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EFFECTS OF ROLLING PARAMETERS ON THE FLATNESS 

AND SHAPE OF COLD ROLLED STRIP.

ABSTRACT

Various experimental methods have been used to show the effect of different Sendzimir 

mill rolling parameters on stainless steel strip shape. Experiments using sister coils, 

noting the effects of change over a number of coils, and using the "Taguchi" statistical 

experimental design techniques have been carried out. Work has been carried out on 

individual rolling presses and on complete rolling sequences.

Strain measurements have been used to show the behaviour of a statically loaded work 

roll, and the vertical and horizontal bending of a roll were investigated. From this work 

the effects of the axially adjustable first intermediate rolls on the strip shape have been 

further investigated.

The parameters that affect strip shape have been identified and stated in order of the 

magnitude of their effect. The adjustments that are needed to improve specific strip shape 

defects have been identified. It has been established where rolling parameter alterations 

have an interacting effect with other rolling parameters. Recommendations have been 

made that will improve the rolling process to enable a more consistent and better product, 

over a limited material range, to be rolled.
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Consideration has been given to new roll shapes and roll bending has been related to 

specific strip shape. Recommendations have been made to improve the rolling process so 

as to attain flatter strip.
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1.0 INTRODUCTION

Strip shape, also referred to as strip flatness, is becoming more of a concern for all 

involved in the rolling industry. Poor strip shape can increase scrap because, products 

made from strip with poor shape can be defective. With the increasing speed and 

sophistication of process lines, poor shape feed stock can damage machinery or slow 

down production.

Strip shape becomes increasingly difficult to control as the width to thickness ratio 

increasesfl] and also as the material becomes harder.

It is generally accepted that strip shape defects are caused by a differential percentage 

reduction across the strip width. This causes a differential elongation of adjacent portion 

of strip, which sets up internal stresses, leading to buckling [2].

There are four major strip shape defects produced be differential reductions, these are 

termed:

Loose (wavy) edges.

Quarter buckle.

Centre fullness.

Herringbone (ripple).

Examples of these defects and their associated stress patterns are shown in Figure 1.

There are three types of strip shape defects not generally associated with the differential 

reductions, these are termed:
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Cross camber.

Coil set.

Twist.

Examples of these defects and their associated stress patterns are shown in Figure 2.

In all rolling mills there are a large number of variables (parameters) which can affect 

strip shape. Most individual rolling mills have slightly different operating characteristics. 

Much work published with regards to strip shape control is concerned with individual 

mills. [3]

The aims of this work are:

a) To investigate the major parameters which affect strip shape on a Sendzimir 

20-high cluster mill used to roll thin, hard stainless steel.

b) To optimised the rolling parameters so that the "best" strip shape is 

available.

Use is made of a "Taguchi" statistical experimental design technique [4] as an aid to 

highlighting the major parameters affecting strip shape. This technique is also used to 

predict the best rolling parameter settings that optimise flatness.

Static strain analysis of a loaded work roll was carried out to understand the bending 

behaviour of a work roll. This bending is related to strip shape defects. From the 

understanding gained, ideas for optimising rolling parameters will be drawn.
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The mill on which the research has been carried out is a Sendzimir rolling mill ZR23B-19 

situated at Lee Steel Strip Ltd., Meadowhall, Sheffield.

The mill rolls Stainless, and Special Texture steel, the mill width is 483mm (19") and its 

range of gauge is 3.0 - 0.05mm. Reductions of up to 90% are often given to the 

materials.

Research has been carried out on a variety of material types. Initial work concentrated on 

a steel of type 301S21 Cr Ni 17/7 Austenitic Stainless. This steel was chosen because of 

its rapid work hardening characteristics due to its ease of transformation to martensite, it 

being a semi stable austenitic steel.

Because of its hardness and the thin gauge often required from this product, it was more 

sensitive to strip shape problems. Typical dimensions are:

Widths up to 460mm (18")

Thicknesses down to 0.05mm (0.002")

Work was also conducted on other austenitic material. Due to the lack of sufficient 

301S21 stainless processed. Other materials tested are 314S16 CR Ni 18/10, 0.06C and 

316S16 Cr Ni Mo 17/11/2.5, 0.07C.

Tests were carried out on a variety of widths depending on the availability of material. 

Each set of tests were kept within a narrow range of dimensional differences and these 

are stated with the work.
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2.0 LITERATURE SURVEY

2.1 STRIP SHAPE MEASUREMENT

The two major definitions of strip shape are a follows:

a) Strip shape is "a variation in reduction across the width of a strip, this leads to 

a mismatch in elemental strip lengths such that distortion occurs when these 

lengths have to fit into their boundary conditions”.[1] ___

b) Strip shape is "the difference in longitudinal speed of the metal, as it leaves the 

roll bite, across the width of the strip".[5]

Most of the work which has been carried out by researchers, uses the first definition 

stated. A quantitive evaluation of strip shape was forwarded by Pearson [6] in which 

shape was defined in dimensionless units referred to as the "MON". The "Mon" is the 

fractional difference in lengths of adjacent width sections.

Shape MONS x 10  ̂ L=length of the shortest portion of strip

difference in length between the shortest 

and longest portions of strip

Later work [7] introduced a more sensitive quantification of strip shape, the I unit, this is 

based on the same formula forwarded by Pearson. The "I-unit" is a factor of ten times 

more sensitive than the "Mon".

101 units =  1 Mon
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Strip shape may be "Latent" or "Manifest". Latent shape is that which is not visible. 

Strip shape can be described as latent if the strip is held under tensions of such a 

magnitude that it is pulled flat. When the tension is released, the strip will resume its 

manifest shape. Strip shape is sometimes referred to as latent when the second moment 

of area of the strip (I) , and Youngs modulus (E) are large enough to enable the internal 

stress distribution to be held without causing buckling [8,9]. In this case subsequent 

slitting of the strip may release the latent shape to cause "Manifest" shape due to the strip 

geometry alteration.

There are two basic areas of stress patterns which can affect strip shape [10]:

a) Longitudinal stress patterns across the width of the strip.

b) Through the thickness stress patterns.

The longitudinal stress patterns are created by a mismatch between the cross-sectional 

profile of the strip and the roll gap. These stress patterns produce poor strip shape, of 

which typical defects are:

Loose edges.

Full centre.

Quarter buckle.

Herringbone

or combinations of the above. (Figure 1)
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Through the thickness stress patterns which are not symmetrical will give rise to typical 

strip shape defects [11] of:

Coilset 

Crosscamber 

(Figure 2)

Strip shape measurement can be subdivided into two areas, those of off-line and on-line. 

Off-line measurement quantifies strip shape in its relaxed form. On-line techniques 

measure in a dynamic situation. The measurement techniques are varied to suit the 

particular need of the involved parties. Various Standards Institutes have lists of flatness 

tolerances for different gauge and width materials [12-15]. Certain measures of flatness 

are taken using devices such as Straight Edges, Rulers, and Feeler Gauges. These 

methods are not very accurate and are only really of value on thicker materials which are 

not distorted by contact. Shape measurements taken in such a manner can be related to 

the out of flatness measure of "I units" by a simple formula [16]:

Shape = — x 100% steepness 
L*

I units =2Lx H^.105 
2 L

where H =  height of buckles 

L = space between buckles

Off-line measuring techniques can be used to measure strip shape caused by both 

longitudinal stress patterns and through the thickness stress patterns. A variety of devices 

have been developed to accurately measure strip shape off-line.
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These devices are useful both as a research aid, and as a device to corroborate and 

calibrate on-line measuring systems. The measuring techniques can be applied on-line 

where the strip being measured is not under tension, that is, when it exhibits manifest 

shape. The main devices at present are:

-The shapemaster R-100 [16], a device using contact LDVT’s (Linear 

Displacement Voltage Transducers). (These become less accurate as strip gauge 

gets thinner)

-The Vollmer shapemeter table [17], which uses non-contact proximity 

transducers.

-The Laser flatness Table [18], which uses laser triangulation.

-The BNF (Fulmer Research) Shapemeter [19] which uses reflected light.

On-line measuring techniques can be used to measure strip shape caused by longitudinal 

stress patterns only.

In recent years a number of on-line shapemeters have been developed. All of the 

shapemeters use contact systems. The shapemeters measure the differences in stress at 

particular points across the strip width, these stress differences are related to strip shape. 

The main devices at present are:

-ASEA-BB Stessometer [20], continuous roll with transducers working on the 

magneto-elastic principle.

-Vollmer shapemeter [17], LDVT contact probes under pressure.

-Davy-Mckee Vidimon [21], segmented roll with Air Bearing Pressure 

measurements.
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-Clecim-Plancim [22], continuous roll with LDVT’s placed spirally around the 

roll.

-Broner Strainweb [23], segmented roll with strain gauges on a beam.

-Sundwig-Monitoring roll [24], segmented roll with piezo electric load 

transducers.
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2.2 MODELLING OF SENDZIMIR MILLS FOR STRIP SHAPE CONTROL

Mathematical modelling is becoming increasingly important as a means to controlling 

strip shape. With the increasing power of computers, highly complex models can be run. 

Mill models can be static or dynamic. The complexity of models and the methods used in 

modelling are dependent on the end use of the model. Some models are used to control 

rolling parameters that affect strip shape. These model need to be fast acting, hence they 

are often simplified and large assumptions are made. Some models are used to 

investigate the behaviour of the rolling process, these models are complex, and 

increasingly finite element (FE) methods are being used.

FE models require a lot of computing power and accurate models take considerable 

amounts of time to run. This major drawback prohibits the use of such models as part of 

an integral on-line control system. The models can be used for research or to check other 

non-FE models.

The models can generally be split into two areas, the first aspect is that of roll force 

modelling and the second is that of total mill modelling.

Models of rolling are limited in that the behaviour of basic parameters such as the 

behaviour of the strip, the behaviour of the rolls and the lubrication are still poorly 

understood [25].

A Static model of a sendzimir mill has been produced by G.W.D.M. Gunawardene et al 

[26]. The model takes into account "roll bending" using beam and elastic foundation 

theory [27]. Roll flattening and inter-roll pressure is modelled using Timoshenko and 

Goodiers theories [28].
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Roll force is calculated using Bryant and Osborns explicit roll force formula [29]. No 

firm conclusions have been drawn as to the ability of the model to aid in improving strip 

shape.

Takao Kawanami et al [30] dealt more accurately with the behaviour of strip, in that 

plane stain conditions were not assumed, ie a three dimensional stress analysis was 

carried out. Roll deformation was based on beam bending theory and use was made of 

finite element techniques. Roll flattening based on work by Tozawa [3 l]~was employed.

The roll deformation of a Sendzimir mill was modelled by T. Matsucha et al [32]. The 

analysis was used to predict the best profile for rolls, which would enhance strip shape. 

The work is based on previous models which use a method of dividing rolls and strip into 

multi-portions [33]. Definite conclusions from this work are that:

a) Except for extremes of shape such as full centre of long edge then using the 

control parameter of first intermediate roll shift complex shape must be 

produced.

b) Using Saddle adjustments there is no condition in which good shape can be 

obtained, however, slight improvements can be made.

c) Work on improving strip shape must concentrate on roll profiles.
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2.3 ROLLING PARAMETER EFFECTS ON STRIP SHAPE

On a Sendzimir 20 High rolling mill there are a large number of parameters which can 

affect strip shape. These are as follows;

a) Lubrication and cooling.

b) Rolling speed.

c) Rolling tensions.

d) Roll profiles.

e) Incoming strip profile.

f) First intermediate roll position.

g) Saddle settings.

h) Rolling load.

2.3.1 Lubrication and Cooling

Although the effects of lubrication and cooling are very different, they cannot be isolated 

from each other. Lubrication and cooling are vital in cold rolling to reduce the rolling 

load, ensure the strip finish is satisfactory, and remove the heat due to metal deformation. 

Mineral oils with additives are used in Sendzimir mills.

Improved lubrication reduces the rolling load. Many models have been forwarded which 

estimate the lubrication effects, but understanding is still limited. There are two types of 

lubrication thought to occur during rolling, "boundary" and "hydrodynamic" lubrication 

[34]. With a reduction in the rolling load required to deform the material being rolled, 

the mill bending characteristics change. The mill housing and rolls flex differently so 

altering the load distribution across the strip width.
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Associated with this is a change in strip shape.

If there is non-uniform lubrication across the strip width, then there will be a non-uniform 

load distribution. There will also be differences in the speed of material passing through 

the roll bite.

These differences can significantly affect the rolled strip shape [35].

Non-uniform cooling will result in differential expansion of the mill rolls. This will give 

rise to loading differences across the strip width which results in strip shape changes. 

Temperature changes affect lubrication characteristics which in turn affects mill load and 

hence strip shape [36]. The heat transfer characteristics of a mill ensure that a thermal 

crown is built up on the rolls. That is, at the centre of the mill higher temperatures are 

built up which means that the rolls expand to form a barrel shape.

2.3.2 Rolling Speed.

Rolling speed directly affects the mill temperature build up and the lubrication. Nearly 

all of the energy supplied to a rolling mill is converted into thermal energy. The energy 

is dissipated in deformation of the strip and in friction effects. When looking at strip 

deformation the following factors need to be considered [37]:

a) Yield strength of the strip.

b) Strain rate during deformation.

c) Strain rate effect.

d) The sideways constraint to material flow.

Friction effects have been mentioned in "lubrication and cooling".

Mill temperature build up affects mill load, as does the lubrication effects. Mill load 

affects the bending of the mill which in turn affects strip shape.
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2.3.3 Rolling Tensions

On modem Sendzimir mills extremely high rolling tensions are used. Tensions reduce 

the rolling load required for material deformation. Tensions also keep the strip running 

on line through the mill when the strip is too thin to be guided mechanically. A 

differential between the front and back tensions will affect the position of the neutral 

point, that is the point of no slip, which changes the frictional effects.

Rolling load is affected more by back tension, but strip shape is affected more by the 

front tension [39]. Sendzimir mill manufacturers recommend that rolling tensions of one 

third ultimate tensile strength (UTS) should be used.

There is a complex relationship between tensions and strip shape. When the mill load is 

affected the mill will bend in a different manner hance altering the strip shape. If the 

neutral point is affected, both the mill load, and the ironing effect of the rolls on strip 

shape change. The strain rate at different points in the roll gap is affected by the neutral 

point position, as is the lubrication.

Work has been carried out attempting to use tensions to control strip shape. A 

differential tension which affects the strip shape is created across the width of the strip.

The application of this technique assumes that plane strain conditions do not exist in the 

roll bite, but that lateral material flow takes place [40]. Various methods of creating a 

tension difference across the strip are used.
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i) Localised heating of the strip.

ii) Cambering the pass line rolls.

iii) Applying differing load through segmented rollers.

Some evening out of stresses occurs at a distance from the mill roll bite. This 

phenomenon is known as the Saint-Venant principle [41]. This limits the effectiveness of 

these methods of shape control.

There is a theory that strip shape attenuation occurs when rolling under high tensions. 

Localised differences in tension occur across the strip width, caused by differential 

reduction of the strip. These tension differences affect the localised roll bite load, In an 

over rolled section of strip there is a reduction in tension and hence stress. The mill rolls 

experience an increase in rolling load which is translated into an increased roll 

deformation. Increased roll deformation means that less localised over rolling occurs on 

the strip, and strip shape attenuation has occurred [42].

2.3.4 Roll Profiles.

A large amount of work concerned with roll profile has been carried out an 4 and 6 high 

mills, but little progress has been made on cluster mills. The, as ground, roll profiles 

have a significant part to play in matching the incoming strip profile to the roll gap 

profile. In a cluster mill the following rolls can be profiled (Figure 3);

i) Work rolls.

ii) First intermediate axially adjustable rolls.

iii) Second intermediate rolls.
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The further set of rolls are Castor Bearings which can be independently adjusted via 

saddles to give strip shape control.

Experience plays the major part in deciding which roll profiles should be employed. The 

type of material rolled, the reduction given, the mill, and the rolling staff, all contribute 

to the choice of roll profile.

Work rolls are generally ground flat or cambered, although they can be ground concave.

+  V

The first intermediate axially adjustable rolls have a Taper ground over a portion of their 

length. The length of taper is dictated by the width of material rolled. Taper angle is 

dictated by the material type, mill characteristics, and experience.

Some recent work has been carried out on trying to optimise the first intermediate roll 

profile. Mill manufacturers "Sundwig" recommend that a curve is ground on the roll 

rather than a straight taper.

Recent work [32] suggests that a double taper on the roll end will help to produce better 

strip shape. The shape defect of quarter buckle should be reduced with this roll profile.

The second intermediate roll’s profile is again dependant on the material rolled, the 

specific mill, and experience. Either flat (parallel), ground rolls or cambered are used.
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2.3.5 Incoming Strip Profile.

The effects of incoming strip profile on finished strip shape can be broken down into two 

areas:

i) The supplied strip profile and whether this determines the finished strip shape.

ii) The intermediate rolled strip profile and whether the profile can be changed 

significantly during rolling. -----

There is no published work which proves the relationship between the incoming strip 

profile and final strip shape. There is work which suggests that the final strip shape is 

not as severe as can be calculated from the differential in percentage reduction across the 

strip [43]. Bemsman suggests that lateral material flow takes place in the roll gap, 

which reduces significantly the effects of incoming strip profile on final strip shape. The 

assumption that plane strain rolling conditions exist are questioned. If plane strain 

conditions do not exist during cold rolling, then much of the work on strip shape which is 

based on differential percentage reductions is not valid.

In order to effect automatic control of strip shape based on differential percentage 

reductions, the incoming strip profile needs to be described. Hot rolled strip usually has 

a slightly convex cross-sectional profile.

The size of crown allowed is dealt with in regulations [44]. Strip can be supplied in a 

variety of profiles. Flat, wedge, concave, and offset crown profiles are known, for 

narrow mills hot roll wide coils need to be split into three or four sections. If the wide 

parent coil has a convex profile then the small coils will exhibit wedge and convex 

profiles.
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The incoming strip profile is described for computational purposes in the form of a 

polynomial equation [45]

h(z) =  hm +  KjZ2 +  K2Z3

where hm =  centreline thickness 

K1?K2 = constants 

hz = thickness of the strip at a set distance from the centreline

2.3.6 First Intermediate Roll Position.

On a Sendzimir cluster mill the first intermediate rolls (Figure 3) are axially adjustable. 

The rolls have a profile ground on them and adjustment of the roll positions enables the 

mill operator to control the strip shape, and the strip line.

The first intermediate roll position is closely linked to its geometry in its effect on strip 

shape. The first intermediate roll position is the most powerful means of strip shape 

control on a narrow cluster mill [43].

Rolling thin gauge material means that the strip cannot be held centrally in the mill by 

guides. Guides would damage the strip edge and cause strip breaks. The only means 

available for keeping the strip on line (running centrally) are tensions, saddle adjustments, 

paper interleaving (paper builds a crown on the coils which centralises the strip), and first 

intermediate roll positions. Rolling tensions are normally high so little can be done to 

help steer the strip other than normal rolling practice. The mill loading pattern can be 

altered by adjusting the saddles. This adjustment will help in steering the strip but its 

effect is limited.
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Inserting narrow paper into the coil as it is building up helps to keep the strip on line. 

Using the first intermediate roll position to hold the strip on line is the major means 

available. The drawback to using the first intermediate rolls to control strip steer is that 

they also control strip shape. Often a compromise position must be accepted.

The most advanced feedback automatic strip shape control systems utilise the first 

intermediate roll positions. Movement of the roll positions are limited because of the risk 

of causing strip breakages.

2.3.7 Saddle Settings.

The individual casters (back up bearings), (Figure 3), can be adjusted on a Sendzimir mill 

to give a change in the mill loading pattern. Each saddle, which transmits the rolling 

force to the mill housing, can be adjusted. This alters the mill loading. The saddles are 

eccentric so that by turning screws located in them the saddle is rotated slightly in its 

housing. This alters the inclination and relative positions of the Castor (back up bearing). 

Primarily, the saddles were designed to enable control over strip steerage. Now that strip 

shape is of greater concern, saddle adjustments are used to give some degree of strip 

shape control.

Modem mills incorporate hydraulic or electro-mechanical means of saddle adjustments. 

Older mills are often retro-fitted with similar means of saddle adjustments.

There is conflicting evidence at present over the success of improving strip shape via 

saddle adjustment alone [47,48,32].
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Some researchers claim that they have only a slight effect on strip shape, others that the 

major benefits of controlling saddles have been increased productivity and others that they 

are controlling shape successfully.

The measure of success is usually that control of shape is better than that effected 

manually. There is little published evidence that proves real strip shape improvements, 

strip shape control using saddle adjustments will be more effective on wide mills than 

narrow mills.

2.3.8 Rolling Load.

Mill load affects a large number of rolling variables. These are the variables affected:

i) The behaviour of the material will alter with load differences. That is, the 

strain rate, and phase transformations can alter.

ii) The lubrication conditions alter. With changes in lubrication there will be a 

change in the position of the neutral point.

iii) The thermal conditions change. Higher rolling loads will increase 

temperatures due to the increased strain rate. The cooling may be less 

effective due to oil vaporisation.

iv) Mill bending changes. The roll cluster and mill housing will curve in a 

concave manner.

v) Roll flattening changes. All of the rolls flatten to some extent. With increased 

mill load then more roll flattening will occur.

Each of the itemised variables effected will cause strip shape changes. It is clear that 

rolling load plays an important part in its affects on strip shape.
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2.4 EXPERIMENTAL DESIGN USING TAGUCHI EXPERIMENTAL DESIGN

TECHNIQUES.

Due to the large number of rolling variables and their interactive effects, statistical 

techniques of experimental design were researched and used. The techniques employed 

were "Taguchi Experimental Design Techniques” [49,50]. Taguchi popularised the use of 

experiment design for engineers. He put statistical methods in engineers language. The 

emphasis of the experimental procedure is on parameter design, and not tolerance design. 

That is, adjusting the product parameters or process factor levels such that the product is 

optimised with minimum sensitivity to "noise", "noise" being the sensitivity of the 

optimum product attributes to variations. Whereas, tolerance design means spending 

money on better materials etc..

Emphasis is placed on the planning stage of the experimental procedure (Figure 4). The 

size of the overall experiment is reduced by choosing to neglect some interactions. 

Experiments are designed using balanced arrays which dictate the settings for process 

variables and linear graphs which enable interactive effects to be allocated. After the 

design and set up of the experiment controlled execution is carried out. The results can 

be analyzed in a number of ways. Most relevant information is obtained by looking at 

the mean response graphs [4,49]. A method used to confirm the significance of the 

results is an analysis of variance [4]. More complex analyses are available [50] but were 

not appropriate for this project.

The Taguchi Philosophy means that observation is taken of the process variability. This 

is analyzed by looking at the signal to noise ratio. A strong signal and weak noise means 

that the process is robust ie, not subject to variability [4].
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2.5 WORK ROLL STRAIN

Strain measurement is used to find the bending characteristics of a loaded work roll. The
K -

bending of work rolls is related to specific strip shape defects. By observing the severity 

of work roll bending due to changes in rolling parameters, the different magnitudes of 

effects and characteristics of effects of such parameters can be examined. No previous 

experimental work has been referenced in this area.

Theories about roll flattening and bending have been made [51].

According to Fappols formula, mutual flattening of a pair of mating rolls is proportional 

to the contact load over the working range.

Flattening in given by the displacement of the roll axis in the direction of contact. 

Experimental evidence [52] reveals a close connection between the calculated and real 

displacements. Models are available which predict roll bending. These generally use 

Elastic Foundation Theory [28]. Finite Element (FE) work can predict roll flattening and 

bending but it is difficult to corroborate the results. Corroboration can be carried out by 

testing the ability of the model to predict shape, roll force and torque etc. This 

corroboration has not been carried out conclusively.

To understand the behaviour of work rolls their strain can be measured directly, the 

limitation of this is that because of the harsh and dynamic environment strain 

measurements can only be measured with the mill static (ie, not rolling).

Strain can be measured using a variety of techniques but the most robust and reliable is 

that of using strain gauges.
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Techniques for strain measurement have been used for a long time and are well 

established. Strain gauges alter in resistance when they are extended or compressed. The 

value of strain can be related to stress. Directions of principle strains can be found if 

required. Gauges are robust and sensitive and can be used to accurately measure very 

small changes in strain. Measurements of strain can be made by Wheatstone bridge 

balancing units but now more commonly by electronic means.

The rolls of which the bending characteristics were measured are work roll in contact 

with the strip during rolling. Their dimensions vary between 48.26mm (1.9") to 

43.18mm (1.7").

The rolls are 2%C 12%Cr die steel 

hardness 62 Rockwell C.

0
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3.0 APPLICATION OF TAGUCHI TECHNIQUES TO DESIGN OF.

EXPERIMENTS

V

The experimental work followed a logical sequence and the steps taken are shown in 

Figure 4.

Although the objectives of the programme were clear the experimental work was results 

driven in the sense that data acquisition determined the next step. A number of 

experimental objectives related to strip flatness followed, some required large 

programmes of work but others smaller programmes. The major areas are considered 

first.
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4.0 APPLICATIONS OF STATISTICAL EXPERIMENTAL DESIGN

TECHNIQUES TO A SINGLE PART OF A ROLLING SEQUENCE.

4.1 INTRODUCTION

The cold rolling process involves a large number of variables (Table 1) which can affect 

the final strip shape. It was not feasible to exaustively test each variable because of the 

cost considerations and the difficulty of producing the same specification of strip for fixed 

rolling conditions.

The complexity of the rolling process means that, to affect adequate control over strip 

shape, an intimate knowledge of the combined and individual effects of all of the rolling 

variables is necessary. Experimental design techniques known as "Taguchi" techniques 

were employed:

-To find the major strip shape affecting variables

-To optimise the controllable process variables (parameters) which give the best 

strip shape.
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4.2 PLANNING AND DESIGN

To keep the rolling experiments to an acceptable number of coils which could be tried ,

and to build in experimental consistency the following were kept constant:
%■

a) Lubrication -temperature

-spray pattern 

-specifications

b) Strip thickness and width

c) Two sister coils were used to eliminate slight material differences (these were 

assumed to have negligible effect on strip shape within material qualities).

d) The mill roll sizes.

e) The mill rolling team. Differences due to experience or operating practices 

were eliminated.

The number of parameters was reduced to ten, shown in Table 2. It was considered that 

four of the parameters interacted.

The number of parameters and interactions dictates the size of the experiment. Following 

recommended procedures to apply Taguchi techniques an experimental plan of sixteen test 

runs was required. The plans are known as orthogonal arrays. The array required was 

an L16 [4].

Parameters and interactions are assigned to columns in the experiment plan. Use is made 

of linear graphs to assign the assumed interactions to their appropriate columns.

Experiments were carried out on one full working shift. Rolling reductions, speeds, 

tensions etc. were kept constant through all the preceding processes.
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Strip shape samples were taken from steady state rolling conditions.

The experimental techniques handle a limited number of parameter settings. The number
s-

of settings can be chosen and the experiment designed to take account of them.

More settings mean more tests, and hence a much larger experiment. Since the aims of 

this experiment are broad then two settings or levels of each parameter were used. The 

actual levels are shown in Table 2.

4.3 CRITIQUE OF THE EXPERIMENTS

The nature of the rolling process meant that certain of the parameter settings could not be 

chosen prior to the strip being placed on the mill. If there was any combination of 

settings that would not allow "safe" rolling the whole set of tests would be wasted. All 

sixteen of the tests needed to be carried out, if any test was not completed then the 

analysis of results would be incomplete. This is due to the statistical balance of the 

array.

Between the two coils used for the tests there was a slight width difference which could 

not be avoided.

No accurate measure could be taken of the previous strip shape because the tests had to 

be carried out on a specific rolling pass.

The range of parameter setting chosen is important. There is difficulty in assessing what 

differences to use but ranges and setting were chosen to be compatible with normal 

operating conditions. Some parameters were considered to be less significant and were 

not taken into account. These were as follows;
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a) Process route of the coil.

b) Differences in material composition or profile throughout the length of a coil.

c) Thermal effects (although held constant as far as possible).

d) The accuracy of the mill settings.

e) Work rolls needed changing occasionally and so there were slight differences in 

diameters.

4.4 RESULTS

The strip shape samples were measured in three different ways. A scale of 1-10 was 

given for visual shape appearance. A score of 10 was awarded for extremely poor shape 

and 1 for good shape.This measurement did not take account of any specific strip shape 

defect. The results are shown in Table 3.

A scale of 1-4 was given for specific strip shape defects. A score of 4 represented poor 

strip shape and 1 good shape. The defects were edge wave, full centre, ripple 

(herringbone), quarter buckle and coilset. The results are shown in Table 4 a-d.

A measurement of the difference in gauge profile across the strip was taken. The results 

are shown in Table 5. The lowest value given indicates the best strip shape.

Mean response plots [4,49] are used to illustrate the effect of each parameter for each 

method of measuring shape. The mean response plot is the average response of strip 

shape to the parameter under investigation. Lowest mean response indicates the best strip 

shape.
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To obtain the mean response for each parameter the average results at each parameter 

level was obtained. These average results are plotted for each level. The severity of the 

slope of the graph indicates the extent to which a parameter affects the measured variable 

(strip shape).

The interaction plots show how the specified parameters affect each other. Parallel plots 

indicate that no interaction exists. Non-parallel plots indicates that there is an interaction. 

The severity of interaction is given by the amount that the lines are out of parallel. There 

can be positive and negative interactions. A positive interaction occurs when the 

interactions combine to improve the measured variable and vice-versa.

To confirm the significance of the results and their spread required analysis of the 

variance [4].

A wide spread of the results would mean that the slope of the graph could vary 

dramatically and therefore confidence in the results would be low.

To carry out an "analysis of variance" the variations of each parameter were found. The 

least significant parameters are then pooled. These parameters were those having a low 

sum of squares value [4]. The pooled parameters give a value called the error mean 

square (EMS). The values which have not been pooled are divided by their specific 

degrees of freedom, this gives a result termed the mean square (MS). The MS values are 

divided by the EMS to give a value of significance.

Statistical confidence Tables published by "Fisher" known as "F" Tables, give values for 

different percentage confidences based on the degrees of freedom of the numerator and 

denominator.



If the MS divided by the EMS values are higher than the numbers obtained from the "F" 

Table, then the specified percentage confidence shown in the results is attributed to the 

result.
*-

4.5 ANALYSIS

Inspection of the mean response results and the analysis of variance enables parameters to 

be placed in order of significance. That is, the level of effect that each one has on strip 

shape. Taking each strip shape measuring method, parameters have been placed in order 

of magnitude. Comments are made as to how the results compare to rolling experience. 

This experience is based on interviews with rolling staff.

4.5.1 Edge Wave.

The mean response plots and results for edge wave are shown in Figure 5 a-c.

Significant parameters which are obtained from the mean response plots are shown in 

order:

a) First intermediate roll position.

b) Work roll geometry.

c) Strip geometry and first intermediate roll position interaction.

d) Strip geometry.

e) First intermediate roll position and strip geometry interaction.

f) Work roll size difference.

g) Front tension.
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These results were confirmed by knowledge of rolling experience:

The first intermediate rolls positions, the most significant parameter, is the key to 

affecting strip shape. Moving the first intermediate rolls so that there is less taper
K-

covering the strip (flat) means that edge wave is created. Rolling with flat work rolls 

gives more likelihood of producing edge wave.

Findings which are new:

a) Strip geometry, although important, is not the key shape affecting or controlling 

parameter.

b) Wedge strip and shallow tapered first intermediate rolls are the preferred 

combination in that if the use of wedge strip is unavoidable then use shallow

tapers.

c) Flat strip and steeper tapered first intermediate roll are the preferred 

combination in that if rolling flat strip then use steep tapers.

d) Keeping the work rolls the same size reduces the amount of edge wave.

e) Front tension has more effect on strip shape than back tension [56].

4.5.2 Full Centre.

The mean response plots and results for full centre are shown in Figure 6 a-c.

Significant parameters in order of significance are:

a) First intermediate roll position.

b) Work roll geometry.

c) First intermediate roll geometry and strip geometry interaction.
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d) Reduction.

e) Strip geometry.

f) First intermediate roll position and strip geometry interaction.
%■

These findings were confirmed by rolling experience:

The first intermediate roll position is the key strip shape affecting parameter. Rolling 

with less flat on the strip causes "full centre" to be rolled.

The work roll geometry is important in the production of strip shape. Cambered rolls 

encourage full centre strip shape.

The amount of reduction alters the amount of full centre.

New findings:

a) for wedge strip, shallower tapers are preferred. For flat strip steep tapers are 

preferred.

b) Strip geometry does not play a major part in producing strip shape.

c) Within the small changes of first intermediate roll geometry tried, there are 

only minor strip shape effects.

4.5.3 Ripple (Herringbone).

The mean response plots and results are shown in Figure 7 a-c.

Significant parameters in order of significance:
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a) First intermediate roll position.

b) Front tension.

c) Reduction.

d) First intermediate roll geometry.

e) Work roll size.

f) Back up roll (saddle) configuration.

These findings are confirmed by rolling experience:

The first intermediate roll position is the key strip shape affecting parameter.

Increasing the front tension will reduce the amount of ripple.

Increasing the rolling load reduces ripple.

New findings:

a) A shallow first intermediate roll taper will reduce ripple.

b) Keeping the work rolls the same size will reduce ripple.

c) The mill loading pattern from the saddle setting will affect the creation of 

ripple.

4.5.4 Quarter Buckle.

The mean response plots and results are shown in Figure 8 a-c.

Significant parameters in order of significance:
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a) Work roll geometry.

b) First intermediate roll geometry.

c) Speed.
V

d) Back up roll (saddle) configuration.

New findings:

Roll geometries are key quarter buckle affecting parameters. To remove quarter buckle 

the roll geometries must be altered.

Work roll geometry differences tested were more severe than the first intermediate roll 

geometry differences.

This accounts for the work roll geometry being more significant.

Rolling speed which affects load, lubrication, neutral point and temperature is seen to

affect quarter buckle.

4.5.5 Visual Representation.

The mean response plots and results are shown in Figure 9 a-c.

Significant parameters in order of significance:

a) First intermediate roll position.

b) Strip geometry and first intermediate roll geometry interaction.

c) Work roll size.

d) Reduction and back tension interaction.

e) Speed.



f) Reduction.

g) Reduction and work roll size interaction.

h) First intermediate roll and strip geometry interaction.
*•

i) Front tension.

The visual assessments do not differentiate between shape defects. This means that 

parameters which are significant to individual shape defects, are also significant to this 

method of shape measuring. When comparing the significance of parameters, the visual 

assessment results are similar to the full centre results.

These findings are confirmed by rolling experience:

a) The first intermediate roll position is the key strip shape affecting parameter.

b) There are many parameters that affect the visual appearance of strip shape. An 

intimate knowledge of the rolling process is necessary to effect control of strip 

shape.

New findings:

a) Different first intermediate roll geometries should be used with different strip 

geometries.

b) Improvements can be made to strip shape if the work rolls are kept the same 

size.
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4.5.6 Profile differences.

The mean response plots and results are shown in Figure 10.

Significant parameters in order of significance:

a) Strip geometry.

b) Speed.

c) Front tension and reduction interaction.

d) First intermediate roll position.

e) Work roll size.

f) Back up roll configuration.

The incoming strip profile strongly affects the differences in profile after rolling. Rolling 

speed affects the profile difference. This may be due to the lubrication, loading and 

thermal changes encountered. Speed may also affect lateral material flow during rolling. 

The importance of the front tension and reduction interaction may be related to rolling 

load and hence speed of rolling.

As expected the first intermediate roll position affects the strip profile.

Work roll size differences and back up roll (saddle) positions show small measurable 

effect on strip profile.
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5.0 INVESTIGATION INTO THE EFFECTS OF DIFFERENT WORK ROLL

PARAMETERS ON STRIP SHAPE.

5.1 INTRODUCTION.
V

The specific aims of this work were:

a) To confirm that keeping work rolls the same size helps to improve strip shape.

b) To confirm that keeping work roll diameters small on the specific mill helps to 

improve strip shape.

c) To identify, in more detail, the extent to which work rolls affect strip shape.

During the planning stage of the experiment, a close look was taken at the parameters 

which could affect "coilset", "cross-camber" and "full centre" strip shape defects. The 

reason for this was that measurements had shown that these defects occur at the same 

time. This implies that these defects may be caused by the same factors. If any one of 

these defects can be removed then the others may also be eliminated.

Taguchi Experimental Design Techniques [4] were employed for this area of work.

Tests were carried out on a single coil to ensure consistency of material proportions and 

geometry. For the trials the coil was run up to speed and held at steady state conditions. 

The sample was marked then the mill stopped. Rolling parameters were then adjusted and 

the mill run to steady state conditions for the next sample.

The parameters that were tested are shown with their settings in Table 6.

For completeness it would be better to use a more extensive range or work roll 

geometries and combinations but this was not practicable. Reasons for not doing so were:
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a) A vast number of work rolls would be required for the tests.

b) Confusion would occur in handling the number of rolls.

c) The experiment size would increase dramatically.

d) Individual experiments focused on the best work roll geometries for specific 

jobs would prove more useful.

5.2 DESIGN OF EXPERIMENTS.

There are six parameters under investigation, Table 6. All of the parameters are held at 

two levels. The smallest "Taguchi" orthogonal array which can be used is the Lg. No 

allowance was made for interactions, there are two reasons for this:

a) The method of measuring results was not considered accurate or detailed 

enough to assess small interactions.

b) Minor interactions were thought to be of little use to the experiment aims.

Although at the design stage of the experiment no interactions were allowed for, because 

of the practicalities of the experiment, one interaction was allowed. During the trials it 

was found that the pass line height, as planned, could not be altered.

The column of the array assigned to the pass line height will pick up on interactions.

As far as possible all variables except those under investigation were held constant. 

Steady state rolling conditions were achieved for each strip shape sample.
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5.3 RESULTS.

There are four methods chosen for measuring the results, these are as follows:
V

a) the shape defect of "full centre1' was given a value between 1-4 dependent upon 

the severity of the shape defect encountered. The lowest value indicates the 

best shape.

b) The shape defect of "loose edge" was given a value between 1-4 dependant 

upon the severity of the shape defect encountered. The lowest value indicates 

the best shape.

c) A scale of 1-10 was used for visual appearance. No differentiation was made 

between shape defects with this measurement. The lowest value indicates the 

best shape.

d) A measure of the profile difference across the strip was recorded. It is likely 

that the greater the difference in strip profile, the worst are the rolling 

conditions with reference to strip shape.

5.4 ANALYSIS.

5.4.1 Edge Wave (Loose Edge).

The mean response plots and results are shown in Figure 11. Significant parameters are

listed below:

a) Roll geometry.
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There are indications of improvements with the other parameters tested, but their level of 

significance is very low.

5.4.2 Full Centre.

The mean response plots and results are shown in Figure 12.

Significant parameters are listed below:

a) Roll geometry.

Again there are indications that improvements can be made with other parameters tested 

but their levels of significance are low.

5.4.3 Visual Scaling.

The mean response plots and results are shown in Figure 13.

Significant parameters are listed below:

a) Roll geometry.

b) Roll size and roll configuration interaction.

The major parameter is the roll geometry. There is a negative interaction between the 

roll size and configuration. Trends can be interpreted from the other parameter results 

but they are of low significance.
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5.4.4 Profile Difference.

The mean response plots and results are shown in Figure 14.
* -

Significant parameters are listed below:

a) Roll size and roll configuration interaction.

b) Roll configuration.

A negative interaction is shown between the roll size and the roll configuration. Roll 

configuration plays the dominant part in the interaction. Having different roll sizes 

affects the level of profile difference of the strip. All of the other parameters are of low 

significance.

5.5 DISCUSSION.

5.5.1 General Discussion.

It is clear from the results that the work roll geometry is, out of those parameters tested, 

major in its effect on shape. There are indications from the mean response plots that 

improvements can be made by:

- using small work rolls.

- keeping the work rolls the same size.

- keeping the tensions high.

Actions, dictated by this work, which can help to reduce strip shape defects are included 

in Appendix 1.



6.0 INVESTIGATION INTO THE EFFECT OF SADDLE (MILL LOAD PATTERN)

ADJUSTMENTS ON STRIP SHAPE-

6.1 INTRODUCTION.

The work carried out in this project indicates that saddle adjustments have little effect on 

strip shape. Industrywide, there has been significant investment in utilizing saddle 

adjustments to effect shape control. This is in the form of closed loop automatic feedback 

control systems. Both to confirm that the saddles have a small effect on strip shape, and 

to give guidance for investment, a detailed analysis was required of the affects of saddles 

on strip shape.

The investigation had three stages:

a) Assessing the effects of saddle adjustments on strip shape over short lengths of 

strip.

b) Assessing the effects of saddle adjustments on strip shape over a finishing pass.

c) Assessing the effects of saddle adjustments on strip shape over a complete 

rolling sequence.

6.1.1 Optical Shapemeter.

The off-line shapemeter as developed by Fulmer Materials Technology, formerly 

B.N.F.(Metals), it was found to be an accurate method of measuring strip shape.
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Strip shape was measured by comparing the actual length of measured strip with the 

length of a flat piece of strip. The shape calculation could then be carried out, that is:

&L * 10"* =  Strip shape "mons”
L

L =  length measured- length of flat strip portion 

AL =  length of flat strip portion.

The method used to ascertain the strip length is as follows. A sample of strip to be 

measured was attached to a frame and sufficient tension applied to remove the defect o f  

coilset, cross camber and twist was applied. That is, the shapes caused by through the 

strip thickness stress patterns. The tension applied could be recorded, hence it could be 

held static for measuring a series of similar samples. At a set point on the strip a beam 

of light was focused. The strip was then moved under the light at constant velocity. The 

light was reflected off the strip with an angle dependant on the shape of the strip, Figure 

15. As the strip moved under the beam the angle change is integrated to give a measure 

of the length of strip. A trigger mechanism indicates the start and end of measuring, so 

the length of strip and the length of a flat piece of strip is known and the shape can be 

calculated. Measurements are taken at pre-determined points on the strips width so a 

picture of the overall shape can be obtained.

Measurements of strip shape were accurately carried out using an off-line optical shape 

meter, Figure 15. The shapemeter was developed by Fulmer Materials Technology, 

formerly B.N.F.(metal) technology.
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6.2 DESIGN OF EXPERIMENT.

6.2.1 Altering Saddles Over Short Test Runs.

Initial assessments of the effects of saddle adjustments were made on short lengths of 

strip. The tests were carried out on the last pass of a rolling sequence. A variety of 

saddle setting were tried, with all other rolling parameters being held constant. Three 

sets of tests were carried out on three individual coils.

The saddle settings chosen, and which are shown on the strip shape plots, give all the 

major loading pattern differences. The saddle adjusting screws can be altered between 

positions 0-10, with mill designers recommending that no more than 1.5 units difference 

should be used between adjacent adjusters. Tests on two of the coils were carried out 

using 2 units difference between adjacent saddle settings (Figure 16). Since no major 

strip shape change was recorded the adjacent saddles were set with 3 units difference.

6.2.2 Setting the Saddle Configuration Over a Complete Rolling Pass.

This technique was used to ensure that steady state rolling conditions were achieved for 

the measured samples. The effects of setting the saddles for a complete pass in a rolling 

sequence were thereby assessed.

The trial was designed so that all of the non-tested rolling parameters were kept constant 

as far as possible for the tests. Two tests were carried out, one large coil was rolled 

down to the last pass, then split, and the tests carried out. The only difference in the 

rolling parameters was that of the saddle configuration.
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The test samples were obtained from the mid-point of each coil, this ensured that the 

sample was representative of the main body of the coil. A differential of 3 units was held 

between adjacent saddle settings. Two extremes of loading pattern were used (Figure 

17).

6.2.3 Altering Saddles Through a Complete Rolling Sequence.

Investigating the effects of altering parameters throughout a rolling sequence will show 

whether early process changes affect strip shape. Work practice is to take strip shape 

into account only on the last or last two rolling passes.

Taguchi experimental design techniques have been used to quantify the effects of saddle 

adjustments through a sequence. Work (see ch.4.5) has shown that the work roll 

geometry is more significant than the saddle settings on a single rolling pass. To gain a 

comparison of effects, it was decided that the experiment should incorporate both the 

saddle configurations, and the work roll geometry. Table 7 shows the settings of the 

parameters chosen. The orthogonal array used on which to design the tests was an L4 

[4]. Four tests were required to complete the experiment. Two large sister coils were 

split to produce the four coils necessary. The coils were rolled in a similar manner, the 

only difference being those dictated by the experiment plan. The positions of saddle 

setting chosen were to encourage two extremes of mill loading pattern. One setting 

would load the mill more at the centre, and the other more at the edges, Figure 17 a-b. 

That is, convex and concave loading patterns were used. Setting of 2 units difference 

between adjacent adjusters were used. Two extremes of work roll geometry were chosen 

for the tests. That is, either two flat or two cambered work rolls.
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6.3 RESULTS

6.3.1 Altering Saddles Over Short Test Runs.
V

Between the three coils tested there are large differences in strip shape. These differences 

cannot be related to the different saddle adjustments so must be due to more dominant 

rolling parameters such as the relative position of strip and first intermediate rolls etc. 

There is no obvious link between the loading pattern across the mill, caused by saddle 

alterations, and the small shape differences recorded. The three coils exhibit three typical 

strip shape defects, these are:

a) Loose edge.

b) Good shape.

c) Quarter buckle.

6.3.2 Altering the Saddle Configuration over a Complete Rolling Pass (Figure 17b).

Two major alterations in saddle settings have produced very little difference to the strip 

shape. The strip exhibits a slight quarter buckle at one side and loose edges. This is a 

typical shape defect for the mill under investigation.

6.3.3 Altering the Saddles Throughout a Complete Rolling Sequence (Figure 18).
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From the strip shape plots it can be seen that there is a significant difference between the 

samples. The differences are caused by changes in work roll geometry and saddle 

adjustments. Two of the plots 1-2, show a full centre strip shape. The other two plots 3- 

4, show a loose edge. Plot 3 also exhibits a quarter buckle.

To analyze the results statistically, two methods of describing strip shape are used. One 

method was a visual judgment, the value of 4 was awarded for the worst shape and 1 for 

the best. The second method was to average the shape measurements.

From the results mean response values were calculated and plotted (Figure 19). An 

analysis of variance was carried out to confirm the significance of the results. The 

steepest mean response results are for the work roll geometry. This means that the work 

roll geometry has greater effect on strip shape than saddle adjustments. There is an effect 

on strip shape shown to be caused by the saddle settings. The analysis of variance 

confirm that these observations are significant. One column of the array was assigned to 

an interaction but no interaction is shown, the work roll geometry and saddle adjustments 

have been found to affect strip shape independently.
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7.0 EFFECTS OF ROLLING PARAMETERS ON STRIP SHAPE THOUGH A

ROLLING SEQUENCE

V

7.1 INTRODUCTION.

Work presented in section 4.5 shows the effects of mill rolling parameters on strip shape. 

The work was limited, in that tests were carried out on a single pass of a rolling 

sequence. Certain rolling parameters may have an unmeasurable effecron a single rolling 

pass, but throughout the rolling sequence the effect can be significant. The effects of 

parameters on strip shape can be cumulative, as shown in section 6.3.2. This work 

investigates the effects on strip shape of rolling parameters throughout a rolling sequence.

Tests were carried out on type 316 austenitic stainless steel. Start and finish gauges were 

1.22mm to 0.305mm, 75% reduction. The strip was 312mm wide.

Based on knowledge of the most significant strip shape affecting parameter already found, 

this work aims to find the cumulative effects of these parameters. This work aims to give 

guidance as to the best setting at which to hold the rolling parameters to give good 

consistent strip shape. Use is made of "Taguchi" experimental design techniques.

Attempts are made to reduce the process variability by an analysis of the signal to noise 

ratio (S/N) [4, 50,56].
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7.2 EXPERIMENTAL TECHNIQUE

The total number of tests in an experiment is dictated by the number of parameters under 

investigation, the number of different settings (levels) of each parameter, and the number 

of assumed interactions between parameters. Limitations of production meant that the 

number of tests had to be reduced to a minimum.

Certain parameters have been held constant to reduce the experiment size. These are:

a) Material quality (grade 316)

b) Physical properties: -width 312mm

-start thickness 1.22mm 

-final thickness 0.305mm 

-profile constant

The parameters chosen for investigation and their levels are shown in Table 8. Three 

parameters were chosen for a more detailed analysis. This was because it was hoped that 

guidance about rolling practice would be gained from the results, not just the significance 

of parameters. These were held at three levels. All of the other parameters were held at 

two levels.

Certain of the parameters could be isolated in that it was known that their effect 

throughout the rolling sequence was measurable. The parameters to be isolated were:
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a) The first intermediate roll position.

The procedure was to aim for a specified strip shape throughout the rolling 

sequence and then aim to produce good flat strip shape on the last pass. The
V

best target shape prior to the last pass could therefore be found.

b) The mill loading patterns (saddle settings).

Previous work has shown that the saddle setting have negligible effect on the 

last pass (or a single pass) of a rolling sequence. If they show any measurable 

effect then it must be entirely due to the sequence.

c) The reductions.

High reductions on individual passes mean higher rolling load on less passes to 

achieve the final gauge. As there has been no change in the reduction on the 

last pass, all noted differences in strip shape must be due to the alterations in 

the severity in rolling prior to the last pass.

Apart from the parameters above, all of the other parameter affect the strip shape 

throughout the rolling sequence and on the last pass. Therefore, the effects of the 

parameters cannot be isolated from the last pass, although it is known that they do 

contribute to cumulative effects on strip shape.

7.3 RESULTS.

Three methods were used in analyzing the results, these are:

a) By analyzing the mean response graphs. The severity of effect of each 

parameter is shown by the steepness of the slope.
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b) Analysis of variance. (A.N.O.V.A.). This confirms the significance of the 

mean response findings.

c) Signal to noise ratio, (S/N). This enables the factors to be highlighted which 

effect the variability of the process. The ideal situation is where the process 

variability can be reduced at the same time as the strip shape [55].

After each rolling trial, which consisted of rolling a complete coil at the settings dictated, 

samples were collected from the centre of the coil. This ensured that strip shape samples 

were collected at steady state rolling conditions. The samples were representative of the 

major part of the coil. Shape measurements (obtained from optical shapemeters) were 

taken at seven points across the width of the strip. The units of measurement being mons 

[6-10]. The shape plots are shown in Figure 20 .

Three methods of describing strip shape were used, these are as follows:

a) Full centre. Here the highest recorded measurement of strip shape across the 

middle of the strip was used. No account was taken of strip shape near to the 

edges. The mean response plots for this measure are shown in Figure 21 .

b) Average strip shape. The fine centre shape measurement values were averaged. 

The two outer shape values were not used due to the edge measurements being 

the least reliable. Values of these shape measurements are shown in Figure

22 .

c) Loose edge. The four outer edge shape measurements were averaged for these 

results, using two measurements from each side of the strip. There is a 

complete set of mean response plots shown in Figures 23 for the loose edge 

results. When analyzing the plots, the lowest mean response relates to the best 

strip shape.
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A synopsis of all the results must be taken when drawing conclusions about 

rolling practices.

The Analysis of Variance for each of the methods of shape measurement are shown in 

Table 9.

7.4 CRITIQUE OF THE EXPERIMENT.

The experimental work concentrated on one particular type of material, size and 

reduction. Additional work would be needed to confirm whether the findings are 

transferable to other strip outside this specification. Considerable attention has been 

given to ensure that the most significant variables affecting strip shape had been included 

in the experiment. Previous work has directed the variables to be considered, but the 

rolling process is still not consistent. Although unlikely there may be variables and 

interactions affecting strip shape which have bot been considered. The limitations of 

production and resources meant that more exhaustive tests could not be carried out. The 

tests depended to some extent on the rolling mill operators, care had to be taken to ensure 

rolling operators were consistent, however, operators may not be consistent between tests. 

Moods can vary and attitudes which will affect the way in which the strip is rolled.

Work assumes that the rolling variables have a cumulative effect throughout the complete 

rolling sequence. It may be that the only place where the variables affect strip shape are 

on the last two or three rolling passes of a sequence.
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7.5 ANALYSIS.

When analyzing the results to find the best parameter settings to optimise strip shape their
V

effects should be looked at both individually, then as a whole. When taking a synoptic 

view of the results, some assessment of the reliability of each individual set of results 

must be given.

This relates to the reliability of the measurements concerned with average shape, full 

centre, loose edge, and variance (S/N). Reliability was checked by duplicating some of 

the parameter settings, then making certain that the results matched.

During the experiments two parameters were set at three levels as referred to in section 

4.2. The orthogonal array used to design the experiment allowed four levels to be used. 

Each of these two parameters had one of their levels duplicated. Where the settings were 

duplicated the mean response plots should show similar values. Similarities in the results 

suggests confidence in the results.

The parameters used for duplication were:

A) Work roll profile.

B) First intermediate roll position.

From the mean response plots of parameter "A" (Figures 21-23) the response at level 1 

should equal that at level 4. From the mean response plots of parameter "B" the response 

at level 3 should equal that at level 4.

The loose edge mean response plots (Figure 23) reveal discrepancies between the two 

levels. However, the trend of the results are similar.
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The variance mean response plots (Figure 24) reveal some discrepancies between the two

levels. Both of the remaining sets of plots, those for full centre and average shape, show

similar mean response values for the two levels.
%-

The measures of loose edge and process variance are the least reliable, whilst the 

measures of average shape and centre fullness are the most reliable.

Reasons why the loose edge method of shape measurement might not be reliable are:

- The absolute positioning of the strip with respect to the shapemeter head may be 

different between samples.

- The measure of loose edge is more sensitive than full centre.

- Whilst rolling, any lateral movement of the strip across the mill will cause edge 

shape problems.

7.5.1 Major Strip Shape Affecting Parameters (by Measuring Methods).

Full centre strip shape:-

The mean response results plots are shown in Figure 21.

Significant parameters, in order of significance are:

a) First intermediate roll position.

b) Work roll profile.

c) Saddle setting.

d) Tensions.

e) Reductions.

f) Speed.
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The saddle setting are shown to have a large effect by the mean response graphs, but the 

analysis of variance shows that there is low confidence in the results.

%•

Average strip shape: -

The mean response results plots are shown in Figure 22.

Significant parameters, in order of significance are:

a) First intermediate roll position.

b) Work roll profile.

c) Rolling mill operators.

Other parameters show trends which can be used as guides to improve shape, but levels 

of confidence in the results are low.

Loose edge:-

The mean response results plots are shown in Figure 23.

Significant parameters in order of significance are:

a) First intermediate roll position.

b) Saddle settings.

c) Reductions.

d) Speed and reduction interaction.

The other parameters show an effect from the mean response plots but the analysis of 

variance gives them a low level of confidence.
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Variance (S/N):-

The mean response results plots are shown in Figure 24.

Significant parameters in order of significance are:
* -

1) Tensions.

2) Work roll profile.

3) First intermediated roll position.

4) Reductions.

All of the other parameters show an effect on the mean response plots,“but confidence in 

them is low.

7.5.2 Combining the Results - Analyzing the Best Parameter Settings.

By inspection of the results, assessments can be make as to what actions will reduce 

specific shape defects, also the process variability can be reduced. The parameter settings 

to achieve these aims are shown in Table 10.

To achieve overall improvements to strip shape those settings which reduce all of the 

shape defects should be adhered to. There are no parameter settings which fulfil this, so, 

a compromise must always be reached. Table 10 shows the parameter settings which are 

best for this task. The reasons for the choices are based on consideration of the 

parameters A-I as follows.
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Parameter "A", work roll configuration (two flat or two cambered rolls, Table 8):-

From the reliable measure of "full centre" strip shape defect (Figure 21), level 3 is the
V

best setting, ie: that giving the lowest mean response value.

The "average" strip shape results (Figure 22) also show that the best shape occurs when 

this parameter is set at level 3.

The "loose edge" strip shape results (Figure 23) show that level 3 gives the worst shape. 

However, the effect of this parameter on loose edge is low. That is, there is not much 

loose edge shape difference caused by this parameter.

The variance (S/N) results (Figure 24) show that this parameter significantly affects the 

consistency of strip shape. Level 3 setting gives the most consistent, that is robust, 

process.

Since the process variability is reduced, full centre and average strip shape is significantly 

improved, and loose edge is only affected slightly for the worst, setting level 3 is that 

chosen.

Parameter "B", first intermediate roll position:-

This parameter has the largest affect on strip shape out of all those tested.

From the measure of "full centre" strip shape (Figure 21) levels 3 and 4 are those 

producing the best shape.
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Inspection of the "average" strip shape results (Figure 22) , setting level 2 gives the best 

strip shape, that is, rolling with a slight full centre until the last pass will encourage good 

strip shape.

The inconsistent measure of "loose edge" (Figure 23), shows that this defect can be 

reduced by aiming for levels 1 or 2 until the last pass of a rolling sequence. These 

parameter levels give either loose edges or full centre shapes.

Strip shape variability (Figure 24) is shown to be reduced by setting leveT2. this is 

aiming for good strip shape on each pass of a rolling sequence.

There are two options from the results, a) aiming for a slight "full centre" (level 3 & 4) 

until the last pass will help to reduce full centre strip shape. There is a disadvantage in 

that the process variability will be increased, b) aiming for good strip shape throughout 

the rolling sequence (level 2) will give a good intermediate shape, and reduce the process 

variation. The best setting is level 2. The recommendation is to err on the side of 

rolling full centre (levels 3 & 4) rather than the loose edge (level 1).

Parameter "C", saddle settings:-

From the "full centre" strip shape mean response plots (Figure 21), setting level 3 is best. 

This setting gives a higher edge and less centre load. The next best setting is level 1 

which gives an even mill loading pattern.

There is little effect on the "average" shape (Figure 22) after altering the saddle settings.

The loose edge measure of strip shape (Figure 23) shows that level 2 is preferred. The 

loading pattern which causes the lowest value of loose edge also causes the highest value
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of full centre strip shape defect.

There are two options of settings which will reduce the strip shape variability (Figure 24). 

Setting levels 2 and 4 which are either tapered or higher centre mill load pattern.

The choice of which saddle configuration to use is difficult. Setting the saddles to reduce 

full centre will increase loose edge. Reducing the process variance will increase the full 

centre defect.

Parameter "D", first intermediate roll taper geometry

This parameter has little effect on the full centre strip shape defect (Figure 21) setting 

level 1 or 2 can be used.

The average shape mean response plots (Figure 22) show that there is little effect on strip 

shape by use of the different profiled rolls used.

Loose edge strip shape defect (Figure 23) can be reduced by use of single tapered first 

intermediate rolls, that is level setting 1. This finding confirms experience in that level 

setting 1 has a steeper rolling angle. This would encourage less loose edge.

From the variance plots (Figure 24) there is little effect seen. There is a slight slope on 

the plot to show that setting level 1 is preferred.

Between these roll profiles tested setting level 1 is preferred. This is not to reason that 

different profiled rolls will prove worse in the future. The profiles used may not be the 

best to try. One reason why the level 1 rolls are better in these trials, is that the mill 

operators are used to them.
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Parameter "E”, Rolling speed:-

Speed setting level 2 (Figure 21) reduces full centre strip shape. Experience confirms
H -

this result in that increased speed, improves lubrication, reduces load and changes the 

rolls expansion, so producing full centre strip shape, (see section 4.5) [10].

From the average strip shape mean response plots (Figure 22) a slight improvement is 

seen at setting level 2.

Loose edge strip shape defect is reduced by rolling with setting level 1 (Figure 21), that 

is, higher speeds. This is opposite to the effect causing full centre.

The largest effect that rolling speed is seen to have is on the variance, (Figure 24). 

Variance is reduced when rolling with lower speeds, that is, setting level 2. The process 

is more stable at lower speeds.

Between the speed range tested there is not much affect on strip shape. That which is 

known already has been confirmed, faster rolling produces more centre fullness. The key 

to deciding which setting level to use is the process variance. The process is more robust 

if setting level 2, slower speeds, are used. The affect of this is probably more dominant 

on the last pass of a rolling sequence. Reducing the rolling speed on later passes will aid 

in producing better strip shape.
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Parameter "F", reductions:-

Full centre strip shape defect is reduced by using setting level 1 for reductions. Level 1 

means higher rolling loads due to less rolling passes in a sequence. The mill rolls bend 

to a greater extent and loose edges rather than full centre is formed.

From the mean response plots showing average strip shape (Figure 22), no effect is seen. 

The reductions have no effect on the average strip shape within the range tested.

Reductions have an opposite effect on loose edge to full centre. The mean response plots 

(Figure 23) show that level 2 is preferred for reducing loose edge. More passes mean 

less rolling load, more full centre.

The effects of reductions on strip variability (Figure 24) is seen to be negligible. The 

mean response plot does not change much.

Since it is not possible to predict what the last pass strip shape is going to be before 

rolling, the number of passes to give the best chance of rolling flat strip is 

indeterminable. Reductions do affect strip shape but their affect on shape can be 

overruled by other shape affecting parameters. The number of reductions to give are 

governed by mill load, power, lubrication, material properties, surface finish quality and 

rollers experience. Light last passes give better chance of producing good strip shape.
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Parameter "G", Rolling mill operators:-

From the mean response plots (Figures 21 & 22) it is seen that one mill operator rolls
V

slightly full centre and the other with slight loose edges. Differences between the levels 

are small.

Roller at level 2 produces slightly better average strip shape with less variance (Figures 

23 & 24).   -

Parameter "H", tensions:-

Tensions at setting level 1 increase full centre strip shape, (Figure 21). Tensions at level 

1 are high, this means that rolling loads are reduced. With lower rolling loads there is a 

tendency, due to roll bending characteristics, to roll full strip shape.

From the average shape mean response plots (Figure 22) tensions at setting level 1 

improve strip shape.

Loose edge strip shape defects are reduced by tensions at level 1 (Figure 23). High 

tensions improve strip shape.

Strip shape variance is reduced dramatically when rolling with tensions at level 1. That is 

high tensions, (Figure 24).

Rolling should be carried out at the higher tension settings. Both average strip shape and 

variance are improved.
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There is a compromise of tension settings between the shape defects^caused of loose edge 

and full centre.

The faults caused by tension can be masked by other rolling parameters.

Parameter "I", speed and reduction interaction:-

From the plot showing the full centre mean response to this interaction (Figure 21), there 

is a negative interaction with no better or worse situations found. There will always be a 

compromise between speed and reduction for the best shape. Reduced rolling speed 

(level 1) and a reduced number of passes in a sequence (level 1) will reduce full centre 

shape.

The average strip shape mean response plots (Figure 22), show negligible effect.

From the plot showing the loose edge mean response to this interaction (Figure 23) the 

response is opposite to that for full centre. Increases rolling speed (level 2) and a larger 

number of passes in the rolling sequence (level 2) will reduce loose edge shape.

The variance plots, (Figure 24) show no real response. The speed and reduction 

interaction has no measurable effect an strip shape variation.

The measure of interaction gives no clear guide as to the preferred parameter settings.

The individual parameter responses give clearer indications to the settings which should 

be used.
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8.0 WORK ROLL STRAIN.

8.1 INTRODUCTION.

The majority of work on strip shape assumes that shape is caused by a mismatch between 

the roll gap and strip profile [58]. This means that the strip is reduced by different 

percentages at different places across its width.

Experimental work has shown that the rolling parameters which effect the roll gap 

profile, have the greatest affect on strip shape. To improve strip shape it is necessary to 

control the roll gap profile.

Before modifications to roll geometries can take place, which will enable roll gap profile 

control, it is necessary to understand the behaviour of the roll gap.

A study has been made of the manner in which the mill work rolls bend, this will 

increase understanding of the roll gap behaviour. Two methods of studying the work roll 

bending behaviour have been considered:

a) Mathematical study.

b) An empirical method of roll strain analysis.

After studying modelling, and assessing the models used at present, this methods of 

gaining understanding was neglected. The reasons are:

a) Sendzimir cluster mill models in existence are not considered to be of sufficient 

accuracy. The models are mainly used to speed up shape control systems and 

not to ultimately describe shape and machine mathematically.
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b) The effort required to model a mill of such complexity would prove 

inappropriate in terms of time.

«*-

The empirical method of finding the strains experienced by a work roll was chosen, the 

reasons are:

a) Real data which were quantifiable were to be gained.

b) The time scale involved was much shorter than modelling.

c) The necessary skills were at hand to complete the task.
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8.2 EXPERIMENTAL TECHNIQUE.

To show the bending behaviour of a loaded work roll, the strains along the roll length are 

measured. Resistance strain gauges attached , at regular intervals to the roll surface, 

measured the strains. The change in resistance of the gauges due to their extension or 

compression are measured, from which the strains can be calculated.

An electronic data logger (E.D.L.), Figure 25, was used to gather all of the strain data. 

This allowed all of the strain results to be sampled at one particular instant, so ensuring 

consistent loading conditions. The time taken to gather data is very fast so enabling the 

evaluation of a lot of mill situations, without losing much production time. All of the 

gauges were zeroed prior to loading. The accuracy of the E.D.L. was checked against 

manual bridge balancing units. Here, each gauge was zeroed by manual adjustment of a 

variable resistor. Both measuring techniques showed similar results. This meant that the 

E.D.L. could be used with confidence.

Three strain measuring work rolls were manufactured as described below:

a) Ten rosette gauges were placed at equidistant intervals along the roll length 

(Figure 26a) to take the strain readings the roll was placed in the mill with the 

gauges at right angles to the roll bite.

b) Ten rosette gauges were attached at equidistant intervals along each side of a 

work roll (Figure 26b). That is the gauges were placed at 180° to each other.

To take the strain readings the roll was placed in the mill with the gauges at 

right angles to the roll bite. This roll could measure the strains on the left and 

right of the roll simultaneously.
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c) Ten linear gauges were placed in slots ground in the roll (Figure 26c). The 

gauges were placed at equidistant intervals along the length of the roll. The 

gauges were aligned longitudinally along the roll. This roll enabled the gauges 

to be positioned in the roll bite. The vertical bending behaviour was 

investigated with this roll.

Initial results from using roll 1 showed that there may be some degree of horizontal 

bending taking place (Figure 27a,c). To confirm this the second roll (b) was 

manufactured. All of the subsequent measurements were taken using rolls b and c.
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8.3 MILL PARAMETER EFFECTS INVESTIGATED.

A large, but not exhaustive, set of strain tests were carried out. The tests represent all of 
* -

the rolling parameters which can be varied with the mill not rolling (static).

The parameters investigated are as follows:

a) First intermediate roll position.

b) First intermediate roll profile.

c) load.

d) Strip or no-strip.

e) Work roll profile.

f) Saddle settings.

g) Castor differences. (Asymmetric support of the work roll).

There were three types of result collected:

a) Horizontal gauge results:

These were from gauges mounted on the surface of roll number 2. These 

gauges measure the roll elongation, bending, and longitudinal profile changes.

b) Vertical gauge results:

These were from gauges mounted on the surface of roll number 2. The gauges 

measure the roll squashing, circumferential profile change and compression.

c) The undercut roll gauge results:

These gauges are from the gauges positioned in slots ground in number 3 roll. 

The gauges measure roll elongation, vertical bending, and slot edge effects.
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The testing procedure was:-

Place the roll in the mill in the correct orientation.

Initialize all the gauges (zero).

Set the statically adjustable rolling parameters.

Load the roll.

Take the readings.

This process was repeated for different measuring rolls, and different parameter settings.

78



8.4 RESULTS.

The strain results obtained were recorded on computer disc. There are too many strain 

results for their detailed presentation, however, relevant comparisons have been made and 

are presented.

The results are presented graphically with strain v the position of the gauge on the roll. 

Number 1 gauge is that at the front of the mill. The strain plots do not directly show the 

shape of the roll under load. They show the strains that the roll is experiencing.

Basically the gauges show the increase of decrease in length of the particular portion of 

the roll being measured.

8.4.1 Typical Strain Results Plots. (Figures 27-34)

Typical plots of the horizontal gauge results consistently show two peak values of strain. 

One strain peak is larger than the other. These peak values occur under all parameter 

conditions. The peaks occur at the position where the parallel section of the first 

intermediate (shape control) roll changes to a taper. That is, at the transition between the 

flat and taper section of the first intermediate rolls. The largest peak occurs at one side 

of the roll at the front of the mill, then changes to the opposite side at the rear of the 

mill. The minor strain peak is often so small that it is not easily detectable. When the 

results from both sides of the roll are plotted on the same axis, they are seen to cross 

over. Between the top and bottom positions of the measuring roll in the mill there is a 

reversal of strain results. The major strain peak occurs at opposite sides of the roll.
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Typical vertical gauge result plots are inverted horizontal plots. The values of strains 

recorded are less, that is, approximately one third of the value of the horizontal plots. 

Mostly, the strains recorded are negative or compressive. However, at the end of the 

rolls there is a tendency for tensile strains to be seen. There are two strain peaks shown 

on the plots. One peak is of greater value. On one side of the roll the major peak is 

recorded at the front of the mill and vice-versa. When plotting the strain results from 

both sides of the roll on the same axis the plots cross over. When comparing the top and 

bottom results, that is, with the measuring roll in the top half or bottom half of the mill 

cluster, the results reverse. The major peak changes from one side of the roll to the 

other.

Nearly all of the results taken when using the undercut measuring roll, show typically 

shaped plots. A large peak of strains is seen which occurs at the place where the taper 

transition of the first intermediate roll is in direct contact with the gauged work roll. The 

peak is severe and rapidly reduces to a level strain condition. There is a small strain 

peak recorded at the position where the measuring work roll is opposite the roll in contact 

with the first intermediate roll taper transition. Beyond the taper transition point, on both 

sides of the mill the strains reduce dramatically.

8.4.2 Individual Effects of Mill Parameters.

a) First intermediate roll position, Figure 27a-c:

From the horizontal and vertical strain gauge results, no pattern is shown which can be 

related to first intermediate roll position.
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The undercut roll gauge results show that alterations in the first intermediate roll position 

dramatically affect the magnitude of the peak strain. This difference is larger than any 

other parameter effect under investigation. The strain peak gets wider at its base and the 

maximum magnitude of strains change with altering first intermediate roll positions. As 

the point of taper transition is moved towards the centre of the mill then the magnitude 

and width of the strain peak increases.

b) First intermediate roll profile, Figure 28a-c:

The different profiles under investigation were the standard single taper and a triple 

tapered roll. Details of the profiles are shown in Figure 28a.

No strain pattern seen can be related to the different roll profiles for. both the horizontal 

and vertical gauge plots. There is a hint from the horizontal gauge plots that the strain 

peak is less pronounced but broader in effect with the triple taper. There is also a hint 

from the vertical results that the plots between the right and left of the mill cross over in 

a more severe manner.

From the undercut roll gauge results it is seen that, when using the modified triple 

tapered first intermediate rolls, the stain peak is less severe. The strain peak is also seen 

to affect less of the strip width, that is, it is narrower.

c) Loading differences, Figure 29a-c:

From the horizontal gauge plots it is shown that with increasing load there is an increase 

in the values of measured strains.



The plots between the right and left of the mill cross in a more severe manner with 

increasing loads.

V

The vertical gauge plots confirm the trends of the horizontal gauge plots. With increasing 

loads there is an increase in compressive strain values.

The undercut roll gauge plots reveal that, for increasing loads, there is a steady increase 

in strains. Peak strain values increase for each increase in load. The width of the strain 

peak does not alter with load differences.

d) Strip in or out of the roll bite, Figure 30a-d:

The horizontal gauge results show that the strain peaks are different with strip in or out of 

the roll bite. With strip in the peaks are more pronounced especially at the end of the 

roll which is not in direct contact with the taper transition of the first intermediate roll. 

The nature of the peak is not independent but it relates to first intermediate roll profile 

position, load etc.

Examination of the vertical gauge results shows, with strip in, a higher and altered 

positioned strain peak. The decrease in strains at the edges of the plots is more severe 

with strip in.

From the undercut roll strain plots the major difference between strip in or out of the roll 

bite is that the edge strains reduce in a different manner. With strip in the strains reduce 

more severely.
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e) Work roll profile, Figure 31a-d:

Due to the measuring rolls being parallel ground the effects of work roll profile are 

limited to one roll being ground with a camber. The only results available at present to 

show the effects of work roll profile were taken with strip in the mill. With this situation 

there is a slight masking of the measurable effects of work roll profile on strains.

The horizontal and vertical gauge results show little measurable effects of different roll 

profiles. There is a trend showing that with flat rolls, there are higher peak compressive 

strains than with cambered.

From the undercut roll strain results there is no measurable difference on strains due to 

work roll profile. With the mill set-up used the measuring technique is not sensitive 

enough to measure the effects of one cambered roll on vertical work roll bending.

f) Saddle settings, Figure 32a-c:

There are no clear effects on the recorded strains of the horizontal, vertical and undercut 

roll gauge results, due to saddle adjustments (mill loading pattern).

g) Castor differences, Figure 33a-d:

Only horizontal and vertical strain plots are available to show the effects of castor 

differences on roll bending. There are no clear effects on the recorded strains due to 

castor differences (work roll support symmetry).
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h) Flat ground tapers, Figure 34a-c:

Tests were carried out with a level mill set up, that is, with all of the mill rolls ground
V

flat to help in the analysis of parameter results. A set of control results was gained.

The horizontal gauge plots show a level trace. The left and right of the roll strain plots 

cross over a number of times at the mill centre. At the ends of the mill there is a slight 

separation of the plots. This separation is in opposite directions for each~side of the mill. 

The strains on the right of the roll are higher at one side of the mill and vice-versa.

The vertical gauge results show consistent values of compressive strain across the mill.

At the mill edges there are slight decreases in compressive strains recorded. There is a 

separation of the plots seen at the ends of the mill. This confirms the horizontal gauge 

results.

From the undercut roll strain plots there is a consistent level of strains across the mill. 

There is only a slight decrease in strains recorded at the mill centre.

8.5 INTERPRETATION OF THE RESULTS.

There are a number of different factors which can effect the way in which the roll surface 

elongates, or compresses. To analyze the results there needs to be some estimation of the 

effects of each of these factors. These strain effecting factors are as follows:
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a) Roll extension.

b) Roll profile change.

c) Ground slot profile results.
%•

d) Roll bending.

a) Roll extension.

The extreme loads applied and low level of metal to metal co-efficient of friction may 

mean that the roll elongates. This elongation would be measured as strain on both the 

horizontal gauges and the undercut roll gauges.

The plots showing the horizontal gauge results for different loads (Figure 29) show that 

the effects of roll extension are small. The individual plots are not displaced from each 

other and only the peak strain values are affected. If the extension effects were large then 

the plots should be displaced from eiach other by amounts relating to the applied load.

b) Roll profile change.

A loaded work roll will change its profile along its length, and through its cross section. 

The manner with which the profile changes is related to the roll material properties, 

profile, the load applied, and the manner of support. Estimates of the profile change are 

shown in Figure 35.

Any differential loading of a work roll along its length will cause a longitudinal profile 

change. This variation in profile will affect the roll surface geometry and hence the 

strains recorded.
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Alterations in roll profile would be expected at points of loading alterations. There is no 

means of isolating these effects from roll bending.

There are two areas to consider with cross sectional roll profile changes. These are, the 

strains caused by the changing roll radius, and those caused by direct compression. If a 

cuboid block was loaded, then from Poissons ratio effects, the strains in the direction of 

load should be three times that in the plane at right angles to the load. Measurements of 

horizontal and vertical gauge strains show the stress in the direction of load to be one 

third those in the plane at right angles to the load. One explanation for this is that a high 

degree of geometry change and compression occur at the same time, hence corrupting the 

results.

c) Slot edge effects.

Since the gauges on the undercut roll are sunk into recesses, and the load is applied 

around these, then the behaviour of the slots affect the strains experienced.

Whilst loading the undercut roll through a level mill set up, that is with all rolls ground 

parallel, a static strain level of 210/dE is seen (Figure 34c). When loading the horizontal 

gauged roll in the same manner a strain value of 75/xE is seen. If elongation alone was 

being measured then these results would be similar. The slots must have an effect on the 

strains measured. These effects are shown to be consistent, and so can be taken into 

account when analyzing the results.
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d) Roll Bending.

This can be broken down into two areas:

i) Horizontal roll bending.

ii) Vertical roll bending.

i) Horizontal roll bending.

Typical plots show that between the right and left of the work roll opposing strain 

patterns, or separated plots, occur. The plots cross over at the mill centre. This type of 

plot is indicative of bending. The position of the gauges means that horizontal bending 

and not vertical is recorded. It has been shown that the strains are recording either roll 

profile changes, or roll bending or a combination of these.

The arguments in favour of roll bending occurring are:

- The consistent strain pattern for different loading conditions.

- The difference in strains between the right and left of the mill.

- The crossing over of the strain plots from the front to the back of the mill.

- The parallel plots recorded when loading the roll through the flat ground roll 

cluster.

ii) Vertical roll bending.

The roll bending strains measured by the undercut roll show the vertical bending of a 

work roll. The high strains measured next to the taper transition of the first intermediate 

roll show that bending is occurring.
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The strains measured are large compared to the roll extension and slot edge effects 

(Figure 34c).

* •

Strains are highest at the point of contact with the first intermediate roll taper transition. 

The taper transition is at the front of the mill with the roll in the top half and vice-versa. 

This lack of symmetry is shown by the strain plots. There is asymmetry between the top 

and bottom and between the left and right of the mill.

Loaded mills experience flexing, this flexing is translated into work roll bending. Using 

the undercut roll this flexing can be found. From the results taken with a parallel ground 

roll mill set up (Figure 34c) a slight curving of the plots is revealed, this indicates the 

•amount of mill flexing. The strains recorded are lower at the centre than the sides of the 

mill. There is evidence that there is slightly higher mill load at the back (drive) side of 

the mill.

Comparing the plots of the flat ground roll mill set up (Figure 34c) and typical results of 

undercut roll strains there is a levelling out of the plots at the centre of the mill which 

coincides.

8.6 ANALYSIS BY PARAMETER AND SHAPE.

a) First intermediate roll position.

When comparing all of the plots it is clear that the first intermediate roll position

dominates all the other parameters in its effect on roll strains.
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By modelling the roll as a beam, making certain assumptions for boundary conditions and 

loading, the dominating effect of taper length can be seen, Appendix 2.

"Over rolled centre" or "full strip shape" occurs when the first intermediate rolls are 

moved towards the mill centre. The increase in magnitude and broadening of the strain 

peaks shows why this would occur. The work roll bends so that it effects the strip centre 

in a broad sense. "Loose edge shape" occurs when the strain peak is low and towards the 

strip edge. Quarter buckle occurs when a high and narrow strain peak affects one section 

of the strip.

b) Different first intermediate roll profiles.

Within the range of roll profiles tested there is little effect caused by this parameter on 

strip shape. There are more dominant shape affecting parameters. The horizontal 

bending results indicate a more pronounced horizontal roll bending with the modified 

tapers. The undercut roll results indicate that the strain peak occurs towards the strip 

edges with the modified roll. This would encourage loose edge strip shape.

c) Loading differences.

There is a steady increase in strains with increasing applied loads. The strain peaks 

broaden slightly. The vertical bending of a work roll affects the same amount of strip 

width for different loads. The severity of roll bending increases but is localised. From 

this we can see that quarter buckle shape defect, caused by localised overrolling, will be 

more likely to occur with high rolling loads. High rolling loads tend to move the strain 

peaks towards the mill edges, so encouraging loose edge strip shape.
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Higher rolling loads made the roll strains more sensitive to other parameters. Therefore, 

less control over shape can be exercised at higher rolling loads.

d) Strip in or out.

When comparing the 5" (127mm) or 7" (178mm) length of taper, first intermediate roll 

strain results, with strip in or out, it can be seen that the strain peaks are different. This 

would indicate that for different material geometries the first intermediate roll profiles 

should be different.

The sudden drop off in strains shown on the plots with strip in is due to the work roll 

being free at the strip edge. The overhang of the work roll, that is not in contact with the 

strip, causes compressive strains to be recorded.

e) Work roll profile.

The results show that work roll profile has little effect on roll strain patterns. Experience 

and past work has shown that work roll profiles measurably affect strip shape. Work roll 

profiles effectively modify the first intermediate roll profile and help to make the roll bite 

more symmetrical.
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f) Saddle adjustments.

Strain patterns showing the effect of saddle adjustments reveal no clear trends. Previous 

work has shown that throughout a rolling sequence saddle adjustments have some 

measurable effect on strip shape. Large saddle alterations shown no strain pattern 

change.

g) Castors.

No measurable effect on work roll strain is seen by altering the castors. Rolling trials 

have shown that there may be some effect on strip shape caused by off-setting the castors. 

The effect is small and difficult to confirm.

h) Flat tapers.

The lack of strain peaks on any of the results using flat ground tapers, proves that the 

strain peaks are related to the first intermediate roll position. The horizontal strains show 

that, to a small extent, the work roll is elongating whilst under load. The undercut roll 

results show that the slot edge effects are more dominant than the roll extension. The slot 

edge effects are consistent so the amount of roll bending can be found, as can the mill 

flexing characteristics. There is a slight amount of mill flexing at high loads.

That the mill is internally aligned correctly is shown by the consistent value of horizontal 

and vertical gauge results. Any variation across the mill would show that the work rolls 

are crossing. Localised increases in pressure may force the rolls sideways. This is the 

case when there is a tapered profile ground on the first intermediate rolls.



9.0 INVESTIGATION INTO THE EFFECTS OF FIRST INTERMEDIATE ROLL

POSITION AND LOAD ON WORK ROLL BENDING.

9.1 INTRODUCTION AND EXPERIMENTAL PROCEDURE.

Since the position of the first intermediate rolls and load dominates strip shape it is 

necessary to gain a more clear understanding of their effects.

The specific objectives of this work are as follows:

- To examine the effects of the first intermediate roll position on work roll 

bending, with strip in the mill.

- To predict the best first intermediate roll position which will give good strip 

shape.

- To relate work roll bending to strip shape.

- To gain ideas for improved roll profiles.

Work roll strain measurement as described in section 8 was used for this work.

Two methods of strain measurement were used. That of measuring the vertical bending 

and that of measuring the horizontal bending, of a work roll. For all of the tests strip of 

dimensions 12" (305mm) wide by 0.01" (0.25mm) thick was held centrally in the mill. 

After positioning the work rolls, first intermediate rolls, and strip in the mill, a pre-set 

load was applied. The strains experienced by the roll were measured by an electronic 

data logger (E.D.L.). A cycle of removing the load, resetting the rolling parameters, and 

the recording the strains was carried out. This procedure was repeated for seven different 

first intermediate roll positions and two different loads.
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9.2 RESULTS.

There are three sets of results to be analyzed, these are:

a) The vertical bending strains measured with a 50 ton mill load (Figure 36).

b) The vertical bending strains measured with a 100 ton mill load (Figure 37).

c) The horizontal bending strains measured with a 100 ton mill load (Figure 38).

a) Vertical roll bending strains (50 ton load) (Figure 36).

Altering the position of the first intermediate rolls made no difference to the shape 

characteristic of the strain plots. Whilst the shape characteristic did not change, the 

magnitude of the strains measured altered significantly. As the first intermediate roll 

taper transition point is moved towards the centre of the mill (less flat), the, the 

maximum strain values increase. A pronounced strain peak is seen where the taper 

transition of the first intermediate roll directly impinges on the work roll. The strains 

generally reduce from the strain peak, to a region around the opposing first intermediate 

roll taper transition. This reduction in strains is always in the form of a curve. After the 

opposing first intermediate roll taper transition, the strains steeply reduce. After the strip 

edge the strains go compressive. Between gauge positions 3 and 4 the slope of the traces 

go from positive to negative. This is with different first intermediate roll positions.

b) Vertical roll bending strains (100 ton load) (Figure 37).

General observations about the roll bending strain plots with 50 ton load are the same as 

for the 100 ton load.
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The only difference being the magnitude of the strains recorded. There can be up to 

200/xE difference between the 50-100 ton load plots.

*5-

c) Horizontal roll bending stains (100 ton load) (Figure 38).

Two strain peaks occur near to the first intermediate roll taper transition positions. The 

peaks nearest to the rear (drive) side of the mill are greatest. The plots showing the left 

and right strains of the mill roll, for the same mill set up, cross over.

9.3 ANALYSIS.

Results in section 9.2 have shown that first intermediate roll positional changes and 

rolling load have large effects on the magnitude of work roll strains. From this it can be 

concluded that these parameters have significant effects on strip shape. The relative 

effects of load and first intermediate roll position are shown. From this a guide can be 

gained as to the amount of first intermediate roll movement necessary to compensate for 

load variations. These variations are caused by speed/ lubrication/ thermal effects [8,10].

An indication that the first intermediate roll position that will give best strip shape can be 

predicted is given from gauge positions 3 and 4 on the plots (Figures 37 & 38). Between 

these two gauge positions the slopes of the individual traces go from negative to positive 

dependant on the first intermediate roll position. The slope nearest to the horizontal, 

which is in practice near to typical rolling position, may indicate the preferred roll 

position.

94



Measurement of strip shape carried out indicated that there is no rolling situation where 

perfectly flat strip is obtainable. This work is confirmed by a mill model forwarded by T 

Matsuda [32]. Typical strip shape defects can be limited to the estimated bending of a
V

work roll shown by the strain results. A sequence of shape defects with their respective 

roll gap profiles caused by roll bending is shown in Figure 39. There is no position of 

"neutral", that is perfect strip shape.
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10.0 INDIVIDUAL TESTS ON THE EFFECTS OF ROLLING PARAMETERS ON

STRIP SHAPE.

10.1 INTRODUCTION.

During the course of the project on strip shape it has been necessary to individually test 

various rolling parameters. The reasons for these tests are:

- To help in formulating the parameters to test and settings in more advance work.

- For confirmatory reasons. That is, to check whether the parameters have any 

real effect or what magnitude of effect do they have? etc. ; f r -

- To carry out detailed work on significant shape effecting rolling parameters, -vo-,---,.

The results from the trials were limited in that only the isolated effect of each parameter 

is shown. Many of the rolling parameters affect each other with regards to producing 

strip shape.

Taking into account these limitations, useful inferences can still be drawn from the work. 

Initially a set of typical strip shape measurements were taken so that comparisons could 

be made with subsequent work.

This work observes "trends" in shape differences, this is because of the complexity of the 

rolling process and the interacting nature of rolling parameters in their effects on shape.
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The individual parameters tested are:

a) First intermediate roll profile.

b) Work roll profile.
%•

c) Saddle adjustments.

d) Offset castors.

e) Speed

f) Tensions

10.2 METHODS OF INVESTIGATION.

There have been various methods used to assess the different effects of rolling parameters 

on strip shape. . The major ones are:-

- Keep a record over a period of time of the general strip shape differences caused 

by that particular parameter. The trends of shape can be seen if  enough samples 

are taken.

- Take one coil and carry out a series of tests on it. This ensures that, as far as 

possible, all things except the altered parameter are held constant.

- Take one coil and split it so that the rolling of two similar coils takes place. 

Everything is held as near constant as possible for the two coils except for the 

parameter setting under test.
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10.3 RESULTS.

10.3.1 First Intermediate Roll Profile.

The work on "first intermediate roll profile effects on strip shape" is a major and 

continuing area of work. There is no doubt that the position of the first intermediate rolls 

affects strip shape more than any other rolling parameter. To exert more control over 

strip shape it is necessary to find out if the effects of the first intermediate rolls can be 

altered. The primary method of changing the rolling characteristics of the rolls is by 

changing their ground roll profile.

Tests have been carried out using a variety of roll profiles, the details of which are shown 

in Figure 41. ;•

For identification purposes the rolls are named as follows:

a) Ordinary profile ej) Blended taper

b) Double taper Blended taper with back taper

c) Triple taper with back taper f) Complex profiles

d) Triple taper with back taper

Initial observations showed that a large number of strip shape samples had quarter buckle 

and loose edge. Typical strip shape was that of quarter buckle on one side and loose 

edge on the other side of the strip. Tests also proved that the first intermediate rolls are 

the dominant strip shape affecting rolling parameters. From this it was decided that work 

on improving strip shape by modifying the first intermediate roll profiles was necessary.
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Previous work, section 2, has shown that modifying the roll profile so that the transition 

between the parallel and tapered section of the roll is less severe, may reduce quarter 

buckle.

The first investigation step was to produce rolls having a double taper, Figure 41b. After 

encouraging results from this a triple taper transition was tested, Figure 41c.

Further work on the behaviour of a work roll under load, section 2, indicated that a more 

symmetrical mill load may help to improve strip shape. From this a back taper was 

placed on the rolls, Figure 4 Id.

As soon as a manufacturer with the ability to grind curved transitions on a roll was 

found, these were ordered and tested, Figure 41e.

a) Ordinary Taper Strip Shape, Figure 42a-b:

The results shown in Figure 42 are of typical strip shape. Strip shapes shown in Figure 

42a are from using 178mm (length of taper) tapered first intermediate rolls (for rolling 

narrow strip). Strip shape results using 127mm tapered first intermediate rolls (for 

rolling wide strip) are shown in Figure 42b. There are a large range of strip shapes that 

can be produced. A loose edge sample, Figure 42b, has a high value of shape at the 

edges, and a quarter buckle with loose edge sample. Strip shape samples with differing 

amounts of quarter buckle and loose edge are seen in Figure 42b.
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Although a full range of strip shape can be produced by the rolling mills, that is, loose 

edge, quarter buckle, full centre, herringbone etc., combinations of these are most likely 

to occur. From a large number of rolling trials undertaken, the predominant shape
V

produced was found to be a quarter buckle with one loose edge. The magnitude of the 

shape defects varied considerably. Comparisons can be made between altered parameters 

and typical strip shape, but because of the large difference in typical shape measured, the 

results are only to be used as a guide. No firm conclusions can be drawn from 

comparisons against typical shape.

b) Double Taper Strip Shape, Figure 43a-c:

The results shown are of the shape produced by using double taper and ordinary first. 

intermediate rolls. Strip shape samples are taken form the centre of coils so that they are 

from*steady state rolling conditions. Shape samples using double tapered rolls are shown 

against shape samples from the same coil using ordinary tapered rolls. This ensured that, 

as far as possible, everything except the first intermediate profile was constant. Results 

from using 178mm first intermediate rolls are shown in Figure 43a and b. Results from 

using 127mm first intermediate roll are shown in Figure 43c.

Figure 43a indicates that by using the double tapered first intermediate rolls, a general 

improvement to strip shape is made. This result is consistent over the four trials carried 

out. Two of the coils show good shape produced by rolling with double tapered first 

intermediate rolls. Two of the coils show poor shape produced by rolling with ordinary 

tapered first intermediate rolls.
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Figure 43b shows similar strip shape samples. Using the double ground tapers a loose 

edge has been produced at one side of the strip. This shows a tendency for double tapers 

to produce more "loose edge" and less "full centre/quarter buckle" strip shape.

V

Figure 43c. From the result showing the shape effects on wider strip, that is using the 

127mm tapers, there are no clear strip shape effects. There seems to be a slight 

reduction in the amount of quarter buckle produced when using the double tapered first 

intermediate rolls.

c and d) Triple Taper Strip.Shape, Figure 44a-d.

Strip shape produced by rolling using 178mm triple and back taper profiled first 

intermediate rolls is shown in Figure 44a and b. Shown in Figure 44c and d is strip 

shape produced by rolling with 127mm triple tapered first intermediate rolls. All of the 

graphs show a shape history, that is samples of start, middle and end, or start and end of 

a coil. The history shows the way in which the shape changes throughout rolling. There 

are no results showing direct comparisons using the same coil for ordinary and triple first 

intermediate rolls. This is due to the lack of suitable material being processed. The 

shape plots shown allow general comparisons to typical shape to be made.

Figure 44a. A typical "quarter buckle" and "loose edge" shape is shown.

The middle strip shape sample is the best. This sample is representative of the majority 

of the coil. The start sample has a large "loose edge". The end sample exhibits more 

"quarter buckle".



Generally, a fairly good strip shape has been produced. Most of the coil is below 20 I- 

units, this is good for rolled shape.

V

Figure 44b. A slight "quarter buckle" strip shape has been produced through most of the 

coil. The middle sample shows excellent shape and is below 10 I-units. This value 

corresponds to stretch-levelled material. The start shape shows "loose edge" and the end 

shape shows a higher degree of "quarter buckle".

Figure 44c. A significant "quarter buckle" to "full centre" is the dominant shape 

produced throughout this coil. The start shape is good and the shape gets progressively 

• worse (more full) as rolling proceeds. The shape is of a typical to high value for as

rolled products.

Figure 44d. A fair strip shape sample is seen here. The start shape is typically "loose 

 ̂ edge". The end shape shows less "loose edge". Assuming that the middle sample, that is

. for the majority of the coil, is somewhere between the two then good strip shape of below

10 I-units has been produced. This test was carried out on a softer material than the 

other trials, so does not show a fair comparison. It shows that on a soft material good 

shape can be produced.

e) Curved Intermediate Roll Strip Shape, Figure 45a-c:

Strip shape results using 178mm first intermediate rolls are shown in Figure 45a. Results 

for 127mm first intermediate rolls are shown in Figure 45b and c.
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All of the results show comparisons, that is from trials carried out on the same coil with 

the only difference being the first intermediate roll profile.

Figure 45a. Indicating poor strip shape from both the ordinary and curved rolls. The 
**■

shape is of severe "full centre" to "quarter buckle". Using the curved rolls a reduction is 

shape severity of about 20 I-units has been achieved.

Figure 45b. Both strip shape samples show a large "quarter buckle". The size of 

"quarter buckle" is typical of that normally produced. Using the curved intermediate 

rolls the severity of shape has been reduced by about 10 I-units. Although the severity 

has been reduced there are "quarter buckles" on each side of the shape sample using the 

curved intermediate rolls. There is "quarter buckle" only on one side of the strip using 

ordinary first intermediate rolls.

Figure 45c.. This graph shows the start and middle samples of a coil rolled on curved and 

ordinary intermediate rolls. Both of the samples from the ordinary rolls show a severe 

"quarter buckle" at one side. Both of the samples from the curved rolls show good shape 

over the majority of the coil width, with a "loose edge" on one side. The majority of the 

coil shows better strip shape when using curved intermediate rolls.

f) Complex First Intermediate Roll Strip shape, Figure 46.

The results showing the shape produced when using complex rolls are only a one-off trial. 

There are no comparisons available. The shape produced can be related to typical values 

of shape.
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The aim with these rolls was to reduce the sensitivity of the rolling process to alterations 

of roll position based on strain work in section 8 and experimental design work section 5. 

Because of this, mill operators comments have been taken into account.
v

The graph shows the start, middle and end shapes. The start sample shows good initial 

shape. There are slight "loose edges", one being more sever than the other. The middle 

sample shows a fair shape. There are no "loose edges" but there are symmetrical 

"quarter buckles" of up to 25 I-units. Typical rolled shape can be up to 50 I-units. The 

end sample shows a poor shape. One edge is very loose (long), and there is a large 

"quarter buckle". The majority of the coil shows fair shape.

The mill operator (who was not very experienced) could easily roll using these complex 

rolls. On making first intermediate roll lateral adjustments a large movement produced 

little difference to strip shape. This is not normal, usually small roll movements have a 

large affect on strip shape. The operator expressed surprise at this. A large movement 

of the rolls had relatively little effect on strip shape but a slight strip alignment change 

altered strip shape significantly.

10.3.2 Work Rolls.

Most of the trials involving testing the effects of different work roll profiles was covered 

in experimental design work, section 5. Work roll profiles significantly affect strip 

shape. Different profiles modify the behaviour of roll bending with respect to the first 

intermediate roll profile. Common use is made of slightly cambered rolls, usually on 

narrow widths of strip.



Some trials have been carried out using bored rolls. That is, work rolls with a hole 

through the centre. The reason for trying this was in an attempt to increase the tension 

feedback (attenuation) effect [40]. An effective increase in the rolls elasticity, by boring 

a hole in the centre, would allow more sensitivity to applied loads. There would also be 

an increase in the rolling load necessary for a given reduction. Using a finite element 

model different diameter holes were tested for safety, and increases in roll deformation.

A hole diameter of 12.5mm was found to be appropriate.

Bored work roll strip shape trial, Figure 47a-b:

Two graphs are shown, one with narrow strip, 178mm first intermediate rolls. One with 

- wide strip 127mm first intermediate rolls. Comparison tests are shown. The same coil is 

used for the trials, one test was run using solid rolls and the other using bores rolls.

For the wide strip (Figure 47a) both strip samples show "loose edge" but their overall 

shape is fair. The strip rolled on solid rolls shows less "loose edge" and better shape 

than that rolled using the bored rolls.

For the narrow strip (Figure 47b) there is a similar result. The solid rolls produce the 

better strip shape. The bored rolls produce more "loose edge". The shape plot is, 

however, slightly misleading. The shape at the edge is not "loose" but has been observed 

to be "full". This means that the roll is bending in a more sever manner over the first 

intermediate roll profile. The major difference between a bored and solid work roll is not 

the degree of flattening that occurs but the difference in roll bending.
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10.3.3 Saddle Adjustments.

Loading across the mill can be altered by saddle adjustments. Bearings which transmit
V

the load to the mill housing can be individually adjusted so changing the mill loading 

pattern. The effects of these adjustments were investigated in a variety of ways. Using 

experimental design techniques, the effects of this variable throughout a rolling sequence 

on relatively soft material (316 austenitic) has been investigated. The effects of saddle 

adjustments on short test runs and a complete rolling pass have also been investigated.

Saddle Adjustment Strip Shape Trials, Figure 48a-b:

Results from a trial involving altering the saddles for a complete pass of a rolling 

sequence on hard material (301 HT austenitic) is shown in Figure 48a. The same coil 

was used for both saddle configurations. The coil was split in half so that all things 

except the saddle settings were common. Two graphs are shown, one where alterations 

to the addles were made for a single rolling pass hence steady state rolling conditions 

were reached, the other over small test runs.

Figure 48a: Over a complete rolling pass both samples show similar shape. The shape 

produced is that of loose edges. Saddle differences show undetectable effect on strip 

shape.

Figure 58b: Over short test runs the shape plots reveal that saddle alterations do not seem 

to change the strip shape. All of the plots show typical shape of quarter buckle and loose 

edge. The rolling mill operators set-up shape dominates that which is produced.
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10.3.4 Offset Castors.

Work showing that the behaviour of a roll under load, by measuring the strains 

experienced by it indicates that the work rolls bend horizontally. This horizontal bending 

is though to have links with quarter buckle and cross camber strip shape defects. In an 

attempt to reduce the horizontal bending of the work rolls, the mill casters have been off

set. The castors are the bearings through which rolling load is transmitted to the mill 

housing. The casters can be adjusted to allow for different roll diameters. The top and 

bottom sets of casters are linked mechanically, but between the right and left of the mill 

they are independent. Altering the castors off-sets the mill geometry and also allow,

- within limits, the work roll to be supported at different positions. Supporting the work 

roll at lower positions should reduce its horizontal bending.

Offset Castor Strip Shape Trial, Figure 49a-b:

There are two graphs shown, one is a comparison between offset and even castor settings. 

The other is a shape history showing the start and end of a coil when rolled with offset 

castors.

The first plot (Figure 49a) shows the comparison with the castors set "even", the strip 

shape is poor with two "loose edges". With the castors offset a typical strip shape is 

seen. The sample shows a slight "quarter buckle" and one "loose edge". If the offset 

castors restricted horizonal roll bending, as was hoped, then a reduction in "quarter 

buckle" should have been the outcome. The result seen is a reduction in "loose edge".
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Figure 49b shows the change in shape through a coil with offset castors. The overall 

shapes of the start and end of the coil are good. A typical shape of "quarter buckle" at 

one side is seen. When comparing these shapes to typical plots of normal rolling, no 

conclusions as to any real effects can be drawn.

10.3.5 Speed.

It is known that rolling speed strongly affects strip shape, section 2.3.

The temperature of the mill changes so affecting thermal camber. Lubrication improves 

with increasing speed so affecting mill load. Strain rates change so the material rolled 

behaves differently.

Speed affects on Strip Shape Trial, Figure 50:

The results plotted are from single trials carried out on a single coil. Everything except 

the speed was constant. The results show a clear shape progression which is related to 

strip speed. At slow speed the strip shows "loose edge". Increase the speed and the 

amount of "loose edge" reduces and a "quarter buckle" with one "loose edge" has 

developed. Therefore, increasing speed increases "centre fullness/quarter buckle". The 

reduction in rolling load with increased thermal camber accounts for this change.

10.3.6 Tensions.

Tension applied to the strip reduces the rolling load, and affects tbe position of the neutral 

point in the roll gap.
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Tension enables the necessary reductions, keeps the strip on line, and ensures satisfactory 

strip shape. Mill designers recommend tension up to one third of yield* strength. To 

improve on strip shape higher tensions can be used.

V

Tension Trial Strip Shape, Figure 51a-b:

Both tension trials show comparisons done on a single coil. That is, that the only 

difference is the tensions used. The relative tension differences were the same throughout 

the complete rolling sequence.

From Figure 51a two samples having a severe "loose edge" are seen. The degree of 

loose edge is far less on. the sample rolled using high tensions, and there is a wider 

section of good strip shape. Both the samples were taken from the middle of a coil so 

ensuring consistent steady state rolling conditions, these were representative of the 

majority of the coil.

Only the start and end samples of the coil under test were available for trials, shown in 

Figure 51b. The start of the coil using both high and normal tensions show "loose edge", 

the high tension sample has one "loose edge" whereas the normal tension sample has two 

"loose edges". Both end samples show good shape, with slight "quarter buckles" and 

"loose edges". There is slightly less "loose edge" on one side of the high tension sample. 

Increased tensions reduce the "loose edge" strip shape defect.
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10.4 ANALYSIS.

10.4.1 Strip Shape Produced by First Intermediate Roll Profile Differences.

Ordinary Taper Strip Shape:

The predominant typical strip shape is that of "quarter buckle" on one side of the strip 

with a "loose edge" at the other. There is a large variety of different types and 

magnitudes of "typical shape" to compare improvements/alterations in the process.

Double Taper Strip Shape:

Improvements to strip shape are made when using these modified intermediate roll 

profiles. Although the improvements are slight, the trend is clear. "Quarter buckle" strip 

shape is reduced using these rolls but there is a slight increase in the tendency to produce 

"loose edge".

Triple Taper Strip Shape:

No direct comparison samples are available, but these profiled rolls produce a reasonable 

shape. Whether this shape is better than that which would be produced by using double 

tapered, or ordinary rolls, is not clear.
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Curved Intermediate Roll Strip Shape:

These rolls produce an improvement over using ordinary rolls. The comparisons show
V

that ’’full centre" and "quarter buckle" are reduced. No comparisons between these rolls 

and other roll profiles other than ordinary have been made. These rolls reduce "quarter 

buckle" and "full centre" by a significant amount.

10.4.2 Strip Shape Produced by Complex First Intermediate Roll Profile.

Although a single test cannot prove consistent improvements to strip shape, the results 

show that good shape can be produced by these modified rolls. "Quarter buckle" may be 

reduced by further blending modifications to the roll profiles. The operators observations 

prove that the process has become less sensitive to the roll position. Large intermediate 

roll movements with no strip shape change proves this. Mill bending must play a large 

part in producing strip shape, this is shown by large movements in taper position having 

little effect on shape, whereas a small strip line difference had a large effect. Further 

research with these rolls will give the capability of improving strip shape.

10.4.3 Strip Shape Produced by Bored Work Rolls.

By decreasing the second movement of area by the roll it was found that the roll bent 

more easily in the vertical plane. There was no improvement to strip shape from the 

enhanced tension attenuation. Roll bending affects strip shape more than tension 

attenuation.
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10.4.4 Strip Shape Produced by Saddle Adjustments.

Altering the saddles for a single rolling pass on a hard material has little effect on strip
V

shape. Altering the saddles over short test runs has no measurable effect on strip shape. 

For there to be any benefit to strip shape from altering the mill loading by saddle 

adjustments, the best configuration must be held throughout the rolling sequence.

10.4.5 Strip Shape Produced by Offset Castors.

No definite conclusions can be drawn as to the effect of offset castors on strip shape. 

There is some evidence hinting that offset castors can reduce "loose edge".

10.4.6 Strip Shape Produced by Speed.

Speed affects strip shape significantly, with increasing speed the amount of centre fullness 

increases and loosed edge decreases. Mill operators experience is the method used to 

estimate the start shape necessary. The reduction, material type, speed, tensions and load 

all need to be taken into account.

10.4.7 Strip Shape Produced by Tensions.

High tensions improve strip shape. The front tension mostly affects shape. The back 

tensions mainly reduce the "herringbone" and "loose edge" strip shape defects.
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11.0 DISCUSSION.

Much of the published work on strip shape control has difficulty in finding enough 

supporting evidence. Some of the problems which have been found, are because there is 

a lack of real consistency between different coils of steel rolled. Coils which seem 

similar in all respects, when rolled in the same manner, will often show completely 

different shape. To undertake experimental work which encourages all of the strip shape 

affecting parameters, requires a large number of coils. These are not available in enough 

quantities of consistent quality and geometries to do the tests required. Much of the work 

is done on specific rolling mills which relate to that mill in detail.

Due to the low number of narrow mill strip manufacturers, and the nature of their 

business being relatively small there has not been large resources invested in research. 

Work published has shown in general the strip shape affecting parameters mostly from a 

mechanical bias. There is not much work relating metallurgical properties to shape.

There has been a substantial amount of work in recent years on producing on-line shape 

measuring devices. Many producers using these devices have problems with them.

There is in the authors opinion insufficient on-line and off-line evidence to prove that 

these devices work consistently.

This project took the form of more directly investigating the mechanical strip shape 

affecting parameters. This was because any improvements suggested by metallurgical 

findings would not be able to be implemented within the scope of this report and so 

produce real benefits to the industrial sponsor.
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Another reason is that the expense involved in producing different materials for rolling is 

outside the scope of this research. Work had to be carried out without any form of on

line strip shape measurement. This is because there was no device available, and, as the 

project went on it became clear that the devices on the market had not shown great 

quantified improvements to strip shape. The shape measuring devices would prove more 

accurate on wide rather than narrow strip mills. On-line shapemeters are high cost 

instruments and it was shown that at present the parameters of adjusting saddles which 

they would control, in order to improve strip shape, would show little benefits, see 

section 6.2. This work initially started without any shape measuring system, shape was 

measured by visual, and hand measuring (ruler) systems, see section 2.1. As the work 

progressed an off-line shapemeter was hired [19], section 6.1.

Various avenues have been investigated and findings not initially envisaged as being 

important have been highlighted, the work has been presented as a series of experiments. 

Some of the work is completely different in the techniques and methods employed but all 

concentrate on trying to improve the shape of as-rolled strip. The discussion follows the 

form of this thesis, but draws on findings throughout.

11.1 MAJOR STRIP SHAPE AFFECTING VARIABLES (section 4).

Strip shape affecting parameters can be broken down into their overall effects on strip 

shape, or their effect on specific types of strip shape. Initial work in this area was 

carried out without the use of an off-line shape measuring device. Measurements of 

shape were taken by a subjective measure of a visual score and description.
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The analysis in section 4.2 showed that the position of the fist intermediate rolls is by far 

the most dominant strip shape affecting parameter. The major strip shape defects are 

affected by this parameter. The work roll geometry has been shown to have a large
V

effect on strip shape. It is clear that although other parameters do affect strip shape 

investigational work needed to surround the profiles. Another conclusion from these 

results is that, with the fist intermediate roll position being so dominant strip position in 

the mill is important. Any lateral movement of the strip during rolling will adversely 

affect strip shape.

Lateral strip movement and first intermediate roll position are relative . If the strip 

moves across the mill it has similar effects on strip shape as altering the first intermediate 

roll positions.

From the results it is possible to predict the parameters which are dominant to strip shape 

and also the actions which can reduce these defects, (Appendix 1) Table 10. From the 

mean response plots the steepest curve shows the most effect and the lowest value shows 

the best parameter position. The best positions for each parameter with reference to strip 

shape has been incorporated into a working document, some of the findings of which are 

shown in Appendix 1.

The tests were carried out on a particular material type, and as such the results may not 

be completely transferable. However, because of the confirmation with rolling mill 

operators experience, the author regards the findings as transferable.
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11.2 DETAIL OF THE EFFECTS OF WORK ROLL PARAMETERS ON STRIP

SHAPE (Section 5)

Using the Taguchi technique of plotting the results in the form of mean response graphs it 

was possible to, within the tight constraints of the experiments surrounding work rolls, to 

place in order the shape affecting parameters on strip shape. The parameter effects are 

shown in relation to specific strip shape defects. That there are measurable results proves 

that the work rolls do affect strip shape. From the limited number of parameters tested, 

the dominant one that affected all of the specific shape defects was the work roll profile. 

Apart from the fact that work roll geometry is dominant in its affect on strip shape, out of 

those parameters tested, there are no other clear conclusions. This finding encourages 

further investigations on strip shape to concentrate on work roll and first intermediate roll 

geometries.

There are indications from the mean response plots (Figures 11-14) that improvements can 

be made to strip shape. From the trends of the plots the following practices will help to 

improve strip shape:

a) Use small diameter work rolls.

This seems to be contrary to rolling mill experience which indicated that larger 

work rolls produce better strip shape. The length of arc of roll contact, lower 

severity of metal deformation, and ironing effects are reasons given for his. 

Within normal 4-High and 6-High rolling this will hold true. The special 

situation of a cluster mill may prove that within the limits of the mill roll 

cluster, smaller work rolls are better.
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An explanation for this proposal is that because horizontal roll bending across 

which produces poor strip shape, this 

bending is limited if the work rolls are supported more in the horizontal plane. 

Smaller work rolls enable such support.

b) Keeping the work rolls the same size.

This practice will help to ensure that the stress distribution laterally through the 

strip is consistent and symmetrical [11]. General practice is to use different 

sized rolls for roll re-grinding economics and ease of rolling practice. This 

work recommends (section 5) a change of practice to keeping rolls in pairs ie: a 

matched set.

11.3 SADDLE ADJUSTMENTS EFFECTS (Section 6).

The effects of adjusting the saddle setting of a rolling mill have less affect than is often 

attributed to them. The tests carried out show that, on a narrow mill, saddle adjustments 

have a minimal affect on strip shape. On a single rolling pass of a sequence on hard 301 

HT material the effects of saddle adjustments are not measurable. Investment in any 

shape control systems which use saddle adjustments alone or as the key shape control 

parameter should not be made for the mill under test, this recommendation may also hold 

true for all narrow Sendzimir mills.

Useful and measurable results relating to saddle setting have only been obtained by 

investigating their effects throughout a complete rolling sequence.
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Again, the use of Taguchi experimental design techniques was used to get measurable 

data. The results from section 6, show that when the saddles are set and held throughout 

a rolling sequence they have a measurable effect on strip shape. This effect is smaller 

than that caused by work roll geometry. Saddles affect strip shape independently. 

Adjusting the saddles affects the loading pattern across the strip so directly affecting strip 

shape.

If the saddles are set asymmetrically then they will also affect the way in which the strip 

tends to move laterally across the mill. Any lateral movement of strip across the mill 

will mean that compensatory, first intermediate roll, movement will need to be used.

This will adversely affect strip shape by causing an uneven load and hence differential 

-  - Teductions. The preferred setting of the saddles for specific strip shape’defects may be 

found and incorporated into the recommendations for shape improvement, Appendix 1.

Following from this work are further investigations into the effects of mill parameters 

through a rolling sequence. This work has proven that rolling parameters, though having 

an unmeasurable effect on a single rolling pass, do have a cumulative effect on strip 

shape. Finding the best saddle setting for specific jobs will prove beneficial and help to 

improve strip shape.
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11.4 EFFECTS OF ROLLING PARAMETERS THROUGH A SEQUENCE

(Section 7).

V

Work on saddle adjustment showed that the effects of a parameter on strip shape through 

a sequence may be more important than is currently appreciated by mill users. The main 

strip shape affecting parameters for the major strip shape defects are shown to be the first 

intermediate roll position, work roll profile and saddle settings.

From the results (section 7.5.2) the preferred combinations of settings for each type of 

strip geometry were found. General observations were also made ie: the rolling tensions 

should be kept high and the effects of reductions are, within limits, not too critical. This 

conclusion about reductions takes only the overall reduction into account and does not 

relate to differences in the final rolling pass which may have a large effect on strip shape.

From analyzing the results (section 7) the best rolling conditions for a specific situation 

have been found and incorporated into the rolling recommendations, Appendix 1. A 

significant factor from this work is that the process variability is reduced. Certain 

parameters such as the tensions and reductions although having a relatively minor effect 

on shape can have a larger effect on process variability. If the process variability is 

reduced then a more consistent quality product is produced. Other factors have a large 

effect on variability but also on shape such as the work roll profile, and the first 

intermediate roll position. General conclusions can be drawn from reducing process 

variability which can be transferred on to other jobs ie: lower reductions and high 

tensions will reduce process variability.
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Because of the major effects of the three key rolling parameters of first intermediate roll

position, work roll profile and saddle setting, any further work on other specific job types

ie: (widths, reductions, material grade, within a range) can be carried out under a smaller 
*-

series of tests. A Taguchi L9 array which tests three parameters each at three levels can 

be employed. Only nine tests need to be carried out to find the best rolling conditions. 

The range of job types within which each set of results is applicable has not yet been 

found.

11.5 WORK ROLL STRAIN (Section 8 and 9).

This is a new area of work which has not previously been tackled by any other research. 

The findings provide knowledge of the work roll behaviour which is. relevant to strip 

producers using Sendzimir or cluster mill, and mill designers. The results presented in 

section 9 show some major findings have been made as to the mode of bending of a work 

roll when under load. Roll bending is related to specific strip shape defects and some 

valuable insights have been derived.

New roll profiles were designed and tested based on the information gained (Figure 42f),

First it was shown (section 8.4) that parameters that mostly affect the strains on a work 

roll were found to be the first intermediate roll position, and the mill load. All other 

parameters tested showed only slight effects on the roll strains. The measuring technique 

was either not sensitive enough, or the roll position and mill loads were too dominant to 

get any results.
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Typical strain plots (Figures 27-34) showing how the work rolls bend vertically with 

resultant affect on the profile of the strip reveal far from symmetrical load patterns. The 

strains indicate that both between the front and back of the mill, and the top and bottom, 

there is asymmetry. From this, it is to be expected that the stress pattern forced into the 

strip will also be asymmetrical and will cause the strip to buckle. There is a severe strain 

peak shown at one side of the mill, this occurs where the work roll is at the position of 

contact with the first intermediate roll taper transition. To improve strip shape, it is 

important that the severity of this peak is reduced.

The first step in re-designing the first intermediate roll profile was to reduce the severity 

of the taper transition, (Figure 42b). When the first intermediate roll was moved the 

strain peak and width of its affect was changed. These characteristics were related to 

knowledge concerning the characteristics of strip shape. A large amount of work roll 

bending at the mill centre, represented by a large broad strain peak, will cause the "full 

centre" strip shape defect. A low strain peak towards the edges of the mill represents a 

loose edge strip shape defect. None of the strain patterns found showed any indication of 

a gentle roll bending. No matter what the rolling conditions, some degree of strip shape 

is produced. From the result, a representation of roll bending and its effect on different 

types of strip shape has been estimated (Figure 39).

The second phase in re-designing a first intermediate roll profile based on this work was 

to de-sensitise the way a work roll would bend in response to the first intermediate roll 

position. There is a necessity for a strain peak associated with first intermediate roll 

taper to enable the strip to be steered during rolling. What is needed, is to stop the peak 

from enlarging both in magnitude and width due to positional change.
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To do this, a roll with a taper for a set distance then levelling off again (Figure 42f) was 

designed. This, although not exhaustively tested, has initially shown encouraging 

results. The mill operator successfully rolled strip of good shape, and commented on the
V

fact that large alterations to the first intermediate roll position didn’t have the usual large 

effect on strip shape.

Other observations are that the gradient of the strain peak changes at key first 

intermediate roll positions (Figures 36 and 37). This gradient change relates to the 

position of the first intermediate rolls which gives the best strip shape. From this 

observation, it may be possible to predict the roll position which will give the best 

opportunity of producing good strip shape. This work would at best be a guide since 

there are many factors involved during rolling. A more detailed analyzing of the manner 

with which the gradient alters may provide more useful information that aids re-design of 

the roll profile.

r
When the load is increased the values of stains recorded increased dramatically as shown 

in Figures 36 and 37. The difference between the strain pattern changes due to load and 

those due to first intermediate roll positional alterations is that, with a load increase, the 

strain peak does not significantly alter in width. This finding can be related to experience 

in producing strip shape. Load increases make the strip shape more sensitive to 

parameters alterations. When rolling using high loads, there is an increased likelihood of 

producing poor shape, generally' that of quarter buckle. A high and narrow pronounced 

strain peak is likely to produce work roll bending responsible for quarter buckle strip 

shape. Hard materials are more sensitive to this particular shape defect because of the 

loads required during rolling.
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A key to improving the strip shape is to limit the increase of the strain peak with 

increasing loads, this can only be done through re-designing roll profile. * Rolling so as to 

reduce the later pass rolling loads will help to reduce strip shape defects. This is general
v

practice at present.

The work on the strain experienced by a work roll due to loading changes can be linked 

to alterations in load due to speed. One of the difficulties experienced by mill operators 

is that the strip shape changes due to speed differences during rolling. Because the roller 

cannot see the strip shape during rolling he has to make some estimate of the changes and 

compensate for these during setting up. The strip is given a "loose edge" shape defect of 

varying degrees of severity so that as the load reduces during rolling a good shape is 

produced. From the results of strains due to load it is possible to.estimate the strain 

difference due to load alterations during rolling. This difference can be related to the 

strain differences caused by alterations in the first intermediate roll position. A 

movement of the first intermediate rolls which compensates for these changes can 

therefore be calculated. If continued this work could lead to a compensation system. TTie 

mill operators can set up for good strip shape, then the first intermediate rolls can be 

moved during rolling based on the compensation calculated from the strain results.

One of the unusual findings from this strain work is that the work rolls appear to bend in 

the horizontal plane. The roll strains, section 8.4 (also Figure 38), indicate that the top 

and bottom rolls try to form an ''S" shape (Figure 40). When the strains are measured 

with strip in the mill, this apparent bending is less pronounced but the strain pattern still 

indicates bending. Strip shape defects relating to strain differences through the strip 

thickness [10] are thought to be caused by work roll misalignment.
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Rolls bending in this manner will cause such differences.

Relating to strip shape, observations have shown that, sometimes centre fullness and
V

always quarter buckle, is accompanied by cross camber and coilset, Table 11. That is 

shape defects due to overrolling and those due to misalignment occur at the same time. 

The reason for this is that a high localised pressure shown by the strain peaks, roll 

bending vertically (Figures 34 and 37), causes over rolling and hence change due to 

differential reductions. This high pressure also causes the rolls to bend vertically, shown 

by the horizontal strain results (Figure 38), hence, shape defect due to over rolling and 

through the thickness stress distribution must occur at the same time. Mill designers are 

the only ones who can exert some control over this. Preventing horizontal roll bending 

can perhaps be achieved by better support of the work rolls. Again re-designing of the 

first intermediate roll along the guidelines already stated will help to reduce horizontal 

roll bending. Reducing the rolling loads will reduce such bending.
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12.0 CONCLUSIONS.

A detailed study was undertaken with the aims of improving the as-rolled stainless steel 
*-

strip shape. The work has concentrated on one specific rolling mill, that of FZ3 situated 

at Lee Steel Strip, Meadowhall, Sheffield. The mill is a narrow sendzimir mill. Much of 

the work and the investigative techniques used can be transferred on to other sendzimir or 

cluster mills. The control of rolling by means of parameter improvement was 

investigated. The strip shape affecting parameters were investigated to show their 

individual magnitude of effects. The effects of the main parameters were then 

investigated throughout a rolling sequence. The main parameters were further 

investigated by strain techniques to gain information that would enable improvements to 

be made to them.

The following conclusions have been drawn:

a) Shape defects in stainless strip have been identified.

b) Taguchi Experimental design techniques can be applied to obtain rolling 

schedules that separate the parameters which produce specific strip shape defects.

c) The major strip shape affecting parameter is the first intermediate roll position. 

The effects of other rolling parameters in level of importance are shown Table 10.

d) The importance of correctly aligning the mill and grinding the rolls to a high 

standard has been highlighted.



e) The parameter settings throughout a rolling sequence, for specific work, which 

will improve strip shape and produce a more consistent product have been shown.

V

f) A manual, which will aid mill operators to produce good strip shape has been 

produced. This incorporates information on the effects of individual parameters 

and the best settings throughout a sequence. Much of the information in the 

manual is in Appendix 1.

g) Rolling mill FZ3 produces a typical quarter buckle and loose edge shape defect. 

That the quarter buckle strip shape is linked to cross camber. That full centre 

strip shape is linked to cross camber.

h) Sendzimir mill work rolls cross over in the horizontal plane forming an "S" 

shape. This crossing over of the work rolls occurs at a high pressure point in the 

roll gap which causes over rolling (full centre or quarter buckle). The crossing of 

the rolls also accounts for differential stresses in the finished strip through the 

lateral cross section. These stresses cause cross camber.

i) Analysing the stresses experienced by a work roll is a new technique which can 

be applied to other mills. The technique may be used to find:

i) Mill faults.

ii) Roll bending

iii) Investigate improvements to roll profiles.

iv) Relate mill load to first intermediate roll position so finding

the best position for the rolls.
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v) The amount of compensation by roll movement for mill load 

changes during rolling can be calculated. '

j) New first intermediate roll profiles which de-sensitise the process into these, 

over powerful, shape affecting parameters have been designed.

k) Without improvements to the first intermediate roll profiles, no position of 

neutral (perfectly flat) strip shape can be produced.
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13.0 SUGGESTIONS FOR FURTHER WORK.

Further work can apply the experimental techniques on the process parameter 

improvement for production of flat strip on a smaller scale than that used in this 

investigation. At present, work has been carried out on a grade of material of a specific 

geometry and reduction, it can also be expanded to other mills and job types.

Work should continue to use work roll strain measurement to estimate the preferred first 

intermediate roll positions for specific mill set ups. Estimations should be made of the 

effects of the movement of first intermediate rolls with respect to load differences. This 

will allow the mill operator to set the mill up on the basis of good shape, not allowing for 

change of load with speed, but adjusting the first intermediate roll position. This data 

will be useful in a control system which automatically adjusts the roll position with rolling 

load changes.

Work roll strain can be extended to measuring the effects of strip tension on roll loading. 

Difficulties may arise when tensions are applied because the rolls will move and may 

damage the strain gauges. Comparisons between work with existing models or modified 

models will prove useful.

Investigations of the bending behaviour of work rolls, and relating this to first 

intermediate roll profile should continue. Testing roll profiles which desensitise the 

rolling process to the movement of these rolls will give most benefits to improving strip 

shape. Knowledge of the horizontal behaviour of rolls will help mill designers and 

suggest how mills may be designed to prevent horizontal roll bending. If the horizontal 

roll bending can be controlled then the mill operators will be able to produce good flat 

strip.
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Table 1. Parameter Description.

Rolling Speed: Rate at which strip passes through the mill (M/min)

Load: Force applied to the strip (Tons).

Reduction: The percentage gauge reduction (%).

Sequence: Number of reductions and the % reduction of each pass.

Saddles: Mechanism of adjusting the loading pattern through back-up 

castor bearings.

Axially Adjustable 

First Intermediate 

Rolls:

Profile rolls which can be adjusted to give shape and mill 

steer control. Typically profiled by a taper at one end.

Work Roll: The roll in direct contact with the strip. They may be 

profiled camber to aid strip shape.

Material Quality: The specific make up of the material being rolled.

Material Profile: The cross section profile of the supply.

Cooling/Lubrication : Oil type and amount.

Roll Size: Diameters of the rolls in the mill.

Front/Back Tensions High tensions applied to the strip to aid in reduction, steer 

and shape control.
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Table 2.

Gxperioent 
i  Klurabsr .

L16 Orthogonal Array 
Used to Assign Parameters for
L16 Array FZ3 Design of experiment

FZ3 Experiments

G H B I A I'H A'H F G*F J 6 * J C D t E'S
I High Flat Flat In Shallow Int 1 Int 1 High Int 1 High Int 1 High Conlig 1 High Int 1
2 High Flat Flat In Shallow Int 1 Int 1 Lov Int 2 Lov Int 2 Lov Config 2 Lov Int 2
3 High Flat Flat Out Steep Int 3 Int 2 High Int 1 High Int 1 Lov Config 2 Lov Int 2
4 High Flat Flat Out Steep Int 1 Int 2 Low Int 2 Lov Int 2 High Config 1 High Int 1
5 High Vedge Canber In Shallow •Int 2 Int 2 High Int 1 Lov Int 2 High Config 1 Lov Int 2
6 High ledge Caaber In Shallow Int 3 Int 2 ‘ Lov Int 2 High Int 1 Lov Config 2 High Int 1
7 High ledge Caaber Out Steep • Int 1 Int 1 High Int 1 Lov Int 2 Lov Config 2 High Int 1
8 High ledge ^ Caaber Out ' Steep Int 1 Int 1 Lov Int 2 High Int 1 High Config 1 Lov Int 2
9 Low Flat Caaber In Steep Int 1 Int 2 High Int 2 High Int 2 High Config 2 High Int 3

10 Lov Flat Canber In Steep Int 1 Int 2 Lov Int 1 Lov Int 1 „ , Lov Config 1 Low Int 1
11 Lov Flat. Caaber Out Shallow Int 2 Int 1 High Int 2 High Int 2 Lov Config 1 Lov Int 1
17 Lov Flat Caaber Out Shallow Int 3 Int 1 Lov Int 1 Lov Int 1 High Config 2 High lot 2
13 Lov . ledge Flat In Steep Int 2 Int 1 High Int 2 Lov Int 1 High Config 2 Lov Int I
14 Lov Hedge Flat In Steep

<
Int 2 Int I Lov Int 1 High Int 2 * Lov Config 1 High Int 2

15 Lov Hedge Flat Out Shallow Int 1 Int 2 High Int 2 Lov Int 1 Lov Config 1 High Int 2
16 Lov Hedge Flat Out Shallow Int 1 Int 2 Lov Int 1 High Int 2 High Config 2 Low Int 1

interaediate geoaetry F=Baci tension- 
B=?ork roll geoaetry G=Reduction
£ =speed H=Strlp geoaetry
t>-Bact up roll configuration I=lst interaediate position 
£=Front tension J= Vyr

A 0.001" per inch 
0.002" per inch

Taper
Taper

Shallow
Steep

E U T S  
'A U T S

High
L o w

B 2 Parallel Rolls 
2  C a m b e r e d  Rolls

Flat
C a m b e r

F %  U T S  
U T S

High
L o w

C 1 0 0  m / m i n  
7 0  m / m i n

High
L o w

G 2 0 %
1 0 %

High
L o w

D Level 5 5 5 5  
C o n v e x  5 2 2 5

Config 1 
Config 2

H Flat
1 0 %  w e d g e

Flat
W e d g e

J 1.65-1.7"
1.6"

High
L o w

1 Roll Full 
Roll Loose

In ) difference 
O ut ) %  inch
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Table 3. Relative Effects of Rolling Parameters on Strip Shape
According to Visual Appearance.

A.N.O.V.A
Results 1
sum of parameter degrees of mean square M.S/E.M.S
Squares freedom

3.1 G 1 3.1 16.91 * *
0.1 H
0.6 B

52.6 I 1 52.6 286.9 * *
0 . 1 A
3.1 I *H 1 3.1 16.91 ' * *

18.1 A*H 1 18.1 98.73 **
0.1 F

10.6 G*F 1 10.6 57.82 **
14.1 J 1 14.1 76.91 **
3. 1 G* J 1 3.1 16.91 * *
5.1 C 1 5.1 27.82 * *
0.1 D
1.6 E 1 1.6 8:72 *
0.1 E*G

pool 6 total of pooled numbers=l.1

E.M.S=error mean square=l.1/6=0.1833
M  S/E.M .S=value to compare with "F" tables
F ‘‘ tables 5% points=5.99 
F'tables 1% points=13.74
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Table 4a. Relative Effects of Rolling Parameters on Strip
Shape According to Fullness Results.

A.N.O.V.A
Results 3
sum of perameter degrees of mean square M.S/E.M.S
squares freedom

0.6 G 1 0.6 6 *
0.6 H 1 0.6 6 *
1.6 B 1 1.6 1 6 * *

22.6 I 1 22.6 226 **
0.6 A 1 0.6 6 *
0.6 I*H 1 0.6 6 *
1.6 A*H 1 1.6 16 * *
0 . 1  F 1 0 . 1  1
0.1 G*F
0.1 J
0.1 G *J
0.1 C
0.1 D
0.1 E
0.1 E*G

number pooled=7 total of pooled numbers 0.7
E.M.S=0.7/7=0.1
”F"tables 5% points=5.59 
"F"tables 1% points=12.25

i
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Table 4b. Relative Effects of Rolling Parameters on Strip
Shape According to Quarter Buckle Results.

A.N.O.V.A
Results 5 
sum of 
squares

0

perameter degrees of mean square 
freedom

G
H
B
I
A
I *H 
A *H 
F
G *F 
J
G*J
C
D
E
E*G

0.3

M.S/E.M.S

2 .31
7 . 69 *
7 . 69 * 
2 . 31 
2 .31 
2 .31

7 . 69 * 
7 . 69 A

number pooled=7 

E.M.S=0.9/7=0.13
total of pooled numbers 0.9

"F”tables 5% points=5.59 
"F”tables 1% points=12.25

138



Table 4c. Relative Effects of Rolling Parameters on Strip
Shape According to Ripple (herring-bone) Results.

A.N.O.V.A
Results 4 
sum of 
squares

0
12

0

perameter degrees of mean square 
freedom

G
H
B
I
A
I*H
A*H
F
G *F 
J
G * J 
C 
D 
E
E*G

0.3
12.3

1

0 . 3

M.S/E.M.S

5.88 t
1 . 764 
72.35 ** 
5 . 88 *+'

1 .764

5.88 i

5 . 88 ^  
23.53 **

number pooled=7 
E .M .S = 1 .2/7=0.17

total of pooled numbers 1.2

"F"tables 5% points=5.59 
"F"tables 1% points=12.25
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Table 4d. Relative Effects of Rolling Parameters on Strip
Shape According to Edge Wave Results.

A.N.O.V.A
Results 2 
sum of 
squares

parameter degrees of mean square 
freedom

2
12

G
H
B
I
A
I*H
A*H
F
G*F
J
G*J
C
D
E
E*G

2
12

1
0.3
0.3

number pooled=5 total of pooled numbers=0.3

E.M.S=0.3/5=0.06

F"tables 5% points=6.61 
F"tables 1% points=16.26

M.S/E.M.S

1 6 . 6 6  * * 
38.33 ** 

205 * *
1 6 . 6  * * 
38.3 * * 

5
1 6 . 6  * * 

5 
5

1 6 . 6  * *
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Table 5. Relative Effects of Rolling Parameters on Strip Shape
According to Profile Difference.

A.N.O.V.A
Results 7

sum of perameter degrees of mean square
squares freedom

0.3 G
289 H 1 289
2.3 B

16 1 1 162.3 A
4 I*H . 1 4

0.3 A*H
0 F

2.3 G *F
9 ' J 1 g

0.3 G *J
25 c 1 25

6 - 3 D 1 6.3
4 E 1 4

20.3 E*G 1 20.3

number pooled-7 total of number pooled= 7.8
E.M.S=7.8/7=1.114

"F"tables 5% points=5.59 
"F"tables 1% points=12 . 2 5

M.S/E.M.S

259.4 ** 
14.36 **

3.59

8.07 *
22.44 ** 

5 . 6 5  *
3.59 

18.22
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Table 6. Work Roll Parameters Tested and Their Settings.

A Work Roll Diameter. Small (1.8). Large (1.7).

B Roll Configuration. Same.

(Both same size).

Different.

(Small and Large).

C Interaction. Initially chosen as pass line height but 

changed to interaction because the pass line 

could not be altered.

D Tensions. High 5670 KG Low 3400 KG

E Gauage Control. On. Off.

F Roll Geometry. Flat Rolls. Cambered Rolls.

G No Parameters.
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Table 7. Parameters Tested for Assessing the Effects of Saddle Adjustments and

Work Rolls on Strip Shape.

A Saddles. High Centre Load. High Edge Load.

B Work Rolls. Cambered. Flat

Table 8. Parameters Tested and and Levels for Assessing the Effects of Rolling

Parameters Throughout a Rolling Sequence.

Parameters. Levels.

A Work roll 

configuration.

2 Flat 2 Camber 1 Flat 

1 Camber

2 Flat

B First intermediate roll 

position.

Aim Loose 

Edge.

Aim Full 

Centre.

Aim Flat. Aim Flat.

C Saddle settings. Level

5555

convex

2552

concave

8558

taper

2345

D First intermediate roll 

taper geometry.

Single. Single. Double. Double.

E Speed. high

lOOm/min

high

lOOm/min

low

80m/min

low

80m/min

F Reductions 6 passes. 6 passes. 8 passes. 8 passes.

G Rolling mill operators. No 1 No 1 No 2 No 2

H Tensions. (Kg) high 7900 high 7900 low 5700 low 5700
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Table 9a. Through the Rolling Sequence.

A.N.O.V.A of the full centre measuring method
Parameter D.of.F S.of.S V F SignificanceA 3 6.63 2.21 11.6 *B 3 18.18 6.06 31.9 **C 3 2.9 0.97 5.1D 1 0.1 0.1E 1 1.9 1.9 10 *F 1 2.33 2.33 12.2 *G 1 0.47 0.4.7H 1 4.34 4.34 22.8 *I 1 0 0
D.of.F=Degrees of freedom 
S.of.S=Sum of squares 
V=Variance
F=No to compare with F tables 
*=95$ Confidence 
Pooled 3

Table 9b. Through the Rolling Sequence.

A.N.O.V.A of theloose edge measuring method
Parameter D.of.F S.of.S V F Significance

A 3 1.58 0.52
B 3 31.43 10.48 23.2
C 3 18.9 6.3 14
D 1 3.1 3.1 6.9
E 1 0.38 0.38
F 1 5.6 5.6 12.4
G 1 2.4 2.4 5.3
H 1 3.21 3.21 7.1
I 1 6.02 8.02 17.8

D.of.F=Degrees of freedom
S.of.S=Sum of squares 
V=Variance
F=No to compare with F tables 
*=95$ Confidence 
Pooled 2
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 —  - ... 1-1 ivuimig ocquence.

A.N.O.V.A of the average measuring method
Parameter D.of.F S.of.S V F Significance

A 3 3.58 1.2 17.14 *
B 3 2.36 0.8 11.4 *
C 3 0.68 0.22
D 1 0
E 1 0.43 0.43 6.14
F 1 0
G 1 1.09 1 .09 15.6 *
H 1 0.68 0.68 9.7
I 1 0.57 0.57 8.14

D.of.F=Deg'rees of freedom 
S.of.S=Sum of squares 
V=Variance
F=No to compare with F tables 
*=955fc Confidence 
Pooled 2

Table 9d. Through the Rolling Sequence.

A.N.O.V.A of the Signal to noise ratio
irameter D.of.F S.of.S V F Significance
A 3 123 41 45.56 a
B 3 83.53 27.84 30.93 *
C 3 31.53 10.51 12.12
D 1 1.37 1 .37
E 6.79 6.79 7.54
F 1 0.43 0.43
G 1 16.63 16.63 18.48 A
H 1 31.12 31.12 34.58 A
I 1 13.23 13.32 14.72

D.of.F=Degrees of freedom 
S.of.S=Sum of squares 
V=Variance
F=No to compare with F tables 
*=95Sfc Confidence 
Pooled 2
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Table 10. Parameter settings to Reduce Strip Shape Defects 
and Process Variability.

The order of significance of, and settings of 
parameters to reduce the full centre strip shape 
defect.

Parameter Order of 
Significance

Best Setting Worst Setting

Taper position 1 Aim good shape Aim loose
Work roll 
configuration 2 One flat and 

one camber
Two flat

Saddle settings 3 Concave Even, convex, 
and tapered

Tensions 5 Low High
Speed 5 Slow Fast
Reductions 6 6 pass 8 pass
Taper geometry 8 Single taper Double taper
Rollers 8 Nol No2

The order of significance and settings of parameters to 
reduce loose edge strip shape defect.

Parameter Order of 
Significance

Best Setting Worst Setting

Taper position 1 Aim full centre Aim loose edge

Work roll 
configuration 2 One flat and 

one camber
Two flat and 
two cambered

Rollers 4 No2 Nol

Tensions 4 High Low

Speed 6 Slow Fast

Saddle settings 6 Tapered Concave, 
convex, level

Taper geometry - ---- ----

The order of significance of and setting 
to reduce average value strip shape.

s of parameters

Parameter Order of 
Significance

Best Setting Worst Setting

- Work roll
conf iguration 1 Two cambered One flat and 

one cambered
Taper position 2 Aim full shape Aim good shape
Saddle settings 8 Taper Concave
Tensions 8 High Low
Speed 8 Fast Slow
Reductions 8 8 pass 6 pass
Taper geometry 8 Single taper Double taper
Rollers 8 No2 Nol
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Table 11 Typical Shape Measurements and Observations Showing That Strip Shape 

With Fullness/Quater Buckle aslo Exhibits Coilset.

Folio No Qual Gauge Width Coilset

L U

11476/11 304 0.0136" 12" 41 mm 5 mm

10381/11 304 0.0124" 12" 178 mm 10 mm

11620 301 HT 0.012" 16.125" 50 mm —

11486/11 301 HT 0.015" 17" 150 mm 42 mm

11012/11 

Folio No

301

Wav

0.0039"

e

8"

Cross camber

6 mm

Comments

Length Height

11476/11 370 mm 5 mm — 1/4 Buckle and loose edge

10381/11 450 mm 10 mm 14 mm Full centre coilset

11620 6 mm Slight 1/4 buckle

11486/11 330 mm 8 mm 10 mm Full centre coilset and 

cross camber

11012/11 140 mm 1 mm Slight 1/4 buckle
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Figure la-d.
Typical Strip Shape Defects Produced 
by Differential Reductions With 
Thier Associated Stress Patterns.
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Figure 2a-c.
Typical strip Shape Defects Produced 
by Through the Thickness Stress 
Differentials.
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Figure 5.
Mean Response Plots and Results for 
the Edge Wave Strip Shape Defect, 
from a Single Part of a Rolling 
Sequence.
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Figure 6.
Mean Response Plots and Results for 
the Full Centre Strip Shape Defect, 
from a Single Part of a Rolling 
Sequence.
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Figure 7.
Mean Response Plots and Results for 
the Ripple (herring-bone) Strip 
Shape defect, from a Single Part of 
a Rolling Sequence.
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Figure 8.
Mean Response Plots and Results for 
the Quarter Buckle Strip Shape 
Defect, from a Single Part of a 
Rolling Sequence.
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Figure 9.
Mean Response Plots and Results for 
the Visual Appearance Method of 
Recording Strip Shape Defects, from 
a Single Part of a Rolling Sequence.
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Figure 10.
Mean Response Plots and Results for 
the Profile Difference method of 
Recording Strip Shape Defects, From 
a single Part of a Rolling Sequence.
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Figure 11.
Mean Response Plots and Results for 
the Edge Wave Strip Shape Defect. 
Measuring the Effects of Work Roll 
Parameters on Strip Shape.
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Figure 12.
Mean Response Plots and Results for 
the Full Centre Strip Shape Defect. 
Measuring the effects of Work Roll 
Parameters on Strip Shape.
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Figure 13.
Mean Response Plots and Results for 
the Visual Appearance Method of 
Recording Strip Shape Defects. 
Measuring the Effects of Work Roll 
Parameters on Strip Shape.
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Figure 14.
Mean Response Plots and Results for 
the Profile Difference Method of 
Recording Strip Shape Defects. 
Measuring the Effects of Work Roll 
Parameters on Strip Shape.
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Figure 15.
Technique Used for Measuring Strip 
Shape.
Off-Line Optical Shapemeter.
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Figure 16.
Positions of Saddle Adjusters for 
Tests on Rolling Short Lengths of 
Strip.
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Figure 18.
Strip Shape Samples Showing the 
Effects of Altering the Saddles and 
the Work Roll Configuration Through 
a Rolling Sequence.
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Figure 19.
Mean Response Plots and Results of 
the Effects of Work Roll Profile and 
Saddle Settings on Strip Shape.
Tests Carried out Through a Complete 
Rolling Sequence.

a) Visual Scale Method of Recording 
Results.

b) Averaging Shape Measurements Method of 
Recording Results.



a
Taguchi S t a t i s t i c a l  A nalysis  o f  Shape 

FIG.3d Effect of Hsrt Ball Profile

0 2 3
V isual S ca le  R ep resen ta tio n

Taguchi Statistical Analysis of Shape
___________ F16.3e Effect of Saddle lettings

0 1
V isual S ca le  R ep resen ta tio n

3

Taguchi S t a t i s t i c a l  A nalysis o f  Shape 
 ________ FIG.3f lnteraetlfln-laMles/ll.B.Profile

0
V isual S ca le  R ep re sen ta tio n



Me
as

ur
ec

l 
Me

an
 

Ra
sp

on
aa

 
Me

as
ur

ed
 

Me
an

 
Ra

sp
on

sa
 

Ha
as

ur
ed

 
Me

an
 

R
a
a
p
o
n
a
o

Vd  Taguchi S ta t is t ic a l  Analysis of Shape
FIG.Sa Effect of Sark Ball Profile

Average Measured Shape

Taguchi Statistical Analysis of Shape
HB.JC mteractiartaidles/S.H.Frofile

Average Measured Shape

Taguchi Statistical Analysis of Shape
FIB.A Effect of Saddle Setting

0 1 2
Average Measured Shape



Figure 20.
Strip Shape Plots Showing the 
Effects of Rolling Parameters on 
Strip Shape Throughout a Complete 
Rolling Sequence.

Material Type; 316 Austenitic 
Stainless Steel 

Reduction; 75/ From 1.22mm to 0.305mm 
Strip Width; 312mm



S.t » ip chapR

117 0

Ift
7c .0C

C! 57.0 Q
2 39.0
<-?

76.0
13.0
0.0

105.0 154.0 200.0 252.0

S t r i p  s h a p e
T e s t  !h

a
aa
£to

Distance along the strip width < nn> 42.0 1C8.0 154.0 2G0.0 245.0 252.0Distance along the strip width (nn}

Strip shape

117.0

t4 51.0

C

c

lt.O 52.0 105.0 154.0 200.0 245.C 252.GDistance along the strip width ( m )

130.0
117.0
104.0

rt n'°
\  ,8.0 
3 (5.0M

13.0
0.0  -15,0 (2.D istance 108.0 154.0 200.C 245.0 252.0Distance along the strip width (nti)

S t r i p  c h a p o

130.0
117.0

117.0 104.0
101.0

91.0

7t.O
£5.0

12.0
12.0

245.0108.0 200.0154.0
lt.O £2.0 1C4.0 154.0 2C0.0D istance along the strip, width (nn)



Strip shape Strip shape
r.o.o

11? 0
104.0

51.0

C

52.0

39.0

13.0

62.0 1C8.0 134.0 2CQ.0 246.0 252.0

130.0

117.0

104.0

78.0C3
63.0*-<

J! 52.0 Q
Jr 35.0
V)

26.0

13.0

0.016.0 108.0 154.0 200.0 252. CDistance along the strip uldth <««> Distance along the strip width <tin>

S t r i p  s h a p e

101.0

76.0

65.0

ft! 52.0 C
r  29.0
M

26.0
12.0
0.0

16.0 105.0 154.0 252.0

S t r i p  s h a p e  
lest Ho 11

01 52.0

Distance along the strip width (liii) 16.0 62.0 108.0 134.0 200.0 246.0 252.0Distance along the strip width <r»n>

S t r i p  s h a p e  
Test Ho 12

S t r i p  s h a p e  
Test Ho ?

- 0.0
16.0 62.0 108.0 134.0 2C0.0 246.C 232.0Distance along the strip width (nn)

16.0 62.0 105.0 154.0 200.0 246.0 232.0Distance along the strip width <«n>



Sh
ap
e 

I 
un
it
s 

Sh
ap
e 

I 
un

it
s

c

S t r i p  s h a p e

130.0

117.0

104.0

52.0

39.0

13.0

1CS.0 154.0 200.0

S t r i p - s h a p e  
Teil Ho 15

Distance along the strip uidth (m m )

130.0

117.0

104.0

•" 78.0C3

fl) 52.0 
C
i  39.0f/i

25.0

13.0

<2.0 154.0 2C0.0 232ICS .0
< h r

S t r i p  s h a p e

130.0

117.0

104.0

78.0

52.0

26.0

13.0

0.0 *- 
15.0 108.0 154.0 200.0 292.0246.0

S t r i p  s h a p e

Distance along the strip uiclth (hn)

130.0

117.0

104.0

01 51.0

~  78.0
3

0 52.0Q
5  39.01A

' 26.0

13.0

2922C0.0ICS .0Distance along the strip width <nr



Figure 21.
Mean Response Plots and Results for 
the Full Centre Strip Shape Defect. 
Measuring the Effects of Rolling 
Parameters on Strip Shape Throughout 
a Complete Rolling Sequence.
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Figure 22.
Mean Response Plots and Results for 
the Average Measure Method of 
Recording Strip Shape. Measuring the 
Effects of Rolling Parameters on 
Strip Shape Throughout a Complete 
Rolling Sequence.
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Figure 23.
Mean Response Plots and Results for 
the Wavy Edge Strip Shape Defect. 
Measuring the Effects of Rolling 
Parameters on Strip Shape Throughout 
a Complete Rolling Sequence.
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Mean Response Plots and Results for 
the Signal to Noise Ratio. Measuring 
the Effects of Rolling Parameters on 
Strip Shape Throughout a complete 
Rolling Sequence.
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Figure 25.
Solatron Data Logger.
Used to Measure and Record the work 
Roll Bending Strains.





Figure 26.
Strain Gauged Work: Rolls with their 
Positions in the Roll Gap whilst 
Measuring Strains.

a) First (rosette) Gauged Roll.

b) 180 Gauged Roll.

c) Undercut Gauged Roll.
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Figure 27.
Strain Graphs Showing the Effects of 
First Intermediate Roll Position on 
Work Roll Strain.

a) Horizontal Roll Strains.

b) Vertical Roll Strains.

c) Undercut Roll Strains.
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Figure 28.
Strain Graphs Showing the Effects of 
First Intermediate Roll Profile on 
Work Roll Strain.

a) Horizontal Roll Strains.

b) Vertical Roll Strains.

c) Undercut Roll Strains.
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Figure 29.
Strain Graphs Showing the Effects of 
Loading Differences on Work Roll 
Strain.

a) Horizontal Roll Strain.

b) Vertical Roll Strain.

c) Undercut Roll Strain.
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Figure 30.
Strain Graphs Showing the Effects of 
Strip in or Strip out of the Roll 
Gap on Work Roll Strain.

a) Horizontal Roll Strain.

b) Horizontal Roll Strain.

c) Vertical Roll Strain.

d) Undercut Roll Strain.
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Figure 31.
Strain Graphs Showing the Effects of 
Work Roll Profile Differences on 
Work Roll Strain.

a) Horizontal Roll Strain.

b) Vertical Roll Strain.

c) Undercut Roll Strain.

d) Undercut Roll Strain.
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Figure 32.
Strain Graphs Showing the Effects of 
Saddle Settings on Work Roll Strain.

a) Horizontal Roll Strain.

b) Vertical Roll Strain.

c) Undercut Roll Strain.
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Figure 33.
Strain Graphs Showing the Effects of 
Offset Castors on Work Roll Strain.

a) Horizontal Roll Strain.

b) Horizontal Roll Strain.

c) Vertical Roll Strain.

d) Vertical Roll Strain.
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Figure 34.
Strain Graphs Showing the Effects of 
Flat Ground First Intermediate Rolls 
on Work Roll Strain.

a) Horizontal Roll Strain.

b) Vertical Roll Strain.

c) Undercut Roll Strain.
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Figure 35.
Estimates of the way in which a Work 
Roll Changes Shape Under Load Based 
on Strain Results.

a) Cross Sectional Profile Changes.

b) Longitudinal Profile Changes.
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Figure 36.
Graphs of Vertical Work Roll Bending 
Strains Using 50T Mill Load and 
Different First Intermediate Roll 
Positions.
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Figure 37.
Graphs of Vertical Work Roll Bending 
Strains Using 100T Mill Load and 
Different First Intermediate Roll 
Positions.
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Figure 38.
Graphs of Horizontal Work Roll 
Bending Strains Using 100T Mill Load 
and Different First Intermediate 
Roll Positions.
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Figure 39.
Estimates of the Roll Gap Profile 
With Associated Strip Shape Defects 
Based on Work Roll Strain Results.

Sequences of Strip Shape Defects.
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Figure 40.
Horizontal "S" Bending of the Loaded 
Work Rolls Based on Work Roll Strain 
Results.
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Figure 41.
Different First Intermediate Roll 
Profiles Used to Improve Strip Shape.

a) Ordinary Profile

b) Double Tapered Profile

c) Triple Taper With Back Taper

d) Triple Taper With Back Taper 

el) Blended Taper

e2) Blended Taper With Back Taper 

f) Complex Profile
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Figure 42.
Graphs Showing Examples of Typical 
Strip Shape Rolled Using Ordinary 
Tapered First Intermediate Rolls.
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Figure 43.
Graphs Showing Examples of Strip 
Shape Rolled Using Double Tapered 
First Intermediate Rolls.
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Figure 44.
Graphs Showing Examples of Strip 
Shape Rolled Using Triple Tapered 
First Intermediate Rolls.
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Figure 45.
Graphs Showing Examples of Strip 
Shape Rolled Using Curved Tapered 
First Intermediate Rolls.
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Figure 46.
Graphs Showing Examples of Strip 
Shape Rolled Using Complex Tapered 
First Intermediate Rolls.
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Figure 47.
Graphs Showing Examples of Strip 
Shape Rolled Using Bored (hollow) 
Work Rolls.
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Figure 48.
Graphs Showing Examples of 
Differences in Strip Shape Caused by 
Differences in Saddle Settings.
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Figure 49.
Graphs Showing Examples of 
Differences in Strip Shape Caused by 
Offset Castors.
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Figure 50.
Graphs Showing Examples of 
Differences in Strip Shape Caused by 
Rolling Speed Differences.
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Figure 51.
Graphs Showing Examples of 
Differences in Strip shape Caused by 
Differences in Rolling Tensions.
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APPENDIX 1: Shape produced by differential elongations across the strip width.

Edge wave.

Causes for and remedies.

This shape defect is caused by rolling the edges of the strip by a greater percentage than 

the centre. Edge wave can occur on one or both edges of the strip. The strip can look as 

if it has a small wave on its edges, with the wave peaks low and the frequency of wave 

high. High peaks and low frequency wave make the loose edge defect look severe.

Rolling parameters that mostly affect Edge wave, and the action to remove the defects, in 

order of significance are:

a) First intermediate roll position:

To reduce edge wave the rolls need moving to a position where there is

more taper relief on the strip. Small movements of roll position can have 

significant effect on strip shape.

b) Work roll geometry:

Using camber profiled work rolls reduces edge wave. With chamber rolls 

the centre of the strip carries more load than the edges. The effective taper 

of the first intermediate roll is increased.

c) First intermediate roll geometry/strip geometry interaction:

These two parameters combine to have a significant effect on edge wave.



To reduce edge wave use flat profiled incoming strip and steeply angled 

first intermediate roll tapers.

d) Strip Geometry:

Strip is supplied to LSS with a flat profile or with varying degrees of 

wedge shape. The flattest supplied strip produces the least edge wave.

e) Strip geometry/first intermediate roll interaction:

Using flat profiled strip and more taper relief combines to reduce edge 

wave.

f) Work roll Size:

Keeping the work rolls similar in size will help to reduce edge wave.

Front tension:

High front tension will reduce edge wave. A knoll edge of the tensions 

that can be withstood by the strip is necessary. A rule of thumb given for 

tensions is not to exceed 60% of the yield stress.

Practical steps.

a) Move the first intermediate rolls to a position where more edge relief is

given to the strip.

b) Use camber profiled work rolls or a combination.
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c) Keep the work rolls to a similar size.

d) Increase the front tension.

Full (over rolled) centre.

This shape defect is caused by rolling the centre of the strip by a greater percentage 

reduction than the edges. Rolling centre fullness is time dependant, as rolling time 

progresses centre fullness increases. There are two reasons for this;

a) The temperature of the mill rolls increases with rolling time until steady 

state thermal conditions are reached. Increasing temperatures mean that the 

rolls expand, which in turn reduces the centre of the strip more.

b) Improved lubrication caused by increasing mill speed causes the required 

rolling load to reduce. With reduced rolling load the mill bends less 

severely so encouraging full centre.

Because of these time dependant changes, to ensure that good flat strip shape is achieved, 

the set up strip shape needs to be that of flat edges. The degree of loose edge is based on 

rolling experience. The roller takes into account the speed, tensions,reductions and 

material properties when making his judgement.

The rolling parameters that mostly affect full centre strip shape, and the actions to reduce 

it, in order of significance are as follows.



a) First intermediate roll position.

To reduce centre fullness the first intermediate rolls should be moved so 

that there is less taper relief on the strip. Small movements of roll position 

have large effects on strip shape.

b) Work Roll Geometry.

Flat profiled work rolls reduce centre fullness. Mill bending ensures that 

the strip edges will carry more load then the centre, hence, reducing centre 

fullness.

c) First intermediate roll geometry/strip geometry interaction.

Use of wedge strip and shallow angled first intermediate roll tapers reduces 

centre fullness. Wedge strip does not really reduce centre fullness so much 

as increase the opposite defect of edge ware.

d) Reductions.

Heavy reductions increase mill load. The increased load ensures that the 

rolls bend more. This bending makes the edges of the strip carry a higher 

load than the centre so reducing centre fullness.

e) Strip Geometry.

Wedge strip increases edge wave. Because of this centre fullness is 

reduced.
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f) First intermediate roll geometry.

Shallow roll tapers reduce the amount of strip edge relief, and also affect 

the mill bending. This combination of effects reduces the production of 

centre fullness.

g) First intermediate roll position/strip geometry interaction.

The combined effects of these parameters increase their individual effects 

on strip shape. Use of wedge strip and positioning the first intermediate 

rolls for less taper relief reduces centre fullness.

Practical steps.

a) Move the first intermediate rolls to a position of less taper relief over the

strip.

b) Use flat positioned wear rolls or a combination of one.

c) Increase the percentage reduction hence increase the mill load, (this can

also be achieved by reducing the back tension)

d) Change the first intermediate roll geometry.
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Quarter Buckle.

This defect is caused by complex mill and/or roll bending. Two areas of the strip are 

reduced at a greater percentage than the rest of the strip. These areas are normally at 

positions off centre ie quarter positions.

Quarter buckle may occur at one or both sides of the strip shape defect. Quarter buckle 

and full centre strip shape are closely related.

The rolling parameters that mostly affect quarter buckle strip shape, and the actions to 

reduce it, in order of significance are as follows:

a) First intermediate roll position.

The difficulty encountered when trying to remove quarter buckle by first 

intermediate roll position is that, by increasing the amount of tape relief 

centre fullness is encouraged, and decreasing the amount of taper relief 

encourages loose edges. No guidance can be given on where to position 

these rolls. The roller must be aware that the first intermediate rolls 

position has the greatest effect on quarter buckle.

b) First intermediate roll geometry.

Shallow ground tapers on the first intermediate rolls reduces quarter 

buckle. To reduce quarter buckle, still retain control on strip direction, 

and control loose edge strip shape, a double ground taper is recommended. 

Although not highly significant, the use of flat ground work rolls will have 

the effect of reducing the first intermediate roll taper.
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c) Speed.

Slow rolling speed will produce a more consistent strip shape. The shape

that the roller sets up on, will be less likely to alter. Slower rolling speed 

has been shown to reduce quarter buckle strip shape.

d) Back up roll (saddle) configuration.

Quarter buckle is reduced slightly by setting the saddles to give increased 

mill centre loading.

e) Load.

Reducing the mill load will reduce quarter buckle. By reducing the load 

the severity of work roll bending around the first intermediate roll taper is 

reduced.

This can be achieved by increased tensions or reduced reduction.

Practical Steps.

a) Adjust the first intermediate roll position.

b) Modifying the first intermediate roll geometry. Use first intermediate rolls

with a double ground taper.

c) Slow rolling speed.

d) Roll with flat ground work rolls.
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e) Set the saddles to give more weight at the mill centre.

f) Reduce the rolling load.

Herring bone (ripple).

This defect is characterised by thin flutes running at an angle in the strip. The 

mechanism for causing this shape is complex. The material undergoes over rolling and 

shear stresses across its width at the same time. Rolling tensions play an important role 

in reducing this defect. High strain peaks are reduced by using high rolling tensions. 

Shear stresses across the width of the strip are evened out by high tensions.

The rolling parameters that mostly affect Herringbone strip shape, and the actions to 

reduce it n order of significance are as follows:

a) First intermediate roll position.

With less taper relief loose edges are encouraged and full centre is

discouraged. If there is no full centre then the ability of the sheer strains

to pull elongated flutes in the strip is removed. Rolling with less taper 

relief reduces Herringbone.

b) Tensions.

High front tensions reduce herringbone. To accompany high front 

tensions, the back tension must also be increased to prevent pulling the 

strip through the rolls.



c) Reductions.

By giving a greater reduction to the strip the rolling load is increased. This 

increase encourages loose edge and discourages full centre. The localised 

strain peaks of the work roll bending around the intermediate roll taper is 

reduced, and the ability of the shear strains to pull flutes into the strip is 

removed.

d) First intermediate roll geometry.

Any reduction in the severity of bending the work rolls around the first 

intermediate rolls will reduce herringbone. Any reduction in rolling full 

centre or quarter buckle will reduce herringbone. To this end the shallow 

ground or modified tapers will reduce herringbone strip shape.

e) Work roll size.

Keeping the work rolls the same size reduces herringbone. The symmetry 

of rolling, and the horizontal and vertical bending of the rolls, are affected 

by roll size. These combine to affect herringbone.

f) Back up roll (saddle) configuration.

Keeping the mill load pattern level will help to reduce herringbone. 

Differences in stresses across the strip are reduced, which will discourage 

herringbone.
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Practical steps:

a) Position the first intermediate rolls as to remove centre fullness.

b) Keep the front rolling tension high.

c) Increase reductions so reducing fullness.

d) Use shallow or modified double taper first intermediate roll geometry.

e) Keep the work rolls similar in size.

f) Keep the saddle settings level.

Coilset.

Coilset, is the tendency for the strip to curl in its longitudinal direction. What causes 

coilset is a difference in stress distribution through the thickness of the strip. There are a 

number of rolling faults that create this differential stress distribution, they are as follows:

(a) Lubrication/cooling differences between the top and bottom strip surfaces.

(b) Different work roll diameters.

(c) Non-level strip pass line height.

10



(d) Uneven material properties.

(e) Difference in top and bottom strip surface speed.

(f) Different work roll surface finishes.

There are rolling variables which do not cause coilset but make the process more sensitive 

to it. The most notable of these is rolling load.

Rolling parameters that mostly affect coilset strip shape and the actions to reduce it, in 

order of significance are as follows.

a) First intermediate roll position.

Positioning the first intermediate roll to give less taper relief reduces 

coilset. The reason for this is that coilset and full centre are related by 

horizontal roll bending. Less taper relief reduces full centre.

b) Reductions.

Decreasing the rolling load by decreasing the reductions makes the rolling 

process less sensitive to coilset. The work rolls do not bend so severely 

horizontally. The stress distribution differences are less severe because the 

surface stresses are lower.

c) Strip geometry.

Wedge strip encourages loose edge, this reduces the likelihood of full 

centre, so reducing coilset.



d) Work roll geometry.

The rolling set up which reduces full centre, that of using flat profiled

work rolls, also reduces coilset.

e) First intermediate roll/strip geometry interaction.

Positioning the first intermediate rolls to give less taper relief, and using 

wedge strip interaction increases the amount of loose edge. This ensures a 

reduction in centre fullness with the associated reduction in coilset.

f) First intermediate roll geometry/strip geometry interaction.

The combination that reduces coilset is that of using steep tapered first 

intermediate roll profiles, and wedge strip.

g) Reduction/back tension interaction.

These two parameters interact to reduce coilset more than they would do 

individually. A low reduction, which reduces rolling load, with a low back 

tension, which slightly increases rolling load, reduces coilset.

h) Speed.

High rolling speed reduces rolling load and, although centre fullness is 

increased, the sensitivity of the strip to coilset producing faults is reduced. 

Lubrication conditions are evened out between the strip surfaces with high 

rolling speeds.
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Practical steps:

a) Position the first intermediate rolls to give less taper relief.

b) Reduce the rolling load.

c) Use flat ground work rolling which are similar in size.

d) Keep the pass line height level.

e) Ensure even lubrication/cooling conditions.

f) Low back tension.

g) High rolling speed.

Cross camber.

Cross camber is the tendency of the strip to form a curve across its width, that is, to form 

a gutter. This shape is caused by a difference in stress distribution through thickness of 

the strip. The formation of coilset is attributed to crossing of the rolls in contact with the 

strip. To isolate a single cause of coilset is difficult, lateral material flow across the roll 

bite may account for some of it. Coilset is closely related to cross camber. To remove 

cross camber follow the same conditions as for removing coilset.
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Twist.

This is a form of negative and positive cross camber occurring at the same time. Twist is 

caused by a through thickness differential stress pattern which changes across the strip 

width. The cause of twist is generally attributed to differences in work roll surface 

finish. Other factors such as horizontal roll bending, lubrication differences and lateral 

material flow may affect twist. To remove twist follow the conditions as for removing 

coilset.

General rolling practices to help improve strip shape.

a) Ensure consistent grinding of all mill rolls. A recommended target of 3/zm 

roll profile accuracy should be aimed for. That is, the rolls should exhibit 

no more than 3/*m taper. The rolls, if cambered, should be within 3/xm as 

their stated camber, the roll camber should be central. The rolls should 

exhibit consistent surface finish with no chatter marks. Any inconsistency 

will encourage coilset, cross camber and twist.

b) First intermediate rolls with a double tapered profile should be used (after 

further research this profile may be further improved).

c) Generally high rolling tensions, especially front, will reduce strip shape 

defects. Tensions of up to 50% of stress yield can be used.
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d) Reduced last pass rolling speed will ensure a more consistent strip shape. 

The shape rolled will be near to that which the operator starts with.

e) Keeping the mill accurately aligned will help the strip to run correctly.

Any deviation of line causes strip shape problems. Periodic checks on mill 

alignment should be made.

f) Using similar sized work rolls make the rolling process more consistent and 

generally help to improve strip shape.

Recommended practices for rolling throughout a sequence.

Rolling parameters (variables) have an effect, not only on a single rolling pass but, 

cumulatively throughout a complete rolling sequence. Within material properties ranges it 

is possible to recommend certain rolling practices.

Recommended practices:

a) Material type 316 Austenitic stainless.

Dimensions 0.312m wide.

Rolled from 1.22mm to 0.305mm a 75% reduction.

Middle strip no wedge.

Rolling mill FZ3 

Work rolls

Roll throughout the sequence with one flat and one cambered work roll.
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First intermediate roll position:

Aim for slightly full strip shape throughout the sequence, then for good flat last pass strip 

shape.

Saddle settings:

Preferred settings may change dependent on the rolls in the mill. On the information 

received to date the preferred saddle settings are those which give convex loading.

Setting at 5,8,8,5.

Speed:

Reduced last press rolling speed of 80 metres/minute will help to produce better strip 

shape.

Reductions:

These have little effect throughout the sequence on strip shape as long as the last pass is 

kept reasonably low. A six or seven pass rolling sequence with the last press being 

approximately 1% or less will give good shape.
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Tensions:

High tensions improve the strip shape. On the low tension setting the Amps should be 

600A for Back tension and 700A for Front tension for the last pass. These current 

settings relate to 15,000 lbs (6,782 kg) and 17,500 lbs (7916 kg). These tensions relate 

to 60% of the yield strength. These tension settings can be used throughout the rolling 

sequence. Using these settings product variation will be reproducible. Good strip quality 

of below 30 I-units with care will be predictable. Average rolled shape without these 

settings can be over 50 I-units. 50 I-units is recognised as average for rolled strip shape.

b) Material type 316 Austenitic stainless.

Dimensions .320mm

Rolled from O.406 to 0.179mm a 569% reduction.

Wedge strip-0.01 mm wedge.

Rolling mill FZ1.

Work rolls.

Roll throughout the sequence with two flat work rolls. This is the most important 

parameter affecting strip shape on this job.

First intermediate roll position:

Aim for good strip shape throughout the rolling sequence.
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Saddle settings:

On this job and on this mill, the saddle settings have a significant affect on strip shape. 

Holding the saddles to give a line only increasing load across the mill dependent on the 

wedge of the strip is best. Where the thickest edge of the strip is, there should be a 

wider roll gap and vice-versa. Saddle settings of 2,3,4,5 should be used.

Tensions:

At 60% of the yield strength of the material on the last pass 5880 lbs (2830 kg) max front 

tension should be used.

Using these settings product variation will be reduced and consistent strip shape produced. 

Reductions in rolling speed from those normally finished on, 115 meters/minute will 

further improve strip shape.
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APPENDIX 2

Model of first intermediate roll effects on work roll bending.

To c o n f ir m  t h e  s t r a i n  r e s u l t s  show ing  t h e  d om in at  e f f e c t  o f  t a p e r  

p o s i t i o n  on s t r a i n s  e x p e r ie n c e d  by t h e  r o l l  a s im p le  m odel i s  

h e r e  fo rw a rd ed  t o  show t h e  r e l a t i o n s h i p  b e tw e e n  "y" t h e  d i s t a n c e  

t h a t  t h e  t a p e r  a l l o w s  t h e  r o l l  t o  move.

Assum ing c o m p r e s s io n  b etw een  t h e  s t r i p  and work r o l l  and t h e  

f i r s t  i n t e r m e d i a t e  r o l l  and work r o l l .  The o v erh a n g  o f  t h e  s t r i p  

w i l l  e x e r t  a f o r c e .  Assum ing t h a t  t h e  f o r c e  e x e r t e d  r e d u c e s  in  a 

l i n e a r  manner t h e n  a s im p le  beam a p p r o x im a t io n  o f  t h e  sy s te m  

w ould  b e  a s  f o l l o w s .

"W" t h e  maximum lo a d  a p p l i e d

nL" t h e  l e n g t h  o r  t a p e r  p o s i t i o n

H o t  (b\\



A g e n e r a l  form u la  i s  r e q u ir e d  t o  e x p r e s s  t h e  r e l a t i o n s h i p s  

i n v o l v e d .

From Beam T heory E l d 2v = -BM
dx

w here F = Youngs Modulus

I  = S econ d  moment o f  a r e a  

BM = B en d in g  movement

n
d v = R a te  o f  ch an ge o f  beam c u r v e  
d x 2

To s o l v e  t h i s  a g e n e r a l  form u la  t o  e x p r e s s  t h e  b en d in g  moments i s  

r e q u ir e d .

L e t  x  be  same d i s t a n c e  m easured  from P o i n t  A 

Moment = F o rc e  x d i s t a n c e

For t h e  t r i a n g u l a r  lo a d in g  s i t u a t i o n  t h e  d i s t a n c e  u se d  i s  t h a t  o f  

t h e  c e n t r o i d .  When m ea su r in g  t o  t h e  c e n t r o i d  from t h e  ap ex  o f  a 

t r i a n g l e  i t s  d i s t a n c e  i s  found t o  be 2 /3  o f  t h e  l e n g t h .

The a r e a  o f  t h e  t r i a n g l e  i s  t h e  t o t a l  lo a d ,  t h e r e f o r e  f o r  t h e  

g e n e r a l  s o l u t i o n  we need  t h e  lo a d  a t  any p o s i t i o n .

From s i m i l a r  t r i a n g l e s  t h e  r e l a t i o n s h i p  can  be found

w = H ^
L x

 _______ u_________  >
T h e r e fo r e  t h e  lo a d  c o n d i t i o n  o r  a r e a  o f  t h e  t r i a n g l e  i s

Wx . X -  -  Wxz 
L 2 2L

BM form u la  = WX2 2x = Wx3
2L 3 3L

SoUiuack rr ck̂ a
JJ d,c'

4 fy

J T _  cbc.



E l dv = - Wx4 + A 
dx 12L

E l y = -  Wx  ̂ + Ax + B 
60L

To f i n d  t h e  c o n s t r a i n t s  o f  i n t e g r a t i o n ,  a p p ly  t h e  Boundry 
c o n d i t i o n s

a t  x = L y  = 0
a t  x = L dy = 0

dx

from E l dy = -  Wx4 + A
12L

0 WL3 + A
12

A = WL3
12

from E ly  = -  Wx5 + Ax + B
60

O WL4 + WL4 + B

B = -  WL

60 12

4

15

The g e n e r a l  r e l a t i o n s h i p  i s :

E ly  = -  Wx5 + WL3x -  WL4
60L 12 15

I f  we a l l o w  x  = o i e .  a t  t h e  beam end

E ly  = -  WL4
15

from t h i s  i t  i s  c l e a r  t h a t

y i s  p r o p o r t i o n a l  t o  W 
and y i s  p r o p o r t i o n a l  t o  L4 .

The q u a d r a t ic  term  shows t h e  d o m in a t io n  by t h e  l e n g t h  o v e r  o t h e r

f a c t o r s  in  p r o d u c in g  b e n d in g .



For a more a c c u r a t e  model t h e  lo a d in g  c o n d i t i o n s  can  be changed , 

h ow ever , t h e  m odel w i l l  o n ly  be r e f i n e d  n o t  r a d i c a l l y  a l t e r e d  in  

i t s  r e l a t i o n s h i p s .

The m odel c o n f ir m s  t h a t  t h e  b en d in g  a s  r e c o r d e d  from s t r a i n  

m easurem ents  i s  d om in ated  by t h e  p o s i t i o n  o f  t h e  f i r s t  

i n t e r m e d i a t e  r o l l s .


