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Abstract.

This research into the feasibility of imaging particulate processes using electrical charge 

tomography investigates four techniques: the multi-sensing of electrical charge in a 

cross-section, a neural network based classifier for flow regime identification, cross 

correlation based velocity determination and spectral analysis of electrodynamic signals.

A single charged-particle model is developed to simulate the induction effect on a sensor 

by a charge. The spatial representation of the voltage induced onto sixteen sensors, placed 

on the boundary of a circular pipe, gives a flow distribution profile over the cross-section.

A two charged-particle model is developed to simulate the electrodynamic effect of two 

particles on a tomographic sensor configuration. As in the single particle model, a spatial 

representation of the voltages induced onto the sensors is presented. This voltage profile is 

due to the combined effects of position and charge of the two particles.

A multi-particle model is developed to predict the voltage profile of several flow regimes: 

full, annular, core, half and stratified. The model is extended to provide the loading and 

concentration of a given flow.

A measurement system is constructed consisting of sixteen sensors equally spaced around 

the boundary of a circular 100mm pipe. Measurements on a bead drop system are designed 

to verify the single particle model.

A sand flow system, consisting mainly of 300 micron sized particles, is used for measure­

ments of the induced voltages due to different flow regimes. The latter are created artificially 

by using baffles of different shapes that obstruct the sand flow.
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The voltage profile from the sixteen sensors gives spatial information about the flow regime. 

These voltage profiles are normalised into patterns that are presented to a Kohonen neural 

network for classification. Two regime classification between well differentiated regimes 

gives an accuracy of identification of 95%. This is expanded to provide classification of 

three regimes with more variability in the input patterns giving success rates between 50% 

to 70%.

A power spectral density analysis of the measured electrodynamic signals gives observable 

features for particle characterisation during flow. In full flow, with no baffles obstructing 

the sand flow, a consistently high frequency spectra of 550Hz is observed. At flow rates 

above 0.540 kgs'1,the frequency spectra shifts to a lower range of 200Hz. In obstructed 

flow, such as in stratified regime, an inhomogeneous phase is inferred from the drop in 

frequency of the power spectra at relatively low flowrates (O.Sbkgs1). These results suggest 

a relationship between the observed spectra and the phenomenon of clustering of particles 

at higher concentrations. The potential of electrodynamic spectroscopy for particle char­

acterisation in terms of size distribution is discussed.

Knowledge of flow regime voltage profile, regime identification and concentration provided 

a basis for an empirically based image reconstruction algorithm.

Finally the achievements of the thesis are discussed and suggestions made for further work.
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Chapter 1 

An Overview of Process Tomography.

1.1 Process Tomography.

Tomography comes from the Greek words tomo (slice) and graph (picture). As defined 

in one encyclopaedia [Helicon 1992] , it is the obtaining of plane section images, which 

show a slice through an object. In this project, the objective is to investigate the feasibility 

of using electrodynamic sensors and neural networks, together with an image recon­

struction algorithm, to produce an image such as the velocity, concentration and size 

distribution profiles at a cross-section of a pipe conveying dry particulates.

Process Tomography is a developing measurement technology. It is gaining attention 

from industry because of some recent successes and the increased work into various 

fundamental aspects of the technology. As demonstrated by the first international 

workshop on Process Tomography held last year [ECAPT92, 1992] which reported new 

sensing techniques, new algorithms and began to address the fundamental challenges such 

as resolution, speed of acquisition, quality of information and other factors that are 

essential to make the technology acceptable to industrial practice.

The specific characteristic of tomographic measurement is its proven ability to interrogate 

the dynamic state of a process condition within a unit operation such as a mixing vessel 

or conveyor without interfering with the process itself. This is achieved using non-invasive 

sensors along a cross-sectional boundary of the process equipment. The tomographic 

measurement data is manipulated using algorithms for image reconstruction, profile 

analysis and numerical quantities such as flow rates, concentration, size and phase dis­

tribution.
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From the knowledge of material distribution and movement, improved internal models 

involving kinetic and dynamic parameters can be derived and used as an aid to optimise 

process design. This is in sharp contrast to present day design methodology which usually 

assumes time and space averaged parameters such as well mixed reactors, completely 

fluidised beds, fully dispersed emulsions and so on.

Currently, models based on for example, a computational fluid dynamics approach, are 

used to simulate the internal phenomenon of a particularprocess. Tomographic techniques 

can contribute further by verifying these models which eventually may lead to better 

dynamic models when the two technologies are combined [Iliyas 1993].

The measurements made by a process tomography system capture micro-scale data at 

points and average these parameters in both time and space. Hence, more useful 

knowledge of a process condition is available at lower cost than the more expensive 

techniques of laser or NMR methods. From an on-line monitoring point of view, 

tomography techniques will be advantageous.

1.2 Use of tomography in powder and particulate processes.

Pneumatic and hydraulic conveying is currently used to transport solids over distances 

ranging from a few meters to several kilometers. This method of transportation is used 

in the chemical industry because it is cheaper and less hazardous than conventional 

transportation by rail and road.

In pnuematic conveying, particles are moved by drag force from the air flow. The 

parameters which affect the conveying process include the flow velocity, distribution of 

gas/solid fraction, the pressure gradient, physical size distribution of the material. These
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may all contribute to the different flow characteristics orregimes in the conveying pipeline, 

which affect the efficiency of energy consumption [Beck 1986] or cause blockage and 

damage to pipes.

In horizontal pneumatic conveying, the flow regimes generated depend upon the con­

veying gas velocity. In dense phase transport where gas velocity is relatively low, the 

distribution of solid particles tend to become less uniform and form a moving bed on the 

base of the pipeline. At a critical deposition velocity, particles will deposit on the surface 

of these beds, an effect known as saltation [Rhodes 1990]. Hence, knowledge of these 

regimes, in particular when an internal image is made available, will help to monitor 

effects during transport.

On the other hand, in vertical pneumatic transport, at low gas velocity and high loading 

factor, that is dense phase conveying, the particles move in clouds along the pipe in a flow 

regime very similar in formation to slug flow in gas/liquid transport. At high gas velocities 

and low solids loading, that is light phase conveying, the flow has a more uniform dis­

tribution. At lower gas velocity, a transition from homogenous or uniform flow to annular 

flow is observed. This transition may be a useful parameter for plant control if it can be 

monitored. In these, tomography would have the ability to obtain real time information 

about these regimes.

The information that can be derived from the tomography sensors will enable velocity, 

flowrate and concentration to be determined over a wide range of flow regimes by pro­

viding better averaging in time and space through multi-projections of the same obser­

vation.
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Many measurement techniques have been applied to the pnuematic transport of powder 

and particulates [Henry et al 1977, Coulthard 1992]. Tomography will provide an increase 

in the quantity and quality of information available when compared to earlier techniques.

The specific objectives of this thesis are:

1. Familiarise with the concepts of process tomography, associated sensor technology

and neural networks.

2. Define the specifications of the problems to be investigated in order to demonstrate

the feasibility of developing a working technique for electrodynamic tomography.

3. Develop a mathematical model of this system and compare measured and predicted

values.

4. Specify, design and construct a measurement system consisting of sixteen transducers,

the associated measurement electronics and data acquisition to a personal computer 

(PC) environment.

5. Use this system with test phantoms to produce data for a charged particle with known

axial position and velocity.

6. Extend the single particle problem to a multi-particle problem by using sand as the

test media.

7. Apply neural networks for classification of flow data into known flow regimes or

image profiles.
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8. Investigate the feasibility of this system determining velocity, concentration and mass

flow rates.

9. Analyse the measured data in the frequency domain for possible additional information

relating to the particle.

10. Develop algorithms for image reconstruction from the measurements and secondary

data.

Figure 1.1 shows the inter-relation of the specific objectives.

ModelsExperiments

SimulationData
Acquisition

Voltage M easurement

Flow Image 
Recogniton 
by Neural 
Networks

Electrodynamic signals '

Particle
size  distribution 
for
characteristion 
by spectroscopy

Determination 
of Flow quantities 
i.e. velocity, m ass 
flowrate and concentration

Figure 1.1: Diagram of the research plan.

1.4 The Thesis Outline.

Chapter 2 presents an overview of Process Tomography. Several sensing mechanisms 

for measurement using non-intrusive techniques are discussed. An electrodynamic 

system is proposed and applications in powder processing outlined.
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Chapter 3 investigates electrical charge theory and uses models to predict the output 

voltages from point sensors placed along the circumference of the conveying pipe. A 

generalised model is derived which considers the different flow regimes that pass 

through the sensing volume due to distribution variations during transport.

Neural networks are investigated for application in process tomography because they 

can interpret and classify the data obtained into its various categories of likeness. Results 

of theoretical studies to understand the workings and behaviour of the neural network 

and its application in pattern recognition of artificial data and measured data is presented 

in Chapter 4.

Chapter 5 describes the design, construction and testing of the 16-channel, circular 

array, electrodynamic sensor and transducer system.

To verify the models, experiments based on a charged, single bead were conducted and 

are reported in Chapter 6. This chapter also describes experiments using sand as the 

flowing media. Phantom flow regimes from these measurements are then identified by 

neural networks.

Chapter 7 discuss the results obtained and the prototype electrodynamic flowmeter 

and process tomography system.

Chapter 8 presents the overall conclusions and recommendations for future research. 

This chapter is followed by the references and appendices.
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Chapter 2 

Review of 

Tomography Sensors and Applications.

2.1 Introduction.

This chapter provides an overview of electrical measurement systems for Process 

Tomography applications. A typical system is shown in figure 2.1

Array of 
sixteen (Z 
sensors

Array of 
sixteen □  
sensors Flow

o

Data Concentration
Data \ storage \ and

capture / and / velocity
processing profile

Figure 2.1: A Process Tomography System.

2.2 Tomography sensors.

There are three basic components in a process tomography system:

a. The sensors

b. The data acquisition system

c. The image reconstruction system and display.

9



Sensor technology is undoubtedly the most essential and critical part of any measurement 

system. The sensors in a tomography system are usually placed in a circular array; a 

16-channel sensor system is quite typical. This is to provide multi projections of the 

object or event being measured. The main advantages derived from such a configuration 

are:

1. Replicated measurements obtained at a local level can be used for improved reliability

and to provide a better averaging of the process parameter being measured.

2. Surface spatial distribution of the material or an object is obtained directly from the

measurement.

3. Multi-component spatial distributions can be obtained through image reconstruction

techniques.

4. Structural information about process materials may be obtained by using spectral

analysis techniques.

There are many reports on the work which has gone into imaging of liquid flow and 

gas-liquid flows. Two possible reasons for this are the interest by oil production companies 

in using capacitance techniques for oil production pipeline monitoring [Huang 1988] and 

the direct applications of medical electrical impedance tomography [Barber and Brown 

1984] to the process industry.

There are not many reports of work to visualise the flow of solids from physical 

measurements. However, experimental work done using liquid media does not necessarily
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limit the use of the basic principles to gas/solids flow. For example, Plaskowski [1991] 

developed an imaging system for two component air/solids flow intended for the food 

industry using capacitance transducers.

The reported techniques for tomographic imaging are based on sensing of electrical 

impedance [Abdullah 1993, Binley et al 1993], induced current [Freeston et al,1993], 

optics [Xie et al 1993], infra red [Dugdale 1991] and ultra sound [Li et al 1993]. This 

research aims to use electrodynamic measurements for imaging in process tomography.

The following discussion reports some existing work on sensor technology for process 

tomography with a view to positioning the electredynamic technique in the overall 

scenario of the subject domain.

Electrical sensing is by far the most common method which has been investigated in 

process tomography research. Electrical capacitance tomography has been developed at 

UMIST [Huang et al, 1988] based on transducers developed by Huang [1988].

Huang’s capacitance measuring circuit is based on the charge transfer principle. A number 

of capacitance electrodes are mounted on the circumference of a flow pipe and interrogated 

in turn by electronic control. Measurements are based on changes in capacitance values 

between electrodes due to the variations in permittivities of the flowing material.

Recently, Huang et al [1991] developed a system for application in oil/gas two-phase 

flow. A new 12-electrode system was used to increase the spatial resolution from the 

earlier 8-electrode system. For example, geometric parameters affect the non-uniform 

field inside the flow pipe resulting in a non-uniform sensitivity distribution over the pipe 

cross section, which is undesirable. Xie et al [1991] developed a system model based on

11



the finite element method to describe the capacitance system. Khan and Abdullah [1991] 

demonstrated a design based on finite element models in order to illustrate the design 

difficulties faced in earlier designs such as that by Xie et al [1989]. Plaskowski et al 

[1991] developed a similar prototype commercial system aimed for pneumatic conveying 

in the food industry.

Electrical impedance sensors have also been used with success in process tomography.

Based on the earlier work done by Brown and Barber [1984], [Abdullah 1993] developed

a system that can generate a sequence of images depicting the distribution of components
♦

or concentration profiles of components across a given plane within a reactor or pipeline 

as function of time. Electrodes are placed into a vessel wall in order to make measurements 

of the distribution of electrical resistance within an object plane. Measurements are 

performed by injecting an ac current via one pair of adjacent electrodes and measuring 

the voltages at all other pairs of adjacent electrodes. The procedure is repeated for all 

possible pairs of electrodes and is referred to as the 4-electrode adjacent pair measurement 

protocol [Dickin et al 1991]. The reconstruction of images from these data uses a series 

of procedures performed iteratively to determine the distribution of regions of different 

resistivities representing for instance, component concentrations within a cross section 

of the pipe or vessel.

Non-electrical methods (such as optical tomographic measurement) have been developed 

by Dugdale et al [1991] based on an earlier theoretical investigation by Saeed et al [1988]. 

The basic system is designed around pairs of optical transducers consisting of a GaAs 

Infra-red light emitting diode and a silicon PIN photodiode. Pulses of IR radiation are 

emitted by the LED and optically configured to form a collimated beam through the flow 

regime in a pipe to a photodiode receiver. Attenuation of the beam due to the flow

12



component concentration causes a corresponding change in the voltage generated by the 

sensors. Identification of flow regimes such as bubble, chum or plug flow is then obtained 

by signal processing of the outputs from the transducers. Further processing enables 

tomograms relating to the concentrations to be generated.

2.3 Electrical charge tomography.

The motivation for using electrodynamic sensors as the sensing device in tomography 

arises from the fact that many flowing materials pick up charge during transport, primarily 

by virtue of friction of fine particles amongst themselves and abrasion on the walls of the 

conveyor [Cross, 1987]. Hence by measuring the voltages induced on sensors placed 

around the wall of a conveyor, it is possible to obtain spatial information of the transported 

material within the conveyor.

The term electrodynamics is used to describe the effects of a moving charge as opposed 

to electrostatics where the charge is stationary. One of the earliest reported works on 

using electrical charge measurements or electrodynamics is that by King [1973]. He 

developed a method of relating the electrodynamic noise level, solids mass flow rate and 

particle-electrode collision rate to theoretical models of intensity of turbulence within a 

horizontal two phase pipe flow. The method allows the monitoring of the rate at which 

electrical charge, which is termed streaming current, is conveyed through apipe by flowing 

dielectric fluids.

Electrodynamic sensors have been used successfully in the past by several studies [King 

1973, Shackleton 1982, Beck CM 1986, Gregory IM, 1987, Gajewski JB 1990, Coulthard 

1992]. These were of ring or single pin electrode type. Information obtained from these

13



measurements showed that mass flowrate, velocity and concentration were obtainable 

from sensing the electrical charge. These earlier developments were however, insufficient 

for determining the distribution profile of the flow.

In an industrial application, Featherstone et al [1982], measured yam velocity in the textile 

process. In this method, electrically charged yam is passed through two metal loops which 

act as sensors. This induces charge on each metal loop which is then amplified by an ac 

coupled charge-to-voltage converter. The outputs are cross correlated, designed for online 

velocity measurement. The transit time for the charge to travel between the two points 

is measured and velocity was calculated from this.

Shotvelocity measurement using electrodynamic sensors was studied by Gregory [1987]. 

Electrostatic variations within a flow were detected by two axially spaced electrodynamic 

sensors. These sensors measured the random changes in induced charge arising from the 

turbulent nature of pneumatic conveying. Cross-correlation was used to obtain the vel­

ocity. This work considered very light phase conveying of shot particles and the 

measurements were verified by high-speed photography.

Beck [1986] investigated the efficiency of energy consumption in pneumatic conveying 

with a measurement system using electrodynamic sensors. A relationship is found 

between the electrical energy consumption by a pilot plant blower and the solids velocity, 

obtained through cross correlation of electrodynamic signals.

Electrical charge tomography uses sensor electronics based on earlier work by Shackleton 

[1981] who used a ring electrode to detect induced charges. Results showed the potential 

for such transducers to be applied in measurement of charge carrying processes.
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2.4 Flow regime identification from tomographic data by neural networks.

Flow regime identification is important in the process industry for plant condition 

monitoring. The efficiency of conveying and energy consumption, for instance, determine 

how the materials flow through the pipes. The task of imaging as a means to determine 

the flow regime requires high computational cost and time. An identification technique 

directly from measurements provide a more practical solution.

Xie [1988] used a statistical method to calculate the fingerprint of a flow regime. This 

method, however, requires the computation of the fingerprint identifier every time a set 

of measurement data is presented for identification. It is thought that an adaptive pattern 

recognition technique would be able to classify flow regimes from given sets of 

measurements. This adaptive pattern recognition technique is based on the neural network 

learning model [Pao 1989].

In the late 80’s, there was a sudden resurgence of interest in Neural Networks. Even 

though the origins of the work [Hebb 1949] predates the emergence of the first digital 

computer, it was only recently that the increase in neural-network research and applica­

tions started [Rumelhart et al 1986].

Studies of the mind and brain are fundamentally domains of neurophysiologists and 

psychologists [Grossberg 1982]. Neuroscience, as it is often called, has collected vast 

amounts of data about the brain, ranging from characterisation of the structure of single 

molecules and ionic channels to imaging brain activity while the brain carries out some 

cognitive task.
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When the mathematical models of the brain functions improved and with the help of 

computers, a better description of the brain in terms of neural network models could be 

made [Hestenes 1987]. Over the last forty years, before the mid 80’s, only very few 

learning rules have been developed. New ones have emerged, either as variations of 

established rules or by new approaches using different theories in Mathematics or Physics.

The principle of neural network learning is based on the simple processing of a single 

neuron interconnected to other neurons, together acting as a whole unit. Each neuron is 

activated upon presentation of an input stimuli. The level of activation depends on a 

threshold limit to trigger a response from the neuron [McClelland et al 1986].

There are three basic learning methods [Kama et al 1989]: supervised, reinforcement and 

unsupervised learning. In supervised learning, a network is given an example of an input 

and also the correct output. The network will filter the input, produce an output and 

compare the calculated output and the correct output. Weights within the network are 

adjusted to minimise the error. In this scheme, there is a teacher (feedback) to correct 

outputs. In reinforcement learning, the network is not given the correct output but only 

told if the output produced is good or bad. With unsupervised learning, a network develops 

its own classification rules by extracting information from examples presented to the 

network.

Computing with neural networks, or simply neural computing, is an adaptive learning 

system. Its goal is to achieve flexibility. Natural situations are highly variable and cannot 

be foreseen completely by a program. The solution of building very large software systems
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considering contingency plans or detailed algorithms for all possible situations is econ­

omically unfeasible, inflexible and error-prone. On the contrary, neural networks attain 

flexibility by formulating the fixed aspects of a structure on an abstract and general level.

The above adaptation capability is called self organisation [Kohonen 1984]. The neural 

network adjusts its own parameters during a training stage so as to learn the inputs 

presented to it (figure 2.2). In the test phase, the neural network tries to get the best match 

between what it has learnt and the test input until a stable solution is reached.

Unlike conventional computing, neural computing has the capability to generalize. The 

system works by storing particular elements, but the results of its operations are to form 

generalizations of these particular instances, even though the generalizations are never 

stored directly. It is also described as having a functional use of experiential knowledge 

[Aleksander 1988]. It is here that the neural networks can perform functions beyond the 

capability of rule based conventional systems. Indeed, it is a system that exhibits 

intelligence and logic, without the explicit rules as in the case of expert systems.
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Figure 2.2. Stages in the usage of neural network system.

2.5 Conclusions from literature review.

From this overview, it appears a combination of electrodynamic sensors, because of their 

high sensitivity, and neural networks, because of their pattern recognition ability, may be 

suitable for concentration and velocity profiling of dry particulates in pneumatic and 

gravity drop systems. The next chapter presents a development of some theoretical models 

of the effects of electrostatic charge on particles onto sensors.
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Chapter 3

Electrodynamic Models

3.1 Electrification of particulates in pnuematic transport.

The generation of electrical charge by pneumatic transport of materials has been known 

for many years. The magnitude of this charge is dependent on various factors including 

type of material, conducting or non conducting, the quantity involved, moisture level, air 

flow rate and physical characteristics of the particles and conveyor.

The mechanism by which electrical charge is generated during flow can be classified in 

many ways [Kelly et al 1989],

a) Tribo-electrification.

This occurs when two dry solid surfaces come into contact due to movement. This 

occurs with many types of surfaces such as two conductors or between conductor 

and non-conductor. The mechanism involves transfer of ions between the two 

surfaces as a result of surface forces [Harper 1967].

b) Homogeneous charge separation.

When a particle breaks up, two smaller particles are created carrying equal and 

opposite charges with no net accumulation of charge.

In the context of powder processing, both of the above mechanisms occur. Irrespective 

of how they occur, as the charged particles pass the surface of a sensor placed in a conveyor 

wall it induces charge. This mechanism was studied by Shackleton [1981].
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A detailed review of electrostatic phenomenon in particulate processes, by Lapple [1970], 

provides useful data. The relationship between electrical properties and particle char­

acteristics, such as particle size and size distribution, for processes involving particles are 

discussed.

This work focuses on the measurement of this electrical charge for the purpose of 

determining some related parameters for flow and particle characterisation.

3.2 The single-particle charge model.

Models are considered which relate the charge on a particle to the voltage on a sensor. 

Two static models are developed based on induction (section 3.2.2) and electric field 

(section 3.2.3) effects. Tests (section 6.2) support the induction model and this is used 

to develop the moving charge model (section 3.2.4).

3.2.1 Assumptions for the models.

The model considers a vertical, downward flow of particles in a pipeline. These particles 

are all assumed to possess a stable electrostatic charge.

Now assume that by superposition, the net effect due to the charges from the various 

particles in the particulate cloud result in a single point charge. This charge can be 

assumed to be a single particle travelling in the axial direction of the pipeline, not 

necessarily coinciding with the central axis of the pipeline.
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Powder 

flow •  A

Figure 3.1: Particle flow through pipe.

The fundamental assumptions made with this model are:

1. The particle is travelling in a direction parallel to the axis of the pipe.

2. This particle has a constant finite amount of charge which is not dissipated over the

period it travels through the sensing volume.

3. The surface area of the electrode is small compared to the radius of the pipe, hence

the electric field does not vary over the cross-sectional plane of the sensor 

geometry (figure 3.2).

4. There is a perfect earth shield from interacting fields external to the sensing volume.

5. The charge is a regular shaped sphere with a constant surface charge density.
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6. The sensor capacitance is maintained constant by a concentric earth shield around

the pipe mounting.

7. The medium in the sensing volume is air (relative permittivity is 1).

The sensors along the pipe wall detect the passing charged particle. The potential 

measured on any one sensor is described by a relationship which depends on the effects 

of induction, field of the particle or possibly both these effects. The following sections 

discuss these possible effects.

3.2.2 The induction model.

For a single charged particle, q, the field E is uniformly radial over its surface [Duck­

worth 1960],

where eQ is the permittivity of free space (8.854e-12 F/m) and air (relative permittivity 

1) is the dielectric medium.

It is assumed in this model that the field results in a charge appearing on the surface of 

an electrode used to sense the change in potential at a point on the wall of a non-con­

ducting or dielectric pipe.
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Figure 3.2 A model of charged particle in a sensing volume.

For a given sensor, the surface area is 7tr2 which is normal to the flux. The surface

area of the flux at the radius of the sensor, assumed to be spherical, is 4nrf. So the 

proportion of flux for each sensor is nrJlAnrf

The induced charge in the ith sensor, QjnduCed will be proportional to the charge on the 

particle, q (figure 3.2). Hence, with fixed sensor size,

ainduced
krlg  
4r? r}

(3.2)

But Qinduced = CV)ndUCed anc* the capacitance C is constant for all sensors, therefore

Qinduced induced

Substituting for Qinduced in equation (3.2) gives,

V  =  k  —'  induced ,v3 2 (3.3)
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Figure 3.3 : Geometry of sensor and particle.

From figure 3.3, the distance from the charge to the sensor is given by the geometrical 

relation

The angle 0 is the radial position of the charge, while a  is that for the sensor location 

from a diametrical reference axis.

Because q and k are unknowns in the equation 3.3, for a given r and R, the voltages are 

normalised over the maximum voltage realised, vmax to cancel out any constant terms 

in the model due to sensor or pipe geometry and size of charge. Hence,

r, = V/*2 +R2 -  2Rrcos (0 -  a) (3.4)

V; rtmax (3.5)^/, normalised
^max Fj j
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From this model, an estimation of the profile of the boundary voltages is reconstructed 

by plotting the sensor output voltage against position on the circumference of the pipe 

(figure 3.4). It is possible to simulate different positions of the charged particle by 

changing the values of r and 0 in equation 3.4. However, changing 0 only shifts the 

angular offset of the profiles. Hence, only results from one diametrical axis are shown.
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Figure 3.4 Theoretical voltage profile based on induced sensor model.

3.2.3 The field model.

For a point charge, q, the field E, is uniformly radial [Neff 1991].

£  =
4 7 t  r 2en

(3.6)
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The resulting potential becomes,

V =  \ -E d r  = — —
J 4nr£o

The particle can be considered to be surrounded by equipotential spheres.

charged particle q

Figure 3.5 Equipotential lines from charge.

The potential at sensor A is q/4nrae0 and that at B is q/4nrbe0. It is assumed that there

is no interaction with the surroundings and that V can be measured without distorting 

the field. The measured voltage is then the potential difference between A and B;



3.2.4 The response to a moving particle.

Assume an electrode at the origin, and a particle (charge q) moving at constant velocity 

v along the line x=D, z=0.

y

figure 3.6 Moving charge through measurement section.

Experimental results shown in section 6.2 support the induction model. Therefore, 

assuming the inverse square law relationship holds, then the induced charge Q is given 

by:
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where y=vt and t=0 when the particle is directly opposite the electrode. The equation 

then becomes

Q = - k q - T 1- i (3.10)
D + v  t

This charge Q is varying with time and results in a current dQ
dt

flowing into the sensor from the measurement circuit. The current, i, is given by

dQ v2r- j -  = 2kq
dt (D2 + v 2t2f

The current flows into and out of the capacitor via a resistance R, resulting in a varying 

voltage, V.

Results for this case have been evaluated for v=5 m/s and for D=10 mm. The results 

are shown graphically in figure 3.7.
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Figure 3.7. Induced charge and voltage due to moving particle.

3 3  The two-particle charge model.
/

By superposition, the potential induced by two charged particles can be found from [Neff 

1991],

V = k (q l +q2)  (3.12)

= k (p H r l2 + p 2 /r2 2 ) (3.13)

where V is the potential induced by the two charged particles, p i  andp2, at known radial 

positions,rl andr2. As in section 3.2,normalisationisusedtoratiothepredictedresponses 

from all the sensors to the peak value calculated for each configuration of the two charges.

Figure 3.8a-f shows calculated results for two particles, p i and p2, assumed to posses the 

same amount of charge for different spatial positions.
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Figure 3.8(e) p i fixed at (50mm, 180) 

and p2 moving from 10mm towards 
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Figure 3.8. Results showing calculated sensor outputs for a two particle

model.

The results of the simulations show that, with the location of particle p i fixed and p2 

moving radially outwards towards the pipe wall, the voltage profile of the two-particle 

system is definable by two distinct features:

1. When the two particles are similar distances from the pipe wall two distinct 

peaks are observed. These peaks occur at the sensors on the same radii as the 

particles. For instance, in figure 3.8a, particle p i is fixed at 10mm on the 180° 

radius while p2 moves towards the sensor in the opposite direction which gives 

a maximum voltage on the 180° sensor. This peak value shifts towards the closest 

sensor approached by the moving particle p2, figures 3.8b-d.

2. The range of maximum and minimum normalised values increases as the 

particle p2 gets closer to the sensor, as would have been expected.
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In figure 3.8e, particle p i is placed very near the sensor (rl=50mm) at the 180° position. 

Moving particle p2 has no significant effect in changing the voltage profile until it is at 

a comparable distance to a sensor. Moving the two particles symmetrically in opposite 

directions produces the voltage profile shown in figure 3.8f. The two peaks are fixed but 

the range increases as the particles move towards the wall.

3.4 The multi-particle charge model.

The potential at a point (sensor) due to the total charge on a volume of charge is given by 

[Johnk 1988],

where the integration extends over the entire volume occupied by the charge and

k = lAta^e

and rj is the distance of the charge to the i’th sensor, while V is the sensing volume defined 

by the pipe radius r, the pipe angular distance a  and axial sensing distance x.

From equation 3.14,

(3.14)

Pv
amount o f charge
volume o f material

Q
v
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(3.15)

where Af = area of material flow and p, is the surface charge density since it is the total

charge (Q) over surface area (Af) in equation 3.15. This result applies the divergence 

theorem [Duckworth 1960] when a transform between a surface integral and a volume 

integral is required. Then,

assuming there is no change of concentration in the volume of flow considered.

(3.16)

approximates to the instantaneous solids loading where A is the cross sectional area of 

the pipe. Therefore,

Q = p sgA (3.17)

can be assumed constant and equation 3.14 becomes
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(3.18)

The voltage Uj for each sensor i, is obtained from the potential by introducing a gain term 

G which depends on the resistance and capacitance used in the circuit to transduce the

modelled [Gajeswski 1989] and should be investigated further (section 8.2.1).

By plotting the voltage readings against the sensor location the effective charge source 

is located. In order to check this proposition the following cases are considered:

1. Uniform, annular and core flows.

In these cases, the charge will be symmetrical about the central axis and effectively at the 

centre, (r , 0) = origin. At r = 0 and 0 = 0.,

input from the probe to the data acquisition system (section 5.1). This gain term can be

ri = Vr2+ R 2 -  IrRcos (0 -  a) (3.19)

gives rf =/?, therefore U{ = constant„

2. Half flow.

Forr = 0.5R,

when 0 = 0 on the reference axis.
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/
(3.20)

R -+ C o s a (3.21)

When all sensor voltages are normalised to the maximum voltage, then,

/, normalised (3.22)

(1.25 + cos O)0,5 
(1.25+cos Oi)0-5 (3.23)

1.5(1.25+cos a j 0-5 (3.24)

The normalization in equation 3.24 cancels out the constant terms. The following deri­

vations show the result without normalization but require the constant quantities, including 

the charge density, to be known.

From equations (3.17) and (3.18), a relation to find the solid volume loading & 

can be derived as shown below.

n

(3.25)

35



For the full, core and annular flow, charge is assumed to be effectively at the centre. The 

equation 3.25 is rearranged to become,

u r - l \  (3.26)

For half flow, assuming the lumped charge is at 0.5R on the reference axis,

r; = 7? (1.25 + cos a)0’5 (3.27)

as shown in section 3.4. Hence,

.25+ cos a)"”'5 (3.28)
kdR

The result of this equation is similar to equation 3.24, amplified by the constant terms.

3.5 Mass flowrate model.

The mass flow rate is found from the relation,

p (3.29)

= G/4v;p (3.30)

where Af is the area of flow at velocity v t in pipe of cross section A. The ratio of flow 

area over pipe area is c.

Substitute for a  from equation (3.26). Then
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Substituting for rt from equation (3.32), the local mass flow rate for full, core and annular 

flows is given by,

(3.33)

The weighted sum for all the sensors relates to the average mass flow rate, for even distribution 
of particles.



Chapter 4

Signal Analysis Methods.

4.1 Introduction.

In this work three methods of analysis are used:

1. Cross-correlation of upstream and downstream signals for obtaining the velocity of

solids flowing through the pipe, required in the calculation of the particulate mass 

flowrate.

2. Determination of power spectral density for sensor outputs, used in the analysis of the

flow characteristics of the particulates .

3. Neural networks for identification of the flow regime from the distributed data from

the measurement system.

4.2 Cross correlation and power spectral density.

These two techniques of analysis are well established in the literature. In this section, the 

definitions are presented.

The cross correlation function relating two signals fj(t) and f2(t) may be defined as [Beck 

and Plaskowski 1990]

(4.1)
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where x is a time shift imposed upon one of the signals. The value of x corresponding to 

the peak of the cross correlation function is xm, which is physically realised in terms of 

the time taken by particles to travel between two sensors separated by a distance d, 

upstream and downstream, in the pipe, figure 4.1. This time delay is used to calculate 

the mean velocity of the particles between the sensors:

d (4.2)v = —

amplitude

amplitude downstream signal

time

Figure 4.1a. Upstream and downstream signals.
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crosscorrelation
function

time (s)

Figure 4.1b. Corresponding correlogram.

Figure 4.1. Cross correlation of two time varying signals.

The power spectral density function of a signal waveform gives the average power of the 

corresponding spectral components contained in the signal [Meade and Dillon 1986].

A general description of a signal in terms of Fourier analysis is given by the following 

relation for the harmonic series based on the fundamental frequency co:

o o  oo

x(f)=A 0 + X AMcos(mco0f) + X Bmsm(m(O0t) (4.3)
m = l m = l

The coefficients Am and Bm are respectively the Fourier cosine and sine coefficients 

representing the amplitudes of the various components used in the description of the 

signal. The power of the signal is given by:
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The amplitude of the various terms indicates the average power of the spectral terms in 

the signal. This technique of analysis is useful in relating a signal to the underlying 

physical properties of a system [Lynn 1989], as has been demonstrated in some studies 

with flowmeter signals for condition monitoring [Higham et al 1986, Amadi-Echandu et 

al 1990].

4.3 Neural networks.

It is found [Kohonen 1984] that the various areas of the brain, especially of the cerebral 

cortex, are organised according to different sensory stimuli. Localised regions in the brain 

do different tasks such as speech, vision, action and so on. These regions may be modelled 

as feature maps. The model is derived from an idealisation of an abstraction of how a 

neuron might work. An important characteristic of these maps is the ordering of the basic 

processing units or neurons into an optimal topological order. This spatial ordering is 

necessary for an effective representation of information.

The maps formed in the brain are said to self-organise in such a way as to be able to relate 

the input signals to the specific regions on the maps. For example, in the auditory cortex 

it is possible to distinguish a spatial ordering of the neurons which reflects the frequency 

response of the auditory system. A tonotopic map exists that corresponds to a logarithmic 

scale of frequency where low frequency will generate response at one end of the cortex 

region and high frequencies at the opposite end.



4.3.1 The Kohonen network.

Kohonen [1984] formulated a self organising neural network architecture based on the 

close resemblance to the biological phenomenon of feature maps in the brain. This 

architecture consists of a layer of input neurons and an output layer of neurons, 

figure 4.2. Each neuron in the input layer is connected to every neuron in the output 

layer, and the strength of these interconnections, termed the weights, determine the 

relationship between an input pattern and the corresponding region of neurons in the 

output layer or map.

neuron

output layer

9 interconnections with ouput neurons

input layer

architecture o f Kohonen network

Figure 4.2. Architecture of Kohonen network.
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He developed a self organising feature map based on a technique called vector 

quantisation [Kohonen 1988]. Essentially, vector quantisation forces the input signals 

to be mapped onto an output layer of processing elements, analogous to the neurons, 

in such a way as to make these elements selective and sensitive to particular char­

acteristic features of the received signals. This is the basic adaptive capability of the 

whole system.

The network will respond to different inputs in an ordered fashion as if a continuous 

map of the input space were formed over the network. This can be explained from the 

fact that the weight vectors of neighbouring neurons are modified in the same direction 

until the values are smoothed. This smoothing process will continue until the weight 

vectors attain limit values which then define a vector quantisation of the input signal 

space where discrete regions are partitioned and thus a classification of all its vectors 

is formed.

Kohonen ’ s learning rule uses the concept of competitive learning in a one-layer network. 

It is an unsupervised learning system because there is no training example of input with 

correct output. Hence, it develops its own classification rules.

Figure 4.3 shows the steps involved in the Kohonen learning algorithm. The rule works 

on the principle of competition between output nodes or processing elements. A winner 

from the layer of processing elements is chosen based on a best-match of the weight 

vectors with the presented input vector. The weight of this processing element 

(processing element) is strengthened by the following rule:

Wt+1 = Wt + a ( X - W t) (4.5)
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where a  is a learning rate constant, W is the weight connecting input-output nodes and 

X is the input pattern, over a period of training step L

3. Find best match between 
input and output vectors

2. Present inputs x

1. Initialise network weights w

4. Update weights of winner and 
neighbouring nodes

Figure 4.3. The Kohonen learning algorithm.
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The action of the network is also said to behave in a "winner-take-all" competition 

where, given an input pattern, the output neuron with the weight vector closest to the 

input vector is selected as the winner. The winning node and its neighbouring neurons 

will modify its weight vector to align with the input vector.

The two very important parameters in the Kohonen network architecture are weight 

updating or learning rule and the topology of the neighbourhood neurons. The first 

parameter has been investigated by DeSieno [1988] and the second by Ritter etal [1992].

The next section will discuss the main experiments on the variants of self-organising
*

maps and their learning algorithms with a view^ to adapting the network for flow 

identification from measured boundary data.

4.3.2 Learning parameters.

DeSieno [1988] developed a modification to the original Kohonen learning rule, which 

he described as conscience mechanism. He introduced a biased-competition amongst 

the output neurons (processing elements) such that the pe that has won will "feel guilty" 

and prevents itself from winning by exercising self-inhibition.

The goal of this mechanism is to bring all the pe’s into the solution quickly by biasing 

the competition process so that each pe can win. The bias is chosen to be close to the 

1/N probability desired for an optimal vector quantisation, that is, dividing the input 

vector space into N discrete, equiprobable regions where N is the number of neurons.

DeSieno achieved this by introducing these steps:

1. Find winning node i amongst neighbouring nodes j, using minimum Euclidian dis­

tance such that a winner is assigned unit value otherwise 0,
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(4.6)

y: = 0, otherwise.

2. Develop a bias term for each pe based on the number of times it has won a competition:

P,+i = P,+B0 ’;-P ,) (4-7)

where 0 < B «  1.

3. Then introduce a bias term b based on p, b= C (1/N - p)

Hence, a new biased competition is performed

z,. = l i([Wi -X \' l - b i i \ W r X \2 all,.,,. (4.8)

z—0 , otherwise.

4. Update the weights of the processing element winning this biased competition as

follows:

w r  = W'7"+A(X -  W°'d)Z; (4.9)

DeSieno’s algorithm becomes the original Kohonen learning algorithm when the 

constant C is set to zero and is therefore a generalisation of Kohonen learning. In his 

experiments, DeSieno only updated the winning neuron.
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count= 3200 sigma 0.01000 disorder = -0.00000 radius 0 
w 7814 6134 5082 4238 3535 2972 2563 2123 1669 1320 1016 721 431 233 126
P 173 178 176 176 174 177 178 183 186 186 187 188 189 189 190
b 4928 4879 4902 4902 4922 4893 4882 4834 4805 4796 4787 4778 4769 4769 4760
q 203 209 207 207 205 208 209 214 217 218 220 220 221 221 221

press any key to  go back to  program

Figure 4.4. Change of weights on output neurons (15 nodes) with increasing training 

step in downward direction show 15 regions of equal probability. The weight w is 

adjusted by the bias term parameters p and b in (equation 4.7). The winning node

frequency counter is q.
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Figure 4.5. Probability density function showing regions of equal area under curve 

for an input consisting of the product of two random numbers. Each region is 1/N, 

where N is the number of output nodes [DeSieno 1988].

Figure 4.4 shows the change in weights of each output neuron after 3000 training steps 

with an initial setting of 0.5. This shows the weights on the fifteen output neurons have 

formed fifteen regions that correspond to the 1/N regions of probability shown in 

figure 4.5. This demonstrates that the output neurons map the probability density 

function of the input pattern.
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Ritter et al (1992) modified Kohonen learning by looking at how the neighbourhood 

pe’s of a winning element are updated. They introduced a Gaussian-like function to 

update the weights of neighbouring pe’s based on the distance from the winning pe,

i.e.

w r  = W f  + ehJX  -  Wfd) (4.10)

where 0<= hR<= 1 is a prespecified adjustment function of distance Ir-sl and e is a 

learning step size. Then hre has its maximum at r=s and decays to zero as Ir-sl increases. 

He chose

Ef  = Ei(E/Ei),/tmax (4.11)

where i and f are initial and final values over the maximum number of steps, tmax

/i„ = e x p ( - | | r - s | |2) (4.12)

where r is the distance from the selected node, s.

This function is close to the Mexican hat shape (figure 4.6) without the negative dip 

and hence could also be called a Gaussian hat function. This function has the effect of 

cancelling out the inhibitive field and may produce erroneous results if used over a 

small network size. This problem is overcome by making sure the bell shape is sym­

metrical about the winning node.
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a c t i v a t i o n  l e v e l

excitation  reg ion

inhibited  reg ion inhibited  reg io n

figure 4.6 Neural neighbourhood regions of excitation 

and inhibition similar to a Mexican hat

Hence, incorporating both DeSieno’s and Ritter et al’s algorithms into the original 

Kohonen network, is convenient in representing the three important factors in Kohonen 

learning and allows experimentation on the parameters governing the performance of 

Kohonen learning:

1. learning rate of neurons

2. competition mechanism of neurons

3. neighbourhood update function
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A study of the above parameters designed to investigate the Kohonen network per­

formance with respect to accuracy and speed of convergence has been conducted. 

Eleven variations of the Kohonen learning rule consisting of different configurations 

of the 3 parameters were set up as shown in table 1.

Table 1: Variations of the Kohonen Network

Network Model Variations of the Kohonen 

Network

1 K

2 C

3 K + H

4 K + L

5 H + L

6 C + H

7 C + L

8 H + L + C

9 H + L + N

10 C + H + N

11 C + N + L

Key: K = Kohonen; C = Biased Competition;

N= Neighbourhood H = Gaussian Hat

L = Exponential Learning
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The network used consists of a single layer output in one dimension, with 15 nodes on 

it. The reason for using a one dimensional layer is to demonstrate the closeness with 

which the Kohonen learning mechanism maps the input vector with a known probability 

distribution function, as used by DeSieno [1988].

The experiments were run for 15000 iterations for each network to allow for the slowest 

algorithm to be observed on the same scale. An empirical data set was used [DeSieno 

1988]; a set of numbers which are products of two uniformly distributed random 

numbers.

The conscience mechanism parameters have values that was suggested by DeSieno. 

The function which the author chose to call a Gaussian hat function was originally used 

by Ritter et al[1992]. The initial decay and final values used were chosen after a few 

trials.

Accuracy was measured in terms of the mean squared error, defined as

error = sqr{Wcalc -  Wactual)

MSE = error I no .oftraining (4.13)

As shown in Table 2 and figure 4.7 networks 2,7 and 11 are conscience-mechanism

networks combined with nothing (2), learning rate (7) and neighbourhood (10) func­

tions.
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The best result is the one from 10 with a marked speed of convergence of the neuron 

weights with input signal after 6000 iterations to reach a residual error of 0.03. The 

other two need more than 15000 training runs to converge to the same residual error.

Table 2: Ranking of results.

Network Error

10 0.0225

11 0.03

2 0.045

7 0.0525

3 0.33

5 0.33

6 0.33

8 0.33

9 0.6

1 0.75

4 0.81

This demonstrates the essential function of the neighbourhood around a winning node 

in determining a faster convergence. Low mean squared error means convergence is 

good and this is achieved in all three cases, which confirms the effectiveness of the 

conscience mechanism for good conversion of the weights with the input signal or 

vector.
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The learning rate function used was exponentially decreasing with the number of 

training steps. Networks 4 and 7 show responses when this parameter was included in 

the Kohonen and conscience-mechanism learning rules. Network 5 is when the learning 

rate function is combined with a Gaussian hat function.

The result from network 5 is no convergence after the training period. The network 1, 

which is a pure Kohonen network, converges to about the same value as network 4 

which means that the learning rate does not appear to be very significant. This is further 

supported from evidence between networks 7 and 2, which are conscience-mechanism 

networks with and without the learning rate function.

Network 11 is a network with the learning rate and Gaussian hat functions applied to 

the conscience-mechanism rule. The reason why only the conscience-mechanism is 

tested with this combination is because the Kohonen network is already shown to have 

a much slower convergence than the former.

Network 10 has the learning rate removed. The results of the simulation showed similar 

residual errors were achieved after the same period of training which only confirms the 

view that the neighbourhood function is the dominant determining factor in good 

performance.

Networks 3, 5 and 6 are embedded with Gaussian hat functions. It is found that none 

of them converge. This is because the Gaussian hat function runs the excitation field 

over the whole network layer and is contrary to the biologically known existence of an 

inhibitive field.
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Figure 4.7. Accuracy and convergence of networks (labelled in legend) for

15,000 training steps.

4.3.3 Classification maps.

A set of experiments was designed to see the performance of four networks on mapping 

two-variable input patterns. The networks are based on the following mechanisms:

1. Conscience-mechanism

2. Symmetric neighbourhood Gaussian Hat

3. Kohonen

4. Modified Conscience
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The objective of the experiments is to investigate the mapping capability of the 

Kohonen-type networks for high dimensional data. The kind of input pattern used is 

the type that is expected from process tomography measurements that are dependent 

on one another due to the laws of Physics. Hence these experiments are useful in giving 

an insight into how to adapt the networks for flow identification and image recon­

struction.

A two dimensional input pattern consists of randomly generated numbers from a uni­

form distribution of the following type, x[l] = a and x[2] = b.

For each network the three input pattern space were applied. A training cycle of 10000 

was used in each experiment. The output from each pattern is presented is such a way 

as to show how the two-variables in the input pattern are connected or related to each 

other. Hence this gives an indication of the network’s capability to copy a given input 

pattern of known relationship between variables.

The performance of the four networks are shown in figures 4.8-11 for training periods 

of 2000,4000, 6000, 8000,10000 respectively.

f r m  re tu rn  to  continue p ress re tu rn  to  continue

Figure 4.8a. 2000 training steps. Figure 4.9a. 2000 training steps.
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If— ^ X

p r m  re tu rn  to  continue

Figure 4.8b. 4000 training steps.

preee re tu rn  to  continue

Figure 4.8c. 6000 training steps.

fre e s  re tu rn  to  cou tirue

Figure 4.8d. 8000 training steps.

f r e e s  re tu rn  to  continue

Figure 4.9b. 4000 training steps.

f r e e s  re tu rn  to  continue

Figure 4.9c. 6000 training steps.

I f

f r e e s  re tu rn  to  continue

Figure 4.9d. 8000 training steps.
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r r m  re tu rn  to  o n i i w e  f r w i  re tu rn  to  continue

Figure 4.8e. 10000 training steps. Figure 4.9e. 10000 training steps.

Figure 4.8. Conscience network training. Figure 4.9. Gaussian-hat network train­

ing.

The maps in figures 4.8-11, show the distribution of weight vectors connecting 

neighbouring nodes. Vertical axes correspond to input values from the first input node 

and horizontal axes with the second. The variation of the map shows how weight values 

respond to each input over periods of training corresponding to 2000,4000,6000,8000, 

10000 learning cycles.

pree* re tu rn  to  continue

Figure 4.10a. 2000 training steps.

p r e n  re tu rn  to  continue

Figure 4.11a. 2000 training steps.
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f f tM  re tu rn  to  ooatinM f f  ■ r t i t f i i  to  continue

Figure 4.10b. 4000 training steps.

r t

p m a  re tu rn  to  continue

Figure 4.10c. 6000 training steps.

p rc ii  re tu rn  to  continue

Figure 4.10d. 8000 training steps.

Figure 4.11b. 4000 training steps.

fre e s  re tu rn  to  continue

Figure 4.1 lc. 6000 training steps.

preen re tu rn  to  continue

Figure 4 .lid . 8000 training steps.
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p m i  re tu rn  to  oowtimw p r w i  re tu rn  to  ooetinu*

Figure 4. lOe. 10000 training steps. Figure 4.1 le. 10000 training steps.

Figure 4.10. Response of output nodes for Figure 4.11. Response of output nodes for 

a Kohonen network. a composite network.

The conscience network (figure 4.8) fails to map the input, as does the composite 

network (figure 4.11). The weights tend to cluster around the middle nodes on the 

output map. The Gaussian hat network (figure 4.9) performed better than the 

unmodified Kohonen network (figure 4.10) although the latter also map the input 

patterns successfully. These observations show a significant relationship between the 

mapping performance and the parameters of the network, namely the neighbourhood 

definition and the learning or weight updating mechanism.

The results show that the Gaussian hat neighbourhood helps to improve the Kohonen 

network. The control of this neighbourhood update, by increments based on a Gaussian 

function, is a close resemblance to the biological phenomenon, where there is a region 

of excitation near an activated neuron and an inhibition region away from that neigh­

bourhood [Grossberg 1982].

The biased competition modification to the original Kohonen does not show any 

improvement, even when combined with the Gaussian hat neighbourhood in the
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composite network (figure 4.11). Based on the experiments with a one-dimensional 

input, this result shows a weakness in the conscience mechanism for higher dimensional 

mapping. This is probably due to ordering of the nodes [Kohonen 1984] being a 

significant factor to achieve correct mapping. The mathematical proof of this obser­

vation is not in the scope of this research.

4.3.4 Regime identification from synthetic data.

An experiment was designed to test the performance of the neural network program 

in recognition of flow regimes. Experience using these artificial regime data would 

later be used for classification of flow regimes from experimental measurements.

The flow regimes are represented by threshold binary values so that where a sensor 

detects flow near it then a unity value is assigned, otherwise zero. The respective data 

representations are shown in figure 4.12. Three classes of regimes are to be identified 

by the neural network - full, half and stratified flow regimes. The training data consists 

of three data patterns which the network is trained to recognize over 5000 iterations.

The results of using test data show 100% success for clean signals, 100% for signals 

with 10% noise and 87.5% for signals with 20% noise. The noise term is introduced 

by inverting the values of the channels. For instance, a 10% noise would be two channels 

out of the sixteen being inverted randomly. Success rate is a measure of the correct 

identification of the signals tested.

62



full flow

1

voltage 16 channel 
data representation

1111111111111111
channel

half flow 1111111100000000

stratified 1111000011110000

Figure 4.12. The data representation of artificial flow regimes.
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Chapter 5

The Measurement System.

5.1 The transducer.

In electrodynamic sensing, the space charge due to the electrification of the conveying 

material induces a charge onto the electrodes. The location of the sensors on the cir­

cumference of the conveying pipe is non-intrusive to the flow. The electrodes are passive 

and should not disturb the electric field due to the net space charge carried by the flowing 

particulates.

The transducer system consists of two basic components: a 3mm, zinc-plated screw 

electrode as sensing device and the signal processing electronics. The connection between 

the screw sensor and the input to the buffer amplifier uses a driven guard technique 

(figure 5.1). In this way the effects due to stray capacitance is minimised and the sensitivity 

of the output measurement is ensured.
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Figure 5.1: The transducer.

The particle size of the sand used in this work is mainly (50%) 300p.m. The maximum 

amount of charge that a round, smooth particle of this size range will carry, is estimated 

by Shackleton [1981], to result in a voltage at the sensor in the order of 10'5volts. The 

oscilloscopes and data acquisition system gave readings that were within the level of 

sensitivity required (100 mVolts). A complete measurement system would require higher 

gain amplifiers with ac coupling to cancel the dc offset.

The diameter of electrode used has an effect on the amount of charge induced on the 

transducer. The diameter used is 3mm and it is hemispherical in shape. The effects of 

electrode size have been investigated by Gregory(1987) and Beck(1986).
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An approximate estimation of the frequency bandwidth of the signal may be obtained by 

assuming the particle only induces charge as it passes by the sensor,

T = d-  (5.1)

for a particle small compared with the diameter d of the sensor (diameter of sensing area 

3mm). The period of the signal is T and v is the particle velocity (5 ms.,). For a larger 

particle the period T in this model will be increased due to the axial length 1 of the particle 

to

_  . d k*l
Total time = —I-—  (5.2)

v v

where k is a modifying factor due to the charge field. Hence, the frequency of the signal 

is 265 Hz Basically, the frequency is inversely proportional to the sensor

diameter and directly proportional to the velocity of particle.

5.2 The 16-channel circular array sensor configuration.

Small electrodes, apart from being cheap and simple to construct, give discrete data from 

points around the circumference of a pipe. Sixteen electrodes (figure 5.2) are used in the 

measurement system, which means the data sampling has to be fast in order to determine 

simultaneously the boundary voltages at all the sensors, due to the charge on the flowing 

particle. A photograph of the sensor system is shown in Photo 1.
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Powder flow
Top View of Sensors

Dielectric pipe

Circular Array Electrodvnamic Sensor System

Figure 5.2. The sensor geometry.

In order to determine the velocity of the travelling particles, a cross correlation technique 

is adopted. By having two points, one upstream and the other downstream, separated by 

a half a pipe length, it is possible to determine the correlation between them (section 4.2, 

figure 5.3). The time delay between the signals from the two sensors is the time for the 

source of the signal to travel from one point to the other. Since the distance and time are 

known, the velocity can be determined in this manner [Beck and Plaskowski 1990].
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particle 1

particle 2

sensor

cross-correlation for non-aligned flow

Figure 5.3. Cross correlation sensors positioned to investigate velocity distributions.

This work finds the cross correlation between eight points around the circumference of 

the conveying pipe with the corresponding eight points on a plane downstream of the axis 

of the pipe. These cross correlations enable a velocity profile near the boundary of the 

flow to be determined.
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Photo 1. The electrodynamic sensor system



5.3 Data acquisition system.

The data-acquisition system is a Strawberry Flashcardl2 data logging card with 16 input 

channels and 1 MHz sampling capability mounted in a PC. This is interfaced to 

data-acquisition software called Workbench V2.01 [Strawberry 1991]. The sensor outputs 

are interfaced to the data-acquisition system via analog input-output boards (figure 5.4).

16 channels are used and the maximum sampling rate per channel is 62.5 KHz. However, 

a 2KHz sampling rate is sufficient because the signal bandwidth is about 400Hz. The 

event captured is, in the bead case, a single fast event and in the sand-flow case, a con­

tinuous and noisy flow event. The software used is also limited in DMA access so only 

a maximum of 64K data could be captured.
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5.4 Signal processing software.

The software used for signal processing is called DaDisp v 1.0 [1988]. This software is 

used for display and analysis of flow voltage profiles. A qualitative profile of the flow 

is produced. Figure 5.5 shows a typical data set for 16 transducers for a test using a single 

charged particle.
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Figure 5.5. Typical display of 16 channels from the data acquisition system.

5.5 The bead flow rig.

An experimental rig is designed to investigate which model best simulated the phe­

nomenon of induced potential on the electrodes. A bead made from plastic material is 

pre-charged by rubbing on wool and immediately dropped through a narrow 10mm 

non-conducting tube which guides the path of the particle through a PVC pipe of 100mm
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diameter which acts as a measurement chamber. The pipe wall is mounted with 16 

electrodes (3mm screws) located at equally spaced positions around the pipe wall in order 

to obtain a profile of the voltages on the boundary sensors. The measurement chamber 

is surrounded by a concentric earth screen. Figure 5.5 shows a schematic diagram of the 

experimental set up.

pre-charged particle 

guide tubedielectric_pipe
concentric 

earthed shield

guarded output to data aquisition 
system

sensor

support base

support

Figure 5.6 : The experimental rig for bead flow measurements.

The guide tube is clamped in a vertical position, above the sensing volume of the 

measurement chamber, by slipping it through a tight-fitting hole on a perspex lid designed
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to sit on the pipe section. Several holes are made at fixed locations along a chosen radial 

axis so that the axial location of the bead passing through them is known. These holes 

are positioned relative to the centre at Omm, 15mm, 22.5mm, 30mm and 37.5mm. On a 

dimensionless scale they are at locations 0,0.3,0.45,0.6 and 0.75 from the centre of the 

pipe.

5.6 The sand flow rig.

The sand flow rig consists of three subsystems: a sand hopper, a screw feeder and a 

vertical pipe section. This is a batch, gravity conveying system and therefore sufficient 

amount of sand for a set of trial runs is required. The sand used has a mean size of 

300 micron. The particle size distribution of sand is shown in figure 5.7.

particle size distribution
( medium grade sand)

50 -T------------------------------------------------------------------------------

particle size (microns) BS1371

Figure 5.7. Particle size distribution of sand.
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The sand flowrate is controlled by a screwfeeder whose speed of rotation is set by the 

control unit. A calibration of the actual mass flowrate and screwfeeder set rate is 

established by the collection of running sand over recorded time. The result of the cali­

bration is shown in the graph in figure 5.8.

calibration curve for screwfeeder
feeder unit vs sand f!owrate(g/s)

700

600

500

400

300

200

100

5 7 931

feeder rate unit

Figure 5.8. The calibration of the sand flow rig.

The screwfeeder does not give a uniform distribution of the sand over the cross-section 

of the pipe, the feed being richer near to the hopper side of the feeder screw. However,
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as the results of the experiments (section 6.2) show, the transducers are sensitive to this 

uneven distribution which reinforces the concepts of the measurement system being used 

to discriminate concentration profiles.

The vertical pipe is of length 1.4m and diameter 100mm. The pipe exit nozzle may be 

fitted with baffles of different shapes to produce a range of flow regimes (section 5.7).

Because this system is based on gravity drop, the velocity of the volume of sand at a 

particular height can be estimated and compared with the measured velocity. Measure­

ments by the transducer system are also checked in this way.

5.7 The flow models.

The system available is a batch system. A technique to artificially create flow regimes 

is devised by placing various shaped baffles in the path of the oncoming sand flow (figure 

5.9). These baffles are effectively obstacles.

The regimes created and tested are:

1. Full flow.

This is generated by not putting any obstacle so that a full continuous flow is obtained.

2. Half flow.

This is created by the baffle blocking half the pipe diameter so that the other half 

will be clear for sand flow (figure 5.9).

3. Stratified flow.

A pyramid shaped baffle splits the pipe cross-section into two regions with flow on 

the sides but not through the middle, creating a pseudo-stratified flow regime.
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4. Channel flow.

This is created by placing two pyramid shaped baffles in parallel which split the 

flow path into three regions.

5. Annular flow.

A cone shaped baffle in the middle of the flow path allows the sand flow by the 

sides and a ring or annular flow is generated.

6. Core flow.

This is the inverse case of the annular flow in that the sand is allowed to flow only 

through the middle of the pipe by placing a funnel in the flow path.

Annular flow (ring) Core flow Full flow

00
Half flow Channel flow Stratified flow

( layered )

Figure 5.9 Diagram of baffle configurations for generating flow regimes.
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Chapter 6

The Experiments and Results.

6.1 Introduction.

Three experiments are conducted:

1. to measure boundary voltages for the bead flow,

2. to measure boundary voltages for the sand flow,

3. to determine the velocity of sand flow by cross correlation.

From these measured data, other measurements are derived:

4. frequency spectra from flow signals,

5. flow regime patterns.

This chapter presents measured results as the primary data of the experiments. The 

extraction of secondary data by analysis are presented in the next chapter.

6.2 Single particle flow experiment.

The experiment using a bead is performed with two measurement systems:

1. The oscilloscope connected directly to the buffer amplifiers, and

2. The data acquisition system.

6.2.1 Bead flow measurements by oscilloscope.

The procedures of the experiment are as follows:
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1. Rub the bead with wool several times.

2. Drop the bead through the guide tube held firmly at prespecified radial locations, 

along the vertical axis of the pipe.

3. Observe the response on the display and freeze the screen when peak voltages 

appear about the middle of the screen.

4. Take measurements for each channel by determining the peak amplitudes of 

the voltage recordings.

5. Repeat procedures 1-4 for other tube positions.

6. Repeat procedures 1-5 to ensure repeatability.

The peak voltage of each channel response is displayed and measured from the 

oscilloscope. The peak voltage is proportional to the strength of the induced charge on 

each sensor. The strength of the induced charge depends on the initial charge of the 

bead as well as the sensor to bead distance.

The data is processed statistically by determining the mean and standard deviation of 

the peak voltages. These values are used to plot the voltage profile of the pipe boundary. 

Normalised values are used as explained in section 3.2.2, as the charge on the bead is 

never the same in each run.

The results are plotted on special graphs (figure 3.4) where the predicted profiles are 

already plotted. The results are plotted in such a way that the sensor with maximum
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value is fixed as the reference sensor at 0=0 and the readings from the other sensors 

are then plotted on the graph in a cyclic manner. A typical result is shown in Figure 

6 .1.

r=22.5 mm
Induced voltage (normalised)
1

0.9
S\ f t  *1r  / . . j .0.8

0.7

.X...0.6

0.5

0.4 ■r-V

0.3

0.2 1  r
0.1

0
135 180 225 270 31545 90 3600

Angular position of electrodes (degrees)
r=0 r=10 r=20 r=30 r=40 r=50

Figure 6.1 A typical result for bead flow at a specified spatial point.

6.2.2 Results using the data acquisition system.

The procedure for the above experiment is repeated using the data acquisition system.

6.2.2.1 Sensor response in time domain.

A typical response of the electrodynamic sensor to a moving, charged bead, is 

presented in figure 6.2. The amplitude of this measurement depends on the total 

amount of charge carried by the bead and its distance from the sensor.

Figure 6.2. Response of a sensor to charged particle flow.
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6.2.2.2 Spatial profile from sensor output.

The response from each sensor is normalised (section 3.3.2) and the following plots 

are obtained for different spatial positions of bead drop through the pipe (figure 6.3).

r=0 mm
Induced voltage (normalised)

Angular position of electrodes (degrees)
360

r=0 r=10 r=20 r=30 r=40 r=50

Figure 6.3a Bead flow through centre of pipe, radius r=0.
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r=15 mm
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Figure 6.3b Bead flow through r=10mm of pipe.
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Figure 6.3c Bead flow through r=22.5mm of pipe.
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r=30 mm
Induced voltage (normalised)
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Figure 6.3d Bead flow through r=30mm of pipe.
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Figure 6.3e Bead flow through 37.5mm of pipe.

The results show reasonable agreement with the induction model (section 3.2.2).
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6.3 Boundary voltage measurements of sand flow.

6.3.1 The procedures.

In the multi-particle flow experiment, the sand flow rig discussed in sections 5.7 and

5.8 is used. The experimental procedure is to measure the sensor signals using the data 

acquisition system for a range of flowrates, for each artificially created flow regime.

6.3.2 Sensor response to flow noise.

Typical responses from the sensor system when sand particles flow past are shown in 

figure 6.4.
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Figure 6.4. Sensor response to flow noise shown for two channels.
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The readings from each sensor are time averaged and the results show consistency over 

the duration of a test (figure 6.5).

fullflow at 0.420kg/s
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Figure 6.5. Voltage profile of full flow for 4 averaged values.

63.3 Flow regime profiles.

6.3.3.1 Full flow

The results summarised in figure 6.6 are for the full flow regime measurement. They 

show higher readings between 315° and 45° which indicates the presence of a greater 

flow of sand particles in this region of the pipe. Lower readings between 45°and 

135° correspond to less sand particles flowing. The way the sand particles are
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delivered by the screwfeeder causes this lopsided delivery of sand particles.

profiles for full flow
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Figure 6.6. Voltage profile of full flow for different flowrates.

6.3.3.2 Half flow

The readings in figure 6.7 are produced by sand particles flowing in the clear half of 

the pipe, the other half being blocked by the designated baffle (section 5.6). It shows 

aclearpattem of aprofile where between 292.5° and 112.5° the readings are increasing 

with flowrate. However, between 135° and 270°, little change of amplitude with 

flowrate is observed.
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Figure 6.7 Voltage profile of half flow regime for different flowrates, shown in

legend as feeder rate unit (1 unit=60 g/s).
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63.3.3 Stratified flow

The results in figure 6.8 show the particles are concentrated in two distinct regions, 

which are created by the stratified flow baffle.
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Figure 6.8.* Voltage profile of stratified flow for different flowrates, shown in leg­

end as rate unit (1 unit=60 .g/s).
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6.3.3.4 Annular flow

The annular flow (figure 6.9) shows an increase in amplitude with increased flow 

rate until 420 gs'1 flowrate. At 540 gs‘\  the amplitudes drop drastically.
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Figure 6.9 Voltage profile of annular flow regime for different flowrates, shown in

legend as rate unit (1 unit=60, g/s).
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6.3.3.5 Core flow

In the core flow (figure 6.10), the readings correspond to particles flowing through 

an area of flow in the middle region of the pipe. The transducer readings are uniform 

at each flowrate tested. Only three flowrates are presented here. The results indicate 

a sharp increase in amplitude after the O.Skgs'1 unit flowrate.

89



Figure 6.10 Voltage profile of core flow regime.
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6.4 Velocity measurements of sand flow.

6.4.1 The procedures.

Cross correlation of the signals from upstream and downstream sensors are performed 

to obtain the transit time [Beck and Plaskowski 1990]. This is done for all pairs of 

corresponding sensors on the pipe boundary.

6.4.2 Cross correlation results.

The cross correlation results are shown for two contrasting regimes: the continuous full 

flow and the stratified flow. These have been selected to demonstrate the extreme 

results obtained between good correlation with continuous flow and degraded corre-
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lation with stratified flow. The reasons for this variation is discussed in chapter 7.
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Figure 6.11. Cross correlation of full flow 
x-axis: time, y-axis: volt2 (correlation function not normalised)

The cross correlation shown in figure 6.11 is for full flow. The first major peak on the 

correlogram gives a transit time of 0.01s. The subsequent peaks are due to the pulsations 

in the flow discussed in section 5.6.

From the transit time, the velocity is found from,

d
v = —

0.045 
"  0.01

= 4.5ms~l

91



where d is the gap between upstream and downstream sensors, is the transit time for

the signal to pass between the two sensors and v is the mean velocity of the sand passing 

them.

Two cross correlation results are presented for stratified flow, representing the dense 

phase(figure 6.12) and the lean phase (figure 6.13) flow conditions. Figure 6.12shows 

a wide peak, suggesting that the particles have a range of velocities. Smaller peaks are 

superimposed on the main curve at 0.01s and 0.03s, suggesting the presence of two 

specific velocities (sections 7.5 and 7.6). Figure 6.13 shows no correlation because of 

the absence of solids in this section of the pipe.
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Figure 6.12. Cross correlation of dense side of stratified flow.
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Figure 6.13. Cross correlation of lean side of stratified flow.
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Chapter 7

Analysis of Results.

7.1 Introduction.

In this chapter, an analysis of the results from the experiments are presented. The single 

particle flow results are first analysed (section 7.2) to determine the relationships between 

the position of the charged particle relative to the sensors and to the sensor outputs.

The sand flow results are then analysed. The analysis of the sand flow results aims to:

1. determine the relationship between particle locations and sensor outputs

(section 7.3),

2. identify the spatial patterns from the voltage profiles for flow regime

identification by the neural network program (section 7.4),

3. analyse the measured data in terms of its frequency spectra to investigate

relationships between the particle size distribution and the sensor outputs 

(section 7.5),

4. determine a relation for the local mass flow rate from measurements of velocity

and voltages (section 7.6),

5. reconstruct the flow image in terms of concentration and particle size dis­

tribution by a ratio backprojection method (section 7.7).

94



7.2 Single particle flow.

The bead enables the effect on the sensor system of a single charged particle to be 

investigated.

7.2.1 Verification of induction model.

The results shown in figures 6.13 show broad agreement (within 10% of predicted 

value) with the induction model (section 3.2.2). Two forms of error occurred:

1. random errors due to differences between the bead outside diameter (8 mm) 

and the guide tube bore (13 mm) and,

2. systematic errors due to the guide tube not being vertical. For bead drop 

through the centre of a tube.

The random errors were minimised by repeating the measurements, however the sys­

tematic error still occurred (shown in figure 6.13a) even though a spirit level was used 

to set up the guide tube.

7.2.2 Particle location from normalised voltage profile.

The results obtained for the single particle model (section 3.2) and experiments (section 

6.2) provide two relationships which may be used for locating the axial position of the 

particle. These are:

1. between the sensor voltage amplitude and the particle linear distance from 

the sensors (figure 7.1), and
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2. between the particle spatial (angular) position and the voltage profile 

(figure 6.3).

The normalised ratios eliminate unknowns in the model (sections 3.2,3.3, equations 3.3 

and 3.5). The ratio technique allows location of the particle’s position regardless of

the charge induced into the sensors (figure 7.1).
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Figure 7.1 Relationship between normalised voltage and particle location from centre

of pipe.
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7.2.3 Spectral analysis for a single bead.

A frequency analysis is made for each of the recorded voltage signals (section 6.2.2.1) 

using the power spectral density [DaDisp,1988] (section 4.2). For a specific test the 

recording with the largest voltage amplitude is selected. The maximum-power fre­

quency, which is the highest power in the power spectrum for this recording, is plotted 

against the distance of the bead from a sensor. This analysis is repeated for the different 

axial bead positions. The results for these bead flows are shown in figure 7.2.
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Figure 7.2. Frequency of the component with the highest power versus bead radial

position.

The results show a higher frequency signal when the bead is nearer the sensor 

(figure 7.2). This agrees with calculations by Beck(1986), which predicted a non-linear 

relationship between the charged particle and the distance from the sensor.

Bead flow spectra
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The maximum-power frequency, which is the component with the highest power from 

these measurements on a single particle show an inverse relationship between frequency 

and particle distance from the sensor. The frequencies range between 15-30 Hz over 

a 50mm distance (section 6.2.2.3).

In this work, the size of bead used is 8mm, which produces a peak frequency of 20 Hz 

when 50mm from the sensor. Sand particles with known size distribution, mainly (48%) 

300 micron, give a peak frequency of 550 Hz. (This information supports the simple 

model of equation 5.2 since a lower peak frequency is obtained from signals derived 

from the bead compared with sand. The ratio of bead size to sand diameter is 26.7 and 

the ratio of peak frequency for the sand to the peak frequency of the bead is 27.5.). 

Beck [1986] presents the calculated relationship of peak frequency with sensor to 

particle distance sketched in figure 7.3.

The significance of these results is:

1. for a fixed particle size and velocity, there is a relationship between the signal fre­

quency component with the highest power and the particle position in space 

(figure 7.2).

2. for a fixed particle velocity there is a relationship between the frequency of the

component with the highest power and the particle size distribution.
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Figure 7.3 Relationship of peak frequency (Hz per m/s) on y axis and particle to sen­

sor distance (mm) (Beck 1986).

7.3 Voltage profiles for sand flow.

The results in section 6.3.2.2 show the voltage profiles for the flow regimes tested. This 

section compares these results, using normalised scales, with the predicted voltage pro­

files, obtained using either the single particle (section 3.2) or the two particle (section 3.3) 

models. The discussion on the change in voltage measurements with flowrate is presented 

in section (7.6).
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7.3.1 Full flow.

The recorded measurements show consistency in value (figure 6.6), although the 

boundary voltage profile suggests the delivery of sand to be denser on the side nearer 

to the screw feeder.

The models predict a uniform profile for the boundary voltages for full flow since the 

net charge carried by the volume of charged particles is effectively concentrated at the 

centre of the conveying pipe (figures 3.4, 3.8f and equation 3.19). Normalization of 

these data gives consistent flow patterns over the range of flowrates provided by this 

particular flowrig (figure 7.4).

response vs sensor location
for normalised values(over mean)
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Figure 7.4. The full flow regime pattern.
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7.3.2 Half flow.

The range of maximum to minimum readings is highest at about 337.5° (figure 7.5). 

This range is higher than for the full flow regime (figure 6.10) since the particles are 

concentrated in one half of the pipe. On a normalised scale, the single-particle model 

predicts a similar voltage profile when the particle is nearer the sensors in one half of 

the pipe.
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Figure 7.5. The half flow regime pattern.
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7.3.3 Stratified flow.

From the measurements in section 6.3.3.3, the boundary voltage profile shows two 

distinct peaks. The consistency of these peaks over the range of flowrates tested is 

shown in figure 7.6. The prediction by the two particle model also shows a similar 

pattern (section 3.2.3).
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Figure 7.6. The stratified flow regime pattern.
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7.3.4 Annular flow.

In annular flow, the normalised readings (figure 7.7) vary in a cyclic manner above or 

below the mean value. In the idealised model, the predicted voltage profile is a straight 

line representing a uniform profile. The variation from the model is due to the uneven 

delivery of sand discussed in section 7.3.5.
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Figure 7.7. The annular flow regime pattern.

7.3.5 Discussion on flow profiles.

The voltage profiles shown in figures 7.4 to 7.7, are directly related to the distance of 

the charged sand particles from the sensors around the pipe boundary. This profile
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represents an image of the sand distribution near to the periphery of the pipe but not 

across the plane of the sensors, which is the final aim of tomographic imaging. This 

limited image, which may be derived by using simple, ratio techniques (section 7.1) is, 

nevertheless, useful for flow regime recognition and will be discussed further 

(section 7.4). The cross-sectional image requires a reconstruction algorithm with a 

more rigourous model in order to produce images from boundary data. However, the 

results of this work have been used to demonstrate a ratio back projection technique of 

cross-sectional image reconstruction from boundary data (section 7.7).

The flow regimes are distinguishable as follows:

1. The amplitudes obtained were highest for annular, then full flow followed 

by core flow, although the profiles are similar. The order of magnitudes were 

10-2 volts, 10-3 volts and 10-4 volts respectively for the three cases of flow 

over the range of flowrates used.

2. The profiles of half and stratified flows have single and double peaks 

respectively.

The corresponding curves generated using the two particle model (section 3.3) are 

smoother since 32 sensors have been used in the calculations. The curves from the 

measurements may be improved by mounting more sensors on the pipe wall and 

averaging the flow signals over a longer period.

7.3.6 Comparison of models with sand flow results.

The two-particle model (section 3.3) may be used to predict the normalised boundary 

voltages for different flow regimes. Placing both particles in the middle of the pipe,
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simulates the full (section 7.3.1), core and annular (section 7.3.4) flows because the 

charge is effectively concentrated in one particle at the centre. By placing the two 

particles in one half of the pipe, simulates the half flow regime (section 7.3.2). Then, 

by placing one particle in each half of the pipe cross-section, the stratified flow 

(section 7.3.3) is modelled. When the two particles are combined together, the two 

particle model effectively reduces to the form of the single particle model (section 3.2).

7.4 Flow regime identification from measured data.

The analysis of the sand flow results (section 7.3) indicates consistent patterns of profiles 

being obtained for the test flow regime over the range of flowrates measured. This is 

important since it allows identification of flow regimes using neural networks without 

requiring the amplitudes to be taken into account

The main interest in flow regime identification is to discriminate between the different 

flow spatial patterns represented by the boundary voltage data. The measurements 

obtained are normalised over the maximum voltage amplitude of a set of data in the 

16-channel configuration (section 3.2.2). This enables the recognition of flow regime 

patterns by neural networks.

7.4.1 The training patterns.

The training patterns tested consist of three patterns of normalised voltage profiles for 

the full, half and stratified flows. The annular and core flow patterns are similar in form 

to the full flow pattern and hence other secondary discrimination techniques are more 

suitable, for instance the checking of amplitude levels (section 7.3.5).
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The training patterns (figure 7.8) are taken from normalised profiles of each flow regime. 

Figure 7.9 shows the variations in the training data due to noise in the voltage signals 

obtained from the data acquisition system. The training patterns are taken from the 

range of flowrates and not limited to one particular flowrate since the patterns are 

independent of flowrate (section 7.3).

training patterns
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Figure 7.8 The training patterns.
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Figure 7.9 The training data set.

This implies that calibration in terms of the varying flowrate is not required for 

identification purposes of these three flow regimes. The initial exercise of using the 

threshold values shown in section 4.3 has demonstrated the neural network’s ability to 

recognize patterns of the three flow regimes. The program developed in section 4.3 is 

used in the tests with real data (7.4.3). The tests in section 4.3 show that the modified 

Kohonen network, using the Gaussian hat neighbourhood updating rule gives improved 

performance and is the system used in the following tests.
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7.4.2 The neural map classifier.

The training phase requires the input patterns to be trained on the network until the 

nodes on the network have achieved weight vectors that are sensitive to the test inputs 

(section 4.3). The idealised flow regime tests presented in section 4.3.3 have been used 

to train and test a network. The network program written for classification of the flow 

patterns uses a simple neural map classifier (figure 7.10), when an output node responds 

to a presented input, a *1’ is shown, otherwise a ’O’. A neighbourhood that is close to 

this node in terms of the match of weight vectors is also displayed in the same way.

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0

Figure 7.10 Neural map classifier showing regions of activation by l ’s correspon­

ding with a matching input on a 5x10 map.
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The training examines the effect of 5000, 10000 and 25000 iterations. Two-regime 

and three-regime identification tests are performed. Mixed patterns are used in the 

training to allow the network to learn the patterns randomly and not in a particular 

sequence. An output neural map of 10 X 10 nodes is used as the neural network classifier.

7.4.3 The test patterns.

In the two-regime identification test, the results show over 90% correct identification 

(Table 7.1 row A). The full flow regime is easily separated from either the stratified 

or half flow regimes. This result is obtained by testing with a new set of normalised 

flow data. Success is defined as the correct classification of the flow regime by the 

output node on the neural map, associated with the input flow data. Two tests were 

performed and the following results are achieved:

Regime Data set Success %

A full 14 13 92.9

half 15 15 100.0

B half 35 27 77.14

stratified 12 4 33.33

Table 7.1. Two regime test results for (A):full and half; (B): half and stratified

The stratified and half flow regimes are difficult to classify separately (Table 7.1 row 

B). More training sets are required to improve the efficiency of separating the two
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patterns which appear to be similar. This is because the neural network used is noise 

tolerant and it could not differentiate the two similar patterns. Only 30% success rate 

is achieved within the training conditions described.

Regime Test set full class half class stratified

class

%

full 18 11 6 1 61.1

half 47 - 31 26 67.0

stratified 47 10 13 24 51.1

Table 7.2. Results for three regime identification

The analysis of the regime identification results (Table 7.2) shows the problems involved 

in classifying real data. In the idealised tests (section 4.3.3) over 85% correct clas­

sification is achieved even with 20% noise. The results with noise, as in this 

measurement set, show only 50-70% correct classification, even with a longer training 

time of 25000 iterations. More control is needed of the training and neural network 

parameters in order to achieve better classification performance.

7.5 Velocity and mass flowrate estimations.

The model developed in section 3.6 (equation 3.33) shows a relationship for the local and 

totalised mass flowrate derived from the voltage amplitude of sensor (Uj), velocity (v;) 

and flow regime factor (kn,). The following is the analysis of the results from measurements 

discussed in section 6.3.
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7.5.1 Velocity from cross correlation.

The analysis of the full flow cross correlations shows a transit time of 0.01 s (figure 6.11), 

corresponding to a velocity of 4.5 ms'1. It is observed that there are repeated peaks with 

slightly smaller correlation amplitudes which are attributed to the cyclic nature of the 

sand flow pulsations.

Analysis of the stratified flow also gives a correlation time delay of 0.01s where there 

is most flow (section 6.5.2) and no correlation on the side with little flow (blocked by 

the baffle). A wide peak is observed for the stratified flow (figure 7.13) because of the 

presence of a range of particle velocities caused by interaction with rebounding particles 

which have collided with the baffles (section 7.5.3). Had the baffles been placed further 

upstream, the particles may have reached a more uniform velocity and the boundary 

pair of sensors should give better correlations.

The cross-correlation analysis to obtain transit time measurements for velocity calcu­

lations gave these main results:

1. In continuous and homogenous flow, the correlations are consistent and

repeatable by all the sensors used

2. In stratified flow, the correlations give spatial variation of velocities

7.5.2 Mass flowrate from velocity and voltage measurements.

The equation 3.33 suggests that the local mass flowrates may be totalised to provide 

the total mass flowrate. The experimental setup did not provide good cross correlations 

(and hence velocity) for the purpose of calculating mass flow rate, because of the close
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proximity of the baffles to the sensors (section 7.5.1). However, results for the voltage 

measurements can be used to show the feasibility of obtaining totalised mass flowrates 

from localised flowrates around the boundary sensors.

The mass flow rates obtained from the graphs of totalised voltage amplitudes against 

flow rate for different flow regimes provide gradients, termed slope factors, that 

correspond with the individual flow regimes.

For the full flow, figure 7.11, there is a linear increase of totalised voltage, which is 

proportional to mass flow rate until the flow rate is 0.3 kg/s, as shown by the mass flow 

rate model (equation 3.33). The gradient of the linear regression line fitted to the points 

is 0.040 V/kg/s. For feed rates greater than 0.3kg/s the totalised voltage decreases.
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Figure 7.11 Totalised sensor voltage (y axis) 

versus flowrate (x axis) for full flow.

For the annular flow, figure 7.12, the totalised voltage increases with the solids flow 

rate until the rate is 0.3 kgs'1, after which the totalised voltage decreases. This reduction 

is attributed to the increased particle interaction with the baffles at the higher flow rates. 

The gradient of the linear regression line fitted to the points is 0.040 V/kg/s.

Full flow

113



0.015

Annular flow

0.01

o>

0.005

0.60.2 0.3 0.50.1 0.40
M ass flow rate kg/s

Figure 7.12 Totalised sensor voltage (y axis) 

versus flowrate (x axis) for annular flow.

For half flow, figure 7.13, the voltages increase with increases in solids flow rate until

0.360kgs‘1 flowrate after which they reduce. This result is in agreement with the results 

shown in figure 7.12 for the annular flow. The gradient of the linear regression line 

fitted to the points is 0.044 V/kg/s.
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Figure 7.13 Totalised sensor voltage (y axis) 

versus flowrate (x axis) for half flow.

For the stratified flow, figure 7.14, the amplitude increases with feedrate as in the cases 

for annular and half flows. The gradient of the linear regression line fitted to the points 

is 0.161 V/kg/s.
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Figure 7.14 Totalised sensor voltage (y axis) 

versus flowrate (x axis) for stratified flow.

More experiments are required to verify the results obtained in this initial investigation 

pertaining to the determination of velocity and mass flow rate distributions within a 

pipe cross-section. The results obtained so far only show boundary local velocities but 

not internal spatial velocity distribution as required for tomography.

7.5.3 Effects of baffles on velocity and mass flowrate.

The relationships between flowrate and sensor amplitude readings are linear up to a 

certain mass flow range after which the outputs fall. This phenomenon is not due to 

saturation of the sensors however it may be due to some of the following reasons.
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1. Initially the output of a sensor, which is measuring the randomly varying

signals occurring in conveyors with pneumatically conveyed solids, 

increases with flow rate. It then reaches a plateau and gradually decreases 

back to zero as the flow rate increases further [Green 1981].

2. The process of agglomeration, which increases with flow rate [Lapple 1970],

causes heterogeneous flow regions to occur [Li et al 1991].

3. Particle which collide with the baffles may rebound and collide with free

falling particles. The angle and velocity of rebound is dependent on the 

shape of the baffle; the number of interactions is dependent on solids 

flow rate.

In full flow, sand particles drop at a relatively uniform velocity since the height of drop 

is fixed and no obstacle is put in the path of the sand. In other flows, when baffles are 

placed 100mm above the sensor plane to create artificial regimes, the effects of sand 

bouncing off the sides of the baffles create:

1. variation of particle velocities across the plane of the sensors,

2. agglomeration of the particles, the presence of clusters is inferred from the

investigating of the spectral density (section 7.6).

7.6 Spectral analysis of electrodynamic signals.

7.6.1 Power spectrum of flow signals.

The measurements from the sensors are converted into power spectral density (PSD) 

graphs using the DaDisp software [DaDisp 1988]. These graphs are analysed to extract
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salient features, mainly the maximum power frequency and the frequencies at which 

significant peaks occur. This section presents the analysis of these features in relation 

to the flow conditions.

7.6.1.1 Full flow.

The spectra shown in figure 7.15 are relatively independent of solids feed rate. 

However there is a slight reduction of the dominant frequency at the highest feed 

rate. The windows W1 to W5, which correspond to increasing flowrates from 0.060 

to 0.420kgs'1, show little change in the power spectrum. However, windows W6 to 

W8 show the spectrum forO^Okgs’1 for different sensor positions show consistency 

in the shift of frequency power to the lower frequency range.
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Figure 7.15. A relative psd for full flow.
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These results are summarised in figure 7.16. In this graph, only the two largest 

spectral lines are shown. The main peak frequencies do not change with flowrate 

and remain constant at about 550Hz with a second peak at 300Hz for all flowrates 

tested. From the particle size distribution (figure 5.7), the particles are mainly about 

300pm (48%) and 200pm (30%) in diameter. This suggests that two particle size 

ranges are dominant in the signal justified by equation 5.2.
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Figure 7.16. Maximum power frequencies from signal spectra 

with change of flowrate - full flow.
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7.6.1.2 Half flow.

In the graphs shown in figure 7.17 a cyclic observation is presented corresponding 

with the boundary location of the sensors. The results show flow is dense in windows 

15 to 7. Lean flow occurs between windows 8 to 14. The power spectrum extends 

over a wide range of frequencies for the sensors near to the flow, but only individual 

lines exist for the sensors remote from the flow.
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Figure 7.17. Relative psd of half flow.

A large peak at 550 Hz is observed. As for full flow, this is a dominant frequency 

relating to a dominant size range in the particle distribution. The range of spectra 

shown arises due to the presence of the baffle, which alters the velocity range of the 

particles by several mechanisms [Gadhetsroni 1982].
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7.6.1.2.1 Collisions.

Many of the particles fall and strike the baffle. These particles may rebound and 

continue to fall at reduced speed or collide. These collisions may be with other 

particles or the pipe wall resulting in a range of velocities. Some particles will 

have low velocities others may exceed that of the free falling particles.

7.6.1.2.2 Hydrodynamics.

The particles are forced into closer proximity by the baffle. This may reduce the 

hydrodynamic resistance resulting in an increased velocity.

7.6.1.2.3 Clustering.

Increased proximity of the particles may lead to clustering, and if the charges on 

the particles are modified or lost in collisions with the wall or baffle to agglom­

eration [Li et al 1991]. This is only probable at the higher flow rates and should 

result in a decrease in the level of charge with increased mass flow rate.

The agglomeration process clusters particles together as shown in figure 7.18. 

Particles can cluster in a line, a plane or a volume to form larger particles of different 

sizes and shapes.
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Figure 7.18. Clustering formation of particles [Li et al 1991].

7.6.1.3 Annular flow.

Figures 7.19 and 7.20 are for annular flow. In window 1 of figure 7.18, for flow rate 

of 0.060kgs'\ the PSD’s are maximum at 340Hz (0.17x2000) and 540 Hz. At 

increased flow rates the range of spectra increases in a similar manner to that observed 

in section 7.6.1.2.
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Figure 7.19. A relative power spectral density plot 

Y axis is relative psd and x axis is x 2000 Hz (annular flow).

Figure 7.20 shows the power spectrum for one sensor at high flow rate. There is a 

noticeable downward shift in the energy distribution of the spectra. This result may 

be explained by the discussions presented in sections 7.6.1.2.1 and 7.6.1.2.3
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Figure 7.20. Peak frequency spectra for annular flow 

at O ^O kgs1 flowrate.

The results shown in figure 7.21 indicate a linear increase in peak frequency with 

increase in flowrate (section 7.6.1.2.2). However, at higher flowrates and concen­

tration, the peak frequency drops, which support the proposition of agglomeration 

described in section 7.6.1.2.3.
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Spectra of annuular flow
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Figure 7.21. Power frequency from signal spectra 

with change of flowrate - annular flow.

7.6.1.4 Core flow.

In core flow (figure 7.22), more spectral lines are observed at lower frequencies as 

the flowrate increases.
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Figure 7.22. Relative psd of core flow.

The figure 7.23 shows a similar result to annular flow but without the drop in power 

frequency at higher flowrates.
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Figure 7.23 Peak frequency from signal spectra 

with change of flowrate - core flow.

7.6.1.5 Stratified flow.

The power spectrum for stratified flow shown in figure 7.24 shows a similar type of 

response to half flow (section 7.6.1.2). The lean flow regions again shows a maximum 

power frequency at 550 Hz. The two regions of dense flow correspond with the two 

regions of dense spectra.
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Figure 7.24. Relative spectra of Stratified flow.

7.7 Ratio backprojection for empirically-based image reconstruction.

The currently available methods for image reconstruction [Dyakowski 1993] are based 

on measurements made on the boundary of the conveyor. These values are fed into 

optimization models, generally called forward problem models. These models, based on 

Poisson’s equation, describe an ideal relationship between, for instance, the measurements 

obtained and an electrical property such as electrical resistivity (electrical impedance 

tomography) or dielectric permittivity distribution (electrical capacitance tomography). 

Although a model-based method may be used for electrical charge tomography, an 

empirically based image reconstruction of particle flow from their charge distribution is 

demonstrated (section 7.7.2). The single particle flow reconstruction is discussed to 

highlight the principles in the ratio back-projection technique.
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7.7.1 Single particle flow reconstruction.

To reconstruct the flow, the position of a particle (r,a) is found as follows:

1. From the voltage profile around the boundary of the pipe wall obtained by

the technique described in section 6.2, the position where the maximum 

voltage is measured suggests which sensor is closest to the charged 

particle inside the pipe. In a single particle situation, a minimum voltage 

on the sensor diametrically opposite this maximum confirms where the 

charge is located.

2. In order to determine the radial position of the charge, a comparison is used.

The minimum to maximum ratio is calculated. This is then plotted on 

figure 7.1 to obtain the range. Knowing the range value gives the radial 

position of the charge. The task of determining the particle position, r 

and a , is then achieved in reconstructing the image of the particle.

A direct analytical solution to the problem of the single charged particle in a circular 

boundary exists.

For each sensor,
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V,. = -qk/D?,

as derived in equation (4.3). Hence,

VjDj2 = -qk  

v j ) l  = -qk

vnD 2n=~qk  

Where D? = r 1+ R 2 -  IrRcos (0 -  a,).

Since the pipe radius (R), the sensor positions (0) on the boundary are known from

equipment geometry and the voltage v from measurements by each sensor, solving 

simultaneous equations gives the particle location, r and a. For each charge, there are 

three unknowns q, r, a. Three sensors are required to locate each charge so that 

simultaneous equations for three unknowns can be solved.

The analytical solution is complicated by the nonlinear relationship of the variables. 

This becomes more cumbersome as the number of particles used is increased.

7.7.2 Sand flow reconstruction.

The basis for reconstruction is in using ratio back-projection of information extracted 

from the measured signals:

1. The normalised boundary voltage profile provides spatial position of the flow 

(section 7.3),
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2. The velocity profile provides local mass flow rates and concentration 

(section 7.5).

The ratio back-projection works on the principle that there is a relationship between 

the measured voltage and the position (and hence, distribution) of the solids on the 

cross-sectional plane of the sensors (section 7.3). The plane is divided and identified 

by a square mesh. To obtain the concentration map, the voltage profiles are used since 

they are directly related to flowrates (section 7.5).

The algorithm is:

1. From the voltage profile, determine the position of the pseudo-particle(s) 

(sections 3.2 and 3.3) from the ratio of maximum-minimum range with distance 

relationship.

2. From this profile, obtain the position of the nearest sensor(s) to the particle(s).

3. Identify the flow regime from the normalised voltage profile (section 4.3 and 

7.3).

4. Use the ratio relationships between normalised voltage amplitude and particle 

distance to generate average concentrations for each section of the mesh in the 

cross section (figure 7.25).

5. Estimate the flowrate from the graphs of totalised voltage and flowrates for an 

identified flow regime (section 7.5).

131



The results shown (figure 7.26) is a reconstruction of the relative concentration dis­

tribution of the half flow (section 7.3.2). However, improved control of the experimental 

conditions is required to produce an image of higher resolution (section 8).
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Figure 7.25 Relative charge distribution from ratio of normalised voltages to maxi­

mum normalised voltage.
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Chapter 8

Conclusions and Recommendations for Further Work.

8.1 General conclusions.

The specific aims and objectives of the thesis have been achieved as follows:

8.1.1 Single particle models.

Several models have been developed and evaluated. For the single particle, an induction 

model (section 3.2.2), a field model (section 3.2.3) and a moving particle model (section 

3.2.4) have been investigated.

A comparison of the field and induction models using measured data (section 6.2) shows 

that induction is the primary method of coupling between the charge and the sensor. 

The induction model requires refinement, further work on this is suggested 

(section 8.2.1).

The moving particle model (figure 3.7) provides qualitative agreement with measured 

results (figure 6.2).

8.1.2 Two particle model.

A two particle model is developed (section 3.3) based on the single particle induction 

model. This model is useful in describing the flow regimes generated by the flowing 

sand (section 7.3).
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8.1.3 Multiparticle model.

Equation 3.18 of section 3.4 relates the sensor potential to the transducer output voltage 

by a gain term which depends on the resistance and capacitance of the transducer circuit. 

The equivalent circuit of this impedance should be modelled to determine this gain term 

analytically (section 8.2.1).

The relationship between individual sensor output and mass flow rate is provided by 

the mass flow rate model (section 3.6). Totalised voltages are compared with mass 

flow rates of sand for four different flow regimes (section 7.5). Linear relationships 

are presented in all cases for flow rates up to 0.36 kg/s, at higher flow rates the linear 

relationship breaks down. This is explained by the discussion presented in 

section 7.6.1.2.

8.1.4 Neural network models.

Several variations of the original Kohonen self organising neural network have been 

tested (section 4.3) for performance of speed of convergence and correctness of mapping 

known inputs (figures 4.7 to 4.11). The parameters varied include the learning rate, 

neighbourhood updating function and competition mechanism. Controlling the 

neighbourhood by a Gaussian hat function provided the best results for the set of models 

tested. Using a biased competition mechanism performed well for a one-dimensional 

input mapping but not for higher dimensions. Tests with idealised flow regimes show 

over 95% success in correct classification which degrades to 85% with the introduction 

of 20% noise (section 4.3.4).
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8.1.5 Electrodynamic transducers.

The electronic transducers consisted of buffer amplifiers with a guarded input inter­

facing directly to a data capture system (section 5.1).

However the work demonstrates the feasibility of using electrodynamic sensors to image 

dry particulates. These sensors are sensitive to the spatial variations of particle con­

centration inherent in real flows (section 6.3). An improved measurement system based 

on a specification derived from the work in this thesis is now designed and being 

evaluated [Alton 1993] and includes the incorporation of a fast data acquisition system 

(typically 3.5|iy).

8.1.6 Artificial flow regimes.

Different artificial flow regimes were produced by inserting baffles into the flow pipe 

(section 5.7). The regimes simulated by this technique included core, annular, stratified 

and half flows. These flows are necessary in order to investigate the effectiveness of 

the neural networks in identifying different flow conditions and to ensure that the sensors 

produced signals suitable for image reconstruction. The signals from the sensors show 

that the hopper feed system is not ideal (the feed is not uniformly distributed over the 

pipe cross section (section 6.3)) and the baffles were too close to the sensors. 

Section 8.2.2 provides suggestions to improve the flow conditions.

8.1.7 Boundary voltage profiles of sand flow.

The voltage profiles obtained show reproducible patterns (sections 6.3 and 7.3). These 

patterns of profiles are in general agreement with the profiles predicted by the single 

and two particle models (figure 3.8).
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8.1.8 Flow regime identification.

A neural network programme (section 4.3.2) is used to classify flow data into several 

defined flow regimes (section 7.4). The success rate in identifying between full, half 

and stratified flows varied between 50% to 70%. The regime identification supplies 

information required for the determination of concentration and mass flowrate by 

identifying the appropriate gain term (equation 3.33 and section 7.5.2).

8.1.9 Velocity determination.

Cross correlation is used to determine the local velocity of flowing sand at different 

positions around the periphery of the flow pipe (section 6.4). Correlations deteriorate 

with obstructed flow due to interactions with the baffle (section 7.5). Suggestions on 

the use of correlation in this system is discussed in section 8.2.6.

8.1.10 Spectral analysis.

The spectra obtained from signals corresponding to low rates of flow were typified by 

single, well defined lines (section 7.6). The frequencies of these lines correspond to 

the two major particle sizes of the sand (figure 5.7). The spectral analysis carried out 

on the measured signals during the tests on the artificially produced flow regimes 

showed a noticeable shift to lower frequencies at higher feed rates. Two reasons for 

this shift are proposed (section 7.6), but further work is required (section 8.2.9).
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8.1.11 Image reconstruction.

An algorithm for image reconstruction based on ratio back projection is demonstrated 

(section 7.7). A coarse map of the concentration is obtained using this algorithm. 

Further work on reconstruction methods is proposed (section 8.2.7).

8.2 Suggestions for further work.

8.2.1 The mathematical models.

1. Several single particle dynamic models [Gregory 1987, Beck 1986, Bidin 1993] 

have been developed. Preliminary results of comparative tests are shown in figure 8.1. 

Many qualitative similarities appear to exist between the models and a detailed 

quantitative investigation is required. The variations between these induction models 

is primarily due to the various assumptions taken in their development. More controlled 

experiments should be made to determine the merits and limits of each model for future 

development of the image reconstruction algorithm.

2. Modelling of the gain term in equation 3.18 to relate the sensor output voltage and 

the equivalent circuit of the sensing mechanism, would provide a better basis for an 

improved design of the transducer electronics.
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8.2.2 Improvements to the flow rig.

1. To maximise the probability that the baffles produce the required flow profiles, a 

distributor should be placed near the top of the pipe under the screw feeder to even out 

the sand flow.

2. The baffles should be placed at different heights up the tube to investigate the effect 

of pipe length on reproduction of flow regimes which are useful for developing process 

tomography systems. When the baffle is placed high up the pipe its effect on inter 

particle collisions occurring near to the sensors is reduced, which should provide more 

uniform flow rates with the required spatial distributions. This repositioning may enable 

further information to be obtained from cross correlations and spectral analysis.

3. The pipe section of the flow rig should be inclined at different angles to the vertical 

and the effects of sliding flow and increased local concentrations, which may contact 

the sensors, be investigated. This may be a suitable simulation to represent particle 

flow around a bend.

8.2.3 Sensor systems.

1. The electrodynamic sensor can only be used with flow rates up to 0.4 kg/s when the 

baffles are used before the gain characteristic becomes negative. Capacitive systems 

are less sensitive than electrodynamic, therefore investigate the use a combined 

capacitance and electrodynamic bimodal sensor system for applications over a wide 

range of flows.
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2. The electronic design of the system can be optimized to include fast data acquisition 

and signal processing chips. The sampling time of the data capturing system should 

be improved to allow information on higher velocity flows to be collected. Direct 

memory access should be incorporated so more data can be stored to enable better 

averaging of the correlations and voltage profiles. Correlations and averaging could 

be done by dedicated signal processing circuits, which would speed up the overall 

system.

3. The number of sensors in an array should be extended until there is no discernible 

difference between adjacent pairs. This will enable the maximum amount of data to 

be collected for use in image reconstructions. Each sensor is providing a view, an 

increase in the number of views generally helps to improve the image resolution 

(Plaskowski et al 1992).

8.2.4 Range of flows.

The measurement system should be investigated for velocity and sand concentrations 

which are varied over a wide range. This will require the use of other flow systems 

such as fluidised bed and blow tanks. This would provide variations in the flow regimes 

of both vertical and horizontal pneumatic transport.

8.2.5 Neural networks.

1. The training of the neural networks should be improved to achieve higher rates of 

success in the identification of flow regimes. This may be achieved by using voltage
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profiles that are averaged over a longer sampling time so that the variations of a pattern 

are minimised. More regimes should be introduced for the network to learn and classify 

in order to broaden the range of applications of the measurement system.

2. Use neural networks for identification in the frequency domain in order to separate 

regimes that would otherwise have non-contrasting patterns. The frequency domain 

characteristics of the signal would allow the neural networks to spot contrasts that 

perhaps would not be detected in the time domain signals. The spectral analysis of full, 

core and annular flows are shown to be different and would provide a starting point for 

further investigation into identification of flow characteristics in the frequency domain.

8.2.6 Cross correlation.

1. The cross correlation can be improved by hardware correlators or special digital 

signal processing chips embedded in the data acquisition system. The cross correlation 

of pairs of sensors around the pipe boundary should improve with better flow conditions, 

perhaps using the improved positioning of the baffles suggested in section 8.2.1.

2. With improved resolution of the reconstructed tomograms and two arrays of sensors 

it may be possible to provide velocity profiles of the flow. This would require cross 

correlation of pixels representing the upstream and downstream slices to be made. By 

correlating off axis pixels swirl velocities may be obtainable.

8.2.7 Reconstruction algorithms.

1. The image reconstruction can be improved by considering forward models based 

on the Poisson equation to represent charge distribution in a volume:
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32d> 320  32d> pv
dx2 + dy1+H?~~~e; ( U )

This problem requires a high computation power to achieve a solution within reasonable 

time. This is because the cross sectional plane of the sensor is divided into mesh sections 

to represent the distribution of charge. The task is to find each charge from the equation

8.1 and to test if the solution converges by comparing voltages obtained from experi­

ments and calculations in an iterative way.

2. The optimized model suggested in section 8.2.1 should be used to obtain a direct 

analytical solution of the inverse problem. The number of particles that this approach 

can be used for should be investigated and combined with an investigation of the 

optimum number of sensors (section 8.2.3).

8.2.8 Particle sizing.

1. The investigation into the spectra of electrodynamic signals using power spectral 

density techniques has shown potential for use in the characterisation of particles by 

size distribution (section 7.6). The spectra obtained show a consistency over a large 

range of flowrates. Further more controlled experiments, in terms of the particle sizes 

used, should be investigated for relating electrodynamic spectral data to particle 

characteristics.

2. A change in process condition may cause different regimes of flow to be created 

and the spatial size distribution may shift over the cross sectional area beinginvestigated. 

In this instance, the use of size distribution maps would be useful because the actual 

distribution of particles may affect the final product quality.
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3. Experiments should be made to investigate the physical and electrical properties of 

particles that contribute to the different frequencies in the spectra. For instance, different 

materials have different dielectric relaxation times and frequencies [Etuke et al 1993]. 

This occurs when polarization of the dipoles in a given dielectric field fails to follow 

an applied alternating electric field. The knowledge of relaxation processes may hold 

the key to the structural and molecular nature of various materials [Birks 1961].

8.2.9 Effect of particle size.

1. Investigate the effects of size on signal amplitudes and frequency by using materials 

of narrow size distribution over a wide range of particle sizes from sub micron up to 

centimetre diameter.

2. Test with granular materials of millimetre size range and compare with results 

obtained for fine particulates to investigate the explanation given in section 7.6.2. In 

this investigation the effects of moisture content may be an important factor to be 

considered.

8.2.10 Application in liquids flow.

The work by King [1973] on liquid systems has shown the feasibility of measuring flow 

noise due to charging effects with electrodynamic sensors. The measurement system 

provided by this thesis should be tested on two component, non conducting, immiscible 

liquids and gas and non conducting liquid flows. The application of the mathematical 

models and techniques developed in this thesis may be adapted for such liquid based 

flow systems by considering the permittivities of the media used.
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