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Anthony Bendell: A Generalised Semi-Markov Reliability Model

The thesis reviews the history and literature of reliability 
theory. The implicit assumptions of the basic reliability model are 
identified and their potential for generalisation investigated. A 
generalised model of reliability is constructed, in which components 
and systems can take any values in an ordered discrete or continuous 
state-space representing various levels of partial operation.

For the discrete state-space case, the enumeration of suitable 
system structure functions is discussed, and related to the problem 
posed by Dedekind in 1897 on the cardinality of the free distributive 
lattice. Some numerical enumerations are evaluated, and several 
recursive bounds are derived. In the special case of the usual 
dichotomic reliability model, a new upper bound is shown to be 
superior to the best explicit and non-asymptotic upper bound previously 
derived. The relationship of structure functions to event networks 
is also examined. Some specific results for the state probabilities 
of components with small numbers of states are derived.

Discrete and continuous examples of the generalised model of 
reliability are investigated, and properties of the model are derived. 
Various forms of independence between components are shown to be 
equivalent, but this equivalence does not completely generalise to 
the property of zero-covariance. Alternative forms of series and 
parallel connections are compared, together with the effects of 
replacement. Multiple time scales are incorporated into the 
formulation.

The above generalised reliability model is subsequently 
specialised and extended so as to study the optimal tuning of partially 
operating components. Simple drift and catastrophic failure mechanisms 
are considered. Explicit and graphical solutions are derived, together 
with several bounds. The optimal retuning of such units is also 
studied and bounds are again obtained, together with some explicit 
solutions.
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OBJECTIVES

The main objectives of the research in this thesis are:-

(i) To investigate the nature of the basic reliability model,

to identify its implicit assumptions, and to examine 

their realism and potential for generalisation.

(ii) To construct a generalised model of reliability

incorporating states of partial operation.

(iii) To consider the associated enumeration of such systems.

(iv) To consider related optimisation problems in systems

management.
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CHAPTER 1 

INTRODUCTION

1.1 The Literature

Whilst the exact age of Reliability Theory is subject to 

some dispute (e.g. Barlow and Proschan (1963), Lomnicki (1973)), 

there is general agreement that it has not yet celebrated its 

thirtieth birthday. Of the main reliability journals, the IEEE 

Transactions on Reliability first appeared in 1931, Technometrics 

in 1959, Microelectronics and Reliability in 1961, and Reliability 

Engineering in 1980. More recent journals also aim specifically 

to publish material on reliability, e.g. Stochastic Processes and 

Their Applications (since 1972) and the Journal of Statistical 

Planning and Inference (since 1977). Papers on reliability and 

related replacement problems are also more widely dispersed across 

the literature, and important in this context are Operational 

Research Quarterly (1950-1977), Journal of the Operational Research 

Society (since 1978), Operations Research (since 1953), Naval 

Research Logistics Quarterly (since 1954), and Management Science 

(since 1955). Microelectronics and Reliability incorporates the 

World Abstracts on Reliability.

The major reliability books started appearing in the 1960s 

with Bazovsky (1961), Lloyd and Lipow (1962), Cox (1962),

Zelen ed. (1963), Polovko (1964, English edition 1968),

Roberts (1964), Barlow and Proschan (1965), Gnedenko, Bielajev and 

Solovier (1965, English edition 1970), and Shooman (1968). In the 

seventies and early eighties, many more have appeared, notably Green 

and Bourne (1972), Mann, Schafer and Singpurwalla (1974), and Barlow 

and Proschan (1975).



Today regular symposia and conferences on reliability take 

place in the U.K., U.S.A. and elsewhere. The relevant organisations 

and professional bodies in the field, as well as the industrial history 

of reliability are reviewed by Green (1977). See also Brewer (1977).

The important early papers which established the basic 

characteristics of the reliability model and the problem of systems 

reliability predictions were von Neuman (1956), Moore and Shannon (1956) 

and Birnbaum, Esary and Saunders (1961).

1.2 Component Reliability

Reliability of a component of age t (t^O), denoted by R(t), 

is defined as the probability that the item is still operating satis­

factorily at that age, and R(t) is taken to be monotonically non- 

increasing with R(0)=1, R(o o ) = 0. Related functions to this reliability 

or survivor function are the distribution function of time to failure

F(t) = l-R(t), (1.1)
its derivative the probability density function of time to 

failure (if it exists everywhere)

(1.2)
and the hazard function, age-specific failure rate or failure

intensity

h(t) = f(t)/R(t). (1.3)

Clearly,

R(t)

f(t)

Also of interest is the cumulative hazard

(1.5)

and the moments of the time to failure distribution (if they

2.



exist), in particular the mean time to failure (MTTF)i ooA CO POU
E(t) = JJtf(t)dt = J 0R(t)dt « (1.6)
It is common to restrict attention to specific classes

of life or time to failure distributions defined in terms of the

above functions. Of greatest practical interest are classes of

distributions which in some sense correspond to \i/earout or aging.

Barlow, Marshall and Proschan (1963) and Barlow and Proschan (1963)

consider the class of distrubutions with increasing hazard or failure

rate (IFR), for which h(t) is increasing in t. Birnbaum, Esary and

Marshall (1966) consider the increasing failure rate average (IFRA)

class for which H(t)/t is increasing. Bryson and Siddiqui (1969)

consider the class with decreasing mean residual life (DMRL) for 
f co

dt is decreasing. Marshall and Proschan (1963)LJoR(s+t)/R(s)which

consider both the new better than used (NBU) class for which

R(s+t)^ R(s)R(t), and the new better than used in expectationnflO A C©
(NBUE) class for which JgR(s+t)dt^R(s) JgR(t)dt. Haines and 

Singpurwalla (1974) introduce a further class with decreasing 

percentile residual life (DPRL), whilst Muth (1980a) defines the class 

with convex decreasing mean residual life, which is a proper subset 

of the IFR class. See also Marshall and Proschan (1972), Esary, 

Marshall and Prosohan (1973), Proschan and Serfling (1974), Barlow 

and Proschan (1973), Hollander (1978) and Ross (1979). Tests of the 

appropriateness of the various classes are developed by Proschan and 

Pyke (1967), Barlow and Proschan (1969), Bickel and Doksom (1969), 

Bickel (1969), Hollander and Proschan (1972, 1974) and Koul (1977).

Of course, dual classes to the above can be defined by 

reversing the direction of monotonicity or inequality in order to 

describe the life distributions of items that improve with age.

3.



Multivariate equivalents have also been considered (e.g. Harris (1970), 

Brindley and Thompson (1972), Marshall (1975), Buchanan and Singpurwalla

(1977), Esary and Marshall (1979), Block and Savits (1980, 1981a)). 

Whilst any continuous density on [o,eojmay be hypothesised

for f(t), interest in the reliability literature (and especially

amongst reliability engineers) has concentrated upon the one-parameter

exponential density

f(t) = |j- exp(-t/0)

R(t) = exp(-t/0)
n (1.7)

h(t) = j
E(t) = 0, var(t) = 02 , 0>O ,

since its constant hazard corresponds to random failure, or the 

central section of the so-called bath-tub curve popular amongst 

engineers (e.g. Shooman (1968), Lomnicki (1973)).

Despite e.g. Shooman (1968)'s early warning, it is still 

apparently true that many reliability engineers assume a constant 

hazard or age-specific failure rate unless there is evidence to the 

contrary (see e.g. Bourne (1973), Lomnicki (19.73), Cottrell (1977),

Dorey (1979)), and this often causes serious error (Yasuda (1977),

Moss (1978)). Indeed, in the literature reliability data is often 

presented implicitly based upon this assumption (e.g. Kujawski and Rypka

(1978), Gibson (1979), Snaith (1979), Henley and Kumamoto (1981)), 

and the administration of reliability data banks often shares this 

approach (e.g. George (1978), Silberberg (1979), Holmberg and Markling 

(1980), Colombo and Jaarsma (1980)). See also Shooman (1968)'s 

comments on MIL-HDBK-217 and other published reliability data sources, 

and more recently Gaertner et al (1977), and O'Connor (1977).

The assumption of exponentiality corresponds (1 to 1) to specifying



a Markov Process, in this case a simple Poisson process, for the 

component (e.g. Feller (1968J. If upon failure the component is 

repaired and has an independent exponential repair time distribution,

Markov process. Some justification for the use of the exponential 

in systems is its arising as a limit* e.g. Feller (1971), Gnedenko, 

Belyayev and Solovyev (1970) . See also Gaver (1963), and SchOeller 

and Schwarz (1976).

the literature is the Weibull distribution named after Weibull (1939, 

1951) but originally derived by Fisher and Tippett (1928). For this

The hazard function is monotonically increasing in t if p>l 

(corresponding to aging, wearout or the third section of the bath-tub

to initial or burn-in failures, or the first section of the bath-tub). 

If j3= 1, the distribution reduces to the exponential (1.7).

model any section of the bath-tub curve partially explain the Weibull*s 

popularity in reliability work, as does its relationship to extreme 

value theory (e.g. Mann (1968)). One of its disadvantages is that 

standard methods of estimation are inconvenient; maximum likelihood 

estimation for example requiring iterative solution (e.g. Cohen (1965), 

Harter and Moore (1965, 1967), Wingo (1972), Ringer and Sprinkle (1972),

the alternating renewal process so generated forms a simple two-state

The other distributional form given increasing prominence in

0> 0, p>0.

curve), whilst it is monotonically (corresponding

The simplicity of the form of the hazard and its ability to

5.



Rockette, Antle and Klimko (1974), Zanakis (1979a), Archer (1980)). 

However,alternative explicit estimation methods are available;

Mann (1968) and Mann, Schafer and Singpurwalla (1974) give 

extensive bibliographies. See also Hinds, Newton and Jardine (1977), 

Gross and Lurie (1977), Saylor (1977), Bennett (1977), Martz and 

Lian (1977), Kuchii, Kaio and Osaki (1979). In particular simple 

graphical estimation methods exist (e.g. Kao (1959, 1960),

King (1971), Cran (1976), Kaio and Osaki (1980)) and the appropriate 

special graph papers are commercially available (e.g. Chartwell 

6572-3). Another disadvantage of the Weibull, relative say to the 

Gamma, is the complexity of results in renewal theory to which it 

leads (e.g. Cox (1962), Smith and Leadbetter (1963), Lomnicki (1966),

Kay (1973), Nakagawa and Yasui (1978)).

The exponential and Weibull distributions above are respectively 

one and two parameter distributions. The fit to data can often be 

improved substantially by the addition of an additional threshold 

parameter o(>0, so that each t in the right hand sides of f(t),

R(t) and h(t) in (1.7) and (1.8) is replaced by (t-o0. (See Bob 

Moss's contribution to the discussion of Lomnicki (1973)). Estimation, 

however, is correspondingly more complicated; e.g. Wingo (1973), Mann, 

Schafer and Singpurwalla (1974), Lemon (1975), Zanakis (1977, 1979a,b), 

Lehtinen (1979), Archer (1980), Dyer and Keating (1980).

The analytic inconvenience of the Weibull distribution has 

meant that a number of authors have investigated whether one can work 

satisfactorily with methods based on another distribution, usually 

the exponential, when the Weibull distribution applies. Zelen and 

Dannemiller (1961), although misquoted by Mann, Schafer and 

Singpurwalla (1974),considered the robustness of four widely used

6.



acceptance sampling procedures based upon the one-parameter exponential 

when the time to failure distribution was really two-parameter Weibull 

with an increasing hazard rate but the same mean life. They found that 

procedures based upon the recommendations of Task Group Two in 

A.G.R.E.E. (1957) were very sensitive to departures from exponentiality, 

and that consequently applying them to data from a Weibull distribution 

with increasing hazard rate might result in substantially increasing 

the probability of accepting components having poor mean times to 

failure. Harter and Moore (1976) show by Monte Carlo that the exponential 

based sampling plans in MIL-STD-781B are not robust under departures 

from exponentiality and further give simple modifications for use 

when the Weibull distribution is appropriate. Posten (1973), also 

building on the work of Zelen and Dannemiller, investigates the robustness 

of exponential-based reliability (point) predictions for series 

systems of up to 15 identical components when the Weibull distribution 

is valid. Powers and Posten (1975) extend this to parallel systems.

These two papers provide ranges of in which the error in using the 

exponential procedure is within an acceptable limit. Generally 

these ranges are broader for the smaller numbers of components 

considered. Hager, Bain and Antle (1971) also demonstrate the lack 

of robustness of'exponential-based reliability estimation. For a 

connected Ba>esian problem, see Higgins and Tsokos (1977).

In the author's own joint work, Bendell, Humble and Mudhar 

(1979), the robustness of exponential-based interval estimators of a 

number of characteristics of interest were considered when the Weibull 

distribution applied. It was found that the confidence intervals for 

most characteristics of the failure distribution were relatively 

robust. The only exceptions being the first percentile of the failure

7.



distribution, and the reliability for large time t.

1.3 System Reliability

The early papers on reliability by von Neuman (1956), Moore 

and Shannon (1956), and Birnbaum, Esary and Saunders (1961) 

established the mathematical basis for the evaluation of the 

reliability of complex systems of components from knowledge of 

component reliability, and for the construction of reliable systems 

from relatively unreliable components. A methodology for the 

computation of systems reliability from component reliability is 

necessary as in most cases data on the reliability of complete systems 

or subsystems is virtually non-existent (e.g. Bourne (1973), Green 

and Bourne (1972), Snaith (1979)), and the complexity of the system 

and its often high reliability precludes the estimation of systems 

reliability by life tests on identical systems on time and cost 

criteria (e.g. Lomnicki (1973)). This point is given emphasis 

by the steady increase in the reliability of many components 

and thus systems through time (e.g. Kooi (1967), Shooman (1968)).

Whilst for single components for which life testing would take 

prohibitively long, the solution is accelerated life testing (i.e. 

life testing at environments more severe than those at which the 

component is expected to operate), this possibility is not available 

for complex systems. Accelerated testing (e.g. Mann, Schafer and 

Singpurwalla (1974)) was originally devised to provide failed 

components to be analysed so as to improve design. However, there 

is no guarantee that the basic physical processes of failure

encountered under excessively severe environments should be common
/

with those which would be encountered under long term exposure to 

a normal environment. According to Cox (1972) this is likely to

8.



happen only when there is a single predominant mode of failure, 

but see Kimball (1980).

For accelerated testing to provide a measure of the 

reliability of a component under normal usage it is necessary to have 

some connection between the component's reliability under a normal 

environment and its reliability under the excessively severe environments. 

Such a connection is sometimes no more than a purely graphical technique, 

though other times it is analytic and based on a theoretical model 

of the mechanisms of failure. In fact, no satisfactory simple 

connections exist for most components, although some generalised models 

with a theoretical background such as the Arrhenuis equation, are of 

some value. Often it is required to investigate in detail the physical 

structure of the particular component, model the operation of failure 

mechanisms upon these components, and then employ these theoretical 

mathematical models to obtain the connection between reliability 

under normal and excessively severe conditions (Jacobi (1968)).

For complex systems, however, the assumption that the physical 

processes of failure under accelerated and normal environments are 

common is unlikely to be valid, as e.g. there will not be a single 

predominant mode of failure, and any connection between reliability 

under the normal and accelerated environments is likely to be 

prohibitively complex. (However, see Nelson (1975)). Mann, Schafer 

and Singpurwalla (1974) discuss additional problems of accelerated 

life tests.

In order to be able to evaluate systems reliability from 

knowledge of component reliabilities it is necessary to possess 

information about the structure of the system; specifically 

which combinations of component failures result in system failure,

9.



or equivalently u/hich combinations of operating components result in 

system operation. With the basic binary definition of reliability 

introduced in Section 1.2 and the usual implicit assumptions of the 

basic systems reliability model (given below), there are a number of 

equivalent representations of this aspect of system structure.

These are notably the structure function or truth table, the 

reliability, event or switching network, and the Boolean hindrance 

or admission functions. See e.g. Hohn (1962),Flegg (1971), Green 

and Bourne (1972), Lomnicki (1973), Evans (1976).

As an example of their application in the basic systems 

reliability model, we show in Figure 1.1 these equivalent representations 

for a simple system which will only work if componentl and either II 

or (III and IV) work. An alternative representation which is not 

shown but which is gaining interest in the literature is event or 

fault trees (e.g. Barlow and Proschan (1975), Bazovsky (1977),

Dhillon and Singh (1978)).

It is apparent from the figure that the implicit assumptions 

which make these representations equivalent - apart from the 

assumptions that the system has a single function, the system's 

structure is static and components and system can each only take one

of two states - are that component and system operation is instantaneous,

the order of component failures does not affect the state of the system, 

and that there is one unambiguous and homogeneous failure mode, 

failure to operate (failure to idle is impossible). With these 

assumptions, simple bounds of known accuracy can be put on the systems 

reliability for given component reliabilities by making use of the 

Inclusion-Exclusion Theorem and Bonferroni's Inequality (e.g.

Feller (1968), Lomnicki (1973)).

10.



FIGURE 1.1

Alternative representations of system structure. 

Reliability network

III

Structure function
('l1 denotes operating state, '0 ' denotes failed state)

component system
II III IV
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Boolean representation
Hindrance function:
(A^ denotes failure of component i, F denotes system failure)

F = Ai+Aii(Ai n +/W
Admission function:
(B. denotes operation of component i, R denotes system

operation)
R = Bj CBjj+Bjjj BivJ

(Whilst the above Boolean representation in which Boolean addition 
(+) corresponds to the logical 'or' and Boolean multiplication (•) 
corresponds to the logical 'and1, is the form usually applied in 
the reliability literature (e.g. Green and Bourne (1972), Lomnicki 
(1973)), notation in the mathematics texts varies. Following e.g. 
Stoll (1961), Flegg (1971), Kuratowski (1972), these symbols are resp­
ectively replaced by the set theory symbols U  (cup) and f\ (cap)
denbting the join or union, and the meet or intersection respectively.
Other authors, e.g. MacLane and Birkhoff (1967) and Cohn (1977) 
use the equivalent symbols \J and f\ instead.)



To proceed further and be able to evaluate the reliability 

function of the system (for any t) from the reliability of the 

components it is necessary to have information or make assumptions 

about the interrelationships of component failures, or equivalently 

of the dependence between the states of the various components. The 

basic system reliability formulation assumes that component 

failures are independent, or equivalently the absence of common-mode 

or common-cause failures, so that systems reliability can be obtained 

from the usual rules for combining the .probabilities of independent 

events (e.g. Birnbaum, Esary and Saunders (1961),Shooman (1968),

Bourne (1973), Lomnicki (1973), Edwards and Watson (1979)). With

this assumption, the reliability function for the system of Figure 1.1

is

R(t) = R1(t)jRlI(t)+RI1I(t)RIV(t)-Rn (t)R1II(t)RIV(t)l .

For complex systems, however, the computation of system's 

reliability by such a direct method can be difficult even under 

the assumption of independence, and methods for simplifying and 

computerising evaluation are of practical interest to the reliability 

assessor (e.g. Shooman (1968), Misra (1970), Woodcock (1971),

Green and Bourne (1972), Rosenthal (1973), Aggarwal, Misra and 

Gupta (1973 a, br c), Fussell (1975), Sharma (1976), Lin, Leon and 

Hwang (1976), Blin et al (1977), Nakazawa (1977), Satyanarayana and 

Prabhakar (1978), Arnborg (1978), Aggarwal and Rai (1978), Rai and 

Aggarwal (1978), Gupta and Sharma (1978a), Gopal, Aggarwal and 

Gupta (1978b), Locks (1978, 1979b), Singh (1979), Boffey and Waters

(1979), Laviron, Berard and Quenee (1979), Misra (1979), Easton 

and Wong (1980)).

The structure function in Figure 1.1 illustrates the fact

12.



that with the above assumptions (but not necessarily including 

independence of component failures) corresponding to n distinct 

components each of which may be in either of two states - operating 

(1) or failed (0) - there are 2n states for the system corresponding 

to all combinations of operating and failed components. To each of 

these states of the system may be assigned one of the two levels 

1 or 0, so that there are possible systems of n components.

Thus the number of possible systems gets large very fast; for two 

components there are 16 possible systems, for three components 

236, and for four components 65,536. In theory, the smaller is 

the number of possible system structures the less information is 

needed for, and the easier is the identification of, the appropriate 

structure function and reliability function for a real physical 

system. Consequently, there has been considerable interest in the 

literature (e.g. Birnbaum, Esary and Saunders (1961), Esary 

and Proschan (1963), Lomnicki (1972, 1973, 1977), Barlow and Proschan 

(1975)) in restricting the class of possible structure functions to 

a sub-set which corresponds to the systems with real physical 

analogues.

The class of series-parallel systems discussed e.g. by 

MacMahon (1892), Riordan and Shannon (1942), Knddel (1950),

Carlitz and Riordan (1956), Lomnicki (1972, 1977), is too 

restrictive to represent all such realistic systems, and does not 

contain all the real systems to be found in the reliability texts.

In particular it excludes the so-called k-out-of-n (or k-out-of-n:G) 

systems (whereby the system operates if any k or more of its 

components operate), which are examples of symmetric Boolean 

functions (e.g. Flegg (1971)), and are of great physical interest 

to the engineer (Birnbaum, Esary and Saunders (1961), Phillips (1980),

13.



Ansell and Bendell (1982a)). Birnbaum in the discussion of

Lomnicki (1973) suggested a generalised class of realistic systems

which contains the series-parallel and k-out-of-n systems, and

which is based on replacing single modules in a simple system by

k-out-of-n structures of components.

The class of 'realistic* systems which has received most

attention in the reliability literature, however, is the class of

so-called coherent (or monotonic) systems introduced by Birnbaum,

Esary and Saunders (1961). This class contains the two-terminal

systems of Moore and Shannon (1936), as well as all series-parallel

and k-out-of-n systems. A coherent system is a system of components

such that the system's state does not deteriorate from 1 to 0 if

a failed component is replaced by an operating one, and does not

improve from 0 to 1 if an operating component is replaced by a

failed one, and operates if all its components operate and fails

if all its components fail. Formally, we describe the state of an

n-component system by the state vector

s = (s^, •••» sn)
thwhere s ^  the state of the component may be 1 (operating)

or 0 (failed), and the resulting state of the system (1 or 0) is 

described by the structure function f(sO. Then if we define 

1 = (1, 1, ..., 1)
£ = (0, 0, ..., 0)

and if xdC^ y©c ^or a-^ ~ •••* n

and ^or some ^  >
it follows that a coherent system is defined by the requirements

f(x-)> f(j£) for all x^> £ (1.9)

f(l) = 1 (1.10)
f(0) = 0 .

14.



The definition of coherent systems in the literature vary 

somewhat from the original one above due to Birnbaum, Esary and 

Saunders (1961), although this is also used by some other authors, 

e.g. Esary and Marshall (1974). Lomnicki (1973, 1977) neglects to 

include the conditions (1.10) in his definition of coherent systems, 

so that his 'coherent systems' correspond to semi-coherent systems 

as defined by Birnbaum, Esary and Saunders (1961). However, this 

is an omission rather than an alternative definition, since his 

enumerations correspond to the original definition. Barlow and 

Proschan (1965) refer to the coherent systems of Birnbaum, Esary and 

Saunders (1961) as 'monotonic systems' due to the obvious algebraic 

connotation. However, Barlow and Proschan (1975) perhaps following 

Kaufmann (1969) re-define monotonic systems to be those satisfying

(1.9) alone; i.e. the semi-coherent systems of Birnbaum, Esary and 

Saunders (1961). Their definition of coherent systems is composed 

of the condition (1.9) together with the requirement that every 

component is relevant; i.e. that there is no component c< for which

f (s i» •••> Soi-i»1 ,ik + i >  * * * ’ sn^ = 

f(si, •••» s* - l ’ °» ŝ +l» •••» sn^

for all s ^  ... s ^ ,  s^+1, ..., sn , (1.11)

It follows from tHis requirement of relevancy and from (1.9) that

(1.10) must also hold, but the definition is more restrictive than 

the original one of Birnbaum, Esary and Saunders (1961). Phillips 

(1977) uses monotonic in the same way as Barlow and Proschan (1965), 

and coherent in the same way as Barlow and Proschan (1975). In this 

thesis we shall follow the original definitions of coherency and 

semi-coherency due to Birnbaum, Esary and Saunders (1961), except 

where we specify otherwise.
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Since coherent systems (by either the Birnbaum, Esary and 

Saunders (1961) or the Barlow and Proschan (1975) definitions) are 

generally regarded as corresponding to the set of real physical 

systems of practical interest, a lot of attention in the literature 

has been devoted to the study of the desirable properties possessed 

by coherent systems. See for example Birnbaum, Esary and Saunders 

(1961), Esary and Proschan (1963), Birnbaum, Esary and Marshall 

(1966), Esary and Marshall (1974), Haines and Singpurvi/alla (1974), and 

Barlow and Proschan (1975).

The reliability texts generally neglect to indicate that 

the set of non-coherent systems does contain some very plausible and 

indeed simple physical systems (see Evans (1978)'s review of Barlow 

and Proschan (1975)), so that whilst coherency is to date the most 

satisfactory criterion for systems to be of physical interest, it is 

not completely satisfactory. It is perhaps interesting that when 

John Bourne in the discussion of Lomnicki (1973) raised the question 

of whether there may not be other classes of structures of more physical 

importance than coherent systems, and whether Mr. Lomnicki has

established coherent systems by a personal examination or whether he 

has seen ways of doing so automatically", no response was received. 

However, Lapp and Powers (1977) do consider a non-coherent system 

associated with a nitric acid cooling process, and this is subject 

to further debate in the December 1977, April 1979 and June 1980 

issues of the IEEE Transactions on Reliability. Locks (1979a) 

provides an interesting discussion of aspects of this system.

Fussell (1975), Locks (1978) and Amendola and Contini (1980) discuss 

the occurrence of non-coherent systems, and Worrell produced a 

relevant computer program as long ago as 1961 (Bell Telephone

16.



Laboratories (1961)). More recent programs and approaches that 

can deal with non-coherent as well as coherent systems are described 

by Bennetts (1975), Caldarola and Wickenhauser (1977), Kumamato and 

Henley (1978) and Locks (1979c). See also Ogunbiyi and Henley (1981).

As an example of a simple non-coherent system, the system 

represented in Figure 1.2 is composed of four springs designed to 

keep a load in place. As is apparent from its structure function, 

the system is non-coherent since failure (breakdown) of a single

spring causes system failure as the load is pulled to one side,

whilst failure of two opposite springs leaves the system operating 

(although less stable in relation to outside disturbances).

Whilst the number of series-parallel systems of n 

components is now known for both the cases where all components 

are distinct and where some are identical (MacMahon (1892), Knddel 

(1950), Carlitz and Riordan (1956), Lomnicki (1972)), similar 

results are not available for the class of coherent systems, for 

which the number of systems of distinct components is only known 

explicitly up to n = 7. The enumeration problem for coherent

systems is in fact identical to the problem posed by Dedekind in

1897 on the cardinality of the free distributive lattice generated 

by the symbols s^, ..., ŝ . The known numbers of coherent systems 

of n distinct components following the original Birnbaum, Esary and 

Saunders (1961) definition (/} ) are given in column two of

Table 1.1, whilst the numbers corresponding to the more restrictive 

definition of Barlow and Proschan (1975) (tn) are given in column 

three. It is perhaps noteworthy that the plot of date of 

publication against n = 4, 5, 6 , 7 is approximately linear (especially 

if one takes into consideration the fact that the publication of
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FIGURE 1.2 

A non-coherent system.
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Church’s result for n = 5 was unduly delayed) and a simple least-

squares fit predicts 1990 approximately for the publication of the

number of coherent systems of eight distinct components!

Since the numbers of coherent systems is in general

unknown, the obtaining of sharp upperbounds (and to a lesser extent

lowerbounds) for these has long been of interest; Dedekind (1897),

Gilbert (1954), Korobkov (1963), Hansell (1966) (misquoted by

Lomnicki (1977)), Kleitman (1969), Hanish, Hilton and Hirsch (1969),

Alekseev (1973), Kleitman and Markowsky (1975), Korsunov (1977).

The sharpest explicit and non-asymptotic upperbound published to

date is due to Hansel (1966) who proved that

J ^ n ^ 3 Mn (1.12)
where M is the middle Binomial coefficient i.e. n

n!

M = n

(n/2)! (n/2)! 5 lf n even

n* t* 5 if n odd([n+l]/2) i (  [n-lj/2)’
However, in Chapter 2 we derive improvements to this bound as bi-

products of the generalisation to multistate systems.

The above discussion is for the case where all the components 

are distinct. Lomnicki (1977) discusses enumeration for the case 

where some or all of the components are identical, and tabulates the 

corresponding numbers of possible coherent systems (according to the 

Barlow and Proschan definition) of up to five components. Coherent 

systems with all the components identical have received some 

attention in the reliability literature since they are of interest 

in the context of the problem of optimal redundancy in the presence 

of opposite failure modes (e.g. Lomnicki (1977), Phillips (1980), 

Ansell and Bendell (1982a)). It is also true that for series- 

parallel systems the enumeration problem was first solved for
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identical components (MacMahon (1892)). For coherent systems, 

making all the components identical also greatly reduces the numbers of 

possible systems and consequently substantially simplifies (numerical) 

enumeration. The available numbers of coherent systems of identical 

components (due to Lomnicki (1977) are presented in column two of 

Table 1.2

However, despite the earlier work of Phillips (1976) in a

related context, Lomnicki failed to consider the fact that a

further substantive reduction in the number of coherent systems

could be achieved by assuming independence of component failures

and considering the reliability function instead of the structure

function or Boolean function. With the usual assumption of independence,

systems with different Boolean or structure functions reduce to the

same reliability function. The corresponding reduced numbers of

distinct coherent systems up to n = 5 are shown in column three of

Table 1.2. As an example of the reduction, Figure 1.3 shows two

systems of four identical components with distinct Boolean representations

(even after rotation of the indices 1, 2, 3, 4) or equivalently

structure functions, but identical reliability functions under the

assumption of independence of component failures. (The reliability 
%

of each identical component is denoted by x). It follows from 

Phillips (1980) that the reliability functions of coherent systems 

of n identical components are, under the assumption of independence, 

convex combinations of the reliability functions of the k-out-of-n 

systems. Ansell and Bendell (1982a) generalise this result to 

dependent components.

As a final point in this section, we note that Figure 1.3 serves 

to illustrate the fact that the equivalence in the dichotomic reliability
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TABLE 1.2

Number of coherent systems of exactly n Identical components. 

(Barlow and Proschan (1975)'s definition of coherency).

n distinct structure functions distinct reliability 
Lomnicki (1977) functions

1 1  1 

2 2 2
3 5 5

4 20 17

5 180 78



FIGURE 1.3

Two systems of identical components with distinct Boolean 
representations, but identical reliability functions.

(i)

Boolean function: ®l^2+ ^3^4
2 4Reliability function: 2x - *

(ii)

or equivalently

Boolean function: ^1^2 +^2^3 +^1^3^4

Reliability function: 2x^ - x^



model between event networks and Boolean and structure functions 

(e.g. Flegg (1971)) can only be accomplished for non-series-parallel 

systems by multiple representation of single components (which 

reduces the event network to a formal statement of logical structure 

without intuitive physical back-up), or by the multiple route notation 

used in Figure 1.3 (which soon gets confusing as the numbers of 

components and routes rise) or by ad-hoc logic devices such as the 

k-out-of-n gate (e.g. Buzacott (1967,1970)) or the priority-AND 

gate (e.g. Fussell, Aber and Rahl (1976)) which have become standard 

notation in the engineering literature. The limitations of the 

event network as a conveyor of system structure is a subject to 

which we shall be returning when we consider the generalisation of 

the usual dichotomic systems reliability model.



1.4 Possible Generalisations

The basic systems reliability model introduced in the previous 

two sections is based on the following (often implicit) assumptions:

(i) Time t is continuous and perfectly ordered onQ),0^  .

(ii) The system has a single function (or output) which is

required to be performed continuously and does not vary 

in time, and which depends for satisfactory operation 

upon the operation of the components in the way specified 

in the event network or structure function or alternative 

representation of system structure.

(iii) The system’s structure, the environment of the system, 

and the conditions that define component failure are 

stationary in time.

(iv) Components and the system can each only be in one of

two homogeneous states at any point in time; 1 (operating) 

or 0 (failed). At time zero they are in state 1.

(v) In the absence of a repair or replacement mechanism the

component state 0 is an absorbing state whilst the initial 

state 1 is not, so that by time components and coherent 

systems are in state 0, and the probability that any 

component, or coherent system, is in state 1 is a 

monotonically non-increasing function of time.

(vi) The operation of the components and system are 

simultaneous and instantaneous.

(vii) The order of component failure does not affect the state 

of the system for a given set of failed components.

(viii) The states of the components are independent.

The above assumptions, which are in increasing order of
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specialisation, limit the application of the basic systems reliability 

model. They are expressed as generally as is consistent with the 

procedure for evaluating systems reliability introduced in the last 

section. Whilst these assumptions form the norm in reliability work 

(e.g. Barlow and Proschan (1965), Shooman (1968), Kaufmann (1969), 

Lomnicki (1973)), they are often fully or partly implicit (especially 

assumptions (i), (ii), (iii), (vi) and (vii)) and the situation is 

further confused by the fact that in parts of the theoretical develop­

ment of reliability certain assumptions are unnecessary or can be 

treated more generally. For example, the paper by Birnbaum, Esary 

and Saunders (1966) avoids the element of time, and of the remaining 

assumptions only makes explicit the assumptions that components 

and systems only have t\i/o states and that the states of the components 

are independent. For much of their development Barlow and Proschan 

(1975) avoid the restrictive assumption of independence.

As one would expect from its wide-spread literature and use, 

the basic systems reliability model corresponding to the above 

assumptions fits reasonably well many real systems, or at least can 

be regarded as a first approximation (e.g. Green (1977), Cannon and 

Jones (1977), Snaith (1979)). Practical reliability engineers find 

the complexity of reliability theory hard enough even in this 

restricted form, without the complications of further mathematical 

models (as the discussion of papers at the First National Reliability 

Conference indicates; e.g. National Centre of Systems Reliability 

(1978)). Further, limitations in the availability of data, and in 

certain cases of appropriate statistical techniques, for even this 

basic reliability model (e.g. Evans (1971, 1974), Konarski and Evert

(1975), Rosenthal (1975), Levine and Vesely (1977), Green (1977),
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Shooman and Sinkar (1977), Anderson (1979), Dhillon (1979c), Haas and 

Batt (1980)), imply that developing more sophisticated models may 

not be worthwhile. Certainly in my experience of attempting to 

obtain appropriate data for generalisations to the reliability model 

I found that even with the assistance and data banks of the National 

Centre of Systems Reliability I was only rarely able to find 

appropriate data.

However, the unavailability of data etc. is a 'chicken-and- 

egg1 argument, since it is not unreasonable to suppose that 

appropriate data will by and large not be collected until there is a 

purpose for it in terms of a method of analysis based on a generalised 

reliability model. Indeed, apart from the hand of chance, problems 

must be defined in appropriate generalised terms before appropriate 

data can be collected to help solve them (Venton (1977)). (Maruvada, 

Weise and Chamow (1978) discuss a related 'chicken-and-egg1 problem 

whilst the comments of Evans (1977) on the gulf between the reliability 

researcher and the reliability practitioner are also relevant).

Whilst the above arguments of the realism and good fit of 

the basic system reliability model, the complexity of potential 

generalisations and the unavailability of appropriate data for them, 

may be taken to preclude the development of a generalised model of 

reliability, the questions remain as to what would be the effects of 

liberalising the assumptions, and whether a more general model of 

reliability could be constructed without such restrictive assumptions. 

Further, the reliability literature already contains many partial 

extensions to the basic system reliability model, which are usually 

in the form of generalisations of one specific aspect applied in the 

context of a very specific system. Such papers are common in the



IEEE Transactions on Reliability and Microelectronics and Reliability,

and specific cases are discussed as appropriate below. However, some 

more systematic attempts at generalising the basic reliability model 

are to be found in Green and Bourne (1972), Murchland (1975) and 

Barlow and Proschan (1975). See also Papazoglou and Gyftopoulos

(1977), Virtanen (1977), Singh (1978) and Garribba, Mussio and 

Naldi (1980). The existence of such generalisations of the basic 

systems model in the literature, although largely in a piecemeal 

fashion, does suggest that there is a general feeling amongst 

reliability workers that the basic model is inadequate to describe 

many real physical systems, and a more general model is required.

(See e.g. Barlow, Fussell and Singpurwalla (1975) and the introduction 

by the editors to Section 2 of Apostolakis, Garribba and Volta (1980)).

For reasons of brevity, this thesis concentrates on the 

partial operation extension to assumption (iv), though one can easily 

broaden the model to generalise the other assumptions. Of course, 

there is much justification for the generalisation of a single 

assumption at a time, since it clarifies the effect of that assumption 

on the methodology and results, it prevents the development of a 

prohibitively complex model with associated data and inferential 

problems, and it fcorresponds to the situation in applications where 

it is often the case that only one or two standard assumptions are 

in question at any one time.

There has, in particular, been much recent interest in the 

extension of assumption (iv) to incorporate multistate systems with 

ordered states, in an attempt to describe partial or degraded 

operation. A number of plausible extensions to assumption (iv) 

have been suggested in the literature. Whilst a few



authors (e.g. Murchland (1975), Caldarola and 

Wickenhadser (1977), Papazoglou and Gyftopoulos (1977) and Singh 

(1978))) work generally with multistate reliability models not 

restricted to a single direct physical analogue for the set of 

states, most either decompose the operating stage 1 (or equivalently

the failed state 0) into an ordered set of states representing

various degrees of partial operation or degradation (e.g. Lloyd and 

Lipow (1962), Derman (1963), Mine and Kawai (1974a, 1975, 1977),

Proctor and Wang (1975), Singh (1976),Maruvada, Weise and Chamow 

(1978), Thomas, Derbalian and Bischel (1980)), or decompose the failed

state 0 into states representing multiple failure modes.

That even the most simple equipment is often subject to a 

•large number of distinct failure modes is well accepted in the 

engineering literature, as is the necessity to often consider various • 

modes separately due to their differing system implications in terms 

of repair time, safety, etc.; e.g. B^e (1974), Pau (1974), Mann,

Schafer and Singpurwalla (1974), Hyun (M.Gen)(1975), Banfi, Garribba, 

Mussio, Naldi and Volta (1976), Dhillon (1976a,b,c,1977c,1978d),

Proctor and Singh (1976a,b), McCool (1976), Barbour (1977), Dahiya

(1977), Thomas (1977), Gopal, Aggarwal and Gupta (1978a), Legg (1978), 

Caldarola (1980a)*. But see also Codier (1968) and Fertig and Murthy

(1978). Elsayed and Ziebib (1979) solve the general N-failure-mode 

Markov model, whilst Yamashiro (1980) extends the solution to general 

repair time distributions, and Yamashiro (1982) introduces standby 

units. Another extension using a mixture model is given by Muth (1980b). 

Mine and Nakagawa (1978) also employ a mixture formulation3whilst 

Annello (1968) discusses competing risks. Bendell and Samson (1981) 

employ rank-order distributions for the analysis of diverse failure



modes. Shooman (1968) classifies the failure modes according to 

the three regions of the bath-tub curve, and Gorg and Kumar (1977) 

classify them into various minor and major failures. The occurrence 

of distinct failure modes has been reported in amongst other systems 

marine equipment (Bjrfe (1974)), weapon systems (Gower (1975)), 

nuclear systems (Proctor and Singh (1976a), Dhillon (1976a)), 

mechanical systems (Martin (1980)), power transmission systems, 

electrical systems and aerospace equipment (Dhillon (1977c)).

An important special case of the multiple-failure-modes 

extension to the basic reliability model is the case of opposite 

failure modes for systems which are required to operate at certain 

times and idle at others (in violation of assumption (ii)).

Codier (1968), Allen and De Oliveira (1977), Fertig and Murthy (1978), 

and Gopal, Aggarwal and Gupta (1978a) give some justification for 

grouping diverse failure modes into such opposite categories. There 

are many real systems for which such switching between the operating 

and idling states is necessary or desirable e.g. electronic equipment 

(Elburn and Knight (1975)), electrical distribution networks (Allen 

and De Oliveira (1977)), protective systems (Choy and Mazumdar (1975), 

Gibson and Knowles (1977), Kontoleon (1978b)), weapons systems and 

other emergency equipment (Nakagawa (1978)), nuclear power plants 

(Apostolakis and Bansal (1977)), computer hardware (e.g. Lewis (1964), 

Tasun (1977)), inertial navigation and ships power control systems 

(Kujawski and Rypka (1978)), and avionic equipment (Kern (1978)).

See also Weiss (1961), Gaver (1964), Srinivasan (1966), Ueda (1972),

Osaki (1972), Rdde (1974), Nakagawa (1974, 1977), Kapur and Kapoor 

(1975, 1978a,b), Nakagawa, Sawa and Suzuki (1976), Sasaki and 

Hiramatsu (1976), Sasaki and Yanai (1977), Srinivasan and Bhaskar (1979),
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Singh, Aggarwal and Kulkami (1979), Sasaski and Yokota (1980),

Berg (1981).

The existence of opposite failure modes-failures to operate 

and failures to idle (or 'open1 and 'short' or 'closed' failures, 

or 'passive' and 'active' failures, or 'fail-to-safe' and 'fail- 

to-danger') in such real systems is also well known. Green and 

Bourne (1972), for example, tabulate the proportions of total 

failures which are of each of the two types for common components such 

as fixed resistors, capacitors, coils and pneumatic and hydraulic 

components. Jordan (1978) considers an opposite failure mode model 

for iso-isolators. The literature discusses the design of systems 

of components subject to opposite failure modes quite extensively, 

having recently given particular emphasis to the identification of 

optimum redundancy; e.g. Moore and Shannon (1956), Gordon (1957), 

Barlow, Hunter and Proschan (1963), Barlow and Proschan (1965),

Lomnicki (1973, 1977), Phillips (1976, 1977, 1980), Proctor and 

Proctor (1977), Kaufmann, Grouchko and Cruon (1977), Kontoleon (1978a), 

Nakagawa and Hattori (1980), Ben Dov (1980),Bendell and Humble (1981) 

and Ansell and Bendell (1982a).

Whilst components subject to opposite failure modes can be 

considered to be 'in any one of four states at any t - failing to 

operate, failing to idle, succeeding to operate, and succeeding to 

idle - the literature usually combines the two success states into 

a succeeding to operate or idle as required state, and thus produces 

a three-state representation, (e.g. Roberts (1964), Barlow and 

Proschan (1965), Shooman (1968), Lomnicki (1973), Allen and De Oliveira

(1977)). However, Mathur and De Sousa (1975) amongst others do obtain 

a four-state representation, but by instead introducing the possibility
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of indeterminate failures, for u/hich it is not known whether they 

are failures to operate or to idle. See also Tasun (1977) and 

Dhillon (1977a). In contrast the four-state model of Berg (1981) 

employs states of succeeding to operate, failing to operate and 

being operational or failed when undemanded.

Three-state reliability models have appeared quite extensively 

in the literature since they can be obtained from a number of 

alternative extensions to the dichotomic reliability model as well 

as that of opposite failure modes, and in each case represent the 

simplest such extension. The general three-state Markov model was 

solved by Biggerstaff and Jackson (1969) in the context of power 

generation in which the three states considered represented full 

operation, derated operation and failure, so that the model 

corresponds to the simplest partial operation extension to the basic 

reliability model. The paper was subsequently overlooked in much of 

the three-state literature since the papers of Kontoleon and Kontoleon 

(1974) and Proctor and Singh (1976a) contain no more than the solutions 

to the reduced versions of the general three-state Markov model 

corresponding to the partial operation case with limited repair, 

and the opposite failure mode case respectively. Proctor and Singh 

(1975a) apparently independently re-solve the general three-state 

Markov model, whilst Dhillon (1976a) does not even get as far as 

deriving the explicit time dependent solutions of the opposite 

failure mode sub-model (although in the context of complete/ 

catastrophic failures).

Endrenyi (1970), Endrenyi, Maenhaut and Payre (1973),

Grover and Billington (1974) and Allen and De Oliveira (1977) 

employ reduced forms of the general three-state Markov model



in the context of electrical networks. See also Billington,

Allen and De Oliveira (1977). Regulinski (1980) also employs 

a reduced form of the general three-state Markov model in studying 

computer networks. See also Chan and Downs (1978) and Das, Hendry 

and Hong (1980) for reduced forms of the three-state model in the 

context of imperfect repair. Shenk (1977) considers the opposite 

failure mode submodel (in the sense that two of the states are 

not directly connected) but with the partial operation formulation.

The two repair time distributions are allowed to be Erlangian or mixtures 

of exponentials. Kontoleon, Kontoleon and Chrysochoides (1975) 

analyse throw-away maintenance for modules subject to both partial 

and catastrophic failures, whilst Tumolillo (1974) has a three-state 

random stress model. Braff (1977) uses a three-state Markov chain 

model in which the states are operating, failed and pending failure 

(which is assumed observable) to analyse the relationship between 

failure rate and technician visitation. Phillips (1979) evaluates the 

reliability and MTTF of a three-state system in which, apart from 

full operation, the states correspond to the occurrence of revealed 

and unrevealed faults. Mine and Kawai (1974b) consider preventative 

replacement for a three-state unit with a wear-out state. Beichelt 

and Fischer (1979,'1980) allow for two types of failure; those 

removable by minimal repairs, and those needing complete replacement.

See also Mendenhall and Hader (1958), Cox (1959), Fischer (1977), 

and Gorg and Kumar (1977).

Dhillon (1977c) discusses the steady state availability of 

parallel (and series) systems of components subject to two failure 

modes, whilst Singh and Proctor (1977) and Ksir (1979) consider 

series systems of two three-state components subject to opposite
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failure modes and/or partial failures. Dhillon, Sambhi and Khan

(1979) consider the analysis of a parallel network of components 

subject to opposite failure modes and common-cause failures, whilst 

Dhillon (1978c) consider a k-out-of-n system of three-state devices 

also subject to opposite failure modes and common-cause failures.

Gupta and Sharma (1979) discuss a k-out-of-n system of three-state 

units but with states of operating, failed and being installed, 

whilst Dhillon (1979a) considers a four-unit redundant system with 

common-cause failures and units subject to opposite failure modes, 

and Chung (1979) extends this to an n-unit redundant system.

Dhillon (1979b) considers a complex system subject to partial 

failures. Kumar andAggarwal (1978) analyse a two-unit warm standby 

system with two types of failures, whilst Khalil (1977) and Singh, 

Kapur and Kapoor (1979) consider a cold standby equivalent. See 

also Elsayed (1979). Dhillon (1978d) considers a system of n standby 

components subject to two failure modes. Takami, Inagaki, Sakino 

and Inoue (1978) and Kumar and Kapoor (1979) discuss the employment 

of fault detectors with opposite failure modes for series systems.

See also Inagaki (1980).

Butler (1979a) discusses importance measures and rankings for 

three-state components in three-state systems, in which the states 

correspond to the partial operation formulation. This is also 

the case considered by Hatoyama (1979) who shows that the calculation 

of systems reliability can sometimes be reduced to that of a 

corresponding two-state system, and thus obtains methods of evaluation 

and bounds for the reliability of three-state systems. He also 

presents some reliability properties of systems with independent 

components, and some bounds for systems with associated components.
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Dhillon (1977b) provides a limited bibliography on three-state 

models covering the period 1956 - 1976, whilst Virtanen (1977) gives 

a partial review of three-state models up to 1975. See also 

Sankaranarayanan and Usha (1980), Subramanian and Usha (1980), Locks

(1980), Lee (1980) and the nominally unrelated models of e.g.

Shooman (1968), Subramanian and Natarajan (1980), Allen and 

Billington (1980).

Whilst the general three-state model and its sub-models 

can thus have various plausible physical interpretations as extensions 

to the basic dichotomic reliability model, the opposite failure mode 

formulation does have the special feature that with it the expression 

for a systems probability of failure to idle in terms of the 

component probabilities of failing to idle (and failing to operate 

if the system is non-coherent) can be obtained as the dual of the 

expression for the systems probability of failing to operate in terms 

of the components probabilities of failing to operate (and to idle). 

See e.g. Lomnicki (1973). Thus apart from the study of specific 

systems corresponding to specific opposite failure mode models which 

were reviewed in the previous paragraphs^ and apart from the literature 

on optimum redundancy for such components (reviewed previously), a 

number of general' methodological papers appear in the literature on 

the reliability analysis of systems of three-state components subject 

to failures to operate and to idle; e.g. Proctor and Singh (1975b), 

Singh and Proctor (1976), Gupta and Sharma (1978a), Gopal, Aggarwal 

and Gupta (1978b), Nakagawa and Hattori (1980).

Just as it is possible to provide various physical inter­

pretations of three-state reliability models, it is equally possible 

to do so for models with 4, 5, 6 or 7 states, even though the limited
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models that have appeared in the literature have been generally 

presented in terms of specific physical systems. Proctor and 

Singh (1976b) and Dhillon (1976b) consider a four-state Markov 

model in the context of nuclear power systems and crucial 

industrial complexes in which there is a catastrophic failure state 

as well as the three states of the simplest partial operation model. 

Regulinski (1977) formulates a four-state Markov model for man- 

machine interaction, whilst Regulinski (1980) extends his three-state 

Markov model for computer networks to a four-state one. Billington, 

Medicherla and Sachdev (1978) consider four-and eight-state Markov 

models in the context of common-cause outages in multiple circuit 

transmission lines. Seitz (1980) discusses a four-state model 

with states generated by sequential operation and idling, and failure 

to operate. See also Mathur and De Sousa (1975) for an opposite 

failure modes formulation of a four-state model (described above), 

as well as the nominally unrelated model of Subramanian and 

Ravichandran (1980).

Kumar and Jain (1977) consider a two unit warm standby 

system of five-state units. The five-state model of Gopalan and 

Dharmadhikoi (1980) is nominally unrelated but in practice of 

interest. Maruvada, Weise and Chamow (1978) discuss, but do not solve, 

a five-state Markov model arising from the consideration of the derated 

states of a fossil-fired generating unit in order to improve the 

accuracy of system planning studies. They also extend this to a six- 

state formulation. Dhillon (1976c) analyses a six-state Markov model 

appropriate for electrical systems, in which as well as the three 

states of the failure to operate/failure to idle model there are 

states representing intermittent failures, maladjustment and drift-

36.



out-of-tolerance. Dhillon (1977c) discusses what is described 

as a four-state Markov model although it is actually seven-state; 

there being one operating state and three failure modes for each of 

which repair facilities may or may not be available. The model 

is appropriate for power transmission systems, electrical systems 

and aerospace equipment. See also Gokcek, Bazovsky and Crellin (1979) 

and Pau (1979).

Apart from the case of opposite failure modes, the other 

violation of assumption (iv) that has received much attention in the 

literature is the formulation of the reliability model in terms of 

an ordered set of states representing various degrees of partial 

operation or degradation of operating function, and it is this 

that forms the main subject of this thesis. The published models 

for this phenomenon broadly divide into two categories. The first is 

thoee in which there is a finite set of states denoting various levels 

of partial operation or degradation; e.g. the 3, 3 and 14 state 

models of Biggerstaff and Jackson (1969), Maruvada, Weise and 

Chamow (1978) and Virtanen (1977), and the m-state models of Howard 

(1960), Lloyd and Lipow (1962), Flehinger (1962), Derman (1963),

Hirsch, Meisner and Boll (1968), Mine and Kawai (1974a, 1975), Proctor 

and Wang (1975), 'Singh (1976), Ramanarayanan (1978), Barlow and Wu

(1978), El-Neweihi, Proschan and Sethuraman (1978), Ross (1979),

Butler (1979a) and Block and Savitz (1981b). The second category 

is of models which allow for the levels of partial operation or 

degradation to form a continuous scale; e.g. Mercer and Smith (1959), 

Mercer (1961), Derman and Sacks (1960), Morey (1966), Postelnicu (1970), 

A-Hameed and Proschan (1973, 1975), Esary, Marshall and Proschan 

(1973), Esary and Marshall (1974), Nakagawa and Osaki (1974a,b),
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H.M. Taylor (1975), Abdel-Hameed (1975, 1977), Feldman (1976, 1977), 

Nakarjawa (1976a,b), Aggarwal (1976), Cinlar (1977), Block (1977), 

Klaasen and Van Peppen (1977a,b), Dorgan and Emer(l978), Christer

(1978), Bosch (1979), Zijlstra (1980) and Ansell, Bendell and 

Humble (1980a,b). Included in the later group are the additive- 

damage shock-models (see e.g. Buckland (1964) and Barlow and 

Proschan (1976) for reviews), whilst relevant to the former group 

is the increasing interest generally in multi-valued and fuzzy 

logic in both theoretical and practical terms, especially in the 

context of computer electronics. See e.g. the Proceedings of the 

9th International Symposium on Multiple-Valued Logic, IEEE, 1979 .

The extension of multi-valued logic to infinite-valued logic may be 

of interest for the second group; Lakoff (1975).

The use of additive or cumulative damage models to describe 

failures due to metal fatigue is long established in the literature 

(e.g. Buckland (1964)), and the physical justification for the 

existence of partially operating or degraded components and systems 

in the context of electrical power systems, communication systems and 

computer systems is also widely reported in the reliability literature. 

See e.g. Cavers (1975), Yost and Hall (1976), Tillman, Lie and Hwang

(1976), Horwitz (1976), Dartois (1977), Livini and Bar-Ness (1978), 

Maruvada, Weise and Chamow (1978), Siu and Chan (1978), Moranda (1979) 

and Chou and Abraham (1980). Amesz, Garribba and Volta (1977) employ 

it in the context of nuclear power plants, whilst Virtanen (1977) 

adds production systems (see also Hay, Godbout and Brais (1979)), 

and Barlow.(1978) and Smith (1980) add transportation networks and 

water systems to the list. Dorgan and Emer (1978) purpose-build a 

continuous degradation model for industrial exhaust systems, whilst 

Bosch (1979) and Zijlstra (1980) develop continuous models for the



degradation of electronic devices and lights respectively.

For practical applications, hou/ever, the finite number of 

states formulation has often been employed, often u/ith a small 

number of states, as an improvement over the dichotomic reliability 

model. In some formulations (e.g. Hatoyama (1979), Butler (1979a)) 

the same number of states are available for the system and all 

components, but in others this is not the case, since e.g. the 

dichotomic failure of a component may cause the system to operate 

at reduced efficiency (e.g. Hirsch, Meisner and Boll (1968),

-Simon (1969, 1970, 1972), BjzSe (1974), Singh (1976), Henley and 

Polk (1977), Nieuu/hof (1978), Gupta and Sharma (1978b), Maruvada,

Weise and Chamou/ (1978), Singh, Aggarvi/al and Kulkami (1979)). For 

system calculations in such cases, of course, one can just u/ork vi/ith 

the maximum number of states amongst all the components and the system 

(e.g. Butler (1979b)). In certain cases, hou/ever, such as u/here 

components characteristics are subject to continuous drift u/hilst 

the system is considered to be at one of tu/o (or more) levels, or 

u/here the system response can be measured continuously u/hilst component 

operation cannot, the system and/or some components may have a 

continuous scale of partial operation, u/hilst other components and/or 

the system can only take a finite number of levels. See e.g.

Shooman (1968), Chapter 7 and Weiss and French (1975).

Thus, the assumption that components and systems can only 

be in one of tu/o states at any point of time is not tenable in the 

light of the vast literature and physical evidence to the contrary.

In the remainder of this thesis u/e develop a general partial operation 

model, and investigate associated problems in the enumeration of such 

systems, and in their optimal tuning and retuning.
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CHAPTER 2

ENUMERATION OF MULTISTATE COHERENT SYSTEMS

2.1 Types of Multistate Coherent Systems

There is a recent and increasing interest in multilevel 

systems in which components and systems can be at any one of a finite 

number of strictly ordered levels A- , e.g. Kontoleon and

Kontoleon (1974), Virtanen (1977), Barlow (1978), El-Neweihi, Proschan 

and Sethuraman (1978),Barlow and Wu (1978), Ross (1979), Butler 

(1979 a,b), Hatoyama (1979), Griffith (1980), Block and Savitz 

(1981b). In contrast, however, Hirsch, Meisner and Boll (1968) 

and Simon (1969, 1970, 1972) instead only allow systems to be at one 

of JL levels, whilst components remain dichotomic. Hochberg (1973), 

Fardis and Cornell (1981) and Hudson and Kapur (1982) allow the 

number of levels to vary between components and the system, and 

Caldarola (1980a) treats the ^  component and system levels as 

unordered.

Since with fL -(ordered)- state components and systems there
JL^are even more possible systems than in the dichotomic case ( j£ ),

there is great interest in finding a restricted subclass of systems 

of practical relevance. The main approach has been to generalise 

the class of coherent or monotonic systems from two-state systems 

to £— state systems. However, the definition of a generalised 

coherent ( or monotone) system varies between authors with almost 

no two authors the same, as Butler (1979b) points out. Hirsch,

Meisner and Boll (1968), Postelnicu (1970), Simon (1969, 1970, 1972), 

Hochberg (1973) and Fardis and Cornell (1981) generalise the Birnbaum, 

Esary and Saunders (1961) definition (although in somewhat different 

contexts), El-Neweihi, Proschan and Sethuraman (1978), Hatoyama (1979),
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Butler (1979a,b), Griffith (1980), Caldarola (1980a) and Hudson and 

Kapur (1982) generalise the Barlow and Proschan (1975) definition 

(although each differently) whilst Barlow (1977, 1978) and Barlow 

and Wu (1978), take a more restricted approach based upon the 

dichotomic set theoretic definition of coherency (and possibly 

applicable to communication and electrical power systems and water 

production and transportation system networks). The definition of 

coherency employed by Caldarola (1980b) is exceptional in that it 

is not based on monotonicity, but on the existence of a unique 

complete and irredundant base.

In this Chapter we consider the enumeration problem for 

generalised coherent systems, and define two generalisations of the 

original Birnbaum, Esary and Saunders (1961) definition which are 

of likely practical interest.

Since these two definitions do not include the restriction 

of relevancy (see Section 1.3), it follows that the least restrictive 

of these definitions (coherent systems in the wide sense) contains 

the generalisation of Butler (1979a,b)(to which it is identical apart 

from the requirement of relevancy), and consequently provides an 

upper bound for the number of such systems. We investigate the 

closeness of the -number of systems under Butler's and our definitions 

below. Our wide-sense definition is identical to the monotone 

functions defined by Hochberg (1973). The coherent structures as 

defined by Postelnicu (1970) are in the ^  -level case contained 

within our least restrictive class (coherent systems in the wide 

sense), but in turn contain our most restrictive class (coherent 

systems in the narrow sense). Thus, the numbers of these structures 

are between those based on our two classifications. The coherent
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classes defined by El-Neweihi, Proschan and Sethuraman (1978) and 

Griffith (1980) are contained within our narrow-sense class, and cons­

equently the number of such structures is smaller than the number of 

narrow sense coherent structures. El-Neweihi, Proschan and Sethuraman 

also show that their class contains the coherent systems of Barlow 

(1977, 1978) and Barlow and Wu (1978), so that the number of their 

structures exceeds the corresponding number due to these other 

authors.

In fact, the multi-state structures as defined fyy Barlow and 

his co-author correspond 1 to 1 (for fixed $L ) to the dichotomic 

coherent structures as defined by Barlow and Proschan (1975). It 

follows that with this definition there is a unique Q--level coherent 

structure corresponding to each event network (see Section 1.3) and 

the number of Barlow (1977, 1978) and Barlow and Wu (1978) 's coherent 

structures is identical to the number of dichotomic coherent structures 

as defined by Barlow and Proschan (1975) and discussed in Section 1.3.

Griffith (1980) compares two sequentially weaker relevancy 

requirements with that of El-Neweihi, Proschan and Sethuraman (1978). 

Thus his weakly coherent systems contain his coherent systems which 

in turn contain his strongly coherent systems, which are themselves 

the coherent systems of El-feweihi, Proschan and Sethuraman (1978).

It follows that the number of weakly coherent structures is between 

the number of his own coherent structures and the number of our narrow 

sense coherent structures (to which they are identical apart from 

the relevancy requirement), whilst the number of his coherent 

structures in turn exceeds the numbers of those of El-teweihi,

Proschan and Sethuraman (1978).

Since the definition of Caldarola (1980a) includes relevancy
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although it employs non-ordered logic, the class contains that of 

Butler (1979a, b) and in consequence there are more such structures. 

Finally, as the class defined independently by Hochberg (1973) 

and Fardis and Cornell (1981) allows for components and the system 

to have differing numbers of states, it is equivalent to our wide 

sense definition when the number of states are equal, and to the def­

inition of Hirsch, Meisner and Boll (1968) and Simon (1969, 1970, 1972) 

for the case where the components can all only take two levels.

In general, the number of such systems will be between the number of 

wide sense coherent systems corresponding to the minimum number of 

states of the components and the system, and the number of wide sense 

coherent systems corresponding to the maximum number of states.

The work of this section is largely based upon the joint 

paper in Appendix A1 which appeared in the Proceedings of the Royal 

Society of Edinburgh Series A (Mathematics) Vol. 89, 1981, and upon 

the paper which the author read to the Dundee Mathematical Association 

in February 1980. In the joint work, the recursive bounds and the 

structure of the results are due to the present author, whilst the 

proof of the theorems and the numerical evaluations are mainly due 

to J. Ansell and S. Humble, with the final (clarified) version of 

Theorem 2.1 being due to an anonymous referee.

2.2 Terminology and Notation

We suppose that each component and the system can be at any 

one of JL ordered levels ( £. ̂  2_ ) but that the other

assumptions of the basic reliability model apply. The state of all 

components of the system can be described by the state vector



£  —  (s^, s^f •••>
thu/here s^, the level of the ck component, may be any one of the 

levels
% x ^  •

For convenience \i/e define (analogous to the dichotomic case)

%i=  0  *> I *>
and for illustrative purposes, as well as later1 convenience.

(Chapter 4) we may take

% =  ^  ~ U 2. !> * * * 3 (2. 1)
/ ^ iL~ \

to obtain equally-spaced levels. Thus if (L--3 we have levels 

0, ht 1> whilst if £  =4 we have 0, %, %, 1 and if £. =5 we have

0, h, h, %, 1.
The resulting state of the system can be described by the 

structure function f(s) of the vector £, with range (̂ L , ̂

Introducing the notation

1 = (1, 1, ..., 1)

0 - (0, 0, ..., 0)

and if \ Y ^ 0T a11 ^  = 2* n» then
analogy with the dichotomic case, we define a semi-coherent system by 

f(x)^> f(y) for all • (2.2)

For dichotomic reliability a coherent system is defined by (2.2) 

together with

f(l) = 1, f(0) = 0 (2.3)

For the multi-level situation we shall say that (2.2) and (2.3) 

define a coherent system in the wide sense to distinguish it from a 

coherent system in the narrow sense which in addition to (2.2) we 

define to have the more restrictve requirement that if

~ 5 ̂ -c. v  • • ° ^
then
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"f (.Xi) for all i = 1, 2, (2.4)

In the dichotomic case, i.e. &= 2, these wide sense and narrow sense 

definitions are identical.

We define the state vector

 ̂*7—I ̂   ̂r)-'̂s)
th thas the i pivot of the system (i = 1, 2, ...,£). Between the i and

thj pivots (j> i) there exists a number of state vectors composed only

of the levels 9-,... j9-? • We say that the set of state vectors composedx o
only of the elements 0 -^ ,... ,*7- • constitutes the (i,.j)^ lozenge of the 

system. Finally, for a system of n components we define the set of 

state vectors

^°!>*v as the (jDj 0 ) chain

of the system. Illustrations are shown in Figure 2.1.

2.3 Systems Enumeration

In Table 2.1 we show the numbers of coherent structure 

functions n N^, n W ^  in the narrow and wide sense respectively 

corresponding to some low-n and low-£ values only, since even for 

these the results in the table represent a significant computer effort. 

We also show the numbers of coherent functions1̂ B^, ^ G^corresponding 

to the definition used by Butler (1979a,b) and the weakly coherent 

definition of Griffith (1980). These are obtained by generalising 

Lomnicki (1977) to give forn>l,

-V-GU ',H v \ -  (jY'h „

The table indicates that the requirement of relevancy only has a

significant effect on the number of systems for Ji = 2.

It is apparent from the table that the number of coherent

functions in the narrow sense which can be constructed from two
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Figure 2.1
Illustrations of partial orderings of component state vectors.

n = 2, £ = 2 Pivots

(0, 0)
(1,1)

(2 ,3 ) tn lozenge!

(0, 2) n chain

(1/2,y2)
(1,1)

n = 3, £ = 3

(2, 3) n lozenge
(0 ,3 ) chain
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components with fL levels is given by

(2.6)

However, no such simple relationship appears available for more 

than two components, nor for wide sense coherent structures (nor 

Butler's, nor Griffith's definitions) except for f\ = 1, for which

(This will be proved below). Thus, as in the dichotomic case, the

First we generalise a theorem due to Birnbaum, Esary and 

Saunders (1961).

2.4 Bounds on the Number of Semi-Coherent Systems 

Theorem 2.1;

For each positive integer ft , let S ^ denote the set of all 

semi-coherent functions of order f\ , and

(2.7)

best one may do is obtain bounds on the number of coherent systems.

Then there exists a bijection from G onto

Proof:

Let Define T and

"f C- ̂ •> ̂2. !. • • • 5

H  (3 } °̂ Sl) ~  ~f"

*̂2. } • • • 5

Note that, since c\ • , J -  I 9 ,  ̂Jl_ are semi-coherent and non-

decreasing in ^  ^ 

implies

for

e
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That H is surjective follows from the observation that if 

-f g. St\+\ and the functions defined by

^  Cs.) =  T  ( . ^  •> =  's 2- ■>*•■• ^

then (j^\•» ‘ ° ' ^ e  ^  and ^  (jio ► 0 ■} — "T .

It is clear H is injective.

To use Theorem 2.1 to obtain an upper bound for the number 

of semi-coherent systems, we first note that the number of solutions 

in positive integers of

V ‘2C 2_ oc^, sc: (Y\

is m  (J-. K--T-I / \ (z.10)
2  S . . . . 1 : 1  =  •
Ki-' -frV = l \  }

Hence it follovi/s from the theorem that if denotes the number

of possible semi-coherent functions of H  components and levels

and If these functions u/ere strictly ordered then by considering

the number of ways these functions may be identified with ,

=- 0 * , the number of possible semi-coherent functions

of (r\+l ) components and X  levels would be given by (2.10) with

and rr\ replaced by j2. and ̂ S_^respectively; i.e. the number of

such functions would be

^ ~~ ' I
X  J  ̂ (2,11)

However, the functions cannot be strictly ordered. In

fact, the order in as well as in the states of the system

is partial not total. Nevertheless if <  is a partial ordering on

a set P  then there exists a total ordering on P  such that
/ o

<  C  .
i.e. there exists an order preserving extension. Thus
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° St+«--'' 
<L , 

(2.12)
since <Ji <  ^ 2. ^  • • • ̂  5 .̂ implies V < c - - - <  a t

and also every semi-coherent function whose domain is a totally

ordered set ( R. ) is clearly also a semi-coherent function~ o _n c
on any restriction ( :<Ĉ  ) C  • Thus as the ^  (L

functions are not strictly ordered it follows that (2.11) represents 

an upper bound for the number of semi-coherent functions with (n + 1) 

components. Of course, we still have an upper bound even if we . 

replace ^ in (2.11) by the upper bound ^LLj^ . In this way 

we obtain a recursive upper bound for the number of semi-coherent 

functions of (0 +1) components and 5. levels which is of the form

=  { (' V ^ ± + S L - \ \  . (2.13)

The proof of (2.7) follows immediately from (2.10) with 

'-fs=r-(L—  2. and m=J(L .

2.5 The Special Case of 7.

For the case when £- = 2, i.e. when components and systems 

can be only in one of two states (operational or failed)^2.13) becomes

n + ' V L ?. =  s (2.i4)

which allows us to calculate an upper bound for the number of semi- 

coherent functions for components provided we are given an upper

bound (or the actual value) for the number of such functions for f\ 

components.

It is of interest that starting with the actual value of 

2,414,682,040,996 in Table 1.1 for f\ = 7,* (2.14) provides upper 

bounds which are actually sharper than those obtainable from the best
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published bound to date (1.12) for H  15"

See the numerical results of Table 2.2. For I S’ Hansel's

bound (1.12) is someu/hat better than the bound obtained from (2.14). 

However, its recursive nature means that it can be used in conjunction 

with Hansel's bound to yield a systematic improvement to it for an 

even number of components. That is, if for h odd we take
=  3 M n

from (1.12), then we obtain from (2.14) that

(2.15)
rin+,

which is less than Hansel's value of for all n  ̂ >0 .

2.6 Bounds in the General Case

Whilst for j2. = 2 there are for any f\ only two functions

which are semi-coherent but not coherent, for 2 the number of

functions which are semi-coherent but not wide sense coherent ( )

rises rapidly. Thus in order to derive from (2.13) a useful upper

bound on the number of coherent systems in the wide sense we must

evaluate at least a lower bound for Such a bound can be

obtained by supposing that the X  states of the system (in terms of 

the levels of its components) were strictly ordered, and again making 

use of (2.10). If a function is semi-coherent but not wide sense 

coherent it can at most take the ( Aj- | ) values Xiv**!>X.£

Thus taking , ra =. X  - 1 (say eliminating ) and

— I , rn - X - l  respectively (say eliminating

X ,  and fixing ^  Xjz_ avoid double counting), one obtains

as a lower bound for ^

n ,  =  (jL'+SL-'h  +

^  V  ' (2.16)

It follows that this is a lower bound since every semi-coherent
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TABLE 2.2

Comparison of Hansel's and recursive bounds (Recursive bound 

based on -0  ̂from Table 1.1)

logio °

n Hansel's bound 
(1.12)

Recursive bound 
(2.14)

8 33.39845 24.46468

9 60.11722 48.62831

10 120.23445 96.95558

11 220.42983 193.61012

12 440.85962 386.91919

13 818.73926 773.53735

14 1637.47876 1546.77368

15 3070.27222 3093.24634



function whose domain is a totally ordered set ( P, ) is,

clearly, also a semi-coherent function on any restriction

^ ) • Thus the sharper upper bound for the

number of vi/ide-sense coherent structures Vv/ is given by

<  n  A L_J^ - (2.17)

Since ° N ^  and > (2.17)

is also an upper bound for the number of coherent systems in the 

narrow sense, ̂  |\J » anc ̂the number of coherent systems as defined

by Butler (1979a,b), Oj^ as well as by Postelnicu (1970), Hirsch, 

Meisner and Boll (1968), Simon (1969, 1970, 1972), El-Neweihi,

Proschan and Sethuraman (1978), Barlow (1977, 1978) and Barlow and 

Wu (1978)^ and Griffith (1980).

Recursive lower bounds for |\| ̂  and Wg_ can also be 

obtained. The JtL -level n  -component configuration contains £  pivots, 

and defined on the ( £  ̂(L ) ^  lozenge there are ^ VJ possible 

narrow sense coherent structures. Further, the number of coherent 

structures allowable within this lozenge is not reduced by the particular 

structure existing in the ( ) ^  lozenge on which can be defined

^ possible structures. Consequently, we obtain a lower bound
H ft. t

on N £  ^y assuming that because of the coherency constraints 

corresponding to feach state vector outside these two lozenges there 

is only one possible level of the system. Thus
n
N t >  " N c - f N i  = " ^  o (2.18)

It follows that this is also a lower bound for the number of coherent 

systems based upon the definition of Postelnicu (1970).

A lower bound on the number of coherent structures in the 

wide sense can be obtained by taking a recursion over H  .



L +  (e.-l) -\

Introducing a new component into a system of ( H — | ) components

corresponds to adding an entry of 0 to the previous state vectors

of the system and adding further states. These new states include 
ththe ) chain. Following an argument akin to those above,

defined on this chain there are
I 2.5L-Z 

JL-l

possible structures unrestricted by the particular structure in the 

system of ( H — \ ) components. Thus assigning only one possible 

level to each remaining state vector, a lower bound for the number 

of coherent systems in the wide sense is obtained as

n  ^  l* JL-2.) 0-1  p  °
JL-\ J ^ 8-

C\-\ Q O'-X \ I
where v\ SL 2S a J-ou/er bound for . WjP • Again (2.19)

is also a lower bound for n e>*.

Numerical illustrations of the bounds are given in Table 2.3 

for some low r\ and Q_ values. It is seen that ^  R l L  2S sometimes 

below rv~Tj^(for r\ = 5), and in such cases it is of course preferable 

to use as a lower bound on

2.7 Relationship of Event Networks to Structure Functions

We remarked in Section 1.3 on the equivalence of the 

structure function and logical event network for a dichotomic system, 

although the later may be hard to draw. For components which have 

possible levels this equivalence no longer generally holds 

(although as previously noted using Barlow and Wu (1978)'s restricted 

definition of coherency the equivalence between the event network and 

structure function does remain). However, it may well be of interest 

to determine how many possible structure functions correspond to a
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TABLE 2.3
Bounds on ^ S q_ , Xj£_ , and V/^ .

l09 10

2 3 4 5

3 2.34242 6.25502 17.98690 53.18255
4 4.86814 18.09240 70.98940 282.57738
3 8.45674 40.20450 198.94331 992.63739

lo®10 (

2 3 4 5

3 1.27875 1.74036 2.21219 2.68753
4 2.46090 3.62583 4.81987 6.02145
5 3.79246 4.82898 7.91364 10.00805

I o ® i o  ( n  T V )

n

£
3 4 5

3 - 4.44022 7.75922
4 6.43492 6.66033 11.76388
5 7.69020 8.88043 15.51845

lo9l0

A
£

3 4 5

3 - 6.64628 7.42443
4 7.16916 7.94929 8.25032
5 9.31529 10.87700 11.72209

nU_£ calculated from (2.13) using ( Je_  ̂ e anc* "Te.
calculated from (2.16) and (2.18) respectively. n Rje_ calculated 
from (2.19) using values and 3 W'j given in Table 2.1



single event network, because for example, a system may have originally 

been designed in terms of such a network. In fact, the (dichotomic) 

event network places dichotomic constraints on the structure function. 

For example, if A and B are two components in parallel (in the sense 

of an event network or of dichotomic reliability), the structure

systems defined in terms of the levels 0 and 1. Thus there are

corresponding to -a single coherent event network is again in general 

a difficult unsolved problem. However, for pure series or parallel 

event networks a relationship exists which may form a lower bound 

for the number of coherent structures in the narrow sense corresponding 

to any coherent event network. Unfortunately, no similar bound appears 

to exist for coherent structures in the wide sense.

function ' is such that

■fOvS) = o 5 f C p , ' W  = I.

It follows that in general the event network reduces the number

of states of the system to which levels have to be assigned from JC.
/3 O 1to ( Jc — J— ). Corresponding to a single event network therefore 

there are possible structure functions, and there are

o (9 ?n^

structure functions which do not correspond to event networks or

(2.21)

structure functions which cannot be immediately deduced from event

networks and two-level systems.

The determination of the number of coherent functions in

the narrow or wide sense out of the possible functions



Theorem 2.2:

The number of coherent structures in the narrow sense for a 

series or a parallel network with O components and SL. levels is 

equal to the number of coherent structures in the narrow sense 

which can be constructed from f\ components and levels.

Proof;

Let ^p£ be the set of narrow sense coherent functions for 

a parallel system with f\ components and £  levels. Hence if 

Cf> n then

^  ^  ̂  for all S ■= X i  5. • • 3 X j

Cj)(̂ 2̂  —  | if oe.̂  —  | for any c<

$  ̂ i f -oo Uy

and (f> (J) »  |  ̂ {9) =  O . '

It also follows that if $  ~ \ then =■ t for

some <K , hence if we consider only the ( JL— \ ) possible levels

O  ~  7^ l 0 0 0  C  /L

and ignore X*. ~  1 * ^ en 4  ̂(j^) ^  I

Let be the set of functions which are narrow sense coherent

for O  components and ( •£_— I ) levels, where these ( j£— I ) levels 

are denoted by

0 « f S . <  | ^ a <  - • -  | .

Then by introducing the mapping

^  - 0 1 5 T'z " ** 3 ^  1 3 ^ 2. ^ \̂ ~ jcl—1̂)

it is simple to show that for each C}) e  ^ fjg_ there exists one 

and only one function ^  ^  VA and conversely. For the

proof in the case of a series narrow sense coherent system we discount 

the level T-i =■ O  for which the series system must fail.

It follows from this theorem therefore that if one can
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evaluate the number of narrow sense coherent functions for f\ 

components and ( JL-\ ) levels, or place a bound on this number, one 

immediately has the number of narrow sense coherent functions 

corresponding to a series or a parallel system of f\ components 

and £  levels, or has a bound for this number. (Thus, for example, 

from Table 2.1 we know that for 3 components there are 18 narrow 

sense coherent three-level systems, and 151,236 four-level systems, 

corresponding to a series event network). Moreover, the reduction 

in the number of levels one must consider for a series or parallel 

system, from •£ to ( j£-1 ), is unique to these event networks.

Thus, it appears that the number of narrow sense coherent functions 

associated with a pure series or a pure parallel network is the minimum 

number of such functions associated with any type of coherent network 

of the same number of components and levels. Hence by this argument 

we might place a lower bound on the number of narrow sense coherent 

functions associated with any coherent event network. (Note, however, 

that the more restrictive definitions of series and parallel 

structures used by Barlow and Wu (1978), El-Neweihi, Proschan and 

Sethuraman (1978), Hatoyama (1979) and Hudson and Kapur (1982) differ 

from those used here and themselves contain elements of coherency.

See Chapter 4.)



CHAPTER 3 

THREE AND FIVE STATE MODELS

3.1 Introduction

Section 1.4 indicated that there exists an extensive literature 

on models with small numbers of states. A joint paper by the author 

to some extent extending and unifying part of this diverse literature 

was published within the period of registration for Ph.D, and this 

is briefly reviewed in the current Chapter. This paper in the 

IEEE Transactions on Reliability Vol. R-29 (1980) together with . 

its supplement, NAPS document No. 03582-B (Microfiche Publications,

New York), appears as Appendix item A2. The work was joint with my 

then colleagues J. Ansell and S. Humble and then technician at 

Sheffield City Polytechnic, C.S. Mudhar. The formulation and 

relationships to the previous literature is due to this author.

For the general three-state Markov model in which every 

transition between states is feasible (see Figure 3.1), the paper 

obtains the transitory probabilities of being in the various states. 

Whilst this model has been analysed previously in the literature, 

e.g. by Biggerstaff and Jackson (1969), we consider special cases 

and investigate the approach to the steady state. In addition^the 

three-state literature is extended by the analysis of a three-state 

model in which every transition is feasible and the transition rates 

from the full operation state ( -Sj) to the partial operation state 

( anc* failed state ( So, ) are each sums of two Weibull hazards

(one increasing and one decreasing) and consequently correspond to 

bath-tub shaped curves (see Section 1.2), whilst the remaining 

transition rates are constant. The five-state Markov model, also 

presented in the paper, models a unit subject to two mutually
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Figure 3.1
General Three-State Reliability Model

transition diagram

Figure 3.2
Five-State Reliability Model

(2,1)
(complete
failure)

transition diagram

*2 0(Good)

(1,1)
(partial
failure)

t*2 (2,2)

-<•

(1,2)
(partial
failure)

(complete
failure)



exclusive failure modes, in each of vi/hich failure can be partial 

or complete (Figure 3.2).

3.2 Analysis of Three-State Models

Considering first the general three-state Markov model, 

u/e make the usual assumption that the device is initially in 

state > and denote the probability of being in state S  
at time t by (4) > -t = 1, 2, 3. The constant transition rates 

betu/een states are given in Figure 3.1. Then the set of differential 

equations corresponding to these time independent transition rates 

are, in matrix notation>

db

The solution of these equations are
p ( ^  = r j  VSa.

‘Xa ^ (3.2)

f-3 =  I —  Pt - fo-(^)

" f i  tt)"

i
i ? "T* 1̂ 31

a w = %». ■- Ok**
_ Pa (bY T - 1 3 X - 2 . 3 -(^32.+^)

T?c4
li(t)

_Ps(t)
(3.1)
-net

je_

a (t') _

u/here
-\- 7 T  ( '

and '"T-a,- O  anc* are the roots of the equation

u/ith
W  ■+ -f:) ~  b L ( ° ^ + k +  -  U- °^} ■=

6 = %?_3 -+rb  13 \^3\ +

b =  V a 3  ~  0-13
o  *= 32. *" T-1 'l- .

O

The steady state availability of the device is

P  ( —  Cb-z^-4" b^^) (
^T» 'Tq.

3)
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If A 2" —  I4, cvb ~ ^  O*, and

are complex and f\ ( p ^  is approached in a damped oscillatory 

manner with period . These oscillations are very

small such that
Pi P\ 0 * )  - 0 - 8  -e, . (3>4)

In many situations the rate of repair or replacement of the 

device from and S '3  may be the same, i.e.

(say); and the equation ^  —  O  has two real roots

HT; -  —  {%V2- “t ̂ 1 3 * ^

^  ̂ 2 . 3 ^ 1 ^ 3 0 -  •

By setting 32. ~  =  O  ihe model reduces to the partial/

catastrophic failure model of Kontoleon and Kontoleon (1974), whilst 

by setting ^ 3-2. —  O  it reduces to the failure to

operate/failure to idle model of Proctor and Singh (1976a), which 

was also considered in another context in the discussion of Biggerstaff 

and Jackson (1969). If instead T-'i*2_'=  T-̂ -z.3 —  the model

reduces to a three-state reliability model which has been considered 

in connection with electrical systems, e.g. Allen and De Oliveira (1977).

According to much of the literature (see e.g. Shooman (1968), 

Lomnicki (1973)) it is often the case that in general the hazard 

function for a device has a "bath-tub" shape, i.e. it is monotonical^y 

decreasing for small t (corresponding to burn-in failures), fairly 

constant at medium time values, and increasing for large t. Thus in 

order to model the whole of the bath-tub curve we now replace the 

constant degradation rates ^  [Q_ 3 X 13 !> 7 a3, sums ^eibull hazards

, ( 3 ‘6)
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where 0  l5 ^  I * ®  •> $

We also assume, as in the Markov model, that V̂ "'2.i =  tA~'5 l “ 

In this case the differential equations are

d t

o

P\ (to ^12. (t) 7-13 (jt) O 0 ft tb)
f-ztt)

\

— X|X 6b) 0 flztb)
_P^tc) Xi3 (b.) 6b) 0 _ LPsttil

Their solution is

o ^  jol
O —  ̂
o O

p. to
Pz-OO 

LPa tt)

(3.7)

P̂ L C-b) = (̂ ) 1̂ 37. Pv -ArTlT. (?^ ft

^3 ■ t t )  -  I- Pl(-fc-) ~ P-2. (J3) 3
=- -+Xli t>4](S7C^

ft\ —  -e-^p y o -v % - 3  «

The steady-state availability for this model is

P i^) = o ,
i.e. constant rates for repair and replacements cannot keep up 

u/ith increasing degradation and failure tendencies.

3.3 Analysis of Five -State Model

Now considering the five-state Markov model with states and 

(constant) transition rates given in Figure 3.2, we again assume 

that the device is initially good, and denote the probability that 

the device is in state 0 (good) at time t by P0 (H^ , and the 
probability that the device is in state (i, j) at time t by 

Pij(t); i,j = 1,2. Then the differential equations for this device, 

in matrix notation are

where
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i t

Po(i=) -(3 i+ )'a.'r h'JrP'^ o o 4 c, ^Cz
Rv (î VZ o o o

- t̂ l 0 '“f-Mz 0 0
PaiW 1 * 7-vz O — $C\ 0
Paa (Jc) T_ o l^iz 0 -Grz

W
Pwi^

-
P ^ w

—  —

(3.9)

These equations can be solved by use of Laplace transforms

or by classical integration methods to yield
Po (jc) — >̂ | D <.( j - i x ~ ' t ) ' t )  ^

-c=\

L w ^ ) ( .-? $
-L~\

Crt-x~[Xx0 ~izT t!) ̂ 7- \T-1x j ^  (^f^
P ^ W = ¥ - ;  D-: C - ^ i

where ~<j— [

* . 7 T  L ^ - - k >)~'
and  ̂ X  = 1, 2, 3, 4, 5 are the five roots of the polynomial

equation
"f ̂ ) =  (̂ r-+

—  (̂ T-V-&:!) (S'■vT-1̂ )4c-2.(P‘ii-'-w-+

- L r + ^  fcc+r^ •^.0-,Xtt+7^Tw.+'i‘']L̂  = o .
Note that one of'these roots 'Tj (say) is zero. The steady-state

availability of this device is

PoCcd ~  -  _hL (3.12)
■̂2. 3, M' 14. '“f S' ^

where
N  =■ T- 1-2. p- \2_ -0zK
® ~  ■ ^ A T . +  'J-a-fer, (VA,-j.-t-

If -^cr^ ■=. [̂ m  - —  ju^x = 0  the five-state model
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also reduces to the model considered by Kontoleon and Kontoleon 

(1974), whilst if *Xv —  ~ the model reduces to

the catastrophic failure model of Proctor and Singh (1976a).

In many situations the rate of repair or replacement of 

the device from state (C2_̂ |) and state (2.̂ 2.) may be the same, 

i.e. — -Pcz - -ft: . If also 'Vtz —  ~  p> only three

of the five exponential factors determining Po and t Q
in (3.10) (say those corresponding to M'i •> and ^ 3  ) will have 

non-zero coefficients. As before — 0 3 and are the

roots of the reduced polynomial equation

'-f, (h) =  (l-i+7-3. +  +(_P+ - ^ ( l ->'1
-+ . (313)

The steady-state availability in this case is

P - k
fo (50) =

I3

If / S ~  s  U- (jT- 1 ̂  ~ (j7- (2^2. ■+ [^1 +  K  2. -t 1 ^ 0

 ̂ are complex and Po will be approached in a

damped oscillatory manner with period .



CHAPTER 4 

A GENERAL PARTIAL OPERATION MODEL

4.1 Formulation

In the previous chapters v/e have treated the levels 

of operation of components and systems as forming a finite ordered

discrete set on the range £o,l] . In formulating a general partial

operation model in this Chapter u/e, like Postelnicu (1970), retain

the range £o,lJ , but instead largely concentrate upon a

continuous state-space approach. Some of the material of this 

Chapter is based upon joint work with S. Humble, which is partly 

contained by the joint paper in Appendix A3. In this joint 

work the structure of the model and relationships are due to the 

present author, with some examples and the numerical evaluations 

due to S. Humble.

We define S(t) as the stochastic process indicating a 

component's level of performance (state) s at time "t ̂  0 , 

where S(t) is now assumed to take values in the interval [j3,lJ 

instead of the c o u p l e ,iTj> . As before we define '0' to 

be complete failure, '1' to be full operation, with values in 

between representing in some sense the proportion of operation 

achieved. Then for fixed t.we may assume either that the random 

variable S(t) be discrete, so that it has a probability distribution 

with

^  (s z> ^  Q  for S &  ?

with-S a countable set, and

] T ] ' f C s , ^ = l  > forallt> <4.1)
< € ^

or we may assume that S(t) is continuous, with probability density, 

say 'f (ffi } on 0  S | . In the later case, the structure
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of the model in fact requires that in general the distribution is 

a composite of discrete and continuous parts, so that

J  (jS-j-t} ds •+ PoL'fc) + P\ L'^=   ̂ for all t 
° +  (4.2)

o ,
P o o  , P\ o  5

where P, [̂ c) and P\ are atoms of probability at s = 0

and s = 1 respectively. (See below).

Assuming that transitions between states satisfy the (first- 

order) Markov property that the instantaneous transition rates at t 

depend only on the state at t and not on states previously passed 

through, we may define aS transition rate

probability function from state s to state r at time t (r^s), so 

that for the continuous case and O ' ^ ' T  1 > “T ^  £ •>

(p is the instantaneous probability

of a transition to states r to C'-T -+ S" at the end 

of the infinitesimal interval t to (-br+cT-t ) given that the 

component is in state s at t. The corresponding instantaneous 

conditional probability of transition to state 1 given that the component 

is in state s ^ l  is S'-t-t- 'cr(^rt) , whilst that of

transition to state 0 is for s£ 0 o +  "O"

q> p [ ^ <  ̂  -rs- = s]
5'-fc^O J"t

0 <  " T <  1 5 S



Allowing, for the moment, all state transitions, the process 

can be considered as a special case of a general jump process, e.g. 

Feller (1940). j^Feller (1971) Chapter X treats the stationary 

transition probabilities case.^j It follows that for any infinitesimal 

interval t to (-b+kt) there will be a probability p[\S(.'t4' 

of the component ending the interval in the state s that it started 

it, corresponding to the non-occurrence of a jump in the interval 

apart from terms of For I > this probability is

pjsc-fc+r-tw | s t t w ]  =  1-SH;
0+ 

— •f'

4- ^  -4- -o-

whilst for s = 1 and s = 0 the probabilities are respectively

=  l | s i 4 =  il -

+  -or (>£)

P p  & - +  =  oI S (4) = oj = I _ r-t [ 1 +  Co ̂ > 4 )  i't-fQ(?>‘$
-\r ~Cr «,

As is usual j^e.g. Feller (1971) Chapter X^Jwe assume the 

existence of the processes, and give below examples of practical 

processes of interest. Thus, for S(t) continuous we obtain the (time 

dependent) Chapman-Kolmogorov type equation for O -S' 1 3

t  (s, -l+smc) =  'f Cs3-i)f \ - r-t [' <p c/, <4
j 0 +
-r^s

— <T-b f O ,
\ -

4-
'0+

S

4- 

4- -o-

5--t ^  ^ P c -.: v-J
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whilst the integrals are replaced by sums if S(t) is discrete. 

Thus in the continuous case the *f(s,t) and ^(s,r,t) satisfy the 

following (forward) differential equations

OH- 
_“T+ £J-t

"f (4,4)o+

+  O j S , t V P ° ( ^
° <  ■ ? <  I .

If S(t) is discrete the integrals are again replaced by sums.

A reasonable initial condition for the system of equations 

in most cases is
o < j < : i

Po ( 4 )  ~  °  5 (4.5)

p. c°) -  1 >

analogous to the usual assumption for the basic dichotomic reliability 

model. An implication is that for any finite t a discrete atom of 

probability will in general remain at s = 1 corresponding to the 

dichotomic survivor function of the basic reliability model.

The evaluation of solutions for -f (s,t) Po (jh)
and P  t o  can be simplified somewhat by the specification of 

restrictions on (s,r,t) andf>(s,t). For instance, in the 

absence of a repair, replacement or recovery mechanism one may 

assume (analogously to assumption (v) of Section 1.4) that

^  —  O  for all t and all r >  s. (4.6)

Thus since state s = 0 is an absorbing state whilst all other states

are transient, this implies in the continuous case that an absorptive 

sink with probability collected into a discrete atom will develop 

at s = 0 , somewhat analogous to the declining discrete component in
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the distribution of the backward recurrence time in renewal theory 

(e.g. Cox (1962)). Consequently by time infinity the distribution will 

be concentrated onto the failed state s = 0, so that

ft* (ft > ft') =  O  o <  I
4e* B° (4.7)

ft ftt) —  O  5-b co

V f t }  Po lift =  ft"t. - >  OO
The differential equations for P o l a n d  f\ (jc) are

=  J o+ + ft(^ c?Cft°3't )
^  + (4.8)

'o+
The solution of the latter equation is

-t r a \-
ft tt)= ^ p [ _ - X  ^ (P 0 ^ y <p t a S (4.9)

(4.2) that n x —

fo - J 0 . *■? J

which is a generalisation of the expression for R(t) in (1.4). Whilst 

the equation for P0 is not so readily soluble, we have from

04- ^  - (4.10)

To illustrate the solutions to this model, we consider 

some special cases. Of course, in the case of dichotomic reliability 

_5> —  , and (4.8) reduces to (1.3).

Example 4.1.1

If we suppose that (p I ̂  0  — 0 for all t, and that

for O  ̂  S' 1 (so that t ̂  O  ),

*9 - f t -  3 o  ^  - r  s

9  =  a [ o - 3  -a.* o - ^  + « /t

•et M  =
(4.11)
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then substituting into (4.4) M/e obtain

^  (-'5 ^  ^  =  X X s P ' - -^ -e- . (4 .12)

Using the initial conditions (4.5) \i/e have upon substituting 

into (4.4)

j-t
7

- t = o  '_ s

Substituting (4.12) into (4.8) u/e obtain

J Pi (X) _ - *2-
J-b cxt + i)-t

Employing the initial conditions (or noting the analogue to dichotomic 

reliability) and using (4.10) we thus find

R  pt\ •= 2 . , p X X )  - e . E |  P X f c - H ) ^

pc {+>) =  I - 2 . , pxt} -  , P x - t + i ^ - ^  (4a3)

where £  | (jX) is the exponential integral,

J=c.

It follows from (4.13) that for %  sufficiently large

R PtP =* 2T(X )

o - K  (4.14)
f c W  ^  \ -  .

%

Example 4.1.2

Another special case of the solution of (4.4), which

corresponds to a semi-Markov shock-model, is of interest. The

formulation is similar to that of Ansell, Bendell and Humble (1980a,b) 

and Bendell and Scott (1982).

For this
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S  v  f  O l - V ) ^ c ^ ) ^
^ O  J °

0 <  " T <  S < ^  I J (4-15)
vi/hich gives as a special case

9  0 ^ 7 )  =  ^  ° ^  ^ 1 :>

where ^  is the convolution of ^  {jc) 5 ^  0 Q )  —  S'

 ̂,6t'>=5 GO 3 FOO= ITSCr̂ 'V: 5 £(4>)
is the density function of time between state transitions (or shocks),

o^(y) = ^  \ ( ? ^ 5  , ̂ T =  '5i-» • V ^ ' t * ) = § \ 9 >

and oy(x5<̂) is the density function of amount of degradation or 

loss of operative ability x associated with a transition or shock 

to a unit at level s, where O ^ f  3C ̂  S • An advantage of this 

formulation is that explicit solutions can be obtained for (4.4) 

by direct means. That is, for the continuous part of ̂ (f^fc)we can 

write oo

^ ( j ^ )  =  T ~ !  . (4.16)
-£c=o

The discrete parts of the distribution are

p. W = S
Pl(_'t) =  F  (^c) . (4.17)

As a simple example of this shock-model formulation, suppose

that S(t) is discrete with N levels denoted 5 ‘A‘-~ • '

and that f(t) is exponential with density

$■(&  =  V- 5 (4.18)

Then if

-  S ’ for. all w, (4.19)

the process forms a truncated Poisson process, so that its (discrete)

M.
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distribution is

T

Example 4.1«3

As a final example of our partial operation formulation, \i/e

processes, which have been studied by various authors (see e.g. 

Buckland (1964) and Barlow and Proschan (1976) for reviews). In 

general for such processes we have as the direct analogue of (4 .4), 

(4.5) and (4.6) that

is the atom of probability corresponding to zero damage at t. 

However, these models differ somewhat from the one introduced above 

in that there we-'are particularly concerned with the reduction in 

the operation levels of components, and consequently systems, with 

time. Thus, particular importance is given by the partial operation 

model to the absorbing state representing complete failure s = 0, 

and to the maximum (and initial) state s = 1. In contrast, in the 

absence of replacement policies the state spaces for cumulative 

damage processes are usually unbounded (to the right) with states 

in the range .

consider the relationship to more conventional cumulative damage

~+ Z \  v  c »  Y ( u ^
+  Q 0 L-t

U ^ O ^ O ,  g o (_0̂  =  | s
where the terms are defined analogously to before, with

giving the density of damage at time t and
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However, it is apparent that associated with the accumulation 

of damage on (which may be described by (4 .21) } there

will be a reduction of operation level of the unit with magnitude 

in [<V] . Assuming that for any specific unit a unique level of 

operation is associated with a specified accumulation of damage, we 

can thus search for an appropriate transformation from cumulative 

damage to level of operation. Since the transformation is onto the 

range £o,l] , one set of transformations which are appropriate in 

the continuous case are the probability integral transformations 

given by

r  =  L  ( j ^  iu. =  "H (4.22)

where J ^ ^ i s  some specified probability density function defined 

on £0 ^00) » and “H  (jj) the corresponding survivor function.

Note that transformations of this type are monotonically decreasing 

and map infinite damage onto level of operation zero, and zero 

damage onto level of operation unity. The choice of-t\(a]of course 

depends on the physical relationship between damage and partial 

operation. If s and z are both discrete the exact analogue of (4.22) 

applies with the density function replaced by a discrete probability 

function, and the integral by a sum.

One possible choice for -P\ (_ul) is the uniform distribution on 

a. for which

( i  ̂  ^
4-
^  (4.23)

£ -

Thus, in this case the component can sustain damage up to an amount 

^without experiencing a reduced level of operation. As damage 

accumulates further,the level of operation reduces linearly until
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the component has failed completely by accumulated damage b  .

As (b-oO tends to zero, dichotomic reliability is obtained.

Alternatively, if -ft, is Weibull

S =  (4.24)

and this again reduces to dichotomic reliability as (3 oo , 

whilst if [3 = 1 an exponential relationship is obtained. For 

finite p  this transformation is 1 to 1, with s = 1 only for^= 0, 

and s = 0 only for-^ =oo.

As an example of the use of the transformation from cumulative 

damage, we consider the cumulative damage model of Mercer (1961) 

in which there is a constant probability J^^'tthat a shock (state 

transition) occurs in any infinitesimal interval ( “t ^  -fc, -v ), 

and a probability that the damage resulting from a shock

lies in ). In addition, Mercer's model includes a

dichotomic failure intensity 'J. (̂ c) which we take as associated 

1 to 1 with the occurrence of infinite damage (and hence with s = 0). 

Thus for finite and U)>^we have in our notation

< o Q

and as previously^

M 7 "  0  3 ^  <  ^  . (4-26>
o i s  the age-wear-specific failure rate in the 

terminology of Cox (1962).

Mercer studies the case where is gamma »

and considers the diffusion-type limit of this extended Poisson 

process obtained as cO ^ n  >  q  H. (J3) —  — __ => O
If



such that
P r Y

o{remains finite and non-zero. He consequently

obtains the limiting distribution u/ith continuous part

In this case there is no discrete part at O (except at t = 0), 

and analogous to (4.10) the distribution has a discrete atom at 
A  -  cO ofVj A

\ - J 0 1 , ( 3 ^  ^  j - t > 0 .  (4.28)

Applying the transformation (4.23) to the above distribution vie

obtain as the continuous part of the distribution over s
A  c b - c . w y ] onft-'— -(— =----- .toe

t > o ,

+

(4.29)

and

(4.30)

where

(5 ^ - t  r

p i-ft _ i L r c w s ,  p
C b - ^  y  A‘5t- r u v O

(4.31)
. *_*•_[> [ -  j-Y-t - X " S - C ^  ̂  

P C ^ =  P  U C ^ - U - ^ . i o L .^ o

If instead the transformation (4.24) is employed then
>fc„

'fLsz & =  Ir^Y-t-Jo 2 0 ^ ]
p  v1 o a - 0 )

IS \
Sh\ S-I -\

(4.32)

and

p ( _ ^

ft ( jt )  =  O ,  ~ t  ■> o .

-P-OCJ
3
'•-fc

(4.33)
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4.2 Measures of Component Performance

The probabilities fo (^) and P\ (jt) and the probability 
that the level at t equals or exceeds s ( O ^  I ),

R  '■? ■+ PC-t) (4.34)

(with the direct analogue in the discrete case) will often be of 

physical interest, as will the mean time till the level drops below s 

(or MTTLS)T(s ) = E(T\s3 ) where T £sQ is the time till the level 

drops below s. We also define

By treating s as a dichotomic failure point, the MTTLS can be written 

following (1.6) as

monotonically non-increasing in s. Higher moments of the time to level 

s will also be of interest, in particular the variance,

The mean time at level s (MTAS) s^ 0, may also be of interest.

In the continuous case since there are an infinite number of states prior 

to any state s<^l, all of which may be sojourned in, it follows that in 

general for the MTTLS to remain finite the MTAS(0<s<l) should be 

infinitesimal. Thus we denote the mean time in the infinitesimal range 

of levels (s, s +STs) by V  4 )̂ anc* interest focuses on

the mean time intensity function,V(s) > which we shall assume is 

continuous. This can be conveniently obtained by defining for 0<s < l ,

and

monotonically non-increasing in

Of course, monotonically non-decreasing in

(4.36)

where



Then

l,if S(t) = s (4.37)

0 , otherwise

E [ ^ s W ]  “ 3 (4.38)
and the time intensity at s, V(s) is

V M  -  J T ' f i W I t  « • » >
so that

\l(f) = E-[VC^J = X  ^  . (4.40)
Also, by analogy to (1.6) in the dichotomic case, the mean

time at s = 1 is obtained as

( 4 *41 )
Thus i___  — .

T L 4 = J ^  V • (4.42)
Another useful measure of the reliability of a component 

or system is provided by the expected level of operation at t

^  5 « , =  E b e e i ] .
In the continuous case

- X +  r ^  +  (4-43)
with the usual analogue in the discrete case. The higher moments 

of S(t) are also of interest, in particular the variance of S(t)

vhxr [ $ ( $ ]  =  S 2  ̂  -  [ ? (jb)] *  (4‘445
where

(Hi) = \ s'2- + Pi tt) (4.45)° o+ 1
It follows that S(E)is monotonically non-increasing in t whilst 

from (4.5) and (4.6) ^

V*u-[sto)] = 'IW [s (oo)]_ = O. (*- 6̂)
Also, a single summary measure of the expected performance of a

component or system over its lifetime is provided by the expected
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lifetime coefficient of operation (ELCO),

^  =  J o  _  (4-47)
A useful alternative representation of S* is obtained from (4.43) 

by interchanging the order of integration,

?  =  L  t c  - T J +  p.
=  £ +  s V & l s + V t  3

from (4.40) and (4.41).

In the case of dichotomic reliability there are only two 

levels of operation s = 1 and s = 0 , and S Wand R (.0- , ^ — I"-Po(^)

are equivalent to the dichotomic reliability R(t), whilst £  and T C 0')

are equivalent to the mean time to failure, E(t).

To illustrate the above measures we consider the examples

previously introduced.

Example 4.1.1

For the case of (4.11) and (4.13) we obtain

R U-t) = 0-s)XteTx%  x  { e  — <*- e _ . (x-t+ \)},
(4.48)

I ~  X  ■ “̂J2- -e. E-l C_0 +  £ I — -2-n (j— Sr)J ' ̂  
•2 .d £| - 2 .7 - i- l t12.V J ln O - i )

1 [ | - J U  o - $ ]  ’

v o )  =■

(4.49)

2.^ -I
J 3 (4.50)

and

c 5 ( + \  =  '2-*- ^ ------- +  2 -^TE i (Xt)- e- Ei *
^  ^  CX-t+KX-t+X) L  (4.52)

s  =  3 ftE , o ) z " ' ^ =  i ^ o a " 1 , (4>53)
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vi/here E^(a) is the exponential integral, and E^(l) -=2= O  3 8 M- 

For the case where is large so that (4.14) holds

[ s « l 2.
-x-t

CX-t+i)lX-t+X) VJ-t+l (4 .5 4 )

Example 4.1.2

For the shock-model example (4.20)

R -c— I
LN-\ 'f LN-l * > E - i'- (4 .5 5 )=iO

b ( M - 5

t-'-

(4 .5 6 )

(4 .5 7 )

(4 .5 8 )

M - a t0-3

-V
- M (4 .5 9 )

^  _ tsi —  3  KJ -A- l_t_ 
'ZL J-A- (jO- f)

(4.60)

Example 4.1.3

For the transformation of Mercer's model, the measures are 

rather complicated, although the Weibull transformation does tend 

to give somewhat more convenient results than the uniform transform. 

Thus, for the model of (4.29) to (4.31) we have



+  > (4‘61) 

s t £  =  e, W  ̂  + 0 _ P(o^  ̂ t + o j ^ t r O = v ^ V  ? ^ ^ ) l

*  L^-^Y Y  r (/tft) [ ^ - t + ^ x L ^  ̂ ]

- ^  J 4.62) Y ,̂ t-l_u

(b-̂ 1 V 11 4̂  r JUjef[<̂ '*!'t + ̂ 'Xy)ilj]
(See e.g. Gradshteyn and Ryzhik (1980)).

~SS~('Q — P (“0+  M V H p  (w, °c Yt) - P M  => *  ̂ - 2  u  [r[u, <a±+\) -p («.*, i)J
0 > - ^ »  **«•-«. P uvt)

4. C P — P (̂ "if 3
Cb-o-^V *i-t-*-i p +

= Pi C-t̂ -, -c«ft (4.63)
+ l  (u^- 2. u y a-b +ĉ y-t+iVy-tly T K i y y ^ - r ^ ytT] ; 

t t-<bp r r £«*'t +So'k 3-t'$A<^] j

u  k ^ a t - v l - W ] n-<Of-2. yt)

H 3 v 2 p ( 2 r ± ) j ^

For the model of (4.32) and (4.33) we instead obtain

r ( s ^  =  - ^ f  t- *y-fc - ^ u ^ l r  (~rp&^ju s, ̂ )
f V 7 ¥ u ~ p J J ^  “ W M J  3

s & )  =
p T w u p ^ i n = ^ )  i(4l55)

p U P © ^ j y ^ E 7 p  p ^ — i*-66)
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The form of 'X^ is of particular importance for the 

measures defined in terms of integration over t. For example, 

if for all t, then for the exponential special

case of the Weibull transformation ( p = 1) we obtain

(4.67)

4.3 Component Independence

The above measures are useful for studying and comparing the 

characteristics of systems of partially operating components, 

particularly since various authors have suggested different 

standard system structure functions as a basis for systems 

performance. Generally, however, the same basic underlying assumption 

of independence is made in each of these approaches (e.g. Postelnicu 

(1970), Barlow and Wu (1978), El-Neweihi, Proschan and Sethuraman (1978), 

Hatoyama (1979), Butler (1979b), Ross (1979)). In the dichotomic 

reliability model independence of times to failure of components is 

usually assumed, but in the partial operation model it is apparent 

from the various summary measures that there are three distinct 

families of distributions of interest for each component. These 

are the distribution of the level S(t) at a specified point of time t, 

the density of the time T(s) till the level drops below a 

specified level £ Cs>o^ say.-uo(jtj s) , and the density of 

the time intensity V(s) at a specified level ^ (s>o}  ̂ say .

We assume that V(s) is continuous (see Figure 4.1). For convenience 

we also define 'to as the density of the time to level 0.

Typically, previous authors have assumed the independence between 

components of the levels at any specified time, ignoring the other 

two component characteristics. Intuitively, however, if any one of



Figure 4.1
Relationship of T(s) and V(s) [equation (4.68)]

time 
intensity 
at a, V{a)

time to  
below s, T(s)

s 0
level, 61
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these three component characteristics is independent of the 

corresponding variable for other components then the other two 

characteristics should also be independent between components.

We prove this result below, and also consider the less restricted 

property of zero correlation.

Of course, considering a single component,

T ( S )  = jj" V  (*) J £ -+ V, (4.68)
where V| is the finite time at s = 1, and we define T(1) = V̂ . 

Analogous to (1.2) in the dichotomic case we have for all O 4: ̂  ̂  13

(4.69)

Equation (4.69) can be inverted to give

-u) ( t 3 s) -  J

in order to evaluate the density.axJ which is of interest in its

own right. Thus, for example, for the simple example of (4.11) 

to (4.13) we have
.a-t

-+ -2.-e. (4.70)
-t, C “Srt ■+• 1̂

whilst for the discrete example of (4.20) we have

*4-.

(4.71)

We can also derive a relationship for -"LA_ £ ) in

terms of , which is again of interest in its own right.

Supposing that the component reaches some level S o  i

at time t, then

^  r ~ o°

where is the conditional density of the component

<T \h

n cP

ps-
(4.72)
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having time intensity V' at state s given it reaches s at time t.

It follows that taking the limit as cTY~-> 0 then analogous to (1.3)

= <p U-r.-e) i-T (4.73)

and thus analogous to the expression for f(t) in (1.4)

■= []CS+ i-r •+
^  Qs5 6 5i:) k  - It- ̂  (s^O^j }

which is a simple negative exponential in ~V̂ . (This corresponds to 

the Markovian nature assumed for 9  (j£̂  ""T̂ t)') . Thus the unconditional

density of time intensity at level s is
oO

a x . ^ c ^ s ^ [ p X 4 ) 9 0 , s , - t y j i+f ( p ^ <f

and since analogous to (1.6)

s/-t) J-V“ = ^  1
it follows from (4.40), (4.73) and (4.73) that

°°r  w
. Sc+” ^  j -r ■+ .

For example, in the discrete example of (4.20) we obtain
v o ) .  r

(4.76)

as expected.

In what follows -c subscripts on the functions (̂

etc. denote the component, i = l,...,n.

Writing t_ = (t ,...', tR), £ = (sjf.jS^, “\h= (1^,...,^), the

corresponding n-component (multivariate) functions to 

w(t,s) and ^U. may now be denoted w(t_,£)

and AX̂  S)respectively, and represent the probability density 

that for all i = 1,..., n component i is in state s^ at time t̂ , 

the joint density that for every components i the time till the

level drops below level s^ is t^ (s^)>0), and the joint density

that for all i the time intensity at state s^ i s ^  (s^> 0).



As in the univariate case, if any s^ = 0 in A O  then the joint

density is defined as containing the time till component i enters level 0 . 

Where subsets of the components are considered, these are identified 

by appropriate subscripts on the functions.

For notational convenience, and without loss of generality, we now 

treat ^  anc ̂the associated univariate densities

as composite distributions which include the discrete atoms of 

probability analogous to Po and P\ in the univariate case, 

as well as the continuous density analogous to the univariate 

v-f • In consequence, integrations of these densities over

s^ are interpreted as including the addition of these discrete atoms 

of probability where they are included in the-range of integration.

Thus, analogous to (4.34) in the univariate case, we define

for — J_ >
I

(4.77)

where

S-L 5 O  ^  ^  I
0 +  j £ =  O

S  =  \j ^  ̂  ^ =. V j .. .j n

It follows that for O  <C \ 9 —  \ ̂ • i 0 9

is the probability that the level of component i at time t^ equals 

or exceeds s^, for all i = 1, ..., n. On the other hand, if any 

s^ = 0, the atom of probability at zero is excluded from R  ( 

so that the lower limit of integration is treated as 0+. With this 

definition, for t = 0 we obtain R(s,£) = 1 for all s, and for jt - po 
R(£,to) = 0 for all s.
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We also introduce

N 7 .  C-t-i) =
1, if S^i 
0, otherwise (4.78)

where S^(t^) is the stochastic process for component i. 

Generalising (4.69) and (4.38) we now have

£ < £ < !  ,and

(4.79)

(4.80)

Theorem 4.1

Independence between components of levels of operation S(t) 

for all time t, independence of the times T(s) till the levels drop 

below specified levels for all levels s(s>0), and independence of 

time intensities V(s) at specified levels for all levels s(s^ 0), are 

equivalent.

Proof: nLet'f(ryt)= TX ̂ (4.81)
-A.—  \

for all values of s^ and t^, 

i = 1, ..., n

then by (4.77)

r u ^ ) = 7 T  I
^  = I ^ J ^

=  . 7 7 1  R.: C.s-b'fc-T) .—I
Therefore, from (4.79) and (4.82)

(4.82)

=  y y  J (4 .83)

A
— ~[ six) ̂  3 3 O ^ ̂  J_
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Thus the times till the component levels drop belovi/ specified 

levels are independent if the levels at specified times are, 

and reversing the steps of the proof the converse also follows.

Independence of time intensities at specified levels 

follows from the independence of times till the component levels 

drop below specified levels due to the triangular structure of the

density for all components i = 1, ..., n of the time t^ till

conditional joint*density is defined as containing the time till 

component i enters level 0). Thus if (4.83) holds, the joint

Ti(si) in terms of the V^(6^), 4=. < 1  in (4.68). Thus,

for any O <  S-t <  \ i

If (4.83) holds for all s^, then for all £  both the T-c

and the \ S'^ - 0  i = 1> ..., n are indepdndent.

Also, from (4.84),

O r *  i) =  J  ̂  J-t, • • •
. $£) s+SV) ^

(4.85)

where is the conditional joint

component i drops below level s^, given the time till it

drops below level S ji -t S * . (As before, if any s^ = 0 this

conditional density decomposes into a product by Bayes Theorem and
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where sOJjf* is the conditional density

for component i of the time t^ till it drops below level (j£̂ ,'*p‘Cty

given the time t^ - v^ till it drops below level s^ +Ss^, with the

usual redefinition if s^ = 0.

If any s^ = 1, then s^ +Ss^ on the right-hand-side of (4.85)

is replaced by 1+, t^ - v^ by 0, and t^ by v^, and the integration over
tht^ is deleted. Thus we can eliminate the i component from

 ̂£+Ps) ’ and the conditioning in S jt
thon the time for the i component can also be removed. Otherwise the 

proof is unchanged.

To prove that (4.86) implies (4.83), we commence with

'̂V-V “t —  I ̂  —  I j i « i ̂ f\
and proceed recursively using

and ~Tz “ Q  s
where V^(l) is the finite time at s^ = 1 for component i. A similar 

argument to that which leads to (4.86) then yields the result.

Proposition 4.1.1

Pairwise independence between components of levels of operation 

for all time t, pairwise independence of the times till the levels • 

drop below levels for all levels s(s)0), and pairwise independence of timeN %
intensities at specified levels for all levels s(s')O) are equivalent.

Proof:

The Proposition is proved by restricting the set of components 

considered in proving Theorem 4.1 to any two. (We note that the Proposition 

extends immediately to independence between any subset of the components). 

Theorem 4.2

The following two conditions are equivalent:
r r\ —i



Proof:
(ii) E [ / \ - r A 4 J  -  7 T T c  C.^3 for a l l E . W -88)

ft

Let (4.87) hold. Then for s ^ l  for all i = 1, ..., n, integrating 

both sides u/ith respect to s^, sn and interchanging integration

and expectation, we obtain
n - \

v{=| J C-C-I J
Thus by (4 .68) it follows that (4.88) holds. If any s^ = 1 then 

V^Ci') —  anc* integration is u/ith respect to all

s^, ...,sn not equal to unity.

Differentiation together u/ith the triangular structure of 

the T^(s^)in terms of the V^( 6 ) 4z € —  I in (4.68),

provides the converse.

Proposition 4.2.1

For any tu/o components, zero correlation of times till the 

levels drop belou/ specified levels for all levels s^, Sj, and zero 

correlation of time intensities at all pairs of specified levels are 

equivalent.

Proof:

Again, the Proposition follows immediately by restricting the 

components considered in proving Theorem 4.2 to any two.

Theorem 4.3

Any of the conditions (4.87), (4.88), or 
r- H i n

E

imply that

T T  (jti) - I \ Sj. . for all-t
L ^=1 -1 ^ = 1  ~  J

(4.89)

e n £
a.>1

n
(4.90)
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Proof:

That (4.89) implies (4.90) follows immediately by 

integrating over t^, ...,tn, interchanging the order of integration 

and expectation, and applying (4.47).

It remains to prove that (4.87), or equivalently (4.88), 

imply (4.90). To do this vi/e first establish a useful equality for 

the multivariate process. From (4.39)

r rv
I \ M x  (j j )

L-
- fc.

and interchanging integration and expectation u/e have using (4.80)

that
E

analogous to (4.40).

A —\

n
Hence multiplying through by ( ”7T S3 ) and integrating over-X=l
s^, ...,sn we obtain after interchanging the order of integration,

j>.■ S.'̂ (7T1 4 TVViijj)
V  y>- - V ' L -c=l _j (4.91)

-  e .[ i t  r $ . At] .

for

Suppose now that (4.87) holds. Then by the alternative form 

S' in (4.47), the left-hand-side of (4.91) is equivalent to 

, and thus (4.91) reduces to (4.90).( T V ^ >a - »
Theorem 4.4

In the dichotomic case, (4.89) implies independence of 

levels of operation, and consequently of times to failure. Zero 

correlation between the levels at specified times implies pairwise 

independence.



Proof:

As standard, define the two operation levels as 1 (operation) 

and 0 (failed). Then

n ^ a  •

Thus

r- r\
E

L XM'

~0 =l for all'tiy..jbn(4.92)

iff(4.89) holds.

Also, in the dichotomic case (4.69) and (4.79) become

"f U . ^ )  =  I  • • • 5 C  * ̂  ^  O c o  £ ) ,
so that iff(4.89) holds

J't j.♦ ‘ J't-a — V L.
=  7 A  ( A A oN) ‘^C1— I

We also note that we have immediately,
~ t , , /)-tn

-f A  " j r *

= 7TT *Further, ■*-»
P\ Pij...jO U-j't) j

where P t ^ ^ n  (_-LjiL) represents the probability that at the 

times t^, ...,.tn respectively all of the components are operating 

except the i^̂ 1 ( | 4  H ) which is failed,

represents the probability that all the n components are operating, 

and Pi3 v, (jn represents the probability
1 L

that the group of (n-1) components excluding the i are all
\

operating. It follows from (4.92) that
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1 \  ^  0 ^ - v )  /_| ”f.j

= [\ - -̂ u^] TT ̂
Similarly,

f s C, ^ n ^  C 1 ^  =  ~  ^ln
where P \ 3v v r\ 3 represents the probability

that at the times t^, ...,tn respectively all of the components 

are operating except i and j which are failed. Thus,

p,,sr/s'o-&=[>- hu o.-ti)] t,- 0^] 7T
L~\

In general,

■<4^y>
where J is any non-empty subset of j = 1, ..., i-1, i + 1, ..., n, and 

f , , S n  represents the probability that at the times

t p  ..., t respectively all of the components are operating 

except the members of J which are failed. Thus the independence of 

the levels of operation follows immediately by induction.

To establish pairwise independence, again restrict the 

components considered to any two.

We now provide two counter examples to prove respectively 

that Theorem 4.4 does not generalise to more than two levels of 

performance, and that (4.88) and (4.87) do not, in the dichotomic 

case, imply independence of times to failure.

To verify that Theorem 4.4 does not directly generalise 

to more than two levels ofperformance, we consider the following 

simple example of three-level units.
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Example 4.3.1

Suppose that

=■ ^  ~ '3 * 3 f°r -u — Ij'X.

Then
E  [Si(ViSJ~ E  ^^.(Ac^jj "-E $

and if the levels are uncorrelated

E  ~ A f  •
But -, x

E  [s, =  -{f

+  t l ' A ' t v / t a )

so that if say ^  (̂  S ! ̂ yfc \^c ̂  is given by

'“f 0 % t t lS »Jft ̂
0 ĵsc 0 S’lzc 1"2.

c X^ t 2. o t+jzc
\ 3kc

3 _X 1 1

then the levels are uncorrelated but not independent.

Example 4.3.2

For our second example we consider two components with a joint 

distribution of failure times given by a uniform distribution on the 

circumference of a circle with center (1,1) and radius r, 0<r^l. Thus

A O  ( ^ , ^ 0 , 0 )  =  J l ' w  1
I q  , otherwise

It is obvious that t^ and t  ̂are not independent, because knowing the

value of t^ gives information about t I t  also follows by symmetry that



E  [ t v ^ o ) ]  -  E  =  '3
and

E_ [ ~ T >  e o ) T ^ ^ ]  =
so that the times to failure are uncorrelated, although not 

independent.

The last example provides a verification that the property

(4.89) is not equivalent to properties (4.88) and (4.87), since in

the dichotomic case (4.89) implies independence of times to failure

whilst (4.87) and (4.88) do not.

As a final point in this section we note that in the

dichotomic case property (4.90) is equivalent to (4.87) and

(4 .88) since 
oo

Thus

H f \  C ^ J t ]  =  4  f x  t , 4

and =

^ by (4.41).

4.4 Series/Parallel Connections

Whether components characteristics are independent or not, 

there remains the selection of appropriate structure functions 

f(s^, ..., sn), specifying the level of operation of the system in 

terms of the level of operation of the components. For a coherent
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system Barlow and Wu (1978) define f(^) by

-Q. f •=. Sr ~
[ L'T f vCeP^ \£=ik.U-&r ^ e W i x .

where <Ŝ P\ Pp ^  are the minimum path sets arid ^  VV-^P^

the minimum cut sets of a corresponding (one-to-one) binary coherent 

system of the Barlow and Proschan (1975) type. The above definition

is an obvious generalisation of the dichotomic case, and Barlow and

Wu use this to define a multi-levelled series system and a multi­

levelled parallel system by

C — ) ■=
(4.93)

and
(j?) -  rrv^vj^ ^

respectively.

These are also the definitions of series and parallel multi-levelled 

systems employed by El-Neweihi, Proschan and Sethuraman (1978) and 

Hatoyama (1979), but not Hudson and Kapur (1982).

With so many possible system structure functions and coherent 

structure functions in the multi-level case, and infinite numbers in 

the continuous case, it is not unnatural to look particularly at the 

relatively simple series and parallel systems. However, the definitions 

of these structures employed by the above authors have many possible 

alternatives, e,g. Zijlstra (1980), Fardis and Cornell (1981),

Hudson and Kapur (1982). They are contained within our categories of 

series and parallel systems employed in Theorem 2.2 which only 

impose dichotomic restrictions on the system's structure function.

In fact, the definitions in (4.93) are of some physical interest, 

since El-Neweihi, Proschan and Sethuraman (1978) show that for their



restricted definition of coherent systems the level of the system 

is always between or equal to the series and parallel system levels 

as given in (4.93). This proof, in fact, generalises immediately 

to our wider class of narrow-sense coherent systems, as is shown 

by Griffith (1980), since for these

^  ^  (ftr̂pjyC-ji ^  QwyeJsC-j

(4.94)

where

oC— S v'‘3^
Griffith (1980) shows that the class of monotone functions satisfying

(4.94) is in fact equivalent to our narrow-sense class. Thus, the

above proof cannot be generalised further to include coherent systems

in the wide sense.

. Physical considerations, however, may suggest alternative

restrictions on the classes of multi-level series and parallel systems.

For example, in certain applications we may regard as somewhat

pathological a parallel system whose level exceeds the sum of the

levels of the components, or a series system the level of which is

less than the product of the component levels. Of course, in applying

these structures, the sum of the levels must be truncated above at

unity, and for the'discrete case the product of the levels will not

always exist as a level and a rounding mechanism will be necessary.

It is apparent that 
n

-*.=1
N  (4.95)

I
and that these systems are outside the class of narrow sense coherent



systems although vi/ithin the wide sense class. It is also apparent 

that whilst the series and parallel definitions as used by the 

previous authors are appropriate for certain systems such as some 

communication, transportation and water systems, for others even 

within these applications our alternative definitions may be more 

appropriate. For example, the parallel lighting units considered 

by Zijlstra (1980) correspond to our truncated sum definition.

(See also Fardis and Cornell (1981) and Hudson and Kapur (1982)).

For a system of n independent components ( ft 2. )

the following expressions are obtained for the distribution of systems 

states at time t, where the suffixes denote the component, and the 

superfix n denotes that the system is of the first n components.

In each case the distribution is, of course, again a composite of a 

continuous density ( f o v e r  the range (0,1), and discrete

atoms of probability at s = 0 and 1, p an<̂

Firstly, considering the minimum rule we have

- 7  . 7  V  (4.96)

W  ' “ ■ T T .I C T- f V y
n  n *3where ^ represents every non-empty subset of i = 1,2 ,...,n and

^ represents the complements of these subsets (i.e. the values

of j = 1,2,..., n not included in ^ . Alternatively,

^  ^  is expressable by the Inclusion - Exclusion

Theorem (e.g. Feller (1968)). Also we have

Co) Vv  ' (A.97)
£ X

e x '
\  f *  CO) ^
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O') V »  • ( 4 . 9 8 )

With the same notation for the maximum rule we obtain

T ^ Sŝ>= S  7T t - c ( }f x >5 -l6X    (4.99)
„ . 7 J D  -  *■* 1 s t ) ] ,

P  Co) (£} =■ I \ P_iLa)(±) 0 (4.100)
~<_=\

C O  W = E  t t  P-iO-) ^  (4-101)

Alternatively, for the product rule, ^

-f ̂  (f.-t) =  '■fn ̂  ^  (4>102)

P* o) W  t

( £ $  T T  fj. (S) 3

< W f t = S 7 T-c € X  OPVk»W = 7T P̂ tB- - (4-104)
va1-1

Finally, for the case of the truncated sum,

T L - C  C Sjt) ^  ^  fn  I’l l .  (jSjt) J 6

+  Pn 1°) Ct) T * ! ! ^  (s^)
r>-) (4.105)

- ' - ^ C ^ T T  P ^  (_o) (04 ,
-L=l

n

=  I \ P x e o ) ( j ^  5 ( 4 . 1 0 6 )
j c =\ ’
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+  (4,107)

+ r + c v < k O e ^  ( § & .
As may be expected, the conventional definitions of series 

and parallel systems tend to lead to simpler expressions for the 

systems probability distribution than do the alternatives. For 

example, for two identical components, with densities corresponding to 

the exponential transformation of Mercer's model we obtain for t^O, for 

the continuous part of the distributions
ft,

M ’ (fyt) = r u v t )  (4a08) .

-"-f (Art}

( j ^  (4,109)

"f (Js£) = V n “ {--x * Y t  -Q_

(-4 .1U  ̂ s * ® " ^  (-ft- V"
where Z3T-^-(^is the Bessel function of imaginary argument. (See 

e.g. Gradshteyn and Ryzhik (1980)). In this case ^

does not appear to simplify.

The various measures of component operation have their direct 

analogues for system operation, and these are of use for comparison 

purposes. One useful relationship immediately to hand is that under 

component independence, the expected level of the product system at 

time t is

^—  (4.111)

Of course, in the limit as t tends to infinity, the distribution of 

levels concentrates towards state 0. Thus, for t large the expected



level of the truncated sum system is given approximately by

^  "  5  ^  ^  ’   « • > ! »
and this also provides an upper bound for S for all t .

Therefore, whilst the evaluation of the system probability 

distribution is easier for the minimum and maximum rules, this does 

not extend to the measures of performance.

To illustrate the differing series and parallel connections 

we show in Figure 4.2 the ELO at time t, £ for a

single component with distribution given by (4.32) and (4.33) with 

p = 1, o< = 5, K" = 0.2, O' = 10 and % (t) = 0.6, and also 

the corresponding series and parallel systems of two components.

The corresponding values of the ELCO, , are given in Table 4.1.

Also, for all the possible (dichotomic) three-identical component 

series-parallel systems shown in Figure 4.3, we show in Figure 4.4 

the expected levels of operation corresponding to various series- 

parallel connections, for the components described above. It is 

seen that substantive differences in system characteristics can be 

obtained depending on the definitions of series and parallel 

connections employed. In particular, comparisons between system 

configurations are-very dependent in magnitude upon the definitions 

employed (although not in direction).

In the case of dichotomic reliability, it is well known 

that the advantages to be gained from the use of parallel redundancy 

depend greatly upon the particular failure distribution which is appropriate 

and the values of the parameters.(See e.g. Lomnicki (1973) Table 1).

This is the case too with our generalised model, although now the



Figure 4.2
Expected Levels of Operation for different series and parallel systems of two  
components with distribution (4.32), (4.33) and 0 = 1, a: = 5 ,7 = 0.2, 0 = 1 0 ,  
X (t) = 0.6.

one
component

1 2 3 4 5

t  (arbitrary units)



TABLE 4.1

Expected Lifetime Coefficient of Operation for the two-component 
systems shown in Figure 4.2.

Connection ELCO

1 component 1.25

truncated sum 2.13

maximum 1.64

product 0.45

minimum
......... ....

0.91



FIGURE 4.3

Series-parallel systems of three identical components.
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Figure 4.4
Expected Levels of Operation for series-parallel systems of 
three identical components

series: minimum
parallel: truncated sum
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series:
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advantages are also dependent upon the particular combination rules 

employed. Table 4.2 shows the improvement ratios indicating the 

value of ̂ (t) as a proportion of that for a single component 

which can be obtained by replacing a single component with the above 

characteristics by a parallel configuration of two or three such 

identical components. Whilst the truncated-sum connection of course 

provides the greatest improvement, with it for small t using a 

parallel configuration of three rather than two components offers 

little advantage. For each combination rule the advantage of redundancy 

is seen to be increasing with time.

4.5 Replacement

The model considered so far in this Chapter ignores the possibility 

of replacement. The simplest renewal theory for this process would 

associate instantaneous replacement to the full operating state 1 

with entry to the failed state 0, and reinitiation of the time count 

from this point. In this case the continuous part of the distribution 

of level of operation s at time t is

O "t-

where ^  
îl_ ‘ft (j \Z

and (̂ z) represents the convolution of f(t), and

° ^  • The probability of being in state 1

at time t, i (jt) is given by (4.113) with replaced by

• Measures for this process may be defined analogously 

to those obtained previously, with 0 >.T^replacing '-f and

"2 : \ (jt) replacing P\ (̂ c) in (4.34), (4.40), (4.41), (4.43) and 

(4 .45), and the form of (4.44) and (4.47) remaining unchanged.



TABLE 4.2

Improvement ratios for systems of n identical components arranged 

in parallel (using truncated sum or maximum rule).

 ̂= 1, ^=5, X= 0.2, 6 = 10, = 0.6.

Truncated sum Maximum

^ x n
t 2 3 2 3

1 1.43 1.50 1.20 1.33

2 1.82 2.14 1.32 1.57

3 1.93 2.83 1.38 1.73

4 1.97 2.95 1.42 1.80

5 !
1

2.00 3.01 j 1.45 1.86



If R(Sjt)is instead defined as previously (4.35) now gives the 

mean first passage time to level s and this is related to the mean 

time intensity at level s for one cycle by (4.42). Now, of course, 

the monotonicity of the various measures no longer holds, except 

for the mean first passage times.

As an example of the renewal formulation, consider the simple 

limiting case of (4.14). Then

° (4.114)

+ %-t(\-£)̂ ^  i > o ,
and the steady-state distribution for the process is

o 5 (4.115)

which is independent of X  . It is unimodal with a peak at

£ ̂  r£t O  • 633. I .
Apart from replacement upon failure, preventative replacement 

is of interest for deteriorating units. Optimal preventative 

replacement for such units was considered in another formulation in 

the author's joint paper, Ansell, Bendell and Humble (1980b), whilst 

in Chapter 5 and 6 we consider the connected tuning and retuning of 

partially operating units to optimal levels to maximise expected 

work. However, even if we for the moment ignore these optimisation 

problems, it is of interest to consider the effect of preventative 

replacement upon the performance of the system in this extended 

reliability model. In Figure 4.5 we show the effect of replacement 

of a single component at arbitrary time t = 2, for the three- 

component systems of Figure 4.3 with identical components again 

with distributions given by (4.32) and (4.33) with p =1, oC = 5,



Figure 4.5
Expected Levels of Operation under replacement at t  = 2 for the systems of 
three identical components in Figure 4.3 with component distributions 
given by (4.32) and (4.33) with j3 = 1, a  = 5, 7 = 0.2, 6 = 10, X (t) = 0.6, 
and minimum and truncated sum connections.

no replacement

 -----  replace component
num berUT

 replace component
number.!

53 421
t (arbitrary units)



Y  = 0*2, ©  = 10 and î(t) = 0.6. The series and parallel

connections employed are the minimum and truncated sum rules.

As expected, the results are again direct generalisations of the 

dichotomic case, with replacement offering the greatest potential 

gains for t small in the mixed series-parallel systems. It 

follows from (4.112) that for both systems 3 and 4 the maximum 

asymptotic improvement which is available by replacement of 

component ill at time tg, is Gc - *£ . This

result generalises to all essentially parallel systems, i.e. to all 

systems whose most outward link is a parallel one.

4.6 Multiple Time Scales and a Random Environment

In multilevel, as in dichotomic reliability, auxiliary 

time scales such as elapsed operating time or time at risk may be 

important in accounting for the failure or degradation pattern.

See e.g. Isham (1974), Farewell and Cox (1979), Para and Garribba 

(1980) and Bendell and Humble (1981). A small amount of joint work 

on the overlap between multilevel reliability and multiple time 

scales was undertaken by the author and S. Humble within the period 

of registration for Ph.D., and this forms part of the paper in the 

IEEE Transactions on Reliability Vol. R-27, 1978which appears as 

Appendix A3, and is referenced by Para and Garribba. A brief 

resume of the rather specific formulation of this model is given in

this section, together with a brief treatment of the effects of a

random environment, also from that paper.

We consider partially operating units deteriorating in 

current operating time t^, elepaed operating time tg, and elapsed 

calendar time t. In the corresponding dichotomic case, Bendell and



Humble (1978, 1981), the three failure mechanisms were taken as 

independent and competing, so that the cumulative hazards were 

added, and the distribution of time to first failure corresponded to 

a system of three hypothetical units in series, one corresponding to 

each time scale. If we assume a similar series mechanism in the partial 

operation case with the product rule for component levels, we obtain 

for the continuous part of the distribution of level at time 5

(4.116)

( S I  T i

^  ^ 10 (-t) [ j *  co ( M  "f0 (s/t ̂
"+  W  'f-S- C C S  Jc  s <  I . !

If we now employ the simple limiting case (4.14) for each 

of the hypothetical units, we obtain for "t- 0 “t  D  ,

1/ 0jt^) =  x S  ̂ ^  ^

where ^

. \ X _ \ S C V ~ ^  ;
(4.118) i

. . 7 ' o ' t - o I
• I
. p \ _ 7 - - t ^ c-Co - 1J U f c ^ - t  •> (\-^j
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m) - r P ... .^  J 1S Euler beta function,

and F  is a hypergeometric function. It

follows that near s = 1,

^  —  1 i
whilst near s = 0,w . , + o_\-u pcx^^rixo-fc 0̂ 11-3

(4 *1 1 9 )

In the limit that *2--t 

physical interest

7-o~b o » which may be of
■5- j

^ ° - k ( x < u - h ^ y'-

( 4 .1 2 1 )

The unconditional distribution of level of operation at 

time t is obtained analogously to the dichotomic case as

4_ "F o

^ ° \ 0 ^ 5 -  % (4 .122)

■ X 0;t} <
Thus, for example, if -t0 has a truncated gamma distribution on (0,t)

whilst tj, has a uniform distribution on(0,tg) independent of t

. (4J23)

then near s = 1

<A
c

P  Ca's''c)̂'N\
X_ rlC-

. F  C\3£"F 4 o( P (0
, Jv-Vl

_  h y i - L G - t f *
T *  P ( V t , . O c s

( 4 .1 2 4 }

(i
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where __ . ^ ^
<3.c =  L ' T " 1 - 9-c SbrxO-s}! 5

and

W  —  \l9-s--v'J-t>+T 'U - V_X X-i) ̂

c 5 =  \ x * u  o - ^ ~ Q  •

For t close to zero this reduces to

^  _  X o X ~ T ( o . ^ k } - b

X s M  { \ - s u L ± - ^  ' (4-125)
Following Gaver (1963), Harris and Singpurwalla (1968) and 

many later authors, the above analysis may be extended to take 

account of a random environment by making the transition parameter X  

itself a random variable. A good justification of such an approach 

in reliability work is provided by the preface to Tsokos and Shimi 

(1977). With this approach (4.11) and (4.13) must be interpreted

as the conditional distribution of S(t) given , and we may obtain
j

the unconditional distribution based on a single time scale as j
' t  U y b W  ^  M f C S / b l z )  < 5 L ( 4 )  . ( 4 . 1 2 6 )

Thus, if for example, X  has a uniform distribution on (a,b) then !

vp(<-n -  Iy- s ) ^ A n 0-5)4 - t - Q . X X C ' - X  I»--t (\-i)-<ct-T) ^

T ^ J ’ ' C v - ^ U 2-
( 4 . 1 2 7 )

and f ((̂  =  /_Z=_\ C X  E  ^

k * _  <*. & ,  -v-P E  ' U X Q  .

( 4 . 1 2 8 )



CHAPTER 5 

OPTIMAL TUNING

5.1 Introduction and Specialisation of Model

Even in the absence of a replacement mechanism,associated 

optimisation problems arise in the design and management of systems 

with partially operating units. In particular, interest may be 

focussed on the initial tuning, and subsequent retuning, of units to 

optimal levels of operation. It is clear that in many cases components 

capable of partial operation can be so tuned to appropriate levels.

For example, generators can be deliberately operated at various 

power outputs, and conveyor belts at various speeds. In general, the 

higher is the level of activity at which a unit is operated, the greater 

is the amount and value of work produced by the unit per unit time. 

However, this does not necessarily imply that units should be run at 

the maximum level of activity of which they are capable, even if there 

is an unlimited demand for the work of the units, since there may be 

advantages to be obtained by operating them at some lower level.

One important case of this is where the value of the additional work 

per unit time achieved by increasing the level of operation of a 

partially operating unit is more than offset by the cost of the 

increased wear or'deterioration to the unit caused by the increase 

in level.

In this Chapter we consider a simple formulation of the problem 

of tuning such units to some optimal level in order to obtain optimal 

performance, whilst subsequent retuning is considered in Chapter 6.

The work of both of these Chapters is again joint with S. Humble, 

and again the present author is responsible for the major element of



the formulation and analysis, with S. Humble contributing some of the 

numerical evaluations and examples. Zijlstra (1980) discusses the 

related but distinct problem of optimising maintenance times for 

partially operating units, for which maintenance increases the 

operation level. See also Khandelwal, Sharma and Roy (1979).

In order to simplify the analysis, but to still treat the 

model at the greatest level of geneality conveniently available, we 

now both specialise extend the partial operation model of the 

previous Chapter. A specialisation that we introduce is that for any 

level Sj O < d  | > state transitions are only possible to

the adjacent state below and to the zero state (s = 0). Since for 

convenience we also take a continuous state space, we refer to these 

two mechanisms by which the failed state (0) may be reached as drift 

and catastrophic failures respectively. The catastrophic failure 

mechanism thus corresponds to the dichotomic failure of a partially 

operating unit tuned to a level of operation, Sq. Many partially 

operating units are also subject to some type of drift failure mechanism 

whereby the level of operation of a unit is gradually degraded from 

the tuned level, s^ through intermediary levels to the lowest or 

failed level, 0. Often and most simply this drift degradation takes 

the form of a continuous downward transition through all states or 

levels S ̂ • For example, a hydraulic system

with a small leak only gradually loses its ability to convey power, and 

a drill experiences an almost continuous drop in its rate of cutting 

as its cutting edges are eroded. Bosch (1979) considers such a drift 

degradation phenomena in electronic devices, although the model he uses 

for its analysis differs somewhat from the one we use here; in



particular his drift is deterministic.

In our current context we shall be primarily concerned with 

the densities of times/time intensities at particular levels

(V^ !>} 3 rather than and • For the

model of the previous Chapter these \i/ere deduced as infinite mixtures 

of exponential densities in (4.74) and (4.75). In this Chapter we 
shall assume by analogy with the dichotomic case, and in order to 

work at the greatest convenient level of generality available, that 

the /CL 3 are Weibull, or the minimum of two competing

Weibull drift and catastrophic failure mechanisms. The exponential 

special case of the Weibull is consequently directly consistent with 

the approach of the previous Chapter. More generally, for most of 

the states it is reasonable to suppose that the Weibull densities 

and minimum of two Weibull densities may, in some cases, correspond 

to appropriate mixtures of exponentials. However, since the mixing 

distribution in (4.75) is the time of entry to the state s this 

assumption is not tenable for the initial state s^ which is known to 

be entered, at t = 0. In this sense the model that we develop in 

this Chapter is a partial extension of that of Chapter 4.

In general, the mean time intensity for a particular level of 

operation will depend on what the level is. Transfer from that level 

will be achieved by catastrophic failure or downward drift through 

reduced operation levels, and a unit which is working at a higher 

level of operation than another identical one, will often be expected 

to drift or catastrophically fail more quickly. On the other hand, 

the higher is the level of operation s the greater is the work achieved 

by the unit per time, g(s). Hence, the problem of optimal tuning



discussed in this Chapter arises from the balancing of these tvi/o 

effects. Here, we assume that the optimisation criterion is to maximise 

the expected amount of work done by the unit in its lifetime. Whilst 

this is only one of many reasonable optimisation criteria, with it 

analysis is relatively simple.

which it is originally tuned by catastrophic failure, then since in this 

case only one level is sojourned in prior to failure, the mean time in this 

level is, of course, treated as finite. Thus, the tuning problem consists 

simply of choosing that value of s, Sg, which will maximise the mean work 

achieved

density at the level of operation s.

On the other hand, if the unit is subject to drift failure, 

as well as or instead of catastrophic failure, then an infinite number 

of states will be passed through in progressing from the initial state Sg 

to any lower state s(s^O), so that for the MTTLS to remain finite, the 

mean time at any s must be infinitesimal, as in Chapter 4. In general, 

the mean time intensity at s may depend on the level to which the unit 

was originally tuned, Sg, as well as the current level s. For the case 

where the unit is subject to drift but not catastrophic failure, the 

expected amount of work done by the unit in its lifetime is the integral 

of the expected intensities of work done at all the levels of 

operation s, S g ^ s ^ O ,  through which the'unit drifts.

Thus, in this case our optimisation

If a unit is of such a nature that it can only leave the level to

(5.1)

where is the mean time at level s,

v i ( / > = ^  i (5*2)
and 5^ now corresponds to the time to (catastrophic) failure



criterion is to choose S 0 to maxirfiise

P U  (*<>) =  ^ 0S°+  h  5 ( 5 ' 3 )

where the mean time intensity at S  ̂  Mo. is given by

S >  O N  ̂  5 S °A ^  (5.4)

and where x OL-sl density for the time intensity

at level s given an initial level of Sg.

Suppose now that the unit suffers from both kinds of failure

mechanisms. Then, the expected amount of work done by the unit during 

its lifetime can be obtained as in the case of drift alone, except 

that we must now take into consideration that if catastrophic failure 

does occur at some level -S', 5 So ^  •£ < ~~7 O , then the levels 

S, S m>’ O will not be entered. Thus, our optimisation

criterion will now be to choose Sg to maximise

^  5 (5-5)

where P  C s ^ o A  is the probability that the unit enters level s

given an initial level of Sg, where the mean time intensity at s is 

given by ^

V 3  (,s iScN) =  J o W  (5.6)

and where AX_^ £■> So) the density of time intensity at s 

given an initial level Sg. Of course, P (^So  ̂So') —  \ .

If we define j[\ £ o) ,>0 to be the probability

that catastrophic failure occurs in the infinitesimal interval 

( .S-t- s s 3 S  ) given that the unit was initially tuned to level Sg 

and has not catastrophically failed by S + f  s , then

*  P O + S ^ ^ O ' ^ C s ^ s - s ]  j (5*7)
so that P Sc) satisfies the differential equation

i £ C f 1 s ^ =  .
d s
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It follows that analogous to (1.3)

(5.8)

so that analogous to the expression for R(t) in (1.4),

p ( s is o \ =  -  . L ° K  .
L  J  (5.9)

ft»te, however, that this hazard function -A £ o) is a function

over the state space O  S rather than over time.

By analogy with the dichotomic case, we shall suppose that 

the time/time intensity for catastrophic failure at s, and the 

time intensity for drift at s, each follow a Weibull distribution of

(where the conditioning on Sq is suppressed in the case of catastrophic 

failure alone). Some justification for the use of the Weibull in 

such circumstances is provided by the direct analogy of the catastrophic 

failure case with accelerated life testing under different stresses, 

for which Nelson (1970) amongst others, provides examples justifying 

the Weibull.

to a unit effects only the parameters of the time to failure distribution, 

and not the distributional form, is an assumption that has been made

(see e.g. Bazovsky (1961), Mann (1972) and Hahn and Nelson (1974)).

A number of authors (e.g. Charles (1961), Saunders (1966), Mann (1968), 

Nelson (1970) and Singpurwalla and Al-Khayyal (1977)}have pointed out

the form (1.8). For such a distribution

The assumption that the level of operation or stress applied

by many authors and for which there is substantial physical evidence



that in such dichotomic life-testing situations the Weibull scale 

parameter ©  is often a function of level of stress applied to the 

unit under life test, ii/hilst the shape parameter p  is not. Hence 

for a partially operating unit at level s subject to a catastrophic 

failure time/time intensity and/or a drift time intensity, each of 

the form (1.8), ©  will be a function of present level s and initial 

level Sg, whilst p> remains constant. Thus, from (5.1) and (5.3)^

I  p  , (5.n)

(5.12)

The evaluation of (5.5) is more complex. We suppose in this 

case that at any level s the Weibull drift and catastrophic failure 

mechanisms are competing and independent, and that the failure 

mechanisms renew themselves at each new state. If the catastrophic 

failure mechanism is exponential, then this is equivalent to the 

case where the catastrophic failure density is an exponential over 

elapsed calendar time since the start of the process, and for the 

Weibull case with shape parameter close to unity it may also approximate 

well to a similar Weibull distribution over elapsed calendar time.

More generally, such a mechanism may be physically reasonable if the 

unit is continually readjusted (perhaps automatically) as it drifts 

downwards through the states. Further, the formulation has the 

desirable feature that with it the catastrophic failure mechanism can 

be taken to depend upon the current level s, which is not so 

conveniently available if, for example, it was taken as a function 

of elapsed calendar time.

Thus, denoting the scale and shape' parameters of the Weibull 

drift density of time intensity at s by G and ^  respectively,



and the scale and shape parameters of the Weibull catastrophic 

failure density of time intensity at s by and 7- ,

the hazard with which catastrophic failure occurs at level s,

, is obtained as the hazard with which catastrophic failure 

takes place before drift occurs ^

& ̂  ^  -  ^ y ] ^ . (5.i3)
Further, the density of time intensity at s is the minimum of two 

Weibull lifetimes *

€ V £
A - a

c j - u
L (5.14)

It follows from (5.6) and (5.14) that for general Weibull 

densities it will not be possible to write out V 3  explicitly

as a simple function of 6  anc* * However, if

> which may be physically realisable in many cases, ̂ (JL3  S

is also Weibull with shape parameter and scale parameter

so that

In this case

(5.15)

(5.16)

(5.17)

and
6  (j£* £ o)

(So) =  r  f  <’ a ^ f G ( s 3S0)~ (3+  ^  (s,So)
B OnJ J *—

'/l*

J s° €  C*i» So') is’.(5.18)



It is worth noting from (5.18) that in contrast to the situation 

in (5.11) and (5.12) for catastrophic failures and drift failures 

alone, the optimum value of Sg in the presence of both failure 

modes is dependent upon the value of (and of JL ). For the 

exponential special case it follows that

and

A  (s,s^ - -----
C(jbSc) +

(5.19)

(5.20)

For the rest of this Chapter we for the sake of definiteness

take

^  (_s) =  s - (5.21)

The resultant models correspond to the situation in which the work 

achieved by the device per unit time is directly proportional to its 

level of operation, and this will be appropriate in many circumstances, 

Doubling the speed of a conveyor belt or a drill will, provided 

this is within the tolerance of the equipment, double the work 

achieved by the unit per unit time. Similarly, the assumption may be 

appropriate for production equipment. For these M^, 1^ and may 

be interpreted as the expected production in the units lifetime.

It remains to specify possible functional forms for 0  ,

£T and |A_. Physical considerations suggest that these should be 

monotonically non-increasing functions of s (and Sg where appropriate) 

such that

0-^ | (in arbitrary time units) when s = 1



and

(5.22)

If this is the case then for the Weibull distribution whilst the 

mean drift time intensity and the mean catastrophic failure time 

intensity will be finite at s = 1, they will become infinite as 

s -> 0  . Further, the requirement that 0  , € and are 

monotonically non-increasing in s and Sq means that the mean drift 

time intensity and mean catastrophic failure time intensity of a 

Weibull unit now at level s^ (but originally at sQ ) will be smaller 

than or equal to the corresponding mean time intensities for an 

identical unit now at (but also originally at Sq ) for all .r, ̂  g . 
It also follows that the mean drift time intensity and the mean 

catastrophic failure time intensity for a Weibull unit now at 

level s but originally at sc , will be smaller than or equal to 

the corresponding mean time intensities for an identical unit now 

also at s but originally at s s 0 \ • We would expect such

properties to be valid in most real situations.

The form of the relationship between stress level and 

expected lifetime (or equivalently failure rate) has been considered 

by many authors, e.g. Bazovsky (1961), Mann (1972), Hahn and 

ftelson (1974). The Inverse Power Law Model, discussed e.g. by 

Singpurwalla (1971), telson (1972, 1975), Singpurwalla and Al-Khayyal 

(1977) and Kahn (1979), has the advantages of wide applicability, 

simplicity and smoothness. This states that the Weibull scale 

parameter ©  is an inverse power function of the stress s,

of the unit being stressed. The model has been applied extensively

where A and c^are positive scale and shape parameters characteristic
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in the accelerated testing of, for example, insulating fluids, 

capacitors, bearings and electronic devices (e.g. Endicott and 

Starr (1961), Endicott and Zoellner (1961) and Endicott, Hatch and 

Schmer (1965)).

Another model with similar characteristics ..and advantages 

is the simple logarithmic relationship

characteristic of the unit being stressed. Similar logarithmic models 

have also been employed (although less widely) in the accelerated 

testing of products, (e.g. Tomlinson, Andrew and Fitzgerald (1970)), 

and in the current context (5.24) has the additional advantage of 

leading to somewhat simpler analysis.(See below).

combinations of functions of the form (5.23) and (5.24) where as 

before the level s is standardised to the range 0^r^4ri • Of 

course, the results obtained from our models below are conditional 

upon the functional forms being valid. However, these are more general 

than either (5.23) or (5.24) alone, and anyway the methodology of 

this Chapter essentially remains unaltered if instead other functional 

forms are used, if these are known to be more appropriate. In any 

case, the functional forms for 0  , G  and employed provide 

reasonable approximations to many physical situations, and are likely 

to be particularly appropriate if there is physical evidence to 

suggest that the relationship between 0  and s is convex to the origin 

and smooth.

where and ^  are also positive scale and shape parameters

(5.24)

Here we shall suppose that 0  , <o and p- are linear



5.2 Analysis of Catastrophic Failure

We consider first the case of a Weibull unit subject to 

catastrophic failure alone, so that (5.11) holds, and for which

is a linear combination of functions of the form (5.23) and

(5.24). In particular, to ensure (5.22) holds we take

©  (_s^) -  Pi S c T ^  -V Su, S ^ )  , (5.25)

where

Since ©  represents the Weibull scale parameter (5.25) must be positive 

for all s0 . However, it is not necessary in (5.25) unlike (5.23)

and (5.24) for ft (j- ft^'T'Oin order to ensure that ©  O

for all s o . Hence we relax these conditions in order to gain

increased generality.

Of course, if A = 0 or A = 1 (5.25) reduces to (5.23) or

(5.24) respectively, if 1 (5.25) represents a sum of terms

of these types, and if A •<0 or A 1 it represents a difference of 

such terms. Hence (5.25) represents a more generally valid relationship 

than either (5.23) or (5.24). It is necessary, however, if A )>• 1

to impose the condition that "6 ? .ancJ if A-<0

to impose the condition that , in order to ensure

that 0  C?*) a'm°notonically non-increasing function of s0 .

In addition, in order to ensure that ©  it is necessary if

A ̂  1 that

^  A< (5.26)

for all sQ , and if A 0 that

c  <* X  -  P _________ (5.27)
°  o - f X ' - ^ 2^



for all sG .

From (5.11) and (5.25)5

-̂v £o( \ ft) 0
(5.28)

It follows that for o<> 1 , the optimum policy to maximise the expected 

production is to produce nothing, since M^(Sg) will be a maximum 

(infinite) when Sg = 0. Thus, if the mean lifetime decreases too 

rapidly with increasing level, a work per unit time function of the 

form (5.21) will be insufficient to justify any production.

The optimum value of Sg can now be obtained by differentiating

M^(Sg) with respect to Sg, and equating the differential to zero, to 

give

The second order condition for the solution to (5.29) to maximise

numerically. However, the relatively simple structure of this non- 

linear equation enables us to obtain a simple graphical method of 

solution. The method is similar to that used elsewhere for the 

graphical solution of optimum replacement problems; see Ansell and 

Bendell (1982b) and Ansell, Bendell and Humble (1982). Rewriting

(5.29) we have that

(5.29)

M1(Sg) is

So* < ft >  I ( 5 . 3 0 )

f o r  f t < l  . ( 5 . 3 1 )

The optimum value of Sg can be found by solving (5.29)

126.



Thus constructing the graph of $?o against On SJas shown in Figure 5.1, 
the solution (s) to (5.29) can be obtained, if any exist, by dravi/ing 
the straight line represented by the left-hand-side of (5.32) onto the 
graph paper and identifying the intersection with the appropriate 

oC curve. Since S“0 rises so rapidly, a number of graphs corresponding 

to differing scales are shown and the appropriate one(s) must first 

be identified. An example of the application of this method will be 

given below.
— oC

Figure 5.1 also demonstrates the convexity of -$T0 (from Sg=0), 
so that it is clear that the straight line of (5.32) can at most intersect 
any curve at two points. Thus, there are at most two solutions to

(5.29) and consequently at most one analytic maximum for M-̂ (Sg). When 

there are two solutions, it follows from (5.28) that since

JL*-rrv M  v "=■ O  • the smaller solution is
So~^ O

the analytic maximum, unless it is a point of inflection. However, 

since we are considering M^(sg) in a bounded range, it is possible 

that the local maximum given by (5.29) in the case where it has two 

solutions does not necessarily correspond to the maximum value of 

in the range. In such cases the maximum will instead occur at the end 

of the range at Sg = 1, as it will when there are no solutions to

(5.29) in (0, 1).' When (5.29) has a single solution in the range, it 

follows from (5.28) that it is either a point of inflection or a 

maximum, in this case a global maximum. For O ^ A ^ l  there is in 

fact a single solution which is a maximum.

Useful bounds for the optimum level of operation can also be 

obtained from the first and second order conditions for a maximum. 

Substituting (5.29) in (5.30) gives for A ^ l  an upper bound for
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the level of operation which will maximise the expected production,

- H T -t  (5.33)

For 0*<CA<1 the bound in (5.31) is negative so that (5.29) must merely 

be positive, which leads to the lower bounds,

s , >  >  ^ - ' ^ 0 . 3 ^ 1  (5 3))
(o < ft < o .

Finally, for A <C0 substituting (5.29) in (5.31) gives as a lower 

bound the upper bound of (5.33). In order for the bounds (5.33) 

and (5.34) to be of use they must be in the range (0,1), which will 

be the case provided that

>  “< / C ^ + 0  if ft \ or ft i O
(5.35)

>  \ 5 if O <  ft <  \ ■ f

Where in the permissible range from the bound to the edge of 

the (0,1) interval the optimum Sg occurs depends on the weighting 

parameter A. For A = 1 the maximum value of occurs at Sg = 1,

whilst for A = 0 the optimum value is identical to the bound of (5.34),

- \ (5.36)

The upper bound (5.33) and the equivalent lower bound for A <C0 

are shown in Figure 5.2 When $  is large, o< small and A > 1, the 

range of possible optimum Sg is small so that knowledge of the 

exact value of A is not too critical in the selection of the optimum 

level of operation. This is also the case when 1$ is small, oC 
large (i.e. almost 1) and A <  0. On the other hand, if Y  is small, 

oi large and A ̂  1 or Y  large, small and A < 0  great choice of 

level is available. For 0 < A <  1 knowledge of .the exact values of



Figure 5.2
Upper Bounds (for A > 1 ) and Lower Bounds (for A < 0 ) for optimum sQ 
for a unit subject to  catastrophic failure.

0.1 0.2 0-4 °-5 7
1.0

0.6 -

s,o

0.4 -

0.2 -

1.00.80.60.40.2
a

131.



A and o( are most important in the selection of the optimum level 

of operation vi/hen is large, although the optimum level can never 

be less than 0.3679.

For the limiting case vi/here = 1 and A <  1 the optimum 

value of Sq is also given by (5.36), whilst for ^  = 0 and A < 1  

the optimum value of Sq is

S o  =
(5.37)

In each case there is no analytic maximum for A >  1.

For = 0  and A > 1  the optimum value of sn is
"  '/<

S c - 0-*Vl
ft-l

(5.38)

u/hilst if A < 1  there again is no analytic maximum. If "ft = 1 and

0 < A <  1 an analytic maximum is alu/ays obtained.

By requiring 0 Ssg Z_ 1 in (5.29) it is possible to deduce 

additional bounds on Sg, some of ■■which are stricter than those obtained 

above. In particular, for A <  0 we now obtain an upper bound on Sg

to supplement our previous lower bound,

J2-raê >
(5.39)G-ffc*

whilst for A 1 we. obtain the same upper bound and for

k  c v - * y c f c - ^
this is sharper than the upper bound (5.33). This bound will lie 

in the range (0,1) provided that

and

O

for -ft >  1

for ft <  O

(5.40)

ft-l 5
tote that for the case A <  0, with suitable parameter values^the
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optimum level of production is confined within a range which contains 

neither 0 nor 1.

5.3 Analysis of Drift Failure

We now consider a unit subject to drift failures. To obtain 

simple expressions for which are monotonically

non-increasing in both s and Sg and which obey (5.22) we shall for 

the drift failure case (5.12) consider sums of two functions of the 

types (5.23) and (5.24) with weighting parameters A and (1-A) 

respectively; one function being a function of Sg and the other

’ ©  C  ^  = ©  I O ' )  + < 9 *  (*} . (5.41)
This sum of two functions satisfies (5.22) since the definition of 

drift implies that if the current level is s = 1 the originally 

tuned level must also be Sg = 1. It is, however, necessary that 

the weighting parameters A and (1-A) are between 0 and 1 inclusive in

order for ©  ( s  £ o) to be non-increasing in both s and Sg, and non­

negative. The resultant expressions for ©  consequently

represent generalisations of the well established relationships (5.23) 

and (5.24) and possess many of their properties. It is, of course, 

true that the simple additive relationship of (5.41) is probably 

inappropriate in certain situations, but the methodology of this 

Chapter will essentially remain unchanged if instead other functional 

forms are used. For the case where ©\(s^takes the form (5.24) 

and the form (5.23), it follows from (5.12) that the

optimum initial level to which to tune the unit to is always Sg = 1

provided O  L=. 4=̂ 1. , or Sg = 0 if o< ^  ̂

If instead (S4C ^  is given by (5.23) and (j*o) by



((5.24) u/e have

© ( S j S ^  f v s - ^  S °) > (5.42)

where cj( > 0  j K  P 5” O  ►> O  (=. € != o L=\»

Equation (5.12) now becomes

m *  W

Thus for X  '^’*2- the optimum policy is again to tune the unit 

to produce nothing. For <K “‘C  2. , equating to zero

u/e obtain

'Lft
O-A'X'VsL-l+Tf’ (5.44)

Again, the solution to this equation can be found graphically 

using Figure 5.1. Rewriting (5.44) we have

o-fftO-i) r c w w  ]
2̂_ft ft

JU sn = s(.-A (5.45)

so that again the equation can be solved by drawing the straight line 

represented by the left-hand-side of (5.45) onto the graph paper of 

Figure 5.1 and identifying the intersection with the appropriate <=>( 

curve. It follows that again there are at most two intersections for 

given parameter values, so that there is at most one analytic maximum 

for (^(sg). Also since from (5.45) ^^(O) = 0, if there is a single 

solution to (5.44) it is a maximum or a point of inflection, whilst 

if there are two solutions it is the smaller one which is the maximum 

unless it is a point of inflection. Considering the second differential

of ^2^0^ we see that a P°tnt °f inflection cannot arise if 1 <C c« P l „
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When there are no analytic solutions, the maximum is at Sq = 1, which

may also be the case when there are two analytic turning values.
'/?r- 'S/a.

If 0 <  c ^ < l  and s0 there is no analytic solutions, 

whilst if 1 -< ^ < 2 -  and Sq ^  je. there is a single

analytic turning value which is a maximum.

The requirement that the solution(s) to (5.44) are below 

unity leads us to eliminate the possibility of the optimum Sq 

being in the range from

_L- - __L Y -2- (5.46)

For the lou/er value to be in (0,1), we must have ~y ■> 2. > whilst

for the upper to be in this range we require the condition . 3 ^ ' *

As o O ' the eliminated range concentrates onto O ' G O G S ’

and finally disappears. The eliminated ranges (5.46) are shown in 

Figure 5.3. The smaller A is and the larger^ is, the larger is the 

range of possible optimum Sg, so that the more important is knowledge 

of the exact value of Js .

The second order condition for the solution to (5.44) to

maximise is quite complicated, being

a °(>  ' ft ___________
y j U  SoV

if S 0>  JL-

(5.47)

s if S c <  ^ W  ~3k

However, substituting the first order condition (5.44) into the



Figure 5.3
Eliminated ranges for optimum sQ for d rift failure model (5.42)
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interval from the height of the curve to the height of that curve at A  = 0.



' /Y  -
left-hand-side of (5-47)5 \i/e find for S'o -e that

in order for (5.47) to hold a necessary (not sufficient) condition 

is that either y  __ \

< -  e  and | < < ^ < 2  (5.48)
'/V “ L(so that there is a single analytic maximum), or S 0 -<2- •2.

r a  i '(so that by (5.46) sn exceeds
,'fr-Va L« O-ft)

).
i- -1

For S>o **- (which implies S’o < T J2-^ ) \i/e find by

a similar argument that it is necessary that I <  <:<< 2  , so

that a point of inflection cannot arise.

If we now suppose instead that ®\(?) and both

take the form (5.24) we obtain a somewhat simpler model for drift 

failures, since the physical requirement (5.22) results in the number 

of parameters in the relationship between ©  and s and Sq being 

effectively reduced from three to two. That is if

©  = Ft (j- a  Q-n s) +  O'fi) O - Y  &-TX
(5.49) , ,>o, O 4= &L=\^oLsL ,

then writing

s- =  a n _  > ^
we obtain

©  =  1 -  S ' S U S -  %  S u  Sc. (5.50)

where F > o 3 £  > o ; o i s L S , 4  I.

Substituting (5.50) into (5.12) leads us to

F k  = n  (P_1) [o.2-£T(-Z4-r') sf - O S  (_% + ?) c/jk Soj/p. ̂
(5.51)

so that equating t\-2_ (fejto zero gives the explicit



solution
So =

The second order condition for (^(Sg) to be maximised is automatically 

satisfied by (5.52) and the optimum level will lie in (0,1), provided 

that ^  .

The optimum levels are shown in Figure 5.4 for S' ̂ =100.
—  *■ ET

For all 5* and ^  the optimum level always exceeds -C- =£3= 0.6065,

which is approached as with cT remaining finite. As

S'* —^  cO with ^  remaining finite the optimum level to tune to tends

to 1, whilst for S'— o° > the optimum level
— 2.5- r>

is -Q- 0.7788. The smaller the value of o and the larger the

value of ^  the lower is the optimum level to which to tune. Also,

when is small, the larger the value of ^  the less important is it

to know the exact value of or ^  in order to locate the optimum

value of Sq . Similarly, the smaller is ^  the less important is it to

know the exact value of S' or ^  when S' is large.

5.4 Drift and Catastrophic Failure

The case where the unit is-subject to both catastrophic and

drift failures is of course the most difficult to deal with, so that

we have already restricted attention to the situation where both the

failure mechanism densities have a common shape parameter. Even in

this case it is impossible to obtain general analytic results for

optimum Sg, so that instead we content ourselves here with considering

one of the simplest examples of the combined problem.

As for the case of drift alone, we in general suppose that the

scale parameters G  and |A. have the form (5.41),
=  6, (S') +  S'a.Csej

=  h'C-S) +  (j°) •> (5.53)

2 . - 5 )

_ ‘2 - C (b'+^ (5.52)
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Figure 5.4
1.0 ° p tim um so for d rift fa il„ro model (5.50)
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and take the case where Ci Lf) and are each of the

form (5.23) with scale parameters A and B respectively, and shape 

parameters (o() in each case 1. This represents the simplest case 

of (5.23) except for the degenerate forms where o ( = O o r A  = B = 0, 

and implies a simple inverse relationship between the level of 

operation s and the mean time intensity at s (so that it is likely 

to be physically realisable in certain cases). The restriction on 

the values of o( , however, does represent a substantial loss of 

generality, and serves to emphasise the substantial increase in 

complexity which is involved when a unit is subject to both failure 

mechanisms. To simplify evaluation we further restrict attention 

to the exponential case ( p =1). With these assumptions we obtain 

from (5.9) and (5.20) that / 2.
p fr cA - ~i ̂  ^

* Left -V £ 0 \k)

(5.54)
\ M

where V/ o) — Q 2. (̂ > o\ (Ŝ s_ *2. ^ •

However, the evaluation of Mj (sq ) still remains difficult even in 

this very simplified case.

The values of s^ which optimise M^(sg) can be found numerically.

Some solutions are shown in Figure 5.5 for the exponential case with

^2-Cs °) =  (j~A^ S’J-' ^ and ^
so that “™“ I ^

■= fts_l +  s o~ ‘

C S 3 S o) - a s _ '-+ S o   ̂ (5.55)
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Figure 5.5
Optimum solutions for drift and catastrophic failure model (5.55), 
with /3 = 1

A  = 0.7 A  = 0.8 A  = 0 .9
A=B=11.0 A = 0.6

0.8

0.6 -

s,o

0.4 -

A  = 1.0

0.2 -
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B
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In order for Mj(sq) to be non-increasing in both s and Sg and 

non-negative, it is again necessary to specify that 0 4=k 1=1,

0 4= B 4l. The figure shows that (for these parameter values) 

when B is small the optimum values of Sg vary less with A than 

when B is large. Of course, for A = B = 1 for which the time 

intensities are independent of the initial level Sg,

t w  ( A  =  >
so that the optimum value of Sg is unity. It is also of interest 

to note that for the case considered, the function ^(Sg) is always 

relatively flat, although this flatness reduces as B increases.

5.5 An Example

Finally, in this Chapter we consider the simplest application 

of the failure models we have introduced in the evaluation of the 

optimum levels to tune to, Sg, for actual equipment. In Table 5.1 

we show the mean lifetimes under various stress conditions of 

electrical and electronic components assumed to have exponential 

failure densities and operating at 100°C. This data is taken from 

Bazovsky (1961), Figure 15.3. Such components may be treated as 

subject to catastrophic failure alone, and previous experience with 

these types of devices as well as an investigation of the shape of 

the relationship between 0  and s suggest that (5.25) provides an 

appropriate description of the data.

The parameters of the model were estimated by numerical 

minimisation of
' ~7

>> . - O  - oouijp) J L n  sCJ.y
- (5.56)

where is the mean lifetime corresponding to stress level -£(^\



TABLE 5.1

Mean Lifetimes,^ (10^ hours) at 100°C 

Stress

i
Percentage 
of Nbminal 

Stress

Relative
Stress

Level,
6.1

1 20 0.14 0.1389
2 40 0.29 0.05
3 60 0.43 0.0154
4 80 0.57 0.0071
5 100 0.71 0.0037

(rated level)
6 120 0.86 0.0019
7 140 1 0.0011

TABLE 5.2
Minimum values of work necessary to justify 
production at each level relative to value 
at rated level, 0.71.

S/.N Minimum Relative Values
of 5 C ^ \ m o a 0  =  © w © ;

0.14 0.03
0.29 0.07
0.43 0.24
0.57 0.52
0.71 1

(rated level)
0.86 1.95
1 3.36
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and 0.0011 is the length in real time obtained from Table 5.1 of

the arbitrary unit time interval corresponding to s = 1 in (5.22)
A

and (5.25). The least squares estimates obtained were A = 38.631,
A *

= 0.6832 and 1$ = 0.5031. Using (5.33) this gives an upper

bound for optimum Sg of 0.6213. Plotting the line ^  = 1.528-1.547Qx\ So

onto the graph paper of Figure 5.1 we obtain Figure 5.6, from which

it is apparent that there is one analytic turning value. Corresponding

to o( = .7 we obtain from the graph —  S0 = 3.45(10°), and for

o( = .6 we obtain S 0 = 4.2(10°). Consequently interpolation

yields —  ̂r\ ST0 = 3.53(10°), so that the optimum level is Sg = 0.029.

This satisfies the second order condition (5.30).

The above solutions are based on the value of the work 

achieved by a component per unit time having the simple form (5.21).

If this should be inappropriate in a particular environment, similar 

results may be obtained by paralleling the above procedures using an 

alternative appropriate function g(s). In any event we show in Table

5.2 the minimum values of the work done at each recorded stress level, 

relative to the value at the rated level 0.71, necessary to justify 

production at that level. That is, Table 5.2 shows the minimum values 

of necessary'to ensure that Mj^s(i} obtained from

(5.1) exceeds M^(0>.71). It is apparent from this table that a substantive 

increase in the value of work with level is necessary in comparison • 

to (5.21) in order to justify production above the rated level. For 

example, in order for an increase in level from 0.71 to 0.86 to be 

worthwhile, the value of work must almost double between these two 

levels. In contrast, operation below the rated level is certainly 

worthwhile with the current value of work, since for example a reduction 

of level of about 4/5ths from 0.71 to 0.14 is worthwhile as long as



©
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CHAPTER 6 

RETUNING

6.1 Introduction

It may be advantageous to subsequently retune a partially 

operating unit to some level of operation, s(2) different from 

that to which it vi/as originally tuned, Sq^. One reason for this is 

that units which survive for long periods of time are often then 

subject to a rapidly increasing failure intensity or hazard. This 

is the case for instance for units subject to Weibull failure 

distributions with shape parameters exceeding unity. Consequently 

it might be worthwhile to retune units which survive long periods 

of time to a lower level of operation, thus reducing the failure 

intensity, although at the expense of also reducing the work achieved 

by the unit per unit time. Thus a new optimisation problem arises in 

determining whether, and to what level, we should retune a partially 

operating unit* It is"this problem which is discussed in this Chapter. 

Throughout it is assumed that the optimisation criterion, as in the 

previous Chapter, is to maximise the expected amount of work achieved 

by the unit in its lifetime, and that (5.21) holds. Attention is 

restricted to units subject to catastrophic failure alone.

Where the-hazard function is a monotonically non-decreasing 

function of time ( >" 1 in the Weibull), as occurs in practice for

components which have been successfully burnt-in (e.g. Lomnicki (1973)), 

no advantage would usually be obtained by retuning units to a higher 

level of operation than that to which they were originally optimally 

tuned. This is because if it is worthwhile increasing the level for 

large time, t, it should also have been worthwhile to do so at t = 0,



since the increase in the value of the work achieved per unit time 

will be the same whilst the increase in the failure intensity would 

usually be less. Conversely, for units for which the hazard function 

is a monotonically non-increasing function of time ((3><1) retuning to 

lower levels of operation usually gives no advantages, whilst retuning 

to a higher level may result in an increase in the expected amount of 

work achieved in the units lifetime. For units with exponential time 

to failure distributions the hazard is constant, and assuming that 

although the hazard and expected lifetime ere changed by altering the 

level of operation of the unit the distributional form remains 

exponential, retuning will never be worthwhile if the unit was originally 

optimally tuned. In this case the constancy of the hazard over time 

means that the optimal level at t = 0 remains optimal for all t.

For a Weibull distribution of the form (1.8), the expected 

residual lifetime given that the unit has already survived for time

where

(6.1)
o On

As indicated previously, in many circumstances the Weibull scale 

parameter S' is a function of the level of stress to which the 

unit is subjected, whilst the shape paremeter ^  is unaffected by 

the level of stress applied. This means that for a unit tuned to 

8(i), ©  should be a function of If the unit survives a period

at Sq^ and is subsequently retuned to level s(2)» then the Weibull 

failure distribution to which the unit is subject once it has been



retuned has a scale parameter 6  u/hich in general is a function
4-

of both Sq^ and We denote these functions by £7 (SQ))
4-

and 0  (s(2)f(i)^ respectively.
We know from (1.8) that for the failure distribution of the

unit prior to retuning, 0  ŝ(l)^ should be a monotonically non-increasing

function of in order to ensure that the hazard is a monotonically

non-decreasing function, and the expected lifetime is a monotonically

non-increasing function, of the level of operation or stress

For the failure distribution after retuning vi/e would require by a
-f

similar argument that ©  ŝ(2)a(l)^ a mon°t°nically non-increasing 

function of both and (Compare our treatment of ©  (s,Sg)

in Chapter 5). This means that the hazard rate of a unit retuned to 

level s (2A) originaH y  tuned to Sq j ) will be greater than or equal

to the corresponding hazard rate for an identical unit retuned to 

level s (2B) also ortginally tuned to s ^ ^ f o r  all s (2A)^s (2B)*

It also means that the hazard rate of a unit retuned to level s(2) 

but originally tuned to will be greater than or equal to the

corresponding hazard rate for an identical unit retuned to but

originally at Sq b )< s (1a).

As well as requiring monotonicity, physical conditions suggest
"t* *F

that 0  (SQ)) anc* 0  Ŝ(2),S(1)^ sb°uld be such that

6+(s(2)’s(l}= j

1 (in arbitrary time units), when Sq  ̂ = 1

oO , when S/, v = 0U; (6.2) 
1 (in arbitrary time units), when s^) = s q ) = 1

00 , when s^) = 0

These conditions mean that whilst the expected lifetime at will,

by (1.8), be a finite period when Sq  ̂ = 1, it will become infinite



as s(l)~*^‘ Similarly, the expected residual lifetime upon retuning

from to will be finite for the limiting case = 1,

but infinite if s^) = 0.

In the previous Chapter, ©(s) ^or )J was taken to be

a sum of functions of the forms in (5.23) and (5.24) with various

parameter restrictions. By an analogous argument to those for ®(s q )
+

and 0ts,Sg) u/e may now consider G(s^^>SQ ) ) be a linear 

combination of two functions with such forms. Now, however, one of 

these functions is a function of s ^  and the other of s(2)*

Thus,

ŝ(2) ,S(1)^ = ^1^S(1)^ + ®2^s(2)^  ̂ (6*3)
+ +

where C7^(s (1)} and ̂ 2 ŝ (2)^ ma^ eac^ be defined by (5.23) or (5.24).
+

Consequently, the resultant expressions for0 (s(2),s(l)^ a9ain 
represent simple generalisations of the well-established relationships

(5.23) and (5.24), and process many of their properties.

6.2 Optimal Retuninq

We now suppose that it has been decided that at some time 

after energising, T, a unit will be retuned from its initial level 

of operation to some other level s(2)* time period T

may be determined by managerial policy, scheduling considerations or 

some optimality argument. For a given T and sq)> we desire to select 

S(2) such that the expected amount of work achieved by the unit in its 

lifetime will be a maximum. This implies that the choice of 

should be such that the expected amount of work to be achieved by 

the unit in its residual lifetime following T is also maximal.

Thus denoting the expected residual lifetime at T given that at that 

time we retune from Sq  ̂ to s^) by Ej(s^) we are by (6.1)



choosing s(2) ma*im;i-se

M  ">̂ 0 *”0  ~  s  C ©

This has a first differential with respect to s^) of

A H  t ^ ~ )  = [©-+<£Wj<Tt̂  -t-<TW © + ' ( ^ S  W) g \ (6,5)
J S( -̂ > - £T(^ © + '(St-'hMP C - 4 W  S,M J

+ < Y ^ © + '6:c^ sCl\) p Ce^ts^
where

© +  ' C ^ b S c o V  - -  spy), .
J </■ s &

The second derivative is rather complicated, but for certain 

values of the parameters, values of s^) exist which make (6.5) zero 

and the second derivative negative. These optimum values can be 

found numerically, or in special cases analytically. For values of 

the parameters where this is not the case no analytic maxima exist, 

and M (s(2) ,s(l) will be a maximum at s^) = 0 or s^) = 1 (°r 

possibly at s ^  = sq^ if the level to which the unit is retuned is

constrained to be s(2)^s(l) or S(2)VS(1)^* °kJec^ ve function
(6.4) may have more than one turning value, so that inspection may be 

necessary to locate the global maximum.

If we allow T->0, then (6.4) reduces to (5.11) i.e.

A J* M (_sc^ S o ^ t - ' )  = Q*  CCP’  ') /p
“T - > 0  \o.bj

= s0 © e s^ F C r ' ) / P  5
since in the limit as T->0 the initial level Sq^ and the retuned level 

s(2) become the same (s^). Thus, in the limit as T-^0, the problem
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of optimal retuning is identical to that of optimal tuning, discussed 

in the previous Chapter. On the other hand, if for general T, (3 = 1 

so that the Weibull failure distribution reduces to an exponential, 

then (6.4) becomes
■v

^ S(2) ,S(1) = S(2)^S(2) ,S(1) ̂  ̂ (6.7)
which is independent of T, so that the optimum s(2) also independent

of T. Thus, since for T = 0, s^) = s(j) = sg it follows that in this

case (6.7) again reduces to (5.11), and that provided that the unit

was originally optimally tuned no advantage is obtained by retuning

at any T.

In other simple special cases analytic solutions can be 

obtained for the optimum level to which to retune. For example, 

if p  = 0.5, then

M  (6.8)
= % sc©|V*-(s<a>so\V-WtV e\sopSc© J s

whilst if p  = 2 then

For T small compared to ©" , (6.8) approximates to twice (6.7). Thus 

for p = 0.5 retuning for small T is not worthwhile if the unit was 

originally optimally tuned. However, for T large compared to (9^

M  —  '2-‘vFt S t = W & + ( s L,.yi£ c©  5 (6-10)
from which the optimum value of s^) may be evaluated for given 
+

^ S(2),S(1)^‘ We note that since T only appears via the multiple 

the optimum value of s^) is independent of T for T large.

For P =  2 and T small compared to ©• , so that T/0=£WO, (6.9)

— <=>°
C v 2-

.(6-9)



reduces to
M  O') > 3~T) rfL O'SiJn O  CfO) ̂ o\) “T 3 (6.11)

from which the optimum value of may again be evaluated for

given © ŝ(2),s(l)^‘ ^ ee below).

6.3 Bounds
2

Despite the complexity of (6.5) and d M (s^) >s(i) » an<̂
2d s(2)

hence of the numerical evaluation of the optimal s^) in general, 

relatively simple bounds can be derived for the optimal level to which 

to retune. Since^(s(2),s(l)^ a mon°tonically non-increasing 

function of both s^j and s^) and equals unity when s^^ and 

take their maximum values, it follows that it is always non-negative 

(as required). As T^O, it also follows that
*4- I_ ~

is non-negative, and in addition since ̂ ( s ^ ) ,s(i)) monotonically 

non-increasing in s(2)» ^ ^ s(2),s(l)^ non“Posttive. Hence, since 

sn ^ 0  and ^  necessary that in order for a turning value
’(1) 
to exist

1 ■

- st© O*' Cs<3 ,s C(̂ ̂  s~$ Y> O(6.12)

This in turn implies that

> e + ( / c © ,

~  ( I '/l3

_ S t© ©  (_“(©_) ̂
(6.13)

+ + /
Substituting the functional forms for &(s(2) ,SQ ) ) aRd ®^s(2) ,s(l) ̂ 

into (6.13) bounds can be ob 

where analytic maxima exist.

into (6.13) bounds can be obtained for optimal tor the cases



Thus if for example ^

^  +  ^  2 Ĉ ~  * (6.14)

where u (s q )̂ may be given by (5.23) or by (5.24) with B replaced by

A, so that (6.2) holds, then

© + ' £ % )  > SC*) =  -  S  0-Pi) s C©~ . (6.15)
+

It is again necessary that O^A^l, so that 0 (s^) ,s(i)) mon°tonically 

non-increasing in both Sqj and aRd always positive. Substituting

into (6.13) we obtain ^  j j

['© t  (f + 0 _f!) % )  ̂
_ i
p

(r-i)('-ftV®i (,s oV) Sfp

(6.16)
- S ©  i .. !T ;____________   -S'

5

and since ^  1 as is positive, upon eliminating s^)

in the first square bracket we obtain the lower bound3 bracket we obtain the lower bound  ̂/
fCS'-OO-K)  X

t©,+ c ^ v  M T & r c ^  j  (6a7)

If instead we eliminate s^) i-n the second square bracket of (6.16) 

it is necessary for the bound so obtained to be of any use that 

( S"-l)(l-A)><^’(s(1)), which in turn implies thatS‘>l. In this 

case we obtain that 

^  O')
U s  o - A ^  ts0)) L C s - i ) C \ - ^  -  e T  ( S o f t l 1/(3

(6.18)

provided that
C * » V ]

(6.19)

For smaller values of T the inequality in (6.18) is reversed, but in 

this case the right-hand-side is then negative. Thus, for

( S'-l)(l-A)>©1( sd)), retuning to s(2)^s( 2 ^  at any time Prior to 
the bound on T in (6.19) is suboptimal.



For the above bounds to be useful they must of course lie 

in the range (0, 1). For (6.17) to be greater than or equal to zero 

and less than or equal to unity, T must lie in the interval

P f p y / p  (6.20)

(Y-Q — ©i
S- c v-A') P

'/p (6.21)

Similarly, for (6.18) not to be less than zero we require that

S >  l-*- 5 (6-22)
whilst for it not to exceed unity we again require that T is subject 

to the bound (6.21) which is more restrictive than (6.19).

If retuning is only possible to lower levels of operation, 

or only to higher ones, it is possible to place further restrictions 

upon the usefulness of (6.17) and (6.18). If must be smaller than

or equal to Sq  ̂ we find that for (6.17) to be of use

~ y >  (©o\)+Cv- Fhj
S ' O - p&P*

which is in turn more restrictive than (6.21). Similarly, for

(6.18) to be of use

I e

(6.23)

“ T V
(T '/p- 
(6.24)% * ■

which is also more restrictive than (6.21). Alternatively, if 

must be greater than or equal to then for (6.17) and (6.18)

to be useful the inequalities in (6.23) and (6.24) must be reversed. 

In the case of (6.17) this implies a further restriction compared to

(6.20). Thus for (6.17) or (6.18) to be applicable, it is necessary



if is constrained to be greater than or equal to Sq  ̂ that T

falls within an interval defined by (6.21) and the reversal of

(6.23), or (6.21) and the reversel of (6.24) respectively. If 

S(2) must be less than or equal to sq)> it is necessary instead 

for (6.17) to be of use that T is between the bound in (6.23) and 

that of (6.20), and for (6.18) to be of use that T must be larger 

than the bound in (6.24).

From (6.11) we can obtain for T small the approximate optimum 

s^) f°r the special case of p  = 2. Substituting (6.14) in (6.11) 

and differentiating with respect to s^) yislds

1 - l/^
$(?-)>

2-T-Vn7 (6.25)

which maximises ^(s^)»SQ ) p r o v i d e d  ^ < 1 .  A necessary condition 

for (6.25) to be in the range (0,1) is that

O'WrTL®i+t£'o)+ 0-rVir ©-tCs(o) • (6-26)
For X>1 there is for p  = 2 no analytic maximum for small T. For 

(3 = 0.5 and T large there is also no analytic maximum.

Suppose now that instead of (6.14) we consider

+ 5 (6.27)
"f*

with ©^(s (1)} defined as previously and O^A^l.

Thus
©'*',CSfe-'i j S o )  = —  S' 5 (6.28)

and substituting into (6.13) we obtain

ft) cs+s-ju s - 0  - &  E C -
&  O f t

'/(3 (6.29)



Eliminating »̂'s(2) *n square bracket gives the bound

(?) ~&J2>C-̂ > _ fr-OU-ftVe*
S-©-Ri)

(6.30)

whilst the elimination of-Qns,,^ in the second square bracket is not(2)
feasible due to its positive sign. For (6.30) to be useful it must 

again lie in the range (0, 1) which will be true provided that

[®,+ c s« vi
i s m X v- rV & E I Ip

(6.31)

which is the reversal of (6.21). This time bound must be non-negative 

for the bound on s(2) use* This will occur if the parameters

satisfy the condition (6.22).

If s^) must be smaller than or equal to s ^ ,  then for (6.30)

to be of use

I ® i
fi)-© sg) Vp

5
(6.32)

which is a more severe restriction on T than (6.31). On the other 

hand if s^) cannot be less than s q ) then for (6.30) to be useful 

the inequality in (6.32) is reversed, so that T is constrained to lie 

in the range from the reversal of (6.32) to (6.31).

Again, for the special case of p> = 2 we can obtain explicitly 

an approximation to the optimum s(2) ^or ^ small. Substituting 

(6.27) into (6.11) and differentiating with respect to s^) now

yields the analytic maximum

£<>.) A 2.
■ cTO-fO\/7r_

V tt __~yj _
~ ”2. {, 77)(6.33)
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This will be in the range (0, 1) if
-j- \/?r O . + f o o V r o - f t X ]  -*• O-ft) .

"'" a
(6.34)

For p =  0.5 and T large we similarly obtain the analytic maximum

&-rXi-ft)+2.©,+ (>co)
% )  =2=

2. S'Cl-A)
and for this to be in the range (0, 1) we require that

4-

(6.35)

1 +  ® - E  (soft
I-ft (6.36)

To illustrate the bounds on optimal we show in Table

6.1 the ranges of T over which the bounds (6.17), (6.18) and (6.30) 

are applicable, as well as the values of the bounds for various values 

of T, for the case

©  ,+ (JCo) SlÔ and p=^J,f\ = 0'5'JZ= U-j (6’21)
o( =  O  * IT) ~  ^  .

The ranges of applicability were obtained from (6.20) and (6.21),

(6.21), and (6.31) respectively. The bounds get wider as T increases, 

as is apparent from their definitions. In this example the bound in

(6.18) is always stricter than the bound in (6.17), but it is also 

of interest to observe that the intervals of optimum s^) obtained 

from (6.17) are relatively narrow over most of the values of T for 

which the bound is valid. To illustrate the approximation to the 

optimum solution for j3 = 2 we may evaluate (6.33) for T = 0.1. This 

yields s^)— 0-5397. (Since 5\>1 there is no analytic maximum in the 

inverse power law model).

Finally, we note that for the orthogonal problem of interest in 

are known but T is to be optimised, no such simple 

bounds are available.

which Sq j  and s^)



TABLE 6.1

Bounds on optimal s^) for = A SQ) anĉ

P =  2, A = .5, 5= *,<* = .5, s(1) = .7

Inverse Power 
Law Model

Logarithmic
Model

Bound (6.17) (6.18) (6.30)
Range of T for 
which bound is 
applicable

0.5213 - 
0.6721

0.5213 -
O O  '

0 - 0.5213

Bounds on s(2) 
for various T

T

0.1 - - 0 - 0.6479
0.2 - - 0 - 0.6806
0.4 - - 0 - 0.8312
0.5 - - 0 - 0.9647
0.55 0.9543 - 1 0.9595 - 1 -
0.6 0.8450 - 1 0.9190 - 1 -
0.65 0.6351 - 1 0.8602 - 1 -

0.8 - 0.8131 - 1 -
1 - 0.7492 - 1 -
2 - 0.6021 - 1 -
5 - 0.4677 - 1 -
10

! i
1

0.3904 - 1
'

-



SUMMARY OF ADVANCES IN KNOWLEDGE ACHIEVED AN) CONCLUSIONS

This thesis is concerned u/ith the construction of a generalised 

model of reliability. Chapter 1 reviews the literature and basic model 

for component and systems reliability. The implicit assumptions of 

the basic reliability model are identified and their potential for 

generalisation investigated.

In Chapter 2 the enumeration of multi-state coherent systems 

is considered and several recursive bounds derived. In the special 

case of the usual reliability model a new upper bound is shown to be 

superior to the best explicit and non-asymptotic upper bound previously 

derived. The relationship of structure functions to event networks 

is also considered and a theorem proved for pure series and pure 

parallel systems.

Chapter 3 briefly considers certain three-state and five-state 

systems and derives explicit state probabilities.

In Chapter 4 a generalised model of reliability is constructed, 

in which components and systems can take any values in an ordered 

discrete or continuous state-space representing various levels of 

partial operation. Discrete and continuous examples of the generalised 

model of reliability are investigated, and properties of the model 

derived. Various»forms of independence between components are shown 

to be equivalent, but this equivalence does not completely generalise 

to the property of zero-covariance. Alternative forms of series and 

parallel connections are compared, together with the effects of 

replacement. Multiple time scales are incorporated into the formulation.

The above generalised reliability model is specialised in 

Chapter 5 so as to facilitate the study of the optimal tuning of 

partially operating units. Simple drift and catastrophic failure
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mechanisms are considered. Explicit and graphical solutions are 

derived, together with several bounds. In Chapter 6 the optimal 

retuning of such units is also studied and bounds are again 

obtained, together with some explicit solutions.

The overall conclusion of the thesis is that it is feasible 

and desirable to construct more general models of reliability then 

available henceto. The thesis has implemented this in the context 

of partial operation. The construction of a reliability model at 

the level of greatest generality feasible, which was the original aim* 

still requires further investigation.
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Synopsis
In the context of reliability theory, two definitions are given for coherent functions of n variables, 
where both function and variables can take any of I possible levels. The enumeration problem for such 
functions is discussed and several recursive bounds are derived. In the case of 1 =  2 (the D edekind  
problem ) a recursive upper bound is derived which is better than the previous best explicit upper 
bound for n <  15, and also provides a systematic improvement on this bound for larger values of n.

1. Introduction

In the past 25 years, inspired by the pioneering work of von Neumann [20], much 
work has been done in the development of a reliability theory for complex 
structures composed of a number of components [4,16,17]. Most of this work has 
concentrated on dichotomic reliability, i.e. the assumption that at each moment of 
time, each component as well as the system as a whole is in one of two possible 
states: either it is operational or it is not. Thus the states of all n components of a 
system at any instant can be specified by a vector v = (sl5 s2,..., s„) where sa = 1 
if component a is operational and sa = 0 otherwise. Hence the design of a system 
determines a Boolean function, the structure function of the system, /: Vn -» Vx, 
where Vn is the unit cube in Euclidean n-space. Although there are 22" such 
Boolean functions on Vn, it is clear that some will represent rather unrealistic 
“machines”. For example it is unlikely that one would obtain a structure such that 
/(v) = 0 when sa = 1 all a, or one where replacement of a failed component by an 
operational one actually degrades the system performance. Discounting these 
unacceptable situations the question arises; how many realistic functions are 
there? The enumeration of these functions, the so-called coherent or monotonic 
functions (which we shall define more precisely in the next section) has received 
much attention in the reliability literature, e.g. Lomnicki [16], partly because the 
amount of information necessary to identify the appropriate systems structure will
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be inversely proportional to the number of possible structures. In general the 
enumeration problem remains unsolved. It is in fact identical to the problem 
posed by Dedekind in 1897 [6] on the cardinality of the free distributive lattice 
generated by the symbols su . . . ,  sn. Numerical results have been obtained up to 
n = 7, but for larger numbers of components only certain upper bounds have so 
far been established.

Although this enumeration problem is already difficult enough, the simplifying 
assumption of dichotomic reliability is, however, only applicable to a very limited 
range of situations. In general, components will not simply be operational or failed 
but will be in one of a number of states of partial operation. That is to say, it will 
often be more realistic to suppose that components and systems can be in any one 
of a finite number of levels I {1 = 2). There is an increasing interest in the 
reliability literature in such multilevel systems, e.g. [2, 3, 11, 18 ,1 9 ]. Hence the 
physical problem of interest is to enum erate the number of (generalised) coherent 
functions which can be formed when each component can take any of I possible 
levels.

In this paper therefore we introduce two possible definitions of generalised 
coherent functions and derive several useful upper and lower bounds for their 
enumeration. A  m ajor by-product of our approach is to deduce an upper bound 
for the Dedekind problem (i.e. with I = 2) which is better than existing bounds for 
n < 1 5  and also provides a means of systematically improving these bounds for 
larger n values.

The outline of the paper is as follows. In the next two sections we provide some 
necessary formalism and definitions, and give some numerical results. In Section 4 
we prove a theorem which allows us in the following two sections to deduce useful 
upper bounds on the number of coherent structures. In particular, in Section 5 we 
discuss the advantages of our approach in obtaining a systematic improvement on 
existing bounds to the Dedekind enumeration problem; while in Section 6 we 
concentrate on obtaining several upper and lower bounds in the general case. 
Finally in Section 7, we discuss some results concerning the connection between 
the structure functions and the event network.

2. Formalism and definitions
The state of all components of an n -component system can be described by a 

state vector

S (Sj, S2, • • •, sn)

where sa, the level of the a -th  component, may be any one of the levels,

Ai<A2<---<A 1 
and where for convenience we define

Aj= 0, A, = l .
The resulting state of the system will be described by the structure function / ( s) 

of the vector s, with range {A1? A2,..., A,}.
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Introducing the notation

1 = (1,1,...,1)
0 = (0, 0,..., 0)

and x^y if xa ̂  ya for all a = 1, 2,..., n, then by analogy with the dichotomic 
case, we define a semi-coherent system by

/(x)̂ /(y) for all x^y (1)
For dichotomic reliability a coherent system is defined by (1) together with

/(1)=1, /(0) = 0. (2)
For the multi-level situation we shall say that (1) and (2) define a coherent 

system in the wide sense to distinguish it from a coherent system in the narrow sense 
which in addition to (1) has the more restrictive requirement that if

cr = (cr, cr,..., cr) then /(tr) = cr, for all cr = A1} A2,..., A,. (3)
In the dichotomic case, i.e. 1 = 2, these wide sense and narrow sense definitions 
are identical.
We define the state vector

Xj = (Aj, Aj,..., A{) for all f = 1,2,...,/
as the i-th pivot of the system. Between the i-th and y'-th pivots ( j > i) there exists 
a number of state vectors composed only of the levels A;,..., Ay. We say that the 
set of state vectors composed only of the elements A;,..., Ay constitutes the 
(i, j)-th lozenge of the system. Finally, for a system of n components we define the 
set of state vectors {(0,..., 0, A;) | i = 1,..., /} as the (0, n)-th chain of the 
system.

3. Some numerical results
In Table 1 we show the number of coherent structure functions nWh nN b in the 

wide and narrow sense respectively, corresponding to some low-n and low -I 
values. Even in the dichotomic case the numerical evaluation problem is ex­
tremely complex since a general analytic expression for the number of coherent 
structures is still lacking, and values of nW 2 = nN 2 have only been established for 
n^= 7 (see Lomnicki [16], Church [5]). For multi-level, multi-component functions

T a b l e  1

"N, »Wi

n
I \ 2 3 2 3

2 4 18 4 18
3 64 151,236 136 738 ,122
4 4,096 — 18,676 —
5 1,048,576 — 15,374,304 —
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the general enumeration problem is of course even more difficult and the results 
shown in the table represent a significant computer effort.

It may be conjectured from Table 1 that the number of coherent functions in 
the narrow sense which can be constructed from two components with I levels is 
given by

2N, = 2 ,(i-1). (4)

In general, however, the computational difficulties involved are such that, just as 
in the dichotomic case, it is necessary to construct bounds for the number of 
possible multi-level structures. In order to do this we generalise a theorem due to 
Birnbaum et al. [4].

4. Theorem 1
For each positive integer n, let Sn denote the set of all semi-coherent functions 

or order n, and

G  =  {(g1? g2, . . . ,  g,): g, e Sn, g2^  • • • ^  g„/ = 1 , 2 , . . . ,  /}.

Then there exists a bijection from G onto Sn+1.

Proof. Let (g1} g2, . . . ,  g()e  G. Define functions /  and H  by

/ ( s, Ay) = f ( s u s2, . . .  sn, Ay) = gy(s), 7 = 1 , 2 , . . . /

H (gl5 g2, . . .  g,) = /.

Note that, since g;, ; = 1 , 2 , . . . ,  / are semi-coherent and non-decreasing in j, 
f e S n+1 for (s, A,-)<(t, A,) implies /(s,A ,) = g ,(s )^ g J( t ) ^ g /(t) = /(t,Ay). That H  is 
surjective follows from the observation that if /e S „+1 and the functions g, defined 
by

gy(s) = /(S, Ay), j  = 1,2, . . .  I

then (gj, g2 • • • g,) e G and H (gl5 g2, . . . ,  gt) = /. It is clear H  is injective.
To use this theorem to derive an upper bound for the number of semi-coherent 

functions of n + 1 components and I levels let us first note that the number of 
solutions in integers of l^=x1t=x2 = ' • - ^ x r^ m  is

Hence it follows from Theorem 1 that if nSt denotes the number of possible 
semi-coherent functions of n components and I levels and if these functions were 
strictly ordered then by considering the ways in which these functions may be 
identified with gi5 i = 1, 2, . . . ,  I, the number of possible semi-coherent functions 
of n + 1  components and I levels would be given by (5) with r and m replaced by I 
and "S, respectively, i.e.

fsr> (6)
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However the functions cannot be strictly ordered. In fact the order in Sn as 
well as in the ln states of the system is partial not total. Nevertheless if ^ is a 
partial ordering in a set P then there exists a total ordering on P such that

<  r- <= =05
i.e. there exists an order preserving extension. Thus

#{gi = g2 = •’• = &} = #{gi —og2 —o' =o&} = ( Sl+I  (7)

since g! ̂  g2 = • • • = g; implies gx g2 =o' ' ’ =o gi ar,d als° every semicoherent 
function whose domain is a totally ordered set (P, ̂ 0) is clearly also a semi­
coherent function on any restriction (P, S=) <= (P, ̂ 0). Hence (6) represents an 
upper bound for the number of semi-coherent functions with n +1 components. 
Of course we still have an upper bound even if we replace "S; in (7) by its upper 
bound nUl. In this way we obtain a recursive formula for the upper bound for the 
number of semi-coherent functions of n +1 components and I levels which is of 
the form

- H - f 17' ? - 1) (8)

5. The special case of I = 2

For the case when I = 2, i.e. when components and systems can be in only one 
of two states (operational or failed) (8) becomes

n+1U2 = n U2(n U2 + 1)/2 (9)
which allows us to calculate an upper bound for the number of semi-coherent 
functions for n +1 components provided we are given an upper bound (or the 
actual value) for the number of such functions for n components.
Methods for obtaining sharp upper bounds for the number of semi-coherent 

functions of n components with this dichotomic behaviour has long been of 
interest; see for example Dedekind [6], Gilbert [8], Korobkov [14], Hansel [10]
Kleitman [12], Hanish et al. [9], Alekseev [1], Kleitman and Markowsky [13] and
Kurshunov [15].
The sharpest explicit and non-asymptotic bound to data is due to Hansel who 

proved that
"S2^3m- (10)

where M„ is the middle binomial coefficient, i.e.
n!

M  =
(m/2)! (n/2)! 

n\
n + l\, / H . ,

if n even 

if n odd.

It is of interest to note that starting with the actual value of 2, 414, 682, 040, 
996 obtained by Church for 7S2, (9) provides upper bounds which are actually
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sharper than those given by Hansel for 7 < n < 1 5 .  See the numerical results of 
Table 2. For n ^  15 the bound (10) is somewhat better than the bound obtained 
from (9). However the recursive nature of (9) means it can be used in conjunction 
with (10) to obtain a systematic improvement on Hansel’s bound for (n + 1) even. 
That is, if for n odd we take

with

we obtain from (9)

n jĵ _ 20°g23)M„

M  =■

2

n!

(11)
which is less than Hansel’s value of 2(log23)M-+i for all n > 0.

Table 2
Recursive bound calculated from (9) using the 
value for 7S2 obtained by Church [5]. H an­

sel’s bound calculated from (10).

login (nU2)

n Recursive bound Hansel’s bound

8 24-46468 33-39845
9 48-62831 60-11722

10 96-95558 120-23445
11 193-61012 220-42983
12 386-91919 440-85962
13 773-53735 818-73926
14 1546-77368 1637-47876
15 3093-24634 3070-27222

6. Bounds in (he general case
When there are only two possible levels it is clear from definitions (1), (2) that 

there are only two functions which are semi-coherent, but not coherent. However 
for l > 2  the number, nX h of functions which are semi-coherent, but not 
wide-sense coherent rises rapidly, and in order to derive from (8) a useful upper 
bound on the number of coherent structures in the wide sense we must evaluate at 
least a lower bound for nXj. Such a lower bound can be obtained by assuming that 
the ln states of the system (in terms of the levels of its components) are ordered. 
An argument analogous to that in Section 4 then yields the following lower bound

-L'-crn;-'?)
so that the sharper upper bound for the number of wide-sense coherent struc­
tures, "W, is given by

nWl ^ nUl - nL l. (13)
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Since nWl ^ nN l, (13) must also be an upper bound for the number of coherent 
systems in the narrow sense.
Finally in this section we introduce two lower bounds. The /-level, n- 

component configuration contains I pivots and defined on the (/-l, /)-th lozenge 
there are nN 2 possible narrow-sense coherent structures. Further, the number of 
coherent structures allowable within this lozenge is not reduced by the particlular 
structure existing in the (l,/-l)-th lozenge on which can be defined nN l_1 
possible structures. Consequently we obtain a lower bound nT, on nN l by

T a b l e  3
I'll — \ \

nU{ calculated from (8) using nU l =  I I • nL, and nT,

calculated from (12), (14) respectively. nR t calculated from 
(15) using values of 2W, and 3W 3 given in Table 1.

logicm )

n
/ X 2 3 4 5

3
4
5

2-34242
4-86814
8-45674

6-25502
18-09240
40-20450

17-98690
70-98940

198-94331

53-18255
282-57738
992-63739

•ogio C C )

X v  n 
l \ 2 3 4 5

3
4
5

1-27875
2-46090
3-79246

1-74036
3-62583
4-82898

2-21219
4-81987
7-91364

2-68753
6-02145

10-00805

logio ("T)

X .  n
3 4 5

3
4
5

6-43492
7-69020

4-44022
6-66033
8-88043

7-75922
11-76388
15-51845

log.o (nR,)

\ n
i X 3 4 5

3
4
5

7-16916
9-31529

6-64628
7-94929  

10-87700

7-42443
8-25032  

11-72209
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assuming that because of the coherency constraints, corresponding to each state 
vector outside these two lozenges there is only one possible level of the system. 
Thus

nNl̂ nNl_l.nN2 = nTl. (14)
A lower bound on the number of coherent structures in the wide sense can be 

obtained by taking a recursion over n. Introducing a new component into a system 
of (n - 1) components corresponds to adding an entry of 0 to the previous state 
vectors of the system and adding further states. These new states include the 
(0, n)-th chain. Following an argument akin to that in Section 4, defined on this 
chain there are

r u n - G - , 2)
possible structures unrestricted by the particular structure in the system of (n - 1) 
components. Thus assigning only one possible level to each remaining state 
vector, a lower bound for the number of coherent systems in the wide sense is 
obtained as

" M 2/-12)
where is a lower bound for n -1Wj.

Numerical illustrations of the bounds are given in Table 3 for some low n and I 
values.

7. Connection between structure functions and event networks
In dichotomic reliability it is well known that the structure function is deter­

mined by the logical event network (e.g. Flegg [7]). This is no longer the case for 
components which have I > 2 possible levels. However, it may well be of interest 
to determine how many possible structure functions correspond to a single event 
network, for example because a system may have originally been designed in 
terms of such a network.

The event network places dichotomic constraints on the structure function. For 
example, if A  and B  are two components in parallel (in the sense of an event 
network or of dichotomic reliability), the structure function / ( s 1} s2) is such that

/(0,0) = 0, /(0,1) = /(l, 0) = /(l, 1) = 1.
It follows that in general the event network reduces the number of states of the 
system to which levels have to be assigned from ln to ln- 2”. Corresponding to a 
single event network therefore there are H1"-2"'* possible structure functions, and 
there are

2">.22" (i6)
structure functions which do not correspond to event networks or systems defined 
in terms of the levels 0 and 1.

Thus there are

P  - lC2 . l {~ln- 2n) .2 2” (17)
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structure functions which cannot be immediately deduced from event networks 
and two level systems.
The determination of the number of coherent functions in the narrow or wide 

sense out of the /a"_2") possible functions corresponding to a single event network 
is again a difficult, unsolved problem, except for some numerical computations for 
small n, small I systems. However as we show below for pure series or parallel 
event networks a relationship exists which forms a lower bound for the number of 
coherent structures in the narrow sense corresponding to any event network. 
Unfortunately no similar bound appears to exist for coherent structures in the 
wide sense.

8. Theorem 2

The number of coherent structures in the narrow sense for a series or a parallel 
network with n components and I levels is equal to the number of coherent 
structures in the narrow sense which can be constructed from n components and 
I -  1 levels.

Proof. Let nPl be the set of narrow-sense coherent functions for a parallel 
system with n components and / levels. Hence if <f> e nPb

(f){s, s , . . . ,  s ) ~  s for all s = A1,...,A(
<p(\) =1 if xa = 1 for any a
<Mx)><My) if x>y

and
<M1) = 1, <M0) = 0.

It also follows that if <£(x)= 1 then xa = 1 for some a, hence if we consider only 
the I -  1 possible levels 0 = Aa<A2<- • *<A|_x and ignore A; = l, then $(x)^l.
Let nN,_1 be the set of functions which are narrow-sense coherent for n 

components and I -1 levels, where these / -1 levels are denoted by
0 = p1<p2<- ■ -<Pi-i = 1- 

Then by introducing the mapping
g: (Aj, A2,..., A;_1) —> ( p 1, p,2i • • • > Pi-i)

it is simple to show that for each $ e "P, there exists one and only one function 
iJ/enNl_l and conversely. For the proof in the case of a series narrow-sense 
coherent system we discount the level At = 0 for which the series system must fail.
It follows from this theorem, therefore, that if one can evaluate the number of 

narrow-sense coherent functions for n-components and /-I levels, or place a 
bound on this number, one immediately has the number of narrow-sense coherent 
functions corresponding to a series or parallel system of n components and I 
levels, or has a bound for this number. Moreover, the reduction in the number of 
levels one must consider for a series or parallel system, from I to /-1, is unique 
to these event networks. The number of narrow-sense coherent functions as­
sociated with a pure series or a pure parallel network, therefore, is the minimum 
number of such functions associated with any type of network of the same number
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of components and levels. Hence by this argument we can place a lower bound on 
the number of narrow-sense coherent functions associated with any event net­
work.
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Special m ath needed for results: None 
Results useful to: Reliability theoreticians

A bstract—This note considers models for devices subject to 1) partial 
and catastrophic failure, repair and replacement 2) each of two types of 
partial and catastrophic failures.

INTRODUCTION

Reliability analysis in terms o f M arkov processes has 
been widely reported in the literature, e.g. [1]. In this note 
we consider generalisations o f models previously reported.

3-STATE M ODEL

Assumptions:

1. The 3 states o f the device are Si (full operation), S 2 
(partial operation), S3 (failed).

2. The probability o f more than one transition between 
the states occurring during a short interval o f time is 
negligibly small.

3. The entry point to any state i? a  regeneration point.
4. The device is initially in state S ,.

Notation

Si(t) event that the device is in state S, at time t
Xy(r) transition rate from S, to Sj (degradation or

failure) j  > i; i =  1, 2,; j  = 2, 3 
\iu(t) transition rate from S, to  Sj (repair) j  < i; i =  2, 3;

j  = 1,2
The reliability transition diagram is shown in Figure 1. In 
the Supplement 12] the transitory probabilities of the 
device being in the various states are derived, and the ap ­
proach to the steady state availability is considered both 
for the case where the pdf’s for times to  degradation and 
repair are exponential, and for the case where the degrada­
tion rates are o f the ‘bath tub’ shape and correspond to the 
sum o f 2 Weibulls. Previously reported models are derived 
as special cases.

Fig. 1. 3-state m odel.

5-STATE M ODEL

1. The states are (0) . . . good; (1, j )  . . .  partially 
failed in mode j t j  =  1, 2; (2, j )  . . . catastrophically failed 
in mode j ,  j  =  1, 2.

2. Direct transition from (1, 1) o r (1, 2) to  (0) is im­
possible.

3. The other transition rates are constant.
4. The probability o f more than one transition occur­

ring during a short interval o f  time is negligibly small.

Notation

X, transition rate from state (0) to state (f, 1); /  =  1, 2
An  transition rate from state (1, 1) to (2, 1)
p, transition rate from (0) to (/, 2); / =  1,2
Pu transition rate from (1, 2) to  (2, 2)
kj  transition rate from (2, y) to  (0);y  = 1,2 (repair)

The model is shown diagrammatically in Figure 2. The 
transitory probabilities o f  being in the various states and 
the steady state availability are given in the Supplement
[2]. Various special cases o f  this model are also considered 
there.

(2.1),

Fig. 2. 5-state model.

Assumptions:

0018-9529/80/0600-0176S00.75 £• 1980 IEEE
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Purpose: Report of derivations
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Results useful to: Reliability theoreticians

Abstract—Models for the s-dependence of a un it’s reliability and de­
graded stales on its operating hist ory are developed. The effect of a random  
environment is introduced into these m odelsby the use of stochastic hazard 
functions.

1. IN TRO D U C TIO N

We consider failure and degradation models for a unit 
in which the failure and degradation behaviour depend 
on the following aspects of operating history:
1) total elapsed calendar-tim e, f,
2) total accum ulated on-tim e, t2
3) length of current operating period, t3
4) random environm ents.
The model of section 2 is concerned with the depend­

ence of the failure tendency on aspects 1-3. Section 3 
introduces a simple model for the partial degradation of 
a unit and its dependence on aspects 1-3. Section 4 adapts 
the models to deal with the effect o f a random environ­
m ent.

2. DEPEN D EN CE O F FA IL U R E  TEN D EN CY  
ON OPERATING HISTORY

2.1 Notation and General M odel

to

Ti
hi

y(ip, a) 

pdf{r2 |tj}

pdf{r3 | r 2}

a suitable scaling factor (in appropriate time 
units)
t{lt0, i =  1,2,3
constant hazard rate for mode-/ failure 
cumulative hazard for unit by r3 t2 r, 

the incom pletegam m afunction
' 7f  ~1 e -7j/y(Ti, a ) , 0 <  t2 
0, otherwise 
1/t2, 0 < t3 ̂  t2
0, otherwise

(2.1)

(2.2)

three ^-independent ‘com ponents’ in series (J-out-of 3:F).
2. ^-D ependence betw een the modes is modeled by 

adding extra term s to the hazard rate for the unit. Here 
modes 1 and 2 are y-dependent in the following way—

H (/j,f2,f3) — hjti + h2t2 +  /;3f3 + // 4 * / 1 / 2 (2.3)

2.3 Analysis
After considerable m anipulation, the Sf is obtained:

7?(/i) = e x p ( - / / j f iH #1 ay(6tu  a - 1)
-  (h3+ d y -°  ydhs+e)!!,  or— l)]/(rg//3y(ra, a)) 

6 — 1/fo -F h2 + h\h,T\ (2.4)

It is shown in [1] that for this specialised model the re ­
liability is asym ptotically independent of the mode 3 fail­
ure m echanism.

3. D E PE N D E N C E  O F DEGRAD ATION 
TEN D EN C Y  ON O PERA TIN G  HISTORY

3.1 Basic M odel
We consider the degraded state y of a unit which has 

the following properties:
1. 0 =£ s =£ 1; s = 1 indicates full operation and y =

0 indicates com plete failure
2. T ransfers are only possible to lower degraded 

states.
3. Transfer intensities at /,■ are independent of degraded 

states experienced prio r to /, (the Markov property).

3.2 Additional Notation
4>i(s,ti) p d f for mode / (/ =  1,2,3) for state s at time

h*(cr,s,1i) transfer intensity at time tt for mode /, from
state cr to state s.

T(x) Gamma function
8(s) D irac delta function
B{x, y) r(x)r(y)/T(x-Fy) Beta function
F(a,b; c ; z) H ypergeom etric function
exp /(*)> ex p /c ( - )  Cdf, Sf of exponential distribution

3.3 Evaluation o f  <A<U»b)
d>t(s,ti) is related to h * (a ,s , t {) by the differential 

equation

d</>,(5,tdfdti = -  </>,(y,f,)/%*(*,€,/<)c/eo
+ s >  0; ’ (3.1)

2.2 Further Assumptions  which is a special case o f the Chapm an-K alm ogorov
1. A unit has three y-independent and competing fail- equation [1,2]. Most solutions for 4>i{s,ti) are com plicated

ure modes; so the unit can be regarded as composed of even when the transfer intensities are simple. H ow ever,
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if

h* (a,s,t,) =  X, + 8(a){X,(1-6-) -  X, log ( l-ff)
+<*//<} (3.2)

then provided $ f(.v,0) = 0 for all s ^  1
#x _ Jx/ri( l - j ) x',,-> exp fc(kiti), 5 ^ 0  .  .

U s 'U) ~ jexp  A k 'U M s) ,  5 = 0 (3'3)

3.4 Dependence on Operating History 
We assume further that
1. s depends upon aspects 1-3 in the Introduction.
2. The three degradation modes are j-independenl
3. The degraded state o f the unit is given by the product 

o f the levels of degradation o f the m odes. This is discussed 
in [1].

Using (3.3)for each o f the degradation modes we obtain

pdf { s / t i,t2tj}

II X,/,(l — j ) M,exp/r(X ,f,)J X{s,tj,t2,h W - s )

X { s , t 2,tz) — B ( \ ]t1, \ 2h ) F ( \ 1t1,k2t2 U 

•t X*;(l-f)y) /0,</y(l-y)x'"-1(l -  (I 
- s ) y y ~ X3,3xK,,l*x,f*~1 (3.4)

Using (2.1), (2.2) it follows that near 5=1 and tj =  0, 

pdf{^ |/j}  «  ( l - 5)x>,1_1 exp/c(Xj/i}(X,
+ (a /a -f 1)(X2 + X.V2))/, (3.5)

4. TH E E F FE C T  O F  A RANDOM 
EN V IRO N M EN T

4.1 Failure Tendency Model
1. Following [3] we model the effect of a random en­

vironment by making the hazard param eters hi (/ = 1,2,3) 
i.i.d. r .v .’s with uniform p d fs .

, _ .« 1 f V((b i-a i) t0) 0 =£ ai < hj < bi
pdf {/;,) = •{

[0, otherwise

2. We assume that h 4* =  0.
It can be shown that the corresponding Sf is

(4.1)

7?(/,) = [exp(—fljfj)

-  exp(-Z7,rj)]y(rj) j tit̂ U(bi-ai)-y{T <=1 i . « )  J

Y(U) ■= b^)[y((a2+ ] / t 0)ti, n + a - 2 )
J

• (a2+ ] / j oy - n-° -  y({b2+ \ / t 0)tu n + a - 2 )
• (b2+l/to)2-’'-°y(n-h\) (4.2)

4.2 Degradation Tendency M odel
We assum e that X{ in (3.3) is a r.v . with p d f (4.1). Then

(tiMbi) -  2(fl,))/{(&,-fl,)(/0 lo g (l-ff)  -  /,)2},
5 * 0

1 -  fexp( —fl,/<) -  cxp(-biti))/[ti  (bi-Oi)],
5 =  0

z(x) =  ( l - ^ ) ^ - 1^ .  l o g ( l -5) -  xti -  1) ex p (—x7j) (4.3)

In [ 1] a similar expression is obtained fo r the case where 
X, has a gamma pdf.
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