-tetramethyl-3,5- 

heptanedione < 4-methyI-2-pentanone < 5-nonanone < acetone.

Apart from the relatively long response and recovery times observed for nitrogen 

dioxide detection in an acetone based system all response and recovery times were fast, 

within 35 seconds, except for recovery of the 5-nonanone system which took over a 

minute.
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The choice of dopant for nitrogen dioxide detection was a difficult one because 

of the lack of resolution of the majority of the dopant systems. The 5-nonanone was 

discounted as a possible dopant because of impracticalities involved with the software 

programming aspects of broad low intensity RIPs. In the 2,2,6,6-tetramethyl-3,5- 

heptanedione system multiple peaks were formed; unstable peaks resulted in both the

3.5-heptanedione and mixed dopant systems. Therefore, despite the longer response and 

recovery times recorded for the acetone it was considered the most suitable choice of 

dopoant for the detection of nitrogen dioxide.

4.6 Simultaneous detection o f the hydrazines and nitrogen dioxide

Of the dopant chemicals tested, acetone produced the greatest sensitivity but the peaks

were not resolved, in the positive mode, so this system was unacceptable. The use of

3.5-heptanedione was satisfactory for the detection of MMH and UDMH. This dopant 

was not tested with ammonia, and it was discounted as unsatisfactory for the detection 

of HZ and nitrogen dioxide. 2,2,6,6-Tetramethyl-3,5-heptanedione was unacceptable for 

the detection of any of the analytes. The mixed dopant could only be considered for the 

detection of ammonia. Diisopropyl methane phosphonate was unsatisfactory for the 

detection of HZ, UDMH, and nitrogen dioxide. 4-Methyl-2-pentanone was satisfactory 

for the detection of ammonia, HZ, and MMH, and a minor possibility for the detection 

of UDMH. It was not acceptable for the detection of nitrogen dioxide. The broad peaks 

and long recovery times of the 5-nonanone system precluded its use as the dopant for 

simultaneous detection of the hydrazines and nitrogen dioxide.

It became obvious that the choice of dopant chemical would have to be a 

compromise of performance characteristics for detection of the different analytes, for 

example, between sensitivity, response and recovery times, and overall resolution. In 

order to assist with the final choice, a summary of the dopant systems was compiled and
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has been reproduced in Table 4.5. The different dopant / analyte combinations have 

been rated for their performance characteristics, with seven points awarded for overall 

first choice of dopant for a given analyte (denoted by number in the table), six points for 

the second choice, down to zero points for a totally unsatisfactory dopant. The summed 

points awarded are listed in the rating column.

The key to the performance characteristics listed in the table are Ri = response 

time, R-2 = recovery time, Rt = resolution, S = sensitivity, P = peak shape or unstable 

peaks, M = multiple peaks, and NT = not tested. Where these were not satisfactory, then 

no points were awarded below the third choice of dopant.

Table 4.5: Summary of the different dopant / analyte systems

Ammonia Hydrazine UDMH Nitrogen
dioxide

Rating

Acetone r2 1 Ri Rt, R2 1 14
3,5-HD NT Rt 1 1 P, M 14
TMHD s, r2 s Ri, R2 r2 M, Rt 0
Mixed 3 s s s P, M 5
DIMP 2 s M, 3 S, Ri S,Rt 11
MIBK 1 2 M, 2 M, Ri, R2, 3 Rt 24

5-Nonanone P, r2 R2,3 Rt 2 P 11

All of the dopants that produced usable responses to HZ also produced a response to 

ammonia, which would not have been resolved from the HZ peak if it had occurred 

simultaneously in the same [doped] spectrum. Ammonia remained an interferent in the 

ion mobility detection of HZ. Therefore, for the simultaneous detection of the 

hydrazines, 4-methyl-2-pentanone would require further investigation, or a completely 

different dopant chemical should be investigated. It is probable that a different detector 

cell, with alternative dopant chemistry, would be required for the detection of nitrogen
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dioxide. However, it might be possible to incorporate the two detectors into one 

instrument, but this would mean a larger unit with additional hardware and software.

One instrument, for monitoring all of the compounds of interest, would be 

simpler for the operator in terms of convenience e.g. fewer pieces of equipment to use 

and maintain. This would also be more cost effective as fewer instruments would mean 

less initial cost and overall cheaper maintenance. From the research performed so far, 

optimum ion-molecule chemistry systems differ according to the analyte of interest. 

Therefore, a compromise would be necessary for the purpose of demonstrating the 

capabilities of a single monitor.

The product ion peaks produced for the hydrazines, in any of the doped systems, 

appeared in the mobility spectrum in reverse order to that expected. From the relative 

assumed diameters of the neutral species it would have been plausible for mobility to 

decrease in the order of ammonia > HZ > MMH > UDMH. However, empirical findings 

showed their mobilities decreased in the reverse order. This phenomenon, coupled with 

the ammonia and HZ product ion peaks having very similar ion mobilities, suggested 

that the ion clustering sequence of each analyte was different. Due to the results so far, it 

was decided that the detection of nitrogen dioxide should be segregated from the 

problems of separating HZ and ammonia in the mobility spectrum and that the 

remainder of the research should centre around the ion-molecule chemistry of the 

hydrazines. It was decided that further investigation of the thermodynamic properties 

and sizes of the ion-molecules formed should be undertaken through use of molecular 

modelling.
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Chapter 4 

Part 2 

Molecular modelling

one of the diones had been shown to be more successful for the detection 

of the hydrazines. The acetone system had insufficient resolution of the 

hydrazines and ammonia, whereas 5-nonanone had lower sensitivity but greater 

resolution overall, although still only partial resolution of the ammonia and HZ peaks. It 

has been surmised that the increase in resolution of the HZ and ammonia product ion 

peaks, observed in changing from the acetone to the 5-nonanone doped system, was due 

to the greater difference in cross sectional diameter of the ammonia and HZ ion- 

molecule clusters formed in the 5-nonanone system. Previous work performed with

5-nonanone reagent gas(I78) produced product ion peaks which were composed of the 

analyte clustered with either one or two molecules of the ketone. As it has been shown 

empirically from reduced mobility data that the increase in size of the dopant ketone 

molecule from acetone to 5-nonanone leads to the formation of bigger ion-molecule 

clusters, the improvement in resolution might be observed as a gradual progression 

through an homologous series of the ketones.

4.7 Chemical systems considered

In order to evaluate sizes and thermodynamic properties, which may have affected the 

apparent resolution and sensitivity, an homologous series of symmetrical ketones from 

acetone through to 6-undecanone (Figure 4.5) was studied through the use of the
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HyperChem molecular modelling software package. The ketone series was terminated at

6-undecanone because it was thought that the changes in inductive effects due to 

increased carbon chain length would be negligible at this number of carbon atoms, and 

encompassed both acetone and 5-nonanone, which have been evaluated empirically.

Figure 4.5: 6-Undecanone

Branched chain symmetrical ketones were also examined in order to investigate whether 

steric hindrance would affect ion-molecule cluster formation. The chemicals evaluated 

in this part of the study were 2,4-dimethyl-3-pentanone (diisopropyl ketone) (Figure 

4.6), 2,2,4,4-tetramethyl-3-pentanone (di-r-butyl ketone) (Figure 4.7), 2,2,6,6-

tetramethyl-4-heptanone (dineopentyl ketone) (Figure 4.8), 2,6-dimethyl-4-heptanone 

(diisobutyl ketone) (Figure 4.9), and 2,8-dimethyl-5-nonanone (diisopentyl ketone) 

(Figure 4.10).
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Figure 4.6: 2,4-Dimethyl-3-pentanone

These compounds were chosen for inclusion in the series of calculations in order 

to maintain the sequence of symmetrical ketones, determine the effect of methyl 

substitution close to the carbonyl group, and the effect of insertion of methylene groups 

between the methyl and carbonyl functional groups.
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Figure 4.7: 2,2,4,4-Tetramethyl-3-pentanone, viewed from two different positions

Figure 4.8: 2,2,6,6-Tetramethyl-4-heptanone, viewed from two different positions
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Figure 4.9: 2,6-Dimethyl-4-heptanone, viewed from two different positions

Figure 4.10: 2,8-Dimethyl-5-nonanone
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In theory, the inductive effect should increase with an increased degree of methyl 

substitution close to the carbonyl group, for example, going from 2,4-dimethyl-3- 

pentanone to 2,2,4,4-tetramethyl-3-pentanone, or from 2,6-dimethyl-4-heptanone to 

2,2,6,6-tetramethyl-4-heptanone. Also, the effect should decrease with increased 

distance of the methyl group from the carbonyl bond through the addition of the 

methylene groups, for example, going from 2,4-dimethyl-3-pentanone through 2,6- 

dimethyl-4-heptanone to 2,8-dimethyl-5-nonanone, or from 2,2,4,4-tetramethyl-3- 

pentanone to 2,2,6,6-tetramethyl-4-heptanone.

4.8 Computational chemistry considerations

Computational chemistry(209) can be used to characterise and predict the structure and 

stability of chemical systems, to estimate energy differences between different states, 

and to explain reaction pathways and mechanisms. The equilibrium geometry of a 

molecule describes the co-ordinates of a deep minimum on the potential energy surface, 

which may be very complicated even for relatively simple molecules. Geometry 

optimisation is a means of finding a set of co-ordinates corresponding to the minimum 

potential energy. In this research, the HyperChem software package was used to 

establish optimised geometry which represented a minimum on the potential energy 

curve, for each of the neutral molecules and ion-molecule clusters of interest.

Calculation parameters were as stipulated in section 2.1.2.9. An understanding of 

the complexity of the calculation considerations was required before the parameters 

could be programmed. The model building function was used to create a reasonable 

starting structure for individual molecules, but the initial structures of the ion-molecule 

clusters had to be constructed by employing knowledge of probable protonation sites, 

orientation of the ion and molecule(s) comprising the cluster, and possible repulsion / 

attraction interactions.
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4.9 HyperChem computed data

Data obtained from the calculations were stored in log files, and subsequently accessed 

through “Write” software in the Microsoft Windows Accessories program. Information 

calculated included the total energy of each system, binding energy, isolated atomic 

energy, electronic energy, core-core interaction, heat of formation, gradient, eigenvalues, 

atomic orbital electron populations, net charges and co-ordinates, and dipoles. 

HyperChem calculates both heats of formation and binding energies, although the 

HyperChem literature recommended that the heats of formation were more useful, and 

that calculated molecular dipole moments varied from experimentally determined 

values. Distances between atoms in the cluster were measured through the selection of 

those atoms, whereby the interatomic distance was displayed in the “status” field.

Electrostatic potential, displayed as a contour plot, may be useful for finding 

probable sites of reaction in a molecule; for example, if the highest unoccupied 

molecular orbital (HOMO) of a system was plotted as a contour map, then the region of 

highest electron density would be the site of electrophilic attack .

4.10 Computation results and discussion

The numerical data calculated depends on the HyperChem program utilised and can 

only be used for comparison, for example, to determine trends with data obtained under 

identical conditions. The following information was recorded from the semi-empirical 

calculations performed as stated.

With respect to the neutral molecules, the charges on the nitrogen atoms of the 

ammonia and HZ molecules were 0.006, and -0.074 respectively. On the MMH and 

UDMH molecules the nitrogen atoms with two hydrogen atoms attached had charges of 

-0.063 and -0.048 respectively. The effect of sequential methyl substitution was to
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increase the magnitude of the negative charge on the methylated nitrogen from -0.074 to 

-0.103 and -0.121 respectively, forcing the electron density to be greater on the nitrogen 

with the methyl groups attached, and thereby rendering that nitrogen more basic. Figure 

4.11 shows the stick representations of the hydrazines labelled with the relative charge. 

The net charges calculated for the neutral ketone molecules and the protonated 

monomer and dimer species are documented in Table 4.6.

Figure 4.11: Relative charge distribution of the hydrazines’ nitrogen atoms

As expected, the relative charges on the carbon and oxygen atoms of the 

carbonyl group became more positive on protonation of the neutral molecule. The 

charge on the carbon atoms decreased marginally on addition of the second ketone 

molecule to the ion-molecule cluster (see Table 4.6), but the charge on the oxygen 

atoms increased. With respect to the straight chain ketones, the average charge for the 

carbonyl carbon atoms changed from 0.274 for the neutral molecule, to 0.398 for the
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protonated monomer, and to 0.392 and 0.361 for the protonated dimer. The 

corresponding oxygen atoms had charges of -0.310 (neutral), -0.076 (monomer), 0.128 

and 0.427 (dimer).

Table 4.6: Net charges calculated for the carbon and oxygen atoms of the ketone
carbonyl bonds

Neutral molecule Protonatec monomer Protonated dimer
C O C O C O

Acetone 0.276 -0.314 0.422 -0.077 0.416 0.141
0.372 0.437

3-pentanone 0.270 -0.307 0.384 -0.075 0.380 0.127
0.356 0.423

4-heptanone 0.274 -0.310 0.396 -0.076 0.390 0.128
0.360 0.426

5-nonanone 0.274 -0.309 0.395 -0.075 0.387 0.122
0.358 0.423

6-undecanone 0.274 -0.310 0.395 -0.075 0.385 0.121
0.358 0.426

2,4- 0.274 -0.310 0.381 -0.064 0.376 0.110
Dimethyl-3- 0.352 0.411
pentanone

2,2,4,4- 0.281 -0.311 0.410 -0.081 0.392 0.105
Tetramethyl- 0.367 0.439
3-pentanone

2,2,6,6- 0.288 -0.309 0.404 -0.089 0.376 0.084
Tetramethyl- 0.369 0.430
4-heptanone

2,6- 0.280 -0.315 0.412 -0.085 0.407 0.132
Dimethyl-4- 0.368 0.435
heptanone

2,8- 0.279 -0.311 0.398 -0.084 0.392 0.133
Dimethyl-5- 0.363 0.419

nonanone

For the branched chain ketones, the corresponding net charges on the carbon 

atoms were 0.280 (neutral), 0.401 (monomer), 0.389 and 0.364 (dimer); the net charges 

on the corresponding oxygen atoms were -0.311 (neutral), -0.084 (monomer), 0.113 and 

0.427 (dimer). The trend was for the carbonyl to become more positively charged in the



121
monomer and dimer, while the electron density of the oxygen atom decreased from the 

neutral ketone to the protonated monomer to the protonated dimer. (The trends are more 

significant than the absolute values.) One indication from these calculations was that the 

second ketone molecule in the dimer ion-molecule was not so strongly attracted as the 

first.

It was decided to continue the HyperChem geometry optimisation of ion- 

molecule clusters comprising the protonated ketones combined with the individual 

analytes. The maximum cross-sectional diameter of each of the previously optimised 

neutral molecules and these ion-molecule clusters was measured. These measurements 

were considered to be the effective size of the molecules and are recorded, for straight 

chain and branched chain species, in Table 4.7. The highlighted areas of the following 

tables indicate that HyperChem calculations were not performed for that particular ion- 

molecule cluster. These calculations were set up with neutral analyte molecules placed 

in the vicinity of a protonated ketone cluster.

The maximum diameters of the neutral molecules of ammonia and the three 

hydrazines of interest were also measured through use of the software. The empirical 

results obtained (see Chapter 4, part 1) showed these analytes to have mobilities in the 

reverse order to those predicted. The expected order would be ammonia > HZ > MMH > 

UDMH, based upon their respective cross sectional diameters of 1.6176 A, 2.7781 A, 

4.0568 A, and 4.2379 A. The order of mobility was assumed to be affected by the 

characteristics of the ion-molecule clusters formed. The formation of ion-molecule 

clusters with equivalent numbers of ketone molecules should increase correspondingly 

and, therefore, should not affect the order of mobility. Thus, the assumption was that 

different numbers of ketone molecules were involved in the formation of the ion- 

molecule clusters for this series of analytes.
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A model hypothesised by Stone(203) suggested that, in the absence of gas phase 

reactions of the ketones and the hydrazines, the predicted number of ketone molecules 

per ion cluster would be four for the ammonia analyte, three for HZ, two for MMH, and 

one for UDMH.

Protonated ammonia has four hydrogen atoms attached to the nitrogen. These 

hydrogen atoms can attract the oxygen atom of a ketone carbonyl group through 

hydrogen bonding.

The HZ molecule is symmetrical, with an equivalent charge on each of the two 

nitrogen atoms. On protonation, the basicity of one of the nitrogen atoms increases with 

respect to the other. The three hydrogen atoms attached to this nitrogen can each attract 

the oxygen atom of a ketone carbonyl group.

In MMH, the presence of a methyl group increases the basicity of the methylated 

nitrogen atom, through the inductive effect, to which the proton would be attracted 

preferentially. Two ketone molecules would be attracted to the two hydrogens 

associated with the methylated nitrogen in protonated MMH.

In the UDMH molecule, the presence of two methyl groups on the same nitrogen 

further increases the basicity of the methylated nitrogen atom, compared with MMH. 

Protonation at this nitrogen permits the attraction of one molecule of ketone.

Additional computations were performed for the predicted clusters according to 

the Stone model. If the model holds then the effective diameter of the ion-molecule 

clusters is H+(ammonia)(K)4 > H+(HZ)(K)3 > H+(MMH)(K)2 > H+(UDMH)(K), where 

K is a ketone (see Table 4.8). These optimisations were performed by modelling the 

protonated analyte and placing neutral ketone molecules with the carbonyl group in 

close proximity to the protonated nitrogen atom. The measured diameters of the above

o
series of computed ion-molecules, for an acetone doped system, were 10.5689 A,
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10.3399 A, 9.6289 A, and 7.7678 A respectively. The consecutive differences between 

the diameters were 0.229 A, 0.711 A, and 1.861 A. The closer values of the ammonia 

and HZ ion-molecules clusters, with four and three molecules of ketone respectively 

might account for the insufficient resolution of the ammonia and HZ product ion peaks.

Table 4.8: Maximum diameters (A) of ion-molecule clusters

h +a k 4 n  r l z J lV3 h +m k 2 TJ+T TV  t l  vJ l v

Acetone 10.5689 10.3399 9.6289 7.7678

3-Pentanone 11.7665 11.9349 10.7395 8.3737

4-Heptanone 14.1747 13.5557 12.5791 9.3936

5-Nonanone 15.7262 14.7810 13.3410 11.8724

6 -Undecanone 18.6819 16.3980 15.6212 14.4093

2,4-Dimethyl-3-pentanone 12.6728 12.5194 12.7773 8.8990

2,2,4,4-Tetramethyl-3-pentanone 13.6244 12.5223 12.9903 8.7559

2,2,6,6-Tetramethyl-4-heptanone 14.4496 13.3539 14.1374 9.4273

2,6-Dimethyl-4-heptanone 13.9506 13.7382 12.8044 9.3252

2,8-Dimethyl-5-nonanone 16.6692 14.9867 15.1096 11.8573

The UDMH product ion peak was found, empirically, in the acetone doped 

system, to occur before the RIP i.e. it was of higher mobility. The RIP occurred before 

the remainder of the product ion peaks. This would indicate that the RIP might consist 

of either the protonated dimer of acetone (diameter 8.5067 A) and / or the protonated 

acetone trimer ion (diameter 8.4130 A), each of which is larger than the computed 

UDMH product ion cluster (7.7678 A) (see Tables 4.7 and 4.8). Additionally to the

, o
tabulated values, the diameter of the tetramer ion of acetone H K4 (9.4587 A) was
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determined and indicates that it would occur after the trimer ketone / MMH ion- 

molecule cluster, H+(MMH)K3. This conflicts with the ion mobility data and further 

supports the assumption that the RIP consists of the protonated dimer and trimer ketone 

clusters.

The 5-nonanone dopant was shown empirically to be satisfactory for resolution 

of the analyte peaks from the RIP, and for resolution of the analyte peaks from each 

other, with the exception of the ammonia and HZ product ion peaks, which were only 

partially resolved. Examination of the computed cluster diameters has revealed that, as 

with the acetone doped system, there is little difference between the H+AK4 and 

H+(HZ)K3, 15.7262 A and 14.7810 A respectively. The close values of the 

corresponding ammonia and HZ product ion cluster molecules might account for the 

minimal resolution observed.

The ion-molecule clusters for the series H+(ammonia)(K)4, H+(HZ)(K)3, 

H+(MMH)(K)2, and H+(UDMH)(K), where K is 4-heptanone, are shown in Figure 4.12.

Applying the same principles to the ion-molecule clusters formed with the 

branched chain symmetrical ketones, in many cases the differences in effective 

diameters are more pronounced. It might be considered that the differences in diameter 

may be sufficient to effect resolution of the ammonia and HZ analytes, however steric 

hindrance could prove problematical. With reference to Table 4.8, the greatest 

difference in the relevant cluster diameters were those obtained for the 2,8-dimethyl-5- 

nonanone and 6 -undecanone. Further examination of Table 4.8 indicates that with the 

branched chain ketones, there are only small differences in the diameters of the MMH 

and HZ clusters, suggesting that although HZ and ammonia might be resolved by 

mobility, MMH and HZ might not. 6 -Undecanone gives the most uniform difference for
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all the hydrazines and ammonia, but might be difficult to generate in sufficient 

concentrations to effect mobility separation.

Figure 4.12: The ion-molecule clusters for the series H+(ammonia)(K)4, H+(HZ)(K)3, 
H+(MMH)(K)2, and H+(UDMH)(K), where K is 4-heptanone

In order to evaluate the validity of these assumptions, derived from the 

computational chemistry, it was decided to investigate the composition of the ion- 

molecule clusters through the use of IMS-MS-MS.



Chapter 4 

Part 3

Ion mobility spectrometry coupled with tandem mass spectrometry 

- a study of ion-molecule chemistry

4.11 IMS-MS-MS

T
he IMS-MS-MS analysis was performed in order to determine the 

composition of the ion-molecule clusters formed in the ionisation and drift 

regions of the ion mobility spectrometer and which would normally be 

transported to the collector electrode of an ion mobility spectrometer (IMS). With the 

Faraday plate removed, the ion-molecules passed through the IMS into a tandem MS 

system, via a pinhole. The first of the two mass spectrometers was used to record the 

complete spectrum of ion-molecules of mass to charge ratio, m/z, in the range 1 to 500 

atomic mass units (amu) although, generally, the range was limited to 450 amu. Peaks of 

sufficient intensity were subjected to MS-MS and targeted for analysis in the second 

mass spectrometer. The ion density of the sample species was important; the ion current 

reaching the mass spectrometer(121) had to be sufficient to enable identification of the 

ion clusters to be made through MS-MS analysis. The product ion spectrum recorded 

the ion-molecule cluster and the product ions as the cluster dissociated. From this data, 

and the knowledge of chemicals introduced into the system, the compositions of the ion- 

molecules clusters were determined.

The hydrazines of interest so far have been HZ, MMH, and UDMH. In order to 

test the Stone model more thoroughly, TMH was included with the other hydrazines and
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ammonia as analytes for IMS-MS-MS analysis. The prior discussion (see section 4.10), 

concerning the probable protonation sites and numbers of ketone molecules attached, 

was extended to include TMH. This fully methyl substituted hydrazine is a symmetrical 

molecule and, as with HZ, either nitrogen atom would be susceptible to protonation, and 

so one ketone molecule would be attached to the single proton on TMH.

The ketones used in the study were those in the homologous series of 

symmetrical ketones C 3 to C 9 i.e. acetone to 5-nonanone. 5-Nonanone was set as the 

upper limit due to the range restrictions of the mass spectrometer. Additionally, it was 

decided to investigate the effects of an electron withdrawing group upon the formation 

of ion-molecule clusters. The chemical chosen for this part of the investigation was

1,1,1 -trifluoroacetone.

The following results have been divided into separate sections for each analyte 

and further divided into sub-sections for each ketone and analyte system. For the first 

stage of the experiments only the source region of the ion mobility spectrometer was 

doped with ketone, whereas for the second stage both the source and drift regions were 

doped with the same ketone simultaneously. For ease of identification, these two 

configurations are subsequently referred to as source region doped and drift region 

doped.

Calibration of the MS-MS system showed that the recorded m/z values were 

accurate to ± 1 amu for the majority of the research, but sometimes drifted to ± 2  amu. 

Therefore, some values which appear on the following mass spectra appear to differ 

slightly from the tabulated results which have been corrected according to the relevant 

calibration. The tables of results list the peaks in order of intensity rather than numerical 

order. Precursor ions marked with an asterisk denote ion-molecule clusters for which 

product ion spectra could not be obtained due to insufficient peak intensity.
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Since the dopant and analyte for each experiment were known, and Product ion 

spectra provided proof of ion-molecule identity, cluster ions formed from analytes not 

introduced in a given experiment were assumed to be residual from previous test runs. 

The system was cleaned between experiments, however, the surface active hydrazines 

proved problematical for complete removal from the ion mobility cell. All of the 

experiments were repeated to ensure that the results were reproducible and to confirm 

the presence of previously assigned, or expected, ion-molecule clusters. In order to 

reduce the amount of residual contamination, two ion mobility cells were used in 

sequence, one being cleaned whilst the other was in use. Steam cleaning was eventually 

found necessary to clean the ion mobility cells. However, concurrent with the evolution 

of this cleaning process there were some minor contaminants recorded during 

experiments. Although mentioned in the text these contaminant peaks have not been 

recorded in tabulated data in an effort to clarify the true constitution of the ion chemistry 

for any given combination of analyte and dopant.

4.12 Proton bound clusters of ketones and ammonia

4.12.1 Acetone /  ammonia ion chemistry

IMS-MS spectra of the undoped system showed major protonated water clusters at m/z 

values of 37, 55, 73, and 91 corresponding to H+(H2 0 )n, where n = 2 to 5 consecutively. 

The addition of ammonia to the system produced clusters at m/z values of 18, 36, 54, 

and 72, corresponding to NH4+(H2 0 )n where n = 0 to 3. On the introduction of acetone 

into the source region of the IMS, the observed major ions were those comprising 

protonated combinations of acetone and ammonia, as recorded in Table 4.9. The 

corresponding mass spectrum is shown in Figure 4.13.
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Table 4.9: Summary of ammonia / acetone ion chemistry; source region doped

Precursor Ion MS-MS Product Ions

134 NH4+(C3H60 )2 l i § NH4+(C3H60) H+(C3H60) ! l 8 ;:: nh4+

76 NH4+(C3H60) t ? i H+(C3H60)

93 H+(NH3)2(C3H60) 76 NH4+(C3H60) 35 h +(n h 3)2

117 H+(C3H60 )2 i|:v59| H+(C3H60)

59 H+(C3H60)

18 n h 4+
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Figure 4.13: Mass spectrum of the ion species produced from ammonia with an acetone
doped source region

These results were consistent with acetone and ammonia having greater proton affinities 

than that of water, 812, 854, and 691 kJ.mol' 1 respectively. The intensity of the peaks 

for the ion-molecule clusters comprising both ammonia and acetone indicated their
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predominance. Ammonia with the highest proton affinity preferentially attracted protons 

and subsequently molecules of the ketone. The greater intensity of the dimer ion over 

the monomer ion of acetone indicated that the dimer would probably predominate over 

the monomer in the RIP, in the mobility spectrum.

Peaks at m/z values of 47, 105, and 147 were assigned formulae which involved 

contaminants, H+(N2H3CH3), H+(N2H3CH3)(C3H60), and H+(N2(CH3)4)(C3H60)

respectively.

With the IMS doped from the drift region the number of molecules per ion 

cluster increased. The predominant ions were the H+(C3H60)n series where n = 3 or 2, 

and the NH4+(C3H6 0 )n series where, again, n = 3 or 2. The NH4+(C3H60)4  ion, of m/z 

250, was present at a low intensity. During the summation of spectra, ratios of peak 

intensities changed until an equilibrium was reached. In this experiment, a transient 

indication of the tetramer ion of acetone was also seen at the m/z value of 233. The 

results are listed in Table 4.10, and the product ion spectrum for the ion cluster at m/z 

192 is shown in Figure 4.14. The MS-MS analysis indicated the higher proton affinity of 

ammonia; molecules of ketone dissociated from the ion-molecule cluster to leave the 

ammonium ion.

Table 4.10: Summary of ammonia / acetone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

175 H+(C3H60 )3 117 59 H+(C3H60 )

117 H+(C3H60 )2 1 |9" H+(C3H60 )

192 NH4+(C3H60 )3 If 34;.; NH4+(C3H60 )2 w & NH4+(C3H60 ) N H /

134 NH4+(C3H60 )2 m i HTQHoO),

76 NH4+(C3H60) 1 1 1 H+(C3H60 ) l i l t NEU+

59 H+(C3H60 )

250 NH4+(C3H60 )4 W M NH4+(C3H60 )3 134 NH4+(C3H60 )2 76 NH4+(C3H60 )
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Ô L-JU 
20 40

76.7

135.1

60 80 100 120 
m/z

140 160

17,000

180

Figure 4.14: Product ion mass spectrum of the ammonia / acetone ion-molecule cluster
at m/z 192

4.12.2 3-Pentanone I  ammonia ion chemistry

In the presence of ammonia, the doping of the source region with 3-pentanone resulted 

in the formation of the protonated monomer and dimer ions of the ketone. Ion-molecule 

clusters were formed from the combination of an ammonium ion with either one or two 

molecules of the 3-pentanone, and two molecules of ammonia combined with one 

molecule of the ketone. A high intensity ion at m/z 133 was due to the presence of 

MMH as a contaminant, combined with a molecule of 3-pentanone. An ion cluster at 

m/z 161, which could not be identified at that time, was also observed. There was also 

TMH contamination present, which led to further ion-molecule clusters. The results are 

listed in order of peak intensity in Table 4.11.
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Table 4.11: Summary of ammonia / 3-pentanone ion chemistry; source region doped

Precursor Ion MS-MS Product Ions

104 NH4+(C5H10O) 18 n h 4+

87 H +(C5H ioO)

190 N H 4+(C5H ,oO)2 104 NH4+(C5H ,oO) 18 n h 4+

173 H+(C5H10O)2 87 H+(C5H10O)

121 H+(NH3)2(C5H i 0O) 35 h +(n h 3)2

18 n h 4+

35 H+(NH3)2 18 n h 4+

As the analyte and ketone, and therefore their relative masses, were known 

composition of the ion-molecule clusters could be estimated. An ion recorded at 

approximately m/z 190, in the original mass spectrum, was subjected to MS-MS 

analysis in order to determine whether the peak was due to the combination of ammonia 

with two molecules of 3-pentanone. It was also possible that the peak was due to carry 

over of the NH4+(C3H60)3 ion, m/z 192, from the previous experiment. Calibration of 

the mass spectrometers confirmed the true m/z values from which assigned identities 

were validated. The precursor and resultant product ions provided information about the 

mass differences caused by the dissociation of the ion ion-molecule cluster. The product 

ion spectrum (Figure 4.15) of the ion-molecule cluster confirmed the identity of the ion- 

molecule cluster as NH4+(C5Hi0O)2. This emphasised the importance of the MS-MS 

analysis.

The doping of the drift region produced larger cluster ions, as shown in Figure 

4.16 and detailed in Table 4.12, with the emergence of the trimer ketone ion (m/z 259). 

Again, the predominant ions were the ammonia / ketone clusters. There was a trace peak 

of the NH4+(C5H10O)4 ion at m/z 362.
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Figure 4.15: Product ion mass spectrum of the ammonia / 3-pentanone ion-molecule
cluster at m/z 190
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Figure 4.16: Mass spectrum of the ion clusters formed from ammonia with the
3-pentanone doped drift region
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Table 4.12: Summary of ammonia / 3-pentanone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

190 NH4+(C5H10O)2 ! ! ! NH4+(C5H10O) I I I - nh4+

276 NH4+(C5HioO)3 190 NH4+(C5H10O)2 104 NH4+(C5H,oO) 18 n h 4+

173 H+(C5H10O)2 ! P l f H+(C5H10O)

104 NH4+(C5H10O) i l l nh4+

87 H+(C5H10O)

*259 H+(C5H10O)3

*362 NH4+(C5H10O)4

18 nh4+

* Confirmation of ion-molecule composition by MS-MS analysis was unavailable due to 
insufficient intensity of the precursor ion peak

A repeat experiment resulted in a change in the order of peak intensities to m/z 

276 > 173 >190 > 362 > 259. This might have been due to a change in contamination 

levels which could have affected the ion-molecule chemistry and / or the difficulty in 

reproducing exactly the same dopant concentration in repeat experiments.

Peaks at m/z values of 161, 219, and 247 were also observed. Although it was 

stated previously that the ion at m/z 161 could not be identified, the first two of these 

ion-molecule clusters could be explained after experiments involving the hydrazines. 

The explanation of the reaction and ion-molecule clustering follows in subsequent 

section 4.13.1. These ion-molecule clusters were assigned the formulae 

H+(C6Hi4N2)(N2H3CH3), and H^Nsf^CHsXCsHjoO). It was also possible that the third 

of these peaks might have represented an ion-molecule cluster such as 

H+(C6H14N2)(N2H3CH3)(C5H1 oO) but no other ion clusters of this complexity were 

recorded and the peak was too low in intensity for MS-MS analysis to provide an

answer.
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4.12.3 4-Heptanone /  ammonia ion chemistry

The mass spectrum of ion-molecule clusters formed in the presence of ammonia in an 

IMS with a 4-heptanone doped source region is shown in Figure 4.17. The identity of 

the predominant ion, namely H+(NH3)2(C7Hi4 0 ), was confirmed by the product ion 

spectrum shown in Figure 4.18.
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Figure 4.17: Mass spectrum of the ion clusters formed from ammonia with the 
4-heptanone doped source region

Other peaks in the profile mass spectrum were attributed to NH4+(C7H 140)2, 

NH4+(C7H,40 ), H+(C7H,40 )2, H+(C7H140), and either NH4+(H20 )2 and NH4+(H20 ) or 

H+(NH3)3 and H+(NH3)2 ion-molecule clusters, depending on the accuracy of the 

calibration. The ion clusters were probably those consisting of protonated ammonia 

clusters rather than ammonia / water clusters because of the greater proton affinity and
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relatively high concentration of ammonia. The precursor and product ions are 

recorded in Table 4.13.

The difference of 17 amu from 149 to 132 corresponded to the loss of one 

ammonia molecule from the precursor H+(NH3)2(C7HmO) ion-molecule cluster. The 

decrease from 149 to 35 represented the loss of the ketone molecule from the precursor 

ion cluster. The ion recorded at m/z 18 was the ammonium ion. Thus, the precursor ion 

H+(NH3)2(C7Hi40 ) dissociated into NH4+(C7Hi40), H+(NH3)2, and NH4+ product ions.
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Figure 4.18: Product ion mass spectrum of the ammonia / 4-heptanone ion-molecule
cluster at m/z 149
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Table 4.13: Summary of ammonia / 4-heptanone ion chemistry; source doped region

Precursor Ion MS-MS Product Ions

149 H+(NH3)2(C7H, 40) 132 NH4+(C7Hi40) SIS H+(NH3)2 18 n h 4+

246 NH4+(C7H140)2 l l i i NH4+(C7H140) n h4+

132 NH4+(C7H140) 18 n h4+

229 H+(C7H140 )2 111® h +(c7h 14o)

115 H+(C7H140)

52 H+(NH3)3 h +(nh 3)2 I l l 'l l n h4+

35 h +(n h 3)2 lilt*- n h4+

18 n h 4+

In Figure 4.15, 3-pentanone molecules dissociated from the ion cluster to leave 

protonated ammonia. The difference between the proton affinity of ammonia and

3-pentanone was 17.2 kJ.mol'1. The difference in the 4-heptanone and ammonia system 

was only 8.5 kJ.mol'1. However, the ketone molecule dissociated from the ion-molecule 

cluster to leave the dimer ion of ammonia, which further dissociated to form the analyte 

monomer.

The peaks at m/z values of 96, 143, 161, 178, 203, and 219 were assumed to 

have resulted from contamination. Not all of the peaks could be assigned a formula. The 

ion at m/z 143 was thought to be the protonated reaction product of 4-heptanone and 

MMH, and the cluster at m/z 161 an MMH / 4-heptanone ion cluster.

It was disconcerting to observe peaks at m/z values of 161, 219, and 247, in case 

the contaminants were carried over from the 3-pentanone / ammonia experiments. MS- 

MS analysis of the ion at m/z 247 confirmed the loss of 114 amu from a precursor ion of 

246 amu, but as this was the molecular mass of both the 3-pentanone hydrazone and the

4-heptanone the identity of the ion-molecule could not be confirmed. It might have been
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possible for the peak to comprise both H+(C6Hi4N2)(N2H3CH3) and 

H+(N2H3CH3)(C7Hi4 0 ) clusters. On close inspection of Figure 4.17, a trace of the 

3-pentanone was observed at m/z 87. However, the greater concentration and higher 

proton affinity of 4-heptanone was an indication of the possible composition tending 

towards the latter formula.

The ion at m/z 178 was assigned the formula NH4+(N2H3CH3)(C7Hi4 0 ). The 

TMH ion was present at m/z 89. Therefore, it was assumed that the peak at m/z 203 was 

produced by the H+(N2(CH3)4)(C7Hi4 0 ) ion cluster. The peaks at m/z values 96 and 193 

could not be explained.

Doping the IMS through the drift region formed the additional cluster at m/z 360 

which was assumed to be NH4+(C7Hi4 0 )3. A trace of H+(C7Hi40)3 was recorded at m/z 

343. The predominant ion cluster was NH4+(C7Hi4 0 )2- The results are summarised in 

Table 4.14. Contamination peaks similar to those in the source-doped tests were 

recorded.

Table 4.14: Summary of ammonia / 4-heptanone ion chemistry; drift region doped

Precursor Ion Product Ions

246 NH4+(C7H140)2 132 NH4+(C7H140) 18 nh4+

132 NH4+(C7H140) 18 n h4+

229 H+(C7H140)2 H+(C7H140)

115 H+(C7H140)

149 H+(NH3)2(C7H140) I ! ! NH4+(C7H140) J i : 35| H+(NH3)2 18 n h 4+

360 NH4+(C7H140)3 ISIII NH4+(C7H140)2

343 H+(C7H140)3 229 H+(C7H140)2 115 H+(C7H140)
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The higher ketone concentration favoured the formation of ion-molecule clusters with 

one molecule of ammonia rather than two. There was evidence that ammonia formed 

ion-molecule clusters with three molecules of ketone but not four. The air flow rates 

forced across the analyte and dopant chemicals were not altered, and because of the 

decrease in vapour pressure ascending the homologous series of symmetrical ketones, it 

was probable that the ketone concentration decreased with each ketone through the 

series. The progressively lower concentrations would have led to the equilibrium not 

being forced so far to the right (see equations on page 45), and so would have favoured 

the formation of MVTCyHwOX where n = 2 or 3 rather than 4. The formation of 

NH4+(C7H|40)5 could not be tested as the m/z value of 586 was outside the mass 

spectrometer range.

4.12.4 5-Nonanone /  ammonia ion chemistry

Doping of the source region with 5-nonanone in the presence of ammonia produced 

NH4+(C9H |8 0 )2, the predominant ion (see Figure 4.19 and Table 4.15) at more than 

four times the amplitude of any other peak in the spectrum. Two other ion peaks of 

lower intensity were assigned the formulae NH4+(C9Hi8 0 ) and H+(C9H 190)2. A peak at 

m/z 331 was attributed to H+(N2H3CH3)(C9HisO)2 arising from contamination of the 

system with MMH from a prior experiment. It was also considered that the reaction of 

MMH with 5-nonanone resulted in the formation of 5-nonanone methylhydrazone, m/z 

313, which clustered with MMH to form H+(CioH22N2)(C9Hj8 0 ), m/z 360.

There was a peak recorded at approximately m/z 187 which could have been 

attributed to either H ^N z^C ^X CgH ^O ), m/z 189, or NH4+(CioH22N2), m/z 188. MS- 

MS analysis was not possible because of the low intensity of this and other contaminant 

peaks, so further postulation of their respective formulae was not attempted.
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Figure 4.19: Mass spectrum of the ion clusters formed from ammonia with the
5-nonanone doped source region

Table 4.15: Summary of ammonia / 5-nonanone ion chemistry; source region doped

Precursor Ion i MS-MS Product Ions

302 NH4+(C9H180 )2 1111 NH4+(C9H180) 143 H+(C9H180) 18 n h 4+

160 NH4+(C9H180) i i i i nh4+

*285 H+(C9H180 )2

177 H+(NH3)2(C9Hi80) i i i i NH4+(C9H180) lit! h +(n h 3)2 llll n h 4+

^Confirmation of ion-molecule composition by MS-MS analysis was unavailable due to 
insufficient intensity of the precursor ion peak

During MS-MS analysis of the ion at m/z 160, the charge tended to stay preferentially 

with the ammonia rather than the ketone. This was an indication that ammonia had the 

greater proton affinity, but the difference was only 2.4 kJ.mol’1.
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Doping of the system via the drift region produced predominant ion clusters 

which corresponded to H+(C9Hi80)3 and NH4+(C9Hi90)3 respectively (see Figure 4.20 

and Table 4.16). The H+(C9HigO)2 cluster ion was also present.
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Figure 4.20: Mass spectrum of the ion clusters formed from ammonia with the
5-nonanone doped drift region

Table 4.16: Summary of ammonia / 5-nonanone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

427 H+(C9H180 )3 285 H+(C9HI80 )2 143 H+(C9H180)

444 NH4+(C9H180 )3 302 NH4+(C9H180 )2

*285 H+(C9H180 )2

302 NH4+(C9H180 )2 160 NH4+(C9H180) 143 H+(C9H180) 18 n h 4+

^Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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The MS-MS spectra for the ion-molecule clusters with m/z values 302 and 427 are 

shown in Figures 4.21 and 4.22 respectively.
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Figure 4.21: Product ion mass spectrum of the ammonia / 5-nonanone ion-molecule
cluster at m/z 302

As expected, there was a general shift to higher m/z values for the ion-molecule 

clusters because of the heavier mass of the ketone (a progressive trend observed through 

the series). However, the absence of ion peaks below m/z 285 indicated that the 

equilibrium had been forced to the right, i.e. had favoured the formation of larger ion- 

molecule clusters, where n = 2 or 3. It was possible that larger ion clusters were formed, 

but these would not have been detected within the mass range available. The predicted 

ion clusters of H+(C9H |80 )4  and NH^CgHjgO^ would have had m/z values of 569 and 

586 amu respectively.
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Figure 4.22:Product ion mass spectrum of the ammonia / 5-nonanone ion-molecule
cluster at m/z 427

4.13.51,1,1-Trifluoroacetone /  ammonia ion chemistry

The IMS-MS spectra obtained when ammonia was introduced into an IMS with the 

source region doped with 1,1,1-trifluoroacetone were distinctive for their lack of 

significant intensity of peaks for ion clusters involving the two compounds of interest. 

Traces of ammonia monomer, dimer, and trimer ions were evident with increased peak 

intensity through m/z values of 18, 35, and 52. The peaks in the region of m/z values 

130 and 242 were too low for identification by MS-MS analysis but were assumed to be 

NH4+(CH3COCF3)n, where n = 1 or 2. The spectra captured during the experiments with 

the drift region doped also lacked any ion clusters of significant intensity. However, it 

was assumed from the recorded peaks at m/z values of 147, 259, and 371 that ammonia 

/ 1,1,1-trifluoroacetone ion clusters were present and corresponded to
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H+(NH3)2(CH3COCF3)n where n = 1, 2 , and 3 respectively, and m/z 354 was attributed 

to NH4+(CH3COCF3)3. The assigned peaks could not be attributed to contamination 

from previous experiments nor to decomposition products. There was no evidence of 

ion-molecule clusters with n = 4 with either one or two molecules of the analyte in the 

cluster. The presence of the fluorinated compound significantly decreased the intensity 

of the peaks observed in the mass spectra, and because the compound was so volatile it 

was difficult to maintain the required high concentration of the dopant in order to make 

a direct comparison between this and the previous experiments. Many of the peaks 

recorded could not be assigned.

4.13 Proton bound clusters of ketones and hydrazine

4.13.1 Acetone /  hydrazine ion chemistry

When the source region was doped with a low concentration of acetone, the 

predominant ions were at m/z values of 117, 149, and 131. When a higher concentration 

of acetone was introduced into the source region the predominant ions were at m/z 

values of 149, 131, and 91 (see Figure 4.23), with a lower intensity of ions at m/z 

values of 113, 73, and 33. Although the ions at m/z 149, 117, 91, and 33 could be 

attributed to H+(N2H4)(C3H60 )2, H+(C3H60 )2, H+(N2H4)(C3H60), and H+(N2H4) cluster 

ions respectively, and the H+(C3H60)3 ion was observed at m/z 175, the other three ions 

did not correspond to any combination of protonated HZ / acetone / water clustering. 

These ions have been attributed to clusters involving reaction products of acetone and 

the protonated HZ. The dehydration reaction was assumed to take place in the vapour 

phase with the formation of the corresponding hydrazone, m/z 73 (protonated), which 

further reacted with the acetone to form an azine, m/z 113 (protonated). (Refer to Figure 

4.24 for the mechanism of reaction.)
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Figure 4.23: Mass spectrum of the ion clusters formed from hydrazine with the acetone
doped source region

The clusters at m/z values of 145, 131, and 73 were then correct for H+(C3HgN2)2, 

H+(C3HgN2)(C3H6 0 ), and H+(C3HgN2) respectively. This theory was supported by 

MS-MS spectra. As the hydrazone and azine were products of reaction, rather than ion- 

molecule clustering, the ion species were extremely stable when subjected to MS-MS 

analysis, as indicated by a single peak of high intensity. The stable acetone azine ion 

peak is shown in Figure 4.25. The isolation of the hydrazone ion confirmed the two- 

stage reaction. The results are listed in Table 4.17.
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(I) Formation of protonated hydrazone

CH3

H,C —  C = fO

h 2n-

h 3c

MN— H

H3C H

CH3

h 3c —  c ~ r O H

r /T
h 2n —+n —  hT

H

m/z 91

H3C

m/z 73

\
C

/
C =  N- nh 3

h 3c

(ii) Formation of protonated azine from protonated hydrazone 

H3C
\ c = o

h 3c

h 3c
\

(
/

h 3c

+
N—  N- H

H3C

h 3c

H3C — C —-.OH

\  i■ > (
C = N —  N  H

/  1  H3C h
m/z 131

-h 2o

h 3c
\  + 
^ C  =  N-

H3C I
H

/
c h 3

N =  C
\

CH3

m/z 113

Figure 4.24: Mechanism for the reaction between acetone and protonated hydrazine
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Figure 4.25: Product ion mass spectrum of the acetone azine ion at m/z 113

Table 4.17: Summary of the hydrazine / acetone ion chemistry; source region doped

Precursor Ion MS-MS Product Ions

149 H+(N2H4)(C3H60 )2 91 H+(N2H4)(C3H60) 33 H+(N2H4)

131 H+(C3H8N2)(C3H60) 73 ¥t(C3U8N2)

91 H+(N2H4)(C3H60) 33 H+(N2H4)

73 H+(C3H8N2)

113 H+(C6H12N2)

33 ir(N 2H4)

117 H+(C3H60 )2 59 H+(C3H60)

175 H+(C3H60 )3 117 rf(C3H60)2

*233 H+(C3H60 )4

145 H+(C3H8N2)2 73 H+(C3H8N2)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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With the entire IMS doped from the drift region, lower intensity peaks (Figure 

4.26) were observed for the protonated hydrazone clustered with one to three molecules 

of acetone at m/z values of 131, 189, and 247 respectively. The protonated acetone 

dimer, trimer, and tetramer species were also detected, at m/z values of 117, 175, and 

233 respectively, possibly with H+(C3H60)5 at m/z 291. There was evidence of larger 

clusters formed with unreacted HZ, viz. H+(N2H4)(C3H6 0 ), H+(N2H4)(C3H6 0 )2, 

H+(N2H4)(C3H6 0 )3, and H+(N2H4)(C3H6 0 )4, at values of 91, 149, 207, and 265 

respectively. The clusters involving HZ combined with the monomer through to the 

tetramer of the acetone series predominated in the ion chemistry, with peak intensity 

decreasing in the order H+(N2H4)(C3H60 )2  > H+(N2H4)(C3H60 )3  > H+(N2H4)(C3H60 ) > 

H+(N2H4)(C3H6 0 )4. The ion-molecule clusters are listed in Table 4.18.
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Figure 4.26: Mass spectrum of the ion clusters formed from hydrazine with the acetone
doped drift region
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Table 4.18: Summary of hydrazine / acetone ion chemistry; drift region doped

Precursor Ion > MS-MS Product Ions

149 H+(N2H4)(C3H60)2 91 H+(N2H4)(C3HfiO) 33 H+(N2H4)

207 H+(N2H4)(C3H60)3 149 H+(N2H4)(C3H60)2 91 H^litXCjHfiO) 33 h+(n2ho

91 H+(N2H4)(C3H60) 33 H+(N2H4)

175 H+(C3H60)3 117 H+(C3H60)2

265 H+(N2H4)(C3H60)4 207 H+(N2H4)(C3H60)3 149 H+(N2H4)(C3H60)2 91 H+(N2H4)(C3H60)

117 H+(C3H60)2 59 H+(C3H60)

*233 H+(C3H60)4 175 H+(C3H60)3 117 H+(C3H60)2 59 H+(C3H60)

131 H+(C3H8N2)(C3H60) 73 H+(C3H8N2)

291 H^CjHeOfc ;|:::J23|| H+(C3H60)4 | |m ! H+(C3H60)3 117 H+(C3H60)2

171 H+(C6H12N2)(C3H60) 113 H+(C6Hi2N2)

113 h+(c6h 12n2)

33 H+(N2H4)

73 h+(C3h8n2)

247 H+(C3H8N2)(C3H60)3 S|li||| H+(C3H8N2)(C3H60)2 131 H+(C3H8N2)(C3H60) i l i ! H+(C3H8N2)

59 H+(C3H60)

189 H+(C3H8N2)(C3H60)2 H+(C3H8N2)(C3H60) 73 H+(C3H8N2)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable

The formation of the H+(N2H4)(C3H60)4 ion-molecule cluster had not been 

predicted in the model. Its formation could have been due to either to the attachment of 

acetone molecules at the hydrogens on the secondary core nitrogen or a second layer of 

dopant attachment through solvation.

4.13.2 3-pentanone /  hydrazine ion chemistry

The introduction of HZ into an IMS system, having only the source region doped with 

3-pentanone, produced the predominant ions H+(C5Hi2N2)(C5Hi0O) and H+(CioH2oN2) 

at m/z values of 187 and 169 (see Figure 4.27). Also present were ions at m/z values of 

101, 205, 273, 119, 255, and 173. The ion cluster with an m/z value of 173 was the 

protonated dimer ion of the 3-pentanone, whilst those ion clusters with m/z values of 

119 and 205 were the result of HZ clustering directly with the 3-pentanone to form
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H+(N 2H4)(C 5H,oO) and H+(N 2H4)(C 5H 10O )2. Only a trace of the H+(N 2H4)(C 5H ,oO )3 ion 

was observed at m/z 291. HZ reacted with the ketone, as described in the previous 

section, to produce the corresponding protonated 3-pentanone hydrazone H+(CsHi2N2), 

m/z 101. This product ion then also clustered with the 3-pentanone to form ion clusters 

with m/z values of 187 and 273 which were identified as H+(C5Hi2N2)(C5HioO)n where 

n = 1 and 2 respectively. It was assumed that very minor contamination with M M H  

again produced the peaks at m/z values of 161, 219, and 247.

Another scan, covering a wider range of amu, showed the presence of a peak at 

m/z 359 which was assigned the formula H+(C5Hi2N2)(C5HioO)3. The ion at m/z 169 

was the protonated 3-pentanone azine, H +(C ioH 2oN 2), which when clustered with a 

molecule of 3-pentanone produced an ion at m/z 255, H+(CioH2oN2)(C5HioO). The 

results are summarised in Table 4.19.
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Figure 4.27: Mass spectrum of the ion clusters formed from hydrazine with the
3-pentanone doped source region
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Table 4.19: Summary of hydrazine / 3-pentanone ion chemistry; source doped region

Precursor Ion MS-MS Product Ions

187 H+(C5H12N2)(C5H10O) 101 H+(C5H12N 2)

169 H+(Ci0H20N2)

101 H+(C5H12N 2)

205 H+(N2H4)(C5H 10O)2 119 H+(N2H4)(C5H10O) 111 I f T O )

273 H+(C5H 12N 2)(C5H 10O)2 111 H+(C5H12N 2)(C5H10O) fill' H+(C5H 12N 2)

119 H+(N2H4)(C5H10O) lilt! H+(N2H4)

255 H+(C10H2oN2)(C5HioO) 169 H+(CioH20N2)

*201 h +(c 5h 12n 2)2

87 H+(C5H10O)

291 H+(N2H4)(C5H 10O)3 205 H+(N2H4)(C5H10O)2 11® H+(N2H4)(C5H10O)

359 H+(C5H12N 2)(C5H10O)3 273 H+(C5H 12N 2)(C5H 10O)2 Mil H+(C5H 12N 2)(C5H10O)

*Con: Irmation of ion-molecu e composition by MS-MS analysis was unavailable

Following doping of the system via the drift region, the predominant ions were 

at m/z values of 205 and 291 (Figure 4.28). Most of the other ions observed during the 

tests with only the source region doped survived the increase in dopant concentration, 

but the equilibrium favoured the existence of the unreacted HZ clustered with the 

ketone. Significantly, there was no azine formation, and only lower intensities of the 

protonated 3-pentanone hydrazone / ketone series H+ (CsH^^XCsHioOX, where n = 0 

to 2 molecules, were recorded.
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Figure 4.28: Mass spectrum of the ion clusters formed from hydrazine with the
3-pentanone doped drift region

The protonated HZ / ketone series H +(N 2H4)(C 5H ioO)n produced the 

predominant ion clusters, with n = 2 > n  = 3 » n  = 1, and a short range scan indicated 

the existence of the cluster with n = 4 (m/z 377), as seen during the previous experiment 

with acetone. The product ion mass spectrum which confirmed the presence of the 

H +(N 2H 4)(C 5H 1 (>0 )3  cluster is shown in Figure 4.29. A previous experiment also 

produced this series, although the product ion mass spectrum (Figure 4.30) was out of 

calibration by +2 to +3 amu, and confirmed the existence of the H+(N2H4)(C5HioO)4 ion 

cluster. The results for the 3-pentanone doped drift region for analysis of H Z are shown 

in Table 4.20. At 853.2 kJ.mol’1, HZ has a similar proton affinity value to ammonia, and 

loss of ketone molecules during MS-MS analysis resulted in the protonated analyte.



154

+Profile DAUGHTER. Parent = 291

run no 982 • 6/12/96 -12:59 PM 
No Title 
24 peaks

10CH

75

7000

25 50 75 100 125 150 175 200 225 250 275 300
m/z

Figure 4.29: Product ion mass spectrum of the hydrazine / 3-pentanone ion-molecule
cluster at m/z 291
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Figure 4.30: Product ion mass spectrum of the hydrazine / 3-pentanone ion-molecule
cluster at m/z 377



155

Table 4.20: Summary of hydrazine / 3-pentanone ion chemistiy; drift region doped

Precursor Ion
flflfl .

MS-MS Product Ions

205 H+(N2H4)(C5H10O)2 119 H+(N2H4)(C5H10O) 33 H+(N2H4)

291 H+(N2H4)(C5H10O)3 205 H+(N2H4)(C5H,oO)2 ISM ĤNzKOCCsHuO) h+(n2H4)

187 H+(C5HI2N2)(C5H10O) 101 H+(C5H12N2)

119 H+(N2H4)(C5H10O) 33 h+(N2h4)

101 H+(C5H12N2)

273 H+(C5H12N2)(C5H10O)2 187 H+(C5Hi2N2)(C5H10O) ipift H+(C5H12N2)

*173 H+(C5H,oO)2

169 H+(C,oH20N2)

255 H+(C,oH2oN2)(C5HioO) H+(C,oH20N2)

87 H+(C5HioO)

377 H+(N2H4)(C5H10O)4 l l l l l H+(N2H4)(C5H10O)3 t p 5 | H+(N2H4)(C5HioO)2 wim§ ĤNzmXCsHwO)
133 H'CCsHnN̂ li,) § :m H+(C5Hi2N2)

359 H+(C5H12N2)(C5H10O)3 i ® : H+(C5H12N2)(C5H,oO)2 187 H+(C5H12N2)(C5HioO)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable

4.13.4 4-Heptanone /  hydrazine ion chemistry

The predominant ion clusters formed during the HZ experiments, with 4-heptanone used 

to dope the source region, were due to reaction products. Again, the equivalent 

protonated hydrazone (H+(CvHi6N2)) and azine (H+(Ci4H28N2)) ions, with m/z values of 

129 and 225, were formed (see Figure 4.31); the hydrazone then clustered with a single 

molecule of ketone to produce H+(C7Hi6N2)(C7Hi4 0 ) with an m/z value of 243. HZ also 

clustered with the ketone to form H+(N2H4)(C7Hi4 0 ), m/z 147, without chemical 

reaction. The results are listed in Table 4.21.

The majority of the contamination could be assigned to the presence of MMH, 

TMH and / or 3-pentanone, for example, the peak nominally labelled m/z 89 appeared to 

be closer to m/z 88 and might even have been a mixture of both the TMH and 

3-pentanone species. These two species may have combined to form a peak at m/z 175.
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Figure 4.31: Mass spectrum of the ion clusters formed from hydrazine with the
4-heptanone doped source region

Table 4.21: Summary of hydrazine / 4-heptanone ion chemistry; source region doped

Precursor IonliilliillliiBlilllili ■ V MS-MS Product Ions

129 H+(C7H16N2)

225 H+(C14H28N2)

243 H+(C7Hi6N2)(C7H140) 129 H+(C7H16N2)

147 H+(N2H4)(C7H140) H+(N2H4)

*161 H+(C7H16N2)(N2H4)

*229 H+(C7Hi40 )2

* Confirmation of ion-molecule composition by MS- VIS analysis was unavailable due to
insufficient intensity of the precursor ion peak
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If the peak around m/z 202 was due to the presence of 3-pentanone combined 

with 4-heptanone the ion would have occurred at m/z 201, but if 3-pentanone was 

substituted with TMH the value would have been m/z 203; either option appeared to be 

plausible.

The peaks at m/z values of 169 and 187 were attributed to ion-molecule clusters 

which involved HZ and 3-pentanone reaction products, namely 3-pentanone azine and 

3-pentanone hydrazone(C5HioO) respectively, and m/z 215 was assigned the formula 

H+(C j 0H20N2XN2H3CH3). The only ready explanation for the peaks at m/z values 73 and 

117 was minimal contamination by acetone, which led to the formation of acetone 

hydrazone and the dimer ion of acetone respectively.

Doping the detector with 4-heptanone through the drift region initially forced the 

equilibrium to favour the completion of the reaction to azine formation, but with 

increased time the predominant ion cluster comprised unreacted HZ combined with two 

molecules of ketone, H+(N2H4)(C7H 140)2, m/z 261. The monomer ketone / HZ ion 

cluster, m/z 147, also increased in intensity, although to a lesser degree. The HZ also 

combined with three molecules of 4-heptanone to produce H+(N2H4)(C7Hi4 0 )3, m/z 

375. The protonated azine peak was still quite high in intensity, but the protonated 

hydrazone peak had nearly disappeared; the hydrazone / ketone peak increased but was 

still fairly low in intensity. The azine also clustered with 4-heptanone to form 

H+(C 14H 28N 2) (C7H 14O ), m/z 339 (see Figure 4.32 for the product ion spectrum 

providing confirmation of the identity of this cluster). There was no attempt to scan for 

the H+(N2H4)(C7H 140)4 ion at m/z 489 because of mass range was limited to 450 amu. 

The results are listed in Table 4.22.
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Table 4.22: Summary of hydrazine / 4-heptanone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

261 H+(N2H4)(C7H140)2 147 H+(N2H4)(C7H140)

225 H+(C14H28N2)

147 HTCNAXCvHmO) 33

375 H+(N2H4)(C7H140)3 261 H+(N2H4)(C7H140)2 147 ir(N2H4)(C7H140)

339 H* (C,4H28N2)(C7H140) 225 H+(C14H28N2)

243 H* (C7H16N2)(C7H140) 129 h+cqh , ^ )

129 H+(C7Hi6N2)

*161 H+(C7H16N2)(N2H4)

^Confirmation of ion-molecule composition by MS-MS analysis was unavailable due to 
insufficient intensity of the precursor ion peak
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Figure 4.32: Product ion mass spectrum of the 4-heptanone azine / 4-heptanone ion
cluster at m/z 339
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4.13.4 5-Nonanone /  hydrazine chemistry

The predominant ion chemistry observed during the determination of HZ, when the 

source region was doped with 5-nonanone (Figure 4.33), was the hydrazone reaction 

product series H+(C9H2oN2)(C9Hi8 0 )n where the ion peak for the ketone bound 

hydrazone was of higher intensity than the peak for the free hydrazone; the m/z values 

were 299 and 157 respectively (see Figure 4.34 for the product ion mass spectrum). The 

intensity of the 5-nonanone azine peak, H+(C]gH36N2) at m/z 281, was comparable to 

that of the 5-nonanone hydrazone, m/z 157. The peak at m/z 313 could have been due to 

the clustering of HZ with the azine reaction product, H+(C 18H36N2)(N2H4) or the dimer 

ion of the hydrazone reaction product, H+(C9H2oN2)2. MS-MS analysis confirmed its 

composition to be the latter.
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Figure 4.33: Mass spectrum of the ion clusters formed from hydrazine with the
5-nonanone doped source region



160

Table 4.23: Summary of hydrazine / 5-nonanone ion chemistry; source region doped

Precursor Ion MS-MS Product Ions

299 H+(C9H2oN2)(C9H i80 ) 157 H+(C9H20N2)

157 H+(C9H20N2)

281 H+(C18H36N2)

313 H+(C9H2oN 2)2 i i i l H+(C9H2oN 2)

317 H+(N2H4)(C9H180 ) 2 H+(N2H4)(C9H180)

*285 H+(C9H180 ) 2

175 H+(N2H4)(C9H180) llllllll H+(N2H4)

143 H+(C9H180)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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Figure 4.34: Product ion mass spectrum of the 5-nonanone hydrazone / 5-nonanone ion
cluster at m/z 299
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There was a minor amount of the dimer ion of 5-nonanone clustered with HZ at 

m/z 317, H+(N2H4)(C9Hi80)2, and a trace of the monomer ketone / HZ ion cluster, 

H+(N2H4)(C9HigO), at m/z 175. The results are listed in Table 4.23.

The contamination peaks were assumed to have resulted from the presence of 

acetone, 3-pentanone, and 4-heptanone, possibly cumulative and residual through the 

sequence of experiments. The ion-molecule clusters thought to have formed from the 

contamination appeared to be very complicated. However, it was considered that 

because the range of proton affinities involved across these ketones was narrow (812.0 

to 851.6 kJ.mor1 including 5-nonanone) then the clusters could co-exist. The identity of 

the contaminant ion clusters could not be proven as the peaks were too low in intensity 

for MS-MS analysis.

Forcing the dopant concentration higher, by its introduction through the drift 

region, increased the intensity of the predominant ion cluster observed at m/z 299 in the 

source region doped test. The intensity of the H+(N2H4)(C9Hi80) ion at m/z 317 

increased noticeably, whilst the intensity of the peak at m/z 313 decreased (see Figure 

4.35). Whether the peak at m/z 313 was due to either the H+(Ci8H36N2)(N2H4) or 

H+(C9H2oN2)2 ion-molecule clusters was uncertain. The implication was that at higher 

dopant concentration either the reaction between HZ and the ketone to form the 

hydrazone and azine was partially quenched, or that although there was reaction 

between HZ and 5-nonanone, the ketone clusters had a higher proton affinity than the 

resultant hydrazone and azine reaction products. The increased dopant concentration 

allowed for greater competition for the protons so that the reaction products might have 

been converted to neutral species through proton transfer. Their relative intensities were 

therefore reduced and thus the ion-molecule clusters which incorporated the protonated 

ketones were of greater intensity. The latter theory was the most probable.
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Although the intensity of the ion clusters at m/z values of 423 and 459 were too 

low to capture MS-MS spectra, these were assumed to be the azine / ketone and the 

trimer ketone / HZ ion clusters, H+(Ci8H36N2)(C9HigO) and H+(N2H4)(C9Hi80)3 

respectively. The results are listed in Table 4.24.
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Figure 4.35: Mass spectrum of the ion clusters formed from hydrazine with the
5-nonanone doped drift region

Due to the scan range of the IMS it was not possible to detect the presence of the 

H+(N2H4)(C9Hi80)n ion clusters, where n = 4 or 5, which would have been observed at 

m/z 601 and 743 respectively.
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Table 4.24: Summary of hydrazine / 5-nonanone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

299 H+(C9H20N2)(C9H,8O) 1 1 1 1 1 1 H+(C9H20N2)

317 H+(N2H4)(C9Hi80)2 i l l ! H+(N2H4)(C9Hi80)

281 H+(Ci8H36N2)

157 H+(C9H20N2)

313 H+(C9H2oN2)2 11I11S H+(C9H20N2)

175 H+(N2H4)(C9Hi80) i i i i i h +(n2h 4)

*423 H+(CI8H36N2)(C9H180)

*459 H+(N 2H4) (C9H! 80 ) 3

*285 H+(C9Hi80 ) 2

Confirmation of ion-molecule composition by MS-MS analysis was unavailable

4.13.51,1,1-Trifluoroacetone /  hydrazine ion chemistry

Doping of the source region with 1,1,1-trifluoroacetone did not produce any derivatised 

ion clusters. The predominant peaks were probably due to contaminant ion clusters. HZ 

monomer, dimer, and, possibly, trimer ions were observed at m/z values of 33, 65, and 

97 respectively. Increasing the overall dopant concentration, through its addition into the 

system via the drift region, produced a predominant peak with an m/z value of 257. This 

was due to protonated HZ combining with two molecules of 1,1,1-trifluoroacetone. Also 

present was the HZ ion with one molecule of the fluorinated ketone. The HZ ion 

combined with three molecules of the dopant was also observed, but at lower intensity 

than the other two clusters.

The electron withdrawing effects of the fluorine atoms affected the formation of 

the hydrazone and azine products in the presence of HZ. The electron distribution of the
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carbonyl bond meant that the carbonyl oxygen was less electronegative than that in the 

acetone molecule.

4.14 Proton bound clusters of ketones and methylhydrazine

4.14.1 Acetone /  methylhydrazine ion chemistry

When the source region of the IMS was doped with acetone the predominant cluster 

ions formed in the presence of MMH were at m/z 105, H+(N2H3CH3)(C3H6 0 ), m/z 145, 

H+(C4H,oN2)(C3H6 0 ), the protonated methylhydrazone reaction product clustered with a 

molecule of the ketone (see Figure 63), m/z 163, H+(N2H3CH3)(C3H6 0 )2, and m/z 87, 

H+(C4H 10N2). Lower intensity ion clusters were recorded at m/z values of 133, 

H+(C4Hi0N2)(N2H3CH3), and m/z 173 H+(C4H10N2)2, 117 H+(C3H60 )2, and 47 and 93 

were assigned H+(N2H3CH3)n, where n = 1 or 2 .
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Figure 4.36: Mass spectrum of the ion clusters formed from methylhydrazine with the
acetone doped source region
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The peaks at m/z values of 76 and 122 may have arisen from contamination by 

ammonia, possibly as a breakdown product from MMH, and were assigned the 

structures NH4+(C3H6 0 ) and NH4+(N2H3CH3)(C3H6 0 ), but the latter cluster seems 

improbable due to the much higher proton affinity of MMH compared with ammonia 

(895.7 and 854.0 kJ.mol'1 respectively). The results are recorded in Table 4.25.

Table 4.25: Summary of methylhydrazine / acetone ion chemistry; source region doped

Precursor Ion MS-MS Product Ions

105 H+(N2H3CH3)(C3H60) 59 H+(C3H60) 47 H+(N2H3CH3)

145 H+(C4H10N2)(C3H6O) 87 H+(C4H10N2)

163 H+(N2H3CH3)(C3H60)2 105 H+(N2H3CH3)(C3H60) 47 H+(N2H3CH3)

87 H+(C4H10N2)

133 H+(C4H,oN2)(N2H3CH3) litii H+(C4H10N2)

173 H+(C4H10N2)2 W .M . H+(C4H10N2)

117 H+(C3H60)2 H+(C3H60)

47 H+(N2H3CH3)

93 H+(N2H3CH3)2 47 H+(N2H3CH3)

*175 H+(C3H60)3

*151 H* (N2H3CH3)2(C3H60)

^Confirmation of ion-molecule composition by MS-MS analysis was unavailable

The doping of the drift region with acetone shifted the equilibrium to make the 

ion at m/z 163 the predominant ion (Figure 4.37). The other major ions were at m/z 

values of 221, 133, 189, and 105, with a minor ion cluster observed at m/z 279 and 

possibly one at m/z 145. The ions at m/z values 221 and 279 had not been recorded in 

the source-only doped test. The MS-MS analysis showed the ion cluster at m/z 221 to 

comprise the protonated trimer ion of the ketone with one molecule of the analyte (see
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Figure 4.38), not the dimer of the hydrazone with the analyte, as might have been 

expected from the results from the source doped test. Once again, the results indicated 

that the increased dopant concentration did not favour the existence of the protonated 

hydrazone product species. Due to insufficient intensity of the ion cluster peak at m/z 

279, its identity could not be proven, although it has been assumed to be the tetramer 

ketone ion clustered with the analyte to form H+(N2H3CH3)(C3H6 0 )4. The results are 

listed in Table 4.26.
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Figure 4.37: Mass spectrum of the ion clusters formed from methylhydrazine with the
acetone doped drift region
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Table 4.26: Summary of methylhydrazine / acetone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

163 H+(N2H3CH3)(C3H60 )2 105 H+(N2H3CH3)(C3H60 ) I f  1 1 H+(N2H3CH3)

221 H+(N2H3CH3)(C3H60)3 163 H+(N2H3CH3)(C3H60 )2 l i l l? H+(N2H3CH3)(C3H60 )

133 H+(C4H10N2)(N2H3CH3) 87 H+(C4H10N2)

105 H+(N2H3CH3)(C3H60 ) i l l H+(C3H60 ) H i: H+(N2H3CH3)

*279 H+(N2H3CH3)(C3H60)4

173 H+(C4H10N2)2 l i l l h ^ h , ^ )

47 H+(N2H3CH3)

145 H+(C4H]oN2)(C3H60 ) I l l l
Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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During this experiment, the presence of the H+(N2H3CH3)(C3H60)5 ion cluster 

was not investigated, but the low intensity of the ion peak at m/z 279 was an indication 

that an ion-molecule cluster with a greater number of ketone molecules attached would 

have been improbable. Consideration of the relative peak intensities indicated that the 

cluster with the fourth ketone molecule was either not readily formed or was unstable, 

so that the fourth ketone molecule was only attracted weakly. However, the intensity of 

the H+(N2H3CH3)(C3H60)3 peak indicated that this cluster was readily formed. For 

MMH, the model had only predicted two molecules of ketone would be attracted to the 

most basic of the core nitrogens. Therefore, it must be assumed that the additional 

ketone molecules were attracted to the hydrogen atoms around the second nitrogen in 

MMH or formed a second layer of ketones through solvation.

4.14.2 3-Pentanone /  methylhydrazine ion chemistry

Using the IMS-MS-MS system, with only the source region doped with 3 -pentanone, for 

the determination of MMH (Figure 4.39), the predominant ion clusters were recorded at 

m/z 133, H+(N2H3CH3)(C5H 10O), m/z 179, R +(N2U3CH3)2(C5HioO), m/z 93, 

H+(N2H3CH3)2 and m/z 219, H+(N2H3CH3)(C5HioO)2. Low intensity peaks were 

recorded for the following ion-molecule clusters: H+(C5HjoO)2, H+(C5HioO), 

H+(C6H,4N2), H+(N2H3CH3)3 (see Figure 4.40 for the product ion mass spectrum), and 

H+(N2H3CH3). The results are listed in Table 4.27. Some contamination was attributed 

to the presence of ammonia and, perhaps, hydrazine.

The presence of the ion-molecule cluster H+(N2H3CH3)(C5HioO)3 was not 

investigated, but the H+(CsHioO)3 cluster was not recorded in the spectrum. The 

detection of ion-molecule clusters containing more than one molecule of the analyte in 

conjunction with the dopant was apparent in this experiment. This type of ion-molecule 

cluster had been seen previously, during the set of experiments involving ammonia.
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Figure 4.39: Mass spectrum of the ion clusters formed from methylhydrazine with the
3-pentanone doped source region
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Figure 4.40: Product ion mass spectrum of the methylhydrazine ion-molecule cluster at
m/z 139
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Table 4.27: Summary of methylhydrazine / 3-pentanone ion chemistry; source region

doped

Precursor Ion MS-MS Product Ions

133 H+(N2H3CH3)(C5H10O) 47 H+(N2H3CH3)

*179 H+(N2H3CH3)2(C5H10O)

93 H+(N2H3CH3)2 47 H+(N2H3CH3)

219 H+(N2H3CH3)(C5H10O)2 133 H+(N2H3CH3)(C5H10O) 47 H+(N2H3CH3)

*161 H+(C6H]4N2)(N2H3CH3)

87 H+(C5H,oO)

115 H* (C6H,4N2)

139 H+(N2H3CH3)3 { 1 1 1 H+(N2H3CH3)2 H I H+(N2H3CH3)

47 H+(N2H3CH3)

173 H+(C5H10O)2 87 H+(C5H10O)

201 H+(C6H14N2)(C5H10O) 115 H+(C6H14N2)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable

Increased dopant concentration, by its addition through the drift region, saw the 

equilibrium shift the predominance to the ion cluster at m/z 219 (Figure 4.41), with the 

ion cluster at m/z 133 much lower in intensity. The shift in equilibrium also produced 

low intensity peaks of the ion clusters H+(N2H3CH3)(C5HioO)3 at m/z 305 and 

H+(C6H,4N2)(C5HioO) at m/z 201, which had not been confirmed at the lower dopant 

concentration. It was stated earlier in this section that the presence of the 

H+(N2H3CH3)(C5HioO)3 ion at m/z 305 had not been investigated. However, due to the 

presence of only a low intensity peak for this ion at the higher dopant concentration it 

was assumed that this ion-molecule cluster did not exist during the source-only doped 

tests as the ketone concentration would have been insufficient to support its formation. 

This theory was supported by the presence of peaks for the monomer, dimer, and trimer
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ion species of the analyte, without combination of the ketones. There was no indication 

of the H+(N2H3CH3)(C5HioO)4 cluster. The results are listed in Table 4.28.
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Figure 4.41: Mass spectrum of the ion clusters formed from methylhydrazine with the
3-pentanone doped drift region

Table 4.28: Summary of methylhydrazine / 3-pentanone ion chemistry; drift region
doped

Precursor Ion MS-MS Product Ions

219 HWhCHsXCsHuOh 133 H+(N2H3CH3)(C5H10O) 47 H+(N2H3CH3)

133 H+(N2H3CH3)(C5H10O) 47 H+(N2H3CH3)

*305 H+(N2H3CH3)(C5H10O)3

201 H+(C6H14N2)(C5H10O) 1 1 1 H+(C6H14N2)

*179 H+(N2H3CH3)2(C5H10O)

*161 H+(C6H14N2)(N2H3CH3)

*Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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4.14.3 4-Heptanone /  methylhydrazine ion chemistry

Two predominant ion clusters of comparable intensity were formed during the 

determination of MMH when the source region was doped with 4-heptanone (Figure 

4.42). These ion clusters occurred at m/z values 275 and 161, corresponding to 

H+(N2H3CH3)(C7H,40)n, where n = 2 and 1 respectively. Other significant ion clusters 

were recorded at m/z values of 143 and 257, H+(CgHi8N2) and H+(C8Hi8N2)(C7Hi4 0 ). 

Ion peaks observed at m/z values of 207, 93, 47, and 229, were assigned to the ion- 

molecule clusters of H+(N2H3CH3)2(C7Hi4 0 ), the protonated dimer and monomer of 

MMH, and the dimer of 4-heptanone H+(C7H 140)2. The product ion mass spectrum of 

the ion-molecule cluster at m/z 207 is shown in Figure 4.43. The ion-molecule clusters 

are listed in Table 4.29. Again, m/z values for contaminant species were calculated as 

ion-molecule clusters which involved other ketones from the series and the presence of 

ammonia.
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Figure 4.42: Mass spectrum of the ion clusters formed from methylhydrazine with the
4-heptanone doped source region
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Figure 4.43: Product ion mass spectrum of the methylhydrazine ion-molecule cluster at
m/z 207

Table 4.29: Summary of methylhydrazine / 4-heptanone ion chemistry; source region
doped

Precursor Ion MS-MS Product Ions

275 H+(N2H3CH3)(C7H140 )2 161 H+(N2H3CH3)(C7H 140 )

161 H+(N2H3CH3)(C7H140 ) 47 H+(N2H3CH3)

*143 H+(C8H18N2)

257 H+(C8H18N2)(C7H140 ) 143 H+(C8H18N2)

207 H+(N2H3CH3)2(C7H140 ) 161 H+(N2H3CH3)(C7H140) 93 H+(N2H3CH3)2 47 H+(N2H3CH3)

93 H+(N2H3CH3)2 WM H+(N2H3CH3)

47 H+(N2H3CH3)

*229 H+(C7H140 )2

*189 H+(C8H j 8N2)(N2H3CH3)

285 H+(C8H18N2)2 143 H+(C8H18N2)

115 H+(C7H140 )

*Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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The higher concentration of dopant, achieved through doping of the system via the drift 

region, significantly increased the relative intensity of the ion cluster at m/z 275 (see 

Figure 4.44). Most of the other ions found with the lower concentration of dopant were 

reduced to trace quantities. The increased dopant concentration allowed the formation of 

an ion cluster recorded at m/z 389, in the short range scan of 250 to 460 amu, identified 

as H+(N2H3CH3)(C7H,40 )3  (Figure 4.45).

This result was significant because the peak was not recorded in the original spectrum 

range of 1 to 400 amu. Because the ion cluster was predicted, it was possible to 

determine its presence through the shorter range scan which led to a greater number of 

scans averaged. It would not have been possible to detect H+(N2H3CH3)(C7H 140)4 at 

m/z 503. The ion clusters are listed in Table 4.30.
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Figure 4.44: Mass spectrum of the ion clusters formed from methylhydrazine with the
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Figure 4.45: Mass spectrum of the ion clusters formed from methylhydrazine with the
4-heptanone doped drift region, in the range 250 to 460 amu

Table 4.30: Summary of methylhydrazine / 4-heptanone ion chemistry; drift region
doped

Precursor Ion MS-MS Product Ions

275 H+(N2H3CH3)(C7H140)2 161 H* (N2H3CH3)(C7Hj40 )

161 H+(N2H3CH3)(C7H140 )

*143 H ^ C ^ N ,)

*189 H+(C8H18N2)(N2H3CH3)

47 H^NhHsCH,) l l l l l H ^N ^C H ,)

389 H+(N2H3CH3)(C7H140 )3 275 H+(N2H3CH3)(C7H140 )2 l l i l ; H* (N2H3CH3)(C7H140 )

*Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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4.14.4 5-Nonanone /  methylhydrazine ion chemistry

The precursor ion spectrum of MMH detection with a 5-nonanone doped source region 

appeared to be contaminated with acetone, which contributed to the major ions. 

However, there was a clear indication of the reaction of MMH with 5-nonanone through 

the formation of the corresponding protonated 5-nonanone hydrazone at m/z 171. This 

reaction product combined with MMH to produce H+(CioH22N2)(N2H3CH3) at m/z 217. 

5-Nonanone also combined with unreacted MMH to form a cluster at m/z 189, 

H^NzHsCHsXCgHigO). The hydrazone also combined with the ketone to produce 

H +(C10H22N2)(C9HlgO), m/z 313. The dimer ion of MMH was also present. The results 

are listed in Table 4.31. Again, contamination peaks were recognised as arising from 

clusters containing the other ketones, ammonia, and HZ.

Table 4.31: Summary of methylhydrazine / 5-nonanone ion chemistry; source region
doped

Precursor Ion MS-MS Product Ions

171 H+(C10H22N2)

217 H+(C10H22N2)(N2H3CH3) 171 H+(C10H22N2)

189 H+(N2H3CH3)(C9H180 ) 47 H+(N2H3CH3)

93 H+(N2H3CH3)2 l l l l : H+(N2H3CH3)

235 h +(n 2h3c h 3)2(c 9h 18o ) H+(N2H3CH3)(C9H180 ) Sill H+(N2H3CH3)2 111? H+(N2H3CH3)

313 H+(CioH22N2)(C9H180 ) I l l h +(c 10h 22n 2)

47 H+(N2H3CH3)

139 H+(N2H3CH3)3 93 H+(N2H3CH3)2 HI; H+(N2H3CH3)

143 H+(C9H180 )

*285 H+(C9H180 )2

*ConiIrmation of ion-molecule composition by MS-MS analysis was unavai able
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With the drift region of the spectrometer also doped with 5-nonanone the 

predominant ion cluster became the H+(N2H3CH3)(C9HigO)2 cluster at m/z 331 (Figure

4.46). The ions of second highest intensity were those at m/z values 313 and 171, which 

were of comparable peak amplitude, followed by the ion clusters at m/z values of 189, 

and 217. The results are listed in Table 4.32. Due to a temporary malfunction of the MS- 

MS system, it was not possible to check for the presence of the H+(N2H3CH3)(C9HigO)3 

cluster at m/z 473.
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Figure 4.46: Mass spectrum of the ion clusters formed from methylhydrazine with the
5-nonanone doped drift region
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Table 4.32: Summary of methylhydrazine / 5-nonanone ion chemistry; drift region

doped

Precursor Ion MS-MS Product Ions

331 H+(N2H3CH3)(C9H180 )2 189 H+(N2H3CH3)(C9H180 ) 47 H+(N2H3CH3)

313 H+(C10H22N2)(C9H18O) H I H+(C10H22N2)

171 H+(C,oH22N2)

189 H+(N2H3CH3)(C9HI80 ) 47 H+(N2H3CH3)

217 H+(C10H22N2)(N2H3CH3) 171 H+(C10H22N2)

to00*

H+(C9H180 )2

47 H+(N2H3CH3)

*341 h+(c 10h 22n 2)2

*Confirmation of ion-molecule composition by MS-MS analysis was unavailable

4.14.51,1,1-Trifluoroacetone 1 methylhydrazine ion chemistry

The predominant ion in the 1,1,1-trifluoroacetone doped detection of MMH (Figure

4.47) was the dimer ion of the analyte. Although a calculated m/z value of 139 for the 

hydrazone product of reaction of these two chemicals was recorded in the parent ion 

spectrum, MS-MS analysis showed this cluster to be the trimer ion of the MMH. 

Addition of the dopant through the drift region did not assist the formation / survival of 

any relevant ion clusters comprising analyte and dopant.

It was assumed that the electron withdrawing properties of the fluorine atoms 

decreased the activity of the normally reactive carbonyl group, through inductive effects, 

so that there were no reaction products. Also, MMH had a much higher proton affinity 

(895.7) kJ.mol'1) than the 1,1,1-trifluoroacetone (725.5 kl.mol'1) which resulted in 

clusters of the analyte only.
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Figure 4.47: Mass spectrum of the ion clusters formed from methylhydrazine with the 
1,1, 1-trifluoroacetone doped source region

4.15 Proton bound clusters of ketones and 1,1-dimethylhydrazine

4.15.1 Acetone /  1,1-dimethylhydrazine ion chemistry

During the detection of UDMH with only the source region doped with acetone, the 

spectrometer was susceptible to the ion chemistry being controlled or predominated by 

what appeared to be contaminant species (Figure 4.48). The main contaminant species 

was MMH which, when combined with acetone, formed the H+(N2H3CH3)(C3H6 0 ) ion 

cluster at m/z 105. The preliminary experiments with UDMH also indicated MMH 

contamination in the system. Therefore, the experiments were repeated so that analyses 

involving MMH were performed last of all. Thus, there was no MMH in the system 

when UDMH was used as the analyte. Consequently, it was assumed that there was a
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mechanism for the extraction of a methylene group, or perhaps a methyl group, from the 

UDMH through primary single bond cleavage.
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Figure 4.48: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the acetone doped source region

The only evidence of clustering involving the ketone with UDMH was apparent 

in the H+(N2(CH3)2H2)(C3H6 0 ) ion cluster at m/z 119. A peak at m/z 61 for the 

protonated UDMH was approximately one third of the intensity of the peak at m/z 119. 

The results are listed in Table 4.33. There appeared to be minor TMH contamination of 

the system.
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Table 4.33: Summary of UDMH / acetone ion chemistry; source region doped

Precursor Ion MS-MS Ions

105 H +( N 2H 3C H 3)(C 3H 60 ) 47 H +( N 2H 3C H 3)

119 H +( N 2(C H 3)2H 2)(C 3H 60 ) 1111111 h +(c 3h 6o )

*133 H+(C4H ,oN2)(N2H3CH3)

47 H +( N 2H 3C H 3)

61 H +(N 2 (C H 3) 2H2) s m
*147 H+(C4H,oN2)(N2(CH3)2H2)

117 H +(C 3H 60 ) 2 59 H +(C 3H 60 )

121 H +( N 2(C H 3)2H2)2 61 H +(N 2 (C H 3)2H 2)

*161 H +(C 5 H 12N 2)(N 2(C H 3)2H 2)

93 H +( N 2H 3CH 3)2 47 H +( N 2H 3C H 3)

*159 H +(C 5H  i 2N 2) (C 3H 60 )

101 H +(C 5H 12N 2)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable

Acetone doping of the drift region produced ion clusters of higher m/z values 

during the detection of UDMH. The acetone series H+(C3H6 0 )n, where n = 2 to 4, 

produced peaks at m/z 117, 175, and 233 (Figure 4.49). There was no evidence of 

UDMH being present in the system (see Table 4.34). All of the contamination peaks 

recorded were for products of the ketone and / or MMH being present in the system.
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Table 4.34: Summary of UDMH / acetone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

175 H+(C3H60 )3 117 H+(C3H60 )2 59 H+(C3H60)

117 H+(C3H60 )2 59 H+CQHeO)

233 H+(C3H60 )4 175 H+(C3H60 )3 117 H+(C3H60 )2

*133 H+(C4H10N2)(N2H3CH3)

105 H+(N2H3CH3)(C3H60) 47 H+(N2H3CH3)

*201 H+(C5H12N2)2

119 H+(N2(CH3)2H2)(C3H60)

163 H+(N2H3CH3)(C3H60 )2 WiM H+(N2H3CH3)(C3H60) Ills H+(N2H3CH3)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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Figure 4.49: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the acetone doped drift region
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The results of the previous experiments, which had involved reaction between 

either HZ or MMH with the ketones, might be explained through their proton affinities. 

The proton affinity for acetone was 812.0 kJ.mof1. The symmetrical addition of 

methylene groups next to the carbonyl bond increased the proton affinity to 851.6 

kJ.mof1 for 5-nonanone. The proton affinity of HZ, at 853.2 kJ.mol'1, was close to the

5-nonanone value, and as the proton affinity for the analyte and dopant were similar, 

either chemical would have been capable of competing for the proton leading, perhaps, 

to an even distribution of the positive charge between the two reactants.

The proton affinity of MMH was higher, at 895.7 kJ.mof1 and would have been 

predominant in the competition for the protons. It was not until the greater concentration 

of ketone entered the system that there was sufficient distribution of protons between the 

analyte and dopant, so that reaction between them took place only when the drift region 

was doped.

The greater the methyl substitution of HZ the greater was the proton affinity. For 

the UDMH the proton affinity had increased to 926.6 kJ.mof1; this higher proton 

affinity meant that UDMH would have attracted protons preferentially and not favoured 

reaction with the ketone. The ion-molecule chemistry was simpler for UDMH than for 

either HZ or MMH.

Another explanation might have been the increased vapour pressure of the 

hydrazines, with greater methyl substitution leading to the relative concentrations of 

UDMH > MMH > HZ, so that the concentration difference between the ketone and a 

given hydrazine increased with progression up the homologous ketone series.
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4.15.2 3-Pentanone /  1,1-dimethylhydrazine ion chemistry

The ion chemistry of the 3-pentanone doped source system in the presence of UDMH 

was predominated by the unreacted analyte, present as the dimer and monomer at m/z 

121 and 61 respectively (see Figure 4.50). Again, the ion chemistry was affected by the 

presence of MMH (see section 4.14), the peak at m/z 133 being a combination of the 

dopant and MMH, H+(N2H3CH3)(C5HioO). However, in this experiment, with 

3-pentanone as the dopant material, there was evidence of clustering with the UDMH 

through the peak at m/z 147, H+(N2(CH3)2H2)(C5HjoO) (see Figure 4.51). There was 

only a trace of the monomer and dimer ketone ions. There were no significant quantities 

of reaction products (see Table 4.35) due to the much higher proton affinity of UDMH 

(926.6 kJ.m ol1).
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Figure 4.50: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the 3-pentanone doped source region
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Figure 4.51: Product ion mass spectrum of the 1,1-dimethylhydrazine ion-molecule
cluster at m/z 147

Table 4.35: Summary of UDMH / 3-pentanone ion chemistry; source region doped

Precursor Ion MS-MS Product Ions

121 H+(N2(CH3)2H2)2 61 H+(N2(CH3)2H2)

133 H+CN.HsCHsXCsHuO) 87 H+(C5H10O) 47 H+(N2H3CH3)

61 H+CN.CCHs)*)

147 H+(N2(CH3)2H2)(C5H10O) 61 H*( N2(CH3)2H2)

107 H+(N2H3CH3)(N2(CH3)2H2) Ilf: H+(N2(CH3)2H2) 111®H* (N2H3CH3)

47 lf(N 2H3CH3)

93 H+(N2H3CH3)2 '111H+(N2H3CH3)

*161 H+(C6H14N2)(N2H3CH3)

87 H+(C5H10O)

*187 H+(C7H14N2)(N2(CH3)2H2)

^Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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It was also possible that the peaks at m/z 64 and 78 were due to ammonia 

combining with MMH and UDMH respectively. As in the previous section, there was an 

indication of TMH contamination.

Increased dopant concentration almost annihilated the dimer of the analyte 

although the monomer survived. The intensity of the H+(N2(CH3)2H2)(C5HioO) cluster 

ion at m/z 147 increased, as did the contaminant ion at m/z 133 (Figure 4.52). The larger 

clusters were not apparent. The peak at m/z 219 was assigned the formula 

H+(N2H3CH3)(C5H10O)2. A trace of the ketone monomer was observed at m/z 87 (see 

Table 4.36). The peak at m/z 175 might have arisen from the combination of 

3-pentanone with TMH.
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Figure 4.52: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the 3-pentanone doped drift region
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Table 4.36: Summary of UDMH / 3-pentanone ion chemistry; drift region doped

Precursor Ton MS-MS Product Ions

133 H+(N2H3CH3)(C5H10O) 47 H ^ N ^ C lb )

147 H+(N2(CH3)2H2)(C5H1oO) 61 H+(N2(CH3)2H2)

219 H \N 2H3CH3)(C5H10O)2 133 H+(N2H3CH3)(C5H1oO) 47 H+(N2H3CH3)

61 H+(N2(CH3)2H2) i s i i i

47 H+(N2H3CH3)

121 J f m C H 3)2H2)2 61 H+(N2(CH3)2H2)

*161 H+(C6H14N2)(N2H3CH3)

233 H ^ C H ^ H zX Q H ^ O ), i l l H+(N2(CH3)2H2)(C5H10O) 61 H+(N2(CH3)2H2)

*187 H+(C7H14N2)(N2(CH3)2H2)

107 H+(N2H3CH3)(N2(CH3)2H2) 1 1 1 H+(N2(CH3)2H2) 47

^Confirmation of ion-molecule composition by MS-MS analysis was unavailable

4.15.3 4-Heptanone /  1,1-dimethylhydrazine ion chemistry

The 4-heptanone doped source system with UDMH analyte produced the 

H+(N2(CH3)2H2)(C7HmO) cluster at m/z 175 (Figure 4.53). The monomer and dimer 

analyte ions were recorded at m/z values of 61 and 121 (see Table 4.37). Again, 

significant contamination was also indicated, for example, the predominant ions at m/z 

values of 161 and 47 (refer to MMH ion chemistry) and so the majority of the 

contamination of the contamination peaks were attributed to decomposition products. 

Another predominant peak, at m/z 132, could have been assumed to be the combination 

of ammonia and 4-heptanone, but MS-MS analysis confirmed the m/z value was 133, 

and that the ion-molecule cluster comprised MMH combined with the contaminant 

3-pentanone. The 3-pentanone could also have combined with ammonia to produce an 

ion peak at m/z 104, but this value appeared high; there was no obvious explanation for 

the peak at m/z 103. The peak at m/z 147 was probably 3-pentanone combined with 

UDMH. Again, UDMH and MMH combined to form an ion at m/z 107.
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Figure 4.53: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the 4-heptanone doped source region

Table 4.37: Summary of UDMH / 4-heptanone ion chemistry; source region doped

Precursor Ion MS-MS Product Ions

161 H+(N2H3CH3)(C7H140) 47 H+(N2H3CH3)

175 H^CCHs^XQHuO) 61 H+(N2(CH3)2H2)

121 H+(N2(CH3)2H2)2 61 H+(N2(CH3)2H2)

61 H+(N2(CH3)2H2)

47 H+(N2H3CH3)

107 H+(N2H3CH3)(N2(CH3)2H2) 61 H+(N2(CH3)2H2) 47 H^N^CH,)

157 h+(c9h 20n2)

275 H+(N2H3CH3)(C7H140 ) 2 161 H+(N2H3CH3)(C7H140) 47 KTCNACH,)

*203 H+(C8H18N2)(N2(CH3)2H2)

93 h+(n2h3ch3)2 47 H^N^CH,)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable
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The increased concentration of the 4-heptanone altered the ion chemistry to 

encourage the reaction of the ketone and the analyte to produce 4-heptanone hydrazone 

at m/z 157, the predominant ion (Figure 4.54). The monomer of the analyte survived, 

due to the high proton affinity of UDMH. The peak at m/z 175 decreased in intensity. 

There was also a trace peak indicating the combination of the hydrazone with the 

ketone, at m/z 271 (see Table 4.38).
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Figure 4.54: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the 4-heptanone doped drift region
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Table 4.38: Summary of UDMH / 4-heptanone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

157 H+(C9H20N2)

161 H+(N2H3CH3)(C7H140) 47 H+(N2H3CH3)

175 H+(N2(CH3)2H2)(C7H140) 61 H+(N2(CH3)2H2)

47 H+(N2H3CH3)

61 H+(N2(CH3)2H2)

*275 H+(N2H3CH3)(C7H140)2 161 H+(N2H3CH3)(C7H140) i i i : H+(N2H3CH3)

271 H+(C9H20N2)(C7H14O)

*203 H+(C8H18N2)(N2(CH3)2H2)

*189 H+(C8H18N2)(N2H3CH3)

115 H+(C7Hi40)

229 H+(C7H140)2 115 H+(C7H140)

*217 H+(C9H20N2)(N2(CH3)2H2)

121 H+(N2(CH3)2H2)2 61 H+(N2(CH3)2H2)

Confirmation of ion-molecule composition by MS-MS analysis was unavailable

4.15.4 5-Nonanone /  1,1-dimethylhydrazine ion chemistry

With the source region doped with 5-nonanone (Figure 4.55), the introduction of 

UDMH produced relevant peaks at m/z values of 203, 121, 185, and 61 (see Table 

4.39). The combined analyte / dopant peak of H+(N2(CH3)2H2)(C9Hi80) was assigned to 

m/z 203; 121 and 61 were the analyte dimer and monomer ions, respectively. The peak 

at m/z 185 was the hydrazone reaction product H+(CnH24N2). Again, contamination 

peaks due to the presence of MMH were recorded. The peak of highest intensity, at m/z 

189, was due to the combination of MMH with 5-nonanone. Contamination peaks were 

similar to those in the previous section.
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Figure 4.55: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the 5-nonanone doped source region

Table 4.39: Summary of UDMH / 5-nonanone ion chemistry; source region doped

Precursor Ion MS-MS: Product Ions

189 H+(N2H3CH3)(C9H180) 47 H+(N2H3CH3)

203 H+(N2(CH3)2H2)(C9H180) 61 H+(N2(CH3)2H2)

121 H+(N2(CH3)2H2)2 61 H+(N2(CH3)2H2)

185 H+(C„H24N2)

47 H+(N2H3CH3)

61 H+(N2(CH3)2H2)

107 H+(N2H3CH3)(N2(CH3)2H2) 61 H+(N2(CH3)2H2) 47 H+(N2H3CH3)

*217 H+(C,oH22N2)(N2H3CH3)

*231 H+(C,oH22N2)(N2(CH3)2H2)

331 H+(N2H3CH3)(C9H180)2 189 H+(N2H3CH3)(C9H180) 47 H ^N ^C H ,)

245 H+(C„H24N2)(N2(CH3)2H2) 61 H+(N2(CH3)2H2)

*MS-M S analysis was inconclusive due to low ion population during ana ysis
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Doping of the drift region with 5-nonanone had only a small effect upon the 

relative intensities of the two major peaks (see Figure 4.56 and Table 4.40). The relative 

intensities of the contaminant peaks at m/z values of 103 and 161 changed little. Neither 

peak could be identified.
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Figure 4.56: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the 5-nonanone doped drift region

Table 4.40: Summary of UDMH / 5-nonanone ion chemistry; drift region doped

Precursor Ion MS-MS Product Ions

189 H+(N2H3CH3)(C9H180 ) 47 H* (N2H3CH3)

203 H ^ C H s ^ X G f t g O ) 61 H+(N2(CH3)2H2)

61 H+(N2(CH3)2H2)

47 H+(N2H3CH3)

185 iTCCuHaNa)

331 H+(N2H3CH3)(C9H180 )2 S i l l H+(N2H3CH3)(C9H180 ) |::|47:: H* (N2H3CH3)

*217 H + tC joH ^ X N ^ C H O

*231 I f1- (C10H22N2)(N2(CH3)2H2)

245 H* (Ci ]H24N2)(N2(CH3)2H2) 61 FT1' (N2(CH3)2H2)

*MS-MS analysis was inconclusive due to low ion population during analysis
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4.15,51,1,1-Trifluoroacetone /  1,1-dimethylhydrazine ion chemistry 

During the determination of UDMH with a 1,1,1-trifluoroacetone doped source region 

(Figure 4.57), there was an indication of the presence of the ion cluster 

H+(N2(CH3)2H2)(CH3COCF3) at m/z 173, although MS-MS analysis was inconclusive. 

This was probably because of a rapid change in the ion-molecule chemistry as a result of 

the volatility of the dopant, which led to the reservoir being emptied rapidly. The 

monomer and dimer ions of the analyte were present (see Table 4.41). The peaks at m/z 

values of 132, 103, and 146 were attributed to contamination and once again, MMH 

product ion peaks appeared to dominate.
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Figure 4.57: Mass spectrum of the ion clusters formed from 1,1-dimethylhydrazine with
the 1,1,1-trifluoroacetone doped source region
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Table 4.41: Summary of UDMH / 1,1,1-trifluoroacetone ion chemistry; source region

doped

Precursor Ion MS-MS Product Ions

173 H +( N 2(C H 3)2H 2)(C H 3C O C F 3) 61 H +(N 2 (C H 3) 2H 2)

121 H +( N 2(C H 3)2H 2)2 61 H +(N 2 (C H 3) 2H 2)

61 H +(N 2 (C H 3)2H 2)

47 H +(N 2H 3C H 3)

159 H +( N 2H 3C H 3)(C H 3C O C F 3) a w H +(N 2H 3C H 3)

* 117 H +(C 3H 60 ) 2

* 101 H +(C 5H 12N 2)

*ConfIrmation of ion-molecule composition by MS-MS analysis was unavailable due to 
insufficient intensity of the precursor ion peak

Doping the system via the drift region did little to alter the ion chemistry (see 

Table 4.42). Although there was an indication of the possible clustering of UDMH with 

one molecule of the dopant because of a peak at m/z 173, these results may be suspect 

due to the volatility of the dopant which may have evaporated before any significant 

amount of clustering could be recorded.

Table 4.42: Summary of UDMH / 1,1,1-trifluoroacetone ion chemistry; drift region
doped

Precursor Ion MS-MS Product Ions

173 H+(N2(CH3)2H2)(CH3COCF3) Ig g g l H+(N2(CH3)2H2)

121 H+(N2(CH3)2H2)2

61 H+(N2(CH3)2H2)
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4.16 Proton bound clusters of ketones and tetramethylhydrazine

4.16.1 Acetone /  tetramethylhydrazine ion chemistry

With an acetone doped source region the introduction of TMH produced two 

predominant ion clusters at m/z values of 147 and 89 (Figure 4.58). These ion clusters 

have been identified as H+(C3H60)(N2(CH3)4) and H+(N2(CH3)4). The dimer ion cluster 

of acetone was observed at m/z 117. A trace peak at m/z 176 might have been due to 

either the dimer ion of the dopant at m/z 175 or the dimer ion of the analyte at m/z 177, 

or a combination of the two species. When the table of results (Table 4.43) was 

compiled, the results from the experiment with the higher concentration of acetone were 

taken into account.
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Figure 4.58: Mass spectrum of the ion clusters formed from tetramethylhydrazine with
the acetone doped source region
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Table 4.43: Summary of TMH / acetone chemistry; source region doped

Precursor Ion MS-MS Product Ions

147 H+(N2(CH3)4)(C3H60) H+(N2(CH3)4)

89 H+(N2(CH3)4) 8111
117 H+(C3H60)2 59 h +(c 3h 6o )

*175 H+(C3H60)3

Confirmation of ion-molecule composition by MS- VIS analysis was unavailable due to
insufficient intensity of the precursor ion peak

Doping the complete system with acetone produced larger ion clusters of the 

dopant, with the trimer and tetramer predominating the ion chemistry at m/z values of 

175 and 233 amu (see Figure 4.59). The indication from this experiment was that the ion 

peak in the region of m/z 176 was the m/z 175 ion-molecule cluster. However, the lower 

concentration of ketone may have allowed the existence of the dimer ion of the analyte, 

which has a much higher proton affinity (949.0 kJ.mol'1 compared with 812.0 kJ.mol'1). 

The ion clusters of the dimer, protonated TMH, and H+(N2(CH3)4)(C3H60) were also 

present. The significant result from this experiment is that the number of dopant 

molecules per protonated TMH core did not exceed one. The results are listed in Table 

4.44.

Table 4.44: Summary of TMH / acetone chemistry; drift region doped

Precursor Ion MS-MS Product Ions

175 H+(C3H60 )3 117 H+(C3H60 )2 59 H+(C3H60)

233 H+(C3H60 )4 175 H+(C3H60 )3 117 h +(c 3h 6o )2

117 H+(C3H60 )2 lltli! H+(C3H60)

isiiii H+(N2(CH3)4)

147 H+(N2(CH3)4)(C3H60) ISI11 H+(N2(CH3)4)

59 H+(C3H60)
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Figure 4.59: Mass spectrum of the ion clusters formed from tetramethylhydrazine with
the acetone doped drift region

4.16.2 3-Pentanone /  tetramethylhydrazine ion chemistry

The doping of the source region with 3-pentanone for the detection of 

tetramethylhydrazine produced an ion cluster with the ketone, H+(N2(CH3)4)(C5HioO) at 

m/z 175 (Figure 4.60). Much care had to be taken in assigning the identities of the ion 

clusters due to the proximity of the relative masses of the ketone and the TMH. As the 

MS-MS product ion spectrum value of 91 was 2 amu high for TMH it was assumed that 

the ion cluster at 176 was most likely to be a majority of m/z 175 rather than 177, the 

dimer ion of TMH (Figure 4.61), even so, it was possible that the peak represented a 

mixture of the two species. Although this ion peak intensity was relatively high, the 

most abundant ion was the protonated tetramethylhydrazine, m/z 89. The ion cluster at 

m/z 147 might have been the previously described acetone-tetramethylhydrazine ion
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cluster, formed due to the contamination of the system with acetone. Alternatively, 

it could have been the mixed ketone (acetone / 3-pentanone) ion cluster at m/z 145. It 

was considered that the former suggestion was the most probable, because of the higher 

proton affinity of TMH, and the results of MS-MS analysis confirmed this (see Figure 

4.61).
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Figure 4.60: Mass spectrum of the ion clusters formed from tetramethylhydrazine with
the 3-pentanone doped source region

With the drift region also doped with 3-pentanone the predominant ion peak was 

recorded at m/z 176, again, a possible mixture of the H+(N2(CH3)4)(C5HioO) and 

H+(N2(CH3)4)2 ion-molecule clusters. The analyte ion peak was less than half the 

intensity of the ketone bound TMH. The indication was that the mixed ketone ion 

cluster may have present at m/z 145. Surprisingly, an ion cluster was observed at m/z 

261, possibly the H+(N2(CH3)4)(C5HiqO)2 cluster.
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Figure 4.62: Mass spectrum of the ion clusters formed from tetramethylhydrazine with
the 3-pentanone doped drift region, range 200 to 360 amu
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A narrower mass range (200 to 360 amu) was scanned in order to confirm the presence 

of the ion cluster at m/z 261. This was achieved as shown in Figure 4.62. The trimer ion 

of TMH would have produced an m/z value of 265; the tetramer and 

H+(N2(CH3)4)(C5HioO)3 would have emerged at m/z values of 345 and 347 respectively, 

both of which are adumbrated in the shorter scan range spectrum.

4.16.3 4-Heptanone /  tetramethylhydrazine ion chemistry

During the detection of TMH with the source region doped with 4-heptanone, the 

predominant ion clusters were observed at m/z values of 203 and 89 (Figure 4.63). As 

with the 3-pentanone / TMH ion chemistry, the major ion cluster was that formed from 

the single ketone and TMH molecules, H+(N2(CH3)4)(C7Hj4 0 ).
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Figure 4.63: Mass spectrum of the ion clusters formed from tetramethylhydrazine with
the 4-heptanone doped source region
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There was a minor indication of the presence of the protonated dimer of TMH at m/z 

177. The ion clusters at m/z values of 161, 103, and 217 were considered to be the result 

of contamination in the system. It was unclear whether there was any breakdown of the 

TMH to form any compounds similar to MMH and UDMH.

When the drift region was doped with 4-heptanone the relative intensity ratio of 

the two major ions of interest changed only a little, with the predominance unchanged. 

The dimer ketone ion (m/z 229) and its TMH adduct cluster ion H+(N2(CH3)4)(C7Hi40)2 

(m/z 317) were adumbrated, as shown in Figure 4.64. The shorter range scan (300 to 

475 amu, shown in Figure 4.65) confirmed the presence of the latter ion cluster, and also 

repeated the pattern of hinting at the presence of the trimer ketone ion and its TMH 

adduct ion at m/z values of 343 and 431, respectively.

•fProlileQISCAN

run no 932 - 6/11/96 - 3:02 PM
NoTllle
29 peaks 22.000
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131.0 318.0

150 200 250 350100 300

Figure 4.64: Mass spectrum of the ion clusters formed from tetramethylhydrazine with
the 4-heptanone doped drift region



202

+Pro(ile Q1SCAN

run no 935 - 6/11/96 - 3:37 PM 
No Title 
19 peaks

lOO-i

75-

25-

386.6
345.2 358.4 366.2 374.4 431.0

300 320 340 360 420 440

Figure 4.65: Mass spectrum of the ion clusters formed from tetramethylhydrazine with 
the 4-heptanone doped drift region, range 300 to 475 amu

4.16.4 5-Nonanone /  tetramethylhydrazine ion chemistry

Yet again, there is evidence of the single ketone and TMH cluster ion present, with only 

the source region doped, this time with 5-nonanone used during the detection of TMH 

(Figure 4.66). The H+(N2(CH3)4)(C9HisO) cluster has an m/z value of 231. A trace of 

the protonated ketone monomer was seen at m/z 143; the predominant ion was the 

protonated TMH molecule (m/z 89), with a small amount of the dimer present at m/z 

177.



203

♦Prolile Q1SCAN

run no 937 - 6/11/96 - 450 PM
No Title
15pa«ks

100

c 50 

£

88.6

191.6

16.4 148.2

.U -M - U 204.2

275.000

Figure 4.66: Mass spectrum of the ion clusters formed from tetramethylhydrazine with
the 5-nonanone doped source region

When the drift region was also doped with 5-nonanone the 

H+(N2(CH3)4)(C9Hi8 0 ) and protonated tetramethylhydrazine clusters were of 

comparable intensity (see Figure 4.67). Again there was an indication of the formation 

of the dimer ketone / TMH adduct cluster ion, in this case H+(N2(CH3)4)(C9Hi80)2 at 

m/z 373. The peak was too low in intensity to obtain a meaningful MS-MS product ion 

mass spectrum. The peaks at m/z values of 235, 203, and 245 might have arisen from 

H+(N2H3CH3)2(C9H180 ), H+(N2(CH3)2H2)(C9H,8 0 ), and

respectively if, as suspected in the source region doped experiment, there was 

decomposition of the TMH.
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Figure 4.67: Mass spectrum of the ion clusters formed from tetramethylhydrazine with
the 5-nonanone doped drift region

4.16.51,1,1-Trifluoroacetone / tetramethylhydrazine ion chemistry

The indications were that the system was contaminated during the experiment when the 

IMS source region was doped with 1,1,1-trifluoroacetone, but the protonated monomer 

of TMH did exist. It is possible that the single ketone and TMH cluster ion formed, with 

an m/z value of 201, but the intensity of the ion in this area was very low. There was no 

evidence of any other cluster ions forming, which may have involved the 5-nonanone 

and TMH molecules.
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4.17 Summary of the ammonia, hydrazines, and ketones ion-molecule

chemistry

The IMS-MS-MS studies were undertaken in order to determine the composition of the 

ion-molecule clusters and establish why the hydrazines and ammonia had mobility 

values in the reverse order to that expected, according to the relative size of the analyte 

molecules. With the IMS-MS-MS information, and the computed dimensions of the ion- 

molecule clusters, it was anticipated that it might be possible to determine if the size of 

the molecules could be controlled and used to effect resolution between the HZ and 

ammonia product ion peaks. The studies were used to investigate the Stone model, to 

ascertain whether the predicted structures of the ion-molecule clusters were correct.

Assignment of ion-molecule clusters to the ion peaks was difficult because the 

presence of contaminants made the chemistry more complicated and, therefore, the 

importance of MS-MS analysis was recognised. Even with knowledge of the analyte and 

ketone systems, commensurate with awareness of contamination, identification of low 

intensity peaks was problematic because of coincidental m/z values for different ion- 

molecule clusters. An example of this was observed during the HZ tests with 

5-nonanone dopant, with the occurrence of a peak at m/z 313 representing both 

H+(C,8H36N2)(N2H4) and H+(C9H2oN2)2 ion-molecule clusters. The latter cluster was 

more probable because there was no evidence of the hydrazone combining with the 

analyte and therefore it was unlikely that the azine would combine with the analyte. 

There was also no evidence of azine formation from the reaction of HZ with any of the 

other ketones and then forming clusters through combination with HZ.

There was also a problem with the assignment of ion-molecules and ion clusters 

when the ion-molecules were of similar m/z values, for example TMH and 3-pentanone.
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Even with calibration of the mass spectrometers the resolution could only be quoted to 

±1 amu.

The variety and complexity of the ion-molecule chemistry became apparent as 

the IMS-MS-MS experiments progressed. The gas phase reactions of the hydrazines to 

form hydrazones was further complicated by the two-stage reaction of HZ to form 

azines with the various ketones. The product ion clusters became even more numerous 

because of the formation of mixed clusters involving the reaction products with the 

analyte or ketone. There was also the formation of ion-molecule clusters comprising two 

molecules of the analyte with one molecule of ketone. Although the proton affinity of 

UDMH is higher than for MMH, the set of UDMH experiments appeared to be 

dominated by the presence of MMH, formed by decomposition of UDMH, perhaps by 

primary single bond cleavage thus:

H

\

/
H

/
CHc

- C H .

N — N
\

C H .

H

\

/
H

/
C H .

N — N
\

H 30.

It is possible that the additional methyl group attached to the primary core nitrogen of 

UDMH provided steric hindrance, allowing the MMH to readily form ion-molecule 

clusters, or that the proton affinities were not sufficiently separated, and both had a high 

enough proton affinity to compete for the available positive charges.

Because the ion-molecule chemistry results were so complex, the m/z values and 

corresponding empirical formulae have been tabulated for quick reference in Tables 

4.45 to 4.49, one table for each of the analytes, with increasing m/z values listed 

upwards. The results for 1,1,1-trifluoroacetone doped tests have not been included in
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these summaiy tables because of the problems associated with trying to determine ion- 

molecule chemistry in an unstable environment. These tables have been colour coded to 

indicate the three most dominant ions for each experiment, in decreasing order of red > 

yellow > green; lower intensity peaks have not been shaded. This made the 

identification of ion-molecule clusters according to m/z values much easier, but the 

variety of the formulae does not allow easy recognition of the patterns of the ion- 

molecule chemistry of the hydrazines with ketones (twenty-eight different compositions 

have been recorded). To assist with interpretation, the resultant ion-molecule clusters 

have been summarised using simplified formulae in Tables 4.50 and 4.51, for the ion 

chemistry of the source and drift doped systems respectively. The abbreviations used in 

these latter tables are: A = analyte, K = ketone, P* = hydrazone, P”  = azine, and B = 

decomposition product, B’ = hydrazone formed from a decomposition product. As 

protons are common to all of the ion-molecule clusters the H+ symbol has been omitted 

from the simplified formulae in Tables 4.50 and 4.51. These two tables have been 

colour coded for approximate peak intensity so that the types of ions and their 

distribution could be identified easily. The tables have been printed on transparency film 

so that when the sheet of paper dividing them is removed the effect of change in dopant 

concentration may be observed. From the tables it is obvious that the concentration 

effect is more pronounced for bigger clusters, with higher levels of ketone present.

Concentration dependency of the ion-molecule chemistry was illustrated by the 

change in concentration through lowering of the vapour pressure with progression up 

the homologous series of ketones, and increased vapour pressure with increased methyl 

substitution of the hydrazines. Chemical reaction is less evident at lower ketone 

concentration i.e. with higher members of the homolgous series, or when the ketone is 

only present in the source region.
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The main effect of the increase in concentration can be seen in the shift in 

H+(analyte)(ketone)n from n = 1 or 2 at lower dopant concentration to n = 2 and 3, with 

the presence of some H+(analyte )(ketone)4 for the ammonia and HZ ion chemistry. The 

effect on UDMH and TMH ion chemistry was to pass from the protonated analyte to the 

H+(analyte)(ketone) cluster. These findings are in keeping with Stone’s model.

In the experiments involving HZ and 5-nonanone, it was postulated that either 

the reaction between HZ and the ketone was quenched at higher dopant concentration, 

or that following the reaction between HZ and 5-nonanone to form the hydrazone and 

azine, the higher proton affinity of HZ and ketone clusters resulted in proton transfer 

from the hydrazone and azine reaction products, thus reducing their relative intensities. 

The latter explanation was felt to be more probable.

It is also obvious that the analytes follow, in principle, the model outlined by 

Stone. The dominance of clusters involving the protonated species does indicate the 

reduction of the number of ketones as the degree of methyl substitution on the primary 

core nitrogen is increased.

The maximum number of ketones attracted by the hydrazines exceeded the 

numbers predicted by the Stone model, but the intensity of the ion peaks recorded for 

the additional ketone molecules was very low, for example H+(TMH)K2, and possibly 

even H+(TMH)K3. These extra ketones would have been attracted either to the second 

core nitrogen of the hydrazine, or would have formed a second layer around the ion 

cluster through solvation. In either case the attraction of these ketones would have been 

much lower than the attraction to the primary, protonated core nitrogen. The typical 

number of ketones recorded per ion-molecule cluster was lower than the maximum (see 

Table 4.52) predicted for ammonia and HZ, presumably because the ketone 

concentration was too low to achieve the maximum ketone attachment. The number for
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n in H+(analyte)(ketone)n was generally two, occasionally three. Owing to the 

restrictions of the mass range of the mass spectrometer it was not possible to determine 

the maximum number of ketones per ion-molecule cluster for each of the hydrazines 

with the higher molecular weight ketones.

In some of the experiments shorter range scans were recorded in order to 

determine whether predicted peaks, particularly at higher m/z values, did actually exist 

or if they were merely electrical noise spikes in the baseline. These scans confirmed the 

presence of ions at higher m/z values, for example in the tests involving TMH and 

4-heptanone, where the trimer ketone ion and its TMH adduct ion were postulated at 

m/z values of 343 and 431 respectively. The shorter range scans were not employed 

prior to the experiments with 3-pentanone. These indications throw doubt upon the 

previous results obtained in experiments involving the ketones lower down the 

homologous series (CnH2nO), symmetrical about the carbonyl group, and other 

hydrazines, and should be investigated further. Larger cluster ions might have been 

detected if shorter range scans had been used to improve the recorded intensity of the 

ions present.

Although theory predicts that chemicals with the highest proton affinity will 

form ion clusters, the difference in proton affinity alone did not always ensure that the 

highest proton affinity chemical won the competition for the charge. Where proton 

affinities were similar, or were covered by a narrow range, the protons were distributed 

between the analytes and / or ketones, provided an excess of protons allowed for the 

existence of the lower proton affinity species.
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Where the proton affinity of the analyte is much higher than the ketone, for 

example TMH and acetone, and the drift region is dominated with H+Kn where n = 1 to 

3, the predominance of clusters of the lower proton affinity component is explained by 

an excess of the dopant due to its higher vapour pressure.

The electron withdrawing effect of fluorine in 1,1,1-trifluoroacetone is reflected 

in the lower proton affinity (725.5 kl.mol*1). It was expected that few ion clusters would 

be formed with the ketones, particularly at low dopant concentration. Protonated HZ 

clusters were formed (H+HZn where n = 1 to 3) which had not been seen with dopants of 

similar proton affinity to HZ. There was also a significant decrease in the number of 

reaction products formed. The electron withdrawing effects of the fluorinated acetone 

reduced the number of ion-molecule clusters formed in conjunction with this ketone 

resulting in low intensity ion peaks. The inclusion of 1,1,1-trifluoroacetone was solely 

an exercise in manipulation of the ion chemistry, and not a view to its suitability as a 

dopant in any practical instrument.

There was no H+AK2 in the HZ / 4-heptanone source doped tests, which may 

have been a result of the contaminant MMH dominating the ion-molecule chemistry 

because of the higher proton affinity of MMH compared with HZ.

The amount of H+A in the ammonia tests reduced from the acetone source doped 

system to the 5-nonanone system, and there was none recorded in the drift doped 

experiments. The HZ tests produced a similar pattern, not unexpected because of the 

similarity of the proton affinities of HZ and ammonia. Analytes with higher proton 

affinity did produce H+A, and UDMH had a sufficiently high proton affinity to produce 

H+A when the drift region was also doped. The breakdown products of UDMH formed 

primarily H+BK and then combinations of derivatives of B and underivatised A.
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The ionisation region acts as an ion-molecule reaction chamber in which the 

ketones and hydrazines react to form the hydrazones and azines. At higher dopant 

concentrations the population of ion-molecule clusters of the reaction products were 

fewer than observed at lower ketone concentration. Using the HyperChem programme, 

the charge on the primary nitrogen of HZ, the acetone hydrazone, and the corresponding 

azine were calculated as -0.074, -0.159, and -0.141. The charge on the acetone 

hydrazone and acetone azine primary nitrogens render them both more basic than the 

nitrogen in the parent HZ suggesting a higher proton affinity. The charge on the 

carbonyl oxygen in acetone was calculated as -0.314 which suggests that the ketone 

would win the competition for protons, if the dopant was present in sufficient quantity.

The higher dopant concentration of the higher molecular weight ketones 

produces azines in the presence of HZ. Formation of the hydrazone ion occurs at low 

ketone concentrations, while the azine ion is formed at a higher dopant concentration, 

and the H+AKn ion at still higher ketone concentrations.

During the tests with UDMH the tendency to form monomer, dimer, and trimer 

ions of acetone during the drift doped tests was surprising as the proton affinity of 

UDMH (926.6 kJ.mol'1) is much higher than that of acetone (812.0 kJ.mol'1) but it 

could be explained by an excess of available protons and a high concentration of the 

ketone.

In general, it was found that higher proton affinities of analytes led to simplified 

ion chemistry.

There were two peaks observed in the UDMH ion mobility spectra, one 

occurring exactly where the MMH product ion peak was recorded. During the initial 

IMS experiments the occurrence of this second peak was attributed to MMH 

contamination in the sampling line. The sampling lines were changed and individually
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labelled sample lines were dedicated to separate analytes, and UDMH continued to 

produce the second peak, indicating that a reaction by-product was produced which had 

a similar mobility to MMH. The results from the IMS-MS-MS studies confirmed the 

formation of MMH from UDMH and its ion chemistry was similar to the patterns 

observed previously for MMH, for example, with increased ketone concentration the 

intensity of the protonated adduct with two ketone molecules increased.

The earlier work provided no explanation as to why the hydrazines did not form 

ion clusters and consequently were not observed in the ion mobility spectrum at higher 

detector temperatures. A small number of experiments were tried at 50°C; the ratio of 

reaction products to unreacted species increased with increase in temperature i.e. the 

higher temperature favoured reaction of the hydrazines and ketones as would be 

expected. Therefore, it may have been expected that the analytes in tests with the ion 

mobility cell at even higher temperatures would lead to the formation of bigger ion 

clusters, so big that they would have too low a mobility to be recorded in the normal 

spectrum. However, the RIP would have depleted with the formation of product ions, so 

the information from the IMS-MS-MS studies offered no explanation as to the lack of 

response to the hydrazines in higher temperature cells. Response to the hydrazines 

increased with decrease in temperature towards ambient. If the temperatures had been 

sufficient to decompose the hydrazines the most likely decomposition product would be 

ammonia which was also not detected at elevated temperature. Where ammonia was 

detected the response also increased with decrease in temperature.



Chapter 5 

CONCLUSIONS

T
he aims of this research project were to investigate the factors affecting the 

IMS detection of hydrazines and ammonia in the positive mode, and 

nitrogen dioxide in the negative mode. The use of the ion mobility 

spectrometer breadboard, with choice of instrument configuration led to the 

optimisation of conditions for the real-time detection of these analytes. The initial 

thoughts had been to use one drift tube with a relay switch to change detection modes, 

or to integrate twin drift tubes into one instrument, to allow simultaneous monitoring of 

all the analytes of interest. This was dependent upon finding one suitable dopant which 

could be used to effect the ion mobility separation of the RIP and product ion peaks. 

However, because of the choice of a different dopant for the detection of nitrogen 

dioxide, there was little advantage to be gained from pursuing the development of one 

configuration for the detection of all the analytes. A miniaturised version of the ion 

mobility spectrometer breadboard was configured for the detection of ammonia and the 

hydrazines, capable of detecting low vpm and low vpb concentrations respectively.

Investigation into further miniaturisation could consider the possibility of a 

smaller power supply; replacement of the external carrier gas supply with a recirculating 

gas system, involving the integration of sieve packs and minimising sample inlet flow, 

in order to keep water vapour to a minimum and thereby prolonging sieve life; 

integration of software into the spectrometer, to negate the need for the external 

computer system (this would allow the unit to become truly hand-held portable); and 

intrinsic safety might also be a requirement for the final hand held instrument. Although 

possible in theory, due to the high electrical tension supply (at 1 kV) and the use of



222
numerous capacitors, a large proportion of encapsulation (potting) might be necessary, 

which could lead to the expensive replacement of existing parts.

There was still the unsolved problem of partial resolution of the ammonia and 

HZ peaks, and an order of mobility in reverse to that predicted from the relative sizes of 

ammonia and the hydrazines during experimental work. Attention was directed to 

determining how the resultant ion-molecule clusters affected the mobility, and 

molecular modelling was used to optimise ion clusters comprising the analytes and 

various straight chain and branched chain ketones. Maximum diameters were measured 

in an attempt to predict if one of the ketones would be more effective in the separation 

of the ammonia and HZ product ion peaks of the type predicted by the Stone model.

The measured diameters from the optimised ion-molecule clusters made sense of 

the experimentally determined order of mobility and partial resolution of the ammonia 

and HZ peaks. In future, it would be beneficial to model ion-molecule clusters to 

ascertain likely separation of any analytes as much time and effort could be saved in 

experimental work. The time and effort involved, in doping an ion mobility 

spectrometer to the correct concentration level for a satisfactory RIP, performing 

experiments, and then decontaminating the spectrometer before the next chemical 

system is tried, can be cost ineffective. Molecular modelling takes time to set up the 

calculation parameters but then requires little attention until the optimisations are 

complete. Experience from this project indicates some chemical systems can be 

excluded from practical evaluation based on the results of the computational chemistry.

To test the Stone model, chemical systems comprising combinations of either 

ammonia or one of the hydrazines (including TMH) with a symmetrical, straight chain 

ketone were subjected to IMS-MS-MS studies. The results indicated that provided the 

ketone concentration was high enough the maximum number of ketones readily attached
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to the analytes would be four for ammonia, three for HZ, two for MMH, and one each 

for UDMH and TMH. The results of the studies were complicated because of the gas 

phase reactions of the HZ, MMH, and UDMH with the ketones, and the decomposition 

products of UDMH forming even more clusters. The results of these studies also 

emphasised the effect of concentrations in the chemical system. However, it was 

difficult to produce the concentration of dopant required to ensure the maximum ketone 

attachment. It was deemed necessary to continue with the HyperChem optimisations for 

the ammonia / ketone and hydrazine / ketone systems for ion-molecules of 

H+(analyte)(ketone)n where n represented numbers ranging from one to the maximum 

predicted in the Stone model. The diameters measured from the computations are 

reproduced in Table 5.1, and this table may be used to estimate the likely mobility 

separation of various ketone / analyte ion-molecule clusters. Careful control of the 

dopant concentration would be required in any instrument in order to achieve the 

appropriate cluster formations.

Use of dopant materials with different inductive effects may be considered to 

improve selectivity. The studies which involved 1,1,1-trifluoroacetone indicated that the 

electron withdrawing effects of the fluorine atom hindered the formation of ion- 

molecule clusters and allowed ion-molecules of the analyte to pass unattached through 

the system. The affect upon resolution of the analytes, and their resolution from the RIP, 

would have to be investigated; the surface affinity of the analytes might also prove 

problematic.

Chemical systems favouring the detection of ammonia also favour detection of 

HZ. Separation of these two compounds by direct IMS may prove to be impossible. A 

means of separating the components, prior to IMS detection, may be necessary, for 

example, GC-IMS (a gas chromatograph coupled to an ion mobility spectrometer).
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Future work should also include relating the ion mobility peaks to ion-molecule 

clusters determined by IMS-MS-MS studies, and the mass spectrometric analysis over a 

wider range of amu would be beneficial.



Appendix A

Table of proton affinities(210)

Chemical substance Proton affinity 

(kj.mor1)

Tetramethylhydrazine 949.0

1,1 -Dimethylhydrazine 926.6

Methylhydrazine 895.7

2,2,4,4-Tetramethyl-3-pentanone 861.7

Ammonia 854.0

Hydrazine 853.2

5-Nonanone 851.6

2,4-Dimethyl-3-pentanone 850.3

4-Heptanone 845.5

3-Pentanone 836.8

Acetone 812.0

1,1,1 -Trifluoroacetone 725.5

Water 691.0
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