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A bstract

In this Thesis, systems of confined and flexoelectric liquid crystal systems have 
been studied using molecular computer simulations. The aim of this work was to 
provide a molecular model of a bistable display cell in which switching is induced 
through the application of directional electric field pulses.

In the first part of this Thesis, the study of confined systems of liquid crystalline 
particles has been addressed. Computation of the anchoring phase diagrams for 
three different surface interaction models showed that the hard needle wall and 
rod-surface potentials induce both planar and homeotropic alignment separated 
by a bistability region, this being stronger and wider for the rod-surface varant. 
The results obtained using the rod-sphere surface model, in contrast, showed that 
tilted surface arrangements can be induced by surface absorption mechanisms. 
Equivalent studies of hybrid anchored systems showed that a bend director struc
ture can be obtained in a slab with monostable homeotropic anchoring at the top 
surface and bistable anchoring at the bottom, provided that the slab height is 
sufficiently large and the top homeotropic anchoring is not too strong.

In the second part of the Thesis, the development of models for tapered (pear- 
shaped) mesogens has been addressed. The first model considered, the truncated 
Stone expansion model, proved to be unsuccessful in that it did not display liquid 
crystalline phases. This drawback was then overcome using the alternative para
metric hard Gaussian overlap model which was found to display a much richer 
phase behaviour. With a molecular elongation k = 5, both nematic and interdig- 
itated smectic A2 phases were obtained.

In the final part of this Thesis, the knowledge acquired from the two previous 
studies was united in an attempt to model a bistable display cell. Switching 
between the hybrid aligned nematic and vertical states of the cell was successfully 
performed using pear shaped particles with both dielectric and dipolar couplings 
to an applied field. Also, a parameter window was identified, for values of the 
electric field, dielectric susceptibility and dipole moment, for which directional 
switching is achievable between the bistable states.
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Introduction

Overview

The liquid crystalline phases which were discovered in 1888, represent a state of 

matter which shares properties of both its neighbouring isotropic liquid and crys

tal solid phases. As a result of this, liquid crystals have found many industrial 

applications in fields as different as biology, rheology, laser optics or tribology. 

However the greatest application of liquid crystals is, without any doubt, in the 

field of electro-optic displays.

In the most common liquid crystal display cells, the so called super-twisted ne

matic displays, surface interactions play a significant role in device operation; 

switching between the ‘on’ and ‘off’ states is achieved by changing the molecu

lar orientations from a field aligned to a surface aligned arrangement. The sur

face treatment of the cell surfaces, therefore, plays a significant role in the cell 

performance characteristics such as switching speed, viewing angle and contrast. 

Surprisingly, the surface treatments used industrially are often applied following 

empirical rules and a full understanding at a molecular scale of the surface-induced 

structural changes near the surfaces is still lacking. The reasons for this lie in the 

very complexity of liquid crystalline phases which renders a full theoretical treat

ment extremely difficult while most experimental approaches are unable to achieve 

the much needed molecular resolution. Consequently, the behaviour of liquid crys

tals at interfaces has become a particular focus for numerical simulations in which 

the study of generic models, based on statistical mechanics, can be used to gain
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an in-depth insight into molecular behaviour.

The latest developments in liquid crystal display technology have lead to bistable 

displays which are thought to rely on the properties of flexoelectric mesogen 

molecules for their operation. The advantage of these displays lies in their re

duced power consumption, leading to a battery lives about one thousand times 

longer than those super-twisted nematic displays. Again, bistable devices rely cru

cially on surface effects for their successful operation, hence the importance of a 

sound knowledge of the interfacial region properties. Also, the use of flexoelectric 

particles requires a good understanding of this particular class of liquid crystal.

Aims

The work presented in this Thesis addresses the study of confined and flexoelectric 

liquid crystalline systems by means of molecular simulations. The final aim is the 

development of a model for a display cell represented by an hybrid anchored slab 

with homeotropic anchoring at the top surface and bistable homeotropic-planar 

anchoring on the bottom surface. In such a cell, switching between the two stable 

states, the so called HAN and vertical states, is thought to be induced by the flex

oelectric characteristic of the molecules and application of an appropriate electric 

pulse [1]. In order to successfully model such a system requires three key aspects 

to be investigated.

First the study of confined liquid crystalline systems is addressed. The aim here 

is to perform a thorough investigation of surface-induced structural changes on 

a system of confined ellipsoidal-shaped hard particles in a slab geometry using a 

range of different surface potentials. In this study both symmetric and hybrid 

anchoring conditions are used. The main goals here are the localization and char

acterization of the planar-homeotropic anchoring transition and the identification 

of possible regions of bistability between the two surface arrangements. Hybrid
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anchored systems are also investigated so as to determine the parameterisation 

necessary to maintain continuous director profiles in simulations of HAN arrange

ment.

Results corresponding to this first part of the Thesis are presented in Chapter 4 

and 5.

The second aim of this Thesis is the development of molecular model of hard 

pear-shaped particles which are thought to exhibit flexoelectric behaviour. A key 

target from this study is a model for pear shaped particles which displays liquid 

crystalline phases, most specifically a stable nematic phase which forms sponta

neously upon compression. Results corresponding to this second part of the Thesis 

are presented in Chapter 6.

In the last part of this Thesis, the results obtained from the two previous studies 

are brought together towards the final aim of this Thesis, and the simulation of 

confined systems of pear shaped particles is addressed. Here, modeling is per

formed of a display cell having hybrid anchoring conditions with homeotropic 

arrangement on the top surface and homeotropic-planar bistable anchoring on 

the bottom surface. Switching between the two stable states of this cell, the so 

called HAN and vertical states, is attempted through application of an alterna

tively positive or negative electric pulse. The aim here is to determine some of 

the molecular mechanism relevant to this recent development in LCD technology. 

Results corresponding to this last part of the Thesis are presented in Chapter 7.

Organisation of the Thesis

Chapter 1 provides some background information about liquid crystals. Specifi

cally the characterization of the different bulk liquid crystalline phases is discussed 

and the class of flexoelectric particles and their properties is considered. This 

Chapter then follows on the description of the two main theories of liquid crystals
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as well as the experimental techniques most commonly used. As a conclusion the 

different applications of liquid crystals are presented.

Chapter 2 reviews the techniques and models relevant to the molecular simulation 

of liquid crystals as well as the properties of confined liquid crystalline systems 

and their anchoring transitions. The simulation techniques and models relevant 

to liquid crystals are reviewed first, followed by a survey of the modeling of flexo

electric particles. The last part of this Chapter concentrates on the simulation of 

confined systems and of their anchoring transitions.

Chapter 3 combines review and results and focuses specifically on the simulation 

of hard Gaussian overlap (HGO) particles. The literature concerning this specific 

molecular model is reviewed and the techniques used for the computation of ob

servables are presented. Some preliminary results for the bulk behaviour of the 

HGO models are then given, considering both calamitic and discotic particles.

Chapter 4 presents the results corresponding to the first part of the study of 

confined systems. Here the surface induced effects on systems of HGO particles 

confined in a slab geometry are studied. Using a simple surface potential, namely 

the hard needle wall potential (HNW), these effects are characterized and their 

regions of stability compared with analytical results. From this, the anchoring 

transition between the two stable surface arrangements (planar and homeotropic) 

is located as a function of density and anchoring conditions. Here, regions of 

bistability between the two surface arrangements are identified.

In Chapter 5, more advanced confined configurations are studied. In the first part, 

the surface induced effects obtained using two more realistic surface potentials, 

namely the rod-sphere (RSP) and the rod-surface (RSUP) potentials, are investi

gated and the results compared with an analytical treatment. In the second part 

of this Chapter, the case of hybrid systems is investigated using the HNW poten
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tial. Systems of HGO particles are considered confined in a slab geometry with 

different anchoring conditions on each surface. The effects of hybrid anchoring on 

the bistability regions are investigated and the structural transition between the 

homeotropic and planar surface arrangements is investigated. Finally the possi

bility of obtaining a continuous transition between these two is considered.

Chapter 6 related to a different line of work. Here models for the description 

of hard pear-shaped particles are developed. For this, two models are consid

ered. The first model is the so called Stone expansion model, a steric version 

of a potential used previously by the Bologna group [2] while the second model 

is the parametric hard Gaussian overlap (PHGO) which was developed within 

this project to resolve some difficulties experienced with the former model. The 

bulk phase diagrams and structural observables of the phases obtained using these 

models are presented and their applicability for the modeling of pear shaped liquid 

crystal molecules is discussed.

Chapter 7 is the last substantial Chapter of this thesis. Here, the knowledge ac

quired from the preceding studies of confined ellipsoidal particles and the bulk 

behaviour of pear shaped models is brought together in a study of confined sys

tems of flexoelectric particles. The aim here is to achieve directional field induced 

switching between the two stable states of a hybrid anchored display cell model. 

In order to achieve this, a modified version of the RSUP model is implemented, 

and the resulting surface induced structural changes studied. Specifically a region 

of bistability between the planar and homeotropic anchoring states is sought. This 

region of bistability is then used to investigate the mechanisms of easy and hard 

switching between the HAN and vertical states of the cell; the relevance of the 

model to the operation of bistable cell is then discussed.

Finally, the main results and conclusions of the Thesis are brought together, and 

suitable areas for future work are listed.
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Chapter 1 

The liquid crystalline phases

Introduction

Up to the end of the 19th century, the three known states of matter were gas, 

liquid and solid. According to dictionary definitions [3, 4] a substance is gaseous 

if it expands to fill its container homogeneously, regardless of its volume, dis

plays a high compressibility and shows no positional correlations on length scales 

greater than the molecular size. At the other extreme, a solid retains its shape, 

can support shear and its atoms are restricted in space, oscillating about a fixed 

position. Two type of solids can be distinguished; in crystalline solids, the atoms 

are regularly spaced on a 3 dimensional lattice, whereas in amorphous or glassy 

solids, the atoms are disordered on a large scale but ordered in the range of a few 

molecular lengths.

Liquid is a state of matter which exists between the two preceeding phases. A 

liquid substance only fills part of its container and its localisation is largely con

trolled by the gravitational force. Actually a liquid is only one component of a 

two phase system as every liquid is always searching to be in equilibrium with its 

own saturated vapor. A liquid has no rigidity, gives no resistance to shear under 

static conditions and has a small volume compressibility. On a microscopic scale, 

the positions of the constituent molecules are randomly distributed and no long 

range order can be found. Molecules in a liquid are subject to Brownian diffusion.

6



However, this picture changed somewhat in the late eighteen eighties. Slightly be

fore then a number of scientist noticed some uncommon crystallization behaviour 

in certain substances which were found to transform from isotropic liquid to a 

non-crystalline form before undergoing full crystallization. At the time, this was 

attributed to the presence of impurities in the samples. The actual discovery of 

liquid crystals is attributed to Friedrich Reinitzer [5] who, in 1888, was studying a 

compound related to cholesterol (cholesteryl benzoate). Reinitzer observed what 

he referred to as ‘two melting points’ and identified the new phase; this was later 

termed liquid crystal by his friend and colleague Otto Lehmann [6] who performed 

the first polarised optical microscopic measurements on liquid crystals.

Although not much studied at first because of the lack of the direct applications, 

interest in liquid crystals increased dramatically during the 20th century, mostly 

because of Liquid Crystal Display (LCD) applications; a wide understanding of 

these phases and the molecules that form them has now been built up.

1.1 Characterization of liquid crystals.

1.1.1 The liquid crystalline phases

The liquid crystalline phases refer to states of matter that exist between the 

isotropic liquid and crystalline solid. A liquid crystal phase is formed by meso- 

genic particles, hence the term mesogen used to refer to a molecule that forms a 

mesophase or liquid crystalline phase. A mesophase shares properties with both 

the liquid phase (flow, zero resistance to shear) and the crystalline phase (long 

range positional and/or orientational order, anisotropic optical properties). The 

term liquid crystal actually encompasses several different phases, the most com

mon of which are smectic and nematic [7, 8, 9].

A necessary but not sufficient requirement for a molecule to form a liquid crys

talline phase (or mesophase) is a strong anisotropy in shape; mesogens are either 

calamitic (rod shaped) or discotic (disc like). Their phase transitions can be tem-
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(a) 5CB (b) 8CB

Figure 1.1 : 4-pentyl-4'-cyanobiphenyl (5CB) and 4-octyl-4’-cyanobiphenyl (8CB) 

molecules

perature driven (thermotropic mesogens) or density driven (lyotropic mesogens). 

Calam itic mesogens

Typically a calamitic mesogen contains an aromatic rigid core, formed from 1,4- 

phenyl groups, to which one or more flexible alkyl chains are attached [10]. Short 

alkyl chains are typical of nematogens (mesogens that form nematic phases) while 

longer alkyl chains are related to smectogens (mesogens that form smectic phases). 

Liquid crystalline phases can be enhanced by increasing the length and polaris- 

ability of the molecule as well as the addition of a terminal cyano group which 

induces polar interactions between pairs of molecules. Lateral substituents (usu

ally attached at the side of molecules in aromatic cores) can influence molecular 

packing. For instance, adding a fluoro group enhances polarisability but disrupts 

molecular packing leading to a shift in the isotropic-nematic transition. Creating 

a lateral dipole can promote formation of a tilted smectic C and, in the case of 

chiral phases, gives rise to ferroelectricity. Further details regarding the effects of 

specific functions on liquid crystalline phase behaviour can be found in [11].

The classic example of mesogenic substances are the nCB family shown on Fig

ure 1.1. Here the aromatic core is made of a meta biphenyl; on one end of this 

core is the flexible tail, an alkyl chain of n carbons (CnH2 n+1 ,) and on the other 

end the head, composed by a cyano group. The influence of the alkyl chain length

8



tmciw*,» mmVII1 wm
(a) (b)

Figure 1.2 : The nematic (a) and smectic (b) phases.

is readily observable by comparing the phase sequences of the 5CB and 8CB.

5CB : Crystal 230c —> Nematic 350 c —> Isotropic

8CB : Crystal 21°c —» Smectic A 32-5°c —* Nematic 40°c —► isotropic

The two main liquid crystalline phases available to calamitic mesogens are nematic 

and smectic.

The nematic phase is the simplest liquid crystalline phase and can be formed by 

calamitic and discotic mesogens alike. This phase is characterized by :

• no long range translational order

• long range orientational order.

In the nematic phase (Figure 1.2(a)) the molecular positions are randomly dis

tributed across the sample but their long axes all point, on average, towards the 

same direction, the director n. Also in the case of a nematic phase with a zero 

polar moment, the symmetry properties of the phase remain unchanged upon 

inversion of the director’s direction. If chiral molecules are used, a cholesteric 

or chiral nematic phase can be obtained. The difference between this and the 

standard nematic phase is that in the former, the director twists as a function of 

position.

The smectic phase is characterized by :
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M il 0 0 #
iijM  • • •III II • • •

MOM jHt§ f i l l  #-# #
MOM * *

(a) Smectic A (b) Smectic B

llllj • • • (Ml wmillII • • • tllllttttt • • • 11(11 • •
(c) Smectic C (d) Smectic I

Figure 1.3 : Different types o f smectic phases. Each Sub figure shows a front view on 

the left and a top view on the right. All these phases lack long range positional order.

• long range translational order (i.e. one or two dimensions)

• long range orientational order.

In smectic phases (Figure 1.2(b),) as well as pointing along a common direction, 

the molecules are organized in layers. According to the angle between the director 

and the layer normal as well as any in plane positional ordering, several different 

smectic phases can be identified as shown on Figure 1.3.

D iscotic m esogens

Discotic molecules typically have a core composed of aromatic rings connected in 

an approximately circular arrangement from which alkyl chains extend radially 

(see Figure 1.4). Discotic mesogens form discotic nematic and columnar phases. 

Several types of the latter exist (see Figure 1.5,) namely disordered (d), ordered 

(o) and tilted (t) and for each of these there can be three column arrangements
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Figure 1.4 : Molecular representation o f the HHTT molecule (2,3,6,7,11-hexahexyl- 

thiotriphenylene).

(a) Disordered (d)

Figure 1.5

(b) Ordered (o) (c) Tilted (t.)

The different discotic columnar phases.

(a) Hexagonal (h) (b) Rectangular (r) (c) Oblique (ob)

Figure 1.6 : The different discotic columnar phases.
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namely hexagonal (h), rectangular (r) and oblique (ob). For instance a hexagonal 

disordered columnar phase is referred to as Colhd and an oblique ordered columnar 

phase as Col0b,0-

1.2 Flexoelectric liquid crystals.

1.2.1 The flexoelectric effect.

When a liquid crystal is subjected to a splay or bend strain, a net electrical polar

ization can be created. This effect was first explained in 1969 by R.B. Meyer [12]. 

Reciprocally, flexoelectric mesogens will splay or bend upon application of an elec

tric field according to the reverse flexoelectric effect.

Originally the flexoelectric effect was explained to arise for particles with a strong 

shape anisotropy {i.e. pear or banana shaped particles) and a strong permanent 

dipole [12]. According to Meyer, a splay distortion would arise for wedge or pear 

shaped particles while a bend distortion is associated with banana shaped parti

cles. The relation between the electrical polarization P  and the flexoelectric splay 

and bend coefficients e\z and e3x is given by [13]:

P = elz (n(V .n ) )+  e3x(V x n) x n (1.1)

Means for the calculation of the flexoelectric coefficients were later devised by 

Derzhanski and Petrov [14, 14] and Helfrich [15]. The latter author also extended 

Meyer’s theory to polarizable molecules [16]

Eight years after Meyer’s original theory, another mechanism for flexoelectric- 

ity in liquid crystals was proposed by Prost and Marcerou [17]. In this work, 

the electrostatics of uniaxial phases were examined to recognize the link between 

polarization and strain. A two term expression for the flexoelectric tensor was 

derived (see Equation 2.9 of [17]) where the first term corresponds to a dipolar 

effect equivalent to that proposed by Meyer, while the second relates to a non zero 

quadrupole moment that pertains even with non pear or banana shaped molecule 

{i.e. ellipsoids). The authors also showed that both mechanisms contributed to
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oW
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(a) no applied field (b) field applied

r
f< r^

(c) no applied field (d) field applied

Figure 1.7: Representation o f the polarisation induced distortions in flexoelectric sys

tems. Pear shaped particles (top) have a splay distortion while banana shaped particles 

(bottom) display a bend distortion. The distorted phases correspond to a situation 

with an electric field E  applied vertically and pointing towards to the top o f the page.
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the total flexoelectric coefficient /  =  e\z +  e3x with similar orders of magnitude. 

The implication of this result is that flexoelectricity is an intrinsic property of 

liquid crystals as most mesogens have non zero quadrupole moments. Also, this 

effect should be observable not only in the nematic phase as proposed by Meyer,

mechanisms to the flexoelectric coefficients, identification of which contribution is 

the largest is not a trivial exercise. Resolving this question requires a means of sep

arating the two effects. One such method is the study of the thermal dependence 

of the flexoelectric coefficient / .  From the study of Prost and Marcerou [17, 20] 

the expression for /  is :

In the first two terms representing f M, K u  and K 3 3  are respectively the splay

the degree of asymmetry of the compound under interest. In the last term rep

resenting / Q, N  is the number of particles per unit volume, 0a is the quadrupole 

tensor as defined in [17] and S  is the order parameter as defined in [13].

From Equation 1.4, it is readily observable that /  depends linearly on K n  and 

K 3 3  that is linearly with S 2  if Meyer’s contribution is of more significance. If the 

quadrupolar contribution is the larger, then /  is a linear function of S.

but also in the isotropic phase (see [18] for the first experimental verification of 

this) as well as the smectic phase [19].

1.2.2 The flexoelectric coefficients.

Due to the comparability of the contributions from the dipolar and quadrupolar

/  =  eiz + e3x (in Meyer's notation)

/  =  f M+ f Q

( 1.2)

(1.3)

(1:4)

and bend Frank Oseen elastic constant [13], ejj and are the dielectric constant 

taken respectively parallel and perpendicular to the director n and /i-1 measures
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Although several methods are available for the measurement of the flexoelectric 

coefficients [13, 7, 21, 22], the best seems to be the “interdigital electrodes tech

nique” (see [19] and [23] for a detailed description) as used by Marcerou and Prost. 

This setup involves the use of a spatially periodic electric field (created by the in- 

terdigitated electrodes) which induces a periodic distortion of the liquid crystal. 

This distortion corresponds to a grating which scatters light. Measurements of 

the flexoelectric coefficients are thus performed through the measurement of the 

scattered light intensity.

Measurements of the thermal dependence of /  has been performed by Marcerou 

and Prost [23] for four different mesogens ranging from symmetric to strongly 

dipolar. Although the expectation from this study was that the quadrupolar con

tribution would prove stronger for the most symmetrical mesogens, with Meyer’s 

contribution being stronger for the dipolar particles, the results showed that the 

quadrupole contribution was actually stronger for virtually all compounds. The 

only case where Meyer’s contribution was more significant was that of a molecule 

with strong steric constraints as already suggested a previous study [20]. This last 

finding was later confirmed in [24] in a study of cyanobiphenyl components using 

a different measurement technique. In parallel with this, using the Onsager-like 

theory of Straley [25], Osipov [26] showed that the dipole flexoelectricity is sig

nificant only for molecules with large transverse dipoles; this condition is met by 

the mesogens mentioned above which showed Meyer’s flexoelectricity.

Some subsequent theoretical work from the same author [27], using a Landau-de 

Gennes formalism contradicted the general results from this series of experiments, 

as it predicted a S'2-like variation. This discrepancy is likely explained by the lack 

of conformational freedom in the theoretical treatment, however.

Using density functional theory, Singh and Singh [28] showed that, given increased 

knowledge of the molecular parameters of a system, the flexoelectric coefficients 

(taking into account both mechanisms) can be accurately calculated. The main 

drawback of this treatment is its restriction to rigid particles. This restriction was
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subsequently lifted by Ferrarini [29] who applied mean-field treatment to MBBA 

which took into account the structure of the molecule’s transformers.

Model for flexoelectric pear-shaped molecules have been designed for use in com

puter simulations [30, 31]. These have found non zero splay and near to zero 

bend flexoelectric coefficients in accordance with Meyer’s theory. These models 

were subsequently refined so as to become monosite as opposed to multisite [2], 

leading to phases with net polar order. More details on these studies are given in 

Chapter 2.

The interest in flexoelectric particles is not only of academic interest as the phe

nomenon finds some very important applications in bistable liquid crystal display 

devices [1, 32] which could lead to the development of the next generation of 

displays.

1.3 Theoretical approach to liquid crystals.

As interest in liquid crystal grows, the number of theories used to describe their 

complicated phase behaviour increases similarly. Here the focus is brought on 

to bear on to molecular theories that, using statistical mechanics, take the in- 

termolecular potential as a starting point from which to deduce the macroscopic 

phase behaviour.

Theoretical studies of simple atomic fluids [33] show that the liquid phase can be 

described effectively using intermolecular potentials of the Lennard-Jones form, 

i.e. containing both long range attractive and short range repulsive component. 

Mesogens can be represented with a similar class of potentials, though account 

has to be taken of the inherent in their elongated shape. One significant question 

considered by these theories is which of the repulsive and attractive components 

of the interaction are of greater importance in mesophase formation. As a result, 

theories have been developed which consider both of these contributions to the 

anisotropic potentials and thus quantify their respective influences. The two main
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and complementary approaches are described in the following Sections, namely 

Onsager and Maier-Saupe theories.

1.3.1 D en sity  functional theory

The phase structure of simple atomistic fluids can be described successfully using 

hard spheres as models, that is considering only the repulsive part of their pair 

potential [34]. The extension of this principle to the mesoscale was first achieved 

by Lars Onsager in 1949 [35] in a study of colloidal particles (tobacco virus). The 

main idea underlying this seminal work is that the mechanism for spontaneous 

ordering in a system of hard molecules is based on competition between the ori

entational entropy that destroys nematic order and the positional entropy that 

favors it [13].

Onsager theory is derived from the cluster approach [11] and is a density functional 

theory in which the free energy T  is expressed as a density virial expansion [36].

Where T ld and T ex are the ideal and excess parts of T  and / ( u) is the orientational 

distribution function that depends on the particle orientation vector u. Each B{ 

represents the excluded volume in a cluster of i particles.

Onsager made the following assumptions :

(1.5)

( 1.6)P d =  N (\o g p - 1) + N  I / ( u ) log(4-7r/(u))du 

F ex =  pB2  ( /(u ))  +  ( / ( u )) +  t p 3&, ( /(u ))  +  . . . (1.7)

• The molecules (spherocylinders of length L and diameter D) interact only 

through steric repulsion (no interpenetration).

• The volume fraction is much smaller than 1.

• The rods are very long (L^$> D ).
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Within these assumptions, Onsager showed that the virial expansion can be trun

cated after the second coefficient; he showed that the third one vanishes and 

assumed the same for the the following coefficients. This makes his approach the 

simplest form of density functional theory.

The implication of his results is that, in the limits considered, the N-I transition 

can be explained exclusively using short range repulsive forces. However, the ap

proximations made in this theory worsen considerably as the particle elongation 

is reduced because the density of the transition is not vanishing. Therefore this 

theory can not be applied to mesogens with a standard elongation of 3 to 5. Early 

computer simulations of hard prolate particles by Vieillard-Baron [37] and later 

Frenkel et al. [38, 39] showed qualitative but not quantitative agreement with On- 

sager’s theory

This does not imply that density functional theory can not be applied to liquid 

crystalline behaviours, only that, for the accurate description of mesogens, more 

virial coefficients are needed. The most obvious approach, then is to calculate 

higher order coefficients, as been done in [40, 41], but the difficulty of the task 

increases significantly with the order of the coefficients. A better approach is the 

use of resummation techniques such as the y-expansion [42, 43] that allow the in

direct inclusion of high order coefficients. Some other resummation methods have 

been used successfully on single component [44, 45] and mixture systems [46, 47] 

leading, recently, to considerable improvements in the description of anisotropic 

fluids [48].

1.3.2 M aier Saupe theory.

In the early 20th Century, Born showed that the anisotropic component of the pair 

potential was responsible for the order-disorder transitions in nematic phases [11]. 

This was later expanded by Maier and Saupe to give rise to the so called Maier 

Saupe (MS) theory [49, 50, 51].
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The configurational partition function of a fluid is expressed as :

Qn = ItJ  e~mx’N)dxN f1-8)

where ~KN represents the full set of positional and orientational coordinates for 

the N  particles of the fluid. In the case of a perfect gas, as every particle’s be

haviour can be taken to be independent of all others [4], the partition function 

can be transformed into the product of N  single particle partition functions, each 

of which is easily solvable. However, in the case of a fluid phase, and even more 

so a mesophase, the relatively high density implies that each particle’s energy is 

dependent on several other particles’ coordinates so that the previous simplifica

tion is no longer valid.

MS theory aims to resolve this difficulty using the so called molecular field ap

proximation. This approximation removes the need for the consideration of each 

individual pair potential; rather each particle is taken to reside in a field which 

mimics the presence of all the other particles. Effectively each particle is assumed 

to be was moving in an energy continuum. As a result U(X^) can be written as 

the sum of N  energies, each of which is a function of the coordinates of a single 

particle :

tf(X*) =  £ t f ( X 0  (1.9)
1 = 1

The problem, then, is to find an expression for the mean-potential experienced 

by the particles. Several approaches have been used for this. The most intuitive 

approach is to average the anisotropic pair potential over the coordinates of one 

particle [52] while one of the most simple and rigorous is to start from the singlet 

distribution function and solve the Bogoliubov-Born-Green-Kirkwood-Yvon hier

archy of equations as described in [11]. In a translationally invariant situation,

the general form of the final mean potential depends only on /?, the angle between

the particle under consideration and the director n, so:

U(fi) =  -e T 2 P2 {cos2 (3) (1.10)

where P2  is the nematic order parameter, Pz(x) is the second order Legendre
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polynomial of x  and e is a scaling constant which is given by :

‘ " v ( w ) T  11111

Another form for e is given in [9] by the identification :

where the value of A  is determined by the interaction properties of the molecules. 

In any case the general approach for the implementation of Maier Saupe theory 

is as follows :

• Choose the anisotropic term of the pair potential

• Implement the mean field approximation

• Determine the mean potential

• Deduce the singlet distribution function

• Use this function to calculate the entropy, Helmholtz free energy and order 

parameters.

The two major elements of the theory that influence its accuracy are the mean 

field approximation and the form of the mean potential.

Maier Saupe theory can be tested using both computer simulation and real ex

periment, though the former has an advantage since it can test the validity of the 

mean field approximation as the mean-potential can be specified in the ‘computer 

experiment’. The theory is reasonably successful in describing, qualitatively, the 

behaviour of mesogens, showing a first order IN transition. The temperature de

pendence of the order parameters is also well described qualitatively. The limits 

of the Maier Saupe theory become apparent in the quantitative predictions, errors 

being attributed, in part, to the use of the mean field approximation (although 

some improvement can be made by improving the form of the potential.) A more 

fundamental weakness of the mean field approximation is that it neglects spacial
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and orientational correlations between molecules.

The main conclusion that can be drawn from this is that while MS theory is most 

effective at long range it can successfully describe liquid crystalline behaviour. 

This implies that short-range repulsive forces have little role to play, whereas 

short range potentials have been shown to be responsible for both the ordering of 

nematics and the structure of normal liquids. This apparent discrepancy can be 

resolved by appreciating that the long range attractive part of the potential used 

in MS theory can be regarded as describing the interactions between clusters of 

highly ordered particles.

1.4 Experim ental study of liquid crystals.

1.4.1 O ptical polarising microscopy.

Optical polarising microscopy is the main technique used for liquid crystalline 

phase characterization [9]. Historically it was also the first technique used by 

Lehmann when he studied the liquid crystalline samples provided by Reinitzer. 

The technique consists of observing, under a microscope, a sample sandwiched 

between crossed polarizers. An isotropically liquid phase does not affect the light 

and, therefore, no light can cross the analyzer. In the case of a liquid crystalline 

phase, however, the birefringent property of the material induces refraction of 

the light according to the director orientation. Since only the component of the 

refracted light parallel to the analyzer polarization direction is transmitted, the 

intensity of the transmitted light varies from white if (n • p) =  0 to black if 

(n • p) =  1 where p is the polarisation direction direction of the analyser. More

over, because of defects in the structure and disclination lines, the orientation of n 

typically varies with position and, therefore, so does the intensity of transmitted 

light. Distinct patterns can be observed for different mesophases. Examples of 

these patterns can be found in [8].

Nematic phases induce the so called Schlieren textures where black threads mark
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ing the disclination lines can be observed. These threads lead to the name ‘ne

matic’ being used for this phase. Smectic A liquid crystals have a ‘fan-like’ pattern 

when viewed through crossed polarizers and smectic C a combination of both. The 

smectic B phase induces an altogether different pattern of ‘mosaic’ or broken fan 

textures. However not every phase can be distinguished clearly. For example, 

smectic I and smectic F phases induce patterns very similar to that of the smectic 

C phase which makes the task of identification very difficult if this is the only 

technique to be used.

1.4.2 D ifferential scanning calorim etry.

Differential scanning calorimetry (DSC) is a technique used to complement opti

cal polarising microscopy in the phase characterization of liquid crystals [9]. This 

technique measures enthalpy changes (AH) at phase transitions. The phase type 

of the sample is not examined using this technique, but the value of the enthalpy 

gives some information about the degree of molecular order in a mesophase. 

With this technique, two independently heated furnaces are used. One is empty 

or contains a reference sample (usually gold) and the second contains the sample 

under study. Both furnaces are linked to control loops which insure that they are 

kept at the same temperature as each other. Upon cooling or heating, the heat 

absorbed by or released from the sample in order to keep the furnaces at the same 

temperature is measured. Differences between the heat measurement for the two 

furnaces indicate phase transitions. With this technique, temperatures ranging 

from —180°C to 600° C can be accessed.

Thermodynamics state that there are two types of phase transition discontin

uous (1st order) and continuous (2nd order) corresponding to discontinuities in,
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respectively, the first and second derivatives of the Gibbs free energy G

G = H — T S (1.13)

(1.15)

(1.14)

Thus, a first order transition induces a discontinuity in the entropy and a peak of 

the DSC baseline can be observed, whereas a second order transition is indicated 

by inflexion of the baseline.

Thus a DSC trace can reveal phase transitions that would be missed by optical 

polarising microscopy because of the smallness of changes in the optical properties. 

Conversely phase transitions with small enthalpy changes but rather different 

optical properties can be missed with the DSC but are easily detected with optical 

polarising microscopy.

1.4.3 X-ray and neutron diffraction.

X-ray diffraction is one of the most effective techniques for liquid crystalline phase 

characterization [10, 11]. Here the mesophase is characterised by analysis of 

the diffraction pattern of an X-ray beam incident upon a sample in which the 

molecules are aligned with the beam. According to Bragg’s law, diffraction is 

obtained at an angle 6  when A =  2d sin 6  where A is the light wavelength and d 

the intermolecular spacing.

Liquid crystal diffraction patterns are characterized by two lateral vertical clear 

areas that account for the vertical alignment of the molecules. In the case of a ne

matic, horizontal clear areas, corresponding to diffuse low intensity peaks, can be 

observed above and below the centre of the pattern. In the case of a smectic, the 

latter are replaced by points corresponding to sharp high intensity peaks induced 

by the smectic layering. In the case of a smectic A, those points are located on 

the vertical axis whereas they lie at an angle in the case of a tilted smectic such 

as a monodomain smectic C.
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1.5 Applications

1.5.1 Liquid C rystal Displays

Since the discovery of electro-optical effects in liquid crystals in about 1968, their 

main applications have been in the display technology [53]. The first device that 

could be used industrially is the Twisted Nematic device (see Figure 1.8).

This device uses a liquid crystal sandwiched between two electrically conductive 

glass plates rubbed so as to induce a planar surface arrangement. This cell is 

placed between crossed polarizers. The direction of rubbing on the glass plates is 

made parallel to the local polarizing direction, thus inducing a twist of 90° from 

the top to the bottom of the cell. Due to the optical anisotropy of the liquid 

crystal, the direction of polarization of the light in the cell is twisted (following 

the director,) as a result of which the light is transmitted through the analyzer. 

This correspond to a light cell.

Upon application of an electric field E between the glass plates, the molecules 

reorient to be approximately parallel to E; in this state, the polarization of the 

light is left unchanged by the liquid crystal molecules and therefore no light can 

be transmitted. This corresponds to the dark state.

The TN cell is mostly used in the wrist-watch type of display [54] and can em

ploy different types of compound [55, 56], the most simple of which is the 5CB. 

In order to meet the requirements for more sophisticated displays, such as those 

used in cellular phones or laptop computers, more advanced display cell have been 

designed. The first such improvement is the Supertwisted Nematic Cell (STN). 

This is a direct refinement of the TN cell but with more advanced mesogens allow

ing a twist of 270° instead of 90°. This results in a sharper and faster transition 

between the light and dark states.

Further refinements have been achieved by improving the addressing of the dis

play’s individual pixels. This lead to the development of the active matrix TFT 

display which are, to date, the most used screens for laptop computers.

The current trend is towards the development of bistable displays [57, 58, 1] where,
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Figure 1.8 : Schematic representation o f the Twisted Nematic display cell. The 'on' 

state without applied field is shown on the left and the ‘o ff’ state with applied electric 

field represented by the black arrow is shown on the right.

by having two stable arrangements corresponding to the light and dark states of 

the cell, the electric field no longer needs to be applied to maintain the dark 

state. Rather an electric pulse is used to switch the cell. The main advantages 

of such display are their much reduced power consumption, which is of crucial 

importance in portable devices. Additionally, such displays can be used as opti

cal storage devices. Further developments in this area include tristable nematics 

displays, which, have the potential to yield extremely versatile functionality [59].

1.5 .2  O ther app lications.

There are numerous applications for liquid crystals other than display. In laser 

optics, for instance, a laser can produce grid patterns in a nematic phase which, in 

turn, can be used as switches for another laser. Polymer dispersed liquid crystal 

(PDLC) sheet can be formed into big panels which, upon application of an electric 

field, can be made opaque or transparent. A rather versatile bathroom window 

can be produced that way, as shown in [9].
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Liquid crystals have also been proposed for applications in engineering [60, 61, 62] 

that exploit the variation of the viscosity coefficients of mesogens in different 

phases. This may lead to the development of very efficient lubricants or bearings 

which can act as breaks if their temperature exceeds some threshold.

Finally, one possibly surprising area for the application of liquid crystal science is 

the human body itself, but many living cells and viruses display and utilise liquid 

crystalline prospectives [63].
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Chapter 2 

Com puter simulations of liquid 

crystals

Introduction

Computer simulations act as a link between theory and experiment. Experimen

tal analysis is limited in that, usually, only bulk averaged properties are measur

able meanwhile, the complicated nature of mesogens and their interaction poten

tials prevents the possibility of a full theoretical treatment capable of predicting 

the phase behaviour of real mesogens. These limitations can be resolved using 

computer simulations, where, by using a model interaction in an appropriately 

designed ‘computer experiment’, full molecular insight into the system can be 

gained. Using the results of statistical mechanics, macroscopic properties can be 

computed which, in turn, can be used to test the theories from which the model 

originated. The validity of the model can, thus, be checked against experimental 

results. Computer simulations can also act as predictive tools in the design of 

novel compounds or for the study of systems under conditions that can only be 

attained in the laboratory with great difficulty and cost.

The first part of this Chapter contains a description of the two main methods used 

in the simulations of liquid crystals at a molecular scale, namely the Monte Carlo 

method and Molecular dynamics. Following this, previous work on the computer
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simulation of liquid crystals is reviewed. Here attention is concentrated on generic 

hard particles and Gay-Berne models, and their extension to treat flexoelectric be

haviour. The Chapter then concludes with a review of progress on the simulation 

of confined liquid crystalline systems and their anchoring properties.

2.1 M olecular m odeling techniques.

2.1.1 T he M onte Carlo M ethod

The Monte Carlo (MC) method is used to find the solution of mathematical 

problems using a probabilistic approach and is currently applied to a wide variety 

of different problems. According to Hammersley and Handscomb, “ Monte Carlo 

methods comprise of that branch of experimental mathematics which is concerned 

with experiments on random numbers” [64]. In the molecular physics of liquid 

crystals, the term Monte Carlo usually refers to the specific sampling method as 

proposed by Metropolis et al. [65].

The Metropolis solution.

Considering a system of N  particles in the canonical (constant NVT) ensemble 

and assuming pairwise interactions between the particles ; the total potential V 

is given by [11] :
N

V = 5 > (X (t ) ,X ( j ) )  i , j  G [1...IV] (2.1)

where X is the complete set of positions, orientations and momenta of the system. 

In this canonical ensemble, a time independent configurational property can be 

obtained from :

(^4)real = J  p„VT(X)A(X)dXN (2.2)



Qnvt, being the partition function for the canonical ensemble. If the system 

is ergotic, (*4.)reai can be obtained by averaging its instantaneous values over a 

sufficient number of uncorrelated state points, T;, provided that they appear with

*=i
Metropolis et al. designed a stochastic process for creating such a sequence of

a probability e-/3v. This sequence corresponds to a discrete Markov chain, that is 

a stochastic sequence of states within each step of which memory extends only to 

the preceeding state [66].

The theory of discrete Markov chains [33] shows that the probability, p*,, that the 

system evolves from state a to state b is given by :

where irab is the transition matrix. Intuitively the properties of TTab read :

b

Also the condition of microscopic reversibility requires that the probability of 

going from state b to a is equal to that of the reverse transition and, therefore :

The transition matrix for the system under consideration is not directly available, 

however the limiting distribution is known to be the probability density of the 

canonical ensemble ( p n v t ) >  that is :

a probability proportional to the probability density of the considered ensemble. 

Therefore :

state points in the canonical ensemble where each configuration appears with

Pb Pa^ab (2.5)

TTab > 0 (2 .6)

(2.7)

P a ' K a b  P b ^ b a  • (2.8)

Poo =  P n V t ( T o o ) (2.9)

(2 .10)= 1 c-mr)
Q NVT
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The scheme introduced by Metropolis et al. allows the construction of an appro

priate phase space trajectory which obeys Equations 2.7 and 2.8.

In its most basic form, the Metropolis method considers a two dimensional system 

of N  atoms (with straightforward extension to three dimensions.) Phase space 

is sampled by choosing one particle i at random and assigning it a new random 

position within a square of arbitrary size centered on the particle’s old position. 

The move is accepted if it is downhill in energy (5Vab — H  _  Va < 0). If, however, 

the move is uphill in energy (5Vab > 0), then the move is accepted with a proba

bility e-/35Vab. This is performed by generating a random number £ G [0 : 1]. The 

move is accepted if £ < e~l36Vab and rejected otherwise. This sequence of particle 

choosing-moving is then repeated until a sufficient number of uncorrelated moves 

are achieved.

The method can be extended to three dimensional systems of non spherical and 

even non rigid molecules where new states are created by changing the positions 

and the orientations of the molecules [66]. A summary of the Monte Carlo algo

rithm in the canonical ensemble is given on Figure 2.1.

According to the nature of the system studied, other moves have been used such as 

reptation moves [67] or flip moves [2]. Similarly Monte Carlo simulation of flexible 

molecules can be achieved by moving sub-molecular segments independently. As 

a result for more advanced systems, one Monte Carlo move is composed of several 

different type of molecular moves (change in orientation, position, flip, reptation 

etc.). If at any Monte Carlo step, different combination of molecular moves are 

performed, the use of a given move type should be probabilistic so as to keep the 

Markov chain stochastic [66].
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r 1. Choose a particle % at random

2. Assign a new random position and orientation

3. if (5Vab < 0) OR (i < e~P5Vab) 

Accept move

Reject move

4. Store instantaneous observable.

5. Return to step 1 until nstep performed.

6. Compute observable average .

J

Figure 2 . 1  : The Monte Carlo algorithm in the canonical ensemble

Extension to  th e  isotherm al-isobaric ensemble.

The Metropolis solution was first applied in the canonical ensemble, but it can 

readily be extended to other ensembles such as the isothermal-isobaric as proposed 

by Wood [68]. The extension of the MC method into another ensemble requires 

knowledge of its probability density pens. For the isothermal-isobaric ensemble, 

this is :

where P  represents the pressure and V  the volume. The implementation of the 

MC method in this alternative ensemble requires the generation of a Markov 

chain with a state probability proportional to e-P(V(r)+pv), This is achieved using 

a similar algorithm to that for the canonical ensemble, the difference being that 

volume changes are performed in order to keep the pressure constant. Because of 

the computational overhead associated with volume changes, they are typically 

attempted with a frequency of once every n  sweeps {i.e. n  attempted move per 

particle) where n  is typically G [1 : 10]. Volume changes are assessed by testing
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the variation in enthalpy 5H [66] given by :

5Hab = 6Vab + P{Vb - V * ) - ^  In f  . (2.12)

A given volume change move is accepted if SHab < 0 or £ < e~/35Hab and rejected 

otherwise.

Several methods can be used to generate the volume changes. One of these in

volves generating a random change in volume (5V,) computing the corresponding 

changes in box lengths and rescaling the particle coordinates accordingly. How

ever this imposes the constraint that the simulation box remain cubic and involves 

changing, simultaneously, the lengths of all three box sides. Another scheme is 

to change every box length independently by choosing a box dimension randomly 

and assigning it a new length using a random variation. This method allows the 

box shape to change and, if necessary, adapt to the nature of the phase of the 

system under study.

2.1.2 G enerating random orientations

The generation of new random orientations is not a trivial exercise as can be 

the generation of new random positions. Here two methods for the generation of 

random orientations are described, namely the Barker-Watts method and the so 

called Local Frame method.

The problem

The aim is to generate a new orientation un given an initial orientation uG so that 

the distribution of possible trial orientations is uniform in a portion of the unit 

sphere delimited by a chosen boundary.

The orientation vectors u are defined according to 6  and </>, respectively, the 

zenithal and azimuthal Euler angles :
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u u .

\ u* /

cos cj) sin 9  

sin </> sin 9  

cos 9

(2.13)

with

9  G [0 : 7r]

4> G [ -7 T  : 7r]

The generation of un is performed so that :

9 n — 9 0 +  5 9

4>n =  (fro +  <5^

(2.14)

(2.15)

Where 59 and 5(f) are random angular displacement defined by the limiting con

ditions :

SO G [O:0max]

5<f> G [—7r : 7r]

It can be shown that the direct generation of 59 as :

9 n — 0 o -\- ( 2 £ #  — l ) ^ max

leads to non-uniform distribution of 59, in conflict with the MC move acceptance 

criterion [66]. Rather, random cos0 should be generated as :

COS 9n =  COS 90  +  (2 £ g  -  l)j(cos^max)

The Barker W atts method

The so called Barker Watts method [69] has been proposed as a fast method for 

generating random orientation. In Monte Carlo codes, orientation vectors are best 

represented by unit vectors rather than by explicitely stating the Euler angles. The 

Barker-Watts method allows the generation of random orientations without the
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computational overhead associated with the use of trigonometric functions. With 

this method a new orientation is generated as :

un =  Aau0 (2.16)

where A a is one of the rotation matrices A®, A y, A z, chosen at random :

f  1  0 o ' 1

A x =  0 cos 9R sin 9R

y 0 —sin9R cos9R J
(2.17)

A y  —

A , =

f  cos 9R 0 — sin0fl ^ 

0 1 0

sin 9R 0 cos 9R

cos 9R sin 9R 0 

— sin 9R cos 9R 0 

0 0 1

(2.18)

(2.19)

and 9R is a random angle so that 9R £ [0 : 0 max]-

This method has the advantage of being very fast, but also presents some possible 

drawbacks. If 59max = 7r, the generation of 2.106 un with u0 =  z shows that only 

a small portion of the unit sphere is available (see Figure 2.2(a).) This does not 

usually prevent good phase space sampling in the Monte Carlo sequence as the 

particles follow Brownian motion and, thus, u D is not constant. Therefore if un 

at step t + 1 is created using un from step t, the full unit sphere is available (see 

Figure 2.2(b).) This behaviour can, however, raise some problems in simulations 

with very low acceptance rates or where the director is aligned to a fixed direction 

by, e.g., a surface interaction or applied field.

The Local Fram e m ethod

The Local Frame method has been designed in order to provide a method which 

samples the full unit sphere at every step if 59max =  7r. The principle here is to 

generate a random orientation in the molecular frame f  which is transformed
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Figure 2.2 : Distribution o f the Euler angles for generated random configuration us

ing the Barker-Watts method. The Figure on the left corresponds to a generation 

with constant u0 and the Figure on the right to a distribution using changing input 

orientations.

into u£ in the laboratory frame /  using an appropriate rotation matrix.

u£  is given by :

- VU i  =

^ cos (f)]i sin Or ^ 

sin (j)R sin 0 R 

\  COS 0R J

(2 .20)

with :

cos Or =  1 -  &(1 -  (cos <9max)) 

4>r =  ( 2 ^  -  1 ) t t

(2 .21)

(2 .22)

and where £g and ^  are random numbers in [0 :1]. The transformation of u£; 

into is given by :

u I =  R - 1̂ '  (2.23)

where R t  is the rotation matrix that transforms a vector u from u =  (cos 4 > sin 0,- 

sin (j) sin 0, cos 9) in /  to u =  (0,0,1) in / '.  In a right handed coordinate system, 

this transformation is a rotation of (f) about z followed by a rotation of 9 about y
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Figure 2.3 : Distribution of the Euler angles for generated random configuration us

ing the Local-Frame method. The Figure on the left corresponds to a generation 

with constant u0 and the Figure on the right to a distribution using changing input 

orientations.

thus :

Rt —

cos 9 0 — sin i 

0 1 0

sin 9 0 cos 9

/
\

R t —

cos (j) sin 0 0

- sin (f) cos (f) 0

0 0 1

\

and therefore

cos 9 cos (j) cos 6  sin </> — sin 9 

— sin <f> cos (j) 0

^ sm9cos(f) sin 9 sin </> cos^ J

(  cos0 cos9 —sin0 cos(f)sin9 ^

R ^1 = sin (f) cos 9 cos (j) sin (j) sin 9

— sin 9 0 cos 9

(2.24)

(2.25)

(2.26)

(2.27)

If $max =  7r, this method allows one to sample from the full unit sphere at every 

random generation (see Figure 2.3) ; however it presents the drawback of being 

slower than the Barker-Watts method. As a result the latter is still preferentially
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used for Monte Carlo simulations with s sufficiently high acceptance rate. The 

Local Frame method, on the other hand, shows its strength in the generation 

of random initial configurations or for simulations where acceptable phase space 

sampling requires the use of simulation parameters inducing a low acceptance 

rate.

2.1.3 M olecular D ynam ics

The Molecular Dynamics (MD) method was introduced by Alder and Wainwright 

in 1959 [70] in an attempt to describe the time evolution of fluids at a molecular 

level ; at the time only the Monte Carlo method was available for the task. The 

technique involves solving the simultaneous Newtonian (spherical molecules) or 

the combined Newtonian-Euler (non-spherical molecules) equations of motion for 

all particles in the system over a finite (and usually short) time. The method 

is based on the statistical mechanics result that an ensemble average of a given 

property .4reai of an ergotic system can be obtained from the time average of its 

instantaneous values as :

Aea, =  (A  (X(t)))time
1 P^ o b s

= —  /  A (X {t))d t  (2.28)
tobs J o

where X(£) describes the set of positional and orientational coordinates of the N  

particles system at a time t. The general algorithm of the Molecular Dynamics 

method is described on Figure 2.4.

With this process, the method used to calculate the force field is of critical impor

tance as it governs the equilibrium behaviour of the model. Solving the equations 

of motion is also the most time consuming part of the whole algorithm. Sev

eral algorithms have been developed for the optimization of this task, the most 

common of which are the original Verlet algorithm [71], the so called ‘leap-frog’ 

algorithm [72] and the velocity-Verlet algorithm [73]. The success of these lies in 

their time efficiency and ease of implementation.
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1. Create an initial configuration.

2. Calculate the forces on each particle.

3. Update the particles positions and velocities to the

current time step.

4. Calculate the instantaneous properties.

5. Return to step 2 until n time steps performed.

6. Compute the time average properties.

Figure 2.4 : The Molecular Dynamics algorithm.

The advantage of the MD technique is that it allows the study of transport proper

ties of particles and, therefore, renders possible the study of relaxation phenomena, 

which cannot be addressed using the Monte Carlo method.

One difficulty that arises with Molecular Dynamics is that when faced with sys

tems having both short and long time scale oscillations, the time step employed 

must be small enough to capture the high frequency behaviour ; nevertheless, the 

total run length is required to be sufficient to allow the system to exhibit long 

time scales phenomena. This problem is very common in the study of polymers, 

and biological systems.

Also it should be noted that Molecular Dynamics requires the use of a differen

tiable model, as the forces and torques are derived from gradient of the inter- 

molecular potential [66]. This said, discontinuous potentials, such as the square 

well potential [70, 74] have been used in MD simulations. In these case, the whole 

algorithm needs to be re-cast so as to consider binary collisions rather than fixed 

time steps. With more complicated non-differentiable models, however, the MD 

method cannot be used.
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2.2 M olecular models of Liquid Crystals

At a molecular scale, a first approximation of the shape of liquid crystals molecules 

would be a rod or a disc for, respectively, calamitic and discotic mesogens. Using 

such objects, interacting through appropriate intermolecular potentials, provides 

an excellent testbed for theories on the origins of liquid crystals phases. Two 

types of particles are commonly used. Hard particles models have their basis in 

Onsager theory, which shows that short range repulsive interactions alone can lead 

to the formation of liquid crystal phases such as the nematic phase. A refinement 

of these models is to incorporate the attractive forces which are responsible for 

the more sophisticated mesophases. Section 2.2.1 discuss the first type of models 

while the effects of attractive forces for the most popular soft model, namely the 

Gay-Berne model, are presented in Section 2.2.2.

2.2.1 Hard particle m odels.

Hard ellipsoids of revolution

The structure of simple atomic fluids can be described efficiently and surprisingly 

accurately using hard sphere models. The most obvious extension of this result 

that incorporate the anisotropy of mesogens is to represent the particles by hard 

ellipsoids of revolution (HER) with semi axes a = b ^  c. For this model, the 

length to width ratio k is defined by k = Also both discotic and calamitic 

particles can be modeled according to the value of k. Although spherocylinders 

were used in Onsager’s treatment, the HER can be expected to follow the Onsager 

solution as it can be shown that for both shapes, the expression for the excluded 

volume of a pair of particles as a function of their relative orientation a  takes the 

form Vexc\ ~  sin a a [39].

The main drawback of the HER model is that the contact distance between two 

ellipsoids can not be expressed in a closed form. The first Monte Carlo simulation 

of this model was performed on a two dimensional system by Vieillard-Baron in 

the early 1970’s [37]. This work gave the first algorithm for the contact distance
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between two ellipses and showed that excluded volume effects play an important 

role in mesophase formation. However, limitations in computer power prevented 

Vieillard-Baron from establishing the behaviour of three dimensional systems. 

The contact distance computation algorithm was later refined by Perram et al. 

[75, 76] and a tentative phase diagram for three dimensional systems was proposed 

by Frenkel et al. [38]. This showed the existence of four different phases namely 

isotropic, nematic, plastic crystal and ordered crystal. A more thorough investiga

tion by Frenkel and Mulder [39] established the range of stability of those phases; 

more specifically nematic phases were found for k > 2.75, the transition density 

reducing with increased molecular elongation. Comparison of those results with 

the y-expansion density functional theory where the free energy expansion was 

cut at the third term [42] showed good agreement for |  < k < 3; a worsening of 

the theoretical predictions was found with more extreme k values, however. 

Despite the argument from Zarragoicoecha et al. [77] that the stability of the 

nematic phase for k =  3 is an artifact of the limited system size employed by 

Frenkel et al. simulations, subsequent work by Allen and Mason [78] for several 

system sizes confirmed the validity of the phase diagram proposed by Frenkel et 

al. An extension of this phase diagram was later proposed by Camp et al. [79] 

who computed of the exact location of the isotropic-nematic phase transition us

ing Gibbs-Duhem integration techniques.

Studies by Allen et al. [80, 81] of a biaxial version of the hard ellipsoid model 

(a ^  b ^  c) for J =  10 and 1 < |  < 10 showed the existence of isotropic, 

nematic, discotic nematic and biaxial phases. Again, the exact location of the 

isotropic-nematic and isotropic-discotic nematic phase transitions were computed 

using Gibbs-Duhem integration methods.

The extensive studies performed on this model have established a comprehensive 

and very precise phase diagram as a function of molecular elongation. The range 

of stability of the different phases can be summarized as :

• plastic solid : k E [y^ : 1.25]
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• ordered solid : k E [\ : 2]

• discotic nematic : k <

• nematic : k >

The major conclusion that can be drawn from these results is that Onsager’s solu

tion applied at the intermediate values k ~  3 — 5 corresponding to the elongation 

of common mesogens.

Hard spherocylinders.

Another very popular model for calamitic liquid crystals is the hard spherocylin- 

der (HSC). This is the model used by Onsager, that is a cylinder of length L and 

diameter D terminated by two hemispherical caps of diameter D. The elongation 

k of such an object is therefore k = The reasons for the use of this model are 

threefold. First it is the shape used in Onsager’s theory and therefore the most ob

vious choice to make when testing this theory using computer simulations. Also for 

computational purposes, the model presents the advantage of having a tractable 

expression for the contact distance. Finally the spherocylinder shape resembles 

closely that of the liquid-crystal-phase-forming tobacco virus [82, 83]. There is, 

however, no obvious extension of this model to discotic particles ; equivalence 

could be considered using cut spheres [84] or sort cylindrical segments [85]

The first computer simulation on hard sphero cylinders was performed by Vieillard- 

Baron [86] using elongations k = 2 and 3, but this study did not find any stable 

nematic phases. Limitations in computer power prevented the author from fully 

investigating a system with k =  6. In 1987, Frenkel [87, 88] performed the first 

simulations of three dimensional systems of hard sphero cylinders with elongation 

k 6 [0 : 5] and free translation and rotation; the authors found the model to 

exhibit three phases, namely : isotropic liquid, nematic and smectic A. With the 

shorter elongation k = 3, Veerman and Frenkel [89] found the nematic and smectic 

phases to become respectively unstable and metastable. A more complete phase
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diagram was later proposed by Me Grother et al. [90] for different values of k in 

the range [3 : 5] and confirmed the results from Frenkel et al. The authors also 

showed that as k was increased, the smectic A phase was stable for ^  > 3.2 

whereas the nematic phase required ~  4. Bolhuis and Frenkel [91] later refined 

and completed this phase diagram into the Onsager limit.

From these studies the phase diagram of the HSC can be summarized as :

• Nematic : > 3.7.

• Smectic A : > 3.1.

2.2.2 The G ay-Berne m odel.

Despite their simplicity and their success in modeling liquid crystalline phases, 

the steric models discussed above have limitations in that they can not be used to 

model every liquid crystalline phase (e.g. smectic B) and the effect of attractive 

interactions can not be studied.

The first mathematically tractable model for soft particles was developed in 1972 

by Berne and Pechukas [92]. This model describes the interaction between soft 

ellipsoidal particles through a potential VBP which is alternately repulsive and 

attractive at short and long ranges. This potential however presented unrealistic 

features such as having equal well depths for end to end and side by side parallel 

molecular arrangements. These deficiencies were resolved by Gay and Berne [93] 

who modified the functional form of the Berne-Pechukas potential so that it could 

give a reasonable fit to a linear arrangement of four Lennard-Jones sites. This 

resulted in the now widely used Gay-Berne model VGB expressed as :

VGS = 4e(u;,u ,,iij) {i?12 — /J6} (2.29)

with R  =  ------- ——^ ---r .
r -  Uj, Tij) Too

Where cr(uj, u^,r^) is the shape function for two Gaussian ellipsoids, as deter-
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mined originally by Berne and Pechukas [92],

a^uj^Ti j )  =  (Jo < 1 -  - x
( f y  • U ; +  f y  ■ U , )  ( f y  • U j  -  T ij ■ U j ) ‘

1 +  x ( u j ' U j ) 1 -  x ( f l j  ' U j )

(2.30)

<j0 defines the unit of distance and x  is the shape anisotropy parameter defined 

using k the length to breadth ratio as :

k 2  — 1
X k2  + 1'

The energy strength parameter is defined as :

eiu^Uj.Tij) =  eoe^iui^u^e^Uj.Uj.rij)

with

e i ( u i , U j ) =  [1 -  X2( u { • U j ) 2]'

and
- \2

( f j j  • U i  +  f i j  • U j )  ( f i j  • U ;  -  r y  • U j )

(2.31)

(2.32)

(2.33)

(2.34)
1 + X'(Ui • iij) 1 -  x'(u« • Uj)

Here x' is the energy anisotropy parameter defined using k' the ratio of end to 

end and side by side well depth (eee and ess respectively) :

k ' ^ 1 -  1

X = k ' ^ 1 +  1
(2.35)

kf =  —
ŝs

The Gay-Berne model behaviour can be easily tuned through modification of the 

four parameters fc, k /z and p.

Preliminary simulation results by Adam et al. [94], using the parameterisation 

G B (k,k ',v ,n )  =  GH(3,5,1,2), showed the Gay-Berne model to be suitable for 

liquid crystal modeling as both isotropic and nematic phases were observed. Sub

sequent work by Luckhurst and Stephens [95] using the slightly different parame

terisation G£?(3,5,2,1) found a much richer phase diagram containing isotropic, 

nematic, smectic A, smectic B and crystal phases. Thanks to a very thorough 

study by the Seville group [96, 97, 98], the full liquid crystalline phase diagram of
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the model was then determined for GB(3,5,1,2).

The parameterisation GB(3,5,3,1) was used by other groups [99, 100]; while this 

gives the same isotropic, nematic and smectic phases as the previous parameteri

sation, the increased value of /i allows for a wider nematic region.

The substantially different parameterisation (75(4.4,39.6-1, 0.74,0.8) was used 

by Luckhurst and Simmonds [101] in an attempt to use a model better fitted 

to representing real mesogens. This parameterisation was obtained from fitting 

the Gay-Berne potential to a uniaxial version of a realistic potential of the p- 

terphenyl molecule. The authors found a phase behaviour compatible with their 

aim; the model displayed isotropic, nematic and smectic phases. Subsequently, 

Bates and Luckhurst [102] performed a thorough study using the parameterisation 

GB(4.4,20_1, 1,1) and found the model to exhibit isotropic, nematic, smectic A 

and smectic B phases in good agreement with the behaviour of the real mesogens 

this parameterisation was modeling. An investigation into the generic effects of 

the attractive part of the potential [103] showed that smectic order is favoured 

as k' is increased, thus showing the importance of attractive forces for the for

mation of smectic phases by ellipsoidal particles. A similar study into the effects 

of molecular elongation on the Gay-Berne phase diagram [104] showed significant 

changes notably in the location of the isotropic-nematic phase transition.

More recently, various extensions of the Gay-Berne model have been performed. 

Cleaver et al. [105] generalised the potential to give an interaction for particles 

with different elongations thus opening up the possibility of modeling LC mix

tures. Zewdie [106, 107] developed a Corner-like potential where the range and 

energy strength parameters are expanded in terms of a complete orthogonal basis 

set, namely Stone [108] functions. The advantage of this method is that each term 

in the energy strength parameter can be associated with a given type of interaction 

thus allowing fine tuning of the model. Application of this approach to the mod

eling of discotic particles [106] lead to the formation of isotropic, discotic-nematic, 

columnar and crystal phases while the modeling of calamitic particles (using an
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equivalent of G 5 (3 ,5 ,1,2)) showed isotropic, nematic, smectic A, smectic B and 

crystal phases in agreement with [94].

Biaxial particles have been studied by the Bologna group [109, 110] using a gen

eralization of the Gay-Berne potential to the interaction between two arbitrary 

ellipsoidal particles presented in [111]. These studies have indicated that the an

swer to the much argued about question of the existence of biaxial phases is that, 

such phases can exist since both biaxial nematic and smectic phases have been 

observed.

The inclusion of dipole electrostatic moments into Gay-Berne particles has been 

studied by Houssa et al. [112, 113] and revealed that although the location of 

the phase transitions of the model are insensitive to the strength of the dipoles, 

the electrostatic forces were found to have a considerable effect on the nature of 

the observed phases, multipole electrostatic moments has also been considered. 

Specifically, Berardi et al. [114] included two outboard permanent dipoles at var

ious angles from the axis and observed tilted smectic phases whose intra-layer ar

rangement was compatible with Smectic I and tetragonal smectic T. The inclusion 

of quadrupole moments into a GB(4,5,2,1) system [115] proved to have strong 

effects upon the smectic regions of the phase diagrams such as the replacement of 

a smectic B by a Smectic I phase. These developments, along with the extended 

possibility of parameterisation, makes, the Gay-Berne model a very versatile one 

which can be applied to a wide number of different types of interactions.

2.3 M odeling of flexoelectric particles

Flexoelectricity is an important property to be considered in the design of mate

rials for use in liquid crystal devices. It has been shown, theoretically, that flexo

electricity can be used as the driver for the switching in new generation LCDs [1]. 

Although thoroughly studied experimentally and theoretically (see Chapter 1), 

computer simulation studies of flexoelectric particles are relatively scarce, mainly 

due to the difficulty of modeling the shape anisotropy if Meyer’s principle is to
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be considered. Models showing ferroelectric behaviour, have, however been well 

studied [116, 117].

One attempt at modeling flexoelectric particles was performed by Neal et al. [118] 

in their study of molecules formed from rigid assemblies of three Gay-Berne sites. 

One of these models was a triangular arrangement of parallel particles whose 

overall shape resembled that of a pear. This system exhibited an isotropic to 

smectic ordering transition in which the particles adopted anti-parallel orienta

tions in adjacent layers. A subsequent attempt at modeling pear shaped particles 

was performed by Stelzer et al. [30] using Gay-Berne sites to one end of each was 

connected a Lennard-Jones sphere. Isotropic, nematic and smectic phases were 

found for this model. The computation of the flexoelectric coefficients gave a 

non-zero splay coefficient and, within error estimates, a zero bend coefficient in 

accordance with Meyer’s theory. Subsequent simulations by Billeter and Pelcov- 

its [31], using a slightly different energy parameterisation and a different method 

for the computation of the flexoelectric coefficient showed results in agreement 

with [30].

Berardi et al. [2] subsequently developed a single-site potential for pear shaped 

particles using Zewdie’s Stone expansion approach [106, 107]. This study was 

rather successful as this computationally efficient model showed isotropic, nematic 

and smectic phases, the latter two of which, upon application of an appropriate 

energy parameterisation, exhibited net polar order. Further details regarding this 

potential are provided in Chapter 6

2.4 Liquid crystals in confined geom etries

The behaviour of nematic liquid crystals close to a confining substrate is of fun

damental importance for liquid crystal display design [53]. This has lead to 

many experimentalist studies into the interfacial properties of confined liquid crys

tals [119, 120]. These types of systems have also been well studied theoretically
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using a wealth of different techniques such as van der Waals theory [121], density 

functional theory [1 2 2 , 123] and mean field approximation [124]. Comparatively, 

the number of molecular computer simulations of confined liquid crystal systems 

is rather small.

From the wealth of experimental data available, it is clear that the confinement 

of liquid crystals breaks the symmetry of the confined fluid by inducing two main 

effects [125] namely positional layering and orientational ordering through a mech

anism called anchoring.

The first effect is a universal consequence of confinement and has been observed by 

Schoen [126,127] through computer simulations of atomic {i.e. Lennard-Jones) flu

ids. On the other, hand surface-induced orientational order is specific to molecules 

with shape anisotropy such as mesogens. For these particles, several surface ar

rangements can be observed according to the particles’ orientations with respect 

to the substrate as shown on Figure 2.5. These arrangement are homeotropic, 

planar and tilted with respectively 6  = 0 , § and e ] 0  : |[ ,  where 6  is the angle 

between the surface normal and the mean particle orientation. Further details re

garding variations on these three basic types of surface ordering {i.e. monostable, 

multistable and degenerate) are given in [125]. The surface energy, or anchoring 

energy fs  is commonly taken to be related to 6  s , the angle between the surface 

director and the natural anchoring angle, by f s = |PF0 sin2 (i9s) [125, 128] where 

Wo is the anchoring strength and measures the ease with which the director can 

deviate from the imposed anchoring direction.

Early computer simulation studies of confined liquid crystalline systems used the 

Lebwohl-Lasher lattice based models [129, 130] and were successful in describing 

the enhanced order found in interfacial regions and shifts in the location of the 

isotropic-nematic transition due to the confinement. However the very nature of 

such a lattice model introduces limitations, particularly its neglect of surface in

duced layering.
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(a) Planar (b) Homeotropic (c) Tilted

Figure 2.5 : Illustration o f the three main surface arrangements. The substrates are 

represented by the gray semi-transparent thick lines.

Subsequently, Chalam et al. [96] used the Monte Carlo technique on a system of 

confined Gay-Berne particles using a separable form for the particle-surface po

tential. This study confirmed the behaviour seen in lattice simulations, showing 

a shift of the isotropic-nematic transition to higher temperatures due to the sta

bilization of the liquid crystalline phases by the substrate. However the use of a 

surface potential which was separable into spacial and angular parts meant that 

the shape of the particles was not properly taken into account. This was remedied 

by Zhang et al. [131] who used the same molecular model with a separable sub

strate potential and observed tilted layers at the surface. Wall and Cleaver [132], 

using a modified surface potential, extended this study so as to include the effect of 

changing temperature and phase. Another modification of this surface potential, 

involving azimuthal coupling, was used by Latham and Cleaver [133] in systems 

of confined mixtures of Gay-Berne particles. In these studies the alterations to 

the surface potential were restricted to the well-depth anisotropy term, whereas 

the shape function of the potential was always that for the interaction between a 

Gaussian ellipsoid and a sphere.

Although it has been shown that, in a confined system, the bulk orientation is of

ten determined by the orientational distribution of the surface particles [131], some
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authors have found rather different behaviour. Gruhn and Schoen [134, 135, 136] 

studied very thin films of Gay-Berne particles in a slab geometry confined be

tween surfaces of rigidly fixed atoms; upon changing the thickness of the film, the 

orientation of bulk region particles was found to change regularly from planar to 

homeotropic. Another example of this kind of behaviour is provided by the work 

of Palermo et al. [137] who observed abrupt changes in particle orientation when 

moving from the surface to the bulk regions in systems of Gay-Berne particles 

absorbed at graphite surfaces.

Simulations of confined hard particles have also been performed. Allen [128] used 

a system of hard ellipsoid with elongation k = 15 confined so that their centres 

of mass interacted sterically with smooth substrates. A homeotropic substrate 

arrangement was observed. Subsequently van Roij et al. [138, 139, 140] used hard 

spherocylinders confined between a hard smooth wall and an isotropic liquid crys

tal and observed surface induced wetting and planar ordering. These studies also 

showed that the planar arrangement is the natural state of hard-rod nematic phase 

in contact with a flat surface and when surface absorption is not made possible. 

Chrzanowska et al. and Cleaver et al. [141, 142] used the Hard Gaussian Overlap 

(HGO) model (i.e. a hard version of the Gay-Berne model) in symmetric and 

hybrid anchored films using the Hard Needle Wall (HNW) potential as a surface 

model. Simulations of symmetrically anchored systems showed that appropriate 

tuning of the HNW potential lead the preferred surface arrangement to switch 

between planar and homeotropic. Hybrid anchored systems exhibited a discon

tinuous transition from bent-director (or HAN) to uniform director arrangements 

as the anchoring coefficients of the surfaces were made sufficiently different. This 

result was consistent with experimental observations [143] of 5CB molecules spun 

cast onto silicon wafers which were subject to planar anchoring at the solid sub

strate and homeotropic anchoring at the free surface. Upon increasing the film 

thickness from a few molecular lengths to more than 2 0  nm, the molecules which 

first formed small islands proved able to form a stable film at increased thick
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nesses since they were then able to adopt a bent-director. A similar result was 

shown theoretically by Sarlah and Zumer [144] that is, very thin films with hybrid 

anchoring do not show a bent-director structure.

Realistic simulations of confined molecules have also been performed. Cleaver and 

Tildesley [145] have performed energy minimisations on systems of 8 CB molecules, 

represented by an assembly of 2 2  spherical sites, absorbed on either a smooth or 

graphite planar substrates. They found that strips of 50 molecules formed struc

tures almost fully compatible with scanning tunneling microscopy (STM) observa

tions. Later, Yoneya and Iwakabe [146] performed molecular dynamics simulations 

on systems of 8  molecules of 8 CB anchored on graphite and initially arranged in 

the structures shown by the STM experiment. However, due to the small system 

size used and the lack of periodic boundary conditions, these arrangements proved 

to be unstable. These limitations were later removed by Cleaver et al. [147] who 

studied periodic systems of monolayers of 8 CB and 1 0 CB molecules anchored on 

graphite using energy minimisation and molecular dynamics techniques. The find

ings of this study showed structures fully consistent with the STM observations. 

A more systematic series of simulations was conducted by Binger and Hanna [148, 

149, 150] who performed realistic molecular dynamics and molecular mechanics 

simulations of various liquid crystals molecules (e.g. 5CB, 8 CB, MBF). Systems 

ranging from single molecules up to two monolayers anchored on different poly

meric substrates (e.g. PE, PVA, Nylon 6 ) were investigated. The authors found 

that for most substrates, the molecules adopt planar arrangements with specific 

favoured conformations. In the most recent of these studies [150] the atoms of the 

substrate were replaced by a pseudo potential which had the combined effects of 

saving computer power and making the substrate model more generic. The results 

from this last set of simulations proved to be very encouraging as they were fully 

consistent with previous results despite the increased simulation speed.
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2.5 Anchoring Transitions

The study of confined liquid crystalline systems has shown that different particle- 

substrate interactions can lead to various types of surface anchoring. A number of 

experimental studies have reported that, upon changing some of the experimental 

conditions (i.e. temperature, structure of the aligning agent), transitions between 

two surface arrangements can be observed which leads to a change in the bulk 

alignment. Transitions which meet these requirements are called anchoring transi

tions. However, even in studies where the surface induced structural changes have 

been thoroughly studied, the mechanisms underlying these anchoring transitions 

remain relatively unexplained. From the many experimental studies reporting 

anchoring transitions, it can be deduced that a concensus about the origins of 

these transitions is still lacking since a number of different mechanisms have been 

proposed to explain the origins of anchoring transitions.

The first observed anchoring transitions were temperature driven [151, 152] ; other 

authors have shown that anchoring transitions can be obtained by a change in 

the conformation of the surface aligning agent [153, 154]. Light can also induce 

anchoring transitions by changing the structure of the substrate molecules (e.g. 

light induced cis-trans isomerization) and, therefore, the particle-substrate inter

action [155]. This is a feature that can be exploited in optical storage devices. The 

absorption behaviour of a liquid crystal on the substrate [156, 157] or of volatile 

molecule on the liquid crystal substrate interface [119] can also lead to anchoring 

transitions if the amount of absorbed particles or the nature of the absorption is 

changed. One last mechanism is the memory effect whereby a multistable anchor

ing system can preferentially adopt one of its possible anchoring states due to the 

history of the sample [125, 158].

Although a number of mechanisms underlying anchoring transitions are in prin

ciple known (see [159] for a review) very few theoretical analyses have been per

formed. Teixeira and Sluckin [160, 161] used a Landau-de Gennes free energy
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functional to study the planar to homeotropic anchoring transition in systems of 

liquid crystals confined by different substrates. They found a rich anchoring be

haviour, despite a number of simplifications that had to be made, which helped in 

the identification of the possible mechanisms responsible for anchoring transition; 

in this case, the compositions of binary mixtures of liquid crystals and the amount 

of adsorption at the surface. Subsequently Teixeira et al. [162] used a Landau-de 

Gennes formalism to observe a temperature driven anchoring transition at the 

interface between a liquid crystal and smooth solid surface, thus confirming the 

experimental findings.

The effect of non-uniform substrates {i.e. microtextured) has been studied by Qian 

and Sheng [163, 164] using a Landau-de Gennes formalism. They show that the 

effect of the substrate is to induce temperature dependent tilt angles separated 

by phase transitions.

The literature on computer simulations of anchoring transition is extremely scarce. 

Cleaver and Teixeira [142] have studied systems of hard Gaussian overlap particles 

confined in a slab geometry and interacting with smooth substrates via the hard 

needle wall potential. There, adsorption phenomena induced an homeotropic to 

planar anchoring transition as the surface potential parameterisation was changed. 

More details into similar systems can be found in Chapter 4. Another simulation 

study of an anchoring transition was that of Lange and Schmid [165, 166, 167] who 

observed an anchoring transition between tilted and homeotropic arrangements 

in a system of ellipsoidal Gay-Berne confined by grafted polymer chains (made of 

Gay-Berne ellipsoids) as the grafting density was changed.
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Chapter 3

Com puter simulations of Hard 

Gaussian Overlaps

Introduction

In the previous Chapter it was shown that the Gay-Berne potential is one of the 

most versatile molecular models for liquid crystal simulations. Depending on the 

chosen shape and energy parameterisation, it can be used to model many liquid 

crystalline phases. However, when the nematic phase only is of interest, the use 

of hard particle models is a preferable option, being computationally easier and 

faster to implement than the soft models. Also hard particles have proven to be 

a very good test-bed for perturbation theories.

In this Chapter the computer simulation of such a model, the hard Gaussian 

overlap (HGO) model is discussed. First a literature review of the computer sim

ulations and theoretical work performed on this model is provided. The techniques 

used for the computation of the most relevant observables in computer simula

tions are then presented. Finally, some preliminary results from bulk simulations 

of prolate and oblate HGO particles are presented. A comparison with existing 

results for calamitic molecules is also included.
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3.1 The Hard Gaussian Overlap M odel.

The HGO model is a steric model in which the contact distance is the shape 

parameter determined by Berne and Pechukas [92]. The HGO model can be seen 

as an equivalent of the Gay-Berne model stripped of its attractive interactions. 

The hard Gaussian overlap potential VHGO between two particles i and j  with 

respective orientations u* and uj and intermolecular vector =  r^-fy is defined 

as :

VH G 0  =
0 if Tij > ( r ( U j , U j , r y )  ^

00 if )'y < crfUi, u,, r,j)

where cr(uj, u^, r^-) is the contact distance :

c r ( u i , U j - , r y ) =  a 0 J  1 -  i *
( f y  • Ui +  f y  • U, ) 2 ( f y  • Uj -  f y  • U j )2

1 +  x ( f l i  • U j )  1 -  x ( U i  • U j )

(3.2)

Here <j0 is the unit of distance and x ls the shape anisotropy parameter defined 

using k the length to breadth ratio as :

Although this model was originally derived using geometrical considerations, the

hard Gaussian overlap molecule can not be represented by a solid shape [168],

rather it is a mathematical abstraction of an interaction surface between two non-

spherical objects. The shape of an HGO molecule can, however, be taken to be

very close to that of an ellipsoid of revolution. For example one can assume the

contact distance of the interactions between two ellipsoids and two HGOs in the

arrangements shown in Figure 3.1. The two models agree for end to end and side

by side configurations. However, in the case of a T-geometry, the HGO contact

distance is a = — rather than £ =  ao(l+k) for the hard ellipsoid of revolution 
(i-x ) 2 2

(HER) model. Due to this similarity, the volume of an HGO molecule is often 

taken to be that of the equivalent ellipsoid [168, 169], that is :

Vhgo =  ^ k a l  (3.4)
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(a) <7hGO = ^HER = 0 0  (b) (7HGO = O'HER = (c) ^HGO = , g<f i '
( l - x ) 3

(To k O'HER — ^-(1 + k)

Figure 3.1 : Comparison between the contact distances for the HGO and HER models.

A more comprehensive comparison between the HGO and HER models has been 

performed by Bhethanabotla and Steele [170] who computed the virial coefficients 

f ?2 to  for both models with k  G [1.5 : 3.0]. They found th a t the differences 

between equivalent coefficients of the two models are insignificant for this range 

of elongation. Since the HGO model is computationally cheaper than  the HER. 

would, and, due to  the similarities just outlined, a similar phase diagram is to  be 

expected for both models. This explains for the HGO model being increasingly 

used.

An extensive amount of theoretical work has been performed on the HGO fluid 

through wdiich the model’s virial coefficients [171, 170, 168] and equation of 

state [172, 173] have been obtained. The first molecular simulation of the HGO 

fluid were performed by Padilla and Velasco [36] on systems of N  =  256 and 

512 particles with elongation k  =  3 and 5 using the Monte Carlo m ethod in 

the isothermal-isobaric ensemble. Here the authors found both isotropic and ne

matic phases, the transition densities and pressures (p*,P*) being approximately 

(0.295,4.5) for k =  3 and (0.116,0.88) for k  = 5. This work was later refined by
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de Miguel and Martin del Rio [169] who accurately located the isotropic-nematic 

transition regions for systems of IV =  500 molecules with k G [3 : 10]. Compari

son of these results with the transition properties of the HER showed quantitative 

differences which have been explained to be a consequence of the larger excluded 

volume of a pair of HGO.

The latest study on the HGO fluid was performed by de Miguel and Martin del 

Rfo [174] where the equation of state of the model was computed and compared to 

several theoretical approaches ; the best agreement being found with the Parsons- 

Lee density functional theory.

3.2 Observables com putation.

In this Section, the computational details are given for the calculation of the most 

important observables considered in this thesis. First, the observables used for 

the measurement of positional order are considered, followed by those related to 

orientational order. This section closes on the computation of observables profiles 

for the study of confined systems.

3.2.1 Positional order

The radial pair d istribu tion  function : g(r)

The pair distribution function g(r) is of great importance in the molecular sim

ulations of fluids as it provides detailed insight into the structure of the studied 

phase. g{r) represents the probability of finding a pair of particles i and j  with 

an intermolecular separation As a result, quantitative insight into the the 

nature of the studied phase (gas-liquid-solid) and the positional correlations of 

the particles can be obtained using g(r). This function can be expressed as [6 6 ] :

^  = (3-5)
\ i jŷ i /

Where S(r — rij) is a function which is non zero over a given interval, V  is the 

volume and N  the number of particles.
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Figure 3.2 : Representation o f  the volume corresponding to a spherical shell between 

the distances r and r +  Sr as used for the computation o f g(r). For clarity purposes, 

part o f  the volume has been excised.

Within the course of a simulation, g(r) is constructed by computing an histogram 

of all pair separations £ [r : r +  Sr} where r £ [0 : and Lmin is the shortest

simulation box length. The histogram bin heights represent the average particle 

occupancies in concentric spherical shells around any particle taken as the refer

ence (see Figure 3.2). In order to obtain g(r), the histogram must be normalized 

by the average expected occupancy of an ideal gas at the same density. This im

plies that the histogram bin corresponding to a distance r, must be normalized by 

P*KsheiiM where p* is the number density of the fluid and V̂ heii(̂ ) is the volume 

between two spheres of radius r and r +  Sr. The volume V̂ heii(̂ ) is shown on 

Figure 3.2 and is given by :

Is hell =  [(r +  Sr)3 -  r 3]

VsheU = [(<5r)3 +  3r2Sr +  3r(5r)2] (3.6)

To obtain of smooth functions requires the computation of an average g(r) from 

several uncorrelated configurations. This in turns, implies that the histogram
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(a) #||(r ||) (b) 9±(r±)

Figure 3.3 : Representation o f the volumes corresponding to a cylindrical shell between 

the distances r and r +  Sr as used for the computation o f g\\{r\\)(a) and g±(r±)(b). 

For clarity purposes, part o f the volume has been excised.

must also be normalized by Acaii, the number of configurations used. Also the 

histogram must be normalized by A", the number of particles used so as to make 

it system-size independent. As a result the total normalization coefficient is given 

by :

/norm =  (N N callp*Vs ̂

/norm =  (3 A) {4A2NcaU7T [(£r)3 +  3r2Sr +  3r(5r)2] }-1 (3.7)

Projections of g(r) : (rjj) and g±{r±)

In the case of liquid crystalline phases, the anisotropic nature of the fluid can make 

it necessary to consider different distribution functions in different directions of 

space. For instance, the distributions functions resolved parallel and perpendicu

lar to the director, namely #||(r||) and g±(r±), are of great utility in the study of 

smectic phases. The former measures the degree of layering in the sample while 

the latter measures the intra-layer positional order.

The approach used in the computation of <7||(f||) and g±{r±) is very similar to
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Lmin

\
\

(a)

Figure 3.4 : Representation o f  the geometry used for the calculation o f the size o f  the 

cylinder used for the computation ofg\\(r\\) andg±(r±_). (a) shows a three dimensional 

view and (b) is the projection o f  (a) in the plane P taking hcy\ = L m-m.

that used for g(r). Here histograms of the projection of rij parallel (t*u =  n  •

order to simplify the normalization process, the histograms are computed within a 

cylindrical geometry as shown on Figure 3.3. Again, the histograms are normalized 

by p*Vsheii, the expected average occupancy of a shell of an ideal gas, Nca\\ and 

N. However, because a cylinder is considered, the expression for V̂ heii is different. 

This is given for each of the functions as :

where hcy\ represents the height of the cylinder in which the computation is per

formed. The size of the cylinder must be chosen so as to be smaller than the 

simulation box but large enough to consider as wide a region as possible. The 

chosen method sets the cylinder height to hcy\ = 0.8Lmin. The cylinder radius rcy\

ry) and perpendicular (r± = wr?- — rjj) to the director n are considered. In

nr25r for <7||(?"||)

hcy\TT [(8r)2 + 2r5r\ for g±{r±_)
(3.8)

is then chosen so that the cylinder would just fit in a cubic box of size Lmjn if
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hcyi =  Lmin (See Figure 3.4). Therefore the size of the cylinder is :

hc yi =  0 .8 Lmin 

rcyi =  b tan a

where b and a are shown on Figure 3.4 and are given by :

, Lmin (\/3 -  l)
b =  2--------

/2a = arccos y  -

Molecule-based projections of g(r) : g™ol(r\\) and <7™o l(r j_ )

In ordered systems where the particles form layers which are not parallel with one 

another, taking the director n as the reference for the computation of the pair 

correlation functions becomes irrelevant. Rather an alternative scheme which 

allows to ‘follow’ the layers is needed. This is obtained by the use of <7|jnol( r | | )  and 

P ioI(^±) which give the pair correlation functions parallel and perpendicular to the 

molecular orientation rather than n. In practice, these histograms are computed 

for every pair of particles i and j  taking u* as the reference. r\\ and r± are then 

defined as :

m =  fti-ru (3-u )

r-L =  - 1  (3-12)

The same cylinder geometry is used as for the computation of p“ol(r||) and g™o]{r±), 

the difference being that its orientation changes according to which particle i is 

being considered.

3.2.2 O rientational order 

Nematic order parameter.

The liquid crystalline phase can be characterized partly through the long range 

orientational order of the molecules; this triggers the need for an appropriate order

(3.9)

(3.10)
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parameter so as to quantify the degree of order in a given phase. Ideally this order 

parameter should have a value of zero for a phase with an isotropic distribution

of molecular orientations and a value of one for a phase with perfect alignment.

Experimentally, an appropriate definition for this is the so called nematic order 

parameter P2  [9] which is the average over all particles of the second order Legendre 

polynomial in cos a, where a  is the angle between every molecule and the director 

n  [9],

P2 =  (P2( cosa))particles (3.13)

P2 = ( 5 cos2a-| )  (3-14)
\  /  particles

Also, the nature of ^(cosct) involving cos2 a  implies that the nematic order pa

rameter does not differentiate particles with orientations uz and — ut.

Within the scope of computer simulations, the computation of P2  and, thus, its run 

average (P2)is not trivial. However it can be shown [175, 176] that the problem 

can be reduced to the diagonalisation of the ordering matrix Qap, a traceless 

second order tensor defined as :

1  N
Qol(3 —  2 ^ y  ^  (̂ a/3 } (3.15)

i = 1

where 6 ap is the Kroeneker function. The order parameter P2  is defined by A+, 

the maximum Eigen value of Qap [175]. The director is, then, the Eigen vector 

associated with A+.

In a simulation, the nematic order parameter (P2 )is obtained by averaging the 

values of P2  obtained from a significant number of uncorrelated configurations.

Eppenga and Frenkel [175] showed that, while this method is very accurate for 

the description of well ordered phases, the case of the less ordered phases is more 

problematic, especially for small systems. Indeed, in the case of a phase with an 

isotropic distribution of orientations, P2  should be zero whereas the value of the
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Figure 3.5 : Variation of the value of A+(n) computed using the Q matrix method for 

a system o fn  particles with an isotropic distribution of orientations.

computed A+ decays to zero as the number of particles increases (Figure 3.5). 

The difference between the computed and expected values become negligible for 

a particle numbers N  > 0(1O3).

Polar order param eter.

In the case of molecules with permanent dipole moments, both the order in the 

system, and the direction of n become important. The task of differentiating u* 

and — Ui is achieved using the first order Legendre polynomial Pi (cos a) =  cos a. 

The polar order parameter is therefore referred to as (Pi).

The computation of (Pi) requires the knowledge of the polar director npi =  

with :
1 N

npi = j v P fli' (3-16)
i = 1

and the instantaneous value of Pi is given by :

Pi = \nPl\ (3.17)

The simulation averaged polar order parameter (Pi) is obtained by taking the

average of the instantaneous Pi values from a high enough number of uncorrelated

configurations.
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A low polar order parameter does not necessarily indicate a disordered phase 

as non-polar nematic phases usually have an equal proportion of particles with 

Uj ~  n and Uj ~  — n ; however a high value of Pi does imply a high value of P2 .

3.2.3 O bservables profiles

In confined systems, the presence of interfaces introduces structural changes which, 

for a given set of thermodynamic and surface parameters, are functions of the dis

tance from the substrate. As a result, a great deal of insight into surface induced 

effects can be obtained through computation of observables profiles. Since it is 

common to consider the case of a slab geometry in the z direction (such as that 

used in Chapter 4), such profiles are referred to as the z-profiles.

The computation of most profiles is very straightforward; the simulation box is 

divided into Nsylce virtual slices, of width icsiiCe parallel to the substrates, in which 

the observables are computed independently. The computation of the profile A(z) 

of a property A  requires the computation of A  in each slice. A{zq) is obtained 

by computing A  considering only those particles whose z coordinates Z{ are such 

that Zi G [zq — : z0  +  ^ -]. In the course of a simulation, smooth profiles are

obtained through averaging a significant number of instantaneous profiles (typi

cally 500) obtained from uncorrelated configurations.

The most commonly computed profiles are p}(z) and Qzz(z). The former mea

sures the variation of density across the simulation box. Its computation requires 

simple division of the number of particles in a given slice by the volume of that 

slice.

Qzz(z) represents the variation of the element of Qap across the slab. Qzz mea

sures the degree of order with respect to z, the surface normal. Qzz = —0.5 for 

perfect order perpendicular to z (planar arrangement) and Qzz = 1.0 for perfect 

order parallel to z (homeotropic arrangement.) Again the computation of Qzz(z) 

is straightforward as it can be performed by considering only those particles whose
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centres of mass are located within the slice of interest.

In some cases however, the computation of the profiles is not straightforward. A 

good example is the computation of P2 (z). Here, the reduced number of particles 

in each slice introduces a lack of accuracy of the computed profiles because of the 

n dependence of A+ as presented in Section 3.2.2. As a result, the value of P2  in a 

given slice at position z0  can not be computed simply by applying the Q matrix 

method to those particles whose centres of mass lie within the slice. Rather, P2 (zq) 

is computed using the approach proposed by Wall and Cleaver [132] and based on 

the original expression for A+ from [175] :

A+ -  [! +  p2>  _  D] _  |  _  A  (P | _  p 23) _  (3.18)

where A+ is the maximum Eigen value of Qap and P2  denotes the true order

parameter in the slice. This can be rearranged so as to give a polynomial in P2

as :

a Pl +  bP% +  cP2  +  d =  0 (3.19)

with :

CL — —71 -f" 372 T  2

b = —3A+n(n — 1) — 3 (n — 1 ) 

c =  0

d — 4n2\+ — 3 n \+ — 1

P2 {zo) is then obtained by solving Equation 3.19 taking into account the n particles 

which belong to the slice centred at z = z0. It should be noted that some special 

cases must be considered. The computation is skipped if n =  0 or 1 as this 

would lead, respectively, to a trivial solution or an incorrect value of P2  = 1. In 

the case n =  2, Equation 3.19 reduces to a second order polynomial with roots

If the roots of Equation 3.19 are complex then an alternative scheme is used where

P2  = P |ecal with P2recal =  A+ — (Ard(n)). Here (Ard(n)) is the average A+ obtained
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from applying the Q matrix method to a high number [e.g. 105) of configuration 

of n particles with an isotropic distribution of orientations. If jP2recal < 0 then the 

computation of P2  for this slice is skipped.

3.3 Computer simulations

In this Section, results from Monte Carlo computer simulations of bulk systems of 

hard Gaussian overlap particles are presented. Although most of these simulations 

do not lead to new results (as the phase diagram of the model is already known,) 

they do provide a good test-bed for the simulation code used to produce the novel 

results given in Chapter 4 to 6 .

Two sets of results are presented here. First the bulk simulation of calamitic 

particles is considered using two elongations k = 3 and 5. The phase diagrams 

from these simulations are compared with those extracted from the literature [36, 

169] in order to validate the simulation code. Results from the simulation of 

discotic particles are then presented using the elongations k = 1/3 and 1/5.

3.3.1 C alam itic particles

Calamitic mesogens have been simulated using the hard Gaussian overlap model 

in the canonical and isothermal-isobaric ensembles and in compression sequences. 

Systems of N  = 1000 particles with elongation k = 3 and 5 were used. Typical 

runs consisted of 5.105 to 1.106 sweeps (i.e. attempted moves per particle) for both 

equilibration and production. The phase diagrams of the model were generated 

by computing P*(p*) from the constant N P T  runs and (P2 )(p*) from both sets 

of runs. Those are shown on Figure 3.6 respectively for k = 3 and 5.

For both elongations the P*(p*) curves show a ‘plateau’ characteristic of a first 

order transition. These correspond on (P2 )(p*) to a sharp, ‘S’-shaped increase in 

the nematic order parameter from values corresponding to an isotropic phase to 

those consistent with a nematic phase. Observation of the configuration snapshots
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Figure 3.6 : Phase diagrams obtained from Monte Carlo simulations in the constant 

N P T  and constant N V T  ensembles of systems of N  — 1000 hard Gaussian overlap 

particles with k = 3(a) and k = 5(b)
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(a) k =  3, P* =  3.5 (b) fc =  3, P* =  8.0

(c) k =  5, P* =  0.8 (d) fc =  5, P* =  1.5

Figure 3.7 : Typical configuration snapshots obtained from constant pressure Monte 

Carlo simulation o f systems o f N  = 1000 HGO particles with elongation k — 3 (a,b) 

and 5(c,d).
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Source k System size p *m Pi
*Pn Pn P%

p1

[36] 3 256 4.50 0.290 0.299 0.031

[169] 3 500 4.92 0.299 0.304 0.019

this study 3 1 0 0 0 4.975 0.299 0.309 0.033

[36] 5 256 0.880 0.113 0 . 1 2 0 0.062

[169] 5 500 0.996 0.119 0.127 0.067

this study 5 1 0 0 0 1.025 0 . 1 2 2 0.127 0.040

Table 3.1 : Comparison of the isotropic-nematic transition data for the HGO model 

and k — 3 and 5 with existing results.

(e.g. Figure 3.7) confirms this. From these data P?n, the pressure at the isotropic- 

nematic coexistence and p\ and p* respectively the density at coexistence of the 

isotropic and nematic phases can be estimated. Since the isotropic to nematic 

transition was not of specific interest in this thesis, those have not been deter

mined with the great accuracy that techniques such as thermodynamic integration 

allow [79, 81]. Rather, p\ and p* are taken to be the densities corresponding re

spectively to the beginning and end of the ‘plateau’ in P*(p*). P*n is taken to be 

the average of the pressures corresponding to p* and p*. The coexistence data are 

shown in Table 3.1 along with the results from Padilla and Velasco [36] and de 

Miguel and Martin del Rfo [169] for comparison.

The comparison shows that the results obtained here are fully compatible with 

those obtained in [36] and [169]. The slight numerical differences can be attributed 

to the differences in system sizes, de Miguel [177] has already shown that the ef

fect of increasing system sizes on the isotropic-nematic transition of system of 

Gay-Berne particles is to shift the transition to higher densities or lower tem

peratures. This shift can be observed through the shift of (P2)and p\ and p* to 

higher densities or lower temperature with increased system sizes. Another effect 

of system-size noticeable in de Miguel’s results is a slight strengthening of the 

IN transition with bigger systems. The good agreement shown here validates the 

accuracy of the Monte Carlo simulation code used in this study.
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3.3.2 D iscotic  particles

The Monte Carlo simulation code was subsequently applied to the modeling of 

discotic particles which have not been considered in the literature. These systems 

were simulated using methods adopted with the calamitic particles, that is using 

Monte Carlo simulations in the canonical and isothermal-isobaric ensembles. Sys

tems of TV =  1000 particles with elongations k = 1/3 and 1/5 were simulated in 

compression sequences, using similar run lengths to those employed with the pro

late elongaions. The phase diagrams obtained from these simulations are shown 

on Figure 3.8 for k = 1/3 and k =  1/5.

These results show a similar behaviour to that observed with the calamitic par

ticles. Both P*(p*) curves show a ‘plateau’ characteristic of a first order phase 

transition which corresponds to the typical sharp ‘S’-shaped increase in (P2 )(p*) 

indicating an isotropic to discotic-nematic phase transition. This is further con

firmed by observation of configuration snapshots, e.g. Figure 3.9. Despite the 

high pressures used here, no signs of a transition to a columnar phase have been 

observed. This is consistent with the lack of smectic phase for the hard Gaussian 

overlap model with k > 1 .
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Figure 3.8 : Equation of states obtained from Monte Carlo simulations in the constant 

N P T  and N V T  ensembles of systems of N  = 1000 hard Gaussian overlap particles 

with k = l/3(a) and k = l/b(b).
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(a) k =  1/3, P* -  25.0 (b) k =  1/3, P* =  59.0

(c) k =  1/5, P* =  14.0 (d) fc =  1/5, P* =  30.0

Figure 3.9 : Typical configuration snapshots obtained from constant pressure Monte 

Carlo simulations o f systems o fN  = 1000 HGO particles with elongation k = l/3(a,b) 

and l/5(c,c/,).
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Chapter 4 

Surface influence on liquid 

crystalline system s

Introduction

When a Liquid Crystal is placed in contact with another phase, a surface is cre

ated which breaks the symmetry of the system. There are two main effects to this 

symmetry breaking [125]. The first is to introduce molecular layering close to the 

interface while the second is to modify the surface orientational ordering in the 

interfacial region.

The purpose of this Chapter is twofold. First, the effects of confinement are stud

ied on systems of ellipsoidal particles represented by the hard Gaussian overlap 

model and using a simple particle-surface potential, the so called Hard Needle 

Wall potential. The effects of varying density and particle-substrate interactions 

are studied.

The second aim of this Chapter is to study the anchoring transition from planar 

to homeotropic alignment. As very little simulation work has been performed on 

anchoring transitions, it is hoped that this study can shed some light on their ori

gins. Finally, possible bistability regions in the anchoring behaviour of the models 

are examined.
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4.1 A first surface potential

Here, surface induced structural changes are studied using ellipsoidal shaped par

ticles interacting through the hard Gaussian overlap potential. In this Chapter all 

particle-surface interactions are performed using the Hard Needle Wall potential 

(HNW) [141] as this provides a simple and intuitive steric interaction which can 

be tuned so as to induce either homeotropic or planar arrangement. As a result 

surface induced structural changes can be studied using one model along with 

parameters values appropriate for both surface arrangements. Also, this potential 

allows the study of the transition from one arrangement to the other.

4.1.1 T he Hard N eedle W all potential

With the Hard Needle Wall (HNW) potential, the particles do not interact directly 

with the surfaces, rather the surface interaction is achieved by a needle of length ks 

placed at the centre of each particle (Figure 4.1). As a result, the HNW potential 

can be viewed as an extension of the potential used by Allen [128] where only 

the centre of mass interacts with the surface. The case considered in [128], thus, 

corresponds to the HNW potential with a zero needle length. The interaction 

potential between the needle and the surface is defined by VHNW as :

y H N W  _  <

with :

0  i f  \ z i - z 0 \ > a w
(4.1)

OO i f  | Zi -  z 01 < <TW

1

= 2 ^ 0 ks cos(9) (4.2)

Here do defines the unit of distance, ks is the dimensionless needle length and 9 

the angle between the surface normal and the particle’s orientation vector, which 

and also corresponds to the Euler zenithal angle. The behaviour of aw(9,ks) is 

shown on Figure 4.2
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Figure 4.1 : The HNW configuration

10

Figure 4.2 : Evolution o f ow(ks , cos 6 ) for the HNW surface potential.
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At high densities, this potential drives the preferred anchoring behaviour by dic

tating the volume of absorbed particles that can be subsumed into the surface. 

The only model parameter upon which the anchoring strength and angle are de

pendent is the needle length. According to this, there is a finite volume of any 

‘surface particle’ that can be absorbed on the surface. The effect of this absorbed 

volume is to reduce the system’s free energy due to the increased free volume (and, 

thus, entropy) it afford to rest of the system. The greater the volume absorbed, 

the lower the free energy. As a result the most stable surface arrangement, i.e. 

that which minimizes the free energy, is the one that maximizes the absorbed 

volume.

The surface behaviour of the HNW model has already been studied by Chrza- 

nowska et al. [141] and Cleaver and Teixeira [142]. For small ks, the homeotropic 

arrangement is most stable, whereas the planar arrangement is favored for long 

ks■ Some more quantitative insight into this can be obtained by studying the 

amount of volume that can be absorbed into the surface as a function of molecular 

orientation and needle length. Approximating the shape of a Gaussian ellipsoid 

to that of an ellipsoid of revolution [168], the volume Ve of a single particle of 

elongation k absorbed into the substrate as a function of ks and 6  can be obtained 

as described in Appendix A :

1  ( l _  I oS"w(feg,fl) Y (  I aSNW(ks, cos e ) \
3 ^ 2  y k 2  cos2 6  +  sin2 6  J y y k 2  cos2 6  + sin2 9 ̂

On replacing a^NW(ks,9) with the expression of Equation 4.2, Ve reads :

14 ,1

A graphical representation of this function is given in Figure 4.3.

This shows that regardless the needle length, the absorbed volume of a single 

particle is maximal for 9 = 7r / 2 , suggesting that the planar arrangement should 

be most stable for every case. One exception is the case ks = 0 where both

75



Ve<e- kS> 
0.4

0.3J.

0.2

0.1

0.0 
0.0

Figure 4.3:  Representation o f the absorbed volume Ve o f  a single particle for the HNW  

potential as a function o f k s  and 6.

planar and homeotropic arrangement allow the adsorption of an equal volume (half 

the ellipsoid volume.) Clearly this disagrees with the simulation results of [141, 

142] where intermediate, short needle lengths also showed stable homeotropic 

alignment. This discrepancy can be resolved by also considering the packing 

behaviour of the two arrangements. This is described in the next Section.

4 .1 .2  R ela tiv e  sta b ility  o f  anchoring orien ta tion s

We now consider the behaviour of a system of numerous hard Gaussian overlap 

molecules in a confined geometry, interacting with the surface through the HNW 

potential. The aim is to calculate the homeotropic to planar transition needle 

length for this system. Each particle close to the surface is approximated to be 

an ellipsoid of revolution with elongation k  = ^  and with semi axis a = b =  ^  

and c = y .  The following quantities are also defined :

•  Veps : full volume of an ellipsoid.

• Vp{ks) ' volume absorbed by one ellipsoid with 9 = |

•  Sp : area of the substrate occupied by one ellipsoid with 9 = ~

• Vii(ks) : volume absorbed by one ellipsoid with 9 =  0
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•  S h : area of the substrate occupied by one ellipsoid with 9 =  0

Figure 4.4 : Schematic representation o f the geom etry considered for the calculation

o fV H(ks ).

The homeotropic to planar transition can be understood by considering the ratio 

of the volume absorbed into the surface to the surface occupied by the particle on 

the substrate (i.e. the projection of the particle onto the substrate) for the two 

key arrangements. The free energy for these will be equal when the two ratios are 

equal. As a result, the problem of finding the anchoring transition needle length 

reduces to solving :

(4.5)Vfffe) _  Vp(ks)
SH ~ ~ S 7 ~

expression  for Vp(ks) an d  Sp

The case of planar alignment is straightforward :

SP = (4.6)

=  (4.7)

expression  for Sp

In the case of Homeotropic arrangement, 9 = OWks- As a result, although the

particle will be positioned at a different distances from the surface as a function
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of ks, the projection of the particle on to the surface is constant and thus :

Sh =  ^  (4.8)

expression for Vp(ks)

The volume that can be absorbed if 6  =  0, is a function of ks, but is not obtained 

trivially. The extreme cases are known :

Vh (0) =  ^

v„(k) =  0

The set up shown in Figure 4.4 is considered where ultimately V# (fcs) corresponds

to the solid volume. First an expression for Vp, the volume of a portion of an

ellipsoid from the tip to a distance z0 is required as a function of zq . From this 

Vfi{ks) can be identified. Starting from the equation of an ellipsoid :

x2 y2 z2 . .
~  + vy +  — 1 (4-9)er b2 cl

Vp is given by ;

/ ZQ P U m a x  P X  m ax

/ /  dx.dy.dz  (4-10)
-C "  Hxnin "  X m \n

Using (4.9), the triple integral transforms to :

PZQ p\y/£-zl pfy/b2 K-y2

V p =  / ___  / _____dx.dy.dz (4-11)
J-C J - k ^ c2 _ z 2 J_a^Jb2 K _ y 2

z2
with K  = 1 -  — 

cz

and thus :

Vp = nab '
Z° 1 1 3c2 )  +  3

(4.12)

This expression can be checked, considering two known limits. If z0  = c, Vp = 

|nabc which is the full volume of an ellipsoid. If z0  = — c, Vp = 0, again giving 

the expected result.
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Vn{ks) can then be obtained by identification of the parameters a, 6, c and z0  with 

the setup shown in Figure 4.4 using :

a =

O 
1

b 
r ii

c =
2

zo =

2
~ks

2

which leads to

(4.13)

Transition needle length

Having obtained expressions for Vh(fcs’), Sp, Vp(ks) and Sp , Equation 4.5 can be 

solved.

VH{ks) Vp(ks)
c -  O (4-14)Dp Sp

^ - ^  +  f ( * - D  =  0 (4-15)

Also, for clarity and generality purposes, the results are best expressed using the 

reduced needle length k's =  This leads to :

+  =  ° (416)

The transition needle length kg' is therefore given by the root of 4.16 satisfying 

kg' E]0 : 1] The result is k—dependent, the variation of the transition kg' as a 

function of k is shown in Figure 4.5.

For the two elongations used in this study, that is k = 3 and 5, the transition 

needle length is :

k = 3 : k f  -  0.4817 

k = b : kTs ' ~  0.6084

Thus with k = 3, the anchoring transition should occur for a reduced needle length 

of about 50% whereas with k = 5, the transition should occur for a reduced needle 

length of about 60%.
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Figure 4.5 : Variation ofk^'(k)

4.2 Sym m etric anchored system s

Here we present simulation results from a study of surface induced structural 

changes. Ellipsoidal shaped particles interacting through the hard Gaussian over

lap model were considered while the HNW model was used for particle-substrate 

interactions. Monte Carlo simulations in the canonical ensemble of systems of 

N  =  1000 particles confined in a slab geometry of height Lz =  4a£ were performed 

with the substrate being located on the top and bottom of the box (z = —L z / 2  

and z = Lz/ 2); the system was periodic in the two other dimensions. The same 

anchoring conditions were applied on both substrates (symmetric anchoring). Us

ing this combination of particle and surface potentials, the aims of this study were 

to model the main influences of confinement in liquid crystalline systems, namely 

surface induced layering and ordering, and to identify the influences of density 

and needle length on the preferred surface arrangements. In order to do so, a 

systematic approach has been undertaken; Figure 4.6(a) and (b) shows the state 

points at which the simulations have been performed as well as the direction of 

the simulation series. For each state points two simulations have been performed, 

first an equilibration simulation of 0.5.106 sweeps has followed by a production 

run of another 0.5.106 sweeps.
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Figure 4.6 : Representation of the state points considered for the production of the 

data analysed in this Chapter.
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4.2.1 Typical profiles

The first step is to understand surface induced structural changes for a set of needle 

lengths and densities. References [141,142] provide some information through pro

files from systems of particles with k = 5 and ks = 5 [141] and ks = 2.75,3.0 [142]. 

Here a more exhaustive set of results are shown.

The study of the surface induced structural changes was performed through the 

computation of the ^-profiles of three different observable. The density profile 

Pe(z) provides information about the layering in the cell through the location 

number and height of its peaks. Qzz{z), provides information on the surface 

induced ordering with respect to the substrate normal. These two profiles can be 

used to characterize the type of surface anchoring adopted. P2 O&) measures the 

degree of orientational order and, hence, the nature of the phase as a function of 

location in the slab.

In what follows typical profiles are presented for several needle lengths and system 

densities. These profiles were obtained from several series of simulations each 

performed with constant density and ks either decreasing and increasing between 

the limits [0 : k]. Typical profiles are shown for densities corresponding to bulk 

isotropic and nematic phases. Needle lengths are chosen so as to correspond to 

homeotropic (ks < kg), competing (ks ~  kg), and planar arrangements (ks > 

kg).

Homeotropic anchoring

An homeotropic arrangement is observed when the orientation of the surface par

ticles is such that < 9 > ~  0, which for the HNW model occurs for short needle 

lengths (k's < 0.25). Typical profiles for this arrangement are showed on Fig

ures 4.7 and 4.8 for, respectively, k =  3 and k = 5 using a reduced needle length 

k's = 0.2.

From these Figures, the surface induced structural changes associated with the
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Figure 4 .7 :  Typical profiles corresponding to  an hom eotropic anchoring for k — rS and

k's =  0.20.
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Figure 4 .8  : Typical profiles corresponding to an hom eotropic anchoring for k — 5 and

k's  =  0.20
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homeotropic arrangement can be observed. p}{z) is an oscillatory function that 

displays its main peaks at \z — zq\ ~  ^  which corresponds to the first layer of 

particles. Also, it should be noted that the periodicity of the peaks is very large 

(of the order of a*), and no more than a total of five to six layers can be observed. 

This is compatible with the height of the simulation slabs of Lz = 4a?. The 

number of peaks in p\ (z) clearly corresponds to a layered system with end to end 

alignment.

From the Qzz(z) profiles, the homeotropic arrangement can be determined from 

the regions of positive values. These correspond to regions of high p*£(z), that 

is the interfacial regions for all densities and also the bulk region of the cell if 

the global number density is sufficient to support nematic order. Qzz(z) is also 

an oscillatory function whose maxima match those in p}(z); the higher the local 

density, the higher the order and, therefore, the better the ordering with respect 

to the wall.

It should be noted however, that regardless of the number density, Qzz(z) displays 

negative values very close to the surface (\z — z0\ < ; this is because there are

always a few particles lying parallel to the walls in these regions. However, these 

planar particles correspond to regions of very low density, pj, and, therefore, their 

effect on the overall behaviour of the system is insignificant ; besides the higher 

the density, the less noticeable this effect.

P2 (z) shows the orientational order as a function of position, a result that is not 

easily obtained experimentally. P2 O&) also follows the oscillations of pj, for the 

same reasons as Qzz(z); regions of high local density induce regions of high local 

in-plane order.

85



Planar anchoring

A planar arrangement is observed when the average orientation in the interfacial 

region is parallel to the substrate, that is < 9  > ~  | .  In the case of the HNW 

model, such an arrangement can be observed using long needle lengths (k's > 

0.75). Typical profiles measuring the surface induced structural changes for this 

arrangement are shown on Figures 4.9 and 4.10, respectively, for k =  3 and k = 5.

The first difference to be noted when comparing these results with those obtained 

in the case of an homeotropic arrangement, is the difference in stratification. Be

cause at the surface, < 6  > ~  | ,  the particles lie closer to the walls and as a 

result, the main peaks in pj are located at \z — z0\ ~  0. The peak-peak separa

tion of these functions are also much smaller than they were in the homeotropic 

case (~  cr0). The particles are, thus, now arranged in layers with a side by side 

alignment between one layer and the next.

Qzz{z) follows the same behaviour as p}{z) but adopts negative values in regions 

of high p\. Therefore maxima in pj, induce minima in Qzz{z) because high pla

nar order is measured by negative values of Qzz(z). Comparison of the absolute 

value of Qzz(z) in the homeotropic and planar arrangements, suggests that for a 

given number density homeotropic ordering with respect to the surface is ‘bet

ter’ than the corresponding planar ordering. However since Qzz £ [—0.5 : 1], 

and an isotropic distribution of 9 in a layer induces Qzz =  0, a positive value 

of Qzz should be compared to the double of a negative value. As a result a pla

nar ordering with Qzz = —0.5 is a ‘good’ as an homeotropic ordering with Qzz = 1.

The form taken by P2 W  is very similar for homeotropic and planar arrangement 

as both follow the behaviour of the corresponding p*e(z). The difference between 

the two arrangements lies in the peaks separation of p 2 (z).
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Figure 4 .9  : Typical profiles corresponding to  a planar arrangement with k — 3 and

k's  =  0.80.
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C om peting anchoring

The term competing anchoring refers to a situation where both planar and ho- 

meotropic arrangements are of comparable strength. In the case of the HNW 

model, this corresponds to a situation where k's ~  kg'. Typical profiles corre

sponding to competing anchoring are shown on Figures 4.11 and 4.12 respectively 

for k = 3 and k = 5.

These results have been obtained for needle lengths very close but not equal to 

kg' as the values obtained by Equation 4.16 correspond to a very idealized case. 

It should be noted here that at high number densities, different profiles suggesting 

different surface arrangements were obtained depending on the history of the sim

ulation sequence. Moreover, as in each case the profiles were obtained from fully 

equilibrated configurations, the presence of bistability is suggested here. Both sets 

of coexisting profiles are shown on the Figures.

In the case of isotropic densities, the surface induced layering shows features 

reminiscent with both planar and homeotropic influences. The interfacial region is 

characterized by two peaks of comparable height corresponding to particles with 

9 = 0  and 9 = | . Since the particles in the interfacial region were equally dis

tributed between those two regions, the heights of the two peaks are much smaller 

than those seen in the cases of strong planar or homeotropic anchoring. This dou

ble behaviour can also be observed on Qzz(z)i as, in the interfacial region, both 

negative and positive values corresponding to high local densities can be observed. 

The P2 {z) profile does not bring much more information as its behaviour follows 

that of p}(z).

In the case of nem atic densities, the behaviour of the system is very different. 

Here, the increase in density had induced the particle to align and, therefore, 

choose one of the two possible surface arrangements. This prevented the system 

from simultaneously exhibiting both planar and homeotropic features. The pro

files indicate that in the case of runs with decreasing ks [i.e. coming from the
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planar side), the cell displayed a planar arrangement whereas in the case of in

creasing needle lengths an homeotropic arrangement was found. This suggest that 

in the case of competing anchoring and high density, the surface arrangement was 

chosen according to the history of the system.

4.2.2 Influence of density

Observation of the profiles reveals that the density has a strong influence on the 

intensity of the surface induced effects; as stated earlier, the higher the number 

density the more intense the surface induced effects. In order to further study the 

influence of density on surface induced structural changes, Further simulations 

were carried out in series with constant k's and increasing and decreasing densities. 

From these, the p}(z,p*), Qzz(z,p*), and P2 (z,p*) surfaces have been computed. 

Results for the cases k's =  0.0 and k's = 1.0 are shown on Figures 4.13 and 4.14 for 

k = 3. The corresponding results for k = 5 are very similar and are, therfore, not 

shown here. Also, because hardly any hysteresis has been found between series 

with increasing and decreasing densities, only the results or series with increasing 

densities are shown.

Those measurements confirm the first observation using a smaller sample of den

sities (Section 4.2.1). At low densities, the surface induced effects are limited to 

the interfacial regions and the central region of the cell remains unaffected. On 

the z—profiles, this is characterized by short ranged surface features.

As the density is increased however, the surface influence extends further into the 

cell up to a density for which the full slab is uniformally aligned. The number 

of peaks on p}(z) increases steadily due to layering of the particles. As a result, 

the absolute values of the ordering observables increase as does the distance from 

the surface at which those functions start to decay. This translates to greater 

orientational ordering that extends further into the cell.

It is interesting to note that in the case of extreme homeotropic anchoring (k's = 

0.0), regardless the density, the cell never displays uniform alignment since the 

bulk part of the cell never orders. This seems to contradict previous observations
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Figure 4.13 : Influence o f p* on the z-profiles from series o f simulation with increasing 

density o f particles with k = 3 and k's = 0.0 (homeotropic anchoring).
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Figure 4.14 : Influence o f p* on the z-profiles from series o f simulation with increasing 

density o f particles with k = 3 and k's = 0.1 (planar anchoring).
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of systems of particles with elongation k = 3 under homeotropic anchoring (see 

Figure 4.7). However, due to the reduced needle lengths used here, the particle 

volume absorbed by the substrate leads to a lowering of the density in the bulk 

regions. This has the effect of shifting the I-N transition to densities out of the 

range considered here. This does not, however, question the existence of uniform 

alignment in the case k's = 0.0 as this has been observed with k=5.

Another effect that can be observed on Figures 4.13 and 4.14 is that the z gradients 

i n  \ Q z z ( z )  \ and p}{z) in the interfacial region increase when the bulk part of the cell 

becomes nematic. As a result of the bulk orientational order, interfacial regions 

come under the ordering influence of both the surfaces, through anchoring effects, 

and the bulk part of the cell, through elastic forces. This improves the quality of 

the layering and ordering in the interfacial regions.

4.2.3 Influence of k's

The influence of k's on the cell’s behaviour is considerable, as this variable controls 

the type and strength of the surface anchoring. As the needle lengths is increased 

between from zero, the system undergoes a transition from homeotropic to pla

nar anchoring. Section 4.1.2 gave the critical k's values for the this transition in 

the limit of close packing. In the simulations however, the local density at the 

interfaces is far from being that of close packing and is moreover a function of the 

global density. Therefore some shifts in kg' from the theoretical values are to be 

expected.

The purpose of this Section is to study, in greater detail, the effect of k's on the 

profiles and show the existence and nature of the homeotropic to planar anchoring 

transition. This has been achieved using simulations performed at constant densi

ties in series of increasing and decreasing needle lengths. Two densities known to 

bulk isotropic and nematic phases have been considered. Results from the series 

with k's densities and k = 3 are shown in Figure 4.15 (isotropic density) and 4.16 

(nematic density). The differences between the series with increasing and decreas-
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Figure 4.15 ; influence o f k's on the z-profiles for k = 3 and p* =  0.28. 

ing k's  are discussed in the next Section.

From Figures 4.15 and 4.16, typical features discussed previously corresponding 

to homeotropic and planar anchoring arrangements can be found by looking at 

curves corresponding to low and high values of k's , respectively. Here, rather, 

focus is brought to bear on the regions corresponding to competing anchoring, as 

these reveal the changes that take place during the anchoring transition.

As the transition region is approached (e.g. from the planar side), the height of 

the peaks in p\ decrease rapidly, and at the transition, hardly any oscillations
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can be observed. This can be understood easily as at the transition, under equal 

influence from both type of anchoring, the particles diffuse almost homogeneously 

in bimodal surface layers which have features corresponding to both anchoring 

states; as a result, the density profile becomes relatively uniform. As the ho

meotropic anchoring becomes stronger, the system layers accordingly and a new 

oscillating pattern corresponding to homeotropic anchoring can be observed. It is 

interesting to note that the location maxima in p*e(z) in the latter case coincide 

with those of the minima of the former.

As well as the changes in density, the centre of the slab undergoes an orien

tational disorder-order transition with k's as can be observed on P2 (z,k's ). The 

z-dependent oscillation pattern of this function also changes according to the state 

of the surface alignment.

Qzz(z, k's ) shows the orientational reorganization that occurs during the transition. 

Upon approaching the transition region, this profile changes rapidly between the 

planar and homeotropic characteristics. The gradient of this change increases 

with the density but also with k\ the transition is much sharper for k = 5 than 

for k = 3. Considering the needle length at which the change in the sign of Qzz is 

observed, the theoretical predictions made in section 4.1.2 seem to be confirmed, 

particularly as the density is increased. A more detailed study of the homeotropic 

to planar transition region is presented in Section 4.3.

4.3 Surface influence on phase transitions.

4.3.1 T he Q zz and P 2 observables.

To determine the location of the planar to homeotropic anchoring transition more 

precisely requires the ability to characterize quantitatively the nature of the ar

rangement displayed by a confined system. Section 4.2.1 has shown that simple 

observation of the profiles is not sufficient to determine the arrangement type 

as information from both Qzz(z) and p}{z) is required. Besides, quantitative in



formation on the anchoring behaviour is hard to obtain solely by observation of 

profiles.

As the transition point is a function of both the global number density and needle 

length, a useful observable for characterising the surface arrangement would be a 

scalar able to distinguish both the type and strength of the anchoring for a given 

(p*, k 's ) state point.

This need is fulfilled by the use of the novel observables Qzz and P 2 . These are 

density-profile-weighted averages of, respectively, Qzz(z) and ^ 2 (2 ), taken over a 

given region of interest. In general Qzz and P 2  are defined as :

n = ^ Zi (a 17̂
£ * # (* ■ ) ( }

P2 "  £ „ * ( * )  ( 8)

where the Z{ considered are restricted on the region of interest. Here Qzz(z) is a 

rescaled version of Qzz such that Q™z E [—1 : 1]. Hence the definition of Qzz(z) :

f  Q z z  i f  Q z z  >  0I V z z  V z z _  ( 4 1 9 )

[ 2,QZZ if Qzz < 0

The computation of the Qzz and P 2  observables has been performed on regions 

of the cell corresponding to the interfacial and bulks domains. This has enabled 

the behaviour of the system to be studied in each region separately. The naming 

convention adopted for the observables corresponding to each region is described 

in Table 4.1.

It is now necessary to define an appropriate boundary between the interfacial and 

bulk regions. This boundary needs to be located at a point where the surface has 

no direct influence on the molecules; as a result the boundary Z{ could be chosen 

such that \zi — zo\ =  ^  since at z = z^ the particles can rotate freely without 

direct interaction with the surface. This approach fails, however, in the limit of 

zero needle length, as it implies \zi~  zq\ ~  0 whereas the ^-profiles clearly show a 

non-zero interfacial regions for all needle lengths.
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key Description Associated observables

Sb Bottom interfacial region q Z  p f
Bu Bulk region -j=Bu

Qzz 5 *2
St Top interfacial region Q zl P S2
Su Both interfacial region n Su J5Su^zz 5 2

Table 4.1 : Naming convention for the simulation slab regions and associated observ

able.

A different approach was taken, therefore, in defining this boundary; the interfacial 

region width was made a function of the needle length and density by making the 

boundary Z{ dependent on features of the density profiles. The scheme used is 

illustrated on Figure 4.17. If the anchoring was found to be planar (first local 

maximum of p\(z) at \z{ — zQ\ ~  0), the interfacial region was taken to extend 

from the surface to the distance corresponding to the second maximum in p}(z). If 

however, the anchoring was homeotropic (first local maximum of p}(z) at \z{—z0\ ~  

then the interfacial region was taken to extend from the surface to the first 

local minimum in p}(z). In those cases with ambiguous double peaked density 

profiles, the first scheme was adopted.

3.0

Sb Bu

2.0

1.0

o.o
■6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

2.0

BuSb
1.5

,1.0

0.5

0.0
■6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

z z

(a) planar case (b) homeotropic case

Figure 4.17 : Definition of the slab interfacial and bulk regions.
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4.3.2 A nchoring transitions.

Here, the planar to homeotropic anchoring transition is located from measurement 

of Qzz as a function of p* and kfs which can be used to construct an anchoring phase 

diagram. Such diagrams have been determined for systems with elongations k = 3 

and k = 5 using simulations performed at constant densities and increasing and 

decreasing needle lengths. Results for both series in the interfacial (Su) and bulk 

(Bu) regions are shown in Figures 4.18 and 4.19 for A; =  3 and k = 5 respectively. 

The results obtained for the two elongations are very similar. In the interfacial 

region, the anchoring transitions occur at ks /k  values close to those predicted in
 gu

section 4.1.2, as can be observed from the lines of constant Qzz = 0. For higher 

densities, the agreement between the simulation and theoretical result can be seen 

to improve. Also the region around k's becomes sharper with increasing density 

indicating a possible discontinuous transition between planar and homeotropic 

anchoring states.

In the bulk region, little surface influence can be observed at low density, as
—  ■ Qn

the values of Qzz remain close to zero due to the systems orientational isotropy. 

As the number density is increased, the local density in the bulk regions reaches 

values corresponding to bulk nematic densities. The surface influence then ex

tends further into the cell and sharp anchoring transitions become apparent at 

needle lengths similar to those suggested by the interfacial region anchoring dia

gram. This, however, occurs for global number densities significantly greater than 

the isotropic to nematic transition densities of the equivalent bulk system (see 

Section 3.3.1). This indicates that the I-N transitions in the bulk regions were 

shifted to higher number densities due to the presence of the surfaces, this is 

further discussed in Section 4.3.4.

The anchoring phase diagrams are also found to be asymmetric in that bulk 

planar ordering develops at lower densities than its homeotropic counterpart. As 

stated earlier, this is due, in part, to the increased absorbed volume in the case of
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(a) Series with increasing k's .

11.00

(b) Series with decreasing k's .
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(c) Bistability phase diagram (i.e. difference between (a) and (b)).

Figure 4.18 : Anchoring phase diagrams o f Qzz for k — 3 for the surface (left) and 

bulk (right) regions o f the cell.
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(a) Series with increasing k's .

- 0.50

(b) Series with decreasing k's .
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(c) Bistability phase diagram (i.e. difference between (a) and (b)).

Figure 4.19 : Anchoring phase diagrams o f Qzz for k — 5 for the surface (left) and 

bulk (right) regions o f the cell.
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homeotropic anchoring which is sufficient to prevent the observation of uniformly 

ordered slabs of homeotropic arrangement in the limit k's = 0 for the range of 

density considered here. That said, interpolation of the result determined here 

to higher densities suggests that homeotropically ordered phases should exist for 

h's < ^s'-

4.3.3 A nchoring b istability

Another interesting feature of Figures 4.18 and 4.19 comes from the comparison of 

the diagrams for increasing and decreasing needle lengths (i.e. diagrams (a) and 

(b)). As the density is increased, the hysteresis between the two set of results also 

increases. This confirms an earlier observation that in conditions corresponding 

to competing anchoring according the z-profiles observed can be dependent on 

sample’s history (recall Figures 4.11 and 4.12).

Since all of the data used to construct those diagrams were obtained from equili

brated systems, these discrepancies suggest possible bistable behaviour for state 

points close to the anchoring transition. This bistability has been measured more 

precisely by computing the absolute value of the difference between results ob

tained with series of increasing and decreasing needle lengths. This difference 

equals 0 if the two diagram agree and 2 for full bistability. The results for both 

elongations in the interfacial and bulk regions of the slab, shown on Figures 4.18(c) 

and 4.19(c) indicate for both k = 3 and k = 5 distinct bistable regions at high 

densities.

In order to demonstrate the existence of this bistability, an attempt to switch 

the cell from planar to homeotropic and back has been carried out. For this, a 

previously equilibrated system of N  = 1000 particles with k = 3, p* = 0.34 and 

k's = 0.5 was taken. This configuration was extracted from a series performed 

with decreasing densities which showed planar anchoring at this state point. The 

switching was performed through the series of simulations Ri to i?5 listed in Ta

ble 4.2, i.e. by applying and removing an electric field E =  E z  and taking the
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Run E E Xe run length

Ri (0,0,0) 0.0 0.0 0.25.106

R 2 (0,0,1) 6.0 0.5 0.25.106

Rs (0,0,0) 0.0 0.0 1.00.106

R 4 (0,0,1) 6.0 -0.5 0.25.106

i?5 (0,0,0) 0.0 0.0 0.50.106

Table 4.2 : Electric parameterisation in the switching between the planar and ho

meotropic states of the bistable system.

dielectric constant Xe to be, alternately, positive and negative. The effect of the 

field is to align the particles parallel or perpendicular with E respectively for pos

itive and negative values of xe> respectively.

While this setup is admittedly somewhat unrealistic, it can nevertheless be related 

to an experimental system in which the mesogens employed can display different 

dielectric constant according to the frequency of an applied AC field.

If the considered state points correspond to a bistable region, both planar and 

homeotropic phases should be obtained in the field-off runs provided the sample 

is prealigned suitably for each arrangement. The purpose of applying the field 

with each value of Xe is, thus, to perform this pre-alignment operation.

The configuration snapshots corresponding to the initial and final states from 

each run are shown on Figure 4.20(a) to (f). The corresponding behaviour of 

Q^z and Qzz, as a function of Monte Carlo sweeps, are shown in Figures 4.21(a) 

and 4.21(b). Also, for comparison, the values of Qzz at this state point and 

corresponding to the two different surface arrangements as obtained from the 

runs with increasing and decreasing k's are shown as horizontal lines.

The results confirm the existence of the bistable region. Run R\ shows that the 

system remains stable in its initial planar arrangement; after reorientation of the 

particles along z by the applied field (run R2), the system equilibrates naturally 

to a homeotropic arrangement (run R 3 ) although the final value of Qzz is higher
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(a) start Ri (b) end Ri

(c) end i ?2 (d) end R 3

(e) end R4  (f) end R$

Figure 4.20 : Configuration snapshots corresponding to the initial (start) and final 

configurations o f runs R\ to i?5.
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than that obtained from the previous runs performed in the computation of the 

anchoring phase diagrams. This discrepancy might be induced by the application 

of the strong value of the field which forced all interfacial particles to take an 

almost perfect homeotropic alignment. Upon removal of the field, the system 

equilibrated towards the stable homeotropic state, but due to packing constraints 

fewer particles were allowed to take a planar orientation close to the surface as in 

the case of previous simulations. This should not however question the equilibrium 

of the state obtained here. Upon changing the molecular dielectric susceptibility 

to xe < 0, reapplication of the field (run R 4 ) recreates a planar arrangement which 

relaxes to the original stable state upon field removal (run R5). In this case, the 

system equilibrated to the same value of Qzz as that obtained previously as in 

the case of planar anchoring, there is no instance of homeotropic alignment in the 

interfacial region.

It should be noted also, that the ‘response times’ of the systems were different in 

the bulk and interfacial region; however the Monte Carlo technique was used and 

this does not follow the time evolution of the systems. An appropriate study of the 

dynamic behaviour of the system would have required the use of the Molecular 

Dynamics techniques, but this was not of prime interest here. The purpose of 

these simulations was to prove the existence of the bistability behaviour of the 

model, and within the simulation run lengths available here, this has been fulfilled.

4.3.4 T he I-N  transition.

Here, the influence of confinement on the liquid crystalline phase behaviour of 

the model is studied, specifically, the influence of confinement upon the location 

of the I-N transition is of interest. To some extend, this issue has already been 

addressed for similar systems studied very recently by Zhou et al. [178]. This 

work was based on simulations of hard Gaussian overlap particles of elongation 

k € [2 : 3] confined between plane structureless walls represented by a surface po

tential describing the interaction between an ellipsoid and a plane. The authors 

found that the effect of confinement was to shift the location of the I-N transition
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towards lower number densities. Another effect was enhancement of orientational 

order in that particles whose shape anisotropy was not sufficient for the formation 

of liquid crystalline phases in the bulk (i.e. 3d) displayed ordered phases with an 

order parameter consistent with a nematic phase in confined systems.

The effect of confinement upon the phase behaviour of the model studied here 

was assessed by computing the variation of P 2  and the average local density p\ 

in bulk and surface regions as a function of the overall number density p* and re

duced needle length ks/k . Here the approach taken for the study of the anchoring 

transition was applied, using as the main observable.

The order phase diagrams of the system as a function of p* and k's have been 

computed from simulations with constant p* performed in series of increasing 

and decreasing k's . The difference between this and the study of the anchoring 

transition is that now lines of constant k's on the diagram are of interest; the 

results shown here have been computed using series of simulations with constant 

density rather than constant needle lengths as more data were available for the 

former. However comparison of data obtained from series with constant density 

and varying needle length show that ultimately both series agree. For the sake 

of completeness, Figure 4.22 shows a sample of the results obtained for series of 

simulation with constant needle length and increasing densities. The order phase 

diagrams (obtained from the series with constant number density) for k = 3 in 

the interfacial and bulk regions are shown on Figure 4.23, and the evolution of p*e 

with p* and ks /k  is shown on Figure 4.24. From these, the effects of confinement 

on the I-N transition can be assessed.

Observation of these results reveals the main effects of confinement mentioned 

in Chapter 2 and at the beginning of this Chapter. In the interfacial region, 

Figure 4.24 shows an enhanced density which, in turn, results in higher order as 

shown on Figure 4.23. As a result of this, the average local density in the bulk 

region is reduced, and so is the degree of ordering. Generally, therefore, the ef-
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Figure 4.22 : Evolution o f P 2 in the interfacial(a) and bulk(b) regions as obtained 

from simulations at constant ks/ k  and increasing densities.
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(a) Series with increasing needle length

(b) Series with decreasing needle length

Figure 4.23 : Order phase diagrams for k = 3 in the interfacial (left) and bulk (right) 

regions o f the slab obtained from series with increasing and decreasing density.
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(a) Series with increasing needle length

(b) Series with decreasing needle length

Figure 4.24 : average local density p\ fork =  3 in the interfacial (left) and bulk (right) 

regions o f the slab obtained from series with increasing and decreasing density
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feet of confinement on these systems is to shift the isotropic-nematic transition to 

lower number densities in the interfacial region and to higher number densities in 

the bulk region.

Close observation of Figures 4.23 and 4.24 shows, however, that the anchoring 

conditions have a strong influence on the surface induced shifts in the local den

sity and order parameter values. In particular and in the region corresponding 

to competing anchoring i.e. ks ~  0.5, p| shows a sudden decrease in value which 

is accompanied by a region of low orientational order. However, this effect seems 

to be much stronger on P 2  than is suggested by the behaviour of p\. This is be

cause, in addition to the reduced average local density, the double peaked nature 

of the ^-profiles indicates the particles to have competing preferred orientations, 

which reduces the value of the order parameter. This leads to a higher shift in the 

number density of the I-N transition of competing anchoring cases than would be 

expected purely from local density effects.

The results observed here are consistent with those obtained by Zhou et al. [178]. 

The shifts in p| and P 2  with number density confirms that for non-competing 

anchoring conditions, the principal effect of confinement is to enhance order in 

the systems and shift the location of the I-N transition towards lower number 

densities. Calculating the observables independently in the interfacial and bulk 

regions shows that both regions exhibit a qualitatively but not quantitatively 

similar behaviour; this was not, however, observed in [178], where all observables 

were averaged over the full samples, so that different shifts in the bulk and surface 

I-N transition densities were not monitored. Finally, we have shown that the 

behaviour of the film is dependent on the type of anchoring applied; this issue 

was not addressed in [178] where only the case of strong planar anchoring was 

considered.
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Conclusion

In this Chapter, the study of surface induced structural changes on a confined 

system of hard Gaussian overlap particles has been addressed. The choice of the 

hard needle wall potential for surface interaction allowed the observation of two 

stable surface arrangements, namely planar and homeotropic according to ks, the 

length of the needle embedded in the particles. The mechanism responsible for 

the change in surface arrangement as a function of ks is the varying amount of 

molecular volume that can be absorbed into the surface.

A systematic study of the behaviour of the system as a function of number density 

and needle length has been performed. Prom this, an anchoring transition between 

the two arrangements has been identified and located through the computation of 

anchoring phase diagrams. Also, differences between the diagrams obtained from 

series of simulations performed with, respectively increasing and decreasing nee

dle lengths have been used to identify bistability regions, where both homeotropic 

and planar arrangement remain stable on timescale of a simulation run length.

It has been shown that generally, the effect of confinement is to shift the isotropic- 

nematic transition to lower number densities close to the surfaces and to higher 

number densities in the bulk region. In addition, it has been shown that the 

amount by which this transition is shifted varies with the nature of anchoring 

conditions adopted.
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Chapter 5 

More on confined geom etries

Introduction

Simulations of confined systems of hard Gaussian overlap particles interacting 

with the substrates through the hard needle wall potential have shown that, de

spite the simplicity of the model, a range of surface induced behaviour can be 

observed. Using this simple setup a thorough and systematic study of the surface 

induced structural changes has been performed and an anchoring transition has 

been identified. In this Chapter, the focus is brought to bear on the study of 

alternative confined system configurations.

First, more realistic surface potentials are studied and their anchoring phase dia

grams computed so as to investigate their suitability for the modeling of anchoring 

transitions. Two such potentials are of interest, namely the rod-sphere potential 

and the rod-surface potential. For each of these, the the surface induced arrange

ments are studied and the possibility of bistable regions is explored.

The second part of this Chapter contains a study of hybrid anchored systems 

performed using the hard needle wall potential; following this, the possibility of 

simulating easy switching between the hybrid aligned nematic and vertical states 

of the cell is investigated.
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5.1 Realistic surface potentials : the RSP.

5.1.1 T he rod-sphere potential.

The rod-sphere surface potential (RSP) describes the interaction between a Gaus

sian ellipsoid and a sphere located in the surface plane and with the same x  and y  

coordinates as the ellipsoid. Again, the particles (HGO) do not interact directly 

with the substrate, rather another HGO ellipsoid is inserted in each particle {e .g .  

Figure 5.1). This inner ellipsoid interacts with the surface through y RSP as :

V RSP =  [  if  I *  -  * 1  >  < SP

I  oo if I Zi -  z 01 <  crp s p

where crp s p  is the contact distance for the interaction between a hard Gaussian 

overlap particle with length a\\ and breadth a± and a sphere of diameter Oj. The 

contact distance for such an interaction is given by Equation (4) of [92] :

cri +cri
*£SP = \ h r   S *  (5-2)1

v 1 -  x(ui • rjj)2

For implementation into a simulation code, Equation 5.2 is best written in terms 

of 9 and <r0 ; recalling that the unit of distance (To =  cr±y/ 2  and for convenience, 

imposing oo =  ( J j \ / 2. Also to enable comparison with the hard needle wall po

tential, the sphere is taken to be tangent with the substrate so as to keep it out 

of the simulation box. This leads to the final expression for <jpsp as used in the 

simulations :

(M )

with :
k2S ~  1 /r ^

= k p n  {5A)

ks being the length to breadth ratio of the inner ellipsoid. A graphical represen

tation of this contact distance as a function of ks and 6  is shown on Figure 5.2.

The rod-sphere model has already been used as the contact distance for a soft 

surface potential in studies of confined Gay-Berne particles in single component
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Figure 5.1 : Representation o f the geometry used for the interaction between the inner 

HGO particle and the sphere representing the substrate in the RSP surface potential.

10

Figure 5.2 : Representation o f crPSP(ks, cos 6 ) for the RSP surface potential.
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systems [131, 132, 179], binary mixtures [133] and switching situations [180]. In 

all of these, full particles (i.e. ks = k) were used and tilted layers were observed 

in the interfacial regions. In [132, 179] the tilt was explained to be a consequence 

of the competition between packing constraints and the form of the surface po

tential. In other words, the attractive part of the potential was thought to be 

responsible for the tilt, the authors noticing that increasing the particle-surface 

coupling a (see equation (9) of [132]) induced a tighter distribution of the particle 

orientations about the optimal tilt angle. It is interesting to note however, that 

using the same surface potential, but a molecular elongation k = 2 instead of 3, 

Wall and Cleaver [181] found that the surface anchoring changed from tilted to 

planar.

Another case of surface tilted arrangement was obtained in the study by Lange 

and Schmid [165, 166, 167] where Gay-Berne particles were confined between two 

structureless walls. There, the surface potential used was similar to the RSP, 

but a different ow function was used so as to describe the interaction between a 

surface and an ellipsoid of revolution; also, they used the common 12 — 6 Gay- 

Berne potential rather the 9 — 3 version of [132]. The particles simulated were 

found to exhibit planar anchoring, but tilted phases were obtained by inclusion 

of polymer chains grafted on to the surface. The tilt in that case resulted from 

competition between the planar orientation favoured by the solvent particles and 

the homeotropic alignment preferred by the polymer chains (since it reduced their 

bond energy). Again, in that study, tilting behaviour could be explained in terms 

of the attractive parts of the potential since an anchoring transition between 

planar and tilted arrangements was obtained by varying the number of grafted 

polymer chains.

Ascribing the tilt to the attractive part of the potential in [132] was also consistent 

with the many theoretical treatments of confined hard particle systems [182, 141] : 

none of these predict tilted surface alignment, planar and homeotropic alignments 

being the only arrangement predicted.

It is interesting to note, however, that when using a surface made of fixed atoms
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and a similar surface potential to that used in [132], Palermo et al. [137] did not 

find any tilt arrangements, rather the natural planar arrangement was adopted at 

the substrates. This discrepancy would suggest that the interaction described by 

the rod-surface potential where the particles and substrate sphere have always the 

same x and y coordinate might be responsible for the tilting behaviour. However, 

this argument can not be proved just by comparing the results from these existing 

studies as they employed different forms of the Gay-Berne type surface interaction 

potential, a 9-3 type in [132] as opposed to 12-6 in [137].

The case of short ks , that is the case of particles absorbing the substrates, has not 

been considered in these studies. This case can, however, be readily understood. If 

the amount of volume absorbed is great enough to induce a significant reduction 

in the free energy, then a homeotropic arrangement should be more stable, as 

borne out by the simulation studies of Allen [128].

5.1.2 Sim ulation results using the RSP.

Further investigations of the surface induced structural changes obtained using 

the RSP surface potential were performed using Monte Carlo computer simula

tions in the canonical ensemble. Systems of N  = 1000 hard Gaussian overlap 

particles with elongation k — 3 confined in an infinitely wide slab geometry of 

fixed height Lz = Aka0  were considered, the walls being situated at z0  = and 

symmetric anchoring conditions applied. Sequence of simulations were performed 

at constant number density p* and decreasing ks for several values of p* and 

the surface induced structural changes were studied using the observable profiles 

(p}(z), Qzz(z) and introduced in the previous Chapter. From these profiles,

the anchoring and order phase diagrams were computed in the interfacial and bulk 

regions. These diagrams are shown on Figures 5.3 and 5.4 and were computed 

using a similar method to that given in the previous Chapter. The difference here 

was that definition of the boundary between the interfacial and bulk regions was 

changed such that the interfacial region was taken to extend from the surface to
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(a) Interfacial region. (b) Bulk region.

Figure 5.3 : Anchoring phase diagrams obtained from series o f simulations o f N  =  

1000 confined HGO particles with k = 3 at constant density and decreasing ks  and 

using the RSP surface potential.

the second maximum of p\ regardless of the surface arrangement obtained for this 

model. The reason for this definition change lies in the similarity between density 

profiles obtained for this model at different values of ks- the primary peaks in 

p}(z) were always situated at \z — z%\ > 0.0 (see e.g. Figures 5.6 and 5.7). Further 

details regarding these profiles are given later in this Section.

Observation of the order and anchoring phase diagrams reveals that the P 2 dia

grams are qualitatively similar to those obtained with the HNW models, whereas 

there are some qualitative differences in the Qzz diagrams.

In the case of short ks, the Qzz behaviour for the RSP model is not unlike that of 

the HNW model and confirms the predictions made at the end of the last Section. 

Throughout the density range considered here and for short ks, the system adopts 

an homeotropic arrangement where order increases with increased density. This 

is further confirmed by configuration snapshots {e.g. Figure 5.5(a) for the state 

point p* = 0.35, k s / k  =  0.0).

In the case of long ks  (i-e. k s / k  > 0.6), however, there is a qualitative differ

ence between the diagrams shown in Figure 5.3 and their equivalent for the HNW
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(a) Interfacial region. (b) Bulk region.

Figure 5.4 : Order phase diagrams obtained from series o f simulations o f N  = 1000 

confined HGO particles with k = 3 at constant density and decreasing ks and using 

the RSP surface potential.

(a) k's  — 0.0 (b) k's  =  1.0

Figure 5.5: Typical configuration snapshots showing the surface induced homeotropic 

(a) and tilted (b) surface induced arrangements for confined systems o f N  = 1000 

HGO particles using V RSP for surface interactions and p* — 0.35.
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model. Here, throughout the density range considered, the value of Qzz does not 

reach that expected for planar ordering, remaining, instead, low at about 0.2. 

Although such values can be understood in the low density regime, where P 2  is 

compatible with an isotropic phase, this behaviour is rather more surprising in 

the case of high densities where the corresponding P 2  diagram shows nematic or

der. In these latter regions, the low values of Qzz are, however, compatible with a 

tilted arrangement. Observation of typical snapshots for these high densities (e.g. 

Figure 5.5(b) ) confirms the presence of a tilt, showing a phase where the average 

surface alignment is of about 7t/4 radians.

Further details of the surface induced structural changes obtained using the RSP 

potential can be obtained from appropriate z-profiles. These are shown for two 

states points corresponding to homeotropic and tilted arrangements in Figures 5.6 

and 5.7 respectively. These profiles, share some of the features of the equivalent 

profiles obtained with the HNW potential. The case k's =  0.0 corresponds to a 

homeotropic arrangement. This is characterized by positive values of Qzz(z) and 

peak separations in the oscillations of p}(z) of about a?. The quality of in-plane 

ordering is similar to that observed with the previous surface potential.

For k's = 1.0, however, the situation is very different, and there is little similarity 

between the profiles at k's =  1 for the RSP and HNW potentials. The layering 

shown in Figure 5.7 is not as well defined and only two peaks can be clearly ob

served in pl(z). Moreover, the peak separation is much larger than gq. Finally, 

Qzz(z) fails to display the negative values associated with planar ordering, even at 

high density or which the corresponding profile indicates an ordered phase. 

Those features correspond to a tilted arrangement.

5.1.3 Origin of the tilt

Here, the origins of this tilting behaviour are revisited by studying the form of 

the RSP as a function of ks . In Appendix A, it is shown that for a particle with
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Figure 5 .6  : Typical z-profiles for confined system s o f  HGO particles with k =  3.0 and

k's  =  0.0 using the RSP potential.
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Figure 5 . 7 :  Typical z-profiles for confined system s o f  HGO particles with k =  3.0 and

k's  =  1.0 using the RSP potential.
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elongation k whose inner ellipsoid is in contact with the substrate surface, the 

volume V e(ks,6 ) absorbed into the surface is given by :

v  =  i  ( i - 1  a™p Y ( n  i  a™p
3^ I 2 Y k 2  cos2 9 + sin2 9 J \ \ j  k2  cos2 6  +  sin2 0

A graphical representation of this absorbed volume is given in Figure 5.8 for a 

particle of elongation k = 3. The preferred surface induced arrangements can be 

associated with the maxima in V e(ks,6 ). For short ks , V e(ks,6 ) is maximal at 

6  = 0 and, therefore, the most stable arrangement is homeotropic. In the limit of 

ks — £;, however V e(ks,6 ) is maximal for intermediate 6 , which suggests that a 

tilted arrangement may be most stable.

More insight into this result can be found in the expression of the surface po

tential (Equation 5.3). In the case ks = k, <r̂ NW represents the distance from 

the substrate to the particle’s centre of mass when one of its needle’s ends is in 

contact with the surface plane. crp5P, in contrast, indicates whether or not the 

HGO particle overlaps a sphere embedded within the substrate.

The difference between the two shape parameter (Figure 5.9) shows that there are 

some tilt angle for which <7P5P is smaller than a ^ NW, that is the particle ends are 

able to overlap the surface plane. This region of reduced <rp5p coincides with the 

maximum in Ve(ks, 6 ) and, therefore, can be associated with the tilt behaviour.

The optimum tilt angle 6 tut for which the absorbed volume of a single particle is 

maximal can be calculated for different values of k. By considering the absorbed 

volume given by Equation 5.5 and setting ks =  k , an expression for Ve(k,9) 

(Figure 5.10) can be obtained. 6 tut, the angle which maximizes Ve{k,0), is the 

angle that solves :

^ Ve(h,0) = O (5.6)

where 4 ~Ve(/.:,0 ) is given by :

(5.5)



Figure 5.8 : Representation ofVe(kS<6 ) for the RSP potential and k = 3.

2.0
HNW
RSP

RSP-HNW

0.8

0.4

-0.4
tc/40.0
0

Figure 5.9 : Comparison between cr^NW (solid line) and cr^SP (dashed line). The 

dotted line represents the difference between the two (crPSP — crPNW.)
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Figure 5.10 : Representation o f V e ( k , 0) for the RSP potential and ks  =  k.

Here

and :

Ao —

Bo = 

Co =

Do = 

F0

Io

A 2  (2 cos 9 sin 6  — 2k 2  cos d sin 9) 
B 2

2 A (k 2  — 1) cos 9 sin #
(k 2  +  1)HC§

=  1 +

\/C  2
A:2 cos 6 H- sin2 #

(k2 — 1) cos2 9
1 + k 2

Equation 5.6 has been solved numerically by computation of the contour of j|Ee(A;, 9) 

at level 0, as shown on Figure 5.11. This shows that 9tut is fairly constant at about
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Figure 5.11 : Representation of 9m (k) using the RSP potential and ks =  k.

0.9 radians, that is about 50 degrees. As a result, the above treatment suggest that 

configurations with a tilt angle of about 50 degrees are expected to be favoured 

from simulations of full HGO particles confined with the RSP potential. However, 

as many body effects have not been considered here, the existence of such a tilt 

in a bulk system is not assumed by this result.

That said, the simulations presented in Section 5.1.2 clearly show that such a tilt 

does develop when using the RSP as a surface potential. Although, the tilt angle 

was not directly available from observation of the profiles, it can be estimated by 

use of the definition of Qap. At the state point p* = 0.35 and ks /k  = 1.0 and at 

the z location where p}{z) is maximal, Qzz =  0.209, this latter value corresponds 

to the the simulation average. This value of Qzz corresponds to an average tilt 

angle 6  = 0.812 radians, that is 46.6°. This value is consistent with the angle 

observable on the configuration snapshots.

The difference between the observed and predicted tilt angles (of 9.7%) can be 

understood from the packing constraints. The packing improves with lower tilt 

angles which can, in turn, increase system’s total absorbed volume. However the

A_________________L
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absorbed volume of each particle decreases as the difference between its optimal 

and actual tilt angles increases. This creates a competition between the amount 

of absorbed volume that can be obtained with a higher packing fraction but lower 

average tilt angle and that obtained with an average tilt angle closer to the opti

mal single particle angle but lower packing fraction.

The simulations and the theoretical treatment described in this Section have 

shown that a tilted phase can be both predicted and obtained with a purely steric 

model. As a result, it appears that the tilted phases obtained in [131,132,179,133] 

arise due to the geometrical characteristics of the rod-sphere potential, rather than 

competition between packing density and attractive particle-particle and particle- 

wall interactions. This explanation is consistent with the change from tilted to 

planar surface alignment observed by Wall and Cleaver [132, 181] when they re

duced the molecular elongation from k =  3 to k = 2. In the latter case, the 

molecules were too short to significantly absorb at the surface and therefore adopt 

the planar state. Observation of Figure 5.10 at k = 2 confirms this, as for this 

elongation, the absorbed volume is virtually independent of molecular orientation 

and, therefore, does not form a tilted arrangement.

In the light of this explanation, it seems reasonable to assume that a planar sur

face arrangement would have been obtained if the simulations of [132, 179, 133] 

had been performed using a lattice of fixed spheres to represent the surface, as 

was done in [137].
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5.2 R ealistic surface potentials : the R SU R

5.2.1 T he rod-surface potential.

The rod-surface potential (RSUP) represents an alternative interaction between 

a Gaussian ellipsoid and a plane and is given by :

VRSUP f o if |*j -  z 0 | >  a™ up ^

I^OO if \Z i -Z0\< (TPSUP

This time, the contact distance for this is obtained by integration of the rod-sphere 

potential (without the ^  shift) over the x-y plane leading to [180] :

aasup =  A (5.9)
y -*• AS

with the same definition for xs  as with the RSP potential. This potential can 

be thought of as being equivalent to the RSP but with the important difference 

that each particle effectively interacts with an infinity of spheres as opposed to 

just one. Again a shift is introduced so as to remove the virtual spheres from the 

simulation box. The contact distance used in the simulation is therefore given 

by :

<^SUP =  <70 h /  * — “ " -  : • (5.10)
1 - X s

A representation of aPSUP(ks,9) is given in Figure 5.13 for k =  3. Again, the 

expression for the absorbed volume into the surface can be used to predict the 

surface behaviour of this model. In the case of the RSUP potential, this volume 

reads :
2

V U S U P _  I j l  I ° Z S UP  H i /  < & u p  I (5.n )e 3 1 2 y k 2  cos2 6 + sin2 6 J I y k 2  cos2 6 -f sin2 9

A graphical representation of this volume is shown on Figure 5.14. In the limit 

ks = 0, VeRSUP(ks, 9) has its maximum at 9 — 0 thus indicating an homeotropic 

arrangement.

In the limit ks =  k, V PSUP is close to zero for all 9 and has a small maximum

130



Figure 5.12: Representation o f the geometry used for the interaction between the inner 

HGO particle and the surface in the RSUP potential. The three spheres represent the 

substrate which is really made o f an infinity o f such spheres located between the 

horizontal lines which effectively mark the substrate location.

Figure 5.13 : Representation o f o RSUP(ks, 0) for k  — 3 using the RSUP potential.
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Figure 5.14 : Representation o f Ve( ks,9) for the RSUP potential and k = 3.

at 0 = 0. However, by design, o RSUP forbids any particle adsorption into the 

substrate if ks = k ; this is even further illustrated by the value of crRSUP(ks =  

k, 6 = 0) which is equal to the contact distance between a HGO particle with 6 = 0 

and a sphere. As a result, this small maximum in VeRSUP can be explained to be 

a result of the approximation of using ellipsoidal shaped particles in Appendix A 

when deriving the expression for VeRSUP and, therefore, V RSUP(ks =  k),9  should, 

in fact, be zero for all values of 9. A consequence of this, the 9 = 0 peak in 

Figure 5.11 does not represent a stable surface arrangement of the RSUP model 

in the case ks  =  k, as this is not absorption driven. Rather, it can be safely 

assumed that the stable arrangement for this system is planar, in common with 

the findings of previous theoretical and simulation work on rod-shaped objects 

absorbed at planar surfaces [182, 141, 138, 140].

The mechanism expected to drive an anchoring transition with the RSUP po

tential is slightly different from that seen with the HNW potential. W ith the 

latter, the surface rearrangement is mainly driven by the molecular volume that 

can be absorbed into the surface, and the transition from homeotropic to planar 

arrangements occurs when the volume absorbed by the latter is greater than with 

the former arrangement. In the case of the RSUP potential, however, there is no
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absorption in the case of the planar arrangement. However, this is the base state 

of any rod-shaped object in contact with a surface. Thus, as ks is decreased from 

ks = k to ks — 0, the volume that can be absorbed in a homeotropic arrangement 

gradually increases. In this case, therefore, an anchoring transition from planar 

to homeotropic arrangement is expected when the volume that can be absorbed 

by an homeotropic surface induces a total free energy lower than in that of the 

planar base state.

5.2.2 Sim ulation results obtained using the rod-surface 

potential.

The surface induced structural changes obtained from the rod-surface potential 

have been studied using Monte Carlo simulations in the canonical ensemble on 

systems of TV = 1000 HGO particles with elongation k = 3. The simulation 

slab was the same as that used previously, with the walls situated on the top 

and bottom of the cell with constant height Lz = 4ka0  and symmetric anchor

ing conditions. Two series of simulations at each chosen density were performed 

with,respectively, increasing and decreasing ks . Typical z-profiles for this model 

are shown on Figures 5.15 and 5.16 respectively for ks = 0.0 and ks = k.

In the limit of ks = 0, the surface induced structural changes for this model 

are very similar to their counterparts with the RSP model (Figures 5.6 and 5.7); 

the two sets of profiles are virtually indistinguishable. The surface arrangement 

is homeotropic which explains the very strong similarities between the two sets; 

with 6  ~  0, both models induce the same geometry between the particles and the 

substrate.

In the limit ks = k , the surface induced effects for \?RSP and y RSUP are very 

different. The short peak separation in p\{z) and the negative values in Qzz(z), 

coupled with the high values of indicate an induced planar surface ar

rangement very much in agreement with the predictions made earlier. This is 

further confirmed by the similarity of the planar arrangement profile features for
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Figure 5 .15 : Typical z-profiles for confined system s o f  N  =  1000 HGO particles with

k =  3.0 and k's  =  0.0 using the RSUP potential.
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Figure 5.16 : Typical z-profiles for confined systems of N  = 1000 HGO particles with

k — 3.0 and k's =  1.0 using the RSUP potential.
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(a) Simulations with decreasing ks

(b) Simulations with increasing ks
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(c) Bistability diagrams

Figure 5.17 : Anchoring phase diagrams obtained from series o f simulations o f N  = 

1000 confined HGO particles with k = 3 at constant density and decreasing ks using 

the RSUP surface potential. Diagrams on the l.h.s are relative to the interfacial region 

and those on the r.h.s are relative to the bulk region.
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(a) Simulations with decreasing ks
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(b) Simulations with increasing ks

Figure 5.18 : Order phase diagrams obtained from series o f simulations o f N  — 1000 

confined HGO particles with k — 3 at constant density and decreasing ks using the 

RSUP surface potential. Diagrams on the l.h.s are relative to the interfacial region 

and those on the r.h.s are relative to the bulk region. The bistability is negligible.
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the HNW and RSUP models. The main difference between the two arises because 

with the RSUP model, planar particles are not allowed to absorb at the surface. 

This leads to the regions of zero p\(z) with a width of 0.5(Jo close to each substrate.

The full surface induced behaviour of this system has been computed as a function 

of ks and 6  using the anchoring and order phase diagrams shown in Figures 5.17 

and 5.18. The convention adopted to distinguish the interfacial from the bulk 

region was the same as that used with the RSP model. The anchoring phase 

diagrams are given in Figure 5.17(a) and (b) for, respectively, decreasing and in

creasing ks. From those a strong difference between the two sets can be observed. 

The corresponding bistability phase diagrams (Figure 5.17c) reports a very wide 

and strong bistability behaviour for this surface potential. The region of bistabil

ity is much greater here than that obtained using the HNW potential, extending 

over a wider range of density and ks . Also for a given state point, this potential 

induces larger bistability values. This makes the RSUP model a very good can

didate for the modeling of switching between the two arrangements on a bistable 

surface.

The improved bistability of the RSUP model when compared with the HNW 

model lies in the difference between the mechanisms driving the surface-induced 

anchoring. For the HNW, the competition between the planar and homeotropic 

alignment is driven by the amount of volume that can be absorbed into the surface 

for each alignment. This is slightly different from the RSUP case where the planar 

alignment is the natural state of the system and does not rely on the particles ab

sorbing the surface; homeotropic alignment is introduced as an alternative to this 

natural states by increasing the possibility of absorption when reducing ks• As 

a result the free energy minima corresponding to the two alignments for the two 

potentials are subtly different. Although free energy data were not determined in 

this study, the stronger bistability obtained for the RSUP model suggest it has a 

higher and wider energy barrier between the two locally stable alignment states.
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The order phase diagrams for the RSUP model (Fig 5.18) show the same general 

features as the corresponding diagrams calculated for the HNW model. In the 

bulk region, the two data sets are very similar. However, the diagrams for the 

interfacial region present some differences in that the high symmetry around the 

transition line and the strong disordering of the particles at the transition are di

minished somewhat. This can be attributed to the difference in the p\ profiles for 

the two potentials, the profiles for the RSUP potential lacking the disorder-related 

double peak behaviour. As a result, in the case of competing alignment, the local 

surface order was not reduced due to particles diffusing between the two regions 

corresponding to the two density peaks.

5.3 Hybrid anchored system s.

In this Section the study of hybrid anchored confined systems is addressed using 

particles confined in a slab geometry but with different anchoring conditions at 

each of the two surfaces. This study is performed using Monte Carlo simulations 

of hard Gaussian overlap particles confined in a slab geometry and interacting 

with the surfaces through the hard needle wall potential. The aim here is to 

achieve switching between the Hybrid Aligned Nematic (HAN) and Vertical (V) 

states using an electrical field as described in [1 ]. The difference between the 

switching investigated here and that in Reference [1] is that due the absence of 

flexoelectricity in the HGO model, two-way switching is attempted by changing 

the sign of the particles’ dielectric anisotropy (as was done in Chapter 4) rather 

than the sign of the applied field.

5.3.1 Effect of hybrid anchoring.

Here the effects of hybrid anchoring on a confined system are studied ; more 

specifically the case of different arrangements {i.e. planar and homeotropic at two 

substrates) is of interest.
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Cleaver and Teixeira [142] have already studied the structural transition between 

the arrangements seeded at the surfaces of an hybrid anchored cell of hard Gaus

sian overlap particles with k = 5. They showed that the cell can exhibit either 

a continuous or discontinuous transition between the homeotropic and planar 

arrangements according to the values of the surface parameters. This implies 

that the observation of an HAN state requires an appropriate choice of surface 

anchoring strengths so as to avoid any director discontinuities. Also, achieving 

electric-field induced switching requires that the substrate parameters used are 

compatible with those corresponding to a bistable surface.

Here, the case of hybrid anchored slabs has been investigated using Monte Carlo 

simulations of systems of N  — 1000 hard Gaussian overlap particles of elongation 

k =  3 and 5 confined in a slab geometry and interacting with the surfaces using 

the hard needle wall potential. The anchoring at the top was kept constant at 

k's = 0.0 so as to induce strong homeotropic anchoring. The anchoring at the 

bottom surface was allowed to vary using sequences of simulations with increas

ing and decreasing k's in the range [ 0  : 1 ].

Typical profiles for systems with parameterisations at the bottom surface corre

sponding, respectively, to homeotropic (h'Sb = 0.2), competing (k'Sb = 0.5) and 

planar anchoring (k'Sb = 0.8) are shown on Figures 5.19 to 5.21. These pro

files were obtained from the simulation sequences performed with decreasing k'Sb. 

Only these results are shown because even in the case of the competing anchoring 

parameterisation, both series gave very similar results. Also, the profiles or con

figuration snapshots obtained from simulations with particles of elongation k =  5 

are not shown as they are very similar to those obtained with k = 3.

For all profiles, the top interfacial regions exhibit the features typical of strong ho

meotropic anchoring as kst was kept constant at 0.0. The bottom surface profiles 

exhibit features corresponding to the values of the needle lengths used ; they have 

the same characteristics as were observed in the equivalent cases with symmetric 

surfaces.
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Figure 5.19 : Typical profiles for a hybrid anchored slab o f  N  =  1000 HGO particles

using the H N W  surface poten tia l with an hom eotropic top surface (k'St — 0.0)  and an

hom eotropic bo ttom  surface (k'St =  0.2j.
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Figure 5.20 : Typical profiles for a hybrid anchored slab o f  N  — 1000 HGO particles

using the H N W  surface poten tia l with an hom eotropic top surface (k'St =  0.0J and

com peting anchoring a t the bottom  surface (k'st =  0.5).
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Figure 5.21 : Typical profiles for a hybrid anchored slab o f  N  =  1000 HGO particles

using the H N W  surface potential with an homeotropic top surface (k'St =  0.0J and a

planar bo ttom  surface (k'st =  0.8/
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The structural transition between the two surface arrangements, that is the change 

in molecular orientation from one surface to the other can also be observed on 

the profiles. At isotropic densities, the surface effects do not extend into the 

bulk part of the slab and, therefore, this region remains disordered. As a result, 

both interfacial regions are free of any influence from each other. As the number 

density is increased to values corresponding to a bulk nematic phase, the surface 

induced structural changes extend much further into the cell. As a result, the 

bulk region comes under the competing influences of both surfaces. In all three 

cases considered here, the profiles seem to indicate a smooth transition between 

the two surface arrangements, as indicated by the almost linear changes in p}(z) 

and Qzz(z) between the surface features.

The structural transition between the surface arrangements can also be observed 

using configuration snapshots (e.g. Figure 5.22). Specifically the case of a slab 

with planar and homeotropic anchoring is of interest as this corresponds to the 

geometry where the electric switching is to be performed. For this situation, the 

snapshots suggest that a slight discontinuity in the planar to homeotropic struc

tural transition can be observed ; the molecular orientation changes rapidly from 

that corresponding to homeotropic anchoring to that of planar anchoring. This is 

confirmed by the < P2 > profile (Figure 5.21) which shows a low value in the bulk 

part of the cell whereas the snapshots clearly indicate good order throughout the 

cell. These low values can be understood by the presence of particles with very 

different orientations in the same slice which in turn lowers the value of < P2  >. 

This behaviour is not apparent on Qzz(z) as similar values could be obtained from 

a slice of n particles with 9 ~  7r/ 4  and a slice of equal number of particles with 

0 ~  0 and 9 ~  7r / 2 .

In the case of a bottom surface with homeotropic or competing anchoring, the pro

files and snapshots agree in indicating a continuous structural transition between 

the two surface induced arrangements. These observation are consistent with
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(a) k'Sb =  0.2, p* =  0.28 (b) k'Sb =  0.2, p* =  0.34

(c) k'Sb =  0.5, p*  =  0.28 (d) k'Sb =  0.5, =  0.34

(e) k'Sb =  0.8, p* =  0.28 (f) fc'S6 =  0.8, p* =  0.34

Figure 5.22 : Configuration snapshots for hybrid anchored slabs with a strong ho

meotropic anchoring at the top surface (k'st =  0 .0 ) and different values for k'Sh. 

Snapshots for two densities corresponding to isotropic (left) and nematic (right) are 

shown.
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- 1.00

(a) simulations with decreasing k'Sb (b) simulations with increasing k'Sb

Figure 5.23 : Anchoring phase diagram showing the evolution o f Qzz o f a hybrid 

anchored slab with k'St =  0.0 as a function o f number density p* and k'Sh. Systems o f 

N  = 1000 HGO particles o f elongation k — 3 and the HNW surface potential have 

been used.

the simulation of Cleaver and Teixeira [142] who found a discontinuous structural 

transition between the two surface arrangement provided the anchoring conditions 

of the two surfaces are made sufficiently different.

The combined effects of density and needle length are shown on the anchoring
 m̂

phase diagrams computed for the bottom surfaces (Qzz). These were computed 

using the approach adopted with symmetric systems and are shown in Figure 5.23. 

The behaviour of Q^z for these systems is very similar to that of QSZZ for the sym

metric systems and the same remarks apply. However, one striking difference is 

that, in the case of hybrid systems, the diagrams from series with increasing and 

decreasing k'Sb are very similar. This means that the hysteresis used to establish 

bistable regions is not seen in those systems.

This change can be ascribed to the combined effects of the presence of the top 

surface with strong homeotropic anchoring and the small height of the slab. As a 

result of these, the elastic forces imposed on the particles at the bottom surface by 

those on the top surface prevent the former from adopting a planar orientation for
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parameterisations corresponding to weak competing anchoring. The consequence 

of this is that a planar orientation is only observed at the bottom surface if the 

corresponding anchoring is strong. But this removes the possibility of bistability.

In order to recover the bistable regions, it is necessary to reduce the elastic forces 

imposed at the bottom surface by the homeotropic anchoring at the top surface. 

There are two approaches by which to achieve this: to use a weaker homeotropic 

anchoring at the top surface; or to increase the height of the slab, (and, therefore, 

the number of particles in the simulation box). In the next section, the second 

solution is used in an attempt to regain surface bistability.

5.3.2 System  size effect.

Here the influence of the height of the slab on the surface bistability in hybrid 

system is investigated. This has been performed by considering three slabs of 

hard Gaussian overlap particles with respective height Lz = 4kao, Lz = 6 kao 

and Lz = 8 ka^ respectively . In order to keep the width of the slabs big enough 

so as to avoid interactions between particles and their own images, increase in 

the slab height was accompanied with an increase in the system sizes, and the 

height Lz = 4&<t0, Lz =  6 ka0  and Lz =  8 ka0  correspond respectively N  = 1000, 

N  — 1250 and N  =  2000. Although the cross section surface of the slabs was not 

equal for the three systems, the short positional correlation of the systems used 

should imply that the slabs were wide enough so that only the slab height has an 

effect on the observed planar to homeotropic surface transition.

These systems were studied using Monte Carlo simulations in the canonical en

semble and using the hard needle wall potential for surface interactions. Extreme 

hybrid anchoring conditions were considered using k'Sb =  1.0 and k'St = 0.0. Typi

cal profiles at p* =  0.35 are shown on Figure 5.24. Here, for comparison purposes, 

the z coordinates have been renormalized by Lz.

On those profiles, similar interfacial behaviour can be observed for all three sys-
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Figure 5.24 : Profiles corresponding to hybrid anchored systems of hard Gaussian 

overlap particles with k =  3 at p* = 0.35 and different slab heigh and system sizes. 

The surface potential is the HNW with parameterisation k'St =  0.0 and k'Sb = 1.0.
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(a) N  =  1000, Lz =  4ka0 (b) N  =  1250, Lz =  6fc<r0

(c) JV =  2000, -  8fcf70

Figure 5.25 : Typical snapshots for hybrid anchored systems o fN  =  1000(aj, 1250(7?j  

and 2000(cj bare/ Gaussian overlap particles with k = 3 using the HNW surface 

potential with k'st — 0 . 0  and k'Sb = 1 .0 .
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tems, the profiles displaying features typical of homeotropic anchoring on the top 

surface and of planar anchoring on the bottom surface.

The p*e(z /Lz) and Qzz(z/Lz) profiles also show similar behaviour for all three sys

tems in the bulk region. All three show a linear increase in Qzz from the bottom 

to the top surface. The main difference between these is that the regions of linear 

behaviour extend over larger portions of the cell with increase in Lz, thus indicat

ing bigger ‘buffer regions’ between the two surfaces.

More important differences can, however, be observed on the P2 ( z /Lz) profiles. 

For the smallest system (N = 1000), the P2 (z /Lz) profiles show low values in 

the bulk regions identified previously. Again, this effect is ascribed to the pres

ence of particles with significantly different orientations in the same analysis slice 

(Section 5.3.1.) On the other hand, the two bigger systems show very different 

behaviour, the corresponding P2 (LZ) profiles maintaining high values throughout 

the cell.

Further insight into this can be obtained from the corresponding configuration 

snapshots (e.g. Figure 5.25). From these, the smallest system clearly shows a 

discontinuity in the structural transition from planar to homeotropic as can be 

observed by the rapid change from parallel to perpendicular orientations. The 

two bigger systems show a different behaviour, however, the transition between 

the two arrangements being continuous and smooth.

The modest differences between the structures and profiles for the bigger systems 

with Lz = 6 kao and Lz = 8 fccr0 suggest that there is a critical height at which 

the transition between the two arrangements becomes continuous. The amount 

of data obtained here only allows to conclude that this critical slab height is in 

]4/ccr0 : 6 / c<t o [.

The results found in this section proved to be fully compatible with the theoretical 

results of Sarlah and Zummer [144] who found that hybrid anchored films with a 

thickness of only a few molecular lengths do not show a continuous bent-director
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structure. Also, the experimental observation of Vanderbrouck et al. [143] con

firm the observation made in this Section as they observed that a thin film of 5CB

molecules spun cast onto silicon wafer, and thus having planar hybrid anchor

ing condition at respectively the solid and free surfaces, are stable only if their 

thickness is greater than 2 0 nm.

5.3.3 H A N  to  V  states switching.

The anchoring phase diagrams presented in Section 5.3.1 have shown no bistabil

ity, possibly due to the combination of too strong a homeotropic anchoring at the 

top surface and the small height used. The smooth structural transitions obtained 

using larger slab height in Section 5.3.2 suggest, however, that bistable behaviour 

may be achievable.

As a result switching between the HAN and V states has been attempted. In order 

to recover the bistability at the bottom surface, a slab of height Lz = 8 ka 0  and a 

system size of N  = 2000 particles have been used and the bottom surface needle 

length has been set to ksb/k = 0.5 which correspond to a good bistability in an 

equivalent symmetric anchored system. The first simulations performed used a 

top surface needle length kst/k = 0 .0 , but that proved to induce too strong an 

homeotropic anchoring and no bistability at the bottom surface could be observed. 

By gradually reducing the top surface anchoring strength, the bistability at the 

bottom surface could be regained using k'St = 0.4. Using this latter value of hgt, 

the switching between the HAN and vertical states has been performed using a 

similar sequence of simulations to that employed in Chapter 4. The evolution of 

QSzl and Q^z as a function of the number of sweeps are shown, respectively, on 

Figure 5.26(a) and (b). Configuration snapshots corresponding to the last config

uration of each phase are shown on Figure 5.27.

The sequence was started using previously equilibrated configuration with a HAN 

alignment. After 0.5.106 sweeps, an electric field E =  Ez  with E  = 6.0 was 

applied during 0.25.106 sweeps using 5e > 0 so as to align the particles along z.
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Figure 5.26 : Evolution of Qzz(n) as a function of the number of sweeps n for the 

top(a) and bottom(b) surface regions while switching a hybrid anchored system of 

N  — 2000 HGO particles with k = 3 between the HAN and V states.
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(a) 0.50.106 sweeps (b) 0.75.106 sweeps (c) 2.25.106 sweeps

(d) 2.50.106 sweeps (e) 4.50.106 sweeps

Figure 5.27 : Configuration snapshots o f a system o f N  = 2000 HGO particles with 

k =  3 at different stages o f switching between the HAN and V states.
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Upon removal of the field, equilibrium in the vertical state was well established 

after 1.5.106 sweeps. The field was then reapplied for 0.25.106 sweeps using 6 e < 0 

so as to align the particles perpendicular to z. Upon removal of the field, equilib

rium in the HAN state was achieved after 2.0.106 sweeps.

This sequence shows successful switching between the HAN and vertical states of 

an hybrid aligned cell corresponding to that considered in [1 ]. The model used 

here did not include flexoelectricity and, therefore, only the easy switching namely, 

HAN to V if 5e > 0 and V to HAN if < 0 could be modeled. This is however very 

encouraging as achievement of the easy switching implies that the reverse (‘hard’) 

switching could, in principle, be achieved easily with an appropriate electrical 

parameterisation of the model.

Conclusion

In this Chapter, two issues have been addressed. In the first part of the Chapter, 

two more realistic surface potentials have been studied, namely the rod-sphere and 

the rod-surface potentials. The aim of this work was to find a potential which has 

a more realistic basis than the hard needle wall potential but which also displays 

planar and homeotropic surface arrangements. A region of bistability between the 

two arrangement was also required for future applications relating the modeling 

of display cells.

The rod-sphere potential was found to be unsuitable as the planar arrangement 

was replaced by a tilted structure. However, the results obtained using this model 

proved to be interesting since they showed that a tilted phase can be obtained 

from purely steric interactions. The rod-surface potential, meanwhile, proved a 

better candidate for the aim stated above, as it not only recovered the surface 

behaviour of the HNW potential but actually displayed stronger and wider bista

bility regions.

In the second part of this Chapter, hybrid anchored systems of HGO particles con
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fined between a homeotropic top surface and a bottom surface with competing 

anchoring have been studied using the HNW potential for the surface interac

tions. These simulations showed that the bistability behaviour of the model can 

be lost if high anchoring strength is used at the top surface or if the slab is too 

narrow. Using moderate homeotropic anchoring at the top surfaces and systems 

sizes of N  =  2000 particles, however, bistability was established and a cell was 

successfully switched between the HAN and V states if only the easy switching 

was considered. Achievement of the reverse switching requires the use of flexo- 

electric particles and a surface potential allowing bistability between planar and 

homeotropic arrangements for such particles. Those two problems are addressed, 

respectively, in Chapters 6  and 7.
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Chapter 6 

Bulk simulations of pear shaped  

particles

Introduction

The last two Chapters have dealt with surface induced effects in systems of hard 

Gaussian ellipsoids subject to a range of different surface potentials. For some of 

these, bistable regions corresponding to different surface arrangements have been 

found. Here, a new line of work is considered, the focus of which the behaviour 

of non-centrosymmetric, pear-shaped particles. In the next Chapter, these two 

threads will be brought together in a study of these pear-shaped particles in con

fined geometries.

It is recalled that the ultimate aim of this thesis is to model surface induced 

switching between two arrangements of an hybrid anchored cell following the the

oretical treatment of Davidson and Mottram [1]. The system properties required 

to achieve this are a bistable surface and a stable nematic phase of flexoelectric 

particles. The former problem has already been addressed; this Chapter deals with 

the latter. For this, the development of a model for pear-shaped particles is stud

ied as particles of that shape are thought to display flexoelectric behaviour [1 2 ]. 

In this Chapter, two models are studied, the first one hereafter referred to as 

the HP model is a hard version of the potential used in [2 ]. Despite having a
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rich phase behaviour, we show that this model does not have a stable nematic 

phase. As a result a second model, which we term the Parametric Hard Gaussian 

Overlap (PHGO) model, has been developed which does yield the required phase 

behaviour. The work presented in this Chapter has been submitted for publication 

to Physical Review E [183].

6.1 The H P model

In 2001, Berardi et al. developed the first soft, single site model for non-centro- 

symmetric anisotropic particles hereafter referred to as the soft pear (SP) model. 

This model uses a contact distance describing a pear shape embedded within a 

Gay-Berne like potential. This model was taken as a base for the HP model 

described here. The HP model defines a steric potential VHP between two pear- 

shaped objects whose contact distance is that of the SP model [2 ] as :

VHP= <
0 if r i j > a HP(Ui.Uj.fy) 

oo if Tij < aHP(Ui,Uj,rij)

where crHP(ui ,  Uj, fjj) is the contact distance between two particles i and j  with

orientations u* and Uj and and fy = ^  where is the intermolecular separation.

With this model, the contact distance is obtained using a numerical method fol

lowing the approach of Zewdie [106, 107]. The prototype shape of the particles is 

defined using a set of two Bezier curves (Fig 6.1). The coordinates of the control 

points of these, <71..6, are given in Table 6.1.

Following this a numerical contact distance £(uj,U j,fij) is computed for a given 

set of Ui, Uj. This numerical distance is then fitted to a truncated Stone expansion 

as :

0-(u;,Uj,ri:/) ~  C,(uj, Uj, Yij)

=  J 2  ^ i^2 ,L 3 ^Ll’L2,L3(ui,Uj,fij) (6.2)
Ll,L2,L,3

where S L 1>L 2 >Z/3 is a Stone function [108], and the expansion coefficients ctliM M
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Figure 6.1 : The Bezier curve used for the geometrical definition of the pear shaped 

of the HP model.

<li X y

<7i -0.5 0

<72 —0.5 + h tana' h

4 3 0.5 — /itaim h

<14 0.5 0

<15 —0.5 — /itancv - h

<16 0.5 + h tan a —h

Table 6.1 : Coordinates of the Bezier control points for the HP model and k = 3.
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[000] 1.90456 [011] 0.51113 [101] 0.51113

[022] 2.01467 [202] 2.01467 [033] -0.11376

[303] -0.11376 [044] 0.91479 [404] 0.91479

[055] -0.29937 [505] -0.29937 [066] 0.41523

[606] 0.41523 [110] -0.03942 [121] -0.45400

[211] -0.45400 [123] 0.59579 [213] 0.59579

[132] 0.17137 [312] 0.17137 [143] -0.27083

[413] -0.27083 [220] -0.56137 [222] -2.78379

[224] 2.41676 [231] 0.31104 [321] 0.31104

[233] 0.45382 [323] 0.45382 [242] 0.38115

[422] 0.38115 [244] -1.69388 [424] -1.69388

[246] 1.40664 [426] 1.40664 [330] -0.07836

[440] -0.17713 [442] -0.52246

Table 6 . 2  : The non zero coefficients for k = 5.

are given by :

_  /  £(uf, Uj, Yjj)SLl,L2,Lz (uj, Uj, rj^dujdujdrjj
^ L i , L 2l L 3 j  S ^ i ^ i M ^ U j ^ i ^ S ^ ^ ^ U j ^ T i ^ d V L i d U j d T i j

The non-zero coefficients (JliMM  f°r particles with elongation k =  3 and 

{I/1,L2,L 3} < 6 are given in [2] ; the corresponding coefficients for k = 5 are 

given in Table 6.2.

The original study of the SP model revealed stable nematic and smectic phases 

and, using an appropriate energy parameterisation, the same phases with net po

lar order were also obtained. A reasonable expectation, therefore, is that the 

steric version of this model should exhibit at least a stable nematic phase. Such a 

correlation is found virtually in all soft LC models and their hard-particle equiv

alent. The best example of this is seen on comparing the Gay-Berne [97, 98] 

and hard Gaussian overlap phase behaviours [169]. As the former is reduced to 

its steric equivalent, the smectic phases disappear whereas the nematic-isotropic

159



phase transition not only persists, but remains at virtually the same density.

As the HP model can not be reduced to the interaction between a particle and a 

point, the actual shape of the particle and, hence, the accuracy with which this 

model represents the geometrical Bezier curve is not available. However, for the 

two elongation considered in this study, some insight into the potential possible 

behaviour can be obtained by computation of the contact surfaces between two 

particles. Such surfaces show the location of the contact point between a particle 

i located at the origin with fixed orientation and a particle j  with fixed ori

entation Uj whose position is uniformly distributed on the unit sphere. Example 

surfaces, for parallel particles (u; =  uj  = z), anti-parallel particles (u* = —Uj = z) 

and the T-geometry (u* = z, uj  =  x), are shown on Figure 6.2.

Generally, these show the expected interaction, but it is evident that several non- 

convex fractures are present; this raises the prospect of possible enhanced stability 

for some configurations, specifically for those of interlocking side by side anti

parallel particles. The consequence of this would be to unduly stabilize these 

configurations and as a result prevent particles from ‘sliding’ along one another. 

Comparison of these contact surfaces for different elongations reveals different 

shape and convexity behaviours. Thus rather different phase behaviours are to be 

expected for systems of particles with different elongations.

Problems related to non convexity of contact surfaces have previously been found 

by Williamson and Jackson [67] in their study of systems of linear hard sphere 

chains (LHSC). For that model, the authors noticed that the lack of convexity in 

the the particle-particle interaction surfaces lead to the formation of glassy phases. 

For the LHSC model, this problem could be resolved by the inclusion of reptation 

moves in the Monte Carlo sequence. This, however, is not possible with the single 

site HP model; the consequence of this is addressed in Section 6.2.

Also the lack of convexity of the contact surfaces for the HP model would suggest 

that the HP model might display a rather different phase behaviour than that 

obtained using the SP model. This is because the energy minima of the soft
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(b) anti-parallel particles(a) parallel particles

(c) T-geometry, x-z view (d) T-geometry, y-z view

Figure 6.2 : Contact surfaces for HP particles with k =  3.
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Figure 6.3 : Contact surfaces for HP particles with k = 5.
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tapered model systematically correspond to molecular separations greater than 

the contact distance and, therefore, the effects of non convexity might not have 

been accessible to the models considered by the Italian group.

6.2 Simulation results using the H P model.

6.2.1 Particles w ith  k =  3.

The phase behaviour of the HP model was computed using Monte Carlo simula

tions of bulk systems oi N  — 1250 particles in the isothermal-isobaric ensemble. 

For better sampling of phase space and to ease the formation of possible polar 

phases, ‘flip moves’ were included using a probabilistic scheme. These moves 

involved the inversion of the molecular orientation vector tq and accounted for 

20% of each particle’s attempted moves. Compression moves which changed ev

ery box length independently were also carried out using a probabilistic scheme, 

on average once every two MC sweeps (i.e. moves per particle). Run lengths 

were of the order of 1.106 sweeps for equilibration and production, but for some 

of the highest densities up to 5.106 sweeps were necessary to achieve equilibration.

The first series of runs used a compression sequence; the pressure range considered 

was chosen so that it would induce densities of the same order of magnitude as 

those found for the isotropic-nematic transition of the hard Gaussian overlap 

model (see Chapter 3.) The pressure and order parameter results obtained are 

shown in Figure 6.4 under the ‘compression’ label.

These reveal that during the compression sequence, no spontaneous ordering was 

observed. Thus, in order to test for the stability of the nematic phase, another 

series of simulations was performed in a melting sequence of decreasing pressures. 

The starting configuration for this series was a high density configuration obtained 

from the compression series, the particles being field aligned along z so as to 

obtain a nematic phase with an order parameter P2  ~  0.8. The results for this 

sequence are shown on Figure 6.4 under the ‘melting’ label. Surprisingly, these
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Figure 6.4 : Results from constant NPT Monte Carlo simulations in compression and 

melting sequences of the HP model with k — 3.

results suggest a stable nematic phase for densities p* > 0.3 and P* > 8.0. This 

situation seems to be very similar to that found by Williamson and Jackson [67] 

where a stable nematic phase was present although the model failed to order 

spontaneously. A further test of the systems behaviour was provided through 

monitoring the mobility of the molecules (Figure 6.5). This was measured using :

(8 r \n ) )  =  <(rn -  r 0)2> (6.4)

where rn — r 0 is the displacement vector moved by a given particle in n consec

utive MC sweeps and the angled brackets indicate an average over all particles 

and the run length. In MC simulations with fixed maximum particle displacement 

(as was the case here), Brownian diffusion dictates that (5r2 (n)) should increase 

linearly with n in a fluid phase. The greater the gradient of (Jr2 (n)), the more 

fluid the studied phase.

These measurements show that for both the compression and melting series, the 

diffusion of the particles decreased monotonically with increased density or pres

sure. If the results are fitted to equations of the form y = a +  for, h decreases of 

about two orders of magnitude between the lowest and highest densities shown. 

The conclusion from this is that the highest density configurations did not corre-
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Figure 6.5 : Evolution of (8 r 2 (n)) as a function of n the number of Monte Carlo 

sweeps for the HP model and k=3. The data on the left are for a constant N V T  

compression sequence with N  = 1000 and the data on the right for a constant NPT 

melting sequence with N  = 1250.

spond to fluid, but to glassy phases which inhibited the ordering of the system. 

In the melting series, in contrast, the lack of fluidity at the highest densities may 

have prevented the corresponding systems from disordering into the equilibrium 

structure. This argument is supported by the order of magnitude of the diffusion 

which is about half the value obtained from the compression series, thus illustrat

ing the frustrated nature of the ordered phases obtained. The reduction of move 

acceptance rate from 40% down to 10% between simulations at the lowest and 

highest density further illustrates this glassiness.

More insight into the phases produced by those two series of simulations can be 

obtained by studying simulation snapshots (e.g. Figure 6 .6 ) and computation of 

the pair correlation functions. Both the standard <7||(r||), g±(r±) and g™01̂ ) ,  

9 ±o[('r±) were computed (see Chapter 3 for a definition). These functions are 

shown on Figure 6.7.

Little difference can be observed between the two sets of functions; <7 ||(r||) and 

5'||nol(r ll) indicate that as the density is increased, some short range features ap-
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(a) p* =  0.28 (b) p* =  0.32

Figure 6.6 : Configuration snapshots o f the HP model and k = 3 at p* = 0.28 and 

p* = 0.32.

pear, corresponding to distances less than the molecular elongation. Comparing 

this with the configuration snapshots suggests that those short range features re

flect the tendency of particles to align anti-parallel with their closest neighbors. 

y±(r±) and <7? ol(rj_) also fail to show signs of ordering, and little variation can 

be observed throughout the density range considered. However, some signs of the 

preferred pairwise anti-parallel ordering are visible for the highest density in the 

form of a peak at r rsj 0.9.

The main conclusion to be drawn from these series of simulations is that the HP 

model with k = 3 shows rather surprising phase behaviour. With increased den

sity, the particles exhibit short ranged anti-parallel ordering. The rapid decrease 

in particle mobility, however leads to the formation of glassy phases and prevents 

the formation of nematic phases. Instead, at high density the particles form a 

glassy phase made of small domains with local anti-parallel alignment.
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Figure 6.7 : Pair correlation functions for the HP model with k = 3 computed with 

respect to h(top) and ut (bottom).
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Figure 6 . 8  : Results from the bulk compression simulation series with the HP model 

and k = 5.

6.2.2 Particles w ith  k =  5.

Due to the lack of ordering shown by particles with k = 3 and following the idea 

that increasing the molecular elongation stabilizes the nematic phase, a second 

study of the HP model was made using particles with k = 5. Systems of TV = 1000 

particles were simulated using the Monte Carlo method in both the canonical 

and isothermal-isobaric ensembles and with inclusion of the ‘flip’ moves. Similar 

volume change algorithms and run lengths were used as for runs with k =  3. 

However, only a compression series was performed. The results obtained from 

this (shown on Figure 6 .8 ) indicate a somewhat different phase behaviour for 

this longer elongation. P(p*) shows an inflexion point at p* ~  0 .1 2 , suggesting 

a transition to a more ordered phase. This corresponds to a rapid increase in 

(P2 ) 5 having the common ‘S’ shape of a first order transition, which is consistent 

with ordering to a nematic phase. However the values of (P2) are still short of 

that usually associated with nematic order. For this system, the computation of 

(5r2 {n)) (Figure 6.9) shows that all configurations remained fluid throughout the 

pressure/density range considered.

The nature of the phases formed by this model was investigated by observing 

configuration snapshots {e.g. Figure 6.10) and computing pair correlation func

tions (Figure 6.11). Again both the standard g\\{r\\), g±(r±) and molecule based
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Figure 6.9 : Results for the diffusion of the HP model with k =  5 for simulation in the 

isothermal-isobaric ensemble in a compression series.

gj|nol(r||), p™ol(rjL) were computed.

As the density increased, the particles were found to order but also form layers 

with different orientations. As a result, although the intralayer ordering was very 

high, this was not reflected by the value of the overall nematic order parameter 

as the directions of the layers were very different, almost perpendicular in places. 

This is illustrated by the configuration shown on Figure 6.10(b), obtained from a 

simulation performed in the canonical ensemble at p* = 0.14. A side view of the 

same configuration (Figure 6.10(c)), would however, suggest phase with a unique 

alignment direction and smectic-like ordering, with the exception of those parti

cles with different orientations which are sandwiched between the ‘layers’. This 

discrepancy shows the full extent of the non homogenous character of the high 

density structures obtained here and explains the moderate values of (P2)- 

The likelihood of this type of configuration transforming into a smectic phase at 

higher densities appears low as the particle mobilities at these high densities are 

rather low. This question has, however, been investigated by performing simula

tions in the isothermal-isobaric ensemble where the three box lengths were allowed
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to vary independently. This approach is known to facilitate the possible formation 

of smectic phases as the box accommodates the system’s natural layer spacing. 

These simulations however lead to the same structures as were seen in the canon

ical ensemble. Therefore, this multi-domain layered configuration seems to be the 

most stable state for this model at high pressures/densities.

A quantitative insight into those phases is provided by the pair correlation func

tions as shown on Figure 6.11. Again the functions computed with respect to 

n and Uj show little qualitative differences. As the density is increased, <7||(r|j) 

and g|jnol(r ||) display a series of peaks accounting for the domain ordering. The 

distance between two successive peaks of about 6 cr0 corresponds to the distance 

between two layers separated by a small number of interstitial particles with per

pendicular orientation. The lack of periodicity in these functions reveals that 

this phase is not smectic, however. The intra-layer, in contrast, is rather close 

to that of a smectic phase as g^ol{r±) shows up to four peaks with an average 

separation ~  oq accounting for the successive parallel and antiparallel neighbours.

Thus, for the elongation of k = 5, the HP model shows a rather surprising phase 

behaviour which is subtly different from that observed for k = 3. For the longer 

elongation, the model proved to remain fluid over the pressure range considered. 

With increased pressure, a transition to an ordered phase was observed. At high 

pressure, the particles formed layered domains with different orientations and 

high, smectic-like, intra-layer order. The HP model does not, however, fulfill the 

requirement of having the stable nematic phase needed to simulate the confined 

flexoelectric particle systems mentioned at the beginning of this Chapter. The 

modeling of pear-shaped particles which form nematic phases can, however, be 

achieved using a totally different route to the expression for the contact distance. 

This new approach is described in the following Sections.
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(a) p* =  0.10

(b) p* =  0.14, bottom view (c) p* =  0.14, side view

Figure 6.10: Configuration snapshots for the HP model with k  =  5 at p* — 0.14. Two 

views are presented the bottom o f the simulation box (left) and a side view looking 

down along y  and z pointing upward.
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Figure 6.11 : Pair correlation functions for the HP model with k = 5 computed with 

respect to h(top) and Uj (bottom).
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6.3 The PHGO model.

Here a novel model for non-centrosymmetric particles is described. The route 

adopted is to extend the generalized Gay-Berne (GGBP) potential [105] to the 

description of non-centrosymmetric particles thus leading to the so called Para

metric Hard Gaussian Overlap (PHGO) model.

6.3.1 O btaining the contact distance.

The generalized Gay-Berne model describes the interaction between two ellipsoidal 

particles i, j  with arbitrary lengths lj and breadth dj and orientations u* 

and uj separated by an intermolecular vector r̂ - =  The contact distance

for this model is given by :

aiuitUjtTij) =

If, alternatively, the brackets containing the length and breadth values are grouped 

as :

0 o 1 - X

(6.5)

with :

a',2

A = (e?-df )  b  = (%-<%)

C = (fj + d!) D = (C- + dj),
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the shape parameter can be rewritten as

0 0  1

Although the two forms of Equations 6.5 and 6 . 6  are mathematically equivalent, 

the second is to be preferred for implementation in a simulation code as it is free 

of possible division by zero or complex numbers in the limit £ =  0  and d = 0 .

By design, Equation 6 . 6  is restricted to the description of particles with fixed £ 

and d. The extension from the GGB to the PHGO  contact distance is to consider 

particles for which £ and d vary parametrically with ( r ^  • u * )  and ( r ^  • U j ) .  As a 

result the shape of i as ‘seen’ by j  can be tuned to be a function of the relative 

position and orientation of the particles. This makes it possible to model particles 

with arbitrary non-centrosymmetric shapes although the approximation made by 

the model can lead to anomalies if non-convex particle shapes are used.

This method can therefore be applied to the description of particles having the 

Bezier shape used by the Stone expansion of the HP model as these do satisfy the 

convexity requirements of the model. When two such particles interact with their 

sharp ends, £/d needs to be relatively large, whereas the blunt end interaction 

requires an £/d ratio rather nearer to unity. In order to avoid discontinuities 

between these two limiting cases, a multitude of parametric forms is possible; 

here the form of and di is limited to simple polynomials of the polar angle 

(rij • uj), that is :

The main limitation of this model is that the description of concave particles (i.e. 

dumbells) is not avaliable. The advantages are, however, numerous as the ana

lytical form makes it possible to use the model in both MC and MD codes. Also,

di{Vij  • Uj) 0 T • • • T ' Uj)

A(?r/ • u») = ae,o + . ..  + • ui)m.

(6.7)

(6.8)
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this monosite model does not introduce any discontinuities in the particle-particle 

contact surfaces. Although the use of polynomials to describe the dependency of 

t  and d over (fZJ- • uz) might seem simplistic, this allows a very straightforward 

implementation in the coefficients A, B, C and D by simply adding higher order 

terms. Reversibly, the contact distance of the HGO model can be recovered in 

taking the limit m = n = 0 .

Finally simulations of multi-component fluids is an easy extension of this model, 

as a set of a^ , can be assigned to every type of particle. Systems of parti

cles whose shapes vary within a simulation run can also be achieved using this 

approach.

6.3.2 Param eterizing Bezier pears.

In order to apply the PHGO approach to pear-shaped particles, the coefficients 

a^i and a^i need to be computed. This has been performed by numerically fitting 

the particle-point potential to a geometrical shape. For this, a numerical simplex 

method [184] has been chosen.

The shape that is considered here is a simple update of the Bezier shape described 

in Section 6.1, the difference being that the control points # 2  and q3 are set to be 

always coincident. This makes the Bezier shape easily scalable with k. This new 

Bezier shape is shown on Figure 6.12 and the associated control points coordinates 

as a function of k are given on Table 6.3.

Using the geometrical properties of the Bezier curves, it is possible to extract 

the coordinates of each point of the pear surface and, hence, the numerical data 

corresponding to the particle-point contact distance as a function of (uz • r ZJ). 

These data are then fitted to the expression for the PHGO contact distance with 

tj — d{ = 0  which in this case reduces to :

„ff. r   d i ( f g  • U i M f j j  • U j ) _____________________  .
0\ u z, r zjj i_ (o.yj

{ l i  ( f i j  • « i )  +  ( f i i • f « )  [ d ? ( f i3- • U j )  -  • U i ) ] } 2

The values of the a^a and a^a coefficients obtained from the fitting procedure are 

shown on Table 6.4. n =  10 and m = 1 have been chosen as this was found to be
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Figure 6 . 1 2  : Bezier shape for parameterized with the PHGO model.

Qi X y

Qi - k o 0

(12 0 \k ( jQ

(73 0 l k o 0

(74 0

Qb - \ k ( 7 Q

Qe - ( J 0 — \k<jQ

Table 6.3 : Bezier control points coordinates for the Bezier pear used with the PHGO

model.
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k = 3 II LOII

(Id, 0 0.501852454 0.501377232 0.497721868

(1(1,1 -0.141145314 -0.129608758 -0.123155821

(Id,2 -0.060542359 -0.074219217 0.024405876

0>d, 3 0.225813650 0.484166441 0.723627215

0>d, 4 0.832274021 0.923492941 0.389831429

&d, 5 -1.015039575 -1.987232902 -3.018638148

O'dfi -2.504045172 -2.943008017 -1.951629076

(I'd,7 1.375313426 2.808075172 4.413215403

(Id,8 3.196830129 3.815344782 2.998417509

dd, 9 -0.699241457 -1.426641750 -2.241573216

Od.lO -1.430400139 -1.682476460 -1.416614353

d£,0 1.498259615 1.995906501 2.493069403

(l£, 1 -0.002027616 -0.004518187 -0.008067236

Table 6.4 : Values of the (id,a and a^a for the PHGO pears with k = 3, 4 and 5

the best compromise between simulation speed and fit accuracy. The accuracy of 

the fits can be checked by comparing the contact distances calculated using the 

coefficients of Table 6.4 and the actual Bezier shape (Figure 6.13). The comparison 

reveals a very good correspondence between the two sets. The critical region 

being for (fy • u;) ~  0. The level of correspondence between the numerical and 

analytical result to be achieved in this region dictates the number of coefficients to 

be used. While using n = m = 1 allows a good fit for the head and tail regions of 

the particles up to n =  10 coefficients in a^a were required to achieve the quality 

of fits shown on Figure 6.13.

The quality of these fits does not, however, guarantee an appropriate particle- 

particle interaction and the validity of the latter is assessed by computing the 

contact surfaces equivalent to those considered for the HP model [e.g. Figures 6.2 

and 6.3 ). Again three contact surfaces were computed corresponding to parallel, 

anti-parallel and T-geometry interactions. The results for k = 3 and k  = 5 are
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Figure 6.13 : Comparison between the numerical and geometrical contact distance for 

the PHGO particle-point potential.



shown on Figures 6.14 and 6.15.

These surfaces show the required shapes, that is approximately ellipsoidal shapes 

for the parallel interactions and pear shapes for the anti-parallel interactions. Al

though there is not really a required shape for the T-geometry, the latter do not 

show any discontinuities that would indicate potential problems. They are also 

reasonably consistent with those obtained for the corresponding HP contact sur

faces.

The difference between the contact surfaces for this model and the HP model 

are readily understandable. For the PHGO model, ridges in the contact surfaces 

have disappeared save for small oscillations which are a direct consequence of the 

degree of truncation of the fits shown on Figure 6.13. However the low amplitude of 

these oscillation suggests that the PHGO model should be free of the interlocking 

phenomena shown by the HP model.

6.4 Phase behaviour of the PHGO model.

In order to test the PHGO model applied to the Bezier pear shape, bulk constant 

N P T  MC simulations were performed on systems of N  = 1000 particles with 

elongations k = 3,4 and 5. As with the HP model simulations, orientation inver

sion moves were also included in the MC scheme. These accounted for 20% of the 

total number of attempted moves. The volume change scheme was performed on 

average, once two sweeps and allowed each box side to change its length indepen

dently. Typical runs comprised of 0.5.106 sweeps for equilibration and production. 

Close to phase transitions, additional runs were performed on a case by case basis 

to ensure that equilibration was achieved. All simulations were performed in a 

compression sequence.
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Figure 6.14 : Contact surfaces for the PHGO m odel and k =  3.
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(b) anti-parallel(a) parallel

(c) T-geometry, x-z view (d) T-geometry, y-z view

Figure 6.15 : Contact surfaces for the PHGO m odel and k =  5.
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Figure 6.16 : Phase diagram for the PHGO pears with k = 3 and 4.
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6.4.1 Particles w ith  k =  3 and 4.

The equation of state and order parameter behaviour obtained from simulations 

with k = 3 and 4 are shown in Figure 6.16. The phase behaviour for these two 

elongations is fairly similar; both P(p*) curves show an inflexion point, respec

tively at p* ~  0.30 and ~  0.20, which corresponds to an increase of ^(p*) to 

values of the order of 0.15 immediately followed by a rather steep decrease.

The ‘plateau’ in P(p*) indicates some sort of phase transition to a more ordered 

phase but, as this is only hardly reported on P2> this phase change does not cor

responds to an isotropic-nematic phase transition. Some more insight into the 

phase behaviour can be obtained by observation of configuration snapshots (e.g. 

Figure 6.17).

These show that upon increasing the pressure, both systems underwent a phase 

transition from isotropic to the what we term as a domain ordered BILAYER 

phase where, the particles form domains in which the local order is very high but 

where the orientation changes from one domain to the other. Unlike with the HP 

model, this seems to have been a transition between two genuinely liquid states 

as the systems maintained high mobility throughout the density ranges consid

ered here (see Figure 6.18). Also, the configuration snapshots suggest continuous 

orientation changes in moving from one domain to another (e.g. Figure 6.17b and 

d,) unlike the very sharp domain boundaries seen in the HP systems (e.g. Fig

ure 6.10b and c.)

More quantitative insight into those domain ordered phases have been obtained 

through computation of the pair correlation functions. Both <?||(U|), P||nol(r ||) (Fig

ure 6.19(a)) and g±(r±), g™°\rj_) (Figure 6.19(b)) have been computed for k = 4 

as the domains are best observed for this elongation.

p||(r||) and g±(r±) show some short ranged structure with increasing density but 

do not give much information about the structures observed on the snapshots 

because the choice of reference (n) for the computation of these curves does not 

allow one to ‘follow’ the orientation of the particles in the domains.
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(a) k — 3 isotropic (b) k = 3 domain ordered

(c) k — 4 isotropic (d) k = 4 domain ordered

Figure 6.17 : Configuration snapshots for the pear PHGO model and k = 3 and 4.
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Figure 6.18 : Evolution of (5r2(n)) for the pear PHGO model and k — 3 and 4.

A better reference is the molecular orientation as used when calculating 

and g™ol{r±) (Figure 6.19(c) and (d)). In this case, the appearance of almost 

periodic behaviour in P™Ql ( l̂l) shows some smectic-like ordering with increased 

density. g™ol(r±), however, shows that those domain are fairly short ranged as 

only three peaks can be observed, the first one accounting for the direct antipar

allel neighbors and the subsequent maxima correspond to further shells of parallel 

and anti-parallel particles.

Thus the PHGO model applied to the Bezier pears with elongation k = 3 and 4 

has shown some very interesting phase behaviour. Despite the improved contact 

surfaces, that prevented the formation of glassy phases, still no nematic phases 

could be observed. Rather, upon increasing the density, the systems underwent a 

transition from isotropic to a domain ordered phase.

6.4.2 Particles w ith  k  =  5.

The phase behaviour for particles with k = 5 proved to be qualitatively different 

from the shorter elongations and resembled that of other common LC models, 

such as the HGO fluid.

P*(p*) shows a plateau at P * ~  1.2 which corresponds to an ‘S’ shaped increase
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Figure 6.19 : Pair correlation functions for the pear PHGO model o f k = 4 computed 

with respect to n (top) and to u* (bottom).
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Figure 6.20 : Phase diagram for the PHGO pears with k — 5.

in P2 (p*) to values typical of a nematic phase. This phase lacked polar order 

throughout the density range considered as shown by the low values of P\{p*). 

Configuration snapshots illustrating these isotropic and nematic phases are shown 

on Figure 6.22(a) and (b). Surprisingly a second feature can be observed on the 

phase diagram in the form of a second inflexion point in P*{p*) at higher pressure. 

This corresponds to a second, smaller ‘S’ shaped increased in P2 {p*) marking a 

second phase transition, this time to a smectic phase. As the PHGO model is sim

ply a generalization of the Hard Gaussian Overlap model to non-centrosymmetric 

shapes, this second phase transition was not expected. Observation of the config

uration snapshots at the highest densities confirmed the existence of the smectic 

phase {e.g. Figure 6.22(c) .) All the phases found can be shown to be fluid as the 

gradient in (5r2 (n)) stayed rather high throughout the density range considered 

here (Figure 6.21).

In order to gain more insight into the phases found here but also to characterize 

the smectic phase more precisely, the pair correlation functions have been com

puted parallel and perpendicular with respect to the nematic director n. Only 

this reference frame has been taken here as, in the absence of domain ordered 

phases, computation of g™01̂ )  and <7™ol(rjJ was not required.

As shown in Figure 6.23, increase in pressure leads to the development of peri

odic oscillations in p||(r||); the amplitudes of these fluctuations were found to grow 

with increased pressure. In the smectic phase, g\\{r\\) became fully periodic, the
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Figure 6 . 2 1  : Evolution of(5r 2 (n)} as a function of pressure for the pear PHGO model 

with k = 5.

repeating pattern being composed of one main peak between two smaller ones.

At P* = 2.8, the distance between the two main peaks was about 7.389cr0 «  

1.5/c<to. This corresponds to the separation of layers with the same polar orien

tation. The two smaller peaks account for the two spacing of antiparallel layer 

arrangement. The presence of two peaks (rather than one) can be explained by the 

difference between the preferred tail-tail and head-head contact distances. The 

area under these peaks is about half that under the main peaks as each accounts 

for one type of relative alignment (head-head or tail-tail) whereas the main peak 

account for two types of interaction (head-tail pointing up and head-tail point

ing down). At the same pressure of P* = 2.8, the peak separation of about <To 

shows the smectic to be a smectic A phase. Moreover, the interdigitation between 

the layers as revealed by the configuration snapshots (e.g. Figure 6.22(c)) further 

identifies this smectic phase as a bilayered smectic A2.

Comparison of <7||(r||) for different values of P* in the smectic phase shows an in

teresting compressibility behaviour and also allows to identify the different peaks
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(b) nematic(a) isotropic

(c) smectic

Figure 6.22 : Configuration snapshots for the PHGO pears with k = 5.
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Figure 6.23 : Pair correlation functions for the pear PHGO model o fk  = 5 computed 

with respect to n.

with their associated particles interaction geometry. Upon increasing the pressure, 

the system density rises and the intra-layer separation decreases whereas the bi

layer separation increases (Figure 6.23(a) and (b)). From the measured ^ (u i) data 

in the pressure range [2.4 : 3.8], it is found that the distance between the main 

peaks, which corresponds to the separation of the bilayers, increases from 7.38 to 

7.66. The distance from the main peak to the first minor peak, which corresponds 

to the strongly interdigitating ‘tail-tail’ configuration increases from 2.49 to 2.76, 

whereas that to the second minor peak, corresponding to the weakly interdigitat

ing ‘head-head’ alignment remains effectively constant at 4.85. Thus, the in-plane 

compression induced by this increase in pressure leads to a 10% increase in the 

separation within the interdigitated bilayers that comprise the smectic A2 phase. 

Figure 6.24 shows the period of <7||(r||) at P * = 2.8 ; the distance C — Hi corre

sponds to the bilayer separation, that is the separation between particles with the 

same polar orientation (<]< and t>>). The C — L\ distance corresponds to the 

separation between the strongly interdigitated particles in a tail-tail (><]) config

uration and the C — L2 distance corresponds to the separation between particles 

in a head-head (<t>) configuration.
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Figure 6.24 : Details of g\\(r\\) for a system of PHGO particles with k = 5 and P* = 

2.8, which corresponds to a smectic phase.

The results from the simulation of the pear PHGO model with k =  5 thus shows 

an interesting phase behaviour that includes stable nematic and interdigitated 

smectic A phases. As a result the prerequisite condition for the creation of the 

model for surface induced switching is fulfilled and pear PHGO particles can be 

used in confined geometries in an attempt to achieve the main goal of this thesis. 

Results of the work performed to this end are presented in Chapter 7.

Conclusion

In this Chapter the simulation of non-centrosymmetric, pear-shaped particles has 

been addressed using two models. The first model used a steric version of the 

model developed by Berardi et al. [2]. The contact distance of this is obtained 

fitting a numerical contact distance to a truncated Stone expansion. However, this 

introduced non-convex contact surfaces and, as a result, the model with elonga

tions k = 3 and 5 did not display stable nematic phases as they were systematically 

preceeded by glassy phases. A totally new approach was then taken in the form of 

the so called parametric hard Gaussian overlap model. For the shorter elongations 

k — 3 and 4, the model did not show any nematic phases; rather at high densities,
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the molecules order into interdigitated domains. Upon increasing the elongation to 

k = 5, the model was found to display both nematic and interdigitated smectic A2 

phases. The latter showed some interesting anisotropic compressibility behaviour 

where compression had the effect of decreasing the intra-layer particle separation 

while increasing the distances between bilayers. As a result, the PHGO model 

with an elongation k = 5 can be used for the modeling of surface induced switch

ing in hybrid anchored systems of flexoelectric particles; the implementation of 

this is discussed in the next Chapter.
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Chapter 7 

Confined pear shaped particles

Introduction

In this Chapter, the knowledge acquired from our earlier studies of confined sys

tems and the development of the pear shaped PHGO model are brought together. 

The aim here is to construct a model for a liquid crystal display cell in which 

as proposed by Davidson and Mottram [1], the switching is achieved though a 

combination of flexoelectric behaviour and surface bistability. This is attempted 

here using a hybrid anchored slab of confined flexoelectric (pear shaped) particles 

homeotropically anchored on the top of the cell and with a homeotropic/planar 

bistable anchoring on the bottom.

This Chapter presents the steps undertaken in order to achieve both the easy and 

hard switching routes between the hybrid aligned nematic and vertical states of 

such a display.

7.1 The flexoelectric display

The model proposed by Davidson and Mottram [1] is an idealised representation 

of an existing display cell, the ZBD device [185], in which the grating morphol

ogy of the ZBD device is treated as a planar surface which has homeotropic or 

planar anchoring states. The geometry considered in [1] is shown in Figure 7.1.
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(a) The Vertical state (b) The HAN state

Figure 7.1 : Schematic representation o f the two stable states o f the display cell con

sidered in [1]. The top surface induces a monostable homeotropic anchoring while the 

bottom surface is bistable and induces both homeotropic and planar arrangements.

In this, a system of flexoelectric rnesogens is confined in a slab geometry; the top 

surface induces a monostable homeotropic anchoring while the bottom surface is 

bistable and allows both homeotropic and planar arrangements. In the case of an 

homeotropic bottom surface anchoring, the cell is in the so called vertical state 

(Figure 7.1a) and all particles have a vertical orientation; in the case of a bot

tom planar anchoring, the state is in a so called hybrid aligned nematic (HAN) 

state (Figure 7.1b) where the particle orientations change continuously from ho

meotropic on the top surface to planar at the bottom.

Easy switching between these states can be achieved by applying an electric field 

between the two substrates which will reorient the particles either parallel or per

pendicular to the surfaces for respectively a negative or positive molecular dielec

tric susceptibility. Upon removal of this field, because of the strong homeotropic 

anchoring at the top surface, particles close to that substrate will recover the
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5e easy switching hard switching

Se > 0 HAN to V using E < 0 V to HAN using E > 0

Se < 0 V to HAN using E > 0 HAN to V using E  < 0

Table 7.1 : Electric parameterisation given in [1] required to performed the easy' and 

'hard' switching between the HAN and vertical states.

homeotropic anchoring whereas particles close to the bottom substrate will keep 

the field induced orientation because of the bottom surface bistability. As a result 

both HAN and vertical states can be produced with an appropriate choice of start

ing configuration and electric field for a given value (and sign) of the molecular 

dielectric susceptibility.

The difficulty that then arises is that of achieving the reverse switching, the so 

called hard switching from V to HAN if Je > 0 or from HAN to V if Se < 0. 

Davidson and Mottram showed that this ‘hard switch’ can be made possible by 

reversing the field orientation and using moderate values of the field strength, if 

the liquid crystal particles have flexoelectric properties. Upon application of the 

reverse field, competition is created between the dielectric alignment behaviour 

and the field-induced splay promoted by the flexoelectricity. For appropriate val

ues of the field, this competition causes the confined liquid crystal to adopt a 

distorted state which, upon removal of the field, relaxes to the other state thus 

rendering hard switching possible. Table 7.1 summarizes the parameterisation 

combinations required to achieve easy and hard switching of the cell.

The treatment used by Davidson and Mottram was, however, based on elastic 

theory approach. In this Chapter, the aim is to investigate, using molecular 

simulations, the validity of this and thus get a microscopic picture of the process 

underlying the switching scheme.

In order to model the display proposed by Davidson and Mottram using molecular 

simulation methods, a similar slab geometry like that shown on Figure 7.1 is to
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be used, that is with an homeotropic top surface and a bistable bottom surface. 

The flexoelectric molecules are to be represented using the k = 5 PHGO model 

for pear shaped particles developed in Chapter 6.

The competition between the dielectric effect and the field-induced flexoelectric 

splay is to be achieved through a particle-field interaction made of dielectric and 

dipolar contributions, as shown in Appendix B. In the case of a negative dielectric 

susceptibility, for example, the particles need to experience the competitive effects 

of the dielectric contribution, which tends to align the particles perpendicular to 

the field, and the dipolar effect which tends to align the particles parallel to it. 

The latter has the effect of introducing splay distortions due to the preferred pack

ing arrangement of pear shaped particles.

The system electric energy Ue is given by (see Appendix B) :

where eo is the unit of energy, 6 e is the dielectric susceptibility, /i is the dipole

7.2 M olecular models

To achieve a simulation of the switching in this display cell requires the modeling 

of pear shaped particles in a confined systems and the presence of bistability be

tween the surface induced homeotropic and planar arrangements.

The modeling of the pear shaped particles is achieved using the PHGO model as 

described in Chapter 6. Particles with an elongation k =  5 are to be used as these 

particles were found to form a stable nematic phase.

Particle surface interactions are to be based on the approach as developed in Chap

ters 4 and 5; the particles will not interact directly with the substrate, rather an 

object embedded into the molecules controls the surface interaction through an

(7.1)

moment, Uj is the molecular orientation and E =  EE  =  E z is the applied electric

field.
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Figure 7.2 : Representation of the configuration used for the surface interaction be

tween a pear shaped particle and the substrate. The interaction is performed by the 

ellipsoid embedded into the pear ; the former is shifted by an amount s along the 

molecular orientation.

appropriate steric potential. It has been shown in the preceeding Chapters that 

in the case of ellipsoidal particles, surface bistability between the homeotropic 

and planar arrangements can be achieved using either the HNW or the RSUP 

potentials; since the bistability regions for the latter are wider and stronger, this 

happens to be the better candidate.

However, y RSUP represents the interaction between a Gaussian ellipsoid and a 

surface and its extension to the accurate description of the interaction between 

a pear having the shape of the Bezier pear of Chapter 6 and a surface is not 

straightforward.

Therefore, the RSUP potential was chosen to describe the surface interaction here. 

In order to prevent the inner ellipsoid from overlapping the surface of the pear 

shaped particle, and to add a more realistic behaviour to the model, the refinement 

depicted in Figure 7.2 has been made. This involves shifting the position of the 

inner ellipsoid along the molecular long axis towards the bulky end of the pear so

197



that the ends of the two objects are coincident. This mimics a situation where 

the particles can embed their tails but not their heads into a coated substrate. 

The pear-surface interaction is described by VPSU as :

0 if |zobj - z q \ >  <tp s u  ^  ^

oo if |2:0bj - z 0\<  aPSU
VPSU =

where zo is the position of the substrate and zQbj is the height of the inner ellipsoid 

of elongation ks '

^obj =  Z i - ^ ( k -  k s ) cos 6  (7.3)

where Zi the position of the particle. &psu gives the contact distance between the 

inner ellipsoid and the surface, that is :

- P S U  _ . 1 - X s s i n 2 e

1 - X s  (7'4)
and xs  is the shape anisotropy of the inner ellipsoid :

k2 — 1

{7 '5)

The use of molecular visualisation tools shows that for particles with k  = 5, the 

surfaces of the two objects do not overlap provided ks £ [2.00 : 3.92). As a 

result, all simulations of this model have been performed with reduced ellipsoid 

elongation k s / k  £ [0.4 : 0.8] (see Figure 7.3,) the upper limit inducing only a very 

small overlap tangent to the surface of the pear.

With this model, a homeotropic arrangement is expected in the case of small k s  

due to the ability of the tails of the particles to be absorbed by the surface. A 

planar arrangement is expected in the case of long ks because, although some 

volume could be absorbed at the tail of the particle with 6  = 0, it was shown 

in Chapter 5 that the natural tendency of hard rods to adopt planar alignment 

becomes dominant as k s / k  increases.

The lack of a parametric expression for the Bezier pear shape and, therefore, 

the lack of an analytical expression for the absorbed volume of a pear into the 

surface prevented the development of an analytical prediction for the stability of 

the different surface arrangements. Here, therefore information on the preferred 

anchoring arrangement can only be obtained using computer simulations.
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(a) k's  =  0.4 (b) k's  =  0.8

Figure 7.3 : Representation of the configuration of the P5U potential in the limiting 

cases o f k's — 0A(a) and k's = 0.8(b). The black region shows the overlap between 

the two objects.

7.3 Sym m etric system s

Here, the surface arrangements induced by the PSU model are studied using Monte 

Carlo simulations in the canonical ensemble of systems of N  = 1000 PHGO par

ticles of elongation k = 5 confined in a slab geometry of height Lz = 4ka0  and 

symmetric anchoring.

Typical ^-profiles obtained from those simulations are shown on Figure 7.4 for a 

density of p* =  0.15 which corresponds to a bulk nematic phase and two values 

for k's corresponding to the lower and upper limits of the range available for this 

parameter.

For k's =  0.4, the profiles show the features typical of homeotropic anchoring, 

that is large peak separations in p}(z) and (P2(z)), compatible with end to end 

layering. Also, Qzz(z) displays the typical positive values in regions correspond

ing to high local density. In the case k's = 0.8, by contrast, the profiles show the
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Figure 7.4 ; Typical profiles for a confined system of PHGO particles with k = 5 

symmetric anchored with k's = 0.4 and k's =  0.8 and p* = 0.15.

200



(a) (b)

Figure 7.5 : Typical snapshots for confined systems o fN  = 1000 PHGO particles with 

k  = 5 at p* = 0.15 symmetrically anchored with k's  = OA(a) and 0.8. The particle 

surface interactions are controlled by Vpsu .

characteristics of planar anchoring ; pl(z )  and {P-2 ( z )) have a much shorter peak 

separation compatible with side by side alignment, and Q zz(z ) displays negative 

values throughout the slab.

Observation of the configuration snapshots (e.g. Figure 7.5) confirms the conclu

sions made from the profiles. This surface behaviour confirms the assertions made 

in Section 7.2 and confirms the suitability of the PSU potential for the modeling 

of the HAN and vertical states of the display cell.

The homeotropic to planar anchoring transition has been located using Monte

Carlo simulations in the canonical ensemble of symmetric systems at a constant

density of p* = 0.15 and varying the surface anchoring using series of simulations

with increasing and decreasing k's  in the range [0.4 : 0.8]. The location of the

anchoring transition and the identification of possible bistable regions have been
 £u

achieved through the observation of the evolution of Q zz (k's ) as shown in Fig

ure 7.6.
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Figure 7.6: Representation ofQ zz as a function of the reduced inner object molecular 

elongation k s /k  for a confined system of pear shaped PHGO particles in a symmetric 

anchored confined geometry The surface interaction is controlled by Vsu .

This shows that the transition between the two surface arrangements takes place 

in the range k's E [0.64 : 0.74]. Also in this region, the differences between the
 gu
Qzz data obtained from the two series indicate a region of bistability which is 

strongest for k's = 0.7 ; with a bistability value of 1.09.

This result achieves the requirement of a bistable anchoring transition between 

the homeotropic and planar surface arrangements for this system. However, as 

only symmetric anchored systems have been used, the presence of bistability here 

does not guarantee a similar behaviour in the case of hybrid anchored systems. 

This question is addressed in the next Section.

7.4 Hybrid system s

The study of hybrid anchored systems of HGO particles presented in Chapter 5 

showed that the presence of a top surface with strong homeotropic anchoring
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can cause a bottom surface with competing anchoring to lose the bistability of 

its homeotropic and planar surface arrangements. The bistability behaviour can, 

however, be recovered by two complementary means. The first of these is to 

increase the slab height, which has the effect of creating a smoother transition 

between the homeotropic and planar arrangements. The second solution is to re

duce the anchoring strength at the top surface in order to reduce the elastic forces 

this imposes on the particles anchored at the bottom surface.

Here, therefore, we study the effect of the top surface anchoring parameterisation 

on the bistability behaviour of the bottom surface in an hybrid anchored system 

of pear shaped particles interacting with the surfaces through the PSU  poten

tial. For this, systems of N  =  1000 PHGO particles of density p* = 0.15 with 

k =  5 confined in an hybrid anchored slab have been studied using Monte Carlo 

simulations in the canonical ensemble. Series of increasing and decreasing k'Sb in 

the range [0.56 : 0.74] have been used; this range corresponding to the bistability 

region of k's for symmetric systems. Three values for the top anchoring strength 

were considered : k'St = 0.4, 0.5 and 0.6. The transition between the homeotropic 

and planar arrangements at the bottom surface was studied through the com

putation of QSzbz as a function of k'Sb. A comparison between the Q^i^'sb) data 

obtained for these hybrid systems and the data obtained from equivalent symmet

ric systems in Section 7.3 is shown on Figure 7.7. Configuration snapshots from 

those simulations with k'Sb = 0.64 and 0.74 are shown on Figure 7.8. We note 

that, as in the case of the equivalent HGO systems, the HAN state found for this 

film thickness suggest discontinuous director profiles.

For the two lower values of k'St (representing stronger homeotropic anchoring), 

although the two series of simulations lead to hysteresis in the values of Qzti^sb)^ 

no bistability can be observed. None of the state points considered here corre

spond to a situation where the values of Qzz obtained from the two series are both 

significantly different from zero and of opposite signs.
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rSb,Figure 7.7 : Comparison between Qzz{k'Sb) (dashed lines) from simulations o f hybrid
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anchored systems of PHGO particles and Qzz (k's ) from simulations of symmetric sys

tems described in Section 7.3(solid lines). The arrows indicate whether the simulations 

have been performed with increasing (A ) or decreasing (xj) values ofk's
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( c ) k 's t — 0-5? k'sb ~  0.64 ( d )  k'S t — 0.5, k'Sb — 0.74

(e) k's t  =  0.6, k'Sh =  0.64 ( f )  k's t  =  0.6, k'Sb =  0.74

Figure 7.8 : Typical configuration sn apshots ob ta in ed  from sim ulations o f  confined

sys tem s  o f  N  — 1000 PH GO particles w ith k  — 5 a t  p* =  0.15, hybrid anchoring and

different values o f  k's t and k'Sb.
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(a) increasing k'Sb (b) decreasing k'Sb

Figure 7.9 : Configuration snapshots showing the HAN and V states o f a hybrid an

chored slab o f N  — 1000 PHGO particles with k =  5 at p* =  0.15 with k'St =  0.6 and 

k^b = 0.7. Those configuration have been obtained from series o f simulations with 

increasing (a) and decreasing (b) values o f k'Sb

With k'st =  0.6, however, a small bistable region is recovered around k'Sb =  0.7; 

the values of Qzz are different and of opposite signs. The bistability value for 

k'Sb =  0.7 is 0.914 which is very close to that obtained with symmetric anchored 

systems. Configuration snapshots corresponding to the HAN and V states of the 

cell at this state point are given on Figure 7.9.

These results show that reducing the strength of the anchoring at the top surface
_

allows to recover the bistability region by increasing the hysteresis in Qzz. The 

value k'st =  0.6 seems to be the highest reasonable that can be used, as according
 gu

to Qzz (k's ), the use of a higher value would not lead to homeotropic anchoring at 

the top surface.

The results from these simulations are reasonably encouraging for the application 

of the model to the HAN to V switching since, despite the very narrow bistability 

region for k'sb, the difference between the Qzz values obtained from the two series 

with k'St =  0.6 appears sufficient for the model to be used in the display modeling.
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Also, the snapshots show encouraging HAN and V states which should be further 

improved by the use of wider systems.

7.5 Flexoelectric switching

Here the possibility of two-way switching between the HAN and vertical states 

using the flexoelectric properties of the model and the bistable nature of the 

bottom surface is investigated. This is performed in three steps. First, the stability 

of the HAN and vertical states are assessed by performing the easy switching 

between the two states, and considering only the dielectric term in the electric 

energy {i.e. fi =  0). Then, the possibility of hard switching is investigated by 

including a dipolar term in the electric energy. This requires finding an appropriate 

combination of values for the electric field magnitude, dielectric anisotropy and 

the dipole moment. Finally, keeping the same parameterisation as that used to 

achieve hard switching, the possibility of easy switching is investigated again so 

as to check that the newly introduced dipolar contribution does not hinder the 

reverse switching.

In order to use the most favorable conditions for achieving switching and obtaining 

a smooth structural transition from homeotropic to planar in an HAN cell, all 

simulations used the Monte Carlo method in the canonical ensemble and used 

systems of N  — 2000 particles in a cell of width 8<Jo. Hybrid anchoring with 

the parameterisation corresponding to the maximum hysteresis obtained in the 

previous section, that is k'St =  0.6 and k'Sb = 0.7, was employed.

7.5.1 Easy sw itching

The aim of the simulations performed here is mainly to test for the stability of the 

HAN and vertical states found in the previous Section. Therefore, easy switching 

has been attempted between those two states by considering only the dielectric 

term in the particle-field interaction {i.e. 5e ^  0,fi = 0).

Two series of simulations have been performed using an hybrid anchored slab with
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the surface parameterisation given at the beginning of this Section. Starting with 

an HAN configuration, the first simulation attempted to switch to the vertical 

state by application and subsequent removal of an electric field and considering 

the particles to have a positive dielectric anisotropy. Then, taking the particles 

to have a negative dielectric anisotropy, a second series of simulations was used to 

switch back to the HAN state starting from the vertical state obtained from the 

first series.

Each series consisted of a first run of 2.0.106 sweeps, performed to equilibrate 

the starting configuration with the field off. This was followed by a simulation of 

0.5.106 sweeps with the field on, which primed the switching. The resulting system 

was equilibrated in the new state for another 2.106 sweeps with the electric field 

removed. The electric parameterisation used here was E  = 1.0, 6 e = ±1.0 and

/i =  0.

The evolution of Qzz at the bottom surface as a function of the number of sweeps 

is shown on Figure 7.10. The snapshots corresponding to the final configurations 

from phase of the simulation sequence are shown on Figures 7.11 and 7.12.

These results, along with the corresponding profile data (not shown) confirm both 

the stability of the HAN and vertical states for this system and the ability of the 

easy switching mechanism to switch between them.

7.5.2 Hard sw itching

We now turn to the possibility of achieving hard switching between the HAN and 

vertical states of the slab, following the theoretical treatment of [1]. Here both the 

dielectric and dipolar terms in the particle-field interaction are required (i.e. 5e ^  0 

and \i 7  ̂ 0). Only the case of particles with a negative dielectric susceptibility is 

considered. The aim here is to find an appropriate parameterisation which allows 

for switching from the HAN to the vertical states after application of an electric 

field along z. Reference [1] shows that such switching can be achieved using E < 0.
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Figure 7.10 : Evolution of Qzz with sweep number in the simulations of the HAN 

to vertical(a) and vertical to HAN (b) 'easy switching' of the hybrid anchored slab 

described at the beginning of this Section. Here only dielectric interactions between 

the particles and the field are considered. The data for the last and first field off series 

of (a) and (b) respectively have been obtained from the same simulation.
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(a) field off (b) field on (c) field off

Figure 7.11 : Configuration snapshots corresponding to three phases (a) to (c) o f the 

HAN to vertical ‘easy switching’ o f the hybrid anchored slab.

(a) field off (b) field on (c) field off

Figure 7.12 : Configuration snapshots corresponding to three phases (a) to (c) o f the 

vertical to HAN ‘easy switching’ o f the hybrid anchored slab.
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Figure 7.13 : Qzz(z) profiles for an HAN slab subject to an applied electric field along 

z, and different values o f E.

Choice of E

The first step is to find an appropriate value for the electric field. This needs to be 

strong enough to allow the dipolar contribution to distort the director profile and 

bring the system to an intermediate state that will relax into the vertical state 

after removal of the field. If the field is too strong, however, the dielectric effect 

(which scales as E 2) will dominate, causing the HAN state to be stabilised and 

thus, rendering the switch to the vertical state impossible.

In order to find an appropriate value for E, a slab in a HAN state has been 

simulated using 5e = —1.0, p = 1 .0  and different values for the electric field in the 

range [-0.02:-6.0]. For each value of E, the system was subject to an equilibration 

run of 0.25.106 sweeps followed by a production run of the same length. Figure 7.13 

shows the Qzz profiles obtained from the production runs for a selection of these 

field strengths.

These results show that, given the chosen parameterisation adopted for 5c and 

p, values less negative than E  =  —0.2 do not induce any significant distortions 

near the bistable surface and that, despite the applied electric field, the system
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always remains in the HAN state. For fields of strength more negative than —0.4, 

in contrast, the dielectric contribution dominates and stabilises the HAN state. 

For the highest absolute values of E, all particles are forced to be parallel to 

the surfaces, even those subject to the homeotropic anchoring of the top surface. 

Figure 7.13 however, indicates promising behaviour for E = —0.2, for which the 

dipolar coupling seems to be strong enough to induce a slight distortion of the 

profile without there being too strong a dielectric effect. This raises the prospect 

that by increasing the value of fi and keeping all other parameters constant, this 

distortion can be increased to the extend that switching to the vertical state can 

be achieved.

Choice of fi

Here, an attempt is made to identify an appropriate value of // so that, upon 

application of the electric field with E = —0.2, the dipolar effect induces enough 

of a distortion to cause a HAN configuration system to equilibrate into a vertical 

state upon removal of the field.

In order to achieve this, simulations of the slab have been carried out taking the 

HAN configuration as an initial state. For each fi value the simulation sequence 

performed consisted of two runs (one for equilibration and one for production) 

with an applied electric field followed by two runs (equilibration and production) 

where the field was removed. Each run comprised 0.25.106 sweeps and the param

eterisation E  — —0.2 and 5e = —1.0 was used. The first two runs were used to 

establish the ‘field-on’ intermediate state while the last to generated the state to 

which the system subsequently relaxed. The series of simulations described above 

was performed with six values of fi in the range [1.0 : 3.5].

The Qzz(z) profiles corresponding to the obtained field ‘on’ and ‘off’ configura

tions are shown on Figure 7.14 and 7.15 along with the profiles corresponding 

to the HAN and vertical states which are shown for comparison. Configuration 

snapshots of the field -on and field-off structures for fi — 2.5, 3.0 and 3.5 are 

shown, respectively, in Figures 7.16, 7.17 and 7.18
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Figure 7.14 : Q zz profiles for an HAN slab subject to  an applied electric field with

E  =  —0.2z and 5c =  —1.0 and different values o f  the dipolar m om ent p  E [1.0 : 2.0].
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Figure 7.15 : Q zz profiles for a slab in the HAN configuration and subject to  an

applied electric field with E  — —0.2z and Se =  —1.0 and different values o f  the

dipolar m om ent p  E [2.5 : 3.5].
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(a) start (b) field on (c) field off

Figure 7.16 : Configuration snapshots corresponding to the hard switching o f a slab 

in an initial HAN state with E  =  —0.2z and Se = —1.0 and p  =  2.5.

(a) start (b) field on (c) field off

Figure 7 .17 : Configuration sn apshots corresponding to  the hard sw itch in g  o f  a slab

in an initial HAN s ta te  w ith E  =  —0.2z and Se =  —1.0 and p =  3.0.

215



(a) start (b) field on (c) field off

Figure 7.18 : Configuration snapshots corresponding to the hard switching o f a slab 

in an initial HAN state with E  = — 0.2z and Se = —1.0 and p = 3.5.

From the Qzz(z) data, it appears that the switching from the HAN state to the 

vertical state is possible using values of p >  2.5. As p  is increased, so does the 

distortion induced by the dipolar term in Ue; more specifically, the profile at the 

bottom surface is changed, so inducing the bulk part of the cell to modify its 

orientation co-operatively. Upon removal of the field, for p values at which this 

distortion is sufficient, the cell equilibrates into the vertical state, thus confirming 

the results of [1].

7.5 .3  R everse sw itch in g

In Sections 7.5.1 and 7.5.2, respectively, it was shown that easy switching be

tween the HAN and vertical states can be achieved using only the dielectric ef

fect and that, using an appropriate parameterisation (E = —0.2, Se = —1.0 and 

p  £ [2.5 : 3.5]), hard switching from the HAN to the vertical state can be achieved. 

However, easy switching from vertical to HAN state is not necessarily possible us
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ing the same parameterisation as that used to achieve hard switching but with 

E > 0 since the dipolar contribution might be too strong to permit the formation 

of the HAN state.

This issue is addressed here by attempting to perform the easy switching again but 

this time with both the dielectric and dipolar term included in the particle-field 

interaction. A similar parameterisation as that used in Section 7.5.2 is applied 

here, the difference being that the electric field director is taken to be positive. 

As a result the parameterisation E  = 0.2, 5e = —1.0 and fi E [2.5 : 3.5] is used. 

Several values of (j, are considered so as to also investigate the effect of increas

ing fi. These simulations were performed using a similar sequence as that used 

in 7.5.2, the main difference being that the initial configuration for each series 

with different /i was the final configuration obtained for the vertical state from 

the hard switching simulations with the appropriate fi value.

The Qzz(z) profiles corresponding to the ‘field-on’ and ‘field-off’ states obtained 

for each value of fi are shown on Figure 7.19 and the corresponding configuration 

snapshots for /i =  2.5, 3.0 and 3.5 are shown, respectively, on Figures 7.20, 7.21 

and 7.22.

The Qzz(z) data show that, upon application of the field, most of the vertical 

slab arrangement remains undistorted, expect for a region near the bottom sur

face which adopts a planar arrangement. Upon removal of the field, this small 

interfacial distortion proves sufficient to seed this orientation into the bulk part of 

the cell. Because of the homeotropic top surface influence, the slab then recovers 

the HAN state. These results also show that the distance from the bottom surface 

over which the cell’s vertical alignment is distorted in the field-on state decreases 

with increased fi. For the run lengths used here, this has the effect of producing 

HAN states of reducing quality as /i is increased. This trend suggests that with 

fi > 3.5, although the hard switching is possible, easy switching might be inhib

ited by high values of the dipolar coupling term. As a result it can be concluded
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Figure 7.19 : Q zz profiles for a slab in the vertical configuration and subject to  an

applied electric field with E  =  0.2z and Se =  —1.0 and different values o f  the dipolar

m om ent p  G [2.5 : 3.5].
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(a) s ta rt (b) field on (c) field of

Figure 7.20 : Configuration snapshots corresponding to the hard switching o f a slab 

in an initial vertical state with E  =  0.2z and 5e = —1.0 and p =  2.5.

(a) s ta rt (b) field on (c) field off

Figure 7.21 : Configuration snapshots corresponding to the hard switching o f a slab 

in an initial vertical state with E  =  0.2z and Se = —1.0 and p  =  3.0.
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(a) s ta rt (b) field on (c) field off

Figure 7.22 : Configuration snapshots corresponding to the hard switching o f a slab 

in an initial vertical state with E  = 0.2z and 5e = —1.0 and p = 3.5.

that switching between the HAN and vertical states of the hybrid anchored slab 

can be achieved if the dipolar term to the electric field is included, but that the 

parameterisation should be compatible with a window of electric field and dipolar 

coupling strength and that if 8e =< 0.0, E  ~  0.2Se and p ~  —2.58e.

C onclusion

In this Chapter, two issues have been addressed. First, the surface induced struc

tural changes in confined systems of PHGO pear shaped particles interacting with 

the surface through the RSUP model have been studied, and bistability regions 

between the two surfaces arrangements have been found using a surface parameter 

in the range ks ~  0.7. Also, it has been shown that this bistability behaviour can 

be recovered at the bottom surface of an hybrid anchored slab with a top surface 

homeotropic anchoring provided the latter is not too strong (i.e. kst — 0.6.) 

Following this, switching between the HAN and vertical states of such a cell has
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been investigated using a particle-field interaction containing both dielectric and 

dipolar contributions. It has been shown that both easy and hard switching can 

be performed provided the energy parameterisation is compatible with a window 

in both the electric field strength and dipolar constant. Both switching direction 

can be achieved using E = ±0.28e and fi = 2.55e.

Having achieved the two switching modes presented in [1], with a molecular model, 

it is apparent that there are several possible mechanisms underlying this switch

ing. The particle-particle and particle-field interactions used have been developed 

to allow the bulk flexoelectric effects, considered in [1], to play a role in the hard 

switching. There is also, however, an implicit dipolar symmetry to the particle- 

substrate interaction used in this work, which may also have played an important 

role in the simulations presented in Sections 7.5.1 and 7.5.2. Resolving which of 

these mechanisms is the dominant effect present in both these simulations and 

the real devices they attempt to model, is beyond the scope of this Thesis; we do, 

however, comment in the general conclusion Chapter possible steps to be taken 

to this end.
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Conclusions and future work

In this Thesis, the study of confined liquid crystalline systems and the development 

of a model for tapered pear shaped particles were addressed. These two seemingly 

very different lines of work have subsequently been united in the study of confined 

pear shaped particles which lead to towards the final aim of the Thesis: the 

development of a model for a liquid crystal display cell where switching between 

the two stable states may be flexoelectricity induced. The development of this 

latter model required two conditions to be met, the first being a surface potential 

inducing both planar and homeotropic anchoring and, with appropriate tuning of 

the model parameter, a bistability region. The second requirement was that of a 

molecular model for flexoelectric (i.e. pear shaped) mesogens displaying a stable 

nematic phase.

Here, the conclusions that have been drawn from this study are summarized and 

various avenues for future work are discussed.

Conclusions

The study of confined hard particle liquid crystalline systems has been addressed 

in Chapters 4 and 5. The Surface induced structural changes in symmetric an

chored systems have been studied using three surface interaction models, namely 

the hard needle wall (HNW), rod-sphere (RSP) and rod-surface (RSUP) poten

tials. For all three of these models, the surface interaction was not mediated 

directly by the HGO particles, but by other objects embedded within them. This 

approach allowed the study to be extended to include consideration of the effect
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of varying particle absorption into the surface. Through this, it has been shown 

that the HNW and RSUP potentials induce planar and homeotropic anchoring 

for, respectively, long and short elongations of the inner object (ks) whereas with 

the RSP potential and long ks, the planar arrangement was replaced by tilted 

anchoring. These results have proved to be consistent with a theoretical treat

ment based on the geometrical characteristics of the surface interaction models. 

The implications of these results are twofold. The behaviour found for the HNW 

and RSUP models showed that the anchoring transition between homeotropic and 

planar arrangements can be controlled by the molecular volume made available 

to be absorbed into the substrates. Secondly, the tilted phase obtained with the 

RSP model lead to a revision of the explanation of tilted surface arrangements 

which had previously always been attributed to attractive forces. The observation 

of such a structure in this study showed that it can also be obtained with a purely 

steric potential.

Anchoring and order phase diagrams have been computed for all models. For the 

HNW and RSUP potentials, using series of simulations at constant densities and 

either increasing or decreasing ks, regions of bistability between the planar and 

homeotropic surface arrangement have been found. Those regions proved to be 

stronger and wider for the RSUP model. This shows that even in very simple 

model systems, bistable surface behaviour can be introduced by tuning the com

petition between two locally stables states. This suggests that similar tuning of 

real liquid crystal substrate systems may offer a viable route to relatively simple 

bistable surfaces for low energy device applications.

Hybrid anchored systems with a top homeotropic surface have been studied in 

Chapter 5 using the HNW as a surface potential in an attempt to create a hybrid 

anchored slab with a top surface homeotropic anchoring and bistable anchoring 

at bottom substrate. It has been shown that the bistability behaviour of the 

model at the bottom surface is lost if the top homeotropic anchoring is made too 

strong. However, by reducing the latter (i.e. reducing ks), the bistability at the
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bottom surface can be recovered. This has been explained in terms of the elastic 

forces transmitted from the top surface particles onto those at the bottom sur

face. Reducing the top anchoring strength reduces these forces and, thus, allows 

bistability to be recovered. The point has also been addressed in Chapter 7. Also, 

the behaviour of the homeotropic to planar structural transition has been shown 

to be dependent upon the slab height. For short slabs {i.e. small systems), there 

is a discontinuous structural transition between the two arrangements, whereas 

this becomes continuous for thicker slabs {i.e. bigger systems). These findings are 

consistent with both experimental and theoretical studies of the effect of thick

ness on the bent director structure of a hybrid anchored system. Also, this result 

has shown that the first prerequisite for the modeling of a bistable LCD cell can 

be met: it is possible to simulate a hybrid anchored slab with a homeotropically 

anchored top surface and bistable anchoring at the bottom surface using an appro

priate parameterisation for the surface model. In addition, provided large enough 

systems are used, a continuous structural transition from homeotropic to planar 

alignment can be obtained if the slab is in the HAN configuration.

Chapter 6 has addressed the study of tapered pear-shaped particles. The first 

model to be used for this was the truncated Stone expansion model; this, how

ever, did not meet the requirement of displaying a stable nematic phase and 

showed only two phases: an isotropic phase at low density and glassy domain- 

ordered phase at high density. This behaviour proved to be very surprising as 

an equivalent soft model used by the Bologna group showed isotropic, nematic 

and smectic A phases. The lack of ordered fluid phases in the steric model was 

attributed to concave features in the particles’ contact surfaces which had the ef

fect of preventing the particles from sliding along one another. As an alternative, 

the PHGO model, a generalisation of the HGO model to non-centrosymmetric 

particles has been developed. This does not show the concave features mentioned 

above. For the two shortest elongations used, k = 3 and 4, the PHGO model only 

showed isotropic and fluid domain-ordered phases at, respectively, low and high
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densities. However, upon increasing the elongation to k  = 5, the model phase 

behaviour became much richer, with transitions from isotropic to nematic and 

then to a bilayered smectic A2 phase. The study of this latter phase proved to be 

very interesting, showing anisotropic compressibility behaviour. Thus the PHGO 

model, with its nematic phase, met the second requirement for the bistable LCD 

cell model.

In Chapter 7, confined systems of PHGO particles interacting with the substrates 

through a variant of the RSUP potential have been studied. This surface potential 

has been shown to exhibit both planar and homeotropic arrangements with a 

narrow region of bistability around k s / k  = 0.7. In the case of hybrid anchored 

systems of N  = 2000 particles with a top homeotropic surface, bistability at the 

bottom surface could be recovered using kst/k = 0.6. Due to the large system size 

used, a continuous structural transition was found in the case of the bent director 

state.

Using this, a molecular model for the LCD cell was simulated and both hard 

and easy switching between the HAN and vertical states were attempted using 

both dielectric and dipolar contributions in the particle-field interactions. Both 

switching directions could be achieved using a narrow window of electric field 

strength E  and dipole moment fi. A successful parameterisation was E/5e = ±0.2 

and fi/5e = 2.5. However the question as to whether the mechanism underlying 

this switching behaviour is direct surface effect, indirect flexoelectric behaviour or 

a combination of the two has not been resolved; this forms, in part, the basis of 

future work.

Future work

The work performed in this Thesis has lead to the development of a model for a 

novel bistable LCD cell where two way switching is achieved by the application 

of a directional electric field pulse. Much of the work that will directly follow
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this Thesis concerns the study and improvement of this model. The first task is 

certainly the implementation of a method for the calculation of the slay flexoelec- 

tric coefficient as this would allow a good quantitative measurement of the effects 

of subsequent alterations to the model. Also, the use of the molecular dynamics 

method would provide interesting results by giving access to the true dynamics of 

relaxation properties of the model systems.

The cell model itself should also be improved, for instance by the use of mixtures 

of ellipsoidal shaped (HGO) and pear shaped particles (PHGO) which would allow 

independent tuning and/or enhancement of the bulk flexoelectric properties of the 

cell and the field-direction-dependence of its surface behaviour. This would also 

make the model a better description of a real liquid crystal cell, since mixtures of 

several different components are commonly used.

Finally, incorporation of attractive forces into the molecular models should be 

considered so as to render them more realistic and give access to better control 

mechanisms for tuning phase and anchoring behaviour. This could include ad

dition of quadrupolar contributions in the particle-particle interaction as it has 

been shown that quadrupole interactions are predominant in the origins of flexo- 

electricity in real mesogens.

All of these refinements should lead to the development of, more realistic mod

eling of both the LCD cell considered in Chapter 7 and the more fundamental 

behaviour needed to make such cell. The work presented in this Thesis there

fore represent a step along the path towards providing more efficient display cells 

as well as an academic study into the development of models for confined and 

flexoelectric liquid crystal behaviour.
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A ppendix A 

Absorbed volume of an HGO into 

a substrate.

A .l Introduction

The situation considered here is that of an Hard Gaussian Overlap particle close 

to a substrate and interacting with it via a given particle-surface potential so that 

the particle is allowed to partially absorb the surface. The problem is to find an 

expression for Ve the volume absorbed into the surface. Let us consider the setup 

shown in Fig A.l

The approximation made here is to solve the problem with an ellipsoid of revo

lution, instead of a Gaussian Overlap since the much simpler expression for the 

equation of an ellipsoid makes the problem easier.

The idea here is that the problem is easily solved in the case of a unit sphere. This, 

in turn, can be transformed into the same problem for an ellipsoid of elongation 

k by scaling the space along one of the axis by a factor k. The volume Ve in that 

case is equal to:

Ve = kVs (A.l)

where Vs is the volume of the sphere absorbed into the substrate.
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YYY by a factor k
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Figure A.l : Schematic representation of the geometrical configuration considered to 

calculate the absorbed volume of the ellipsoid into the substrate.

A .2 Case of a sphere.

Vs is given by computing the volume of the sphere of radius a between the z 

coordinates zq = d\ to z\ = a.

The equation of an ellipsoid of semi axis a, 6, c along x, y and z is given by :

Vs is then given by :

with

2 2 2_  , y_ 1 _  _  
a2  b2  c2

rz  1 ryi rx 1 

Vs = / / dxdydz
dzQ J y o  J x  0

z 2  y 2  

Xl =  “  62

yl =  b\l l - ?

^ 0  =  - X l

yo = -y \

(A.2)

(A.3)
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Since a sphere is considered here, a = b = c and Vs reads :

abw [  {c2  — z2} dz
J  zn

v . =  ^ a - d 1 )2 (2 a + d1) (A.4)

The distance d\ can be obtained by considering the triangle OA\Bi in the x — z 

plane. The coordinates of A\ and B\ are equal, respectively, to those of A and B  

rescaled by  ̂ along z. Hence

Al =  (XA’ T ) 

Bi = (XB' T )

and therefore

since

A 1 B l =  \ j  {xB -  x Af  +  {ZB J a ) 2  (A.S)

0 \B \  — a (A.6)

D i B  i =  (A.7)

we get d\ as :

dx =  yj 0 lB l - D 1 B\

di = \ ha2 -  j  ( (x A -  x B ) 2  - \ - ^ { z A ~ zB ) 2  ) (A.8)

A .3 Coordinates of A  and B

A  and B  are defined as being the coordinates of the contact points between the 

ellipse and the plane. Since, these points satisfy both the equation of the ellipse 

and the plane, they can be found by solving :

^  =  1 (1)
(A-9)z  cos u—a=  /2n

sin 6 \ /
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Inserting (2) into (1) gives

z2 (k 2  cos2 9 +  sin2 9) — 2zk2d cos 9 +  d2 k2 — a2 k2 sin2 9. 

the real roots of which are :

dk2 cos 9 ±  yjk 2  sin2 9 [—d2  +  a2 (k2  cos2 9 -f sin2 0)] 

A,B k 2  cos2 9 +  sin2 9

A .4 Expression for d \

Equation A.8 can now be rewritten using

(xB -  x A)2 = ^ 2 7  (zb ~  za )2 sin a
(zB — zA ) 2 = 4A:2sin20 — d2  +  a2  (k2  cos2 9 +  sin2 0)'

which after full simplification gives :

d
di =

V k 2  cos2 9 +  sin2 9

A .5 Expression for V e

The absorbed volume of the sphere can now be written as

7r I I d2  \  I d2

3 I V k 2  cos2 9 +  sin2 9 I I V k 2  cos2 9 4- sin2 9 

which gives the final result for the absorbed volume of the ellipsoid

2
kir I / d2  \ I I d2  

VP. = —— I a — \ —---- r——■—— 'o-" I I 2a +
3 I V k2  cos2 9 + sin2 9 \ V k 2  cos2 9 +  sin2 9
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A ppendix B 

Particle-field electrostatic  

interactions

Here, an expression is derived for the interaction between a particle and uniform 

electric field. Two types of interaction are considered here, namely the dielectric 

and dipolar interactions. The former describes the interaction between the polar- 

isability of a liquid crystal molecule and an applied electric field, while the latter 

is the interaction between a permanent dipolar moment and the applied field.

The setup considered is that of a particle i with orientation Uj =  (cos^sinf?,- 

sin</>sin0,cosf?) subject to a constant electric field E as shown in Figure B.l. 

Although in principle, the particle should be considered to be subject to a constant 

electric displacement D rather than a constant field, the approximation of constant 

E is made so as to avoid the complication of including the Maxwell relations.

B .l  D ielectric interaction

The field induced polarisation on the dielectric is given by :

P  — £o-Xe -E (B.l)

231



Figure B.l : Schematic representation of the geometry considered to calculate ZJpj

where P  is the polarisation induced by the electric field E, eo is the dielectric 

permittivity and Xe is the dielectric susceptibility tensor :

Xe 0 0 

V 0 0 M  )
The dielectric energy of the particle is then given by :

Udie = ~ 2 D ‘ E

with D the electric displacement

D — 6qE  -f- P.

(B.2)

(B.3)

(B.4)

Therefore, the electric energy can be expressed as :

C/die =  “ (eoE +  P ) - E  

and, since dE =  0, dUdie can be expressed as :

d Udie =  ~ E d P

(B.5)

(B.6)

The expression for dP can be obtained by using E  and P  expressed in the molec

ular frame in term of E h, Pm and Ej_, Pj_ the components of E and P  respectively
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parallel and perpendicular to u*. Thus :

E =  E|, +  Ejl (B.7

E|| =  (E-Ui)Ui (B.8

E± = E — (E • Uj) Ui (B.9

similarly :

P  =  P|| +  P± (B.10

P|| =  eoXe||E|| (B .ll

P j. — eoXeJ_Ej_ (B.12

which leads to :

P — e0 (Xe||E|| + Xe±Ei) (B.13

p  =  eo [Xe\\ (E • Uf) U; + X c i  (E -  (E • Ui) Ui)] (B.14

and with :

5e = X e \ \ - X e ±  (B.15

P  =  eo (XeiE + (E • Ui) (B.16

and therefore :

dP =  e0 6 e [(E • dth) Ui + (E • Ui) dui] (B.17

Equation B.6 then becomes :

dUdie = -^eo^eE • [(E • dfii) Ui + (E • Ui) dui] (B.18

dUdie = (E • diii) (E • uf) (B.19

Taking the electric field to be E = EE = Ez, an expression for dUe in terms of 

can be obtained as :

dUdie =  — (—E sin Qd6 ) (E cos 6 ) (B.20

dUdie — eo5eE2  sm9 cosOdO (B.21
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Thus for every 60 the electric energy corresponding to the dielectric interaction is 

given by :

Udie — eo SeE / sin 6 cos OdO 
Jo

Udie = e06eE2 cos2

Udie =  (E ■ u,)'

(B.22)

(B.23)

(B.24)

B.2 Dipolar interaction

The case of the dipolar interaction is much simpler than the previous one. The 

field interacts with a dipolar moment with energy:

Udip — (M ’ E )

For /x , the dipolar moment, given by :

/x =/m»,

the energy corresponding to the dipolar interaction is given by :

Udip — [ E  • llj)

(B.25)

(B.26)

(B.27)

B.3 Particle-field interaction

The energy Upf^ of the particle-field interaction on one particle i is the sum of the 

dielectric and dipolar contribution and hence :

U p f , i  — Udie  T  Udip

Upld = - “Co<Se (E • u,)2 -  /J { E  ■ U;).

(B.28)

(B.29)

As a result, the total energy per particle corresponding to the particle-field inter

action is simply :

Upf = % £ £ i  -|«0<5e (E • Ui)2 — n ( E  ■ uf) (B.30)
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