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Anthony Bendell: A Generalised Semi-Markov Reliability Model

The thesis reviews the history and literature of reliability
theory. The implicit assumptions of the basic reliability model are
identified and their potential for generalisation investigated. A
generalised model of reliability is constructed, in which components
and systems can take any values in an ordered discrete or continuous
state-space representing various levels of partial operation.

For the discrete state-space case, the enumeration of suitable
system structure functions is discussed, and related to the problem
posed by Dedekind in 1897 on the cardinality of the free distributive
lattice. Some numerical enumerations are evaluated, and several
recursive bounds are derived. In the special case of the usual
dichotomic reliability model, a new upper bound is shown to be
superior to the best explicit and non-asymptotic upper bound previously
derived. The relationship of structure functions to event networks
is also examined. Some specific results for the state probabilities
of components with small numbers of states are derived.

Discrete and continuous examples of the generalised model of
reliability are investigated, and properties of the model are derived.
Various forms of independence between components are shown to be
equivalent, but this equivalence does not completely generalise to
the property of zero-covariance. Alternative forms of series and
parallel connections are compared, together with the effects of
replacement. Multiple time scales are incorporated into the
formulation.

The above generalised reliability model is subsequently
specialised and extended so as to study the optimal tuning of partially
operating components. Simple drift and catastrophic failure mechanisms
are considered. Explicit and graphical solutions are derived, together
vith several bounds. The optimal retuning of such units is also
studied and bounds are again obtained, together with some explicit
solutions. :
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OBJECTIVES
The main objectives of the research in this thesis are:-
(i)  To investigate the nature of the basic reliability model,
to identify its implicit assumptions, and to examine
their realism and potential for generalisation.
(ii) To construct a generalised model of reliability
incorporating states of partial operation.
(iii) To consider the associated enumeration of such systems.
(iv) To consider related optimisation problems in systems

management.
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CHAPTER 1

INTRODUCTION

1.1 The Literature

Whilst the exact age of Reliability Theory is subject to
some dispute (e.g. Barlow and Proschan (1965), Lomnicki (1973)),
there is general agreement that it has not yet celebrated its
thirtieth birthday. Of the main reliability journals, the IEEE
Transactions on Reliability first appeared in 1951, Technometrics
in 1959, Microelectronics and Reliability in 1961, and Reliability
Engineering in 1980. More recent journals also aim specifically
to publish material on reliability, e.g. Stochastic Processes and
Their Applications (sinece 1972) and the Journal of Statistical
Planning and Inference (since 1977). Papers on reliability and
related replacement problems are also more widely dispérsed across.
the literature, and important in this context are Operational
Research Quarterly (1950-1977), Journal of the Operational Research
Society (since 1978), Operations Research (since 1953), Naval
Research Logistics Quarterly (since 1954), and Management Science
(since 1955). Microelectronics and Reliability incorporates the
World Abstracts on Reliability.

The major reliability books started appearing in the 1960s
vith Bazovsky (1961), Lloyd and Lipow (1962), Cox (1962),
Zelen ed. (1963), Polovko (1964, English edition 1968),
Roberts (1964), Barlow and Proschan (1965), Gnedenko, Bielajev and
Solovier (1945, English edition 1970), and Shooman (1968). In the
seventies and early eighties, many more have appeared, notably Green
and Bourné (1972), Mann, Schafer and Singpurwalla (1974), and Barlow

and Proschan (1975).



Today regular symposia and conferences on reliability take
place in the U.K., U.S.A. and elsewhere. The relevant organisations
and professional bodies in the field, as well as the industrial history
of reliability are reviewed by Green (1977). See also Brewer (1977).
The important early pépers vhich established the basic
characteristics of the reliability model and the problem of systems
reliability predictions were von Neuman (1956), Moore and Shannon (1956)
and Birnbaum, Esary and Saunders (1961).

1.2 Component Reliability

Reliability of a component of age t (t2>0), denoted by R(t),
is defined as the probability that the item is still operafing satis-
factorily at that age, and R(t) is taken to be monotonically non-
increasing with R(0) =1, R(o0)=0. Related functions to this reliability
or survivor function are the distribution function of time to failure
F(t) = 1-R(t), _ (1.1)
its derivative the probability density function of time to
failure (if it exists everywhere)
fe) = F (b, ~ (1.2)

and the hazard function, age-specific failure rate or failure

intensity
h(t) = f(E)/R(L). (1.3)
Clearly,
t
R(t) = exp [L‘foh(x)d%]
' t (1.4)
f(t) = h(t) exp [Tfoh(X)d%J .
Alsoc of interest is the cumulative hazard
t .
H(t) = jvoh(x)dx, ' (1.5)

and the moments of the time to failure distribution (if they .

2.



exist), in particular the mean Eépe to failure (MTTF)

E(t) = J(;to:(t)dt = jOR(’é)dt ‘ (1.6)

It is common to restrict.attention to specific classes
of life or time to failure distributions defined in terms of the
above functions. Of greatest practical interest are classes of
distributions which in some sense correspond to vearout or aging.
Barlow, ‘Marshall and Proschan (1963) and Barlow and Proschan (1965)
consider the class of distrubutions with increasing hazard or failure
rate (IFR), for which h(t) is increasing in t. Birnbaum, Esary and
Marshall (1966) consider the increasing failure rate'average (IFRA)
class for which H(t)/t is increasing. Bryson and Siddiqui (1969)
consider the class with decreasing mean residual life (DMRL) for
vhich [J;g?s+t)/R(s)t] dt is decreasing. Marshall and Proschan (1965)
consider both the new better than used (NBU) class for which
R(s+t)<;:R(s)R(t), and the;gew better than usig in expectation
(NBUE) class for which ‘S;R(s+t)dt5§;R(s) \foR(t)dt. Haines and
Singpuryalla (1974) introduce a further class with decreasing
percentile residual life (DPRL), whilst Muth (1980a) defines the class
vith convex decreasing mean residual life, which is a proper subset
of the IFR class. See also Marshall and Proschan (1972), Esary,
Marshall'and Proschan (1973), Proschan and Serfling (1974), Barlow
and Proschan (1975), Hollander (1978) and Ross (1979). Tests of the
appropriateness of the various classes are developed by Proschan and
Pyke (1967), Barlow and Proschan (1969), Bickel and Doksom (1969),
Bickel (1969), Hollander and Proschan (1972, 1974) and Koul (1977).

Of course, dual classes to the above can be defined by

reversing the direction of monotonicity or inequality in order to

describe the life distributions of items that improve with age.

3.



Multivariate equivalents have also been considered (e.g. Harris (1970),

Brindley and Thompson (1972), Marshall (1975), Buchanan and Singpurwalla

- (1977), Esary and Marshall (1979), Block and Savits (1980, 1981a)).
Whilst any continuous density on [D,C£Jmay be hypothesised

for f(t), interest in the reliability literature (and especially

amongst reliability engineers) has concentrated upon the one-parameter

exponential density

f(t) = 3 exp(-t/8)
R(t) = exp(-t/fg)
1 (1.7)
h(t) = 7
E(t) = @, var(t) = g2 , g>0 ,

since its constant hazard corresponds to random failure, or the
central section of the so-called bath-tub curve popular amongst
engineers (e.g. Shooman (1968), Lamnicki (1973)).

Despite e.g. Shooman (1968)'s early warning, it is still
apparently true that many reliability engineers assume a constant
hazard or age-specific failure rate unless there is evidence to the
contrary (see e.g. Bourne (1973), Lomnicki (1973), Cottrell (1977),
Dorey (1979)), and this often causes serious error (Yasuda (1977),
Moss (1978)). Indeed, in the literature reliabilify data is often
presented implicitly based upon this assumption (e.g. Kujawski and Rypka
(1978), Gibson (1979), Snaith (1979), Henley and Kumamoto (1981)),
and the administration of reliability data banks often shares this
approach (e.g. George (1978), Silberberg (1979), Holmberg and Markling
(1980), Colombo and Jaarsma (1980)). See also Shooman (1968)'s
comments on MIL-HDBK-217 and other published reliability data sources,
and more recently Gaertner et al (1977), and O'Connor (1977).

The assumption of exponentiality corresponds (1 to 1) to specifying

4.



a Markov Process, in this case a simple Poisson process, for the
component (e.g. Feller (1968). If upon failure the component is
repaired and.has an independent éxponential repair time distribution,
the alternating renewal process so generated forms a simple two-state
Markov process. Some justification for the use of the exponential
in systems is its arising as a limit¢ e.g. Feller (1971), Gnedenko,
Belyayev and Solovyev (1970) . See also Gaver (1963), and Schileller
and Schwarz (1976).

The other distributional form given increasing prominence in
the literature is the Weibull distribution named after Weibull (1939,
1951) but originally derived by Fisher and Tippett (1928). For this

te) = S/ $lexp [t/

R(t) = exp [-(t/ﬁ)é]

h(e) = geesm Bl

E(t) = g (p™D), var(t) = ﬁz{P(l+2(3_l)-[F(l+B.'l)] 2}5

g> o0, B>0.

(1.8)

The hazard function is monotonically increasing in t if B>1
(corresponding to aging, wearout or the third section of the bath-tub
curve), whilst it is monotonically decreasing if §3<:l (corresponding
to initial or burn-in failures, or thé first section of the bath-tub).
If (3= 1, the distribution reduces to the exponential (1.7).

The simplicity of the form of the hazard and its ability to
model any section of the bath-tub curve partially explain the Weibull's
popularity in relisbility work, as does its relationship to extreme
value theory (e.g. Mann (1968)). One of its disadvantages is that
standard methods of estimation are inconvenient; maximum likelihood
estimation for example requiring iterative solution (e.g. Cohen (1965),

Harter and Moore (1965, 1967), Wingo (1972), Ringer and Sprinkle (1972),

5.



Rockette, Antle and Klimko (1974), Zanakis (1979a), Archer (1980)).
Hovever, alternative explicit estimation methods are available;

Mann (1968) and Mann, Schafer and Singpurwalla- (1974) give

extensive bibliogréphies. See also Hinds, Newton and Jardine (1977),
Gross and Lurie (1977), Saylor (1977), Bennett (1977), Martz and
Lian (1977), Kuchii, Kaio and Osaki (1979). In particular simple
graphical estimation methods exist (e.g. Kao (1959, 1960),

King (1971), Cran (1976), Kaio and Osaki (1980)) and the appropriate
special graph papers are commercially available (e.g. Chartwell
6572-3). Another disadvantage of the Weibull, relative say to the
Gamma, is the complexity of results in renewal theory to which it
leads (e.g. Cox (1962), Smith and Leadbetter (1963), Lomnicki (1966),
Kay (1973), Nakagawa and Yasui (1978)).

The exponential and Weibull distributions above are respectively
one and two parameter distributions. The fit to data can often be
improved substantially by the addition of an additional threshold
parameter «(>0, so that each t in the right hand sides of f(t),

R(t) and h(t) in.(l.7) and (1.8) is replaced by (t-«). (See Bob
Moss's contribution to the discussion of Lomnicki (1973)). Estimation,
hovever, is correspondingly more complicated; e.g. Wingo (1973), Mann,
Schafer and Singpurwalla (1974), Lemon (1975), Zanakis (1977, 1979a,b),
Lehtinen (1979), Archer (1980), Dyer and Keating (1980).

The analytic inconvenience of the Weibull distribution has
meant that a number of authors have investigated whether one can work
satisfactorily with methods based on another distribution, usually
the exponential, when the Weibull distribution applies. Zelen and
Dannemiller (1961), although misquoted by Mann, Schafer and

Singpurwalla (1974),considered the robustness of four widely used
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acceptance sampling procedures based upon the one-parameter exponential
vhen the time to failure distribution was really two-parameter Weibull
vith an increasing hazard rate but the same mean life. They found that
procedures based upon the recommendations of Task Group Two in
A.G.R.E.E. (1957) were very sensitive to departures from exponentiality,
and that consequently applying them to data from a Weibull distribution
vith increasing hazard rate might result in substantially increasing
the probability of accepting components having poor mean times to
failure. Harter and Moore (1976) show by Monte Carlo that the exponential
based sampling plans in MIL-STD-781B are not robust under departures
from exponentiality and further give simple modifications for use
vhen the Weibull distribution is appropriate. Posten (1973), also
building on the work of Zelen and Dannemiller, investigates the robustness
of exponential-based reliability (point) predictions for series
systems of up to 15 identical components when the Weibull distribution
is valid. Povers and Posten (1975) extend this to parallel systems.
These two papers provide ranges of [> in which the error in using the
exponential procedure is within an acceptable limit. Generally
these ranges are broader for the smaller numbers of components
considéred. Hager, Bain and Antle (1971) also demonstrate the lack
of robuétness of ‘'exponential-based reliability estimation. For a
connected Bayesian problem, see Higgins and Tsokos (1977).

In the author's own joint work, Bendell, Humble and Mudhar
(1979), the robustness of exponential-based interval estimators of a
number of characteristics of interest were considered when the Weibull
distribution applied. It was found that the confidence intervals for
most characteristics of the failure distribution were relatively

robust. The only exceptions being the first percentile of the failure
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distribution, and the reliability for large time t.

1.3 System Reliability

The early papers on reliability by von Neuman (1956), Moore
and Shannon (1956), and Birnbaum, Esary and Saunders (1961)
established the mathematical basis for the evaluation of the
reliability of complex systems of components from knowledge of
component reliability, and for the construction of reliable systems
from relatively unreliable components. A methodoiogy for the
computation of systems reliability from component reliability is
necessary as in most cases data on the reliability éf complete systems
or subsystems is virtually non-existent (e.g. Bourne (1973), Green
and Bourne (1972), Snaith (1979)), and the complexity of the system
and its often high reliability precludes the estimation of systems
reliability by life tests on identical systems on time and cost
criteria (e.g. Lomnicki (1973)). This point is given emphasis
by the steady increase in the reliability of many components
and thus systems through time (e.g. Kooi (1967), Shooman (1968)).

Whilst for single components for vhich life testing would take
prohibitively long, the solution is accelerated life testing (i.e.
life testing at environments more severe than those at which the
component is expetted to operate), this possibility is not available
for complex systéms. Accelerated testing (e.g. Mann, Schafer and
Singpurwalla (1974)) was originally devised to provide failed
components to be analysed so as to improve design. However, there
is no guarantee that the basic physical processes of failure
encountered under excessively severe environments should be common
vith those which would be encountered under long t;rm exposure to
a normal environment. According to Cox (1972) this is likely to

8.



happen only when there is a single predominant mode of failure,
but see Kimball (1980).

For accelerated testing to provide a méasuré of the
reliability of a component under normal usage it is necessary to have
some connection between the component's reliability under a normal
environment and its reliability under the excessively severe environments.
Such a connection is sometimes no more than a purely graphical technique,
though other times it is analytic and based on a theoretical model
of the mechanisms of failure. In fact, no satisfactory simple
connections exist for most components, although some generalised models
wvith a theoretical background such as the Arrhenuis equation, are of
some value. Often it is required to investigate in detail the physical
structure of the particular component, model the operation of failure
mechanisms upon these components, and then employ these theoretical
mathematical models to obtain the connection between reliability
under normal and excessively severe conditions (Jacobi (1968)5.
For complex systems, however, the assumption that the physical
processes of failure under accelerated and normal environments are
common is unlikely to be valid, as e.g. there will not be a single
predominant mode of failure, and any connection between reliability
under the normal and accelerated environments is likely to be
prohibitively complex. (However, see Nelson (1975)). Mann, Schafer
and Singpurwalla (1974) discuss additional problems of accelerated
life tests.

In order to be able to evaluate systems reliability from
knowledge of component reliabilities it is necessary to possess
information about the structure of the system; specifically

vhich combinations of component failures result in system failure,

9.



or equivalently which combinations of operating components result in
system operation. With the basic binary definition of reliability
introduced in Section 1.2 and the usual implicit assumptions of the
basic systems reliability model (given below), there are a number of
equivalent representations of this aspect of system structure.

These are notably the structure function or truth table, the
reliability, event or switching network, and the Boolean hindrance
or admission functions. See e.g. Hohn (1962),Flegg (1971), Green
and Bourne (1972), Lomnicki (1973), Evans (1976).

As an example of their application in the basic systems
reliability model, we show in Figure 1.1 these equivalent repfesentations
for a simple system which will only work if componentl and either I1I
or (III and IV) work. An alternative representation which is not
shown but which is gaining interest in the literature is event or
fault trees (e.g. Barlowv and Proschan (1975), Bazovsky (1977),

Dhillon and Singh (1978)).

It is apparent from the figure that the implicit assumptions
vhich make these representations equivalent - apart from the
assumptions that the system has a single function, the system's
structure is static and components and system can each only take one
of two states - are that component and system operation is instantaneous,
the order of component failures does not affect the state of the system,
and that there is one unambiguous and homogeneous failure mode,
failure to operate (failure to idle is impossible). With these
assumptions, simple bounds of knoun accuracy can be put on the systems
reliability for given component reliabilities by making use of the
Inclusion-Exclusion Theorem and Bonferroni's Inequality (e.g.

Feller (1968), Lomnicki (1973)).

10,



FIGURE 1.1
Alternative representations of system structure.

Reliability network

%II {
— 1 ' —
LIT] {IV r__““‘

Structure function
("1" denotes operating state, '0' denotes failed state)

component system
I1I

b=t
-
=t
<

OO0 OORMHKHIHMEFRI H
COOOHMHHRIFOOD O K - =
OO0OHHOOKFRRFOOIKIO O -
OHOHOHOROKHOHO O
D000 ODOOO O O bt [ It i

Boolean representation

Hindrance function:
(Ai denotes failure of component i, F denotes system failure)

F = AI+AII(AIII+AIV)
Admission function:
(Bi denotes operation of component i, R denotes system
operation)
R = Bp(Brr+Byry Byy)

(Whilst the above Boolean representation in which Boolean addition

(+) corresponds to the logical 'or' and Boolean multiplication ()
corresponds to the logical 'and', is the form usually applied in

the reliability literature (e.g. Green and Bourne (1972), Lomnicki
(1973)), notation in the mathematics texts varies. Following e.g.
Stoll (1961), Flegg (1971), Kuratowski (1972), these symbols are resp-
ectively replaced by the set theory symbols U (cup) and {\ (cap)
denbting the join or union, and the meet or intersection respectively.
Other authors, e.g. Maclane and Birkhoff (1967) and Cohn (1977)

use the equivalent symbols \/ and /\ instead.)
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To proceed further and be able to evaluate the reliability
function of the system (for any t) from the reliability of the
components it is necessary to have information or make assumptions
about the interrelationships of component failures, or equivalently
of the dependence between the states of the various components. The
basic system reliability formulation assumes that component
failures are independent, or equivalently the absence of common—mode
or common-cause failures, so that systems reliability can be obtained
from the usual rules for combining the .probabilities of independent
events (e.g. Birnbaum, Esary and Saunders (1961),Shooman (1968),
Bourne (1973), Lomnicki (1973), Edwards and Watson (1979)). With
this assumption, the reliability function for the system of Figure 1.1
is

R(t) = RI(t) RII(t)+RIII(t)RIV(t)—RII(t)RIII(t)RIV(tﬂ .

For complex systems, however, the computation of system's
reliability by such a direct method can be difficult even under
the assumption of independence, and methods for simplifying énd
computerising evaluation are of practical interest to the reliability
assessor (e.g. Shooman (1968), Misra (1970), Woodcock (1971),

Green and Bourne (1972), Rosenthal (1975), Aggarwal, Misra and
Gupta (1975 a, b, ¢), Fussell (1975), Sharma (1976), Lin, Leon and
Hwang (1976), Blin et al (1977), Nakazawa (1977), Satyaharayana and
Prabhakar (1978), Arnborg (1978), Aggarwal and Rai (1978), Rai and
Aggarwal (1978), Gupta and Sharma (1978a), Gopal, Aggarwal and
Gupta (1978b), Locks (1978, 1979b), Singh (1979), Boffey and Waters
(1979), Laviron, Berard and Quenee (1979), Misra (1979), Easton

and Wong (1980)). -

The structure function in Figure 1.1 illustrates the fact
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that with the above assumptions (but not necessarily including
independence of component failures) corresponding to n distinct
components each of which may be in either of two states - operating
(1) or failed (0) - there are 2" states for the system corresponding
to all combinations of operating and failed components. To each of
these states of the system may be assigned one of the two levels
1 or 0, so that there are 22n possible systems of n components.
Thus the number of possible systems gets large very fast; for two
components there are 16 possible systems, for three components
256, and for four components 65,536. In theory, the smaller is
the number of possible system structures the less information is
needed for, and the easier is the identification of, the appropriate
structure function and reliability function for a real physical
system. Consequently, there has been considerable interest in the
literature (e.g. Birnbaum, Esary and Saunders (1961), Esary
and Proschan (1963), Lomnicki (1972, 1973, 1977), Barlow and Proschan
(1975)) in restricting the class of possible structure functions to
a sub-set which corresponds to the systems with real physical
analogues.

The class of series-parallel systems discussed e.g. by
MacMahon (1892), Riordan and Shannon (1942), Kn#del (1950),
Carlitz and Riordan (1956), Lomnicki (1972, 1977), is too
restrictive to represent all such realistic systems, and does not
contain all the real systems to be found in thé reliability texts.
In particular it excludes the so-called k-out-of-n (or k-out-of-n:G)
systems (whereby the system operates if any k or more of its
cbmponents operate), which are examples of symmetric Boolean
functions (e.g. Flegg (1971)), and are of great physical interest

to the engineer (Birnbaum, Esary and Saunders (1961), Phillips (1980),
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Ansell and Bendell (1982a)). Birnbaum in the discussion of
Lomnicki (1973) suggested a generalised class of realistic systems
vhich contains the series-parallel and k-out-of-n systems, and
vhich is based on replacing single modules in a simple system by
k-out-of-n structures of components.

The class of 'realistic' systems which has received most
attention in the reliability literature, hovever, is the class of
so-called coherent (or monotonic) systems introduced by Birnbaum,
Esary and Saunders (1961). This class contains the two-terminal
systems of Mdore and Shannon (1956), as well as all series-parallel
and k-out-of-n systems. A coherent system is a system of components
such that the system's state does not deteriorate from 1 to 0 if
a failed component is replaced by an operating one, and does not
improve from 0 to 1 if an operating component is replaced by a
failed one, and operates if all its components operate and fails
if all its components fail. Formally, we describe the state of an
n-component system by the state vector

s = (sl, Spy eees sn)
vhere sy the state of the c&th component may be 1 (operating)
or 0 (failed), and the resulting state of the system (1 or 0) is

described by the structure function f(s). Then if we define

1 = (1,1, «ovy 1)

o0 = (0,0, ..., 0)
and x>y if x>y forall £=1, ..., n
and X4 > Yy  for some A ’

it follows that a coherent system is defined by the requirements

f(z')} f(y) for all x > y (1.9)
f(__:i_) = 1

(1.10)
f(0) = 0.
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The definition of coherent systems in the literature vary
somewvhat from the original one above due to Birnbaum, Esary and
Saunders (1961), although this is also used by some other authors,
e.g. Esary and Marshall (1974). Lomnicki (1973, 1977) neglects to
include the conditions (1.10) in his definition of coherent systems,

so that his 'coherent systems' correspond to semi-coherent systems

as defined by Birnbaum, Esary and Saunders (1961). However, this

is an omission rather than an alternative definition, since his
enumerations correspond to the original definition. Barlow and
Proschan (1965) refer to the coherent systems of Birnbaum, Esary and
Saunders (1961) as 'monotonic systems' due to the obvious algebraic
connotation. However, Barlow and Proschan (1975) perhaps following
Kaufmann (1969) re-define monotonic systems to be those satisfying
(1.9) alone; i.e. the semi-coherent systems of Birnbaum, Esary and
‘Saunders (1961). Their definition of coherent systeﬁs is composed
of the condition (1.9) together with the requirement that every

component is rélevant; i.e. that there is no component A for which

l’so(-f-l’ ce ey Sn) -

f(sl, cees Sy g0

f(sl, sees Sy g0 o, S 41’ o sn)

for all s (1.11)

Pt el S S
It follows from this requirement of relevancy and from (1.9) that
(1.10) must also hold, but the definition is more restrictive than
the original one of Birnbaum, Esary and Saunders (1961). Phillips
(1977) uses monotonic in the same way as Barlow and Proschan (1965),
and coherent in the same way as Barlow and Proschan (1975). In this
thesis we shall follov the original definitions of coherency and
semi-coherency due to Birnbaum, Esary and Saunders (1961), except

vhere ve specify othervise.
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Since coherent systems (by either the Birnbaum, Esary and
Saunders (1961) or the Barlow and Proschan (1975) definitions) ére
generally regarded as corresponding to the set of real physical'
systems of practical interest, a lot of attention in the literature
has been devoted to the study of the desirable properties possessed
by coherent systems. See for example Birnbaum, Esary and Saunders
(1961), Esary and Proschan (1963), Birnbaum, Esary and Marshall
(1966), Esary and Marshall (1974), Haines and Singpurwalla (1974), and
Barlow and Proschan (1975).

The reliability texts generally neglect to indicate that
the set of non-coherent systems does contain some very plausible and
indeed simple physical systems (see Evans (1978)'s review of Barlow
and Proschan (1975)), so that uhilst coherency is to date the most
satisfactory criterin for systems to be of physical interest, it is
not completely satisfactory. It is perhaps interesting that vhen
John Bourne in the discussion of Lomnicki (1973) raised the question
of whether theremay not be other classes of structureé of more physical
importance than coherent systems, and ".... whether Mr. Lomnicki has
established coherent systems by a personal examination or whether he
has seen wvays of doing so automatically", no response was received.
However, Lapp and Powers (1977) do consider a non-coherent system
associated with a nitric acid cooling process, and this is subject
to furthér debate in the December 1977, April 1979 and June 1980
issues of the IEEE Transactions on Reliability. Locks (1979a)
provides an interesting discussion of aspects of this system.
Fussell (1975), Locks (1978) and Amendola and Contini (1980) discuss
the occurrence of non-coherent systems, and Worrell produced a

;elevant computer program as long ago as 1961 (Bell Telephone
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Laboratories (1961)). More recent programs and approéches that
can deal with non-coherent as well as coherent systems are described
by Bennetts (1975), Caldarola and Wickenhauser (1977), Kumamato and
Henley (1978) and Locks (1979c). See also Ogunbiyi and Henley (1981).

As an example of a simple non-coherent system, the system
represented in Figure 1.2 is composed of four springs designed to
keep a load in place. As is apparent from its étructure function,
the system is non-poherent since failure (breakdown) of a single
spring causes system failure as the load is pulled to one éide,
vhilst failure of two opposite springs leaves the system operating
(although less stable in relation to outside disturbances).

Whilst the number of series-parallel systems of n
components is now known for both the cases where all components
are distinct and where some are identical (MacMahon (1892), Kn8del
(1950), Carlitz and Riordan (1956), Lomnicki (1972)), similar
results are not available for the class of coherent systems, for
vhich the number of systems of distinct components is only known
explicitly up to n = 7. The enumeration problem for coherent
systems is in fact identical to the problem posed by Dedekind in
1897 on the cardinality of the free distributive lattice generated
by the symbols Sy eees S The known numbers of coherent systems
of n distinct components following the original Birnbaum, Esary and
Saunders (1961) definition () n) are given in column two of |
Table 1.1, whilst the numbers corresponding to the more restrictive
definition of Barlow and Proschan (1975) (tn) are given in column
three. It is perhaps notevorthy that the plot of date of
publication against n = 4, 5, 6, 7 is appgoximately linear (especially

if one takes into consideration the fact that the publication of
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FIGURE 1.2

A non-coherent system.
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Church's result for n = 5 vas unduly delayed) and a simple least-
squares fit predicts 1990 approximately for the publication of the
number of coherent systems of eight distinct components!

Since the numbers of coherent systems is in general
unknown, the obtaining of sharp upperbounds (and to a lesser extent
lowverbounds) for these has long been of interest; Dedekind (1897),
Gilbert (1954), Korobkov (1963), Hansell (1966) (misquoted by
Lomnicki (1977)), Kleitman (1969), Hanish, Hilton and Hirsch (1969),
Alekseev (1973), Kleitman and Markowsky (1975), Korsunov (1977).

The sharpest explicit and non-asymptotic upperbound published to
date is due to Hansel (1966) who proved that
H <3 (1.12)

vhere Mn is the middle Binomial coefficient i.e.

n! .
(n/2)T (n/2)? , if n even

M = n! .
n ([n-l_-l_]727!( [n-1]72)1 s if n odd .

Howvever, in Chapter 2 we derive improvements to this bound as bi-

products of the generalisation to multistate systems.

The above discussion is for the case where all the components
are distinct. Lomnicki (1977) discusses enumeration for the case
vhere some or al} of the components are identical, and tabulates the
corresponding numbers of possible coherent systems (according to the
Barlov and Proschan definitién) of up to five components. Coherent
systems with all the components identical have received some
attention in the reliability literature since they are of interest
in the context of the problem of oﬁtimal redundancy in the presence
of opposite failure modes (e.g. Lomnicki (1977), Phillips (1980),
Ansell and Bendell (1982a)). It is also true that for series-

parallel systems the enumeration problem was first solved for
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identical components (MacMahon (1892)). For coherent systems,
making all the components identical also greatly reduces the numbers of
possible systems and consequently substantialiy simplifies (numerical)
enumeration. The available numbers of coherent systems of identical
components (due to Lomnicki (1977) are presented in column two of
Table 1.2
However, despite the earlier work of Phillips (1976) in a

related context, Lomnicki failed to consider the fact that a
further substantive reduction in the number of coherent systems
could be achieved by assuming independence of component failures
and considering the reliability function instead of the structure
function or Boolean function. With the usual assumption of independence,
systems with different Boolean or structure functions reduce to the
same reliability function. The corresponding reduced numbers of
distinct coherent sysfems up to n = 5 are shown in column three of
Table 1.2. As an example of the reduction, Figure 1.3 shows two
systems of four identical components with distinct Boolean representations
.(even after rotation of the indices 1, 2, 3, 4) or equivalently
structure functions, but identical reliability functions under the
assumption of independence of component failures. (The reliability
of each identical‘component is denoted by x). It follows from
Phillips (1980) that the reliability functions of coherent systems
of n identical components are, under the assumption of independence,
convex combinations of the reliability functions of the k-out-of-n
systems. Ansell and Bendell (1982a) generalise this result to
dependent components.

As a final point in this section, we note that Figure 1.3 serves

to illustrate the fact that the equivalence in the dichotomic reliability
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TABLE 1.2
Number of coherent systems of exactly n identical components.

(Barlow and Proschan (1975)'s definition of coherency).

n distinct structure functions distinct reliability
Lomnicki (1977) functions

1 1 1

2 2 2

3 > 5

4 20 17

5 180 78
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FIGURE 1.3

Two systems of identical components with distinct Boolean
representations, but identical reliability functions.
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model between event networks and Boolean and structure functions
(e.g. Flegg (1971)) can only be accomplished for non-series-parallel
systems by multiple representation of single components (which
reduces the event network to a formal statement of logical'structure
vithout intuitive physical back-up), or by the multiple route notation
used in Figure 1.3 (vhich soon gets confusing as the numbers of
components and routes rise) or by ad-hoc logic devices such as the
k-out-of-n gate (e.g. Buzacott (1967,1970)) or the priority-AND

gate (e.g. Fussell, Aber and Rahl (1976)) which‘have become standard
notation in the engineering literature. The limitations of the
event network as a con&eyor of system structure is a subject to
vhich we shall be returning when we consider the generalisation of

the usual dichotomic systems reliability model.
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1.4 Possible Generalisations

The basic systems reliability model introduced in the previous

tvo sections is based on the following (often implicit) assumptions:

(1)
(ii)

(iii)

(iv)

(v)

(vi)
(vii)

(viii)

Time t is continuous and perfectly ordered on[p,C!%].

The system has a single function (or output) which is
required to be performed continuously and does not vary

in time, and which depends for satisfactory operation

upon the operation of the components in the way specified
in the event network or structure function or alternati&e
representation of system structure.

The system's structure, the environment of the system,

and the conditions that define component failure are
stationary in time.

Components and the system caﬁ each only be in one of

twd homogeneous states at any point in time; 1 (operating)
or 0 (failed). At time zero they are in state 1.

In the absence of a repair or replacement mechanism the
component state 0 is an absorbing state whilst the initial
state 1 is not, so that by time ©° components and coherent
systems are in state 0, and the probability that any
compenent, or coherent system, is in state 1 is a
monotonically non—increaéing function of time.

The operation of the components and system are
simultaneous and instantaneous.

The order of component failure does not affect the state
of the system for a gi&eﬁ set of failed components.

The states of the components are independent.

The above assumptions, vhich are in increasing order of
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. specialisation, limit the application of the basic systems reliability
model. They are expressed as generally as is consistent with the
procedure for e&aluating systems reliability introduced in the last
section. Whilst these assumptions form the norm in reliability work
(e.g. Barlow and Proschan (1965), Shooman (1968), Kaufmann (1969),
Lomnicki (1973)), they are often fully or partly implicit (especially
assumptions (i), (ii), (iii), (vi) and (vii)) and the situation is
further confused by the fact that in parts of the theoretical develop-
ment of reliability certain assumptions are unnecessary or can be
treated more generally. For example, the paper by Birnbaum, Esary

and Saunders (1966) avoids the element of time, and of the remaining
assumptions only makes explicit the assumptions that components

and systems only have two states and that the states of the components
are independent. For much of their development Barlow and Proschan
(1975) avoid the restrictive assumption of independence.

As one would expect froﬁ its wide-spread literature and use,
the basic systems reliability model corresponding to the above
assumptions fits reasonably well many real systems, or at least can
be regarded as a first approximation (e.g. Green (1977), Cannon and
Jones (1977), Snaith (1979)). Practical reliability engineers find
the complexity of reliability theory hard enough even in this
restricted form, without the complications of further mathematical
models (as the discussion of papers at the First National Reliability
Conference indicates; e.g. National Centre of Systems Reliability
(1978)). Further, limitations in the availability of data, and in
certaiﬁ cases of appropriate statistical techniques, for even this
basic reliability model (e.g. Evans (1971, 1974), Konarski and E&ert

(1975), Rosenthal (1975), Levine and Vesely (1977), Green (1977),
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Shooman and Sinkar (1977), Anderson (1979), Dhillon (1979c), Haas and
Batt (1980)), imply that developing more sophisticated models may

not be worthwhile. Certainly in my experience of attempting to
obtain appropriate data for generalisations to the reliability model
I found that even with the assistance and data banks of the National
Centre of Systems Reliability I vas only rarely able to find
appropriate data.

Hovever, the unavailability of data etc. is a 'chicken-and-
egg' argument, since it is not unreasonable to suppose that
~appropriate data will by and large not be collected until there is a
purpose for it in terms of a method of analysis based on a generalised
reliability model. Indeed, apart from the hand of chance, problems
must be defined in appropriate generalised terms before appropriate
data can be collected to help sol&e them (Venton (1977)). (MaruQada,
Weise and Chamov (1978) discuss a related 'chicken-and-egg' problem
wvhilst the comments of Evans (1977) on the gulf between the reliability
researcher and the reliability practitioner are also relevant).

Whilst the above argumenfs of the realism and good fit of
the basic system reliability model, the complexity of potential
generalisations and the unavailability.of appropriate data for them,
may be taken to preclude the development of a generalised model of
reliability, the questions remain as to what would be the effects of
liberalising the assumptions, and whether a more general model of
reliability could be constructed without such restrictive assumptions.
Further, the reliability literature already contains many partial
extensions to the basic system reliability model, which are usually
in the form of generalisations of one specific aspect applied in the

context of a Qery specific system. Such papers are common in the
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1EEE Transactions on Reliability and Microelectronics and Reliagbility,

and specific cases are discussed as appropriate below. HoweVer, some
more systematic attempts at generalising the basic reliability model
are to be found in Green and Bourne (1972), Murchland (1975) and
Barlov and Proschan (1975). See also Papazoglou and Gyftopoulos
(1977), Virtanen (1977), Singh (1978) and Garribba, Mussio and

Naldi (1980). The existence of such generalisations of the basic
systems model in the literature, although largely in a piecemeal
fashion, does suggest that there is a general feeling amongst
reliability workers that the basic model is inadequate to describe
many real physical systems, and a more general model is required.

(See e.g. Barlow, Fussell and Singpurwalla (1975) and the introduction
by the editors to Section 2 of Apostolakis, Garribba and Volta (1980)).
For reasons of bre&ity, this thesis concentrates on the
partial operation extension to assumption (iv), though one can easily

broaden the model to generalise thé other assumptions. Of course,
there is much justification for the generalisation of a single
assumption at a time, since it clarifies the effect of that assumption
on the methodology and results, it preQents the development of a
prohibitively complex model with associated data and inferential
problems, and it torresponds to the situation in applications where

it is often the case that only one or two standard assumptions are

in question at any one time.

There has, in particular, been much recent interest in the
extension of assumption (iv) to incorporate multistate systems with
ordered states, in an attempt to describe partial or degraded
operation. A number of plausible extensions to assumption (iQ)

have been suggested in the literature. Whilst a fev
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authors (e.g. Murchland (1975), Caldarola and

Wickenhatlser (1977), Papazoglou and Gyftopoulos (1977) and Singh
(1978))) work generally with multistate reliability models not
restricted to a single direct physical analogue for the set of
states, most either decompose the operating stage 1 (or equivalently
the failed state 0) into an ordered set of states representing
various degrees of partial operation or degradation (e.g. Lloyd and
Lipbw (1962), Derman (1963), Mine and Kawai (1974a, 1975, 1977),.
Proctor and Wang (1975), Singh (1976),Maruvada, Weise and Chamow
(1978), Thﬁmas, Derbalian and Bischel (1980)), or decompose the failed
state 0 into states representing multiple failure modes.

That even the most simple equipment is often subject to a
large number of distinct failure modes is well accepted in the
engineering literature, as is the necessity to often consider various -
modes separately due to their differing system implications in tefms
of repair time, safety, etec.; e.g. Bde (1974), Pau (1974), Mann,
Schafer and Singpurwalla (1974), Hyun (M.Gen)(1975), Banfi, Garribba,
Mussio, Naldi and Volta (1976), Dhillon (1976a,b,c,1977c,1978d),
Proctor and Singh (1976a,b), McCool (1976), Barbour (1977), Dahiya
(1977), Thomas (1977), Gopal, Aggarwal and Gupta (1978a), Legg (1978),
Caldarola (1980a)}. But see also Codier (1968) and Fertig and Murthy
(1978). Elsayed and Ziebib (1979) solve the general N-failure-mode
Markov model, whilst Yamashiro (1980) extends the solution to general
repair time distributions, and Yamashiro (1982) introduces standby
units. Another extension using a mixture model is given by Muth (1980b).
Mine and Nakagawa (1978) also employ a mixture formulation,whilst
Annello (1968) discusses competing risks. Bendell and Samson (1981)

employ rank-order distributions for the analysis of diverse failure
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modes. Shooman (1968) classifies the failure modes according to
the three regions of the bath-tub curve, and Gorg and Kumar (1977)
classify them into various minor and major fai}ures. The occurrence
of distinct failure modes has been reported in amongst other systems
marine equipment (Bde (1974)), weapon systems (Gowef (1975)),
nuclear systems (Proctor and Singh (1976a), Dhillon (1976a)),
mechanical systems (Martin (1980)), power transmission systems,
electrical systems and aerospace equipment (Dhillon (1977c)).
An'important special case of the multiple-failure-modes
extension to the basic reliability model is the case of opposite
failure modes for systems which are required to operate at certain
times and idle at others (in violation of assumption (ii)).
Codier (1968), Allen and De Oliveira (1977), Fertig and Murthy (1978),
and Gopal, Aggarwal and Gupta (1978a) give some justification for
grouping diverse failure modes into such opposite categories. There
are many regl systems for which such switching between the operating
and idling states is necessary or desirable e.g. electronic equipment
(Elburn and Knight (1975)), electrical distribution networks (Allen
and De Oliveira (1977)), protective systems (Choy and Mazumdar (1975),
Gibson and Knowles (1977), Kontoleon (1978b)), weapons systems and
other emergency equipment (Nakagawa (1978)), nuclear power plants
(Apostolakis and Bansal (1977)), computer hardvare (e.g. Lewis (1964),
Tasun (1977)), inertial navigation and ships power control systems
(Kujawski and Rypka (1978)), and avionic equipment (Kern (1978)).
See also Weiss (1961), Gaver (1964), Srinivasan (1966), Ueda (1972),
Osaki (1972), Rbde (1974), Nakagawa (1974, 1977), Kapur and Kapoor
(1975, 1978a,b), Nakagava, Sawa and Suzuki (1976), Sasaki and

Hiramatsu (1976), Sasaki and Yanai (1977), Srinivasan and Bhaskar (1979),
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Singh, Aggarwal and Kulkami (1979), Sasaski :and Yokota (1980),
Berg (1981).

The existence oflopposite failure modes-failures to operate
and failures to idle (or 'open' and 'short' or 'closed' failures,
or 'passive' and 'active' failures, or 'fail-to-safe' and 'fail-
to-danger') in such real systems is also well known. Green and
Bourne (1972), for example, tabulate the proportions of total
failures which are of each of the two types for common components such
as fixed reéistors, capacitors, coils and pneumatic and hydraulic
components. Jordan (1978) considers an opposite failure mode model
for iso-isolators. The literature discusses the design of systems
of components subject to opposite failure modes quite extensively,
having recently given particular emphasis to the identification of
optimum redundancy; e.g. Moore and Shannon (1956), Gordon (1957),
Barlow, Hunter and Proschan (1963), Barlow and Proschan (1965),
Lomnicki (1973, 1977), Phillips (1976, 1977, 1980), Proctor and
Proctor (1977), Kaufmann, Grouchko and Cruon (1977), Kontoleon (1978a),
Nakagawa and Hattori (1980), Ben Dov (1980),Bendell and Humble (1981)
and Ansell and Bendell (1982a).

Whilst components subject to opposite failure modes can be
considered to be "in any one of four states at any t - failing to
operate, failing to idle, succeeding to operate, and succeeding to
idle - the literature usually combines the two success states into
a succeeding to operate or idle as required state, and thus produces
a three-state representation. (e.g. Roberts (1964), Barlow and
Proschan (1965), Shooman (1968), Lomnicki (1973), Allen and De Oliveira
(1977)). Hovever, Mathur and De Sousa (1975) amongst others do obtain

a four-state representation, but by instead introducing the possibility

31.



of indeterminate failures, for which it is not known whether they
are failures to operate or to idle. See also Tasun (1977) and
Dhillon (1977a). In contrast the four-state model of Berg (1981)
employs states of succeeding to operate, failing to operate and
being operational or failed when undemanded.

Three-state reliability models have appeared quite extensively
in the literature since they can be obtained from a number of
alternative extensions to the dichotomic reliability model as well
as that of opposite failure modes, and in each case represent the
simplest such extension. The general three-state Markov model was
solved by Biggerstaff and Jackson (1969) in the context of pover
generation in which the three states considered represented full
operation, derated operation and failure, so that the model
corresponds to the simplest partial. operation extension to the basic
reliability model. The paper was subsequently overlooked in much of
the three-state literature since the papers of Kontoleon and Kontoleon
(1974) and Proctor and Singh (1976a) contain no more than the solutions
to the reduced versions of the general three-state Markov model
corresponding to the partial operation case with limited repair,
and the opposite failure mode case respectively. Proctor and Singh
(1975a) apparently independently re-solve the general three-state
Markov model, whilst Dhillon (1976a) does not even get as far as
deriving the explicit time dependent solutions of the opposite
failure mode sub-model (although in the context of complete/
catastrophic failures).

Endrenyi (1970), Endrenyi, Maenhaut and Payre (1973),

Grover and Billington (1974) and Allen and De Oliveira (1977)

employ reduced forms of the general three-state Markov model
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in the context of electrical networks. See also Billington,
Allen and De Oliveira (1977). Regulinski (1980) also employs
a reduced form of the general three-state Markov model in studying
computer networks. See also Chan and Downs (1978) and Das, Hendry
and Hong (1980) for reduced forms of the three-state model in the
context of imperfect repair. Shenk (1977) considers the opposite
failure mode submodel (in the sense that two of the states are
not directly connected) but with the partial operation formulation.
The two repair time distributions are allowed to be Erlangian or mixtures
of exponentials. Kontoleon, Kontoleon and Chrysochoides (1975)
analyse throwv-awvay maintenance for modules subject to both partial
and catastrophic failures, vhilst Tumolillo (1974) has a three-state
random stress model. Braff (1977) uses a three-state Markov chain
model in which the states are operating, failed and pending failure
(vhich is assumed obeervable) to analyse the relationship between
 failure rate and technician visitation. Phillips (1979) evaluates the
reliability and MTTF of a three-state system in which, apart from
full operation, the states correspond to the occurrence of revealed
and unrevealed faults. Mine and Kawai (1974b) consider preventative
replacement for a three-state unit with a wear-out state. Beichelt
and Fischer (1979,-1980) allov for two types of failure; those
removable by minimal repairs, and those needing complete replacement.
See also Mendenhall and Hader (1958), Cox (1959), Fischer (1977),
and Gorg and Kumar (1977).

Dhillon (1977c) discusses the steady state availability of
parallel (and series) systems of components subject to two failure
modes, whilst Singh and Proctor (1977) and Ksir (1979) consider

series systems of two three-state components subject to opposite
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failure modes and/or partial failures. Dhillon, Sambhi and Khan
(1979) consider the analysis of a parallel network of components
subject to opposite failure modes and common-cause failures, whilst
Dhillon (1978c) consider a k-out-of-n system of three-state devices
also subject to opposite failure modes and common-cause failures.
Gupta and Sharma (1979) discuss a k-out-of-n system of three-state
units but with states of operating, failed and being installed,
vhilst Dhillon (1979a) considers a four-unit redundant system with
common-cause failures and units subject to opposite failure modes,
and Chung (1979) extends this to an n-unit redundant system.
Dhillon (1979b) considers a complex system subject to partial
failures. Kumar andAggarwal (1978) analyse a two-unit warm standby
system with two types of failures, whilst Khalil (1977) and Singh,
Kapur and Kapoor (1979) consider a cold standby equivalent. See
also Elsayed (1979). Dhillon (1978d) considers a system of n standby
components subject to two failure modes. Takami, Inagaki, Sakino
and Inoue (1978) and Kumar and Kapoor (1979) discuss the employment
of fault detectors vith opposite failure modes for series systems.
See also Inagaki (1980).

Butler (1979a) discusses importance measures and rankings for
three-state components in three-state systems, in which the states
correspond to the partial operation formulation. This is also
the case considered by Hatoyama (1979) who shows that the calculation
of systems reliability can sometimes be reduced to that of a
corresponding two-state system, and thus obtains methods of evaluation
and bounds for the reliability of three-s@ate systems. He also
presents some reliability properties of systems with independent

components, and some bounds for systems with associated components.
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Dhillon (1977b) provides a limited bibliography on three-state
models covering the period 1956 - 1976, whilst Virtanen (1977) gives
a partial reviev of three-state models up to 1975. See also
Sankaranarayanan and Usha (1980), Subramanian and Usha (1980), Locks
(1980), Lee (1980) and the nominally unrelated models of e.g.
Shooman (1968), Subramanian and Natarajan (1980), Allen and
Billington (1980).

Whilst the general three-state model and its sub-models
can thus have various plausible physical interpretations as extensions
to the basic dichotomic reliability model, the opposite failure mode
formulation does have the spécial feature that with it the expression
for a systems probability of failure to idle in terms of the
component probabilities of failing to idle (and failing to operate
if the system is non-coherent) can be obtained as the dual of the
expression for the systems probability of failing to operate in terms
of the components probabilities of failing to operate (and to idle).
See e.g. Lomnicki (1973). Thus apart from the study of specific
systems corresponding to specific opposite failure mode models which
vere revieved in the previous paragraphg, and apart from the literature
on optimum redundancy for such components (reviewved previously), a
number of general* methodological papers appear in the literature on
the reliability analysis of systems of three-state components subject
to failures to operate and to idle; e.g. Proctor and Singh (1975b),
Singh and Proctor (1976), Gupta and Sharma (1978a), Gopal, Aggarwal
and Gupta (1978b), Nakagawa and Hattori (1980).

Just as it is possible to provide yafious physical inter-
pretations of three-state reliability models, if is equally possible

to do so for models with 4, 5, 6 or 7 states, even though the limited
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models that have appeared in the literature have been generally
presented in terms of specific physical systems. Proctor and

Singh (1976b) ‘and Dhillon (1976b) consider a four-state Markov

model in the context of nuclear power systems and crucial

industrial complexes in which there is a catastrophic failure state
as vell as the three states of the simplest partial operation model.
Regulinski (1977) formulates a four-state Markov model for man-
machine interaction, whilst Regulinski (1980) extends his three-state
Markov model for computer networks to a four-state ocne. Billington,
Medicherla and Sachdev (1978) consider four-and eight-state Markov
models in the context of common-cause outages in multiple circuit
transmission lines. Seitz (1980) discusses a four-state model

vith states generated by sequential operation and idling, and failure
to operate. See also Mathur and De Sousa (1975) for an opposite
failure modes formulation of a four-state model (described above),

as well as the nominally unrelated model of Subramanian and
Ravichandran (1980).

Kumar and Jain (1977) consider a two unit wérm standby
system of five-state units. The five-state model of Gopalan and
Dharmadhikoi (1980) is nominally unrelated but in practice of
interest. Maruvada, Weise and Chamow (1978) discuss, but do not solve,
a five-state Markov model arising from the consideration of the derated
states of a fossil-fired generating unit in order to improve the
accuracy of system planning studies. They also extend this to a six-
state formulation. Dhillon (1976c) analyses a six-state Markov model
appropriate for electrical systems, in which as well as the three
states of the failure to operate/failure to idle model there are

states representing intermittent failures, maladjustment and drift-
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out-of-tolerance. Dhillon (1977c) discusses vhat is described

as a four-state Markov model although it is actually seven-state;
there being one operating state and three failure modes for each of
vhich repair facilities may or may not be avéilable. The model

is appropriate for pover transmission systems, electrical systems

and aerospace equipment. See also Gokcek, Bazovsky and Crellin (1979)
and Pau (1979).

Apart from the case of opposite failure modes, the other
violation of assumption (iv) that has received much attention in the
literature is the formulation of the reliability model in terms of
an ordered set of states representing various degrees of partial
operation or degradation.of operating function, and it is this
that forms the main subject of this thesis. The published models
for this phenomenon broadly divide into two categories. The first is
those in which there is a finite set of states denoting various levels
of partial operation or degradation; e.g. the 3, 5 and 14 state
models of Biggerstaff and Jackson (1969), Maruvada, Weise and
Chamow (1978) and Virtanen (1977), and the m-state models of Howard
(1960), Lloyd and Lipow (1962), Flehinger (1962), Derman (1963),
Hirsch, Meisner and Boll (1968), Mine and Kawai (1974a, 1975), Proctor
and Wang (1975), Singh (1976), Ramanarayanan (1978), Barlow and Wu
(1978), El-Neweihi, Proschan and Sethuraman (1978), Ross (1979),
Butler (1979a) and Block and Savitz (1981b). The second category
is of models which allov for the levels of partial operation or
degradation to form a continuous scale; e.g. Mercer and Smith (1959),
Mercer (1961), Derman and Sacks (1960), Morey (1966), Postelnicu (1970),
A-Hameed and Proschan (1973, 1975), Esary, Marshall and Proschan

(1973), Esary and Marshall (1974), Nakagawa and Osaki (1974a,b),
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H.M. Taylor (1975), Abdel-Hameed (1975, 1977}, Feldman (1976, 1977),
Nakagawa (1976a,b), Aggarwal (1976), Cinlar (1977), Block (1977),
Klaasen and Van Peppen (1977a,b), Dorgan and Emer (1978), Christer
(1978), Bosch (1979), Zijlstra (l98d)and Ansell, Bendell and

Humble (1980a,b). Included in the later group are the additive-
damage shock-models (see e.g. Buckland (1964) and Barlow and
Proschan (1976) for reviews), whilst relevant to the former group
is the incfeasing interest generally in multi-valued and fuzzy

logic in both theoretical and practical terms, especially in the

context of computer electronics. See e.g. the Proceedings of the

9th International Symposium on Multiple-Valued Logic, IEEE, 1979 .

The extension of multi-valued logic to infinite-valued logic may be
of interest for the sécond group; Lakoff (1975).

The use of additive or cumulative damage models to describe
failures due to metal fatigue is long established in the literature
(e.g. Buckland (1964)), and the physical justification for the
existence of partially operating or degraded components and systems
in the context of electrical pover systems, communication systems and
computer systems is also widely reported in the réliability literature.
See e.g. Cavers (1975), Yost and Hall (1976), Tillman, Lie and Hwang
(1976), Horwitz (1976), Dartois (1977), Livini and Bar-Ness (1978),
Maruvada, Weise and Chamow (1978), Siu and Chan (1978), Moranda (1979)
and Chou and Abraham (1980). Amesz, Garribba and Volta (1977) employ
it in the context of nuclear powver plants, whilst Virtanen (1977)
adds production systems (see also Hay, Godbout and Brais (1979)),
and Barlow. (1978) and Smith (1980) add transportation networks and
vater systems fo the list. Dorgan and Emer (1978) purpose-build a
continuous degradation model for industrial exhaust systems, whilst

Bosch (1979) and Zijlstra (1980) develop continuous models for the
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degradation of electronic devices and lights respectively.

For practical applications, however, the finite number of
states formulation has often been employed, often with a small
number of states, as an improvement over the dichotomic reliability
model. In some formulations (e.g. Hatoyama (1979), Butler (1979a))
the same number of states are available for the system and all
components, but in others this is not the case, since e.g. the
dichotomic failure of a component may cause the system to operate
at reduced efficiency (e.g. Hirsch, Meisner and Boll (1968),
-Simon (1969, 1970, 1972), Bde (1974),.Singh (1976), Henley and
Polk (1977), Nieuwhof (1978), Gupta and Sharma (1978b), Maruvada,
Weise and Chamow (1978), Singh, Aggarwal and Kulkami (1979)). For
system calculations in such cases, of course, one can just work with
the maximum number of states amongst all the components and the system
(e.g. Butler (1979b)). 1In certain cases, howvever, such as where
components characteristics are subject to continuous drift whilst
the system ié considered to be at one of two (or more) levels, or
vhere the system response can be measured continuously whilst component
operation cannot, the system and/or some components may have a
continuous scale of partial operation, whilst other components and/or
the system can only take a finite number of levels. See e.g.
Shooman (1968), Chapter 7 and Weiss and French (1975).

Thus, the assumption that components and systems can only
be in one of two states at.any point of time is not tenable in the
light of the vast literature and physical evidence to the contrary.
In the remainder of this thesis we develop a general partial operation
model, and investigate associated problems in the enumeration of such

systems, and in their optimal tuning and retuning.
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CHAPTER 2

ENUMERATION OF MULTISTATE COHERENT SYSTEMS

2.1 Types of Multistate Coherent Systems

Thefe is a recent and increasing interest in multilevel
systems in which components and systems can be at any one of a finite
number of strictly ordered levels L (;Q;):Z), e.g. Kontoleon and
Kontoleon (1974), Virtanen (1977), Barlov (1978), El-Neweihi, Proschan
and Sethuraman (1978),Barlov and Wu (1978), Ross (1979), Butler
(1979 a,b), Hatoyama (1979), Griffith (1980), Block and Savitz
(1981b). In contrast, however, Hirsch, Meisner and Boll (1968)
and Simon (1969, 1970, 1972) instead only allov systems to be at one
of L levels, vhilst components remain dichotomic. Hochberg (1973),
Fardis and Cornell (1981) and Hudson and Kapur (1982) allov the
number of levels to vary between components and the system, and
Caldarola (1980a) treats the 'S component and system levels as

unordered.

Since with ‘e,-(ordered)— state components and systems tﬁsre
are even more possible systems than in the dichotomic case ( ¢ )y
there is great interest in finding a restricted subclass of systems
of practical relevance. The main approach has been to generalise
the class of cohérent or monotonié‘syétéms'from tvoc-state systems
to £ _state systems. However, the definition of a generalised
coherent ( or monotone) system varies between authors with almost
no two authors the same, as Butler (1979b) points out. Hirsch,
Meisner and Boll (1968), Postelnicu (1970), Simon (1969, 1970, 1972),
Hochberg (1973) and Fardis and Cornell (1981) generalise the Birnbaum,
Esary and Saunders (1961) definition (although in somewhat different

contexts), El-Neweihi, Proschan and Sethuraman (1978), Hatoyama (1979),
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Butler (1979a,b), Griffith (1980), Caldarola (1980a) and Hudson and
Kapur (1982) generalise the Barlow and Proschan (1975) definition
(although each differently) whilst Barlow (1977, 1978) and Barlow
and Wu (1978), take a more restricted approach based upon the
dichotomic set theoretic definition of coherency (and possibly
applicable to communication and electrical power systems and water
production and transportation system networks). The definition of
coherency employed by Caldarola (1980b) is exceptional in that it
is not based on monotonicity, but on the existence of a unique -
complete and irredundant base.

In this Chapter we consider the enumeration problem for
generalised coherent systems, and define two generalisations of the
original Birnbaum, Esary and Saunders (1961) definition which are
of likely practical interest.

Since these two definitions do not include the restriction
of relevancy (see Section 1.3), it follows that the least restrictive

of these definitions (coherent systems in the wide sense) contains

the generalisation of Butler (1979a,b)(to vhich it is identical apart
from the requirement of relevancy), and cohsequently provides an
upper bound for the number of such systems. We investigate the
closeness of the number of systems under Butler's and our definitions
below. Our wide-sense definition is identical to the monotone
functions defined by Hochberg (1973). The coherent structures as
defined by Postelnicu (1970) are in the £ _level case contajned
vithin our least restrictive class (coherent systems in the wide
sense), but in turn contain our most restrictive class (coherent

systems in the narrowv sense). Thus, the numbers of these structures

are between those based on our two classifications. The coherent
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classes defined by El-Neweihi, Proschan and Sethuraman (1978) and
Griffith (1980) are contained within our narrow-sense class, and cons-
equently the number of such structures is smaller than the number of
narrov sense coherent structures. El-Neweihi, Proschan and Sethuraman
also show that their class contains the coherent systems of Barlow
(1977, 1978) and Barlow and Wu (1978), so that the number of their
structures exceeds the corresponding number due to these other
authors.

In fact, the multi-state structures as defined by Barlov and
his co-author correspond 1 to 1 (for fixed 5& ) to the dichotomic
coherent structures as defined by Barlow and Proschan (1975). It
follows that with this definition there is a unique Z -level coherent
structure corresponding to each event network (see Section 1.3) and
the number of Barlow (1977, 1978) and Barlowv and Wu (1978)'s coherent
structures is identical to the number of dichotomic coherent structures
as defined by Barlow and Proschan (1975) and discussed in Section 1.3.

Griffith (1980) compares two sequentially weaker relevancy
requirements with that of El-Neweihi, Proschan and Sethuraman (1978).

Thus his weakly coherent systems contain his coherent systems which

in turn contain his strongly coherent systems, which are themselves

the coherent systems of El-leweihi, Proschan and Sethuraman (1978).

It follows that the number of weakly coherent structures is between
the number of his own coherent structures and the number of our narrow
sense coherent structures (to which they are identical apart from

the relevancy requirement), whilst the number of his coherent
structures in turn exceeds the numbers of those of El-MNweihi,

Proschan and Sethuraman (1978).

Since the definition of Caldarola (1980a) includes relevancy
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although it employs non-ordered logic, the class contains that of
Butler (1979a, b) and in consequence there are more such structures.
Finally, as the class defined independently by Hochberg (1973)
and Fardis and Cornell (1981) allows for components and the system
to have differing numbers of states, it is equivalent to our wvide
sense definition when the number of states are equal, and to the def-
inition of Hirsch, Meisner and Boll (1968) and Simon (1969, 1970, 1972)
for the case where the components can all only take two levels.
In general, the number of such systems will be between the number of
~wvide sense coherent systems corresponding to the minimum ﬁumber of
states of the components and the system, and the number of wide sense
coherent systems corresponding to the maximum numbcr of states.

~The wvork of this section is largely based upon the joint

paper in Appendix Al which appeared in the Proceedings of the Royal

Society of Edinburgh Series A (Mathematics) Vol. 89, 1981, and upon

the paper vhich the author read to the Dundee Mathematical Association
in February 1980. In the joint work, the recursive bounds and the
structure of the results are due to the present author, whilst the
proof of the theorems and the numerical evaluations are mainly due

to J. Ansell and S. Humble, with the final (clarified) version of
Theorem 2.1 being due to an anonymous referee.

2.2 Terminology and Notation

We suppose that each component and the system can be at any
one of £ ordered levels ( > 7 ) but that the other
assumptions of the basic reliability model apply. The state of all

components of the system can be described by the state vector
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s = (Sl’ Sy ety sn)
vhere s g, the level of the a(th component, may be any one of the

levels

CL|< ’)"1< "'< LL .

For convenience we define (analogous to the dichotomic case)

CLFE () ) Q,QFE ‘ )

and for illustrative purposes, as well as later' convenience.

(Chapter 4) ve may take

Q/:": zt‘\ ) A: - ‘525 ~0Q5Q_ (2.1)

to obtain equally-spaced levels. Thus if ¢ =3 ve have levels

0, %, 1, vhilst if £ =4 ve have 0, %, %, 1 and if £ =5 we have

N
A

0, %9 y L.

The resulting state of the system can be described by the
structure function f(g) of the vector s, with range (1,,‘17_.). oos’)ﬂg .
Introducing the notation

(1, 1, «.ey 1)

[
[

g = (0, 0, ooy 0)

and x>y if xd:;> xifor all A =1, 2, ..., n, then by

analogy with the dichotomic case, we define a semi-coherent system by
f(i)> f(y) for all 2&}}1 . (2.2)
For dichotomic reliability a coherent system is defined by (2.2)
together with
f(1) = 1, f(0) = 0O (2.3)
For the multi-level situation we shall say that (2.2) and (2.3)

define a coherent system in the ‘wide sense to distinguish it from a

coherent system in the narrov sense which in addition to (2.2) we

define to have the more restrictve requirement that if

’L¢=C’A—L>1L5°'°s?—i>

then
44,



'? (?&;)’=<1q‘for alli-=1, 2, ...,Q. (2.4)
In the dichotomic case, i.e. Z- 2, these vide sense and narrow sense

definitions are identical.
We define the state vector
o= (g Wagee s 1)
th

as the ith pivot of the system (i = 1, 2, ...,R). Between the i~ and

jth pivots (j> 1) there exists a number of state vectors composed only

of the levels'zz,...,iLS . We say that the set of state vectors composed

only of the elements X, ,...,13- constitutes the (i,i)™" lozenge of the

system. Finally, for a system of n components we define the set of

state vectors
(055052

of the system. Illustrations are shown in Figure 2.1.

. +h
4_=l>?_3.-.>Q:§ as the (o ﬂ\ chain

2.3 Systems Enumeration

In Table 2.1 we showv the numbers of cdherent structﬁre

functions ™ N nWQ’in the narrov and wide sense respectively

0?
corresponding to some low-n and low-£ values only, since e&en for
these the results in the table represent a significant computer effort.
We also show the numbers of coherent functionsr\BL, n Gz_corresponding
to the definition used by Butler (1979a,b) and the weakly coherent
definition of Griffith (1980). These are obtained by generalising
Lomnicki (1977) te give forn> 1, |

" - (8 e () T - (D)'s,
"we - () Ve (5) 76, - Q\‘GQ ] 22

The table indicates that the requirement of relevancy only has a

By
n
Gy

"

significant effect on the number of systems for £ = 2.
It is apparent from the table that the number of coherent

functions in the narrowv sense which can be constructed from two
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Figure 2.1
Hlustrations of partial orderings of component state vectors.

Pivots

(0,0)
(1,1)

(2,3)th lozenge. (g, g)
(%, %)
(1,1

n=3, £=3

(0, 0, 0)
(%, %, %)
(1,1,1)

(2, 3)th lozenge
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components with £ levels is given by

2 _ Q@”‘) (2.6)
NL - 2 'y
However, no such simple relationship appears available for more

than two components, nor for wide sense coherent structures (nor

Butler's, nor Griffith's definitions) except for N\ = 1, for which

W= ‘B = (21—3)- (2.7)
£ g £ -2 .
(This vill be proved below).‘ Thus, as in the dichotomic case, the
best one may do is obtain bounds on the number of coherent systems.
First we Qéneralise a theorem due to Birnbaum, Esary and
Saunders (1961).

- 2.4 Bounds on the Number of Semi-Coherent Systems

Theorem 2.1:
For each positive integer n , letf;n denote the set of all

semi-coherent functions of order N , and

G '—-‘-{@ns- -5%2)% ‘55€Sn5%.é°31é. ° oégffk 15 42}(2-8)

Then there exists a bijection from G onto j;n+\ .

Proof:

Let (‘3\39003‘3_@ e G . Define ‘F and Hby
FE) 1ottt i e 8
0% -5 30

Note that, since %3 N \S_-—_: |32 g e B’Q . are semi-coherent and non-

decreasing in - « £ e San for (s 313 g (tsljs |
implies ‘
TR NL 3L () = F &L
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That H is surjective follows from the observation that if
-F e Sr\-n | and the functions ‘5‘5 defined by

33 (& =Fls %) 5 $=125- 0058
then (‘3\'5 Nagee - S%Q\E G and W (‘3\5%1’)' . °‘331L\ Z-F .
It is clear H is injective. '

To use Theorem 2.1 to obtain an upper bound for the number
of semi-coherent systems, we first note that the number of solutions
in positive integers of

<, KWKo e o T W= M

m * , Py N+ P
e p @ o . ' ‘ = Q -
M=y =l | , n

Hence it follows from the theorem that if .Sg_denotes the number

is (2.10)

of possible semi-coherent functions of N components and L 1evels
and if these functions vere strictly ordered then by considering
the number of ways these functions may be identified with f54; i
AL =12, ;<.311 , the number of possible semi-coherent functions
of (N\+\) components and L levéls wvould be given by (2.10) with
T and m replaced by £ and nS_Q respectivelyy i.e. the number of
such functions would be
n SQ_ + 0 -
ga

Homever, the ﬁf;g_ functions cannot be strictly ordered. 1In

(2.11)

$ a
fact, the order in n as wvell as in the states of the system
is partial not total. Nevertheless if <§;:is a partial ordering on

a set FD then there exists a total ordering é:;on f) such that
o

< e

i.e. there exists an order preserving extension. Thus
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#H3<h< < =Fas, s, INE C\ g‘{t‘)

(2.12)
since 9, < G+ vo g, implies %‘go %1<o'”<a‘52
and also every semi-coherent function whose domain is a totally
ordered get ( Fg ééz;o ) is clearly alsc a semi-coherent function
on any restriction (P.) <) C (P’<o) . Thus as the n SQ.
functions are not strictly ordered it follows that (2.11) represents
an upper bound for the number of semi-coherent functions with (nNn+1)
components. Of course, we still have an upper bound even if we .
replace r\Sil in (2.11) by the upper bound r\\l~iL . In this way
ve obtain a recursive upper bound for the number of semi-coherent

functions of (N+1) components and £ levels which is of the form

MMl = Q“\L&Jrl—\ . (2.13)
- '3

The proof of (2.7) follows immediately from (2.10) with
=L -2 and m=2£_.

2.5 The Special Case of £ = 2

For the case wvhen £ = 2, i.e. when components and systems
can be only in one of two states (operational or failed)(2.13) becomes

Mg, = MU (Mo \)/’2_ N (2.14)
vhich allows us £o calculate an upper bound for the number of semi-
coherent functions for N+ components provided we are given an upper
bound (or the actual value) for the number of such functions for 0
components.

It is of interest that starting with the actual value of

2,414,682,040,996 in Table 1.1 for (\ = 7, (2.14) provides upper

bounds which are actually sharper than those obtainable from the best
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published bound to date (1.12) for /= Nn—<< |45 .

See the numerical results of Table 2.2. For r\;;; |S Hansel's
bound (1.12) is somewhat better than the bound obtained from (2.14).
Howvever, its recursive nature means that it can be used in conjunction
~ with Hansel's bound to yield a systematic improvement to it for an

even number of components. That is, if for 0\ odd we take

) = 2aMa
U, = 3
from (1.12), then we obtain from (2.14) that
0+ _ s Ha Ma
U, = 3" (" )/2 | (2.15)
a+l
vhich is less than Hansel's value of 3 for all n >0 .

2.6 Bounds in the General Case

Whilst for ¢ =2 there are for any \ only twvo functions
vhich are semi-coherent but not coherent, for £ > 2 the number of
functions which are semi-coherent but not wide sense coherent (‘\Xll)
rises rapidly. Thus in order to derive from (2.13) a useful upper
bound on the number of coherent systems in the wide sense we must
evaluate at least a lover bound for n)<£-. Such a bound can be
obtained by supposing that the Jf\ states of the system (in terms of
the levels of its components) were strictly ordered, and again making
use of (2.10). If a function is semi-coherent but not wide sense
coherent it can at most take the (A—|) values 7, ..., oy OF 7=25..,;L2'.
Thus taking T=4£" , m=2 -] (say eliminating Lo ) and
- = 20 , ™M = £ - respectively (say eliminating
/1“ and fixing °C, o, = 7LQ_ to avoid double counting), one obtains

£
as a lower bound for n le o

0N
(\L — -rQ,r\“"'Q__"‘Q\ + ‘Q. +Q__3 .
“ ° AN
, L - (2.16)
It follows that this is a lower bound since every semi-coherent

51.



Comparison of Hansel's and recursive bounds (Recursive bound

TABLE 2.2

based on ) 7 from Table 1.1)

Hansel's bound

Recursive bound

(1.12) (2.14)

8 33.39845 26.46468

9 60.11722 48.62831
10 120.23445 96.95558
11 220.42983 193.61012
12 440.85962 386.91919
13 818.73926 773.53735
14 1637.47876 1546.77368
15 3070.27222 3093.24634
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function whose domain is a totally ordered set ( fD, 55;:0) is,
clearly, also a semi-coherent function on any restriction

( fj <:: ) ( Pg‘SZ; ) Thus the sharper upper bound for the
number of wide-sense coherent structures \J is given by

n\l\/¢< nUL( = L-L . (2.17)

Since WL>ONQ and \/\/Q_> nBL , (2.17)
is also an upper bound for the number of coherent systems in the
narrow sense,(\Pq , and the number of coherent systems as defined
by Butler (l979a,b),nE5Q_as vell as by Postelnicu (1970), Hirsch,
Meisner and Boll (1968), Simon (1969, 1970, 1972), El-Neweihi,
Proschan and Sethuraman (1978), Barlow (1977, 1978) and Barlow and
Wu (1978)Dand Griffith (1980).

Recursive lower bounds for‘jhlz;and‘\\JL can also be
obtained. The £ -level " -component configuration contains 1Zpivots,
and defined on the (£-\ Q_)th lozenge there are r\VJQ_ possible
narrov sense coherent structures. Further, the number of coherent
structures allowable within this lozenge is not reduced by the particular
structure existing in the ( \4-I )th lozenge on which can be defined
nNQ_‘possible structures. Consequently, we obtain a lower bound
n'Ti.on nNﬁby assuming that because of the coherency cnnstrainfs
corresponding to &ach state vector outside these two lozenges there
is only one possible level of the system. Thus

N> NN, ="To - e
It follows that this is also a lower bound for the number of coherent
systems based upon the definition of Postelnicu (1970).

A lover bound on’ the number of coherent structures in the

vide sense can be obtained by taking a recursion over N .
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Introducing a new component into a system of ( N—{ ) components
ocorresponds to adding an entry of 0 to the previous state vectors
of the system and adding further states. These new states include

the (O30 )th chain. Following an argument akin to those above,

defined on this chain there are
L+ (e -1 28 -2
-\ - -1
possible structures unrestricted by the particular structure in the
system of (N-—\ ) components. Thus assigning only one possible
level to each remaining state vector, a lower bound for the number

of coherent systems in the wide sense is obtained as
n \A/ 3 N~ n
L -2
= 2.19)
>(2572) TR = Ry
a-\ 0=\
vhere E{Q_ is a lover bound for . \A/Q_' Again (2.19)

0O
is also a lower bound for E3> .

Numerical illustrations of the bounds are given in Table 2.3
for some lov N\ and QT values. It is seen that R o is sometimes
below‘\~rhﬁfor1\ = 5), and in such cases it is of course preferable

n
to use hvi_as a lowver bound on n\Ah:

2.7 Relationship of Event Networks to Structure Functions

We remarKed in Section 1.3 on the equivalence of the
structure function and logical event network for a dichotomic system,
although the later'may be hard to drawv. For components which have
L >2 possible levels this equivalence no longer generally holds
(although as previously noted using Barlow and Wu (1978)'s restricted
definition of coherency the equivalence between the event network and
structure function does remain). However, it may well be of interest

to determine how many possible structure functions correspond to a
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TABLE 2.3

N
Bounds on nSQ ’ XL, “Nq_ and n\’\/(

N .
log 10 ( \_L(\
n 2 3 4 5
ya
3 2.34242 6.25502 17.98690 53.18255
4 4.86814 18.09240 70.98940 282.57738
5 8.45674 40.20450 198.94331 992.63739
n
logm< L£—>
n 2 3 4 5
2
3 1.27875 1.74036 2.21219 2.68753
2.46090 3.62583 4.81987 6.02145
5 3.79246 4.82898 7.91364 10.00805
n
log‘10 ( ‘ Q>
n "3 4 5
ya
3 - 4.44022 7.75922
4 6.43492 6.66033 11.76388
5 7.69020 8.88043 15.51845
A
. logyq ( RSL\
n 3 4 5
N
3 - 6.64628 7.42443
4 7.16916 7.94929 8.25032
5 9.31529 10.87700 11.72209

N o calculated from (2.13) using Wy = (7‘2_‘\“\_9_

and “Tg

calculated from (2.16) and (2.18) respectively. "R calculated

from (2.19) using values of 2\Wy and

>5.

3\Wa

given in Table 2.1




single event network, because for example, a system may have originally
been designed in terms of such a network. In fact, the (dichotomic)
event network places dichotomic constraints on the structure function.
For example, if A and B are two components in parallel (in the sense
of an event network or of dichotomic reliability), the structure
function '? ( Sis 51) is such that

£(0,0 =0, R(osNH=F 50 =FL1D =1,

It follows that in general the event network reduces the number

n

of states of the system to which levels have to be assigned from £

0 n
to (£ <~2_ ). Corresponding to a single event network therefore
(e"-2")

there are £ - possible structure functions, and there are

n (Qn~1ﬂ> 2(\
/e/.(’_, -0 9 (2.20)

structure functions which do not correspond to event networks or

systems defined in terms of the levels 0O and 1. Thus there are

n n (2.21)
2" (Q-C€—2> 2"
2
2 - \2)&
structure functions which cannot be immediately deduced from event

networks and two-level systems.

The determination of the number of coherent functions in
. ("-2") .
the narrov or wide sense out of the £ possible functions
corresponding to & single coherent event network is again in general
a difficult unsolved problem. Howvever, for pure series or parallel
event networks a relationship exists which may form a lower bound
for the number of coherent structures in the narrov sense corresponding

to any coherent event network. Unfortunately, no similar bound appears

to exist for coherent structures in the wide sense.
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Theorem 2.2:

The number of coherent structures in the narrov sense for a
series or a parallel network with N components and £ levels is
equal to the number of coherent structures in the narrov sense

vhich can be constructed from "\ components and £-1 1levels.

Proof':

Let nPﬂ be the set of narrow sense coherent functions for

a parallel system with N\ components and £ levels. Hence if

) -’_-— — o & o
(p(s SD...)S> < for all S= "2, st
CI)(?;) = | if e, =1 for any «

P (D> P4 if >y
and  GP(H=1, P9 =0.

It also follous that if P(2) =1 then ocy=1| for

some o , hence if we consider only the ( £ -1 ) possible levels

O:/)’l<1:z_<° o o < 1,@_-\
and ignore /,LQ—.:\ , then q)('?_q +1 .

n
Let b4g,‘ be the set of functions which are narrov sense coherent
for N components. and ( £ -1 ) levels, where these ( £—~| ) levels
are denoted by
Then by introducing the mapping
- ((}"37’2’) -°°5?’-Q-b—> (l"\lj Pageess HL-D
it is simple to show that for each (P e® Pﬁ_ there exists one

and only one function \V e ) \\/\ 2\ and conversely. For the

proof in the case of a series narrow sense coherent system we discount
the level /L‘ =0 for which the series system must fail.

It follows from this theorem therefore that if one can
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evaluate the number of narrow sense coherent functions for N
components and (L-l ) levels, or place a bound on this number, one
immediately has the number of narrowv sense coherent functions
corresponding to a series or a parallel system of (\ components

and £ levelé, or has a bound for this number. (Thus, for example,
from Table 2.1 we know that for 3 components there are 18 narrow
sense coherent three-level systems, and 151,236 four-level systems,
corresponding to a series event network). Moreover, the reduction

in the number of levels one must consider for a series or parallel
system, from £ to ( £-1 ), is uﬁique to these event networks.

Thus, it appears that the number of narrov sense coherent functions
associated with a pure series or a pure parallel network is the minimum
number of such functions associated with any type of coherent network
of the same number of components and levels. Hence by this argumentv
ve might place a lower bound on the number of narrow sense coherent
functions associated with any coherent event network. (Note, however,
that the more restrictive definitions of series and parallel
structures used by Barlow and Wu (1978), El-Neweihi, Proschah and
Sethuraman (1978), Hatoyama (1979) and Hudson and Kapur (1982) differ

from those used here and themselves contain elements of coherency.

See Chapter 4) -
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CHAPTER 3
THREE AND FIVE STATE MODELS

3.1 Introductinon

Section 1.4 indicated that there exists an extensive literature
on models with small numbers of states. A joint paper by the author
to some extent extending and unifying part of this diverse literature
wvas published within the period of registration for Ph.D, and this
is briefly reviewed in the current Chapter. This paper in the

1IEEE Transactions on Reliability  Vol. R-29 (1980) together with

its supplement, NAPS document No. 03582-B (Microfiche Publications,
New York), appears as Appendix item A2. The work was joint with my
then colleagues J. Ansell and S. Humble and then technician at
Sheffield City Polytechnic, C.S. Mudhar. The formulation and
relationships to the previous literature is due to this author.

For the general three-state Markov model in which every
transition between states is feasible (see Figure 3.1), the paper
obtains the transitory probabilities of being in the various states.
Whilst this model has been analysed previously in the literature,
e.g. by Biggerstaff and Jackson (1969), we consider special cases
and investigate the approach to the steady state. In addition,the
three-state literature is extended by the analysis of a three-state
model in which every transition is feasible and the transition rates
from the full operation state ( S;) to the partial operation state
( 1;2) and failed state ( Sa ) are each sums of two Weibull hazards
(one increasing and one decreasing) and conséquently correspond to
bath-tub shaped curves (see Section l.2),_whilst the remaining
transition rates are constant. The five-étate Markov model, also

presented in the paper, models a unit subject to two mutually
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Figure 3.1
General Three-State Reliability Model

transition diagram

Figure 3.2
Five-State Reliability Model

transition diagram

(2,1) Y 0 1 (2,2)
(complete * ’ (Good) (complete
failure) — T~ failure)
ailure) . 6 o

\(__/
\_rl/ k2
My
A e A ¢ Hi2
(1,1) (1,2)
(partial (partial
failure) failure)
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exclusive failure modes, in each of which failure can be partial

or complete (Figure 3.2).
3.2 Analysis of Three-State Models

Considering first the general three-state Markov model,
ve make the usual assumption that the device is initially in
state j;\, and denote the probability of being in state ‘SlL
at time t by ‘&; t&) ’ 4=1, 2, 3. The constant transition rates
between states are given in Figure 3.1. Then the set of differential

equations corresponding to these time independent transition rates

are, in matrix notation,

R (‘t) - (Lt M2 May it )

e P )= Lo —(havPa) g B

@) hia kaz - Mzt | | P ()
The solutlon of these equations are (3. %z;
P( Et\ 2 L’]-.z3+]~k1\+~r_‘§(‘u\‘;i__*_ MB\"{’\-‘:‘) =2z Pan 2 o
P QE\ Z Le (t"?n.-*-\*sr‘"tb—\-l\% e :'{-t (3.2)

BO-T-0 OB

vhere 2
_.‘7‘Xr -\
D-—L - \ Lv‘\ﬁ \-1\-1

4= _

and Ty= O 3 {and 0\ 5‘vﬂ_ are the roots of the equation
2 2 .
2 = (0 + Y- L (et - ol

vith

= Laz+TLiz+ L+ Mar+ Az + Pa
o~ = trat M=o
b = Y22 —"Liz
e = Va2~ Tz .

The steady state a&ailability of the device is
f () = (Feztiad (ParttsdLasbhae g5
\
X!
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o 2
r A=l ab- (ab+ D 0,6 and
are complex and P\ Loo) is approached in a damped oscillatory

manner with period (B\TY/A . These oscillations are very

small such that —2vr v

P| L‘b}} P\ (00) - 0-8 o . (3.4)

In many situations the rate of repair or replacement of the
device from S;g, and 5;55 may be the same, i.e. t*~3‘== erqJ =M
(say); and the equation “f’(§{5)== (O has two real roots

o= (vt e+ M)

o, == (bazrMza+ \\L) .

By setting M-a9 = M2 =0 the model reduces to the partial/

(3.5)

catastrophic failure model of Kontoleon and Kontoleon (1974), whilst

by setting M35 =723 = O it reduces to the failure to

operate/failure to idle model of Proctor and Singh (1976a), which

vas also considered in another confext in the discussion of Biggerstaff

and Jackson (1969). If instead -1z = kL 2m =M,=0, the model

reduces to a three-state reliability model which has been considered

in connection vith electrical systems, e.g. Allen and De Oliveira (1977).
According to much of the literature (see e.g. Shooman (1968),

Lomnicki (1973)) it is often the case that in general the hazard

function for a device has.a "bath-tub" shape, i.e. it is monotonically

decreasing for small t (corresponding to burn-in failures), fairly

constant at medium time Qalues, and increasing for large t. Thus in

order to model the whole of the bath-tub curve wve now replace the

constant degradation rates by sums of Weibull hazards;
129 13 9 /a3

g () = 9,05-&0&"&“‘_\ ~+ 0?4;,54(;(3*“5\—‘ 3
("“5‘3\ = L\Slyso 53\)5 (’-13':‘5 b}

(3.6)
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vhere Q< O(j,j'< ‘, (BJ\.:S — |5 9\,;.3"> O:‘ Q\Lﬁ‘?O,
Ve also assume, as in the Markov model, that '}kfl‘zz‘k~3|'= pk.

In this case the differential equations are

; [AO] 101, o  o|[fW

- ©= &) = L (©) -~ B:) 129 UU)
e fzattb Tia (L) iléiz(iﬂ o LB
o N (3.7)
+ o —t a2 gl%i% .

0 O —p--thaa P’a(:'Cl

Their solution is

(&)= E'&—)[w f: GG &,,dg

= (‘b} = :ﬂ“'(:g_[jo{-\{ ) S_Ml— a2 B QL} + Tl (?% Q L%}%;S_)—\]
vhere P3 (:k) = - Pi(ﬁ- Fl L-t) ’
G = empQ Sy [+ Cd+La 6]dxk

+
H )= “O‘I?SLSQ [‘L’\_\"‘Tﬁl * s (_’C\):lcl'xrk s
The steady-state availability for this model is

ﬁ("@:o 9
i.e. constant rates for repair and replacements cannot keep up

vith increasing degradation and failure tendencies.

3.3 Analysis of Five -State Model

Nowv considering the five-state Markov model with states and
(constant) transttion rates given in Figure 3.2, we again assume
that the device is initially good, and denote the probability that
the device is in state 0 (good) at time t by F; Q&S , and the
probability that the device is in state (i, j) at time t by

Pij(t); i,j = 1,2. Then the differential equations for this device,

in matrix notation are
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[, © ] (_ e M) o o i L, ] RDOQ\)_
A R\(ﬁg T ~Tlw © 0 o |[fY
L fiz(ﬁ) = M o 0 o) P .
A{: Fé\kﬁé L. Lz o —-QC\ 0 e“kg
B oz QE}J i M2 o) B2 o T 2___‘ P’-ﬂ-&)
(3.9) )

These equations can be solved by use of Laplace transforms
or by classical integration methods to yield

ol =37 D2 B ) en) e €0

Pﬁ(js =£§§; [)i,(&kVZ“1&)(%&Y’ﬂib(&(2f~té/1_"LQLP (T‘FQ*S
5 02y e 28
Fan B:) =fi'r' O—L L\"\\z*‘f_,b L“Q(Q_—\‘R;L)[L_(L(z‘\i:‘)+’2,‘1‘2]Q_Qef) (—‘f.&)
uhere Fan @ =Z:‘ Do (* tz"\ﬂb S *‘Q[ VL’:-(V"-‘*A+1& 2] &= (—‘(‘4{55
CoDe= 7N (e )"

and y L = 1

, 2, 3, 4, 5 are the fiﬁe roots of the polynomial
equation

B ()= Crad) (e A (L) (et (F L Larir i)
= (?r*“gts(Qﬂ“*14;)f&$1(}*tk*uL*'szrk\zﬁ'?gtﬁﬁ9)
—‘(?r*’lké) Cﬂ\*f*“b &T\(ﬂzfzdzf*ichqvvz:*‘P?/é> =0,

Note that one of-these roots 1| (say) is zero.

The steady-state
availability of this device is
(@) = Fathe bt N , (3.12)
\1\1\1\3 \{\L\, “rg D
vhere
N =" P fo ey
D =

(sz.F*ﬂﬁ- 4%A‘QC1:+'7—\1_4k1 (J”k\f*qz.—f|“\2.P*41Lﬁ'f**'gr;3
—+ M J%Fz.(:7L|7_r§.*‘qbz.q-ﬂz_‘f')ftQY;> -
ir K. = Mo

—_—

M2 = pq=0 the five-state model
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also reduces to the model considered by Kontoleon and Kontoleon
(1974), whilst if (}«\ =L 2= M =M=0, the model reduces to
the catastrophic failure model of Proctor and-Singh (1976a).

In many situations the rate of repair or replacement of
the device from state (2-1) and state (2-42) may be the same,
ie. A, =%, =& . 1falso L= M1z = only three
of the five exponential factors determining fi;(ﬁ% and (léﬂ tfa
in (3.10) (say those corresponding to ™M\ 4™ and %3 ) will have
non-zero coefficients. As before “\ =0, and ‘{3 4“1y are the

roots of the reduced polynomial equation
R = 7t (Lo v v P +@+4) + (B+ Qe
N (3le+})\1+%{> =0 (3.13)

The steady-state availability in this case is

£ (D) = Fi< .,
' (3 (’L\'{',Lz'\""\\“\'\*?)ﬂ"k @4"’ “)\'\'\'B) (3.14)

2 2 :
If D = L\-'@((’Ll*‘“&) ‘L’L(*Z’z_‘*‘}kl‘\‘}"‘l‘*‘-@? '-(5) > O,
o, %k are complex and FE (9°> vill be approached in a
damped oscillatory manner with period ‘AN /ZB .

-
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CHAPTER 4
A GENERAL PARTIAL OPERATION MODEL

4.1 Formulation

In the previous chapters wve have treated the levels
of operation of components and syséems as forming a finite ordered
discrete set on the range [0,lj . In formqlating a general partial
operation model in this Chapter we, like Postelnicu (1970), retain
the range [O,l] , but instead largely concentrate upon a
continuous state-space approach. Some of the material of this
Chapter is based upon joint work with S. Humble, which is partly
contained by the joint paper in Appendix A3. In this joint
vork the structure of the model and relationships are due to the
present author, vith some examples and the numerical evéluations
due to S. Humble.

We define S(t) as the stochastic process indicating a
component's level of performance (state) s at time f::}-O y
vhere S(t) is nov assumed to take values in the interval [b,i]
instead of:-the couplec(Q,i}’. As before wve define '0' to
be complete failure, '1' to be full operation, with values in.
between representing in some sense the proportion of operation
achieved. Then for fixed t.we may assume either that the random

variable S(t) be discrete, so that it has a probability distribution

vith

‘P(s,)“t\> o fr s e B,

with,2 a countable set, and

= | , for all t, (4.1)
A

or ve may assume that S(t) is continuous, with probability density,

say ‘f’(;;{» ,on 0L S <:'\ . In the later case, the structure
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of the model in fact requires that in general the distribution is

a composite of discrete and continuous parts, so that

J R4 D AW =l et

(s > 0,
C.(D>0 5 B> 0,

vhere fz (jEB and Fi (*;) are atoms of probability at s = 0

(4.2)

and s = 1 respectively. (See below).

Assuming that transitions between states satisfy the (first-
order) Markov property that the instantaneous transition rates at t
depend only on the state at t and not on states previously passed
through, we may define 43(153“f3{£§ as the transition rate
probability function from state s to state r at time t (r#:s), so
that for the continuous case and ‘c><<;‘1‘?<: { T #+ S,
CP(S;P.)Jc) S S + o (8{)  is the instantaneous probability
of a transition to states r to (- + &) at the end
of the infinitesimal interval t to (t+ &+ ) given that the
component is in state s at t. The corresponding instantaneous
conditional probability of transition to state 1 given that the component
is in state s+1 is P(s, 15L) S+ o (§L), vhilst that of
transition to state 0 is for S%O P (5,0, )&+t +— LS‘E} .

Thus

Q (5, 0) For = Qi PLr S es D wa RS- o]
7 <=0 S
O I, TS
P(sy10) = Lim ]_S({u&\—\{g@c\ _g]
St =>o0 . St

@(S>O)‘EB = QA'M\ P[S({-\.S—Q SL—&_) gj
§t=>0 S+
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Allowing, for the moment, all state transitions, the process
can be considered as a special case of a general jump process, e.g.
Feller (1940). [Feller (1971) Chapter X treats the stationary
transition probabilities case.:] It foilows that for any infinitesimal
interval t to (t+$¢) there will be a probability P[S(—t+8’{-,)=g/g&\:g]
of the component ending the interval in the state s that it started
it, corresponding to the non-occurrence of a jump in the interval

apart from terms of —c—(eﬂ-_) For 0<<< | , this probability is

PlSCe+ee) =« ’seazg]% \—EJcJ;r‘?(S;r;‘c)é*qu}(%‘S"\
L&

+ Q?L§303-’V/ﬂ+‘O‘L5J\‘.B N

vhilst for s = 1 and s = 0 the probabilities are respectively

PLSterd = 1[sy=1] = 1-8¢[§7 @(1,94) b0+ @08

+ -c*Q&“Q
FS &+ = ofs 9 =] - -8 [ L7 @ (st e Qo)
+-D—Q6\‘E§ ©

As is usual [e.g. Feller (1971) Chapter X]we assume the
existence of the processes, and give below examples of practical
processes of interest. Thus, for S(t) continuous we obtain the (time

dependent) Chapman-Kolmogorov type equation for o< § < | 3
\-
P (s t89 = f’L%f)[\— e ], R rst) de

T4g .
5 Pl ..H%,o;q]

- , (4.3)
vk ) gt b
SFS

v 5 AR, %) + TE P @ (0,55

\ o Usvc} ,
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vhilst the integrals are replaced by sums if S(t) is discrete.
Thus in the continuous case the P(s,t) and (P(s,r,t) satisfy the

following (forward) differential equations

3PSO = —p (50 S)OL_@ Lsm%éwwfq’@:‘ﬁ*q@pﬂ

A—k‘ s
)T RED Rk @
TS
+ Q@ L\,Q,t}-\- Potg @ (03 §>'t>

o e |,

If S(t) is discrete the integrals are again replaced by sums.

A reasonable initial condition for the system of equations

in most cases is

£ (s50) =04 o< s << |
Po (0 =0 > (4.5)
{D‘ (\d> = \ ®
analogous to the usual assumption for the basic dichotomic reliability
model. An implication is that for any finite t a discrete atom of
probability will in general remain at s = 1 corresponding to the
dichotomic survivor function of the basic reliability model.

The evaluation of solutions for P (s,t) (o<g<b y P, (‘t>
and fi (*;) can be simplified somewhat by the specification of
restrictions on .9 (s,r,t) andf (s,t). For instance, in the
absence of a repair, replacement or recovery mechanism one may
assume (analogously to assumption (v) of Section 1.4) that

@ (_g)\{\)—% = O for all t and all r > s. (4.6)
Thus since state s = 0 is an absorbing state whilst all other states
are transient, this implies in the continuous case that an absorptive

sink with probability collected into a discrete atom will develop

at s = 0, somewhat analogous to the declining discrete component in -
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the distribution of the backward recurrence time in renewal theory
(e.g. Cox (1962)). Consequently by time infinity the distribution will

be concentrated onto the failed state s = 0, so that

Lo 9, 8Y=0, o< s<7|

>0 | (4.7)
Qi =

>0 {% (:k;> >

Llm —

‘b‘>o° PO t’c:\ ‘_'.\-

The differential equations for (o(&)and P\ (&) are

609 _ [ e g (0590 4 A @ (1,04

dt (4.8)
Jﬂé‘@ = -0 J)o-: (?(\.)V(‘;\:S 4 + CPU3°>£>J X

The solution of the latter equation is

R )= exp [‘ st‘j{\fo\_:&w P19+ CPU;OJ\;%]‘(“'”

vhich is a generaiisation of the expression for R(t) in (1.4). Whilst

the equation for f% Q{) is not so readily soluble, we have from

(4.2) that \ -

Po () = \‘ﬁ®“§o+ (9 ds . (4.10)
To illustrate the solutions to this model, we consider

some special cases. Of course, in the case of dichotomic reliability

L= %403 l’k <, and (4.8) reduces to (1.3).
Example 4.1.1

If ve suppose that @ ([, 0yt)=0 for all t, and that
for O<S<<!| (sothat t>0 ),

CPLSJ{\J‘&):Q - O << S
@ (s)o){:§ = 1[(\-53 —Qn U~s_§] + S /—E |

At-| S92k (4.11)
P (k) = 2 (-9) r3 *

b)
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then substituting into (4.4) we obtain 'Zﬁ:

@ (l < {:S e, (“%) ‘213(\ S) . (4.12)

Using the initial conditions (4.5) we have upon substituting

J“t’@t)} _ 72
50 = [ £=0 \-s

Substituting (4.12) into (4.8) we obtain

J Pt(ﬁﬁ = 2L.4L—flj:
- T A+t

Employing the initial conditions (or noting the analogue to dichotomic

into (4.4)

reliability) and using (4.10) we thus find

RE) = 28,00 e B (e
p(&) = | =2 § B, (at) - < £, (Y-, 4

vhere EZ (@) is the exponential integral,
E, (0\3 S’oo - 2 T .
It follows from (4.13) that for 1 sufficiently large
R = 5(x)

fo (fC) f9= \—= -*’?:tﬁ .

(4.14)

Example 4.1.2

Another special case of the sblution of (4.4), which
corresponds to a semi-Markov shock-model, is of interest. The
formulation is similar to that of Ansell, Bendell and Humble (1980a,b)
and Bendell and Scott (1982).

For this
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(=) 4 -1, 9% Y

(P(s’vrjﬁ) = {f‘ 3

> et Pl e

oI s |y

vhich gives as a special case

¢ (‘3*3'@ = :Hi’\;)l(i;ﬂb s O << |,

vhere :@4‘% is the vQ(J& convolution of &t@ N -go(—_&) = S@Q N
W=D, FO=(T8Mr , £¢®
is the density function of time between state transitions (or shocks),

o6 = [Tt (S A Gy )y = 1,750 49 )29, =S,

and ?yQ1§5iS the density function of amount of degradation or

(4.15)

loss of operative ability x associated with a transition or shock

to a unit at level s, where O< ¢ < § .+ An advantage of this

formulation is that explicit solutions can be obtained for (4.4)

by direct means. That is, for the continuous part of‘f(§§t)we can

vrite

B (s,5%) = Z gﬁk(\-sﬁ Sf&kﬁt—"t\F@“/Yf . (4.16)
=0

The discrete parts of the distribution are
2 +
Poli) =3 O REOY -
-
£y (ﬂi) = F(X).

As a simple example of this shock-model formulation, suppose

(4.17)

that S(t) is discrete with N levels denoted (;L—I)ALKJ—f)S (=142, ~~g|q)

and that f(t) is exponential with density

— ok
ﬁﬁ:\ = 2 M- . *k:> 0. (4.18)
Then if :
{
™ (o) = & @C’w:r), for.all Y (4.19)

the process forms a truncated Poisson process, so that its(discrete)
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distribution is

o —kE IS
N?_.Q, (H&) 5 %z\

. [->2
- o L\
P ([v\:—‘\l 5q= NN (4.20)
Q\H C\-C’C} 3 .{:13...3\\]

(N=O Y .

Example 4.1.3

As a final example of our partial operatioh formulation, we
consider the relationship to more conventional cumulative damage
processes, which have been studied by various authors (see e.g.
Buckland (1964) and Barlow and Proschan (1976) for reviews). In
general for such processes we have as the direct analogue of (4.4),

(4.5) and (4.6) that

dq, (Rt ' .
A (CH L

+ fi)i— 1, L\A;\:}‘l’(ws g;t)éuza.m)
+ Qo LJc_S Y052y 5E)

1(3s0)=05 0<3 & =0s §,(0)=],
vhere the terms are defined analogously to before, with =~ 9, (f&g*iB

giving the density of damage /5 LS > O) at time t and @0&2\

is the atom of probability corresponding to zero damage at t.
Hovever, these models differ somewhat from the one introduced above
in that there we:are particularly concerned with the reduction in
the operation levels of components, and consequently systems, with
time. Thus, particular importance is given by the partial operation
model to the absorbing state representing complete failure s = O,
and to the maximum (and initial) state s = 1. In contrast, in the
absence of replacement policies the state_spaces for cumulative

damage processes are usually unbounded (to the right) with states

in the range [‘_o) oo> .
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However, it is apparent that associated with the accumulation
of damage on [ ©,c0) (which may be described by (4.21)),there
vill be a reduction of operation level of the unit with magnitude
in [Obﬂ. Assuming that for any specific unit a unique level of
operation is associated with a specified accumulation of damage, we
can thus search for an appropriate transformation from cumulative
damage to level of operation. Since the transformation is onto the
range [O,i] , one set of transformations vwhich are appropriate in,

the continuous case are the probability integral transformations
given by : O . ‘

& = f; Ay du =1 (’}\ (4.22)
where&%QSSis some specified probability density function defined

on [0300) , and —HL33 is the corrésponding survivor function.
Note that transformations of this type are monotonically decreasing
and map infinite damage onto level of operation zero, and zero
damage onto level of operation unity. The choice OF-Q\QQOF course
depends on the physical relationship between damage and partial
operation. If s and z are both discrete the exact analogue of (4.22)
applies with the density function replaced by a discrete probability
function, and the integral by a sum. -

One possible choice for ik(@)is the uniform distribution on

(0\) B> s 0oL o<k , for which

O, S>/L

S = b-1g oo <2< b :
, - 3 : (4.23)
Iy 0% ?>é= O .

Thus, in this case the component can sustain damage up to an amount
A vithout experiencing a reduced level of operation; As damage

accumulates further the level of operation reduces linearly until
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the component has failed completely by accumulated damage b,
As (b-o.) tends to zero, dichotomic reliability is obtained.

Alternatively, if.i{(}h) is Weibull

S = “‘L”"—?[‘ (%‘ya] (4.24)
and this again reduces to dichotomic reliability as @ = o0 ,
vhilst if F = 1 an exponential relationship is obtained. For
finite P this transformation is 1 to 1, with s = 1 only forj: o,
and s = 0 only for?) =e0. |

As an example of the use of the transformation from cumulative
damage, we consider the cumulative damage model of Mercer (1961)
in vhich there is a constant prdbability rkgxt'that a shock (state
transition) occurs in any infinitesimal interval ('{:)-t,+-X¥: ),
and a probability \4‘(?§>A(3 that the damage resulting from a shock
lies in ( {3.3 f3-+ 815 ). In addition, Mercer's model includes a
dichotomic failure intensity '2,6{5 vhich we take as associated
1 to 1 with the occurrence of infinite damage (and hence with s = 0).
Thus for finite {S and bd)>3we have in our notation

' ur(:ug_{g) R {5 < W < =0
\{/ QS) \ﬁs‘q— () + . W= (4.25)

and as previously,

Y (RsWyt) =0 4 W<, (4.26)
V’(gpcx5—6> is the age-wear-specific failure rate in the
terminology of Cox (1962).

Mercer studies the case where “'(R) is gamma (f\>}{) ,

and considers the diffusion-type limit of this extended Poisson

process obtained as I\L—-} Oy N>, E L’?b = L%;——-} O
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a
such that (_\ -\::(xremains finite and non-zero. He consequently

obtains the limiting distribution with continuous part

¥t -1
e

In this case there is no discrete part at {S::C)(except at t = 0),
and analogous to (4.10) the distribution has a discrete atom at
= O of
(o8]
Quo@= - 92NV yt>0. @
Applying the transformation (4.23) to the above distribution ve

obtain as the continuous part of the dlstrlbutlon over s

(5,0 = [ b-(o-a)s]™® “’Jﬁ(’g\-z["‘ (-a) €] ¥t - fﬂ(g\é@j

T (4 %9
>0, (4.29)
and
) = 0° 9 (35941
— P(G\K)"(Kﬂ o .
S T ) f'[ A%t~ fa(t\\ 33J (4.30)
P = | o LTCSY aBt)(bai) (oY, L T4)
Co-0) Y *3E P(axt)
" (4.31)
L exXp [}—<k3“t -:Sl ’)_(9§>5E5J
vhere
7 (4y20)= V VGl T
If 1nstead the transformation (4.24) is employed then LAL
P (s —t)__ Q“Ktaxf’[dxt \r 2(‘3}5\:\][&’“ g—‘_] T—\
CANEY 3o -
< xPal| (4.32)
and )
R ==y v ““9"@
(4.33)

PtLJCX: Oy t>o.
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4.2 Measures of Component Performance

The probabilities (o (%) and P\ (X)and the probability
that the level at t equals or exceeds s ( 0 < S & | ),

R (s5%) = Qs" 9 (6,0 d6 + R | (4.34)

(vith the direct analogue in the discrete case) will often be of

physical interest, as will the mean time till the level drops belov s
(or MTTLS) T(s) = E(T{s]) where T [8] is the time till the level

drops belov s. We also define

R (1,)= B &)
R (0:“\‘-\ = |- PoQ—\-) .

By treating s as a dichotomic failure point, the MTTLS can be vwritten

and

following (1.6) as -

ﬁ‘:(g) - j'o \{&s;&\ AJc ,O0 £Ls &), (4.35)
Of course, ﬁ, (—Q is monotonically non-decreasing in t, ﬁ L—k} is
monotonically non-increasing in t, and Q(S‘;k) and -:\:(3) are
monotonically non-increasing in s. Higher moments of the time to level
s wvill also be of interest, in particular the variance,

< m[‘r(s)] = T=2(9) —[’:r (g)]" (4.36)

vhere () = E[‘%’T LS)'\S:.] .

The mean time at level s (MTAS) s 0, may also be of interest.
In the continuous case since there are an infinite number of states prior
to any state s<1, all of which may be sojourned in, it follows that in
general for the MTTLS to remain finite the MTAS(0<s<1) should be
infinitesimal. Thus we denote the mean time in the infihitesimal range
of levels (s, s +8s) by V(s}&s (S:{:ojsﬁ;s#band interest focuses on

the mean time intensity function,—\7(s> , Which we shall assume is

continuous. This can be conveniently obtained by defining for 0<s<1,
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v &B j 1,if S(t) = s (4.37)
S. =

0, othervise

Then

Fl[Y:] = £Gs9 (4.38)
and the time intensity at s, V(s) is

Vo = [ Wi (6.39)
V) =E[V@] = [T9GH% . g

Also, by analogy to (1.6) in the dichotomic case, the mean

so that

time at s = 1 is obtained as

v, = f;aoﬁ Bt (4.41)

_ C— T
TO= fs N ()d6 V. (4.42)

Another useful measure of the reliability of a component

Thus

or system is provided by the expected level of operation at t

B9 5= 2[s@].

In the continuous case
_ > 1
S)= jo+ s P(ss%) e 4 P &) (4.43)
vith the usual analogue in the discrete case. The higher moments
of S(t) are also of intersst, in particular the variance of S(t)
—_— — 2
Vor[s@) = STW-[TW] (4.48)

T = [ kbW L e

It follows that §({;)is monotonically non-increasing in t whilst

vhere

from (4.5) and (4.6) 4
\or [S(o}] = & [s (00)}“ = Q. (4.46)

Also, a single summary measure of the expected performance of a

component or system over its lifetime is provided by the expected
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lifetime coefficient of operation (ELCO),

S = [T o (4.47)

o _
A useful alternative representation of & is obtained from (4.43)

by interchanging the order of integration,
= R -
< = S)o [So-% S’\f(%%ég-k‘ P\ (‘E\Jc‘t
\- o - - —_—
= SO+J§,SS)O \P(S;QA{-,-»\?:OP, &3}\:: \S)0+ g\/(s) 35+\’l )
from (4.40) and (4.41).

In the case of dichotomic reliability there are only two
‘levels of operation s = 1 and s = 0, and §(ﬂand R (05&‘,\):‘3‘ (‘_‘5:\‘?0@
are equivalent to the dichotomic reliability R(t), whilst < and T (0)

are equivalent to the mean time to failure, E(t).

To illustrate the above measures we consider the examples

previously introduced.

Example 4.1.1

For the case of (4.11) and (4.13) we obtain

R(st)= (-9 5 {e.(0)-<E (2D},

- (4.48)
T() = 7,_‘.{2 e B () + [l —2n Cl——s)]_l’k
~ 2.1927 11927 Rn (1-2) .
1[ — 2 (\—55] (4.49)
V() = %l(\-s)[\—ﬁm(\-s)]z“j_( ; (4.50)
-1t

- =
F - £ e 09 E Y, o

SEiy) L 2e KT - (14)_ e E, (2t
S ®—(xt+DL1t+z)+2{t'@g B +D};4{52)

and —

= _ ~ , —
= 3B, == 772107 5 (4.53)
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vhere El(a) is the exponential integral, and El(l) = 0.2 \9238HU-

For the case where At is large so that (4.14) holds

7.
et~ [S("QJ ’Lt-\-}(:?:t‘\‘l) (’f{:\% T (4.54)

Example 4.1.2

For the shock-model example (4.20)

R ([4,— 3&3 Z f( X \] ) PL3,01\(4?.\355)

«L—t\) — M~¢L—\~\

T o= =7 (4.56)
W[T(ﬁ%lz ﬂﬁ;—tt > (4.57)
v %> =‘? : (4.58)
SW- é“lt;f . (- 19 %\j ‘fﬁ L»:)i‘

) fc=0 .59)
e v (4.60)

2|~ L!\)-—D

Example 4.1.3

For the transformation of Mercer's model, the measures are
rather complicated, although the Weibull transformation does tend
to give somewhat more convenient results than the uniform transform.

Thus, for the model of (4.29) to (4.31) we have
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_ empl«¥t—{0 2W)dy] N
R (550 = e T (o {P(D» (b-0)s]5 £¥E)

-+ Lb-awb [ (‘\\63 OQH:‘)E N (4.61)
g:tk)'=: P\QE)

L, LRG3, 2%t +1) - (e, ¥ )] - f)- [ (et 58)]
(b—@sz.}{ckx%;+\y1(¢3%ﬁ JU}*’E*&t'+ﬂSjSCLU§)A$] i

= 6 ® ) 62y gy |
4 (Ae—b)[ M (L3, a¥t Y- (oY, AFD ]+ o (a¥) ATl L) <
-0y ¥ 7% M () wrep[u ¥+ (T2 (D)4
(See e.g. Gradshteyn and Ryzhik (1980)).
?"GC = R
) L ()L (6450 -T (0¥ & ¥E]- 20T, Q) (&, ¥+ |
(b-a)® X842 T (w¥k) e[+ [T 2(4)du]
+ LR Y +2) - M (0¥ s3d ¥ +2) ]
(b)Y *¥FEF2 T (U¥t) amp[avt+ Sx 2ol
= R (L | _qxt (4.63)
+ r}( LYY 2 LY 2t (AT ELY dﬁtp(\:ﬁ&b‘t}-r'@\(,dbj@'
(b-a)3 Y2 (a¥t) enep ¥+ € 7—(‘333‘3]

42 T ) - S I e v a2 wL)
b-)2 Y= (AL wnep Euﬂ;-kgo"c ;L(ug(}ﬂ o

For the model of (4.32) and (4.33) we instead obtain
~t
R (s,%) = ==F C-ayt -, 24y 1 (—X%BL\ < %
pYeTE (2 ¥t) (G.66)
S0 = g ) mmep [ o= (7 ()4
R (¥ PPy +¥/p O ) s(4.65)

| e (PO F 7)) <FEp 1 ¥ (4.66)
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The form of 7[@3 is of particular importance for the
measures defined in terms of integration over t. For example,
if ?ltk) =7 for all t, then for the exponential special

case of the Weibull transformation ( p = 1) we obtain

S o[ «¥a1 —a¥ 2a ()] (4.67)

4.3 Component Independence

The above measures are useful for studying and comparing the
characteristics of systems of partially operating components,
particularly since various authors have suggested different
standard system structure functions as a basis for systems
performance. Generally, hovever, the same basic underlying assumption
of independence is made in each of these approaches (e.g. Postelnicu
(1970), Barlow and Wu (1978), El-Neweihi, Proschan and Sethuraman (1978),
Hatoyama (1979), Butler (1979b), Ross (1979)). 1In thg dichotomic
reliability model independence of times to failure of componehts is
usually assumed, but in the partial operation model it is apparent
from the various summary measures that there are three distinct
families of distributions of interest for each component. These
are the distribution of the level S(t) at a specified point of time t,
\f(gst), the density of the time T(s) till the level drops belov a
specified level S (s>o0) s say.4J3(ﬁC, {) , and the density of
the time intensity \I(s)l at a specified level < (_g;-o)ssay/a.ﬁ\)‘:) S) .
We assume that V(s) is continuous (see Figure 4.1). For convenience
ve also define A0 @;5CD as the density of the time to level O.
Typically, previous authors have assumed the independence between
components of the levels at any specified time, ignoring the other

tvo component characteristics. Intuitively, however, if any one of
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Figure 4.1
Relationship of T(s) and V(s) [equation (4.68)}]

time
intensity
ate, V(?)

time to
below s, '_r(s)

level, 6
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these three component characteristics is independent of the
corresponding variable for other components then the other two
characteristics should also be independent between components.
We prove this result below, and also consider the less restricted
property of zero correlation.

Of course, considering a single component,

T(S) = 33" VvV (*) JE£ —+V, (4.68)
where Vl is the finite time at s = 1, and we define T (1) = V~.

Analogous to (1.2) in the dichotomic case we have for all O 4: ~ ~ 13

(4.69)
Equation (4.69) can be inverted to give
-u) (t 3s) - J
in order to evaluate the density.axJ which is of interest inits
own right. Thus, for example, for the simple example of (4.11)
to (4.13) we have
a-t
-+ 2. . (4.70)
-t, CSrtilel
whilst for the discrete example of (4.20) we have
*4—,
(4.71)
We can also derive a relationship for -"IA £) in
terms of , which is again of interest in its own right.
Supposing that the component reaches some level S o) i
at time t, then
~ r noP
<T\h (4.72)
ps-
where is the conditional density of the component

84.



having time intensity V' at state s given it reaches s at time t.

It follows that taking the limit as cIY~—> 0 then analogous to (1.3)

(4.73)

and thus analogous to the expression for f(t) in (1.4)

B[] Gt i-r «
~ Qsb565i:) k -It-" (s”0"j }
which is a simple negative exponential in ~¥* . (This corresponds to
the Markovian nature assumed for 9 @J£"""T*t)') . Thus the unconditional

density of time intensity at level s is

o0
AX. “"c"s " [pX4)90,s,-tyjit+tf (p" <£
and since analogous to (1.6)
s/-t) J-VV = " 1
it follows from (4.40), (4.73) and (4.73) that
OOR W
v o ) . r
Sc+” ~ J r il

For example, in the discrete example of (4.20) we obtain

(4.76)

as expected.

In what follows -c subscripts on the functions ¢

etc. denote the component, i = 1,...,n.

Writing t = (¢t ,...")tR), £= (sjf.3js”*, kb= (17,...,"), the
corresponding n-component (multivariate) functions to
w(t,s) and "U. may now be denoted w(t ,£)
and AX* S) respectively, and represent the probability density
that for all i =1,..., n component i is in state s” at time t~,

the joint density that forevery components i the time till the
level drops below level s*is t© (s™)>0), and the joint density

that for all i the time intensity at state s® is”® (s> 0).



As in the univariate case, if any s; = 0 in A$J(;§;3£§X then the joint
density is defined as containing the time till component i enters level O.
Where subsets of the components are considered, these are identified

by appropriate subscripts on the functions.

For notational convenience, and without loss of generality, we now
treat 'f’(éL)§:§ and the associated univariate densities \€4,(§;;§ﬁ:i)
as composite distributions which include the discrete atoms of
probability analogous to E; Q§5 and GK &&5 in the univariate case,
as vell as the continuous density analogous to the univariate .

~ (534g . In éonsequence, integrations of these densities over
s; are interpreted as including the addition of these discrete atoms
of probability where they are included in the.range of integration.
Al (D) e Taesked ol
Thus, analogous to (4.34) in the uni ariate case, we define

for Oé_—ié_(_s

| t
R@')Q:Sg\bﬂ Je\..e\L“MAgn \f(\ﬁ‘ﬂ}_\A (4.77)

vhere
SL ¢ O0&sa< \
S« (+) = O+; $S4=0
=5 S<=1 s A=\ ..g,N,
It follous that for O <L |, L=1,..,0 , R(Sk)
is the probability that the level of component i at time ti equals
or exceeds 859 for all1 i =1, ..., n. On the other hand, if any
s; = 0, the atom of probabil‘ity at zero is excluded from R (gbt‘)j
so that the lower limit of integration is treated as 0+. With this
definition, for t = 0 we obtain R(s,0) = 1 for all s, and for t =

——

R(s, ) = 0 for all s.
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We also introduce
A

where Si(ti) is the stochastic process for component i.

1 1, if Sk =51

0, othervise (4.78)

Generalising (4.69) and (4.38) we now have

R (£5%) =§:\<Ww° Sj LR AN C&s;) .

) (4.79)
and oL s |,
E[Z\V \st (‘tbj = \fLig“& . (4.80)

Theorem 4.1

Independence between components of levels of operation S(t)
for all time t, independence of the times T(s) till the levels drop
below specified levels for all levels s(s>0), and independence of
time intensities V(s) at specified levels for all levels s(s) 0), are
equivalent.

Proof':

et P (s,k) = TX i (st | (4.81)

for all values of s; and ti,
- i:l’ l..’ n

then by (4.77)

RLS »E) = TVBS o i JCQA\LJ
T_Y RiCsused) .

Therefore, from (4.79) and (4 82)
o ()= () "R, E)
&, Jtz.”Jtn
=.n° ﬂ C‘RJSM X (4.83)
« =1

N
= [\ i (eays), ogs<L
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Thus the times till the component level’s drop below specified

levels are independent if the levels at spécified times are,

and reversing the steps of the proof ithe converse also follous.
Independence of time intensities at specified levels

follows from the independence of times till the component levels

drop below specified levels due to the triangular structure of the

Ti(si) in terms of the Vi(Gi), S L6 < in (4.68). Thus,

for any 0 < S.i<\;

Vi L$4f8*sa) Ssi=TL (5 -T2 (50554, se
If (4.83) holds for all s;, then for all s both the T ($3) «L=ly..0yn
and the 1. QSJ; -+ gS,_;) i=1, ..., nare indepdndent.

Also, from (4.84),

/(/L(_LL‘; SB \Y Jt‘.wj\r dta , (4.85)
o (B g+ S W Ct)glt ~\ S’i—pg)
vhere Ak (;b. 3S ‘:t_-g:s §.+<§:5> is the conditional joint

density for all components i = 1, ..., n of the time t. till
component i drops below level s, ;9 given the time € —V till it
drops below level S+ &ss . (As before, if any s; =0 this
‘conditional joint-density is defined as containing the time till
component i enters level 0). Thus if (4.83) holds, the joint

conditional density decomposes into a product by Bayes Theorem and

QO
(¥, €) = _[“\DT:* i s (Ri-viey soa 8s0)
\A.«-__'

*L—h S«LI{ -V oS -\—SS.;)]
n (4.86)

;. ; AN L QV‘.L)S,(\ N
L=\ .
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vhere /(AJ4;¥ (Jghg;\ti—«u s Si+& s{) is the conditional density
for component i of the time t. till it drops belov level S (§;¢:>Ca

given the time t - vy till it drops below level s; +§é , with the

usual redefinition 1f §; = o.

If any s; = 1, then s, +8s; on the right-hand-side of (4.85)
is replaced by 1+, ti - vy by 0, and ti by Vis and the integration over
t. is deleted. Thus ve can eliminate the ith component from
M(t-&-} §+é‘§> , and the conditioning in w*(—_&_)g,{_:-y_v)g@ﬁ)
on the time for the ith component can also be removed. Otherwise the

proof is unchanged.

To prove that (4.86) implies (4.83), we commence with

S+ 8Si= 1y L=l..,0

S
and proceed recursively using

T = Vi ()
and T ()= T ij,-«-XS.’b-}-VLQS.{,‘F?S.L\) Sy

vhere Vi(l) is the finite time at s; = 1 for component i. A similar
argument to that which leads to (4.86) then yields the result.

Proposition 4.1.1

Pairwvise independence between components of levels of operation
for all time't,.pairwise independence of the times till the levels
drop below“levels for all levels s(s)0), and pairwvise independence of time
intensities at spébified levels for all levels s(s)0) are equivalent.

The Proposition is pro&ed by restricting the set of components
considered in proﬁing Theorem 4.1 to any two. (We note that the Proposition
extends immediately to independence between any subset of the components).

Theorem 4.2 .

The following two conditions are equivalent:

(i) [7_\- i Qs*}] TT V. kg) y foralls  (4.87)



(ii) E[ T_ T Q-S'DJ = TT :ﬁ— (5'53 for allg_ ,(4'88)

=\ A=H

Let (4.87) hold. Then for s;<1 for all'i =1, ..., n, integrating
both sides with respect to S1s 3ees S and interchanging integration
and expectation, we obtain a

N \ o \
E[TT (g = TV B[S Vi(de]
« =l A =]
Thus by (4.68) it follows that (4.88) holds. If any s; = 1 then
\]%U\ ="\ L L\\ and integration is with respect to all
Sys e+esS, not equal to unity.
Differentiation together with the triangular structure of

the T,(s;)in terns of the V;(6) <, £€ <& | in (4.68),
provides the converse.

Proposition 4.2.1

For any two components, zero correlation of times till the
levels drop below specified levels for all levels S5 Sj’ and zero
correlation of time intensities at all pairs of specified levels are
equivalent.

Proof':

Again, the Proposition follows immediately by restricting the
components considered in proving Theorem 4.2 to any tvo.

Theorem 4.3 .

Any of the conditions (4.87), (4.88), or

0 a .
E [TY S (—h;):lz ﬂ < tbi) | for allj:—(4;89)
- =1

A=
N :
/ \ Sx . (4.90)
L =A

imply that

= ﬁ S:o oL (k)&

1\
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Proof:

That (4.89) implies (4.90) follows immediately by
integrating over tl, ...,tn, interchanging the order of integration
and expectation, and applying (4.47).

It remains to prove that (4.87), or equivalently (4.88),
imply (4.90). To do this ve first establish a useful equality for

the multivariate process. From (4.39)
n _[n o0 ,~L
E{ /.5\ 5 (@] = l:.[ /.j go Y. () ét;J R

}and interchanging integration and expectation we have using (4.80)

n © IS 0 N
[T v - e S T e

= . “=

&R o0
:goétl”ogo‘;tn \fti’)ty 3

n
Hence multiplying through by ( t[X' S$; ) and integrating over

that

analogous to (4.40).

.58, ve obtain after 1nterchanglng the order of integration,

S As,...g dsa &7— \ [7—\’ (<) (4.91)

=\:_[7‘\‘§ si o) 3,

Suppose nov that (4.87) holds Then by the alternative form

Sl’ LY

for S in (4.47), the left-hand-side of (4.91) is equivalent to
( ﬁﬁ) , and thus (4.91) reduces to (4.90).
Theoré;‘a.a
In the dichotomic case, (4.89) implies independence of
. levels of operation, and consequently of times to failure. Zero
correlation between the levels at specified times implies pairwise

independence.
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Proof:

As standard, define the two operation levels as 1 (operation)

and 0 (failed). Then

Elsctea] = el
e[ T s M] (L.E) -

“f&._\_s_‘g-:—\ - L_ 0 9 &\)_E JL\ for all‘t'y"}'-*n(l“%)

Thus

iff (4.89) holds.

Also, in thé dichotomic case (4.69) and (4.79) become
Lo (LT = S_:L anz (W ,0)du
P = ST avm 80 b o (5,9,

so that iff(4.89) holds

PIREG =R o} Ll\ A ”?U-ffé - \\\ _]T[‘}‘P U 'hﬂ

7‘? AL (*:Mo)

We also note that we have immediately,

wp(ok)= fo Ul L g:c d v (Y, 0\
= 7T [ sz (w9 4]
= Zj . (0,t).
P ey e ity n (58 = Bon (L E)+ Plff?ﬁ (4,E) |

vhere \\‘)n (_.LJ > represents the probability that at the

Further,

times t 10 cres tn respectively all of the components are operating
except the i*™" ( | & L4 0 ) uhich is failed, 1.0 LLJJE)
represents the probability that all the n components are operating,
and fﬁ)‘\.),¢-|)x}+l,;..)n (451;) represents the probability

that the group of (n-1) components excluding the\ith are all

operating. It follows from (4.92) that
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\"\m LUEB‘Z £ (Ley) - -H» (D)

*ﬁ=#«
[ - | 5 ()
Similarly, o -3#‘.&
D (1 )= 6,8 [ERS AN
.;\‘)n ( ) 3“‘)*{, | ~b+l Ty N \ \\‘)n
SIS o
vhere [N \L‘;R L %3 “\f:i:j y represents the probability

that at the times tl’ ...,tn respectively all of the components

are operating except i and j which are failed. Thus,

P\)LJ;)\:\S) (.L;’C_) = [\‘ Uﬁi L\ )"t.b] [“ \ﬁs K\)-té):] _/—(\T \fJL (\)t,a
L=\

PR,

In general,

lyeey N Q-\—).ES = ?\J\‘\)\(_\)JQ-\—\)“\)“ &L—? P)\ 0 (
A T)

vhere J is any non-empty subset of j =1, ..., i-1, i +1, ..., n, and
()\)~‘x)f‘ (;l_JféB represents the probability that at the times

t.y ooy tn respectively all of the components are operating

12
except the members of J which are failed. Thus the independence of
the levels of operation follows immediately by induction.

To establish pairwise independence, again restrict the
components considered to any tvo.

We nowv provide two counter examples to prove respectively
that Theopem 4.4 does not generalise to more thaﬁ twvo levels of
performance, and that (4.88) and (4.87) do not, in the dichotomic
case, imply independence of times to failure.

To verify that Theofem 4.4 does not directly generalise

to more than two levels ofperformance, we consider the following

simple example of three-level units.
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Example 4.3.1

Suppose that
¥, (os Jé= ‘f’;@afu} =i U?JCQ="3‘ s for =1\,

Then

E[six)= B [Saled) =%
and if the levels are uncorrelated
= [S((‘tbsz&;)_] =—Lq_‘ °
——‘C{'_ “f(%)%ft\jjt—zb

+ \?Lh\fb ‘J_b?:)
-¥.%f‘f (%:5\)46‘3%:23
N J;_' Y (l )%_)tl)tl) 5

But

= [S( tbbsi_(:b,)] -

so that if say V\> (S .ng_ )-t‘)—t,) is given by
Sa.

il CS')Sz)_bt fbﬂ-\ o - | \?\ &S iyt D
' 0 |7The o Flac ,:L-
S L|o th k| £
V| £lae Wlze 3he L
\ L
\fl ng_ ;e-:) g _J_g 3 l

then the levels are uncorrelated but not independent.

Example 4.3.2

For our second example we consider two components with a joint

distribution of fatlure times gi&en by a uniform distribution on the

circumference of a circle with center (1,1) and radius r, 0<rgl. Thus

L o (e =™

PRy
O , othervise .

A0 (%4 &, ,0,0) =

It is obvious that tl and t2 are not independent, because knowing the

value of tl gives information about t2. It also follows by symmetry that
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E[T()] = B [T.0)] =\

and

E [T (OBT:_U%] =1

so that the times to failure are uncorrelated, although not

independent.

The last example provides a verification thét the property
(4.89) is not equivalent to properties (4.88) and (4.87), since in
the dichotomic case (4.89) implies independence of times to failure

vhilst (4.87) and (4.88) do not.

As a final point in this section we note that in the
dichotomic case property (4.90) is equivalent to (4.87) and
(4.88) since

S:c’ SRk =Te Qo) .

Thus

n. - 0
E ﬂ So s = E TKT,AO) 3

<=1 <=\

and i;i{ _ Sg:? = K;Saikﬁ>2$& e = S;i? ‘?4_&\\54:,;) BRI

= 1 (o) 5 by (4.41).

4.4 Series/Parallel Connections

Whether components characteristics are independent or not,
there remains the selection of appropriate structure functions
f(sl, .;., sn), specifying the level of operation of the system in

terms of the level of operation of the components. For a coherent
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system Barlov and Wu (1978) define f(s) by

: Q(Q): Mosne ~—N Se = N ot .S;:
ler e Lefr Lol LekWa

vhere {P\).\.) P_‘, k are the minimum path sets gpd J{_l’(‘), Ny }T,k’k
the minimum cut sets of a corresponding (one-to-one) binary coherent
system of the Barlow and Proschan (1975) type. The above definition

'is an obvious generalisation of the dichotomic case, and Barlow and

Wu use this to define a multi-levelled series system and a multi-

levelled parallel system by

F) = mdn s

Jk;:\)-»')ﬂ (4-93)
and
F(e) = a0
\_,C:‘)u»\)n
respectively.

These are also the definitions of series and parallel multi-levelled
systems employed by El-Neweihi, Proschan and Sethuraman (1978) and
Hatoyama (1979), but not Hudson and Kapur (1982).

With so many possible system structure functions and coherent
structure functions in the multi-level case, and infinite numbers in
the continuous case, it is not unnatural to look particularly at the
relatively simple.series and parallel systems. However, the definitions
of these structures employed by the above authors have many possible
alternatives, e,g. Zijlstra (1980), Fardis and Cornell (1981),

Hudson and Kapur (1982). They are contained within our categories of
series and parallel systems employed in Theorem 2.2 which only

impose dichotomic restrictions on the system's structure function.

In fact, the definitions in (4.93) are of some physical interest,

since El-Neweihi, Proschan and Sethuraman (1978) show that for their
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restricted definition of coherent systems the level of the system
is always between or equal to the eeries and parallel system levels
as given in (4.93). This proof, in fact, generalises immediately
to our wider class of narrow-sense coherent systems, as is shoun
by Griffith (1980), since for these |
Soncn =§ Emio 1, Sonid) L (S0 4180 £ (Smaney -y Serand) = Seweoe,
| (4.94)

vhere

Sedn = .
w-:\)“.)(\ K =\eyN

Griffith (1980) shows that the class of monotone functions satisfying

(4.94)'is in fact equivalent to our narrov-sense class. Thus, the

above proof cannot be genéralised further to include coherent_systems

in the vide sense.

. Physical considerations, however, may suggest alternative
restrictions on the classes of multi-level series and parallel systems.
For example, in certain applications we may regard as somewhat
pathological a parallel system whose ievel exceeds the sum of the
levels of the components, or a series system the level of which is
less than the product of the component levels. Of course, in applying
these structures, the sum of the levels must be truncated above at

unity, and for the’ discrete case the produét of the levels will not

alvays exist as a level and a rounding mechanism will be necessary.

It is apparent that

f\—*Q £rin

A=

= .
TE{::I . (4.95)
5*7 SM)

“w=| . -
and that these systems are outside the class of narrow sense coherent
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systems although within the wide sense class. It is also apparent
that whilst the seriés and parallel definitions as used by the
_previous authors are‘appropriate for certain systems such as some
communication, transportation and water systems, for others even
" within these applications our alternative definitions may be more
appropriate. For example, the parallel lighting units considered
by Zijlstra (1980) correspond to our truncated sum definition.
(See also Fardis and Cornell (1981) and Hudson and Kapur (1982)).

For a system of n independent components ( 0 22 )
the following expressions are obtained for the distribution of systems
states at time t, where the suffixes denote the component, and the |
superfix n denotes that the system is of the first n components.
In each case the distribution is, of course, again a composite of a

a
continuous density sfiuéﬁnun(f“ébover the range (0,1), and discrete

atoms of probability at s = 0 and 1, Pjuﬁgﬁu“bgch) and

PhRan(®).

Firstly, considering the minimum rule we have

ek LS;%:Z / ;'L?'(St) (4.96)

BTN Ry G

yex!
vhere ALIE?S represents every non-empty subset of i=1,2,...,n and

{;:["k represents the complements of these subsets (i.e. the values
of j =1,2,..., n not included in SL¢L: 4;<aZI;?S ) . Alternatively,
\Y “r\ix\ (\5;£) is expressable by the Inclusion - Exclusion

Theorem (e.g. Feller (1968)). Also we have

M@)Qt\ Z 7— ?NLO)QC) ' (4.97)

=Y ez
. Z—EI, [“ %S Q‘\]
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?ma'n(n) (JC) = H ea W) LJCB . (4.98)

With the same notation for the maximum rule we obtain
ng) 2__. 7\ ‘{’%(v’c\
[ V-Rg (0]
WQO}@ } ﬂ(os(ﬁ\ (4.100)

(4.99)

f:fw,c (\) Gﬁ\ Z Z—Y me@ (4.101)
= D u\)(ﬁ] ,

Alternatively, for the product rule, ye !
‘_
" = < N1
Pert 60 =5 A (B9 (68 s

+ oy ) “?@ (9
—k\1i\ (S*ﬁ _T_r f) 03t£>

P:‘ﬂ“b)k‘)c\ S: ﬁ ﬂ,@&\ﬁ ‘D qi(—llco\j)
et () = 7_\_ Cy®. (4.104)

Finally, for the case of the truncated sum,
noo. S~ n-\
Pran o= §, (- elt)?m (6:9) I
+ fn (o) &5‘? w (s,%)

(4.105)

-+ Py (S'*i).7r—x— fi&(;ﬂ Q&% s

?'LM u)@ = f j‘ ‘EQLO) ta N (4.106)
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PO ) = Paey WOL1- £ 1)
+ ?S\;‘Jw\(\) k@ .
£ 0T, de ot (-0 P (69

As may be expected, the conventional definitions of series

(4.107)

and parallel systems tend to lead to simpler expressions for the

systems probability distribution than do the alternatives. For

example, for two identical components, with densities corresponding to
the exponential transformation of Mercer'é model we obtain for t >0, for

the continuous part of the distributions

Ny %M (s) ) = [} D (=6 %5, ABL) o acp§ LAt —-S’;b’)l‘i\\égq{_]

Y <¥E T (a¥%) (4.108)
«p (9
T (5= 29(50) — X (58 @10

a 2.A¥E :
T O=T © entp %:7- a¥e -2 (€ ’/(La(‘ﬁe‘)‘ﬁqf

- L¥e-Y
T et (G S) ¥O7E LRy
vhere :]:v.cggis the Bessel function of imaginary argument. (See

e.g. Gradshteyn and Ryzhik (1980)). In this case \f{ilkw\ (j{;&)

3

does not appear to simplify.

The various measures of component operation have their direct
analogues for system operation, and these are of use for comparison
purposes. One useful relationship immediately to hand is that under

component independence, the expected level of the product system at

time t is
{\ .
— ny _ (4.111)
Sged (1) = / \ Si () .
A={

Of course, in the limit as t tends to infinity, the distribution of

levels concentrates towards state 0. Thus, for t large the expected
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level of the truncated sum system is given approximately by
: n
S o (D= > T
4=\
A i n L‘t
and this also provides an upper bound for S e for all t .

(4.112)

Therefore, whilst the evaluation of the system probability
distribution is easier for the minimum and maximum rules, this does
not extend to the measures of performance.
To illustrate the differing series and parallel connections

we show in Figure 4.2 the ELO at time t, < () for a
single component with distribution given by (4.32) and (4.33) wvith

@ =1, H=5, ¥ =0.2, & =10 and A (t) = 0.6, and also
the corresponding series and parallel systems of two components.
The corresponding values of the ELCO, , are given in Table 4.1.
Also, for all the possible (dichotomic) three-identical component
series-parallel systems shown in Figure 4.3, we show in Figure 4.4
the expected levels of operation corresponding to various series-
parallel connections, for the components described above. It is
seen that substantive differences in sysﬁem characteristics can be
obtained depending on the definitions of series and parallel
connections employed. In particular, comparisons between system
configurations are.very dependent in magnitude upon the definitions
employed (although not in direction).

In the case of dichotomic reliability, it is well known

that the advantages to be gained from the use of parallel redundancy
depend greatly upon the particular failure distribution which is appropriate
and the values of the parameters.(See e.g. Lomnicki (1973) Table 1).

This is the case too with our generalised model, although nouv the
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Figure 4.2
Expected Levels of Operation for different series and paraliel systems of two

components with distribution-(4.32), (4.33) andf=1,a=5,7=0.2, 6 =10,

A (t) = 0.6.
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S(t).
04 L
02 - | one
. component
0 | 1 | 1
1 2 3 4 5

t (arbitrary units)
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TABLE 4.1

Expected Lifetime Coefficient of Operation for the two-component
systems shown in Figure 4.2.

Connection ELCO
1 component 1.25
truncated sum 2.13
maximum 1.64 .
product 0.45
minimum 0.91
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FIGURE 4.3

Series-parallel systems of three identical components.
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Figure 4.4
Expected Levels of Operation for series-parallel systems of

three identical components
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series: product
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advantages are also dependent upon the particular combination rules
employed. Table 4.2 shows the improvement ratios indicating the

value of}?kt) as a proportion of that for a single component

vhich can be obtained by replacing a single component with the above
characteristics by a parallel configuration of two or three such
identical components. Whilst the truncated-sum connection of course
provides the greatest improvement, with it for small t usiﬁg a

parallel configuration of three rather than two components offers

little advantage. For each combination rule the advantage of redundancy
is seen to be increasing with time.

4.5 Replacement

The model considered so far in this Chapter ignores the possibility
of replacement. The simplest renewal theory for this process would
associate instantaneous replacement to the full operating state 1
vith entry to the failed state 0, and reinitiation of the time count
from this point. In this case the continuous part of the distribution

of level of operation s at time t is

. = 2 A
VS (Sf’tB = S’o \f (SJ/V) Z g’ (_JC—AQ é’t (4.113)
-»Q(:O
vhere £L’Q = _C_X__?ﬁ.@ 5
t “

and f§4&'(ﬁ:) represents the & convolution of f(t), and

L :8\(-%)){‘&):&@—) . The probability of being in state 1
at time t, 2 (k) is given by (4.113) vith “f(s,*) replaced by
Pl(ftx . Measures for this process may be defined analogously
to those obtained previously, with JE)(S;&)replacing \f(§;*:§ and
2, () replacing 0 (%) in (4.34), (4.40), (4.41), (4.43) and
(4.45), and the form of (4.44) and (4.47) remaining unchanged.
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TABLE 4.2
Improvement ratios for systems of n identical components arranged

in parallel (using truncated sum or maximum rule).

B=1, o=5, X=0.2, ©=10, L) = 0.6.

Truncated sum Maximum

1 1.45 1.50 ' 1.20 1.33
2 1.82 2.14 1.32 1.57
3 1.93 2.83 1.38 1.73
4 1.97 2.95 - 1.42 1.80
5 2.00 3.01 1.45 1.86
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If @L(;;t)is instead defined as previously (4.35) nov gives the

mean first passage time to level s and this is related to the mean

time intensity at level s for one cycle by (4.42). Now, of course,

the monotonicity of the various measures no longer holds, except

for the mean first passage times.

As an example of the renewal formulation, consider the simple

limiting case of (4.14). Then

+ -
[ 9™ 2 feno9)- 1Y
Q- onli-9-11* (4.114)
+ (}-—S)’):E \\Jaf-q;{i -{; = 0 ,

and the steady-state distribution for the process is

(59 = (=97 =2 (=177

"E)(Sith =

‘t‘>°° 3 (4.115)

vhich is independent of L . It is unimodal with a peak at
s= l—e ' 06321

Apart from replacement upon failure, preventative replacement
is of interest for deteriorating units. Optimal preventative
replacement for such units was considered in another formulation in
the author;s joint paper, Ansell, Bendell and Humble (1980b), whilst
in Chapter 5 and 6 we consider the connected tuning and retuning of
partially operating units to optimal levels to maximise expected
vork. However, even if we for the moment ignore these optimisation
problems, it is of interest to consider the effect of preventative
replacement upon the performance of the system in this extended
reliability model. In Figure 4.5 we showv the effect of replacement
of a single component at arbitrary time t = 2, for the three-
component systems of Figure 4.3 with identical components again

vith distributions given by (4.32) and (4.33) vith ﬁ» =1, =5,
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Figure 4.5
Expected Levels of Operation under replacement at t = 2 for the systems of

three identical components in Figure 4.3 with component distributions
given by (4.32) and (4.33) with=1,a=5, y=0.2, 8 = 10, \ (t) = 0.6,
and minimum and truncated sum connections.

1.0
0.8
0.6
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0 [ 1 1 1
1 2 3 4 5

t (arbitrary units)
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¥ =0.2, © =10 and ;l(t) = 0.6. The series and parallel
connections employed are the minimum and truncated sum rules.
As expected, the results are again direct generalisations of the
dichotomic case, with replacement offering the greatest potential
gains for t small in the mixed series-parallel systems. It
follows from (4.112) that for both systems 3 and 4 the maximum
asymptotic‘improvement vhich is available by replacement of
component IiI at time tj, is S (A-t)-§&) . This

result generalises to all essentially parallel systems, i.e. to all

systems whose most outvard link is a parallel one.

4.6 Multiple Time Scales and a Random Environment

In multilevel, as in dichotomic reliability, auxiliary
time scales such as elapsed operating time or time at risk may be
important in accounting for the failure or degradation pattern.
See e.g. Isham (1974), Farewell and Cox (1979), Para and Garribba
(1980) and Bendell and Humble (1981). A small amount of joint work
on the overlap between multilevel reliability and multiple time
scales was undertaken by thé author and S. Humble within the period

of registration for Ph.D., and this forms part of the paper in the

IEEE Transactions on Reliability Vol. R-27, 1978which appears as
Appendix A3, and is referenced by Para and Garribba. A brief
resume of the rather specific formulation of this model is given in
this section, together with a brief treatment of the effects of a
random environment, alsoc from that paper.

We consider partially operating units deteriorating in
current operating time tf, elepsaed operatipg time tO’ and elapsed

calendar time t. In the corresponding dichotomic case, Bendell and
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Humble (1978, 1981), the three failure mechanisms were taken as
independent and competing, so that the cumulative hazards vere

added, and the distribution of time to first failure corresponded to

a system of three hypothetical units in series, one corresponding to
each time scale. If wve assume a similar series méchanism in the partial
operation case with the product rule for component levels, we obtain

for the continuous part of the distribution of level at time (f:g 5*:,05{553
\— » 1=
4, ($tgt 0y L) = 8§+ J'Ggé_\_ le "(J&_([_*—Sg‘jjtgs

P (T s F (e
+ 0o () (eg) | Fory (e P (556)

(4.116)

Sﬁﬂzqgl£>fﬁf):k

T Poy e s ie) R
L8R (T T e P9 de|

+ fu (k:\ﬁ’%@)@c\“(’ (sto)
b

If we nov employ the simple limiting case (4.14) for each

of the hypothetical units, we obtain for '*:—g-j*:-o ‘t: > D R

_h
v (s to Jc\ (Lt sty 1) o FeTsaete ™

CL;}€t€*1ﬁ>*lt -1 .1 |

X (S, kst |

K sttt = & () f by ey
K:_\ () §5£{;x ‘lG*L% |

(4.118) 5

. ksﬂvgt. o+t -1\ |

el Lk A Mﬂi

vhere
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Q?;)%Q r1&?ii§:ﬂ§;? is the Euler beta function,

and F:(\O\ \> c fit:) is a hypergeometric function. It

follows that near s = 1,

X (s tgeo o)== |, (44119)

vhilst near s = 0,
M (2ot M(2sto) (D)

X (S')"tg );Co;t\ ==
Mt +l*bo+lt)(4 1209

In the limit that 24 >"> Loto > Qgtg.’ vhich may be of

physical interest

oto_%
Lo 1
K (s, bost) == L (&2 JCS (=

(4.121)

'-b_g_‘ /Z

The unconditional distribution of level of operation at

time t is obtained analogously to the dichotomic case as

L o
T(s50) = So A‘bogo d€s L (Sits o 22
° %-S-(_‘E—S— ‘Eoﬁ} %OE‘CO\JCX .

Thus, for example, if {; has a truncated gamma distribution on (0,t)

vhilst t_. has a uniform distribution on(p t.) independent of t
% ol \tB fa ) < [T/ T e[ 4N
{ [to, 0 Lo sbh, (4123

)

then near s = 1 _aj:
*LS"(:\* 7‘§3—ol‘tC\ §) M
P(_ J)CS o ¢
+ i L\as—bJo(-\—\B +M]
ES Al L)S‘* <
_ 2220 T ) 41
T+ J\)CS Okg*cs 3
be 3
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uhere boe= LT -Lo2nU-9]
vkag'=>Y;’1-§-AV7L0‘T—T—~‘:]'— Y;;7—0“*'7—;:x _jl4q (‘\_£5 S

and

Vs L2 G-\
For t close to zero this reduces to

~ LQJJ(-J - LT (C\g+ (vg\)ic
Lo QO =2n (-1 7 7 (4.125)

Following Gaver (1963), Harris and Singpurwalla (1968) and

many later authors, the above analysis may be extended to take
écpount of a random environment by making the transition parameter 1L
itself a random variable. A good justification of such an approach
in reliability vork is provided by the preface to Tsokos and Shimi
(1977). With this approach (4.11) and (4.13) must be interpreted
as the conditional distribution of S(t) given;L, » and ve may obtain
the unconditional distribution based on a single time scale as

P (s 0= 87 plst]2) L), (4.126)

Thus, if for example, A has a uniform distribution on (a, b) then

(=9 bt 0n (-9 b -1 (e Bt 0 (- -t )2

f’C%{A': - -
(=)t L \-Cn (L-sY 1% (4.127)

\[f L) E (atrl) —a w\E (we+l)
o By (e LE U;&:\l

(4.128)
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CHAPTER 5

OPTIMAL TUNING

5.1 Introduction and Specialisation of Model |

Even in the absence of a replacement mechanism,associated
optimisation problems arise in the design and management of systems
vith partially operating units. In particular, interest may be
focussed on the initial tuning; and subsequent retuning, of units to
optimal levels of operation. It is clear that in many cases components
capable of partial operation can be so tuned to appropriate levels.

For example, generators can be deliberately operated at various

pover outputs, and conveyor belts at-various speeds. In general, the
higher is the level of activify at wvhich a unit is operated, the greater
is the amount and value of work produced by the unit per unit time.
Hovever, this does not necessarily imply that units should be run at
the maximum level of activity of which they are capable, even if there
is an unlimited demand for the work of the units, since there may be
advantages to be obtained by operating them at some lower level.

One important case of this is where the value of the additional work
per unit time achieved by increasing the level of operation of a
partially operating unit is more than offset by the cost of the
increased wear or'deterioration to the unit caused by the increase

in level.

In this Chapter we consider a simple formulation of the problem
of tuning such units to some optimal level in order to obtain optimal
performance, whilst subsequent retuning is considered in Chapter 6.

The work of both of these Chapters is again joint with S. Humble,

and again the present author is responsible for the major element of
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the formulation and analysis, with S. Humble contributing some of the
numerical evaluations and examples. Zijlstra (1980) discusses the
related but distinct problem of optimising maintenance times for
partially operating units, for which maintenance increases the
operation level. See also Khandelwal, Sharma and Roy (1979).

In order to simplify the analysis, but to still treat the
model at the greatest level of geneality conveniently available, we
nov both épecialise and extend the partial operation model of the
previous Chapter. A speciélisation that we introduce is that for any
level s, 0<C 5;55; | , state transitions are only possible to
the adjacent state below and to the zero state (s = 0). Since for
convenience we also take a continuous state space, we refer to these
two mechanisms by which the failed state (D) may be reachéd as drift

and catastrophic failures respectively. The catastrophic failure

mechanism thus corresponds to the dichotomic failure of a partially
operating unit tuned to a level of operation, sge Many partially
operating units are also subject to some type of drift failure mechanism
vhereby the level of operation of a unit is gradually degraded from

the tuned level, g through intermediary levels to the lowest or

failed level, 0. Often and most simply this drift degradation takes
the form of a continuous downward transition through all states or
levels 35 SO>S‘> @) . For examplg, a hydraulic system
vith a small leak only gradually léses its ability to convey power, and
a drill experiences an almost continuous drop in its rate of cutting

as its cutting edges are eroded. Bosch (1979) considers such a drift
degradation phenomena in electronic devices, although the model he uses

for its analysis differs somewhat from the one we use here; in
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particular his drift is deterministic.

In our current context we shall be primarily concerned with

the densities ofitimes/time intensities at particular levels

AN L\{—3 s) 5 rather than “(’(g)-ﬁ-,\ and Mk—bsg\) . For the
model of the previous Chapter these were deduced as infinite mixtures
of exponential densities in (4.74) and (4.75). In this Chapter we
shall assume by analogy with the dichotomic case, and in order to
vork at the greatest convenient level of generality available, that
the /(&,(\V3S‘) are Weibull, or the minimum of two competing
Weibull drift and catastrophic failure mechanisms. The exponential
special caée of the Weibull is consequently directly consistent with
the approach of the previous Chapter. More generally, for most of
the states it is reasonable to suppose that the Weibull densities
and minimum of two Weibull densities may, in some cases, correspond
to appropriate mixtures of exponenfials. Hovever, since the mixing
distribution in (4.75) is the time of entry to the state s this
assumption is not tenable for the initial state s vhich is known to
be entered. at t = 0. In this sense the model that we develop in
this Chapter is a partial extension of that of Chapter 4.

In general, the mean time intensity for a particular level of
operation will depend on what the level is. Transfer from that level
vill be achieved by catastrophic failure or downward drift through
reduced operation levels, and a unit which is working at a higher
level of operation than another identical one, will often be expected
to drift or catastrophically fail more quickly. On the other hand,
the higher is the level of operation s the greater is the work achieved

by the unit per time, g(s). Hence, the problem of optimal tuning
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discussed in this Chapter arises from the balancing of these two
effects. Here, we assume that the optimisation criterion is to maximise
the expected amount of work done by the unit in its lifetime. Whilst
this is only one of many reasonable optimisation criteria, with it
analysis is relatively simple.

If a unit is of such a nature that it can only leave the level to
vhich it is originally tuned by catastrophic failure, then since in this
case only one level is sojourned in prior to failure, the mean time in this
level is, of course, treated as finite. Thus, the tuning problem consists

simply of choosing that value of s, Sq» vhich will maximise the mean work

achieved
M, (€)= 4 () V| LS") 3 (5.1)

vhere V‘-(§§ is the mean time at level s,

AL () = Q a ol (W D W (5.2)
V() = S A o (O ©) 3 o (5.2),

and /1A.(jk §) now corresponds to the time to (catastrophic) failure

_______ s —=-7 -4

On the other hand, if the unit is subject to drift failure,'
as well as or instead of catastrophic failure, then an infinite number
of states will be passed through in progressing from the initial state g
to any lowver state s(s*D), so that for the MTTLS to remain finite, the
mean time at any s must be infinitesimal, as in Chapter 4. In general,
the mean time intensity at s may depend on the le&el to which the unit
vas originally tuned, Sy as wéll as the current level s. For the case
vhere the unit is subject to drift but not cétastrophic failure, the
expected amount of work done by the unit in its lifetime is the integral
of the expected intensities of work done at all the levels of

operation s, Sy >/s>0, through vhich the unit drifts.

Thus, in this case our optimisation
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criterion is to choose S, to maximise

So KD (5.3)

Ma (= §° a0 (oo de |
vhere the mean time intensity at < 4 _\E_ Q§>S¢B is given by
(s = (0 wea (h8ssde s

and vhere (U5 &\?*) <5 S") is the density for the time intensity
at level s given an initial level of sy

Suppose now that the unit suffers from both kinds of failure
mechanisms. Then, the expected amount of work done by the unit during
its lifetime can be obtained as in the case of drift alone, except
that we must now take into consideration that if catastrophic failure
does occur at some level £\ 4 So = 8,70 , then the levels

Sy S Fs>oO0 vill not be entered. Thus, our optimisation
criterion will- now be to choose so‘to maximise
Ma(s) =0 a@ Wz (6) P55 bs 5 69

vhere P (S)SA is the probability that the unit enters level s

given an initial level of ChY vhere the mean time intensity at s is
given by .
V3 nggoy = S)o Ul (\?‘5 SJS’AA\!“ (5.6)
and vhere A (\h} S5 S‘c) is the density of time intensity at s
given an initial level S Of course, P LSO 3 803 =1.
If ve define \ (S, €0)8s,0<S<Sa,to be the probability
3 B)
that catastrophic failure occurs in the infinitesimal interval
( S+ SSJ < ) given that the unit vas initially tuned to level s
and has not catastrophically failed by S+¢ s , then |
P(syse)y =P(s+8c,sali-% (sﬁsc)é“s] ,  (5.7)

so that © (53 SA satisfies the differential equation

J;rll_(f__@: € (s N (e.,80) .
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It follows that analogous to (1.3)

2 (5550 = ")&;‘ PCsys0) , (5.8)

so that analogous to the exﬁression for R(t) in (1.4),
‘ So |
P($3S<;)= .o./ac,fb[— Ss 'Q\LUS)S"BA%J .

Mote, however, that this hazard function A (S.) S‘gb is a function

(5.9)

over the state space QO L. s L S rather than over time.

By analogy with the dichotomic case, we shall suppose that
the time/time intensity for catastrophic failure at s, and the
time intensity for drift at s, each follow a Weibull distribution of

the form (1.8). For such a distribution

V(5,80 = E[V (s, 35] = ol(+e™) (5.10)
=orEde

(vhere the conditioning on s is suppressed in the case of catastrophic
failure alone). Some justification for the use of the Weibull in
such circumstances is provided by the direct analogy of the catastrophic
failure case with accelerated life testing‘under different stresses,
for which Nelson (1970) amongst others, provides examples justifying
the Weibull.

The assumption that the level of operation or stress applied
to a unit effects only the parameters of the time to failure disﬁribution,
and not the distributional form, is an assumption that has been made
by many authors and for which there is substantial physical evidence
(see e.g. Bazovsky (1961), Mann (1972) and Hahn and Nelson (1974)).
A number of authors (e.g. Charles (1961), Saunders (1966), Mann (1968),

Nelson (1970) and Singpurwalla and Al-Khayyal (1977))have pointed out
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that in such dichotomic life-testing situations the Weibull scale
parameter © is often a function of level of stress applied to the
unit under life test, whilst the shape parameter F5 is not. Hence
for. a partially operating unit at level s subject to a catastrophic
failure time/time intensity and/or a drift time intensity, each of
the form (1.8), (S will be a function of present level s and initial

level sp> vhilst F> remains constant. Thus, from (5.1) and (5.3) 4

M, (s = (e o, (se) SQSS/B 5 (5.11)
M2 (s9)= PW"_‘) gi o (£) 6 (5,59 55/ B. (s.12)

The evaluation of (5.5) is more complex. We suppose in this
case that at any level s the Weibull drift and catastrophic failure
mechanisms are competing and independent, and that the failure
mechanisms renev themselves at each new state. If the catastrophic
failure mechanism is exponential, then this is-equivalent to the
case vhere the catastrophic failure density is an exponential over
elapsed calendar time since the start of the process, and for the
Weibull case with shape parameter close to unity it may also approximate
vell to a similar Weibull distribution over elapsed calendar time.
More generally, such a mechanism may be physically reasonable if the
unit is continually readjusted (perhaps automatically) as it drifts
downwards througﬂ'the states. Further, the formulation has the
desirable feature that with it the catastrophic failure mechanism can
be taken to depend upon the current level s, which is not so
conveniently available if, for example, it was taken as a function
of elapsed caléndar time.

Thus, denoting the scale and shape parameters of the Weibull

drift density of time intensity at s by 6 (S,S‘% and > respectively,

120.



and the scale and shape parameters of the Weibull catastrophic

failure density of time intensity at s by t&(s>$o) and L
the hazard with which catastrophic failure occurs at level s,

—Q\ (S> Sg , is obtained as the hazard with which catastrophic failure

takes place before drift occurs ,

o A
R (5589 :So %C % “‘1’[‘ (%YL‘ @%ﬂ‘w’ (5.13)

Further, the density of time intensity at s is the minimum of two

Weiibull lifetimes o

-\ ' 2 ‘
iy (55,5 (D (YL () et
2 37> Iy G ‘-L \p\ G ‘\L °
(5.14) ~
It follows from (5.6) and (5.14) that for general Weibull
densities it will not be possible to write out V=3 (53 3:5 explicitly
as a simple function of E;'CS)SQ) and 'tk-(;§) S;> . However, if
‘3*:'2_ , Which may be physically realisable in many cases, {U_4 (\]*3535%

is also Weibull with shape parameter ‘3 and scale parameter

[6‘@4« _—‘3] /e (5.15)
| 3

TS—(S;,SA :[Gﬁﬁ—rrfﬂ -‘/‘3\"‘((3”\)/@ o (5.16)

In this case

g
0 @355 _ S (s, So) (5.17)

6(5385@-\- }*Lsycg‘%
- So _ —|/
Mg () = _‘:‘_g&_\>£+ ‘3(55[6(5,503_(1 (5559 ﬁ ’

S 645 se)P
o= f [L ¢y, 5038+!‘L (‘3;5033 é‘%]ds.(SJB)

and
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It is worth noting from (5.18) that in contrast to the situation
in (5.11) and (5.12) for catastrophic failures and drift failures
alone, the optimum value of g in the presence of both failure
modes is dependent upon the value of fS (and of ;l Y. For the

exponential special case it follows that

T ‘ G (5450 ™ (S5S0)
SaSe) = b
Vs (s> \ 6 (55 S+ (8550 (5.19)
and
— G(S; SO\
A (s350) = ‘ 5.20
C(sy50) + P (59S0) (5.20)
For the rest of this Chapter we for the sake of definiteness
take

§(s)= s, | (5.21)
The resultant models correspond to the situation in which the work
achieved by the device per unit time is directly proportional to its
level of operation, and this will be appropriate in many circumstances.
Doubling the speed of a conveyor belt or a drill will, provided
this is within the tolerance of the equipment, double the work
achieved by the unit per unit time. Similarly, the assumption may be
appropriate for production equipment. For these Ml’ M2 and M3 may
be interpreted as the expected productibn in the units lifetime.

It remains to specify possible functional forms for © ,
6 and rk. Physical considerations suggest that these should be
monetonically non-increasing functions of s (and sy Where appropriate)

such that
@) 6‘) }&: | (in arbitrary time units) when s = 1
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and _

G, 65> 0 a8 <0 . (5.22)
If this is the casé _then for the Weibull distribution whilst the
mean drift time intensity and the mean catastrophic failure time
intensity will be finite at s = 1, they will become infinite as
s> 0 . Further, the requirement that © , 6 and ‘*« are
monotonically non-increasing in s and sy means that the mean drift
time intensity and mean catastrophic failure time intensity of a
Weibull unit now at level sy (but originally at Sg ) wvill be smaller
than or equal to the corresponding mean time intensities for an
identical unit now at s, (but also originally at o ) for all S>S,-
It also follows that the mean drift time intensity and the mean
catastrophic failure time intensity for a Weibull unit now at
level s but originally at so; will be smaller than or equal to
the corresponding mean time intensities for an identical unit now
also at s but originally at Scxz<: Soy We would expect such
properties to be valid in most real situations.

The form of the relationship between stress level and
expected lifetime (or equivalently failure rate) has been considered
by many authors, e.g. Bazovsky (1961), Mann (1972), Hahn and
Nelson (1974). The Inverse Powver Lav Model, discussed e.g. by
Singpurwalla (1971), Nlson (1972, 1975), Singburwalla and Al-Khayyal
(1977) and Kahn (1979), has the advantages of wide applicability,
simplicity and smoothness. This states that the Weibull scale

parameter © is an inverse pover function of the stress s,

- oA
S (<) =hs (5.23)
N .
vhere A and A are positive scale and shape parameters characteristic

of the unit being stressed. The model has been applied extensively
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in the accelerated testing of, for example, insulating fluids,
capacitors, bearings and electronic devices (e.g. Endicott and
Starr (1961), Endicott and Zoellner (1961) and Endicott, Hatch and
Schmer (1965)).

Another model with similar characteristics -and advantages
is the simple logarithmic relationship

© (¢ = a(\—]’!&s\ s (5.24)
vhere B and ?{ are also positive scale and shape parémeters
characteristic of the unit being stressed. Similar logarithmic models
have also been employed (although less widely) in the accelerated
testing of products, (e.g. Tomlinson, Andrev and Fitzgerald (1970)),
and in the current context (5.24) has the additional advantage of |
leading to somewhat simpler analysis.(See below).

" Here ve shall suppose that © , @ and | are linear
combinations of functions of the form (5.23) and (5.24) where as
before the level s is standardised to the range O L <L | . Of
course, the results obtained from our models below are conditional
upon the functional forms beiﬁg valid. However, these are more general
than either (5.23) or (5.24) alone, and anyway the methodology of
this Chapter essentially remains unaltered if instead other functional
forms are used, if these are known to be more appropriate. In any
case, the functional forms for © , & and P~ employed provide
reasonable approximations to many physical situations, and are likely
to be particularly appropriate if there is physical evidence to

suggest that the relationship between © and s is convex to the origin

and smooth.
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5.2 Analysis of Catastrophic Failure

We consider first the case of a Weibull unit subject to
catastrophic failure alone, so that (5.11) holds, and for which
S (s) is' a linear combination of functions of the form (5.23) and
(5.24). 1In particular, to ensure (5.22) holds ve take

@QSA = 0 <o« (-H (Y Om <o) R (5.25)

vhere

Since © represents the Weibull scale parameter (5.25) must be positive
for all s, . Hovever, it is not necessary in (5.25) unfike (5.23)
and (5.24) for R >O3 (\- r%?oin order to ensure that © CS0\7 9]
for all s, - Hence we relax these conditions in order to gain
increased generality.

Of course, if A = 0 or A = 1 (5.25) reduces to (5.23) or
(5.24) respectively, if O<A<<| (5.25) represents a sum of terms
of these types, and if A<<O or A>> 1 it represents a difference of
such terms. Hence (5.25) represents a more generally valid relationship
than either (5.23) or (5.24). It is necessary, however, if A> 1
to impose the condition that % L oké/(ﬂ—ﬂ , and if A<<O
to impose the condition that \5—;— A ﬂ/(“’b , in order to ensure
that © (_s% is a"monotonically non-increasing function of s, .

In addition, in order to ensure that & CS% >0 it is necessary if

A> 1 that
% A
$o < (ﬁ_‘)o_x%gb . (5.26)
for all s, , and if A<TO that

A - (a (5.27)
o > AT
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for all s, .

From (5.11) and (5.25),

M = (a5 € (D O-¥sY] /6

(5.28)

It follows that for o{3>>], the optimum policy to maximise the expected
production is to produce nothing, since Ml(SO) wvill be a maximum
(infinite) when sg = 0. Thus, if the mean lifetime decreases too
rapidly with increasing level, a work per unit time function of the
form (5.21) will be insufficient to justify any production.

The optimum value of Sy can nov be obtained by differentiating

Ml(so) vith respect to Sq» and equating the differential to zero, to

give

- o
So =| 5D A
-R) (=8 -¥2as0) . - (5.29)

The second order condition for the solution to (5.29) to maximise
Ml(SD) is |
Qoo‘< &(\—&BP\/[Q’ (ﬁ—])]jfor A > (5.30)
SOO(>—_0{(\—;J\)R/[K (H;T)jsfor A<l (5.31)

The optimum value of s, can be found by solving (5.29)
numerically. However, the relatively simple structure of this non-
linear equation e;ables us to obtain a simple graphical method of
solution. The method is similar to that used elsewhere for the
graphical solution of optimum replacement problems; see Ansell and

Bendell (1982b) and Ansell, Bendell and Humble (1982). Rewriting

(5.29) we have -that

- O | u-AYY Qg = % (5.32)
(A—D A (=D A ° e .
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Thus constructing the graph of Sl;—dégainsthsgas shown in Figure 5.1,
the solution (s) to (5.29) can be obtained, if any exist, by drawing

the straight line represented by the left-hand~side of (5.32) onto the
graph paper and identifying the intersection with the appropriate

o curve. Since .Si?*rises so rapidly, a number of graphs corresponding
to differing scales are shown and the appropriate one(s) must first

be identified.' An example of the application of this method will be
given below.

Figure.S.l also demonstrates the convexity of S;;“i (from SO:U),
so that it is clear that the straight line of (5.32) can at most intersect
any A curve at two points. Thus, there are at most two solutions to
(5.29) and consequently at most one analytic maximum for Ml(SO)' When

there are two solutions, it follows from (5.28) that since

%:;—:o M, LS(,\ = O, the smaller solution is
the analytic maximum, unless it is a point of inflection. However,
since we are considering Ml(SD) in a bounded range, it is possible
that the local maximum given by (5.29) in the case where it has two
solgtions does not necessarily correspond to the maximum value of Ml
in the range. In such cases the maximum will instead occur at the end
of the range at sg = 1, as it will when there are no solutions to
(5.29) in (0, 1)." When (5.29) has a single solution in the range, it
follows from (5.28) that it is either a point of infiection or a
maximum, in this case a global maximum. For D<(A<(1 there is in
fact a single solution which is a maximum.

Useful bounds for the optimum level of operation can also be

obtained from the first and second order cgnditions for a maximum.

Substituting (5.29) in (5.30) gives for A > 1 an upper bound for
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the level of operation which will maximise the expected production,

Ml(so).5 ~‘ LT
o=~ M&‘:E—f#‘——ﬂ ) (5.33)

For 0<A<1 the bound in (5.31) is negative so that (5.29) must merely

be positive, which leads to the lower bounds,

Se > w[_%_—\]>.<{'__:_,_o.3c7q (5.34)

(o< A< D .
Finally, for A <O substituting (5.29) in (5.31) gives as a lower

bound the upper bound of (5.33). In order for the bounds (5.33)
and (5.34) to be of use they must be in the range (0,1), which will
be the case provided that '

K>°</(¢*‘“) s ir A=)V o <o
‘ (5.35)

X > \ S if o< A \‘.
Where in the permissible range from the bound to the edge of

the (0,1) interval the optimum sp occurs depends on the weighting

parameter A. For A = 1 the maximum value of Ml(SO) occurs at sg = b

vhilst for A = 0 the optimum value is identical to the bound of (5.34),

So = wneg —‘3-—\] . (5.36)

The upper bound (5.33) and the equivalent lower bound for A <<O

are shown in Figu;e 5.2 When E is large, «{ small and A> 1, the

range of possible optimum Sy is small so that knowledge of the

exact valu‘e of A is not too critical in the selection of the optimum .

level of operation. This is also the case vhen § is small, &

large (i.e. almost 1) and A< 0. On the other hand, if ¥ is small,

KA large and AD lor ¥ large, « small and A< O great choice of

level is available. For 0 <A < 1 knovledge of .the exact values of
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A and L are most important in the selection of the optimum level
of operation when T is large, although the optimum level can never

be less than 0.3679.
For the limiting case where K= 1 and A <1 the optimum

value of s, is also given by (5.36), whilst for o{ =0 and A<1

the optimum value of sy is

I l (5.37)
So = M@E[m—t’ .
In each case there is no analytic maximum for A> 1.
For §§ = 0 and A >1 the ?ptimum value of s; is
50:[(\:«\?9 /4 . (5.38)

vhilst if A <1 there again is no analytic maximum. If ¥ = 1 and
0 <A< 1 an analytic maximum is always obtained.

By requiring © 4;30 £ 1 in (5.29) it is possible to deduce
additional bounds on Sp» Some of -which are stricter than those obtained
above. In particular, for A<<0 we nowv obtain an upper bound on s

to supplement. our previous lower bound,
1 ( _x)g
SO < —Q'Beff P - I + ! °
o ¥ a-/yY ’ (5.39)
vhilst for A 1 we.obtain the same upper bound and for

¥< A4 (= c[)/(h—\\

this is sharper than the upper bound (5.33). This bound will lie

in the range (0,1) provided that
¥ << 1+ A=A g for Q> | (5.40)

A=\

and

¥ ;;? \+-£2::£lfi- 3 for A O

A-|
fote that for the case A< 0, vith suitable parameter values,the
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optimum level of production is confined within a range which contains

neither 0 nor 1.

5.3 Analysis of Drift Failure

We nov consider a unit subject to drift failures. To obtain
simple expressions for ecgbs% vhich are monotonically
non-increasing in both s and Sg and which obey (5.22) we shall for
the drift failure case (5.12) cbnsider sums of two functions of the
types (5.23) and (5.24)  wvith veighting parameters A and (1-A)

respectively; one function being a function of sq and the other

of s, .
S QQJSOBZ ®| QSX‘\'@'Z (SA . (5.41)
This sum of two functions satisfies (5.22) since the definition of
drift implies that if the current level is s = 1 the originally
tuned level must also be sg = 1. It is, however, necessary tﬁat
the weighting parameters A and (1-A) are between 0 and 1 inclusive in
order for © (55 S:b to be non-increasing in both s and g and non-
negative. The resultant expressions for S (SDSA consequently
represent generalisations of the vell established relationships (5.23)
and (5.24) and possess many of their properties. It is, of course,
true that the simple additive relationship of (5.41) is probably
inappropriate in certain situations, but the methodology of this
Chapter will essentially remain unchanged if instead other functional
forms are used. For the case where g\iﬁtakes the form (5.24)
and @2 (s‘b the form (5.23), it follows from (5.12) that thev
optimum initial level to which to tune the unit to is always sg = 1
provided O L 4 £ 2 yorsg=0if K >7 .

If instead (9‘(53 is given by (5.23) and O, (SOS by

133.



((5.24) we have

O (s,8)= B s™w (W) (=¥ S2) s (5.42)
vhere d>OSK7O-)OLf§[_—Sa[_=\. ‘

Equation (5.12) now becomes

M, (s = T h%[(’ib gf“q(,\_ﬂ__—__ﬂ)sz‘b—\dﬁngg-}/@.

(5.43)

Thus for £ >72_ tﬁe optimum policy is again to tune the unit
to produce nothing., For K<< ZZ , equating hqu(S;B to zero
ve obtain
o a
So = (-AY¥z —1+Y Ln So) . (5.44)

Again, the solution to this equation can be found graphically

using Figure 5.1. Rewriting (5.44) we have

C-BCD| | QR fg o o4

5.45
2 A A > (545

so that again the equation can be solved by drawing the straight line
represented by the left-hand-side of (5.45) onto the graph paper of
Figure 5.1 and idehtifying the intersection with the appropriate <(
curve. It follows that again there are at most two intersections for
given parameter values, so that there is at most one analytic maximum
for MZ(SU). Also since from (5.43) MZ(D) = 0, if there is a single
solution to (5.44) it is a maximum or a point of inflection, whilst

if there are two solutions it is the smaller one which is the maximum
unless it is a point of inflection. Considering the second differential

of MZ(SU) ve see that a point of inflection cannot arise if 1 << <2,
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When there are no analytic solutions, the maximum is at sg = 1, vhich
may also be the case when there are two analytlc turning values.
VY- 3/=
IfFoC AL l and sy < = / there is no analytlc solutions,
Iy -3

vhilst if 1 < A<<Z. and g > e f= there is a single
analytic turning value wvhich is a maximum.

The requirement that the solution(s) to (5.44) are below
unity leads us to eliminate the possibility of the optimum S

being in the range from

: A
o= f B,—"'}z] to L=ep I:X(\—ﬁ\ ~+ % "Jizlo (5.46)

For the lower value to be in (0,1), we must have ) >>9 , vhilst
for the upper to be in this range we require the condition 7{"7>—Tégﬁr
As §~—> oO  the eliminated range concentrates onto © e 0-6065
and finally diséppears. The eliminated ranges (5.46) are shown in
Figure 5.3. The smaller A is and the largerﬁé' is, the larger is the
range of possible optimum Sgs SO that the more important is knowledge
of the exact value of A .
The second order condition for the solution to (5.44) to

maximise MZ(SO) is quite complicated, being

. \(¥ =3[~
SJ*:> 9%(;;45 \ X \3 if So> JL/
Q-3 ‘
-RE- YRS (5.47)
/X'—BAa

< A (A=) Se<l <
Pe S C1-6) @—L—HXQ\SB -

Hovever, substituting the first order condition (5.44) into the
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Figure 5.3 .
Eliminated ranges for optimum s, for drift failure model (5.42)

25 3 4 5 10 100
4
— — e
04 -
0.2 _ *
0 — 1 T T
0.2 04 0.6 0.8 A 1.0

The function graphed is exp 7-“—':&)- + ;3- - %— . The eliminated range is the

interval from the height of the curve to the height of that curve at A= 0.

136.



\/Y - 3/7_
left-hand-side of (5.47),we find for S, > < that

in order for (5.47) to hold a necessary (not sufficient) condition

is that either VX _ 1/2 _ l/d(

S, << € and | < £ << 2 (5.48)
Vg -

(so that there is a single analytic maximum), or So = <

(so that by (5.46) sq—§7ceeds 4anf[fijjas_ ]
For S == % * s

d’|qV'

(vhich implies So < < ) ve find by
a similar argument that it is necessary that | < <2 s SO

that a point of inflection cannot arise.

If we now suppose instead that C§.(§3 and 692_($o) both
take the form (5.24).we obtain a somewhat simpler model for drift
failures, since the physical requirement (5.22) results in the number
of parameters in the relationship between & and s and g being
effectively reduced from three to two. That is if

© (5552 = A (1- 24 8) + (-A) (1= 2n S0

(5.49)
>0, Y >0, 0L ALl,oLsLS.L]|,

then writing

S=0T . §=0-9Y

ve obtain

O (55 = [—d%as— g La <o (5.50)

vhere ‘E>O)%>o oLsl SolL |,

Substituting (5.50) into (5.12) leads us to

M (s2) = f"(g )E>2.5‘(z+8‘}s,, -0 5(g+§7}so.Qn§J/p

(5.51)

. .
so that equating ‘V\CL (?;)to zero gives the explicit
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solution
) 2-5 |
So = ="K | T gy (5.52)

The second order condition for MZ(SO) to be maximised is automatically
satisfied by (5.52) and the optimum level will lie in (0,1), provided
that § 2> 2.
The optimum levels are shown in Figure 5.4 for & 4= 100.
For all O and f; the optimum level always exceeds AZ’Iifk 0.6065,
.which is approached as < -><© vith ) remaining finite. As
57—%><%3 vith 35 remaining finite the optimum level to tune to tends

to 1, vhilst for & —> o0 , G—> o0 , the optimum level

—_—. T
is & = (.7788. The smaller the value of gand the larger the

value of ?S the lower is the optimum level to which to tune. Also,
vhen % is small, the larger the value of fg the less important is it
to knov the exact value of § or ?)in order to locate the optimum
value of sy Similarly, the smaller is EB the less importanf is it to

knov the exact value of S or ES vhen % is large.

5.4 Drift and Catastrophic Failure

The case where the unit is-subject to both catastrophic and
drift failures is of course the most difficult to deal with, so that
ve have already restricted attention to the situation where both the
failure mechanism densities have a common shape parameter. Even in
this case it is impossible to obtain general analytic results for
optimum Sy sb that instead ve content ourselves here with considering
one of the simplest examples of the combined problem.

As for the case of drift alone, we in general suppose that the
scale parameters & and A have the form (5:41),

6 (s, 50) = 61 (s)+ G2 (s0)

M (S58) = () + pra (s0) (5.53)
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Figure 5.4

Optimum s, for drift failure modef (5.50)

§=3 B
5
10 ‘ J
i) > |
50
100
o0
0.6
So
04
0.2
0 " .
20 40

60 80 100
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and take the case where G (§3 and VL-\(ng are each of the
form (5.23) with scale parameters A and B respectively, and shape
parameters (o{) in each case 1. This represents the simplest case
of (5.23) except for the degenerate forms where K=0or A=B=0,
and implies a simple inverse relationship between the level of
operation s and the mean time intensity at s (so that it is likely
to be physically realisable in certain cases). The restriction on
the values of £ , however, does represent a substantial loss of
generality, and serves to emphasise the substantial increase in
complexity which is involved when a ;nit is subject to both failure

mechanisms. To simplify evaluation we further restrict attention

to the exponential case ( ﬁ» = 1). With these assumptions we obtain

from (5.9) and (5.20) that 9
P (s q _ [+ +s \W () 7[9\ P, (S)-B 6z (so)]/w(so\
> [(ﬂ+e§+go\,\) (<Y |

_' (s=50) 62 (s0Y (5.54)
ek

vhere W LSA = G, (So\ + M= (505 .

However, the evaluation of MB(SO) still remains difficult even in

this very simplified case.

The values of sg vhich optimise MB(SO) can be found numerically.

Some solutions are shown in Figure 5.5 for the exponential case with
62 (so) = (1-A) s " and Moz (So) = (1-B) S‘-c_\'q3

so that
C‘

—~ -
6 (555) = A+ (1-8) s
_\ —\\9
w (s,50) =857+ (1-8) So ] (5.55)
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Figure 5.5
Optimum solutions for drift and catastrophic failure model (5.55),

with =1
; A=07 A=08 A=09

1.0 A=0.6 A=B=1

_0.8 ‘-/

04 -
A=1.0
0.2 +
0 T - T T T
0.2 0.4 0.6 0.8 1.0
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In order for MS(SD) to be non-increasing in both s and Sg and
non-negative, it is again necessary to specify that O La L,
04£B4£1. The figure shows that (for these parameter values)
vhen B is small the optimum values of sy vary less with A than'
vhen B is large. Of course, for A = B = 1 for vhich the time
intensities are independent of the initial level g9

Ma (=) = 2 B P (e (- )/ p
so that the optimum value of Sy is unity. It is also qfklnterest
to note that for the case considered, the function M3(SO) is always

relatively flat, although this flatness reduces as B increases.

5.5 An Example

Finally, in this Chapter we consider the simplest application
of the failure models we have introduced in the evaluation of the
optimumAlevels to tune to, 89 for actual equipment. In Table 5.1
ve showv the mean lifetimes under various stress cohditions of
electrical and electronic components assumed to have exponential
failure densities and operating at 100°C. This data is taken from
Bazovsky (1961), Figure 15.3. Such components may be treated as
sgbject to catastrophic failure alone, and previous experience vith
these types of devices as well as an investigation of the shape of
the relationship betweenl6§> and s suggest that (5.25) provides an
appropriate description of the data.

The parameters of the model were estimated by numerical

mlnlmlsatlon of

Zl:@ -0 OO\\{H Suy -—(\«ﬁ)(\ Sn S(:q)}z,o_

(5.56)

vhere é?;ls the mean lifetime correspondlng to stress level 5;14)
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TABLE 5.1

Mean Lifetimes, &, (10° hours) at 100°C

Stress
Percentage Relative
of MNominal Stress (S i
Stress Level, S(i)
]l 20 0.14 0.1389
2 40 0.29 0.05
3 60 , 0.43 0.0154
4 80 0.57 0.0071
5 100 0.71 0.0037
(rated level)
120 0.86 0.0019
140 1 ' 0.0011
TABLE 5.2

Minimum values of work necessary to justify
production at each level relative to value
at rated level, 0.71.

Minimum Relative Values

S
() of o (s.iy) /4 (071) =S¢cfo.
0.14 0.03
0.29 0.07
0.43 0.24
0.57 0.52
0.71 1
(rated level)
0.86 : 1.95
1 3.36
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and 0.0011 is the length in real time obtained from Table 5.1 of
the arbitrary unit time interval corresponding to s = 1 in (5.22)
and (5.25). The least squares estimates obtained were A - 38.631,
<i = 0.6832 and ‘% = 0.5031. Using (5.33) this gives an upper
bound for optimum g of 0.6213. Plotting the line Y = 1.528-1.5472n So
onto the graph paper of Figure 5.1 we obtain Figure 5.6, from which
it is apparent that there is one analytic turning value. Corresponding
to A = .7 we obtain from the graph — L S, = 3.45(10%), and for
ol = .6 ve obtain ~%n S, = 4.2(10°). Consequently interpolation
yields —%n S,= 3.53(10°), so that the optimum level is sy = 0.029.
This satisfies the second order condition (5.30).

The above solutions are based on the value of the work
achieved by a component per unit time having the simple form (5.21).
If this should be inappropriate in a particular environment, similar
results may be obtained by paralleling the above procedures using an
alternative appropriate function g(s). In any event we show in Table
5.2 the minimum values of the work done at each recorded stress level,
relative to the value at the rated level 0.71, necessary to justify
production at that level. That is, Table 5.2 shows the minimum values
of 9 Swy) /03(0:_”) necessary’ to ensure that M;(s ;3 obtained from
(5.1) exceeds Ml(0.7l). It is apparent from this table that a substantive
increase in the value of work with level is necessary in comparison °
to (5.21) in order to justify productioﬁ above the rated level. For
example, in order for an increase in level from 0.71 to 0.86 to be
vorthvhile, the value of work must almost double between these two
levels. In contrast, operation below the rated level is certainly

vorthvhile with the current value of work, since for example a reduction

of level of about 4/5ths from 0.71 to 0.14 is vworthwhile as long as
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CHAPTER 6
RETUNING

6.1 Introduction

It may be advantageous to subsequently retune a partially
operating unit to some level of operation, 8(2) different from
that to which it.was originally tuned, S(l)‘ One reason for this is
that units which survive for long periods of time are often then
subject to a rapidly increasing failure intensity or hazard. This
is the case for instance for units subject to Weibull failure
distributions with shape parameters exceeding unity. Consequently
it might be worthwhile to retune units vhich survive long periods
of time to a lower level of operation, thus reducing the failure
intensity, although at the expense of also reducing the work achieved
b; the unit per unit time. Thus a new optimisation problem arises in
determining whether, and to what level, we should retune a partially
operating unit. It,iSﬂtﬁis problem which is discussed in this Chapter.
Throughout it is assumed that the optimisétion criterion, as in the
previous Chapter, is to maximise the expected amount of work achieved
by the unit in its lifetime, and that (5.21) holds. Attention is
restricted to units subject to catastrophic failure alone.

Where the-hazard function is a monotonically non-decreasing
function of time ( 8> 1 in the Weibull), as occurs in practice for
components which have been succe;sfully burnt-in (e.g. Lomnicki (1973)),
no advantage would usually be obtained by retuning units to a higher
level of operation thén that to which they were originally optimally
tuned. This is because if it is worthwhile increasing the level for

large time, t, it should also have been worthwhile to do so at t = O,
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since the increase in the value of the work achieved per unit time
vill be the same whilst the increase in the failure intensity would
usually be less. Conversely, for units for which the hazard function
is a monotonically non-increasing function of time ( @«(1) retuning to
lover levels of operation usually giVes no advantages, whilst retuning
to a higher level may result in an increase in the expected amount of
vork achieved in the units lifetime. For units with exponential time
to failure distributions the hazard is constant, and assuming that
although the hazard and expeéted lifetime ere changed by altering the
level of operation of the unit the distributional form remains
exponential, retuning will never be worthwhile if the unit was originally
optimally tuned. In this case the constancy of the hazard over time
means that the optimal level at t = 0 remains optimal for all t.

For a Weibull distribution of the form (1.8), the expected
residual lifetime given that the unit has already survived for time

o )= 0mp| @] ¥ [0 (5 -

T is

(6.1)

oy [T e

As indicated previously, in many circumstances the Weibull scale
parameter O is a function of the level of stress to which the

unit is subjected, whilst the shape paremeter (3 is unaffected by

the level of stress applied. This means that for a unit tuned to
(1) Q should be a function of s(l). If the unit survives a period
and is subsequently retuned to level S(2) then the Weibull

at s(l)
failure distribution to which the unit is subject once it has been

148.



retuned has a scale parameter © vuhich in general is a function
of bot:.s(l) and S(2)* We denote these functions by C§+(s(l))
and © (S(Z)F(l)) respectively. |

We know from (1.8) that for the failure distribution of the
unit prior to retuning, Cé?ks(l)) should be a monotonically non-increasing
function of (1) in order to ensure that the hazard is a monotonically
non-decreasing function, and the expected lifetime is a monotonically
pon—increasing function, of the level of operation or stress S(1)°
For the failure distribution after retuning we would require by a
similar argument that 6§+(S(2k§(l)) is a monotonically non-increasing
function of both S(1) and S(2)* (Compare our treatment of G}(s,so)
in Chapter 5). This means that the hazard rate of a unit retuned to
lével S(2A) (but originally tuned to S(l)) vill be greater than or equal
to the corresponding hazard rate for an identical unit retuned to
level S(éB) (but also originally tuned fo s(li)for all S(ZA;>S(ZB).
It also means that the hazard rate of a unit retuned to level S(2)
but originally tuned to S(1A) vill be greater than or equal to the
corresponding hazard rate for an identical unit retuned to S(2) but
originally at S(le<S(lA)‘

As well es requiring monotonicity, physical conditions suggest

that E§+ks(l)) and Cék(s(z),s(l)) should be such that

+
6(3(1)) = {

|
ot

1 (in arbitrary time units), when S(1) =

o0 , vhen s,y =0
(1) (6.2)

1 (in arbitrary time units), when S(2) = 8(1) © 1

+
Sezysai ;

These conditions mean that whilst the expected lifetime at (1) vill,

by (1.8), be a finite period when S(l) = 1, it will become infinite

oo vhen 8(2) = O °
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as 8(1590. Similarly, the expected residual lifetime upon retuning
from S(1) to S(2) vill be finite for the limiting case S(2) = 8(1) = 1,
but infinite if 8(2) = . | |

In the previous Chapter, O (s) [?ré}(s(l)i] wvas taken to be
a sum of functions of the forms in (5.23) and (5.24) with various
parameter restrictions. By an analogous argument to those for EKSD)

+

and 9(3,30) ve may nov consider 8(3(2),5(1)) to be a linear
combination of two functions with such forms. Now, howvever, one of
these functions is a function of (1) and the other of S(2)"

Thus,
8(8(2)’3(1)) = O(s(yy) +92(S(2)> > (6.3)
)) may each be defined by (5.23) or (5.24).

vhere 6;(3 )) and 8;:(5

(1 (2
+

Consequently, the resultant expressions forfa(s(z),s(l)) again

represent simple generalisations of the well-established relationships

(5.23) and (5.24), and process many of their properties.

6.2 Optimal Retuning

We now suppose that it has been decided that at some time
after energising, T, a unit will be retuned from its initial level
of operation S(1) to some other level S(2)° The time period T
may be determined by managerial policy, scheduling considerations or
some optimality argument. For a given T and S(1)r Ve desire to select
8(2) such that the expected amount of work achieved by the unit in its
lifetime will be a maximum. This implies that the choice of S(2)
should be such that the expected amount of work to be achieved by
the unit in its residual lifetime following T is also maximal.
Thus denoting the expected residual lifeti@e at T given that at that

time we retune from (1) to S(2) by ET(S(Z),S(lj)We are by (6.1)
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choosing S(2) to maximise

M (S@ysScysT) = Sy Ex (Says Su)
( 4

=S NS S _r e _L_ T
(ﬁs‘% ( G )) (\\ W[Q.FCS(Z))S(I)J K[ﬁ +'_) (e*-(_g(z) )SQ)\) —T:\S

This has a first differential with respect to S(2) of
M (5= ,SwyT) _ - [e¥Gay,sw) +S@® @, Q)) g
d S T =Sy 6 (S("%SU\B?’ *(sm 0\\ ]
W QSTS@\)SU)\B X[ t@f_*‘—(s_(_—w }
+£6)© Yo S B(m> " - T,

/ — & 6 (S S t))
S < = (3 =C
(5000 50) = 450

The second derivative is rather complicated, but for certain

(6.5)

vhere

values of the parameters, values of 8(2) exist which make (6.5) zero
and the second derivative negative. These optimum values can be
found numerically, or in special cases analytically. For values of
the paraﬁeters vhere this is not the case no analytic maxima exist,
and M (s(z),s(l),T) vill be a maximum at S(py=0ors,y =1 (or
possibly at S(2) = S(l)_if the level to which the unit is retuned is

constrained to be S(ngs(l) or s(2i>s(l)). The objective function
(6.4) may have more than one turning-value, so that inspection may be

necessary to locate the global maximum.

If ve allow T->0, then (6.4) reduces to (5.11) i.e.

Q»m M (5@_3 s SO )"TB 5(1.)@ (gb-))s(tb P((& )/P
= s, ®QSW(@“>/E3 ;

since in the limit as T->0 the initial level S(l) and the retuned level

S(2) become the same (so). Thus, in the limit as T->0, the problem
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of optimal retuning is identical to that of optimal tuning, discussed
in the previous Chapter. On the other hand, if for general T, 3 =1

so that the Weibull failure distribution reduces to an exponential,

then (6.4) becomes
+

M(S(z),S(l),T) = 5(2)6(8(2),3(1)) ] (6.7)
vhich is independent of T, so that-the optimum S(2) is also independent
of T. Thus, sinqe for T =0, S(2) = S(1) * % it follows that in this
case (6.7) again reduces to (5.11), and that provided that the unit
vas originally optimally tuned no advantage is obtained by retuning
at any T.

In other simple special cases analytic solutions can be

obtained for the optimum level to which to retune. For example,
if @ = 0.5, then
M (SQ:.)) S(‘\ )T\ ‘ ’ (6.8)
=235E) [3+(5@ Sy VTV e (5 Sm)J 5

vhilst if ‘3 = 2 then
<+
M Lg(z\)sc\) )T\)": SRS (S(z)) 5(0\ -
ranep [y 0 i 6.9
[\6*(5(7.3)5(\\3\ =&t
T/@+($L—L),S(\\\

For T small compared to &, (6.8) approximates to twice (6.7). Thus

for [3 = 0.5 retuning for small T is not worthwhile if the unit was
originally optimally tuned. However, for T large compared to QJ

from which the optimum value of S(p) may be evaluated for given

+
@(8(2),8(1)). We note that since T only appears via the multiple
\/-T_, the optimum value of S(2) is independent of T for T large.
For = 2 and T small compared to & , so that T/©==0, (6.9)
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reduces to

M(S@ysSay,T)= S@\EJ-S\[H— CAGERD)! -Tl (6.11)

from vhich the optimum value of 5(2) may again be evaluated for
+

given 65(8(2),s(l)). (See below).

6.3 Bounds

Despite the complexity of (6.5) and d2M (8(2)’3(1)’T>’ and

2
2)

hence of the numerical evaluation of the optimal S(2) in general,

d s(

relatively simple bounds can be derived for the optimal level to which
+

to retune. Sinceé}(s(z),s(l)) is a monotonically non-increasing
function of both S(1) and 5(2) and equals unity when S(1) and S(2)
take their maximum values, it follows that it is always non-negative

g : . N T 5@
(as required). As T>,0, it also Follows+that X[ﬁ b(e-r(sm,sm)
is non-negative, and in addition since 5(3(2),3(1)) is monotonically

+7

non-increasing in S(2) 69(8(2)’3(1)) is non-positive. Hence, since

S(l)>/0 and 8(2)>/ 0, it is necessary that in order for a turning value

to exist
O (5, s )* S OV (5@ ,SW) . o
' T 6.12
L e 0% (s ,50) P (e%s@ S_QQ -0
J . .

This in turn implies that -|/@
T >C (@, ) B |
) {H 6t Gw s ]‘/B (6.13)

5(3369+'(§@A,5(&)

+ !
. . . G
Substituting the functional forms for‘e(s(z),s(l)) and (5(2),5(1))
into (6.13) bounds can be obtained for optimal S(Z) for the cases

vhere analytic maxima exist.
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Thus if for example o
+ B -
@*(Scz)>§c®=©| @CQ +Q ﬁ) ) 3 (6.14)

+
wherefa(s(l)) may be given by (5.23) or by (5.24) with B replaced by

A, so that (6.2) holds, then
+1 - (9*0
ST (seys so) = =8 (A-A) Sy .
+
It is again necessary that 04AL 1, so that 6(8(2)’8(1)) is monotonically

(6.15)

non-increasing.in both S(1) and S(2) and alwvays positive. Substituting

into (6.13) we obtain . N ‘/B
e _(/'3 N1-\=6 (S ) S
RN e T TPl [IESACRER

(6.16)
. -8 S s e e -
and since S(2) = 1 as is positive, upon eliminating 5(2)

in the first square bracket we obtain the lower bound

S>> ENE-R _s@-nHeTh }‘/5 -
u\\ (6.17)

Sr(sy) Yo s+ (-]*e (s

If instead we eliminate s(z)s-in the second square bracket of (6.16)
it is necessary for the bound so obtained to be of any use that

+
( 8-1)(1-A)>91(s(1)), which in turn implies that 8>1. In this

Sy > =AY L -DL-A) - 7 (S ] 'le

case we obtain that ’ v&
L& (-m 1 P -8 (se) T-D0-R) - @(T Ls;.;ﬂ § @}
6.18

provided that .

T >-° F(s@)LNO-M-8 (swy)] e

_ '
L& Q-8 ‘53 " (6.19)

For smaller values of T the inequality in (6.18) is reversed, but in

this case the right-hand-side is then negative. Thus, for
+ o
( 8-1)(1—A))>83(s(1)), ‘retuning to S(Z)(S(Zf#o) at any time prior to

the bound on T in (6.19) is suboptimal.’
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For the above bounds to be useful they must of course lie
in the range (0, 1). For (6.17) to be greater than or equal to zero
and less than or equal to unity, T must lie in the interval

: Lo (sw)+U-A)] U’LB‘I&
< (e@)'le ’ (6.20)

. 'l
T> [6\‘ (s@-» Q\—HS_X [(5”? S\-_%—EQTCS& e (6.21)

Similarly, for (6.18) not to be less than zero we require that
5> ol (sw) [ Cen (6.22)
vhilst for it not to exceed unity we again require that T is subject
to the bound (6.21) which is more restrictive than (6.19).
If retuning is only possible to lower levels of operation,
or only to higher ones, it is possible to place further restrictions
upon the usefulness of (6.17) and (6.18). If S(2) must be smaller than

or equal to S(y) Ve find that for (6.17) to be of use

N e
> o e n - sofel o]
> Lo sl Qﬂ[ SCVQP( win j

vhich is in turn more restrictive than (6.21). Similarly, for

(6.18) to be of use

- .[S‘U)X@T( S‘@;} + (\-ﬂ):!lr(g_b(\-@"'@;f@m\] Y
N & C-R) ¢ (6.24)

vhich is also more restrictive than (6.21). Alternatively, if 5(2)

must be greater than or equal to S(1) then for (6.17) and (6.18)
to be useful the inequalities in (6.23) and (6.24) must be reversed.
In the case of (6.17) this implies a further restriction compared to

(6.20). Thus for (6.17) or (6.18) to be applicable, it is necessary
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if 3(2) is constrained to be greater than or equal to S(1) that T
falls within an interval defined by (6.21) and the reversal of
(6.23), or (6.21) and the reversel of (6.24) respectively. If
8(2) must be less than or equal to (1) it is necessary instead
for (6.17) to be of use that T is between the bound in (6.23) and
that of (6.20), and for (6.18) to be of use that T must be larger
than the bound in (6.24).

From (6.11) ve can obtain for T small the approximate optimum

S(2) for the special case of = 2. Substituting (6.14) in (6.11)

and differentiating with respect to 8(2) yields

-
| 2TV &Y (s s (6.25)

vir (0-R) (-8) i

vhich maximises M(s(z),s(l),T) provided & < 1. A necessary condition

=)

for (6.25) to be in the range (0,1) is that
+ \ +
o5V |& () + ()R] > T > 05T 71 (50) - (6:28)
For 3>1 there is for ﬁ = 2 no analytic maximum for small T. For
@ = 0.5 and T large there is also no analytic maximum.
Suppose nov that instead of (6.14) we consider

e* (5(1) )S(lb =0 TLSU)}*'U‘HB (-8 5'(?-33 s (6.27)

+
vith Gl(s(l)) defined as previously and 04AL1.

Thus , | —|
o ' (Say» g(.)) =— & (\-A) S 4 (6.28)

and substituting into (6.13) we obtain
| R
T> [oF(s@)+ (-NH(-s2n s p 'l

R Stasem-D-ef o) | P
s Q-9 | .

(6.29)
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Eliminating QﬂS(z) in the first square bracket gives the bound

S TP _ (END -6 (sy) ]
= ey [Lercsmmm 2 CON

vhilst the elimination ofﬁks(z) in the second square bracket is not
feasible due to its positive sign. For (6.30) to be useful it must

again lie in the range (0, 1) which will be true provided that

L N i (S—DQVH\*@:‘-(S@ ‘e
| =< [G‘ (s0)+(Q PS_‘ & (-8B > (6.31)

vhich is the reversal of (6.21). This time bound must be non-negative
for the bound on $(2) to be of use. This will occur if the parameters
satisfy the condition (6.22).

If S(2) must be smaller than or equal to S(1) then for (6.30)

to be of use

T =< oG- L\~ﬁg[c8—n(\—m—grcsmvmaw sm] ks

S (\-A) B 3

(6.32)

wvhich is a more severe;réstriction on T than (6.31). On the other
hand if S(2) cannot be less than S(1) then for (6.30) to be useful
the inequality in (6.32) is reversed, so that T is constrained to lie
in the range from the reversal of (6.32) to (6.31).

Again, for the special case of F»: 2 ve can obtain explicitly
an approximation to the optimum 5(2) for T small. Substituting
(6.27) into (6.11) and differentiating with respect to S(g) nov

yields the analytic maximum

- 2
S(a) == Lo %Eﬁ‘(\—ﬁ)\/w]

Ve QT+ (-0 ] _
[ _ ‘10 _(Q.BZ};%
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This will be in the range (0, 1) if
T/>/ \/r EQI_F(S(I»_FC\-G)] + (_\—ﬂ) . (6.34)
’ 2

For P-: 0.5 and T large we similarly obtain the analytic maximum

N (a—gs(rl—ﬂ) +28|+(SC()>
@ = i[ 2.5 (1-R) 3 (6.35)

and for this to be in the range (0, 1) we require that
+ -
g‘ ~ Z,:‘+ &, SS(\)) R
\—& )

To illustrate the bounds on optimal S(2) ve showv in Table

(6.36)

6.1 the ranges of T over which the bounds (6.17), (6.18) and (6.30)
are applicable, as well as the values of the bounds for various values
of T, for the case
+ —d
S\ Csm) =0 S® and (5=7-,P\=O-S')?= L

d=0‘5.) Sk‘\ = 0.7.
The ranges of applicability were obtained from (6.20) and (6.21),

(6.21)

(6.21), and (6.31) respectively. The bounds get wider as T increases,
as is apparent from their definitions. In this example the bound in
(6.18) is always stricter than the bound in (6.17), but it is also
of interest to observe that the intervals of optimum S(2) obtained
from (6.17) are relatively narrow over most of the values of T for
which the bound is valid. To illustrate the approximation to the
optimum solution for @ = 2 ve may evaluate (6.33) for T = 0.1. This
yields 8(2i550.5397. (Since &>1 there is no analytic maximum in the
inverse power law model).

Finally, we note that for the orthogonal problem of interest in

vhich S(1) and S(g) are known but T is to be optimised, no such simple

bounds are available.
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TABLE 6.1

Bounds on optimal S(2) for 653(3(1)) =A s(iswi and
B=2, A=.50=4,%4= .5, s(1y = -7
Inverse Power Logarithmic
Law Model Model
Bound (6.17) (6.18) (6.30)
Sﬁfgﬁ or Trer 0.5213 - 0.5215 - 0 - 0.5213
applicable
Bounds on 8(2)
for various T
T
0.1 - - 0 - 0.6479
0.2 - - 0 - 0.6806
0.4 - - 0 - 0.8312
0.5 - - 0 - 0.9647
0.55 0.9543 - 1 0.9595 - -
0.6 0.8450 - 1 0.9190 - -
0.65 0.6351 - 1 0.8602 - -
c.8 - 0.8131 - -
1 - 0.7492 - -
2 - 0.6021 - -
5 - 0.4677 - -
10 - 0.3904 - -

1.59I




SUMMARY OF ADVANCES IN KNOWLEDGE ACHIEVED AN) CONCLUSIONS

This thesis is concerned'with the construction of a generalised
model of reliability. Ehapter 1 reviews the literature and basic model
for component and systems reliability. The implicit assumptions of
the basic reliability model are identified and their potential for
generalisation investigated.

In Chaptef 2 the enumeration of multi-state coherent systems
is considered and several recursive bounds derﬁved. In the special
case of the usual reliability model a new upper bound is shown to be
superior td’the best explicit and non-asymptotic upper bound previously
derived. The relationship of structure functions to event networks
is also considered and a theorem proved for pure series and pure
parallel systems.

Chapter 3 briefly considers certain three-state and five-state
systems and derives explicit state probabilities.

In Chapter 4 a.generalised model of reliability is constructed,
in which components and systems can take any values in an ordered
discrete or continuous state-space representing various levels of
partial operation. Discrete and continuous examples of the generalised
model of reliability are investigated, and properties of the model
derived. Various.forms of independence between components are shown
to be equivalent, but this equivalence does not completely generalise
to the property of zero-covariance. Alternative forms of series and
parallel connections are compared, together with the effects of
replacement. Multiple time scales are incorporated into the formulation.

The above generalised reliability model is specialised in
Chapter 5 so as to facilitate the study of*the optimal tuning of

partially operating units. Simple drift and catastrophic failure
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mechanisms are considered. Explicit and graphical solutions are
derived, together with several bounds. In Chapter 6 the optimal
retuning of such units is also studied and bounds are again
obtained, together with some explicit solutions.

The overall conclusion of the thesis is that it is feasible
and desirable to construct more general models of reliability then
available henceto. The thesis has implemented this in the context
of partial operation. The construction of a reliability model at
the level of greatest generality feasible, which was the original aim,

still requires further investigation.
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Synopsis

In the context of reliability theory, two definitions are given for coherent functions of n variables,
where both function and variables can take any of 7 possible levels. The enumeration problem for such
functions is discussed and several recursive bounds are derived. In the case of I=2 (the Dedekind
problem) a recursive upper bound is derived which is better than the previous best explicit upper
bound for n < 15, and also provides a systematic improvement on this bound for larger values of n.

1. Introduction

In the past 25 years, inspired by the pioneering work of von Neumann [20], much
work has been done in the development of a relidhility theory for complex
structures composed of a number of components [4,16,17]. Most of thiswork has
concentrated on dichobamic elizhility, ie. the assurption that at each moment of
time, each component as well as the system as a whole is in one of two possible
states: either it is gperational or itisnot. Thus the states of all N components of a
system at any instant can be specified by a vector v= (s5&2,...,s,) where &= 1
if component & is operational and &&= 0 otherwise. Hence the design of a system
determines a Boolean function, the structure function of the system, /: Vn—» Vx
where VR is the wnit cube in Fuclidean n-space. Although there are 22" such
Boolean functions on Vn, it is clear that some will represent rather unrealistic
“machines” .For example it isunlikely that one would dbtain a structure such that
/(v) = 0 when &= 1 4dll g, or one where replacement of a failed component by an
operational one actually degrades the system performance. Discounting these
unacceptable situations the question arises; how many realistic functions are
there? The enumeration of these functions, the so—called coherent or monotonic
functions (which we dwall define more precisely in the next section) has received
much attention in the relidoility literatire, e.g. Lomnicki [16], partly because the
amount of information necessary to identify the appropriate systems structure will
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be inversely proportional to the number of possible structures. In general the
enumeration problem remains unsolved. It is in fact identical to the problem
posed by Dedekind in 1897 [6] on the cardinality of the free distributive lattice
generated by the symbols sy, ..., s,. Numerical results have been obtained up to
n="17, but for larger numbers of components only certain upper bounds have so
far been established. '

Although this enumeration problem is already difficult enough, the simplifying
assumption of dichotomic reliability is, however, only applicable to a very limited
range of situations. In general, components will not simply be operational or failed
but will be in one of a number of states of partial operation. That is to say, it will
often be more realistic to suppose that components and systems can be in any one
of a finite number of levels I (I=2). There is an increasing interest in the
reliability literature in such multilevel systems, e.g. [2, 3, 11, 18, 19]. Hence the
physical problem of interest is to enumerate the number of (generalised) coherent
functions which can be formed when each component can take any of I possible
levels. '

In this paper therefore we introduce two possible definitions of generalised
coherent functions and derive several useful upper and lower bounds for their
enumeration. A major by-product of our approach is to deduce an upper bound
for the Dedekind problem (i.e. with [ = 2) which is better than existing bounds for
n<15 and also provides a means of systematically improving these bounds for
larger n values. ,

The outline of the paper is as follows. In the next two sections we provide some
necessary formalism and definitions, and give some numerical results. In Section 4
we prove a theorem which allows us in the following two sections to deduce useful
upper bounds on the number of coherent structures. In particular, in Section 5 we
discuss the advantages of our approach in obtaining a systematic improvement on
existing bounds to the Dedekind enumeration problem; while in Section 6 we
concentrate on obtaining several upper and lower bounds in the general case.
Finally in Section 7, we discuss some results concerning the connection between
the structure functions and the event network.

2. Formalism and definitions

The state of all components of an n-component system can be described by a
state vector

§=(851,82,...,8,)
where s,, the level of the a-th component, may be any one of the levels,
' A <A, <-e <A
and where for convenience we define
A=0, A=1.

The resulting state of the system will be described by the structure function f(s)
of the vector s, with range {Ay, A,, ..., A}
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Introducing the notation

1=(,1,...,1)
0=00,..., 0

and x"y ifxa”* ya foralla =1, 2,..., n, then by analogy with the dichotomic
case, we defire a semi-coherent system by

/()™ (y) forall x"y @
For dichotomic relidbility a coherent system is defined by (1) together with
/=1, /@0 =0. @

For the miti-lewel situation we dwall say that (1) and () define a coherent
system in the wide sense to distinguish it from a coherent system in the narrow sense
which in addition to (1) has the more restrictive requirement that if

a= o ..., @ then /(t=a foral a=ALA2 ..., 4. €)]

In the dichotomic case, ie. I1=2, these wide sense and narrow sense definitions
We define the state vector

= @& 8,..., A) foradl £=1,2,...,/

as the i-th pivot of the system. Between the i-th and y'-thpivots (j> i) there exists
a number of state vectors composed only of the lewels A;, ..., Av.We say that the
set of state vectors composed only of the elements A; ..., Ay constitutes the
@i,j)-th lozenge of the system. Finally, for a system of n components we define the
set of state vectors {(0,..., O,A) |li=1,..., /} as the O, n)-th chain of the
system.

3. Some numerical results

In Table 1we show the number of coherent structure functions nWhnNb in the
wide and narrow sense respectively, corresponding to some low-n and low-/
valtes. Even in the dichotomic case the numerical evaluation problem is ex-—
tremely complex since a general analytic expression for the number of coherent
structures is sl lacking, and values of nW2=nN 2 have only been established for
n"="7 (see Lomnicki [16], Church [5]). For milti-level, multi-component functions

TABLE 1
"N, »Wi
n
I\ 2 3 2 3
2 4 18 4 18
3 64 151,236 136 738,122
4 4,096 - 18,676 -
5 1,048,576 — 15,374,304 —
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the general enumeration problem is of course even more difficult and the results
shown in the table represent a significant computer effort.

It may be conjectured from Table 1 that the number of coherent functions in
the narrow sense which can be constructed from two components with [ levels is
given by

2N, =21, 4
In general, however, the computational difficulties involved are such that, just as
in the dichotomic case, it is necessary to construct bounds for the number of

possible multi-level structures. In order to do this we generalise a theorem due to
Birnbaum et al. [4].

4. Theorem 1

For each positive integer n, let S, denote the set of all semi-coherent functions
or order n, and

G={(81,82---,8): §ESH, @1=g="""=g,j=12,..., 1}
Then there exists a bijection from G onto §,,. ;.
Proof. Let (g1, &, - - - » &) € G. Define functions f and H by
F8A)= (5052 5w A) =g ), j=1,2,...1
H(gy, & -.-8)=.

Note that, since g,j=1,2,...,] are semi-coherent and’ non-decreasing in j,
fe S+ for (s, A)=(t, ;) implies f(s,A;)=g(s)=g(t)= gj(t) =f(t, A;). That H is
surjective follows from the observation that if feS, ., and the functions g; defined
by

gj(s)=f(syhi), ]=1,2,l

then (g,, 8 - g)e G and H(g,, g5,-.., g)=f It is clear H is injective.

To use this theorem to derive an upper bound for the number of semi-coherent
functions of n+1 components and [ levels let us first note that the number of
solutions in integers of 1=x,=x,=---=x,=m is

m Bl Bl—l
£y - Ta=("h, )
Bi=12=1  B.=1 r
Hence it follows from Theorem 1 that if "S; denotes the number of possible
semi-coherent functions of n components and [ levels and if these functions were
strictly ordered then by considering the ways in which these functions may be
identified with g, i=1,2,..., [, the number of possible semi-coherent functions
of n+1 components and [ levels would be given by (5) with r and m replaced by [

and "S, respectively, i.e.
"S+I-1
() ©
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However the functions cannot be strictly ordered. In fact the order in Su as
well as in the In states of the system is partial not total. Nevertheless if © isa
partial ordering in a set P then there exists a total ordering on P such that

= 7205
ie. there exists an order preserving extension. Thus

#{gi= g2= ¢’ e= &} = #f{gl—0g2—0' =0&}= ( SI+/ )

since g! * g2= eee= g inplies gx g2=o0'''=o0dl and als’ every semicoherent
function whose domain is a totally ordered set (P, 0) is clearly also a semi-
coherent function on any restriction (B, 39 < (B, ~ 0). Hence (6 represents an
upper bound for the number of semi-coherent functions with n+1 components.
Of course we sdll have an upper bound even ifwe replace "S; in (7) by its upper
bound nUl In thisway we dbtain a recursive formula for the upper bound for the
number of semi-coherent functions of n +1 components and / lewels which is of
the form

-H-£17"?2-1) ®)

5. The special case of =2

For the case when /= 2, ie. when components and systems can be in only one
of two states (operational or failed) (8) becomes

n+lU2=nU2mU2+ 1) /2 ©)

which allows us to calculate an upper bound for the number of semi-coherent
functions for n +1 components provided we are given an upper bound (or the
actual value) for the number of such functions for n components.

Methods for dbtaining sharp upper bounds for the number of semi-coherent
functions of n components with this dichotomic behaviour has long been of
interest; see forexample Dedekind [6], Gillbert [8],Korobkov [14], Hansel [10]
Kleitman [12], Hanish ef al. 9], Alekseev [1], Kleitman andMarkowsky [13] and
Kurshunov [15].

The sharpest explicit and non-asymptotic bound to data is due to Hansel who
proved that

"S2” 3m- (10)

where M,, is the middle binomial coefficient, ie.
n!
m2)! /2!
M = n\
n+1\, /H.,

if n even

if n odd.

Tt is of interest to note that starting with the actual value of 2, 414, 682, 040,
996 dbtained by Church for 752, (9 provides upper bounds which are actually
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sharper than those given by Hansel for 7<n<15. See the numerical results of
Table 2. For n =15 the bound (10) is somewhat better than the bound obtained
from (9). However the recursive nature of (9) means it can be used in conjunction
with (10) to obtain a systematic improvement on Hansel’s bound for (n+1) even.
That is, if for n odd we take

—nQ 3)M
nUz - 2 082 n
with
n!

D )

n+1 U2 —_ 22(log23)M"—1 + 2(log23)Mn—1 (1 1)

we obtain from (9)

which is less than Hansel’s value of 2%&3M... for all n>0.

TABLE 2
Recursive bound calculated from (9) using the
value for 7S, obtained by Church [5]. Han-
sel’s bound calculated from (10).

log;, ("Uy)

n Recursive bound  Hansel’s bound

8 24-46468 33:39845

9 48-62831 60-11722
10 96-95558 120-23445
11 193-61012 220-42983
12 386-91919 440-85962
13 773-53735 818-73926
14 1546-77368 1637-47876
15 3093:24634 3070-27222

6. Bounds in the general case

When there are only two possible levels it is clear from definitions (1), (2) that
there are only two functions which are semi-coherent, but not coherent. However
for [>2 the number, "X, of functions which are semi-coherent, but not
wide-sense coherent rises rapidly, and in order to derive from (8) a useful upper
bound on the number of coherent structures in the wide sense we must evaluate at
least a lower bound for "X;. Such a lower bound can be obtained by assuming that
the [" states of the system (in terms of the levels of its components) are ordered.
An argument analogous to that in Section 4 then yields the following lower bound

for "X,
o= (F172) (P) |
S S (A 12

so that the sharper upper bound for the number of wide-sense coherent struc-
tures, "W, is given by
"W, ="U,-"L,. (13)
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Since nWI” nNI (13) must also be an upper bound for the number of coherent
systems in the narrow sense.

Finally in this section we introduce two lower bounds. The /-le=l, n-
component configuration contains [ pivots and defined on the (/-1, /)-th lozenge
there are nN 2 possible narrow—-sense coherent structures. Further, the number of
coherent structures allowable within this lozenge is not reduced by the particlular
structure existing in the (1,/-1)-th lozenge on which can be defined nN/ [
possible structures. Consequently we dotain a lower bound nlI, on nNI! by

TABLE 3
' —\\
nU{ calculated from (8) using nUl=1 IenlL, and nT7,
calculated from (12), (14) respectively. nR¢ calculated from
(15) using values of 2W, and 3W 3 given in Table 1.

logicm )

3 2-34242 6-25502 17-98690 53-18255
4 4-86814 18-09240 70-98940 282-57738
5 8-45674 40-20450 198-94331 992-63739

sogio CC)
Xv n
1\ 2 3 4 5
3 1-27875 1-74036 2-21219 2-68753
4 2-46090 3-62583 4-81987 6-02145
5 3-79246 4-82898 7-91364 10-00805
logio ("T)
X. n
3 4 5
3 4-44022 7-75922
4 6-43492 6-66033 11-76388
5 7-69020 8-88043 15-51845
log.o (nR,)
\'n
i X 3 4 5
3 6-64628 7-42443
4 7-16916 7-94929 8-25032

5 9-31529 10-87700 11-72209
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assuming that because of the coherency constraints, corresponding to each state
vector outside these two lozenges there is only one possible level of the system.
Thus :
"NiZ"Ni_;."N,="T,. (14)

A'lower bound on the number of coherent structures in the wide sense can be
‘obtained by taking a recursion over n. Introducing a new component into a system
of (n—1) components corresponds to adding an entry of 0 to the previous state
vectors of the system and adding further states. These new states include the
(0, n)-th chain. Following an argument akin to that in Section 4, defined on this

chain there are
(l+(l—1)—l)_(21—2)
-1 “\i-1

possible structures unrestricted by the particular structure in the system of (n—1)
components. Thus assigning only one possible level to each remaining state
vector, a lower bound for the number of coherent systems in the wide sense is

obtained as 2l-2
"W'z( 1—1)°"_1R’

~ where "R, is a lower bound for ""'W,.
Numerical illustrations of the bounds are given in Table 3 for some low n and [
values.

7. Connection between structure functions and event networks

In dichotomic reliability it is well known that the structure function is deter-
mined by the logical event network (e.g. Flegg [7]). This is no longer the case for
components which have [>2 possible levels. However, it may well be of interest
to determine how many possible structure functions correspond to a single event
network, for example because a system may have originally been designed in
terms of such a network.

The event network places dichotomic constraints on the structure function. For
example, if A and B are two components in parallel (in the sense of an event
network or of dichotomic reliability), the structure function f(s,, s,) is such that

f(0,00=0, f(0,1)=f(1,0)=f(1,1)=1.

It follows that in general the event network reduces the number of states of the
system to which levels have to be assigned from I" to [" —2". Corresponding to a
single event network therefore there are [“"~2” possible structure functions, and
there are \

=g 2 (16)

structure functions which do not correspond to event networks or systems defined
in terms of the levels 0 and 1.
Thus there are

I"=1c, 12 2> a7
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structure functions which cannot be immediately deduced from event networks
and two lewl systamns.

The determination of the number of coherent fimctions in the narrow or wide
sense out of the /a" 2") possible functions corresponding to a single event network
isagain a diffiailt, unsolved problem, except for some numerical computations for
gmell n, small [ systems. However as we show below for pure series or parallel
event networks a relationship exists which forms a lower bound for the number of
coherent structures in the narrow sense corresponding to any event network.
Unfortunately no similar bound appears to exist for coherent structures in the
wide sense.

8. Theorem 2

The number of coherent structures in the narrow sense for a series or a parallel
network with n components and [ lewls is equal to the number of ccherent
structures in the narrow sense which can be constructed from n components and
I- 1 lerls.

Proof. Let nPl be the set of narrow-sense coherent functions for a parallel
system with n components and / lew=ls. Hence if e nPb

fs, s,..., s)~s foral s=AlL...,A(
() =1 if xa=1 forany a

<Mx) ><My) if x>y
and
M) =1, <M0)=0.

Tt also follows that if <£(x)=1 then xa = 1 for some a, hence if we consider only

the I- 1 possible lewels 0= Aa< A 2<- **<A| xand ignore A;= 1, then $(x)"1.
Iet nN, I be the set of functions which are narrow-sense cocherent for n

components and /-1 lerls, where these /-1 lewels are denoted by

0= pIkKp2<-B<Pi-i=1-
Then by introducing the mapping
g: &3, A2, ..., & D)—>(pl p2is+*>Pi-i)

it is sinple to show that for each $ e "B, there exists one and only one function
iJ/enNIl | and conversely. For the proof in the case of a series narrow-sense
coherent system we discount the level At= 0 for which the series system must fail.
Tt follows from this theorem, therefore, that if one can evaluate the number of
narrow-sense coherent functions for n-components and /-I lerls, or place a
bound on this number, one immediately has the number of narrow-sense coherent
functions corresponding to a series or parallel system of n components and [/
lerls, or has a bound for this number. Moreover, the reduction in the number of
levels one must consider for a series or parallel system, from / to /-1, isunique
to these event networks. The number of narrow-sense coherent functions as—
sociated with a pure series or a pure parallel network, therefore, is the minimum
number of such functions associated with any typee of network of the same number
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of components and levels. Hence by this argument we can place a lower bound on
the number of narrow-sense coherent functions associated with any event net-
work.
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Abstract—This note considers models for devices subject to 1) partial
and catastrophic fallure, repair and replacement 2) esch of two types of
partial and catastrophic failures.

INTRODUCTION

Reliability analysis in terms of Markov processes has
been widely reported in the literature, e.g. [1]. In this note
we consider generalisations of models previously reported.

3-STATE MODEL

Assumptions:

1. The 3 states of the device are S, (full operation), S,
(partial operation), S, (failed).

2. The probability of more than one transition between
the states occurring during a short interval of time is
negligibly small.

3. The entry point to any state is'a regeneration point.

4. The device is initially in state S,.

Notation

S.(t) event that the device is in state S; at time ¢

A,(r) transition rate from 'S; to S, (degradation or
failure) j> i i=1,2,;j=2,3

pylt) transition rate from S, to S, (repair) j<i;i = 2, 3;

Jj=12

The reliability transition diagram is shown in Figure 1. In
the Supplement [2] the transitory probabilities of the
device being in the various states are derived, and the ap-
proach to the steady state availability is considered both
for the case where the pdf’s for times to degradation and
repair are exponential, and for the case where the degrada-
tion rates are of the ‘bath tub’ shape and correspond to the
sum of 2 Weibulls. Previously reported models are derived
as special cases.

IEEE TRANSACTIONS OF RELIABILITY, VOL. R-29, NO. 2, JUNE 1980

Fig. 1. 3-state model.

5-STATE MODEL

Assumptions:

1. The states are (0) ... good; (1, J) ... partially
failed in mode j,j = 1, 2; (2, f) . . . catastrophically failed
inmode j, j = 1, 2. ‘

2. Direct transition from (1, 1) or (1, 2) to (0) is im-
possible.

3. The other transition rates are constant.

4. The probability of more than one transition occur-
ring during a short interval of time is negligibly small.

Nozation

A, transition rate from state (0) to state (/, 1); i = 1, 2
) ¥ transition rate from state (1, 1) to (2, 1)

M transition rate from (0) to (i, 2); i = 1,2

Hiz transition rate from (1, 2) to (2, 2)

k, .transition rate from (2, j) to (0); j = 1, 2 (repair)

The model is shown diagrammatically in Figure 2. The
transitory probabilities of being in the various states and
the steady state availability are given in the Supplement
[2]. Various special cases of this model are also considered
there.

Q2

(§RY) axn

Fig. 2. S-state model.
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lement to 3-State and 5-State Reliability Models
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tion:

Pi(t)  pr(s;()}

_1 : Exponential pdf's for the Times to Degradation and Repair

tional vmmcyvnmw:"n »mmawu = »m%. tmunwu = rmu. ywu. rmu constant

set of differential equations, corresponding to time independent transition rates
in matrix notation,

P pi{%) =(A3+r12)  ugy 31 p1(t)
e P28y =~ | A2 =(A23,) w32 p2(t)
p3(t) A3 A23 ~(uaz+p3n) | (Pa(t)| '

solution of these equations are

3 Ozztu21#r) (Wz2+un ) = Aagugp 1t

ﬁuas .= e
1=l b;
3 Apz(uaztuan+r;) + Aguyz rit
pa2(t) = ¢ ) e
1=l . 7

P3(t) = 1 = p1() = pa(t)

3
m (r, -r.
F S B

w

-1
o; )

re r3 = 0 and r), r; are the roots of the equation

pir) = (r+ P2 -Li@a+b+0)? - 4ab) =0

Q
i1}

Az23+X) 3¥A 124U 324031 2]

5]
"

H317H21

o
m

Az23=A13

Q
n

¥32=i12

The steady state availability of the device is

(Az23+tu21) (B3z+i31) < A23u32
mry

P1 () =

1f A2 = 4ab - (@ + b + )2 > 0, r; and ry are complex and Py(=) is approached in a
damped oscillatory manner with period 2m/A, These oscillations are very small such
that

P1(t) %Py(=) - 0.8e 2"
®Rpoll o
In many situations the rate of,replacement of the device from Sz or 53 will be the
same, i.e. M3] = ¥z} = M (say); and the equation P(r) = 0 has two real roots

ry = l:Jw\..»un...tv

r2 = ~(Az23+p32+p)
By setting u3p = uz; = O Case 1 reduces to the partial/catastrophic failure model of
[3]) whilst by setting p3z = A\23 = 0 it reduces to the failure to operate/failure to
idle model of [4). If instead Ap3 = A1z = u3] = 0, the model reduces to a 3-state
reliability model which has been considered in connection with electrical systems
(e.g. (5]).

Case 2 i Constant Upgrading Transition Rates, Sum of Weibull Degradation Rates

It is often the case (e.g. [6,7)) that in general the hazard function for a device has
a 'bath tub' shape i.e. it is monotonically decreasing for small t (corresponding to
burn in failures) fairly constant at medium time values and increasing for large .

In order to model the whole of the bath-tub curve we use a sum of Weibull distributions
to describe the degradation rates;

. Q.hh.lw m.wh.lH
Additional Assumptions:- ym&gﬂu - omm R + ¢;0 T

where mmm >1, 0 < nm% <1,

u31(8) = up1 (%) = u (constant) .
’

n32({%) = p3z (constant)

In this case the differential equations are

J (py(t) M 3(B)=A12(H) o ollp vy o v | pite)
dc (P20 | = | Agl?) =Az3(t) Of|pa(t)| + [0 -u w32l P2 (?)
p3(t) X3 () A23(t) 0] |p3(t) 0 0 ~-u-u32{|p3(®)

¥



weir solution is . *  5-STATE MODEL

t _
pi(t) = QIA.WIV. uw/t Glx)dr + 1 Notation:
[}
1 t Pg(t) probability the device is good at time t .
P28 = 50 | £ B(z) {usz - wsapy (@) + Apa(@)py () Mde - 1 P;;(t) probability the device is in state ({,J ) at time t;i,7 =1, 2
o .
Equations:
pa(t) = 1 - p1(2) - palt) . .
’ . The differential equations for this device, in matrix notation, are:-
here .
t . : Py (t) =(X A g+uj+uy) 0 0 ky k2 Po(t)
G(t) = exp{ m lu + Ay3(x) + Ay (x) )dx) P11 (t) Y -\12 0 O 0 P11(%)
. 4 lpr| = " 0 -mz2 0 0 | |p,
B(t) = exp( M. [u + w32 + Az3(x) 1dx) Py (t) Az M2 0 -k O Py (%)
Pyylt) 2 0 w2 0 =ka | {Pyy(t)
he steady-state availability of this model is ' " )
. ’ These equations can be solved by use of Laplace transforms or by classical integration
py{=) =0 methods to yield
5
.e. constant rates for repairand replacements cannot keep up with increasing Polt) = T D.(App=r-) (uyg=-r.) (ky=r:) (Kp=r.) exp (-1 -t)
sgradation and failure tendencies. . 0 i=1 * 1277y 2= i =gl ieiglenpi=ty
) 5
Pii(t) = wmw Bmgymlﬂmv :au...u..mv Axwlu..mvyw oxﬁalﬂms
5
Pya(t) = mMH b.wc.wnlﬂﬁv :nwlw.wv mwwln.‘hvru mxwalﬁmwv (1)
Pay(t) = mmw D;(uy2-2y) ;mlu.% A2 A12-7) + AAjzlexp(-rt)
. .
) Pya(t) = mmw D;(A2-;) (Ky-r ) (ug(ui2-ry) + MApalexp(-rt)
' where
5
-1
D. s n (r,-r.)
R 1

.

) and ry, t= 1,2,3,4,5 are the five roots of the polynomial equation
, DIr) = (r+ky) (r4ko) (r4d)2) (P+uy2) (P+Ap+Ag+up+ug)
= (r+ky) (r+dy2) ko (uypy2+uzu) 24ruz)
= (r+kp) (r4u)2) K1 (A A 240201 241°A5) = O,

Note one of there roots r; (say) is zero.



The steady state availability of this device is

Pol») = Al2vizkiky ¥
0 roraryrs D

where

=
m

Maui2kikz

<
"

Mauizkike + Ayaky (uupatianiatinKa) + upoka (AA1a Azhi2 Mk
Special cases:
1. If ky = 4y = uz = yj2 = 0 the model reduces to the model considered in [3]

2. If A\ = X1z = p; =¥)12= O the model reduces to the catastrophic failure model of [4]
: aspais ot
3. In many situations the rates of,replacement of the device from state (2,1) and
state (2,2) may be the same, i.e. K} = k3 = k. If also A\j3 = yj2 £ B only three
of the five exponential factors determining Pg(f) and P..(t) in (1) (say those
corresponding to r), rs and rj) will have non zero nommmmnwmsnm. As before
ry = 0 and rz, rj are the roots of the reduced,polynomial equation

P1(r) = 12 + p(Ap+ho+uy+u+B+K) + (B4R} (Ay+u)) + B(Ag+ug+k) = 0

The steady-state availability in this case is .

gk
Pp (=) = .
0 (=) B(A+Az+ug+u2) + k(A +u1+8)
If 82 = 4k(Aj+uy) = (\+Ap+py+uz+k-8)2 > 0, 1y, r3 are complex and Pg(=) will be
approached in a damped oscillatory manner with period 2n/A.
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Operating History and Failure and Degradation Tendencies
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Abstract—Models for the s-dependence of a unit’s reliability and de-
graded states on itsoperating history are developed. The effect of a random
environment is introduced into these models by the use of stochastic hazard
functions.

1. INTRODUCTION

We consider failure and degradation models for a unit
in which the failure and degradation behaviour depend
on the following aspects of operating history:

1) total elapsed calendar-time, t,

2) total accumulated on-time, #,

3) length of current operating period, 3

4) random environments.

The model of section 2 is concerned with the depend-
ence of the failure tendency on aspects 1-3. Section 3
introduces a simple mode] for the partial degradation of
aunitand its dependence on aspects 1-3. Section 4 adapts
the models to deal with the effect of a random environ-
ment.

2. DEPENDENCE OF FAILURE TENDENCY
ON OPERATING HISTORY

2.1 Notation and General Model

a suitable scaling factor (in appropriate time

1o

units)
7 tilt, i =123
h; constant hazard rate for mode-i failure
H(1,,15,15) cumulative hazard for unitby 1; <1, <1,
Y, @) f: 7¢1¢~7d7, the incomplete gamma function

e fy(7,a), 0< 7y <7
pdftn|n) [ MM D=0 @.1)
0, otherwise
V7, 0< 7 =1,
d 2.2
P ”Tsl%} {0, otherwise (2:2)

2.2 Further Assumptions )
1. A unit has three s-independent and competing fail-
ure modes; so the unit can be regarded as composed of

three s-independent ‘components’in series (1-out-of 3: F).
2. s-Dependence between the modes is modeled by
adding extra terms to the hazard rate for the unit. Here
modes 1 and 2 are s-dependent in the following way—

H(f;,fg,ta) = h]’l + hz’g + 11373 + }14*1112 (2.3)

2.3 Analysis
" After considerable manipulation, the Sf is obtained:

R(1)) = exp(—hit;) [6'~=y(61,, a—1)
— (h3+6)'® y((h3+6)1,, a—1)1/(£§ hyy(7,, @))

6= ]/10 + hz + hg*'f] (2.4)

1t is shown in [1] that for this specialised model the re-
liability is asymptotically independent of the mode 3 fail-
ure mechanism.

3. DEPENDENCE OF DEGRADATION
TENDENCY ON OPERATING HISTORY

3.1 Basic Model
We consider the degraded state s of a unit which has

the following properties:

1. 0 =< s =< 1; s = 1 indicates full operation and s =
0 indicates complete failure

2. Transfers are only possible to lower degraded

states.
3. Transferintensities at; are independent of degraded

states experienced prior to 7; (the Markov property).

3.2 Additional Notation ‘

di(s,1;) pdf for mode i (i = 1,2,3) for state s at time
Z;

transfer intensity at time #; for mode i, from
state o to state s.

hi*(a’le)

I'x) Gamma function
&(s) Dirac delta function
B(x, y) T'(x)I'y)Y/T'(x+y) Beta function

F(a,b; c; z) Hypergeometric function
exp f(*), exp fe(-) Cdf, Sf of exponential distribution

3.3 Evaluation of ¢(s,1y)
&(s,t1) is related to h*(o,s,1;) by the differential

equation
(s, 1:)/01; = — dils,1) ['hi (s,€,1) de

+ ['dlo, (@5, )do, 5> 0; G.1)

which is a special case of the Chapman-Kalmogorov
equation [1,2]. Most solutions for ¢(s,1;) are complicated
even when the transfer intensities are simple. However,

0018-9529/78/0400-0675 $00.75 © 1978 IEEE
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if
Y (o,s,0) = N+ 8(){A(1-e) — A log (1-6)
+5/li}

then provided ¢(s,0) = Ofor all s # 1

oy = JM(=sPrexp fe(Mty), s # 0
d)i(s”i) - {expf()\m)ﬁ(&"), s = 0 ) (3'3)

3.4 Dependence on Opcerating History

We assume further that

1. s depends upon aspects 1-3 in the Introduction.

2. The three degradation modes are s-indcpendent

3. The degraded state of the unitis given by the product
of the levels of degradation of the modes. This is discussed
in [1].

Using (3.3)for each of the degradation modes we obtain

pdf {S/’],’g’;}}

3
= l:‘n Aiti(1 —S)“"CXPf('()\ifi)] X(s,1,,0,13)/(1—5)

i=1
X(8,01,82,10) = B\ 13, A012) F(Mty, A oto— 15 Ayt
+ Aota; (1-5)y) f:dy(l—y)"""(l - @

—S) y)‘-ks’ayh’:* A1

- (3.4)
Using (2.1), (2.2) 1t follows that near s=1 and 1, = 0,

pdf {s|1;} = (1=s)*" 1 exp fe(A 1} (A,

+ (a/a+1)(A; + Ay/2))1, 3.5)

4. THE EFFECT OF A RANDOM
ENVIRONMENT

4.1 Failure Tendency Model
1. Following [5] we model the effect of a random en-

vironment by making the hazard parameters &; (i = 1,2,3)

i.i.d. r.v.’s with uniform pdf’s.

]/((b,-—a;)t(,) 0= a; ¥ h,‘ < b,'

4.1
0. otherwise @1

pdf {h} = {

2. We assume that h,* = 0.
It can be shown that the corresponding Sf is

R(1;) = [exp(—a,ty)
3
- cxp(—blll)]y('l)/[’lt(?;g(bi“ai)"}'('rha)]

i
(3.2) |

Y = 3 (=10 - bY@+ /1)1, n+a=2)

* (az+]/to)z_"-a - '}'((bz"f‘]/’o)h, 71+a“'2)
- (bi+1/10)* Y (n - A1) (4.2)
4.2 Degradation Tendency Model

We assume that A;in (3.3)is a r.v. with pdf (4.1). Then

1(z(by) — z(a)){(bi—ai)1o Jog(1—s) — 1)*},
s#0

1 — [exp(—ayty) — CXP(_bi’i)]/[Ii bi—al,
s=0

z(x) = (1—=s)*" (xt, log(1—5) — xt; — 1) exp(—xt;) (4.3)

dis, 1) =

In [1] a similar expression is obtained for the case where
A; has a gamma pdf.
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