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A B S T R A C T

THE HYDRAULIC BULGE FORKIHG OF TUBULAR COMPOHEHTS

T. J. BARLOW

The bulge forming process is a method for shaping tubular 
components using an internal hydrostatic pressure combined with an axial 
compressive force. Initial investigations involved carrying out an 
extensive literature survey to determine the components which could be 
formed and the types of machines which have been used. Subsequent to 
this, initial tests were carried out using a previously designed die and 
tool block in conjunction with a compression testing machine. In these 
tests copper tubes were formed into expander/reducers and cross pieces 
by manual adjustment of the axial force and internal pressure.

Having obtained experience of'the difficulties associated with this 
die and tool block, and the loading reqiurements necessary for the
forming process, a new bulge forming machine was designed. The design
of the machine was based on the following main criteria:

The machine should be free standing and self contained.
The axial deformation of the ends of the tube blank should be 
synchronised to allow the bulge to form centrally on the tube. 
The internal bulge forming pressure should be externally 
controllable during the forming process.
The design should incorporate facilities for subsequent
automatic control using a micro-processor/computer.

On the basis of these requirements, a machine was designed, built and 
commissioned.

After correcting a few problems encountered in the commissioning of
the machine, a series of tests were carried out, forming tee and cross
pieces from copper tube of two different wall thicknesses. These were 
found to be fairly easy to produce on this new machine. From the 
resulting components, formed at various combinations of internal pressure 
and axial compressive force, the limits for a successful forming 
operation were established. Further analysis of these components was 
then undertaken to evaluate the effects of the internal pressure and axial 
compressive force on the bulge height and the wall thickness in the 
deformation zone. From these results, which have been illustrated 
graphically, the greatest effect on the resulting bulge can seen to be the 
axial compressive force.

An extension of a theoretical analysis has also been presented, 
which predicts the wall thickness distribution around the bulge zone. 
Comparison of these predictions with the experimental wall thickness 
distributions shows fairly good agreement, especially at the root and tip 
of the side branch.
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AB S T R A C T

THE HYDRAULIC BULGE FORKING OF TUBULAR COMPONENTS

T. J. BARLOV

The bulge forming process is a method for shaping tubular 
components using an internal hydrostatic pressure combined with an axial 
compressive force. Initial investigations involved carrying out an 
extensive literature survey to determine the components which could be 
formed and the types of machines which have been used. Subsequent to 
this, initial tests were carried out using a previously designed die and 
tool block in conjunction with a compression testing machine. In these 
tests copper tubes were formed into expander/reducers and cross pieces 
by manual adjustment of the axial force and internal pressure.

Having obtained experience of the difficulties associated with this 
die and tool block, and the loading requirements necessary for the
forming process, a new bulge forming machine was designed. The design 
of the machine was based on the following main criteria:

(i) The machine should be free standing and self contained.
<ii) The axial deformation of the ends of the tube blank should be

synchronised to allow the bulge to form centrally on the tube,
(iii) The internal bulge forming pressure should be externally

controllable during the forming process.
(iv) The design should incorporate facilities for subsequent 

automatic control using a micro-processor/computer.
On the basis of these requirements, a machine was designed, built and 
commissioned.

After correcting a few problems encountered in the commissioning of 
the machine, a series of tests were carried out, forming tee and cross 
pieces from copper tube of two different wall thicknesses. These were 
found to be fairly easy to produce on this new machine. From the 
resulting components, formed at various combinations of internal pressure 
and axial compressive force, the limits for a successful forming 
operation were established. Further analysis of these components was 
then undertaken to evaluate the effects of the internal pressure and axial 
compressive force on the bulge height and the wall thickness in the 
deformation zone. From these results, which have been illustrated 
graphically, the greatest effect on the resulting bulge can seen to be the 
axial compressive force.

An extension of a theoretical analysis has also been presented, 
which predicts the wall thickness distribution around the bulge zone. 
Comparison of these predictions with the experimental wall thickness 
distributions shows fairly good agreement, especially at the root and tip 
of the side branch.
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1 . I N T R O D U C T I O N

1.1 THE BULGE FQRMIKG PROCESS

The bulge forming process is a useful method for shaping 

tubular metal parts, by the use of internal hydrostatic pressure. This 

pressure is transmitted via a medium which can be liquid (e.g. hydraulic 

fluid), a soft metal (e.g. lead or lead alloy), or an elastomer (e.g. 

polyurethane). The tubular blank is subjected to this internal pressure 

while it is contained in a die bearing the shape of the component to be 

formed. Where the tube wall is unrestrained, expansion occurs until the 

required shape is formed.

However, bulge forming using only internal pressure causes excessive 

thinning of the tube wall, as would be expected. This leads to rupture of 

the tube at only moderate expansions. In order to be able to obtain 

larger expansions, metal has to be fed into the deformation zone during 

the forming process. This can be achieved by the application of a 

compressive axial force to the ends of the tube. If this axial force is 

great enough to cause axial deformation of the tube blank i.e. shortening 

of the tube length, a much greater expansion can be obtained with less 

tube wall thinning occurring. This method of forming is illustrated 

diagramatically in Fig. 1.

The bulge forming process has now been in use for many years. As 

early as June 1940 a Patent, filed by Gray et al1, was published by the 
United States Patent Office. This described an apparatus used for making 

wrought metal 'tees' from tubular blanks, cut from a length of standard 

commercial copper tubing. The apparatus used consisted of a die block 

split axially in relation to the tube, appropriately shaped for forming a
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'tee1. In between these two die halves was placed the tube blank and the 

two halves were clamped together. A compressive axial force was then 

applied to the ends of the tube via plungers which entered the ends of 

the die block. The internal pressure was transmitted by a liquid through 

drilled passages in one of the plungers, using a pump to provide the 

pressure, and a check valve to maintain the pressure at a given level 

during forming. In order to fill the tube blank with liquid before 

forming, the die block was contained in a tank. This maintained the 

liquid level above the tube, with the side plungers passing through 

gasketed bushings in the side of the tank. The actual forming process 

involved increasing the internal pressure to an initial value of between 

30001bf/in2 (21MPa> and 60001bf/in2 (41KPa) after the plungers had sealed, 

the ends of the tube blank. As the plungers continue to advance, forced 

in by hydraulic rams, axial deformation occurs causing an increase in the 

internal pressure. The maximum value of this pressure was controlled by 

a preset pressure relief valve, set to a pressure of between 60001bf/in2 

(41XPa) and 100001bf/in2 (69MPa) depending on the diameter and wall

thickness of the tube used. This combination of axial force and internal 

pressure pushes the tube wall into the recesses of the die - so forming 

the tee piece. The farmed tee piece exhibited thickening of the wall 

opposite the side branch and at the side branch junction. This 

provided added strength and reinforcement to the parts subjected to the 

greatest strain when the tee piece was in service. The only operations 

required to complete the manufacture of the component after forming was 

cutting off the cap of the formed branch, followed by drilling a socket 

into the branch and cutting the ends of the tube to equal length.
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An article published in 1948 by Crawford2 outlined a similar process 

for the production of tee pieces using a different pressure medium. This 

process, employed by a Canadian manufacturer, used a soft metal filler 

(a Bismuth, Lead and Tin alloy with a melting temperature of about 

138°C) which was poured while molten into a straight copper tube blank 

to fill most of it's length. When the filler had cooled and solidified, a 

compressive axial force was applied to both the metal filler and the ends 

of the tube, while contained in a suitably shaped die. After forming, the 

filler metal was removed by immersing the component in a hot oil bath. 

The tee pieces were formed from seamless copper tube of 12.7mm to 76.2mm 

nominal diameter, for use in heating and water supply systems.

However this type of forming process, using a cast metal filler as a 

pressure transmitting medium, does have it's disadvantages which have 

been described in a Patent for an improved process filed by Stalter3. 

The casting technique required the use of expensive, complex equipment 

which was normally dirty, slow and smelly. Also after casting into the 

tube blank the filler material exhibited substantial shrinkage after 

cooling and solidified preventing the tube from being completely filled 

because of the shrinkage cavities created. This could result in the 

branch not being expanded enough after the bulge forming process, in 

which case the formed item would have to be scrapped.

The improved method detailed in the Patent used small pellets 

(approximately 1.6mm diameter.) of the filler metal (Woods Metal - an 

alloy of Bismuth, Lead, Tin and sometimes Cadmium) which were compacted 

into a slug and inserted into the tube blank prior to forming. 

Alternatively the slug could be compacted directly into the tube blank in 

the forming machine. Forming was carried out as before by subjecting the
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metal filler and the ends of the tube to a compressive axial force, but 

independent control of the force on each was required. This was achieved 

by using plungers composed of a central plunger, to act on the metal 

filler, and an outer sleeve, to act on the ends of the tube. After 

forming the metal filler could be melted out and reformed into pellets 

for re-use.

1.2 BULGE FORKED CQKPQKEHTS

The large variety of components that can be formed by the 

bulge forming process from open ended tube blanks fall into two groups 

namely:

1. Axisymmetrical components.

2. Asymmetrical components.

1 .2 .1 . AyiRyTDTBfyhrical Components

Axisymmetrical components are those that have a uniform 

expansion over the whole circunference i.e. they exhibit symmetry around 

their axis. Examples of this group of components are shouldered hollow 

shafts and expansion/reduction pipe joints (where an expansion formed in 

the middle of a tube can be cut in half to form two joints.). In the 

forming of these components the relationship between the axial force and 

the internal pressure is very critical. Once a moderate expansion has 

occurred the resistance of the tube to the axial force decreases and 

buckling of the deformation zone can easily occur.

An investigation carried out by A1 Qureshi* compared the forming 

technique where a polymer was used and a hydraulic forming process for 

forming axisymmetrical components. Two different rigs were used - the
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forming rig where polymer was used consisted of a horizontally mounted 

split die held together by a vertical hydraulic ram. Two horizontally 

mounted hydraulic rams were used to provide axial compression of a 

polyurethane rod inserted inside a tube blank, which was contained in the 

die. All three rams had a load capacity of 300kN. The hydraulic farming 

rig was not as sophisticated, simply consisting of a vertically mounted 

split die, and a vertical punch to provide axial compression. Results 

indicated that greater circumferential expansions and longitudinal 

drawing occurred when the polymer was used. The technique was simpler 

and cleaner to operate, and could perform more than one operation. 

However, as the hydraulic forming process allows the independant 

variation of axial force and internal pressure, the article concluded that 

it should be possible to obtain higher circumferential expansions with 

this process using a better developed forming machine.

In papers presented by Limb et als*e axisymmetrical components were 

formed using a hydraulic process. The forming rig consisted of a 

vertical hydraulic ram for clamping the die together and two horizontal 

rams, each with a 300kH capacity. Forming was carried out using lteinch 

(38mm) O.D. seamless tube of commercially pure Aluminium, Aluminium 

alloy(HV9 - Al/Mag/Sil alloy), Copper, 70/30 Brass and low carbon Steel, 

in varying wall thicknesses - 0.048inch (1.22mm) to 0.080inch (2.03mm). 

In the forming of axisymmetrical components it was found that oil had to 

be continously fed in to maintain the internal pressure, due to an 

increase in the internal volume during expansion. The most satisfactory 

method of forming thin walled tubes was found to be by increasing the 

internal pressure as a step function of the ram movement. This 

highlighted the need of a control system that would follow a preselected
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relationship between internal fluid pressure and ram travel. The forming 

of axisymmetrical components was found to present a more difficult 

problem than the forming of tee pieces, and experience with the 

commercially pure Aluminium emphasized the fact that material properties 

are of greater importance' when attempting a large radial expansion than 

when forming tee pieces,

1.2.2. Asymmetrical Components

Asymmetrical components are those that have a localised or 

sectional expansion, such as the tee piece pipe joint previously 

mentioned. Alternative methods of producing tee pieces would involve 

machining from a casting or from a welded design, since they could not 

be shaped with customary rigid tools. However these processes are more 

complex, requiring much more processing and would prove to be costlier 

than the bulge forming process. There is a very large number of 

variations in the shapes of components that can be produced. Components 

can be formed with various numbers of side branches in different 

diameters, angles and alignments to the main branch. Some of the typical 

components are illustrated in Fig. 2.

The variety of asymmetrical components are described in articles by 

Ogura and Ueda7*8 who reported on the work which has been done in Japan 

to produce components of various shapes using a bulge forming process. 

Tee pieces were produced in various sizes ranging from teinch (12.7mm) to 

12inch <305mm) outside diameter. For tee pieces up to 4inch (102mm) 

diameter a press was used with a 4000kN clamping force for holding the 

die halves together, and two 2500kN side rams for applying the axial 

compressive force. Multi capacity dies were used and the cycle times
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ranged from 30 to 60 seconds. The larger tees were formed singularly on 

a machine with a 13KN clamping ram, and two 7000kN side rams, with a 

cycle time of 50 to 120 seconds. In order to avoid recession of the 

joint (or shrinkage - a gap between the surface of the tube and the die - 

see Fig. 3) or wrinkles in the main branch, a linear relationship was 

assumed between the amount of axial deformation and the minimum internal 

pressure required, during the forming process.

Also formed were components with two axially aligned but staggered 

side branches. These were found to be similar to form as the tees, but 

the tube blank had to be axially deformed twice as much to form side 

branches to the same height. The same was also true for the forming of 

components with two circumferentially aligned branches, except when the 

branches were 180° to one another i.e. a cross joint. In the forming of 

cross joints the component undergoes a different forming process, due to 

the symmetrical manner of plastic flow. This produces fewer variations 

in the deformation resistance and therefore less axial compressive force 

is required.

Problems were encountered when trying to form components with four 

branches, two of which were large, circumferentially aligned and very 

close to one another. Due to the large unsupported area, presented by the 

recess in the die for the two large branches, a relatively small pressure 

would result in fracture of the tube wall. This was overcome by 

controlling the rate of expansion of the two large branches during the 

forming process, preventing rapid bulging and thinning of the tube wall. 

To achieve this the die recesses contained sliding stoppers, the movement 

of which were controlled by a cam connected to the horizontal plungers,
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to restrict and control the formation of the large branches (a bulge

forming machine with this type of formation control is also described in 

a Patent Specification7 filed by a Japanese corporate body).

For the range of components that were formed, internal pressures of 

between 1000kg/cm2 (98KPa) to 3000kg/cm2 (294MPa) were used, depending 

on the diameter of the tube being formed. This internal pressure had to 

be sealed inside the tube using the end plungers. In order to obtain a 

good seal, the ends of the plungers - which butt up against the ends of 

the tube blank - were ground to a 'vee* around the ring in contact, 

resulting in a high pressure acting on a small sealing area.

The high pressure required for the forming process produced

considerable friction forces between the tube and the die resulting in 

rapid die wear. Molybdenum disulphide was found to be a good lubricant 

for reducing the wear of the die, especially if permeated through 

banderite treated die surfaces.

1.2.3. Commercially Produced Components

The main use of the bulge forming process for producing

commercial products is for the production of asymmetrical components 

such as tee pieces. The process has been used for many years in Britain 

for the production of copper pipe fittings used for pipework systems 

(including domestic water and gas supplies). The only alternative 

methods of production of tee pieces is by machining from castings or 

from welded fabrications since they can not be shaped with customary

rigid tools. The bulge forming process is much simpler, requiring less 

operations, and cheaper and quicker, especially when seamless components
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are required. The process is not only restricted to .the forming of 

copper tubes but can be applied to other materials as well e.g. mild 

steel, aluminium etc.

An article in 1978® described a bulge forming press manufactured by 

a company based in Dorset, for producing steel tees in the range l&inch 

(38mm) to 8inch (203mm) nominal bore. These hydraulic forming machines 

incorporate two 8500kN rams for applying the axial load to tubular blank, 

and a 10KU ram for keeping the axially split dies together during the 

forming process. The clamping ram also features a small inner ram for 

controlling the formation of the side branch of the tee piece.

Besides forming tee pieces the process is also used commercially in 

Britain for forming bicycle frame brackets from mild steel tubing, using 

a polymer insert as an internal presssure medium. However, in Japan the 

process has been highly developed and has been used for a great many 

applications. Besides the production of asymmetrical components of 

various shapes and number of branches previously mentioned7- *®, 

axisymmetrical components were also produced. One such component was a 

stepped shaft being used for an electric motor. This was found to be 

considerably cheaper to form from tube than turning down from a solid 

shaft, although a 10% increase in diameter was required. A problem 

encountered in forming these shafts was that a sharp radius was required 

at the edges of the step to accomodate the fitting of ball bearing races. 

The normal bulge forming process could only produce a relatively large 

radius. To overcome this problem the dies were modified so that the two 

ends could move together axially. These were hydraulically actuated 

inwards when the bulging process was completed to form the required
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radius. It was also found possible to replace the central section of the 

die with the actual object to be fitted to the shaft.

A similar process was also used for forming flanged wheel hubs for 

bicycle wheels. Two axisymmetrical bulges were formed at the ends of a 

tube blank, which were then flattened into flanges by the inward movement 

of the die ends. Other examples of the application of the bulge forming 

process used in Japan is the production of rear axle casings for cars 

and small lorries. These were produced from steel, using 96mm diameter, 

3.2mm wall thickness tube blanks for car rear axle casings and 132mm 

diameter, 6mm wall thickness tube for two ton lorry casings.

1.2.4. Associated Applications.

Besides the use of the bulge forming process for forming

axisymmetrical and asymmetrical components from open ended tube, it has 

also had been used in various other applications. One variation of the 

process is it's use for production of Brass kitchen tap spouts, as

detailed in an article by Smith11, from lengths of tube bent into a 'U'

shape. The bent tube was placed into an appropriately shaped die and

pressurised internally using water as the pressure transmitting medium.

Load was then applied to the two ends of the tube to push them in, thus 

forming the tube into the shape of the die. However, with this process

only 'U' shaped parts could be formed. An improved process was then

introduced in which the internal fluid pressure was increased after the 

ends of the tube had been pushed in, forcing the metal into the 

extremities of the die. With this improved process, extreme

configurations could be obtained, with expansions of over 100% obtained
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from Brass tubing. The components formed replaced ones which previously 

could only be made by casting or combining several machined parts.

Another application is the use of the process for bending pipe and 

forming elbow fitting. A device for this process is described in two 

Patent specifications filed by a Dutch organisation12*13. This consists 

of two die blocks that can slide across one another, perpendicular to the 

tube blank that is placed through them both. The tube contained in the 

dies is filled with a substantially incompressible medium in the form of 

oil, rubber or a similar material and pressurised at each end by a 

pressure transmitting plunger. The two die halves are so shaped that, 

when the tube is loaded to such an extent that plastic deformation

occurs, one half is forced to slide across the other due to the forces on

the tube. Using this process, two 'square' elbows are obtained from one

tube blank. Alternatively, slightly differently shaped dies can be used 

and forced to slide across one another using an external force during the 

process. In this case curved elbows are obtained. The advantages of 

using this process is that elbows can be obtained with very small 

radiused bends with the wall thickness remaining almost equal to the 

original around the tube at the bend. Using previous methods to make 

elbows by bending tube, it has been extremely difficult, or even

impossible, to produce very small radiused bends. Those which can be 

produced by bending usually result in an extreme decrease in the wall 

thickness on the outside of the bend.

The use of the process was reported by Remmerswaal1 A who used an 

elastic medium for transmitting the internal pressure. His conclusions 

were that using this forming process smaller bend radii could be obtained 

than by conventional processes. Also less thinning of the wall occurred
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outside the bend and less thickening of the wall occurred inside the 

bend. In the process used by Boyd15, water was used as the internal 

pressure medium with 2.7inch(69mm> O.D, tubes used in dies with 

3.5inch(99mm) bores. However buckling occurred using this combination 

due to the infeed compressive loads applied to the tube ends. This was 

corrected by changing from water to oil as the pressure medium, which 

could be pressurised independantly. The resulting components thus formed 

exhibited less change in wall thickness than by forming from 

conventional methods.

Powell15 used the process for forming bends in linch(25mm) O.D.

Aluminium tube using an internal oil pressure of up to lOOOOpsi, (69MPa).

The internal forces alone were used to force the die halves to slide 

across one another but it was discovered that restraining the dies from 

sliding would result in an increase in the wall thickness of the tube 

wall. A theory was provided equating the external forces to the power 

dissipation due to the internal shear, frictional loss, and the restraint 

loss. The final equation was used to calculate the internal presssure 

from the flow stress, relative wall thickness and the geometry given by 

the bend angle. A sound product was produced at a pressure just less 

than that predicted by the analysis.

Another use of the bulge forming process is that for bulging deep 

drawn articles. An article by Voo17 details the use and operation of a 

machine developed to form Aluminium and Pewter vessels from circular 

blanks. Using one rig, the blank is deep drawn through a 'tractrix' die, 

passed through an ironing die, and finally filled with oil and bulged

into the required shape using internal presure and axial load.
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1.3. FAILURES QF THE PROCESS

There are two main modes of failure that can occur during the 

bulge forming process. One is the fracture of the component during

expansion. This is due to excessive thinning of the tube wall which may 

be caused due to too large an internal pressure, or an inadequate axial 

deformation occurring when trying to produce a large expansion.

Theoretically the expansion process could go on indefinitely if more

metal is being pushed into the deformation zone continuously, and the

internal pressure is kept at a suitable value. However with inadequate 

axial deformation, the wall thickness of the tube in the deformation zone 

decreases until rupture occurs.

The other main type of failure is the buckling of the component due 

to an excessive axial deformation load or to insufficient internal pressure 

to support the tube. This results in wrinkles appearing in the main 

branch if the effect is only mild, but if the effect is severe, buckling 

will occur down the length of the tube and the expanded branch will be 

mishaped. Should fracture of the tube occur, when using oil as the 

pressure transmitting medium, and the axial deformation continued, then 

buckling of the tube will also occur due to the loss of internal pressure.

Besides these two main types of failure, 'shrinkage' of the expansion 

can also occur when forming around a radius in the die. This is

illustrated in fig. 3 which shows a tee joint being formed. In order to 

form a good quality component the wall of the tube must be in contact 

with the die walls. However, when a small radius is encountered, the tube 

wall may come away from the die wall resulting in 'shrinkage'. There are 

two reasons why this can occur. One is that the radius of draw is too
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Gap between the Tube Internal
Vail and the Die Vail Pressure
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FORCE'

Fig. 3 'Shrinkage' or Recession of the Joint occurring

during the forming process.

small which can be corrected by * the redesign of the dies to provide a 

larger radius. The second is due to insufficient internal pressure in 

proportion to the axial deformation which can be corrected by increasing 

the internal pressure to force the tube wall against the die.

Therefore, in order to produce a good product, the process is 

dependant on the relationship between the internal pressure and the axial 

deformation.

1.4. PREVIOUS IHVESTIGATIQSS

1.4.1. Axisymmetrical Bulge Forming

The use of the bulge forming process to form axisymmetrical 

components has been subject to a number of investigations and the 

application of several theories. In a paper presented by Vools in 1973,

a theory was provided for the free expansion process under internal 

hydraulic pressure and axial compressive force. This theory used the 

relationship between the circumferential strain and the thickness strain,
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for processes in which the whole length of the bulged tube was in

tension. Comparison of the theoretically produced results showed 

reasonably good agreement with experimental results, when the stress- 

strain properties obtained from the bulging process were used. The use 

of stress-strain properties obtained from tensile tests resulted in large 

discrepancies. Problems were also encountered in satisfying the boundary 

conditions in the numerical solution used i.e. zero circumferential strain 

at the end of bulge zone. In a later paper by ¥ 0 0 and Luci1s, published 

in 1978, this problem was overcome by introducing the anisotropy of the 

tube material into the theory.

In 1975 Banerjee20 reported on work carried out on the limiting

deformations of fixed lengths of aluminium tubes for the free bulging

process using internal hydraulic pressure only. The tubes were formed 

slowly until rupture occurred. The values of maximum pressure and bulge 

height were then compared with those obtained from a theory derived from 

the stress and strain at instability, taking into account strain 

hardening. Good agreement was obtained for the maximum pressures values, 

but there was a discrepancy for the bulge height values.

An article in 1976 described the experimental work carried out by 

Kandil21 into the axisymmetrical bulge forming of Brass, Aluminium and 

Copper tubes using internal hydraulic pressure only. Various radii of the 

die at the edge of the forming zone (radius of draw) were used, as well 

as various tube diameters. From the results an empirical relationship

was obtained, derived from the forming pressures, the stresses and the 

die and tube geometry.

In 1978 Badran and Emara22 presented a theory in 1978 for the 

forming of axisymmetrical components using rubber as the internal
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pressurising medium, with no axial load applied to the tube apart from 

frictional force between the rubber insert and the tube wall. This theory 

provided equations for predicting the internal pressure required for 

various increments in the deformation. An assumption used was that the 

deformed area forms the arc of a circle in the axial direction. 

Equations for the value of the wall thickness after deformation were also 

provided. This theory was used to produce graphs predicting the values 

of internal pressure for any deformation, both neglecting and including 

the effect of work hardening. However, no experimental results were 

provided to compare with the theoretical predictions.

In the same year Saver et al23 published their work which dealt 

with the theory of the failure of bulged tubes due to buckling and 

fracture. This was applied to the forming of parts with very pronounced 

bulges such as rear axle casings. A numerical solution was used to 

compute values of axial load and internal pressure from increments in the 

diameter of the bulge. The algorithm used was based on five principles - 

Strain-displacement relationships, incompressiblity, effective stresses 

and strains (Plasticity Theory), equations of equilibrium, and boundary 

conditions. Experimental work was carried out on a rig that could apply 

axial load and internal pressure at a finely adjustable ratio in order to 

apply various constant stress ratios. The tubular blanks - lteinch (38mm)

O.D. with the wall thickness turned down in the region of bulging to a 

thickness of 0.050inch(1.27mm) - were slowly bulged until failure occurred. 

The results showed a favourable comparison between the predicted and 

actual forces required to produce each step in the curvature of the bulge 

between load increments, although the actual strains to produce fracture 

were higher than those predicted.
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1.4.2. Asymmetrical Bulge Forming

The forming of asymmetrical components has not had as many 

investigations carried out as for axisymmetrical components. There have 

been a few articles published dealing with the various axisymmetrical 

components that it is possible to form such as those by Ogura et al7*® 

previously mentioned. There has, however, been only a small number of 

articles dealing with experimental work investigating the process.

In the work carried out by Limb et al5'6 into the forming of 

axisymmetrical components previously mentioned, some work was also 

carried out in the forming of tee pieces. These were found to be easier 

to form than axisymmetrical components and during forming, the internal 

hydraulic pressure was increased as a function of the ram position. On 

the formed tees those formed without lubrication had a very pronounced 

dome, but with lubrication the dome was much flatter, and the length of 

the side branch increased by as much as.20%. The. best lubricant was 

found to be P.T.F.E. film but it was rather expensive, Colloidal Graphite 

and Rocal AS giving the next best results. The worst lubricant was found 

to be Tellus 27. The tees were formed from l^inch(38mm) diameter 

seamless tubes of commercially pure Aluminium, HV9(al-mag-sil alloy), 

Copper, 70/30 Brass, and low carbon Steel in an initial annealed 

conditioned. The softer materials were formed with little or no thinning 

of the side branch wall thickness whereas the stronger materials showed 

considerable reductions in the wall thickness, although for the latter 

formation continued after the end of the ram movement. The conclusions to 

the articles highlighted the need of a control system that would follow a
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preselected relationship between internal fluid pressure and ram travel 

during forming.

An article in 1980 by Lukanov et al2A described a process for 

farming tee pieces which minimises the amount of wall thickening that 

occurs in the main branch, opposite the side branch. The method involves 

forming two tees from a single tube blank, with side branches staggered 

on opposite sides of the tube. In the tees thus formed the increase, in 

wall thickness was found to be reduced to 15% and a greater branch was 

obtained. This allowed the initial tube blank to be reduced in length by 

4% compared with just forming one tee twice.

1.5 AIMS QF THE CURREHT IMVESTIGATIQH

The investigation carried out initially involved a literature 

survey in order to assess the previous work carried out into the bulge 

farming of tubular components. This survey also highlighted the various 

components that were formable using a bulge forming process, and the 

machines and the forces required for their production.

As an introduction to the actual forming process, tests were carried 

out on a simple prototype machine on which axisymmetrical and 

asymmetrical components were produced. These tests allowed the 

requirements of the process to be assessed and highlighted the problems 

associated with the prototype rig and the bulge forming process.

With this information the aims of the investigation are:

1. Design a new bulge forming machine on which various shaped 

tubular components can be formed.
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Commission the completed bulge forming machine, followed by 

alteration/modification of the machine in order to correct any 

problems that are highlighted.

Evaluate the limits of the operating parameters (axial 

compressive force and internal pressure) required to produce a 

good component, by a series of tests forming both tee and 

cross pieces

Analyse the formed components to show the effects of the 

various combinations of internal pressure and axial 

compressive force on the bulge height and the wall thickness 

around the deformation zone.

Compare the geometry of the formed component with theoretical 

predictions.



Pressure Transnitting 
MediumDie Block

Tube
Blank

Plunger Plunger
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b,Component farmed with axial 
deformation.

Fig. 1

The Bulge Forming Process
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2. P R E L I M I N A R Y  I N V E S T I G A T I O N

2.1 THE PROTOTYPE BULGE FQRKIIG MACHUfE
A series of tests were initially carried out using a simple 

rig, previously designed and built for a student's final year project. 

This consisted of two die halves each mounted in a robust die holder, 

which split laterally in relation to the tube - see Fig. 4. The actual 

dies could be removed from their holders so that different shaped dies 

could be used to form axisymmetrical or asymmetrical components < the 

actual axisymmetrical components formed were tee and cross pieces ). 

Each die half was bored through, to allow the insertion of the tube blank 

when the two halves were together. An axial compresssive force could be 

applied to the ends of the tube by means of plungers, one at each end, 

which entered the ends of the dies . to butt up against the tube. Each 

plunger was turned down at the end so that they would locate inside the 

tube. This part of the plunger also housed an 'O' ring to seal against 

the inside of the tube in order to contain the internal pressure. To keep 

these two plungers in line with the dies, each one was mounted on a guide 

plate, with the die block suspended between the two using heavy duty 

springs. The plungers also contained drilled passages down their length, 

through which oil could be passed.

To provide the axial compressive force, a 200kN Denison compression 

testing machine was used. Before each forming test the rig had to be 

assembled on this machine, with a copper tube blank positioned inside the 

die blocks. During forming, therefore, a compressive force could applied 

to the plungers and hence to the ends of the tube blank.
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The internal pressure was provided by a hydraulic hand pump, 

complete with pressure gauge. This was connected to the bottom plunger 

via an adjustable pressure relief valve, in order to regulate the maximum 

internal pressure. The drillings through the top plunger were used in 

order to bleed the tube blank of air during filling, prior to forming. 

This was sealed after expulsion of all the air.

Testing was carried out on copper tube with an outside diameter of 

24mm, in three different wall thicknesses - 0.9mm, 1.17mm and 1.6mm < a 

different pair of plungers were used with each thickness ). The tube 

blanks were prepared ! for forming by cutting them to a nominal length 

of 100mm and annealing at 500*C.

2.2 EXPERIMEHTAL PROCEDURE

In order to carry out a bulge forming test, the rig had first

of all to be mounted on the compression testing machine. This included

fitting a copper tube blank, the length, thickness and diameter having 

been noted. The compression testing machine was then operated in order 

to seal the plungers against the ends of the tube, so that the inside 

could be pressurised. After preloading the tube with a force of 

approximately 0.5kN, the hydraulic oil was introduced into the tube, by 

means of the hand pump, while air was bled from the top. After filling

with oil, the air bleed was sealed and the internal pressure was

increased until the desired starting pressure was reached. Axial 

compression of the tube could then be started by increasing the force 

acting on the plungers from the compression testing machine. The 

deformation of the tube was allowed to continue until the required degree 

of deformation was obtained, or the tube burst.
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Some of the tests carried out involved only internal pressure, and 

no axial force. In these cases the internal pressure was just increased 

up to the required pressure using the hand pump, having previously sealed 

the ends of the tube with just an initial end load.

In the tests carried out involving axial compression, the 

deformation of the tube would cause an increase in the internal pressure. 

In order to avoid an excessive pressure from being generated the relief 

valve was set beforehand to a suitable value depending on the tube wall 

thickness and the shape of the component to be formed. The initial and 

final internal pressures were noted during the test, as was the final 

axial force, indicated on the compression testing machine.

On completion of the test the internal pressure and end load were 

released, and the plungers withdrawn from the die blocks. This allowed 

the die blocks to be split, from which the formed component could be 

removed. After removal from the rig, the length of the component was 

measured, and after cutting into suitable sections, the thickness around 

the deformation zone and the bulge heights were measured.

The sequence used for the experimental procedure was as follows:

1. Assemble the rig on the compression testing machine 

complete with premeasured tube blank.

2. Preload tube blank by operation of the compression 

testing machine in order to seal the tube.

3. Fill tube with oil and bleed the air out.

4. After sealing the air bleed, increase the internal 

pressure until the desired initial pressure is obtained.
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5.a Increase the axial force acting on the tube in order to

cause axial deformation, until the required amount of

deformation is obtained.

Qn

5.b Increase the internal pressure by operation of the hand

pump up to the required pressure, with only the preload 

axial force acting on the tube.

6. Release the axial force and internal pressure, and

withdraw the plungers from the die blocks.

7. Dismantle the rig, separate the two die halves and remove

the formed component.

2.3 DISCPSSIQJT QF RESULTS
The measurements taken from the formed components, after 

cutting into suitable sections, are illustrated in several graphs. The 

notation used is shown in Fig. 5. Figs. 6 and 7 show the amount of wall 

thinning < t/to ) that occurs from the root of the bulge ( haVH* = 0 ) to 

the tip of it ( ha/Hz = 1 ). These graphs have been produced from the 

farming of axisymmetrical components with various bulge heights.

\\ v\v\ v v w v :

Fig ■ 5 Bulge Height and Vail Thickness Natation.
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The graph in Fig. 6 shows the effect on the wall thickness of the 

bulge when there is no axial deformation. At the root of the bulge the 

wall thickness has not altered ( at hz/Hz = 0, t/to = 1.0 ). However 

moving up towards the top of the bulge, the amount of wall thinning that 

has occurred increases until the tip of the bulge is reached where the 

wall is it's thinnest. By comparison, Fig. 7 shows the measurements from, 

bulged components, with similar maximum bulge heights, produced using 

axial deformation. This time, at the root of the bulge, thickening of the 

tube wall has occurred ( at hz/Hz = 0, t/to > 1.0 ). At one point up the

bulge the thickness has not altered, and above this point thinning occurs.

However comparison of the two graphs show- that less wall thinning has 

occurred around the bulged region when axial deformation is present.

The actual bulge heights that were achieved when forming 

axisymmetrical components are shown in Fig. 8, in ratio form, plotted 

against the internal pressure. The graph shows results obtained with and 

without axial deformation, for various initial tube thicknesses. It can 

be seen that without axial deformation,* increasing internal pressure is 

required to increase the bulge height. However, with axial deformation an 

increase in the bulge height can be achieved at. the same pressure by just

increasing the amount of deformation. Also, when utilising axial

deformation, greater expansions are achieved using lower internal 

pressures.

The improvement to the process is also emphasized in Table 1. This 

shows the maximum bulge heights that could be obtained before rupture of 

the tube occurred. The values are given for the forming process under 

pure internal pressure ( no axial force except for an initial preload to 

seal the tube ), and also for those formed with axial compression ( the f
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value also given is the apparent strain factor resulting from the axial 

compression - original length of tube divided by final length - this is 

1.0 when there is no axial deformation ). The bulge heights of the latter 

exhibit an increase in their bulge height of at least 25% compared to the 

former.

TUBE
THICKNESS

SIMULTANEOUS 
AXIAL COMPRESSION

PURE INTERNAL 
PRESSURE

mm Hz/a f Hz/a

0.9 0.44 1.1 0.33

1.16 0.46 1.12 0.36

1.6 0.5 1.1 0.4

Table 1. Maximum Bulge Heights Obtained Before Fracture of

the Tube Occurred.

The results obtained from forming asymmetrical components are shown 

in Figs. 9 and 10. These were obtained from forming cross pieces ( or 

double tee pieces ) from tubes of two different initial wall thicknesses, 

and again show the variation in the wall thickness around the deformation 

zone. As for the axisymmetrical components, thinning occurs at the top 

of the bulge, but in this case far greater wall thickening occurs near the 

root of the bulge - as much as a 40% increase. The graphs plotted for 

the various bulge heights do not, however, follow the same trends, but cut 

across one another. This is likely to be due to difficulty in the control 

of the internal pressure during the forming process, and the inability to 

keep the process constant for each test.
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2.4. PROBLEMS ASSOCIATED WITH THE PROTOTYPE RIG
As previously mentioned the rig had first to be assembled on 

the compression ' testing machine before each test could be carried 

out. After each test the rig then had to be dismantled in order that the 

formed component could be removed. All this involved moving heavy lumps 

of metal about. To make things more difficult the die blocks split 

laterally in relation to the tube. During the bulge forming process, as 

well as the tube bulging in the unrestricted area, bulging also occurred 

down the rest of it's length to a small extent, forcing the tube wall 

against the die wall. This meant that the tube was stuck firmly into the 

two halves of the die, making separation of the dies and removal of the 

component extremely difficult. In order to free the component the two 

die halves had to be removed as a unit from the rig and separated with 

the aid of drifts and a stout hammer. Because of this each test could 

take over half an hour to complete from set-up to extraction of the

formed component.

Another problem was the method used for sealing the tube ends. This 

involved the use of 'O' rings located at the end of the stepped plungers 

as shown in Fig. 4. These worked alright initially, but because of their 

position the 'O' rings invariably became damaged by the ends of the 

copper tube and would have to be replaced after only one or two tests. 

During some of the tests carried out complete sealing could not be 

achieved. In such cases the internal pressure had to be maintained

during the test by the constant use of the hydraulic hand pump. In some

cases, however, the rig had to be dismantled and the 'O' rings replaced

before the test could be carried out.
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Leakage was not so much of a problem, though, when large compressive 

axial forces were obtained during the process. These occurred when 

forming tee and cross pieces especially when using the thickest walled 

tube. The high pressure acting between the step of the plunger and the 

end of the tube ensured a good seal. This, however, sometimes led to 

another problem. The large compressive axial force being used caused 

deformation of the ends of the tube. Consequently the tube would form 

into the recess at the end of the plungers containing the 'O' rings. This 

would prevent the plungers from being withdrawn from the tube at the end 

of the test. The removal of the plungers was again obtained with the use 

of a hammer, but with caution this time since the springs between the die 

block and the guide plates were held in a compressed state.

These heavy duty springs located between the die block and the 

guide plates were used in order to keep the two halves of the die block 

together during forming. A secondary use was to keep the die block 

central between the two guide plates so that the bulge would form centrally 

on the tube. Unfortunately this did not always work and the resulting 

bulge would be formed off central, due to one plunger meeting a greater 

resistance than the other during forming. The bulge thus formed would 

also be mishaped as well as not central due to more forming occurring at 

one side than the other.

As well as these problems in assembling and dismantling the rig 

there was also a lack of control during the actual bulging process as 

well as a lack of instrumentation. This caused a large variation in the 

components formed and made accurate recording of the process difficult. 

The strain rate for the axial compression could be set/altered on the 

compression testing machine. However there was little control over the
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internal pressure during the process apart from setting its maximum value 

with the pressure relief valve and its initial value. With the variations 

in the quality of the tube sealing for each test, it was extremely 

difficult to carry out a series of tests with similar internal pressure 

conditions'.

The only values recorded during the test, apart from the dimensions 

of the copper tube, were the :

i. initial and final internal pressure,

ii. initial and final axial force.

The internal pressure was taken from a pressure gauge mounted on 

the hand pump and was not very precise. If leakage was occurring the 

pressure would be changing all the time, making recording the final value 

very difficult if the maximum pressure set by the relief valve was not 

achieved.

In order to overcome these problems the following points were 

needed to improve the prototype bulge forming rig :

1. improved machine design in order to make tests easier and

quicker to perform,

2. better tube sealing arrangement#

3. greater machine/process control,

4. better instrumentation.

At this stage it was decided to design a new bulge forming rig 

taking into consideration the problems encountered with the prototype 

rig.
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2.5. CQISIDBRATIQHS FOR THE DESIGN OF A IEV RIG
In order to shorten the time required for each test and to 

make it easier to perform, the need to assemble and dismantle large heavy 

blocks of metal had to be avoided. This meant that the new rig should be 

free standing and self contained. The main part of the rig would be the 

die block in which the actual forming occurs. In the prototype this was 

split laterally in relation to the tube, which resulted in problems in 

extracting the formed component. Splitting the die blocks axially would 

overcome this problem, but the two halves would have to be clamped 

together during the process in order to resist the internal pressure 

trying to force them apart. It was decided to use a hydraulic ram for 

this purpose which could also be used to open and close the dies to allow 

access for placing/removing the copper tube.

Hydraulic rams could also be used for applying the axial 

compressive load to the ends of the tube. With the prototype rig 

problems were encountered with the bulge not forming centrally on the 

tube. Therefore two hydraulic rams would have to be used, one at each 

end, that were synchronised together so as to provide equal deformation 

and strain rate of each end of the tube.

Using hydraulic rams would mean the need of a hydraulic power pack

i.e. pump and electric motor, to power them. This could also be used to 

provide the internal pressure, although this pressure was likely to be a 

lot higher than the supply pressure. Running the hydraulic system at the 

same pressure as the maximum internal pressure required would prove to 

be very costly. Alternatively, a lower supply pressure could be chosen 

and this pressure increased through a pressure intensifier to provide the 

forming pressure.
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The design of the plungers that transmit the axial compressive 

force to the ends of the tube would preferably do away with the need of 

'O' rings to seal in the internal pressure. Again the ends should be 

stepped so as to locate inside the ends of the tube, but the actual 

sealing should be due to the pressure acting on the end of the tube. The 

end of the plunger could also be a tight fit inside the tube, to help with 

the sealing, until the axial force is great enough to cause sealing at the 

tube end.

The use of hydraulics in the process would also allow more control 

to be achieved, through the use of pressure reducing, flow control, 

directional control valves etc. The use of solenoid valves would also 

allow the application of a micro processor/computer to the control and 

sequencing of the process.
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3. B U L G E  F O R M I N G  M A C H I N E  D E S I G N

The operating parameters used in the design of the new machine 

were based on the findings of the preliminary investigation. With the 

prototype rig, a maximum internal pressure of 5500 psi. (38 N/mm2) and 

an axial compressive force of 110 kN were involved in the forming of 

axisymmetrical components. These values were obtained when forming the 

thickest tubes (1.6 mm wall thickness).

The new machine was required to provide sufficient internal pressure 

and axial compressive force to form copper tube and possibly stronger 

materials eg. mild steel, brass etc. For these reasons a nominal internal 

pressure of 10000 psi. (69 N/mm2) and axial force of 200 kN were chosen. 

The clamping force holding the two die halves together needs to restrain 

this internal pressure, and was considered assuming a tube blank of 25 

mm diameter and 150mm length. The force acting to split the two die 

halves at maximum internal pressure (neglecting the resistance from the 

tube wall, and the wall thickness) was calculated to be :

Projected Area = 150 x 25 mm2

Pressure = 69 N/mm2

Force on Projected Area = 69 x 150 x 25 N

= 260 kN

The nominal value for the clamping force was chosen to be 300 kN in 

order to restrain this force.
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3.2. HYDRAULIC COMPONENTS

3.2.1. Hydraulic Supply Pressure

Before the sizes of the hydraulic cylinders could be

considered, a value for the hydraulic circuit pressure first had to be 

chosen. A maximum internal pressure of 10000 psi, <69 N/mm2) is 

required for the forming process. However, operating at this pressure 

would make the cost of the hydraulic components very expensive. 

Alternatively, a lower supply pressure could be chosen and this pressure 

increased through a pressure intensifier to provide the forming pressure. 

The second route was taken, with a main circuit pressure of 2500 psi. 

(17 N/mm2) - sufficiently high as to reduce the size of the hydraulic 

cylinders to a managable size, but not too high as to make the hydraulic 

circuit very expensive.

3.2.2. Hydraulic Cylinders applying Axial Force

forming, two hydraulic cylinders would be required, each providing a 

maximum axial compressive force of 200 kN. The size of the cylinders 

required to provide this force was calculated as follows:

In order to provide axial deformation of the tube during

Force Required = 200 kN

Supply Pressure 17.2 N/mm2

Area of Piston = EoLCg-Requicad 
Supply Pressure

= 200 x 103 .mm2
17.2

Diameter of Piston mm
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The actual cylinders used on the machine are two "Mecman" Series 

203 cylinders with a diameter of 125 mm and a stroke of 100 mm. This 

stroke was considered suitable to allow insertion of a 150 mm tube blank 

into the die with the plungers withdrawn and to provide sufficient axial 

deformation of it during forming. It also allows the use of longer tube 

blanks which may be required for more complicated component shapes.

3.2.3. Hydraulic Cylinder applying Clamping Force
The size of the cylinder required to keep the two halves of the

die together during forming was calculated in the same way. However,

this cylinder was required' to provide a force of 300 kN in order to

restrain the internal pressure. Hence :

Force Required v = 300 kN

Supply Pressure = 17.2 N/mm2

Area of Piston = Force Required
Supply Pressure

= 30.0 X IQ3 mm2
17.2

Diameter of Piston = 2 x / 300 x IQ3 . 1_ mm
17.2 7i/

= 149... am
This led to the choice of a "Mecman" Series 206 cylinder with a 

diameter of 160 mm ( 150 mm was not available ) and a stroke of 150 mm. 

In this case the stroke determined how far the dies could be opened. The 

dies blocks were required to open in order to place a tube blank in 

position, and to remove the formed component after forming. A gap of 

about 150 mm between the two was determined to be sufficient to allow 

access. However, in order to provide a clamping force not all of the
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stroke is used up, and the actual gap between the two die blocks is about 

140 mm.

3.2.4. Hydraulic Pump and Electric Motor
The power source for the hydraulic system is a "Sperry 

Vickers" variable displacement piston pump - model PVB 5 - driven by a

7.5 kV electric motor. This pump is capable of operating at pressures of 

up to 21 N/mm2, but is set at an operating pressure of 17.5 N/mm2.

Therefore, the maximum theoretical forces that can be applied by the 

hydraulic cylinders are as follows ( neglecting any losses ).

For the cylinders applying axial compressive force:

Area of Piston ( from manu. spec. ) = 123 x 102 mm2

Pressure 

Maximum Force

= 17.5 N/mm2 

= 123 x 102 x 17.5 N 

= 215 kN

For the clamping cylinder:

Area of Piston ( from manu. spec. ) = 201 x 102 mm2

Pressure = 17.5 N/mm2

Maximum Force = 201 x 102 x 17.5 N

= 352..M

The maximum flow rate of the hydraulic pump is 32 1/min according 

to the manufacturers specifications, but less than this will be obtained 

when operating at 17.5 N/mm2 and using only a 7.5kW motor. This gives a 

maximum theoretical flow rate of:

Driving Power = 7.5 kV

Operating Pressure = 17.5 N/mm2
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Delivery Flow Rate = 7.5 x 103 m3/s = 0.429 x 10-3 m3/s
17.5 x 106

= 25.7 1/min

The actual delivery flow rate will in fact be a little less than this

due to the volumetric efficiency of the pump being less than 100%, and

due to losses in the circuit between the pump and the cylinders.

However, this value can be used to calculate the approximate maximum

velocities of the pistons of each cylinder. For the clamping cylinder,

assuming all the flow is directed to it, the velocity during the outward

stroke < closing the two die halves ) is:

Area of Piston = 201 x 10-4 m2

Delivery Flow Rate = 0.429 x 10-3 m3/^ec

Piston Velocity = 0.429 x 1Q~3 m/sec
201 x 10"A

= 21 mm/sec

Hence a full stroke of 150 mm will be completed in just over 7 seconds.

For the return stroke ( opening the die ) the velocity will be faster, due

to the smaller piston area around the piston rod.

Area of Pull Side
of Piston = 137 x 10-A m2

Piston Velocity = 0.429 x 10~3 m/sec
137 x 10~A

= 31 mm/sec

This gives a return stroke time of under 5 seconds.

For the cylinders applying the axial compressive force a similar 

approach is used again assuming all the flow is directed to them C in 

practice, however, some of the flow will be directed to the internal 

pressure ). For the outward stroke ( causing axial deformation ) the 

velocity is:
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Area of Piston = 123 x 10~* m2

Delivery Flow Rate = 0.429 x 1Q~3 m3/sec
to One Cylinder 2

Piston Velocity = 0.429 x 10~3 m/sec
2 x 123 x 10~*

= 17 mm/sec

And for the return stroke:

Area of Pull Side = 84.2 x 10“* m2
of Piston

Piston Velocity = 0.429 x 10~3 m/sec
2 x 84.2 x 10-*

= 25 mm/sec

This gives an outward stroke time of under 6 seconds and a return stroke 

time of 4 seconds to complete the 100 mm stroke of both cylinders.

3.3. THE HYDRAULIC CIRCUIT

The hydraulic circuit for the bulge forming is required to 

perform three functions i.e. to connect the power unit and to control the 

supply to:

1. the hydraulic cylinder clamping the two die halves together,

2. the two hydraulic cylinders providing the compressive axial 

force,

3. the internal pressurised region of the tube blank.

These have to be controlled independantly of each other and each has 

different control requirements.
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3.3.1. The Clamping Hydraulic Cylinder
The function of the hydraulic circuit providing the clamping 

force is simply one of extending and retracting the cylinder rod. The 

basic component of this part of the hydraulic circuit is thus simply a 

directional control valve with three positions - one position to extend 

the ram (to close the two die halves and when together to provide the 

clamping force), one to stop it, and one to withdraw it (to open the die).

3.3.2. The Hydraulic Cylinders Applying Axial Force
This second requirement needs some extra control as well as a 

directional control valve. As previously mentioned one of the 

considerations for the design of the new rig was that the two hydraulic 

cylinders providing the compressive axial force should move in unison to 

one another, in order to produce equal deformation of each end of the 

tube and so form the bulge centrally on the tube. This can be achieved 

approximately by the use of a flow divider in the circuit between the 

pump and the hydraulic cylinders. This will divide the flow from the 

pump into equal parts regardless of the load on each cylinder, and so 

synchronise the movement of the two cylinders. A pressure reducing valve 

is also required in order to control the force being applied to the ends 

of the tube. Again a directional control valve will control extending and 

withdrawing the cylinders.

3.3.3. The Internal Pressurised Region of the Tube Blank
This third requirement is needed to provide the internal 

pressure in order to form the tube into the shape of the die. As 

previously mentioned in the operating parameters, a maximum pressure of
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10000 psi. (69 N/mm2) is required for the forming pressure. This can be 

achieved from the supply pressure (17 N/mm2) by the use of a pressure 

intensifier between the pump and the high pressure circuit. Again a 

pressure reducing valve is required to control the pressures being 

generated, and also a directional control valve but this time its 

functions are:

1. to bypass the pressure intensifier (in order to fill the tube 

blank, prior to forming, quickly at the lower supply pressure),

2. to stop the supply, and

3. to supply the pressure intensifier, and thus generate a high

forming pressure.

Also needed on this high pressure circuit is a valve connected to the 

opposite end of the tube in order to bleed the air while filling the tube 

with oil.

3.3.4. The Initial Circuit Design
A circuit diagram for the initial design of the hydraulic

circuit is shown in Fig. 11. This illustrates the allocation of the

directional control valves, pressure reducing valves, flow divider and 

pressure intensifier previously mentioned. Also included in the circuit, 

and not previously mentioned, is a non-return valve in the part of the

circuit supplying the internal pressure. This protects the rest of the

circuit from the high pressures generated by the pressure intensifier, but

also allows fluid to flow through it when bypassing the intensifier in

order to fill the tube.
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3.3.5. The Actual Circuit Design

Using the initial design as a basis, the final design for the 

hydraulic circuit was arrived at after consultation with experts in the 

field. The circuit actually used on the forming machine is illustrated in 

Fig. 12. As can be seen, filters have been added to both inlet and outlet 

sides of the hydraulic pump in order to prevent the ingress of dirt, 

which would affect the operation of some of the valves. Also to protect 

the circuit, a relief valve (RV1) has been included which can be varied 

according to need.

Considering the part of the circuit controlling the clamping 

cylinder (A) a small change has been made to the directional control 

valve (VI), In its central position ie. stopping the movement of the 

cylinder, this valve acts as a dump valve returning all the fluid flow 

back to the tank. This allows the hydraulics to be kept in a standby 

state with the pump still running, without generating a lot of heat by 

passing all the fluid through the relief valve. Variable flow control 

valves (FC4) have also been added so that the speed of the opening and 

closing of the dies can be adjusted. To prevent accidental closure of the 

die when the circuit is in the standby state or the supply is turned off, 

a pilot operated check valve (CV1) has been included in the circuit, 

which locks the cylinder in the up position until pressure is applied to 

force it down.

For the cylinders applying the axial compressive force (B), the 

hydraulic circuit has been split into two, each half having its own 

directional control valve (V2 & V3), pressure reducing valve (PR1 & PR2) 

and flow control valves (FC1 & FC2). This is because the movement of
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these cylinders is required to perform several tasks. First of all the 

cylinders must move the plungers, through which the compressive forces 

are transmitted, up to the ends of the tube and seal them. This must be 

performed fairly quickly, so as to minimise the time for the production 

of each component, and should apply only a small axial compressive force 

- sufficient enough to seal the ends of tube but without causing axial 

deformation. Secondly, the cylinders have to apply an axial compressive 

force large enough to cause axial deformation of the tube, while it is 

subjected to internal pressure. This force will vary depending on the 

wall thickness of the tube and the shape of the component that it is 

being formed into. Lastly the speed of the cylinders (strain rate) might 

have to be altered. With the supply circuit split into two halves these 

two operations can be achieved with the pressures and flow rates preset 

without the need to adjust any of the valves once set.

In Fig. 12 the two directional control valves (V2 & V3) are shown in 

the unenergised state which causes retraction of the cylinders. Once the 

solenoid on valve V2 is energised the cylinders will extend with the 

fluid pressure and flow rate determined by valves PR1 and FC1 

respectively. This should be at low pressure and at high speed in order 

to bring the plungers into contact with the tube and to seal the ends. 

Energising the solenoid on valve V3 will then cause axial deformation to 

occur with the pressure and flow rate set by valves PR2 and FC2 

repectively. These will be set at a higher pressure and perhaps at a 

lower flow rate. The flow from both halves of the circuit still pass 

through a flow divider (FD) in order to synchronise the movement of the 

two cylinders. Unenergising the solenoids on both directional control 

valves will then cause the cylinders to be retracted again.
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The high pressure part of the circuit, providing the internal 

pressure, remains similar to the initial circuit diagram apart from the 

addition of a pressure relief valve (RV2) and an extra check valve (CV4). 

These are required because during the forming process the axial 

deformation causes an increase in the internal pressure. A pressure 

relief valve prevents this pressure from becoming too large which might 

cause rupture of the tube being formed or more importantly damage to the 

hydraulic circuit. The additional check valve (CV4) prevents this larger 

pressure thus generated from reaching the outlet side of the pressure 

intensifier (PI).

All the solenoids operate on a 24V DC supply, which initially will 

be controlled manually by switches. The switch arrangement is 

illustrated in Fig. 13. At a later date these switches could be replaced 

by relays controlled by a micro processor or ’ a micro computer to allow 

the automatic control of the process.

3.4. THE STRUCTURAL DESIGH QF THE MACHINE
Having decided on the size of the cylinders to be used on the 

bulge forming machine, the overall design could then proceed. The layout 

of the cylinders was partly predetermined by the actions required of 

them. The two cylinders applying the axial compressive force have to be 

located on opposite sides of the die block acting in line and inwards 

towards each other. With the die block splitting axially in relation to 

the tube blank, the clamping cylinder would have to be mounted 

perpendicular to the other two cylinders. The obvious arrangement for 

these cylinders then would be to mount the clamping cylinder vertically 

acting downwards onto the die block, with the other two cylinders mounted
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horizontally, on either side of the die block, acting inwards. This is 

illustrated in Fig. 14 along with the general mounting arrangements. The 

restraints for the two different forces have been separated - the 

clamping force being contained by four tie bars and the axial compressive 

force by a beam. These shall therefore be dealt with separately.

3.4.1. The Clamping Force Restraint
The clamping cylinder is mounted on a plate supported by four 

tie-bars each of diameter 50mm. The ends of these tie-bars are turned 

down with M30 threads to connect to the plates. The maximum stresses in

these end threads when the tie-bars are subjected to the maximum tensile

force of 352 kN are as follows:

Maximum Load in each Tie-bar = 352 kN = 88 kN
4

Tensile Stress Area of M30 Bolt = 621 mm

Stress = 88 x 103 = 142 N/mm2
621

Yield Stress of EN8 = 385 N/mm2

Proof Load for M30 Nut = 392 x 561 = 220 kN
1000

The top plate onto which the cylinder is mounted has been 

considered as a simply supported beam onto which a uniformly distributed 

load is acting - see Fig. 15. Vith a 60 mm depth the following stresses 

occur.

Bending Moment = 176 x 0.2 - 352 x 0.140 x 0.140
0.280 2

= 22.88 kNm

Second Moment of Area = bd3 = 0.4 x 0.063
12 12

= 7.2 x 10~e m*
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crm»x = My. = 22.88 x 103 x 0.03
I 7.2 x 10~e

= 146 N/mm2

Under full load conditions the maximum deflection occurring at the centre

of this plate would be as follows:

R = El = 207 x 109 x 7.2 x 10~6
M 22.88 x 103

= 65 m

Deflection at centre = 65 - J 652 - 0.22 m

= 0.3 mm

The bottom of these tie bars locate in a similar plate, with depth 53 mm,

on top of which is mounted the die blocks. The stresses occurring in this

plate are calculated in a similar manner:

Bending Moment = 176 x 0.2 - 352 x 0.075 x 0.075
0.150 2

= 28.6 kNm

Second Moment of Area = 0.4 x 0.0533
12

= 4.96 x 10_e m*

crm»x = My: = 28.6 x IQ3 x 0.0265
I 4.96 x 10“6

= 152 N/mm2

the deflection occurring at the centre of this bottom plate when subjected 

to the maximum clamping force will be as follows:

R = E l = 20.7 x IQ9 x 4.96 x. 10.7?
M 28.6 x 103

= 35.9 m

Deflection at centre = 35.9 - V35.92 - 0.22 m

= 0.56 mm
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These values have been obtained by considering the plates as simply 

supported beams, with a uniformly distributed load acting upon them. In 

fact these plates are bolted to the tie-bars and have the hydraulic 

cylinder and die block bolted to them. This will tend to strengthen the 

plates and decrease the amount of deflection that will occur at maximum 

loading.

3.4.2. The Axial Force Restraint
The force produced by the two hydraulic cylinders applying the 

axial compressive force is restrained by two channel section beams, 

serial size 305 x 102 mm. These are positioned back to back with a small 

gap between them, and the cylinders are attached to them by mounting 

brackets which locate onto the top flanges. The beams are subject to a 

bending moment due to the force exerted by the cylinders which, under 

full load conditions, is:

Bending Moment = 215 x [0.170 + 0.15241 kNm

= 69.3 kNm

The second moment of area for this size channel section is 8214 cm4 and 

hence the stresses in each beam at the outer fibres, where the maximum 

stresses occur, are:

o' max = My — 69.3 x 0.1524
I 2 x 8214 x 10-®

= 64 N/mm2

It was originally intended to attach the cylinder mounting brackets to 

these beams by welding. However , machinery large enough to machine the 

faces of these mounting brackets square, once they were attached to the
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beams, was not available. Instead the brackets were bolted to the

channel sections in order to avoid distortion occurring. The use of bolts 

weakens the channel section beams, causing the second moment of area to 

be reduced, and increasing the stress occurring at the location of the bolt 

holes to approximately 71 N/mm2.

The maximum deflection of the channel sections occurring in the 

middle will be:

R = El = 207 x 10* x 8214 x 10~e

= 491 m

Deflection = 491 - 4912 - 0.4202 m

= 0.18 mm

3.4.2.1. The Mounting Brackets
The hydraulic cylinders are bolted to the mounting brackets,

and therefore the forces acting on these brackets can be considered to be

point loads. The values of these forces and their location are 

illustrated in Fig. 16.a, under full load conditions. Subjected to these 

forces the maximum bending moment will occur at the bottom of the 

bracket, which is evaluated to be:

Bending moment = 27 x 0.0525 + 54 x[0.087 + 0.170 + 0.2533

+ 27 x 0.2875

= 36.7 kNm

In order to evaluate the stresses exerted on these brackets, first the 

position of the neutral axis has to be determined. Referring to Fig. 16.b 

- taking moments of area about X-X gives:

[330 x 25 + 2 x 300 x 153y = 25 x 330 x 12.5 + 2 x 300 x 15 x 175
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y = 25-X 330 x 12.5 + 2 x 300 x 15 x 175
330 x 25 + 2 x 300 x 15

y = 97.3 mm

Therefore I = 330 x 97,33 - 300 x 72,33 + 2 x!5 x 227,73
3

= 1.82 x 10“* m*

The maximum stresses will occur in the outer edges when y = 227.3 mm and

will be compressive. The maximum tensile stress will occur at 

y = 97.3 mm and will be less than half the compressive stress.

ckc = Hx = Q-,2273
I 1.82 x 10~A

= 46 N/mm2

As previously mentioned, each mounting bracket is bolted to the two 

channel section beams. Six M24 cap head screws are used for this 

purpose, and in order for the top flanges of the channel sections to be 

able to bear the loads acting on these screws , a reinforcement block is 

welded to the underside of the flanges in these areas. This is 

illustrated in Fig. 17. The stresses experienced by the bracket and the 

reinforced flange are as follows:

M24 Cap Head Screw

Mounting
Bracket 20mm

35mm

Channel
Section
Beam

Fig. 17.
The Channel Section Flange Reinforcement.
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Load acting on each bolt= 215 = 35.8 kN
6

Nominal Stress Area = 384 mm2

Shear Stress = 35.8 x 103
384

= 93 N/mm2

Bearing Stress in Bracket = 35.8 x 103
24 x 20

= 74.6 N/mm2

Bearing Stress in Flange = 35.8 x 103
and Reinforcing Plate 35 x 24

= 10.2 N/mm2

3.4.3. Assembly
The arrangement of the bulge forming machine is shown in 

Fig. 23, which is a reduced reproduction of the original assembly 

drawing- a full size reproduction of this, and the rest of the drawings, 

should be found at the back of this thesis. This drawing shows the two 

channel section beams onto which are attached the two horizontal

cylinders which apply the axial compressive forces. Mounted in the

centre of these channel sections is the bottom plate, containing the

bottom die block and the four tie bars. At the top of these tie bars is

the top plate supporting the hydraulic cylinder providing the clamping 

force. This is connected to the top half of the die block which is shown 

in the closed position.

Vhen closed it is important that the two halves of the die blocks 

align with each other, otherwise the tube and plungers may be trapped by 

the large clamping force, or the bulge formed may be distorted. In order 

to insure alignment, the die blocks are mounted in a "Desoutter" Die Set.
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This consists of two steel plates, the top one being guided by bushes 

which slide along pillars attached to the bottom plate. This can be seen 

in the drawing shown in Fig. 23, and can be seen in close up in Fig. 33 

which is a close up photograph of the die blocks. This photograph, and 

Figs. 25, 26 & 27, show how the die block is made up - a central 

removable die block contained in a larger holder. In the photograph the 

die block is one to form cross pieces, and is shown with a tube blank in 

position prior to forming. The plastic tube at the front of the die 

block holder is to drain away some of the excess oil that is left in the 

die block after removing the formed component.

On either side of the die block holder are mounted two plunger 

guides, which support the plungers when the die blocks are opened. 

Drawings of these plungers and the guides are shown in Figs. 22 and 28. 

The plungers mount onto the ends of the horizontal cylinders and transmit 

the compressive axial force to the ends of the tube. Where they are in 

contact with the copper tube, the plungers are stepped, so they will 

locate inside the tube. This part is also tapered, as shown in Fig. 22, 

to help in sealing the end of tube when the inside is pressurised with 

oil. To allow the oil in, and the air out, both plungers are drilled 

through, one being connected to a flexible hydraulic hose, and the other 

to a bleed valve.

In order to provide a reasonable working height and to support the 

machine, the whole assembly- is mounted on a framework made up of angle 

iron. Fig. 29 shows a photo of the front view of the machine in which 

the framework can clearly be seen together with the channel section beam 

mounted within it.
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Fig. 30 shows a view of the back of the machine. In this photograph, 

part of the high pressure circuit can be seen in the foreground - the 

pressure intensifier and relief valve, with the flexible hydraulic hose 

leading off to one of the plungers. Above this can be seen the flow 

divider, with the two pipes leading off to the two horizontally mounted 

hydraulic cylinders. In the background at the top is mounted the stack 

containing most of the valves in the hydraulic circuit, connected to the 

pump and motor visible in the bottom of the photograph (the pump is 

mounted underneath the motor inside the oil tank).

3.4.4. Alterations to the Initial Design
The main alteration in the design, as previously mentioned, was 

the use of bolts instead of welding, for joining the cylinder mounting 

brackets to the channel section beams. Both cylinders have to be mounted 

horizontally and in line with each other. If the brackets had been 

welded to the channel sections, the mounting faces would have to be 

machined afterwards to correct any distortion that may have occurred due 

to the heat. Because of the size of the assembly this was impractical so 

the brackets were bolted on instead. Similarly, instead of welding the 

bottom plate, onto which the die block is mounted, it was clamped to the 

channel section by two long bolts stretching from the bottom plate to 

two blocks of metal located underneath the beams.

Another alteration was a change in the way the die block holders 

were mounted onto the "Desoutter" die sets. The drawings in Figs. 25 and 

26 show bolt holes through each die block holder. These were not used, 

however, because of the difficulty it would have involved in trying to 

bolt the top half into position. Instead four recesses were cut into the
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ends of each half, so that the die block holders could be clamped onto 

the die sets. This can be seen in Fig. 33, a photograph of the die 

blocks - the clamps are located on either side of the plunger guides. 

This method of attachment allows the top half of the die block holder to 

be attached with the dies in the closed position, and so also allows the 

alignment of the two halves prior to clamping fully tight in position.

3.5. COmCISIQIIgG
After completion of the machine and the hydraulic circuit, 

tests were carried out by forming copper tube into tee pieces in order to 

highlight any problems associated with it. The problems encountered fall 

into two catergories - Structural and Hydraulic.

3.5.1. Structural Problems
Before any testing could be carried out, the first problem had 

to be rectified. The two plungers which were attached to the horizontal 

cylinders were not aligned properly. These plungers were attached to the 

cylinders by bolts passing through them and connecting to a plunger 

mount screwed onto the end of the cylinder rod. Some linear misalignment 

was allowed for by having oversize bolt holes drilled in the plungers, 

but a slight angular misalignment was also present. To allow for this a 

floating connection was required, which was achieved by discarding the 

mounting bolts and fitting a collar over the end of the plunger which is 

bolted to the plunger mount - see Fig-. 34. This allows movement of the 

plunger within it.

A second problem encountered in the same area, was rotation of the 

cylinder rods during extension and retraction. This caused a problem
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because of the part of the hydraulic circuit attached to the ends of them. 

This rotation was prevented by machining a flat onto the plunger 

mounting collars, and mounting a piece of angle iron along side each one. 

The contact between the flat on the collar and the angle iron during 

extension and retraction thus prevents rotation of the cylinder rods.

3.5.2. Hydraulic Problems
Once the structural problems had been rectified the forming of 

tee pieces could proceed. The first problem on the hydraulic side showed 

itself immediately - a high internal pressure could not be achieved 

indicating a faulty pressure intensifier. On removal and examination of 

the pressure intensifier the fault was traced. A pipe fitting screwed 

into one of the ports was too long and had covered and blocked a small 

port inside the intensifier. Shortening the pipe fitting rectified the 

fault and allowed a high internal pressure to be obtained.

Another problem with the internal pressure was the slow operation 

of the pressure relief valve. The pressure would only drop very slowly

to the value set by the relief valve which allowed very high pressures to

be accidently obtained. Replacement of the high pressure relief valve did 

not effect its operation, and the original one was tested on a test bench 

and worked perfectly. The fault was finally traced to be due to the 

drain pipe, which returned the oil to the tank. On its way back to the 

tank, the pipe from the relief valve joined the drain pipe from the 

pressure intensifier and the return pipe from the rest of the circuit. 

Seemingly a large back pressure was building up in the drain pipe from 

the pressure relief valve, preventing the valve from operating properly. 

Providing the relief valve with its own drain pipe all the way back to
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the tank prevented this problem and allowed the valve to operate 

correctly.

After carrying out several tests a less serious problem also

showed itself, in that the bulges formed on the tube were not central. 

This indicated that the flow divider was not producing equal movement of 

the two hydraulic rams providing the axial compressive force. This was 

simply cured by removing and cleaning the flow divider. When replaced 

the bulges were formed approximately central on the tube. The fault was 

likely to be due to the ingress of dirt during the assembly of the 

hydraulic circuit.
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4. T E S T  P R O C E D U R E
4.1. TEST MATERIAL

The initial stages of the design of the bulge forming rig

involved estimating the size of the tube blank to be used in the forming 

operation. This was so that the forces involved could be calculated, and 

an approximate size for the die block could be allowed for in the rest of 

the design. For design considerations a nominal value of 25mm diameter 

and 150 mm length was chosen. The actual tube blanks used for the tests 

was decided on at a later time before the final dimensioning of the dies 

and plungers. These tubes were of copper and had an outer diameter of 

24.12mm with a wall thickness of 1.37mm. These were supplied in an

annealed state in lengths of 107mm. To provide a comparison another

wall thickness tube was also used. This had the same outer diameter of 

24.12mm but the wall thickness was thinner being 1.03mm. These tubes 

were supplied in a work hardened state in lengths of 127mm and before 

forming were annealed at 500 °C.

4.2. OPERATING PROCEDURE
Forming components using the bulge forming machine required

clamping the die block closed with a tube blank contained inside, and

subjecting it to internal pressure and an axial compressive force.

The design of the machine is such that these forces can be varied 

to form components to various stages of expansion and various procedures 

can be used relating to the internal pressure used. The high pressure 

part of the hydraulic circuit is equipped with a pressure reducing valve 

and also a pressure relief valve to control the internal pressure. In the 

forming of tee and cross pieces, as previously mentioned, there is a
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decrease in the volume inside the tube, due to the axial deformation, 

which generates a high pressure. Thus, the pressure reducing valve can 

be used to set the initial internal pressure which can be allowed to 

increase to a maximum value determined by the pressure relief valve. 

Alternatively, the relief valve can be used to set the initial pressure, 

resulting in a constant pressure throughout the forming process.

During the process, the application of the axial compressive load, if 

great enough, results in the axial deformation of the tube, i.e the tube , 

gets shorter. As would be expected the greater the axial force the more 

deformation occurs. Therefore to take the control of the internal 

pressure a stage further during the process, the axial deformation can be 

carried out in stages. During each stage the internal pressure is set to 

a constant value, and at the end of each stage, when deformation has 

stopped, both the internal pressure and the axial compressive force are 

increased.

The test procedures for these different processes are the same at 

the start of the procedure which is as follows (the hydraulic components 

and switches refer to Figs. 12. & 13. respectively):

1. Connect the control board controlling the solenoid valves to a

24V DC supply and turn on the isolator to the electric motor

and start it.

2. Open the die by moving switch SI to the OPEN position (during

periods of rest, when the motor is still running, the switch

should be returned to the central - STANDBY - position to 

prevent excess heat from being generated in the main relief 

valve).
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3. Place centrally on the bottom die a tube blank, the length, 

diameter, and wall thickness of which have already been noted.

4. Close the die block by moving switch SI to the CLOSE position.

5. Move switch S2 to extend the horizontal hydraulic cylinders, 

and so bring the plungers into contact with the tube blank. 

The forces acting on the tube are controlled by the pressure 

reducing valve PR1 which should be set to provide sufficient 

force to seal the ends of the tube without causing any axial 

deformation.

6. Having sealed the ends of the tube, it can then be filled with 

oil by moving switch S4 to the LOW pressure position, causing 

the pressure intensifier to be by-passed to fill the tube 

quickly at low pressure. At the same time the valve V5 should 

be opened to allow the air to escape from the tube. Once clear 

oil starts to flow out, this valve can then be shut off to 

allow internal pressure to be generated.

The rest of the procedure depends on the mode of operation required. 

This will be dealt with separately for the three different variations.

4.2.1. Fixed. Internal Pressure During Bulging
For this mode of operation the internal pressure is kept 

constant throughout the forming process, controlled by the high pressure 

relief valve RV2. After operations 1-6 have been completed the procedure 

is as follows:

7. Move switch S4 from the LOW pressure position to the HIGH 

pressure, which causes the pressure intensifier to be 

activated, generating a high pressure inside the tube blank.
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This pressure is controlled by the adjustment of the relief 

valve RV2, with the pressure reducing valve PR3 adjusted to

provide a pressure just greater than that required.

8. Once the tube is subjected to an internal pressure, the axial 

compressive force should be applied. This is achieved by

moving switch S3. The forces acting on the ends of the tube

are controlled by the pressure reducing valve PR2 which should

be set sufficiently high as to cause axial deformation.

9, On completion of the forming process, when the forming 

plungers stop moving, or the tube bursts, switches S2, S3 & S4 

are moved to the OFF position. This causes the plungers to be

retracted, and stops the supply to the internal pressure. This

pressure is released as soon as the plungers move apart. To 

open the dies to gain access to the formed component, switch 

SI is moved to the OPEN position.

Having removed the formed component the machine is then ready for

another blank to be placed in the dies for the next forming operation.

As an alternative to the process just described, step 8 can be omitted, 

causing the tube to be formed due to internal pressure alone. In this 

case the axial force is just used to seal the tube and not to deform it, 

although this only produces small bulges.

4.2.2. Increasing Internal Pressure During bulging
For this process the initial pressure is set by the pressure 

reducing valve PR3, and increases during the process to a value 

determined by the relief valve RV2. Ideally the relief valve RV2 should 

be set before hand, either at the end of a previous test or by subjecting
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a blank to the required pressure. Again this procedure follows on after 

operations 1-6 have been completed.

7. Move switch S4 from the LOW to the HIGH pressure position. 

The pressure inside the tube blank is controlled by the 

pressure reducing valve PR3 which should be varied to produce 

the required initial internal pressure.

8. Once the tube is subjected to the internal pressure, the axial

compressive force should be applied by moving switch S3 to the

ON position. The force acting on the ends of the tube is 

controlled by the pressure reducing valve PR2. During forming 

the internal pressure will increase, due to the decrease in 

internal volume, until it reaches the value set by the relief 

valve RV2. A constant pressure will be maintained once this 

pressure is reached, until the completion of the forming 

process, after which it will drop due to leakages.

9. After completion of the forming process switches S2, S3 & S4 

should be moved to the OFF position, and the dies opened by 

moving switch SI to the OPEN position,

4.2.3. Increasing Internal Pressure in Stages
This process is similar to forming a component with a fixed 

internal pressure, but at the end of the deformation the internal pressure 

and axial force are increased to produce another deformation. The first 

axial force applied to the end of the tubes should thus be fairly small, 

to allow it to be later increased to produce a further deformation. Again 

Steps 1-6 should be followed.
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7. Move switch S4 from the LOW pressure position to the HIGH

pressure, which causes the pressure intensifier to be 

activated, generating a high pressure inside the tube blank. 

This pressure is controlled by the adjustment of the relief 

valve RV2, with the pressure reducing valve PR3 adjusted to

provide a pressure just greater than that required.

8. Once the tube is subjected to an internal pressure, the axial 

compressive force should be applied. This is achieved by 

moving switch S3. The forces acting on the ends of the tube 

are controlled by the pressure reducing valve PR2 which should 

be set to a suitable value for the initial deformation.

9. When the deformation has stopped, i.e. the plungers have

stopped moving, the internal pressure can be increased by

adjustment of the relief valve RV2 (the pressure reducing valve 

PR3 may also require adjustment so that a large enough 

pressure is being produced from the pressure intensifier).

10. After increasing the internal pressure, the axial deformation

can be continued by adjusting the pressure reducing valve PR2,

so as to increase the axial force acting on the ends of the 

tube.

11. When this next deformation has stopped, steps 9 and 10 can be 

repeated - increasing the internal pressure and axial force 

again - or the component can be removed from the machine, by 

moving switches S2, S3 & S4 to the OFF position, and moving 

switch SI to the OPEN position to open the dies.
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4.3. ANALYSIS OF THE FORKED COMPONENT

Once formed and removed from the machine, the final length of 

the component and the length of the side branch (es) were measured. 

Further analysis involved cutting the component into two halves so that 

the wall thickness could be measured around the bulge profile. A band 

saw was used, and the components cut lengthwise down the centre of the 

bulge<s). Figs. 35. and 36. show sectioned tee and cross pieces produced 

by the machine at varying degrees of deformation. Once sawn in half, one 

half was then cleaned up and measured as shown in Fig. 37.a. Considering 

the tube in a horizontal position, reading were taken in steps vertically 

upwards from the root of the bulge to the top. This was done on both 

sides and a final wall thickness was measured at the tip of the bulge.

However, in components that were formed using internal pressure 

only - i.e. no axial deformation - the bulge formed was not large enough 

to be divided up in this way for measurement. Therefore for small bulges 

an alternative method for measuring the wall thickness was used. This is 

shown in Fig 37.b. Instead of dividing up the bulge vertically, it is 

divided horizontally. After first estimating the centre line, 

measurements were made in steps either side of the centre line.
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4.4. RESULTS
4.4.1. Tee pieces

Tests were carried out on the bulge forming machine to form 

tee pieces from copper tube in the two wall thicknesses - 1.37mm and 

1.03mm. These were conducted using constant axial deformation forces, 

achieved by setting the pressure reducing valve (V3) supplying the two 

horizontal cylinders to a set value. For each constant deformation force, 

various internal pressures were applied, and the effect of this internal 

pressure on the formed component was noted. In some cases buckling of 

the tube occurred, or the tube fractured. From these tests it was 

possible to derive the forming limits for the tube blanks used.

The forming limits are shown in graphical form in Fig 38. For the 

thicker tube, Fig 38.a applies. This shows the relationship between the 

axial deformation force and the Internal Pressure, and is split up into 

four areas. Failure of the forming process will occur if the forming 

conditions fall into areas C or D. Area C indicates that the the axial 

deformation force is too high, or the internal pressure is too low, 

resulting in buckling of the tube occurring. Fracture of the tube wall 

will occur in area D. This was found to occur in the dome formed by the 

internal pressure, and the fracture would lie in an axial orientation. 

Fracture will also occur if the initial conditions fall into area B. In 

order to form a perfect component, the conditions have to fall into 

area A. However, after the deformation has been partly completed, the 

forming conditions may move into area B. This is most probably due to 

the work hardening of the copper allowing it to restrain a larger 

pressure. Testing tubes with only a small axial force, sufficient to seal 

the ends, resulted in the tube fracturing with an internal pressure of
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about 7500psi (52N/mm2) and above. However, after severe deformation due 

to a large deformation force, tube of the same original size was able to 

resist the maximum internal pressure available (10,OOOpsi-69N/mm2). Fig. 

39. shows components that have failed during forming, due to fracture and 

due to buckling.

The axial deformation forces have been calculated from the pressures 

applied to the hydraulic cylinders e.g for a pressure of lOOOpsi 

(6.9N/mm2), the force exerted by each cylinder is:

Area of Cylinder (from Manu. Spec.) = 123 x 102 mm2 

Pressure = 1000 psi

= 6.9 N/mm2

Force Applied by Cylinder = 123 x 102 x 6.9 n

= 85 kN

The actual forces that are applied to the ends of the tube may be a 

little less than this due to losses between the pressure reducing valve 

(where a pressure reading is obtained) and the output from the cylinder. 

These are likely to occur because of flow losses occurring in the

pipework and friction in the cylinders and plungers.

It also should be noted that the axial deformation of the tube is 

proportional to the axial compressive force, and, therefore, this graph 

also represents axial deformation against internal pressure. Hence this 

graph could be used to indicate how the internal pressure can be

increased during the process.

Fig. 38.b similarily shows the forming limits for the thinner walled 

tube. This has the same areas, but these have moved in towards the 

origin of the axis. The area in which perfect forming occurred is 

considerably smaller than previously and this was reflected in the
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difficulty experienced in trying to form good components. The thicker 

tube was found to be easier to form than the thinner walled tube, the 

values of axial force and internal pressure not being so critical.

4.4.1.1. Tee .Pieces Formed From The Thicker Tube
The lengths of the side branches obtained when forming tee pieces 

are shown in Fig. 40. This is for various axial deformation loads - 26, 

85, and 130kN, and shows the bulge height ratio ( (H s+L )/R o  x 100%) 

against the internal pressure. With only a small axial force the maximum 

bulge height ratio is only 38% at the maximum internal pressure possible 

before rupture occurs (7000psi - 48N/mm2). However with increasing axial 

forces, much greater expansions can be obtained with smaller internal 

pressures. Using an axial force of 130 kN, a height ratio of 170% was 

obtained with the same internal pressure. This indicates the importance 

of applying an axial compressive force when attempting to produce a 

component with a significant branch length. To increase the length of 

the branch formed, larger axial compressive forces have a more 

significant effect than an increase in internal pressure.

The branch formed can be split into two parts - Hs and L (see Fig. 

3 7.a) where Hs is the height of the domed portion and L is the length of 

the tubular portion. The effect of increasing the axial compressive force 

seems to be an increase in the length of L. Increasing the internal 

pressure increases Hs with little effect on the value of L. This increase 

is achieved by the domed portion being bulged further out, and is 

indicated in Fig. 41. This shows a graph of the radius of the crown 

portion plotted against the internal pressure that formed it, for the 

three different axial forces. For small axial forces (85kN) there is a
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large change in the radius with increasing pressure. With larger axial 

forces (130kN) the effect is not as great, but still significant with the 

radius decreasing with increasing internal pressure until it reaches a 

value of about 15mm when little change occurs (the minimum value it could 

reach is 12mm - the radius of the side branch). With very low pressures 

the graph indicates that the radii goes towards infinity ie. the branch 

is formed flat topped. This did occur on some of the components formed 

with a low internal pressure. At even lower pressures buckling of the

tube would occur, and in some cases the dome of the branch would be

farmed concave in the axial direction.

The effect the internal pressure has on the wall thickness across 

the domed portion is illustrated in Figs. 42, 43 & 44, in graphs of 

percentage of original wall thickness (t/t0 x 100%) against x (see Fig. 

37). Fig. 42 shows the variation in the wall thickness for components 

formed with an axial force of 26kN (used as a sealing force and not to 

cause axial deformation). The centre of the bulge is represented by x=0 

and as x moves towards 14mm and -14mm, this represents the edge of the 

domed portion and the root - where the side branch joins the main branch 

- measured in the axial direction. The original wall thickness is shown 

by the dashed horizontal line. The graph is plotted for various values 

of internal pressure, and it can be seen that increasing this pressure 

causes a decrease in the wall thickness across the dome. The thickness 

at the edges and at the root remains almost unchanged when forming at 

these conditions.

Fig. 43 is a similar graph but the measurements have been taken

from components formed with an axial force of 85kN. Again thinning of

the wall across the dome occurs, with increasing internal pressure. A
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minimum thickness of 73% of original occurs when the internal pressure 

is 6000psi (41N/mm2). The thickness across the central part of the dome 

is fairly constant for each component. However, for this end load 

thickening of the wall occurs at the root due to the axial deformation. 

A comparison of the thickness distribution for components formed with 

axial compressive forces of 26kN and 85 kN is shown in Fig. 44. These 

were both formed with an internal pressure of 6000psi (41N/mm2). With 

the higher axial force, greater wall thinning has occurred across the 

dome, but at the root the wall is a lot thicker than the component formed 

with a small axial force.

In the commercial manufacture of tee pieces, the thickness of the 

domed cap is of little importance, so long as it does not fracture. After 

forming it would most probably be cut off to leave an open side branch. 

The wall thickness up the side of the branch is of greater importance. 

Figs 45-47, therefore, deal with the variation in the wall thickness up 

the side of the branch. This is shown in graphs of the percentage of 

original wall thickness against:

a. the branch height ratio ( y/(Hs+L) ), and

b. the height in mm ( y ),

Fig. 45.a is for the same components as in Fig.43, but this time the 

wall thickness is plotted against the height ratio. At the root of the

side branch ( y /(H s + L ) = 0.0 ) thickening of the wall occurs and is

fairly constant for all the values of internal pressure. Gradually the

thickness decreases moving up the side of the branch, until it reaches a

minimum value at the tip of the dome ( y /(H s + L ) = 1.0 ). Again the

larger the internal pressure that was used to form the component the

thinner the tube wall is.
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The same data is plotted in Fig. 45.b, but this time against y. For

all the components, the wall thickness is fairly constant at the bottom 

of the branch. At a height of about 4mm the graphs start to separate 

with the thinnest walled branch being the one with the highest internal 

pressure. This graph also shows the effect of the internal pressure on 

the height of the branch - the last value plotted being the thickness at 

the tip of the branch. Increasing the internal presssure causes an

increase in the length of the side branch formed.

Similarily Figs. 46.a and 46 .b show the variation in the wall

thickness for components formed using an axial compressive force of

130kN. This time far greater wall thickening has occurred at the root of 

the branch. In Fig. 46,a the decrease in wall thickness with increasing 

internal pressure can been seen, when comparing height ratios, especially 

at the tip. However, in Fig 46.b the wall thickness follow the same

trends for the various internal pressures, the variation occurring in the 

branch length and the wall thickness at the tip of the branch.

A comparison of forming with different axial compressive forces is 

shown in Fig. 47. Here the wall thicknesses of components formed with

axial compressive forces of 85kH and 130kK, are plotted against y. The

increase in the axial force causes an increase in the length of the

branch and also thickening at the root of the branch. However, the wall

thickness at the tip of the branch remains similar.

4.4.1.2. Tee Pieces-Formed Froa The Thinner Tube
Forming tee pieces using the thinner tube (1.03mm wall thickness)

was found to be more difficult than with the thicker tube. Smaller

internal pressures had to be used to prevent rupture of the tube wall.
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However, because of this, and because the walls were only thin, buckling 

would occur if large axial compressive forces were involved. This is 

where the third operating procedure, described previously, was found 

useful. This involved partly deforming the tube at one internal pressure 

(eg. forming with an axial force of 85kN and an internal pressure of 

3000psi (20N/mm2)). At the end of the first deformation the internal 

pressure and axial compressive force would be increased to complete the 

deformation (eg. increasing the axial force to 106kIT with an internal 

pressure of 5000psi (35N/mm2)). In this way a large internal pressure, 

which would have burst the tube if applied initially, can be used partway 

through the deformation to support the walls and prevent buckling 

occurring.

Again the wall thickness distribution is presented in graphs of 

percentage of original wall thickness against the height ratio and the 

height (y) in Figs. 48-50. Fig 48.a shows the results from components 

formed with an axial compressive force of 26kN. With the thinner tube 

there is a much greater variation in the wall thicknesses for the 

components formed at different pressures, compared to the results 

obtained with the thicker walled tube. Again the root thickness is 

approximately the same as the original wall thickness, and the wall 

thickness gets less towards the tip of the branch. However, only a small 

internal pressure causes substantial thinning of the wall - with an 

internal pressure of 4500psi (31N/mm2) the wall thickness at the tip is 

reduced to 65% of the original thickness.

With an axial compressive force of 85kN the wall thickness at the 

root of the branch is greatly increased, as shown in Figs. 49.a and 49.b. 

Comparison of Fig. 49.a with Fig. 46.a, show that similar wall thickening
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at the root is obtained from the thicker tube but a higher axial force of 

130kN is required to achieve this. However the branch height of the 

thinner tube is not as great as those obtained from the thicker tube, as 

a comparison of Figs. 49.b and 46.b shows.

The greatest axial force that was possible, before buckling of the 

tube became very severe, was 106kN. The results obtained from forming 

with this axial compressive force are shown in Figs. 50.a and 50.b. The

wall thickness at the tip of the branch remains similar to those obtained

from forming with smaller axial forces, but there is an increase in the 

thickness at the root, and an increase in the length of the branch. Note 

that the results from one component are vastly different from the other 

two, having a much larger root thickness, and a longer branch. The

reason for this is unknown - all forming conditions were identical except 

for the variation in the internal pressure - but may be due to variations 

in the original wall thickness around/along the tube blank.

A comparison of the wall thickness distribution obtained from

forming at different axial compressive forces is shown in Fig. 51. This 

shows a large difference in the wall thicknesses of components formed at 

26kN and 85kN, but only a small difference between components formed at 

85kN and 106kN.

4.4.2. Cross Pieces
Forming cross pieces was found to produce results similar to 

forming tee pieces. The forming limits were found to be the same as 

those for forming tee pieces (Figs. 38.a and 38.b). The branch height 

produced was also found to be similar. In Fig. 52, the branch height, 

expressed as a percentage of the tube radius, is plotted against the

- 98 -



internal pressure for various values of axial compressive force. 

Comparison of the values obtained from axial compressive forces of 26kN, 

85kN and 127kN, with Fig. 40 - the same graph plotted for tee pieces - 

shows similar branch heights have been achieved. For the cross pieces 

two extra compressive forces have been used - 106kN and 148kN. At 106kN 

the resulting branch heights are similar to those formed with an axial 

compressive force of 127kN. The results obtained from the highest axial 

compressive force of 148kN differ from other results in that a very steep 

line is produced. This indicates that with this high axial compressive 

force the internal pressure has a much greater effect on the resulting 

length of the branch. At low pressures buckling occurs, preventing the 

full length of the branch to be achieved. It may be that at higher

internal pressures the line will level off and follow similar trends to 

the other axial compressive forces<

4.4.2.1. Cross Pieces Formed From The Thicker Tube
Similar graphs have been plotted for the cross pieces as for 

the tee pieces. Figs. 53-57 are graphs of wall thickness - expressed as

a percentage of the original wall thickness - against:

a. the height ratio < y/(Hs+L) ), and

b. the height in mm (y).

Fig 53,a and 53 .b are for an axial compressive force of 26kN, used 

just as a sealing force. The graphs show the decrease of the wall 

thickness at the tip of the branch with increasing internal pressure. At 

the root of the branch the wall thickness remains approximately the same 

as the original wall thickness. Figs 54, 55, 56 and 57 correspond to 

axial compressive forces of 85kN, 106kN, 127kN and 148kN respectively.
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Increasing the axial compressive force results in an increase in the 

length of the branch, and thickening of the tube wall at the root of the 

branch. For each compressive force, the wall thickness up the branch 

remains fairly similar for various values of internal pressure, except at 

the tip, where increasing the internal pressure decreases the wall 

thickness.

The results obtained from all five different axial compressive 

forces is shown in Fig. 58. Comparison of wall thicknesses shows that 

increasing the axial compressive force simply increases the root 

thickness and the branch height, while the wall thickness at the tip of 

the bulge remains almost constant. The data in Fig. 58 was obtained by 

producing components using two internal pressures - 6000psi (41N/mm2)

and 7000psi (48N/mm2). The smallest wall thickness at the tip of the 

branch is obtained when using only the sealing force of 26kN, ie. when 

there is no or little axial deformation.

4.4.2.2. Cross Pieces Formed From The Thinner Tube
Again the thinner tube was found to be harder to form than the 

thicker tube. Similar results were obtained in forming cross pieces as 

were obtained forming tee pieces from the thinner walled tube. Figs. 59, 

60 and 61 show the results obtained from forming with axial compressive 

forces of 26kN, 63kN and 85kN respectively. At the lowest axial force 

there is similarity between the wall thickness distribution of the cross 

piece and the tee piece, and can be seen by comparison of Figs. 59.a and 

48.a. Again, increasing the axial force causes an increase in the wall 

thickness at the root together with an increase in the length of the 

branch, and is illustrated by Figs. 60.a and 60.b.
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The results obtained from forming with an axial force of 85kN shows

quite a few discrepancies - see Figs. 61.a and 61.b. Two of the

components show considerable thickening of the wall at the root.

However, the other three have hardly any wall thickening occurring at 

the root. This again may be due to variations occurring in the original 

wall thickness ( perhaps due to variations in annealing ), or may be due 

to errors during the measurement of the components.

A comparison of the components formed from the three different

axial compressive forces is shown in Fig. 62. Ignoring the discrepancies 

occurring at the root of the components formed with an axial force of 

85kN, it can be seen that increasing the axial force again causes a 

thickening of the wall at the root as well as an increase in the length 

of the branch.
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Fig. 36. Cross Pieces Formed to Various Stages.
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The wall thickness distributions along the side branches 
of cross pieces formed at various internal pressures, 
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The wall thickness distributions along the side branches 
of cross pieces formed at various internal pressures, 

with a constant axial compressive force.
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The wall thickness distributions along the side branches 
of cross pieces formed at various internal pressures, 
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The wall thickness distributions along the side branches 
of cross pieces formed at various internal pressures, 
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The wall thickness distributions along the side branches 
of cross pieces formed at various internal pressures, 

and with various axial compressive forces.
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The wall thickness distributions along the side branches 
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The wall thickness distributions along the side branches 
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The wall thickness distributions along the side branches 
of cross pieces formed at various internal pressures, 

with a constant axial compressive force.
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The wall thickness distributions along the side branches 
of cross pieces formed at various internal pressures, 

with a constant axial compressive force.
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The wall thickness distributions along the side branches 
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5. T H E O R E T I C A L  W A L L  T H I C K N E S S  D I S T R I B U T I O N
5.1. THEORETICAL AKALY£IS

The following is an extension of * the analysis to predict the 

variation in the wall thickness around the bulge profile presented in 

references 25 & 26. The theory deals with the expansion of a tubular 

blank into an axisymetric component ie. one having the same expansion all 

around the axis, as well as forming into a side branch. In order to 

analyse these two cases of bulge forming, the following assumptions are 

made:

1. the deformation profile at any instant can be described by a

circular arc,

2. and the effect of additional material fed into the deformation

zone may be taken into account by introducing an apparent

strain factor (ASF)..

5.1.1. Expansion of a Curved Surface

Referring to Fig. 63.a, the arc ABC of initial uniform thickness

ti, polar height Hi and radius of curvature pi, expands to an arc AB'C of 

polar height Hz and radius of curvature pz. Consider an element with an 

axial position xi and a height of hi from the chord AC, on the

undeformed arc ABC. On the expanded arc AB'C, this same element has an 

axial position of x2 and a height of hz from the chord AC.

From geometry:

X2l = (hz t...yzl
x o  y*

and Xjl = .(hi. ±_.yi 1
x o  yi
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Combining these two equations gives:

Xz = y,i (hz + yz) ... ........ (1)
Xi yz(hi + yi)

but from geometry, y2H2 = a2 and yiHi = a2

Combining these two equations gives

y^/yi = Hi/Hz .............<2)

Substituting for yi and jz into equation (1) gives:

Xz - a2Hz(hz + a2/Hz)
Xi Hi a2(hi + a2/Hi)

Xz = (Hzhz + a2) ... ........ (3)
Xi (Hi hi + a2)

Also from geometry

yi + hi X , 2 ........ <4)
(Hi - hi )

and y 2  + hz NCvXII ........ <5)
(Hz - hz)

Combining equations <4) and {5> with equation (1) gives:

Xz = yi (xz2/(Hz ~ h z ) )  
xi y2 (xi2/(Hi - hi))

= ViXz2 (Hi - hi) 
y z X i 2 (H2  — h z )

Xz = y z (H z  -  h z )xi y i ( H i  - h i )
But from equation <2) yz/yi = Hi/Hz, thus:

X z  = Hi (Hz ~ h z )  ................................. {6)Xi H 2 (Hi - h i )
Combining equations <3) and (6) gives:

(Hzhz .+ = Hi (Hz -  hz)
(H ih i  + a2) H z(H i -  h i )

(Hzhz + a2)(Hi -  h i )  = (H ih i  + a2)(Hz -  h z )H i /H z  

H iH zh z  + a2Hi - H z h ih z  - a2hi =

(HiHzhi — Hihihz + a2Hz ~ a2hz)Hi/H2
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- H i 2 h i + H i2 h ih z /H z  — Hz h ih z  ~ a2 hi — — a2Hih z /H z  ~ H iH zh z  

h i ( -  H i2  + H i 2 h z /H z  -  Hzhz -  a2 ) = -  H ihzCa2 + Hz2 ) /H z

hi [H z (H i2 + a2 ) + h z (H z 2 -  H i 2 )]  = H ih z< a 2 + Hz2 )

hi = Hi hz (Hz2 + _a2)........   <7)
Hz(Hi2 + a2) + hz(Hz2 - Hi2)

Substituting for hi into equation (3)

= ______________ Hzhz + a2___________ ;—
Xi Hi._______Hihz(Ho2 4- a2)_______ + a2

H z (H i2 + a2 ) + h z (H z 2 -  H i2 )

= _____________________ Hzhz t fl2____________________ _
H i2 h z (H z 2 + a2) + a 2 H z (H i2 + a2 ) + a2 h z (H z 2 -  H i2 I  

H z (H i2 + a2 ) + h z (H z 2 -  H i 2 )

____________( H z h z  +  a2)( H z ( H i 2  +  a2) + h z ( H z 2  -  H i 2 ))____________
H i 2 Hz2 hz + a 2 H i2h z  + a2 H i2Hz + aAHz + a2 Hz2 hz -  a 2 h z H i2

= (Hzhz + a2 ) ( H z ( H i 2 4 a2 ) + h z (H z 2 -  H i 2 ) )  
(Hzhz + a2 ) ( H i 2 Hz + Hza2 )

=  H z ( H i 2  +  a2) +  h z ( H z 2  -  H i 2 )
H z ( H i 2  + a2)

x *  = 1 + ' h 2 (H2 2 r , H i 2 )  <8>
Xi H z (H i2 + a2 )

5.1.2. Axisymmetric Expansion of a Tubular Blank
Referring to Fig. 63 .b, the force equilibrium in the normal 

direction is given by:

p. .............. (9)
t p© pL.

At this point it is assumed that during the entire deformation

process o'© and o-l will be connected by:

o'© = Ko-l................. ............. <101

where K = (2 - p©/pi_)

Substituting for o'© in equation {9) gives:

p. = K£i_ + Kl.
t p© pi_
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p. = Kgi-p.L.+yi-pe 
t p©pL

= (2 ~ Pe/pt-)yi-PL + Ol_p©
p©pu

= 2£l_£l_- O-Lpe + O't p©
p©pu

= 2oj_  <11)
p©

Now the Levy-Mises plastic flow rule may be written as:

£j_ = £2. = fca = X  <12)
O'! 1 O'z' 0's'

where ei = In Xz . €z = In r_ and e3 = t_
x i r o to

and < r i vzt and 0's' are the deviatoric components of the principal

stresses fri = O'U, o'z = o'©, and 0*3 = -p respectively. The hydrostatic

components of the principal stresses is given by (o'* + o'2 )/3 where

0's = -p has been considered negligibly small in comparison to 0̂  and o'z.

Thus:

O' i * = O'U - (O'l. + 0'©)/3

0's’ = O’© - (O'U + 0'©)/3

Substituting for 0̂  ' and o'z' in equation <12) we obtain:

£2. = 0©  - (o-u + y©)/3
■ 6 i  O'U - (O'U + 0'©)/3

= 3 o'© - o'! - o'©
3 O'U “ O'U - O'©

= 2O'© ~ O'U  <13)
2 O'U - o'©

Substituting for o'© from equation <10) gives:

£2. = 2 Kyi- ,- .yu
Gi 2O'U - Ko-u

= 2L_=_L
2 - K

but K = (2-p©/pu ) , so:
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£2. - 2 (2 - pe/pu) - 1
£1 2 — (2 — p©/p«_)

= 4. - 2p©/pi ~ 1
p©/pu

= 3_- 2pe/pi. 
p©/pu

or t2 = me! ................<14)

where m = (3 - 2p©/pL )/ (p©/pL ) .........<15)

From the principle of volume constancy:

£i + £ z  +  £3 = 0 

Substituting for G z  from equation <14) and rearranging gives:

•g3 = -<l+m)Gi  <16)

but g3 - In t and Gi = In x?
to X 1

Hence, equation <16) becomes:

In ±_ = -<l+m) In. Xz.
to Xl

= In <xjL)<1-m>
(Xz)

so that t = to ............. <17)
(Xz)

Substituting for (xi/xz) from equation <8), the current thickness at 

any point hz = <r - r0) on the bulged profile can be expressed as :

_________ta..........   <18)
t = Q  + hz(Hz2 - Hi2 )~]<^">L Hz(H!2 + a2 )J

5.1.3. Asynmetric Bulging of a Tube into,a Side Cavity
The theory considers the bulging of a tubular blank such that 

a side branch is formed having a diameter equal to that of the blank. 

The succesive deformation mode is illustrated schematically in Fig. 64.
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during the initial process, the chord length DEF in the axial direction 

starts to deform from a radius of pL = ® to p®. In the transverse 

direction the curved length starts to deform from p& =  r Q  to p®. p ®  is 
the radius of curvature of the common spherical dome that is formed, with 

a height of H«. This radius remains constant for the rest of the 

expansion process.

Referring to Fig. 64.a, and considering the geometry in the axial

direction:

r02 = <2p« - H«) H® 

p. = (r02/H« + H.)

= rQ2 + H®2 .............. <19)
2H®

In the circumferential direction:

p« = r0 + H« .............. <20)

where H® is the polar height of the dome when pi_ = pe = p®. Hence,

combining equations <19) and <20):

ro + H® = rQ2 + H®2 
2H.

2H«r0 + 2H.2 - H.2 - rQ2 = 0

H.2 + 2H»r0 - rQ2 = 0

Solving this quadratic equation for H®:

H® = ~2rQ ^ 4 r Q2 - 4(-r„2~)
2

= ~2rQ - V8rQ2 
2

H* = G/2 - l)r0

OR H. = <->/2 - l)r0

As H® must be positive:

= <V2 - ~l)r0 ..............<21)
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Substituting into equation <20):

p« = r0 + (v/2 - l)r0

p m  =  >/2ro <22)
During the initial stages of bulging, until the polar height becomes

the thickness distribution along the profile in the axial direction is

given by equation <18). At any intermediate stage the value of m is

calculated from equation <15) using the prevailing values of pL and pe.

When the spherical dome of height H« has formed, with a radius of

curvature p«, then pi_ =  p ©  =  p »  and therefore m  = 1 
Hence, equation <18) becomes:

This gives the thickness distribution along the deformed profile on 

the spherical cap.

as depicted in Fig. 64.b. This newly expanded bulge consists of two 

parts - a tubular branch with radius r Q , and a new spherical cap with 
radius of curvature p » -  both being formed from the original spherical 

cap. An element dl on the original cap expands to form the ring element 

dL on the tubular branch. Applying the principle of volume constancy:

where ti is the wall thickness of the ring element on the tubular branch. 

Rearranging and taking logs, gives:

<23)
t

5.1.4. Bulging, after p ,= p«
Once a spherical cap is formed, further expansion takes place

2mx.dl.t = 2mr0.dL.ti

ln(r0/x) + ln(ti/t) + ln(dL/dl) = 0 <24)
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But for this type of deformation

ln(r0/x) = ln(dL/dl) 

at any point and hence:

ln(t/ti) = 2.1n(r0/x)

= ln(r0/x)2

so that ti = t(x/ro>2  <25)

Also since ln(r0/x) = ln(dL/dl)

we have r0/x = dL/dl

But from geometry:

x = p».sin8

and dl = p*.d0

hence: Ca = r^ = dL
x p-,.sin8 p».d8

so that:

ro.cosec0.d8 = dL  <26)

Integrating equation <26) gives:

L = ro.cosec0.d8

= ro.ln(tan(0/2)) + C 

where C is the constant of integration, and can be evaluated by 

considering the boundary conditions. Referring to Fig. 64.c, points D and 

F at the base of the original cap form the same points on the expanded 

branch. These points lie at an angle of 0O, and on the expanded cap have 

a height on the tubular branch of L = 0. Substituting these values into 

the equation gives:

0 = r0.ln (tan (80/2)) + C

C = -r0.ln (tan (8o/2))

Therefore L = r0.ln (tan (0/2)) - r0.ln (tan (0o/2))
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\

Now considering points G and H on the original cap, at an angle of

8i_. On the expanded branch these points lie on the junction between the

tubular branch and the spherical cap. The height of these points on the

expanded branch is L = -Lo (negative because 0L is less than 0O ).

Substituting in these values gives

- L o  = r0 .ln (tan (0u/2)) - r0 .ln (tan (0o/2))

-La = In tan(0«_/2) 
r0 tan(0o/2)

Rearranging gives:

0i_ = 2.tan-1 [tan (0o/2) .exp (-Lo/r0 )] ...{27)

Now substituting <x/r0 ) = (p».sin0L/ro) into equation <25>, the wall

thickness at the junction of the tubular branch of length Lo, and the

spherical dome of radius of curvature p« is found to be:

tL = (t.p»2 .sin20i_) /r02  <28)

where t, which is the thickness on the original spherical cap at 0  = 0 L  

is given by equation <23) where hz = h©t_ = H« - p«(l - cos0l_).
A

Once the value of the wall thickness at the junction of the tubular 

branch and the spherical cap is found, the thickness distribution along 

the spherical cap can be determined in the same manner as described 

above i.e:

+ l =  £i. . . .   <29)
fl + ho(H„2 - Hi2)"!2 
L H.(Hi2 + a2)J

where t ’ is the wall thickness of the expanded spherical cap at a height

of ho from the junction of the tubular branch and the spherical dome -

see Fig. 64.c. ho varies from 0 at the junction, to H» at the tip of the

dome.
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5.1.5. The Effect of Axial Deformation
Feeding new material into the deformation zone has two effects 

on the resulting bulge. The deformation causes thickening of the wall 

along the whole length of the blank. During initial bulging, until the 

spherical dome is formed, this causes thickening along the cap. Once the 

spherical dome of height H» and radius of curvature p» is formed, any 

increase in the amount of axial deformation has no effect on the cap, but 

is simply used to form the tubular branch. The amount of deformation 

that' effects the thickness of the spherical cap, can be evaluated by 

equating the displaced volume to the volume of the bulges:

Volume due to displacement dxi = irrô .dxi

The volume of the spherical cap can be obtained by integrating the area 

of a semi-circle (x2 + y2 = r2) about its diameter, between the limits 

<p. - H. ) and p». ie.

dV/dx = my2 = 7i(r2 - x2)

Volume of spherical cap n:(r2 - x2)dx

= [m(r2x - x3/3)"l^,s TT 
L J p« - h «

=  7t(p,2 .p« - p . 3 /3> - 7t(p»2 ( p . - H » >  - ( p » - H „ > 3 /3)
=  7i(2p.3 /3 - p . 2 ( p . - H « )  + ( p » - H « > 3 /3 

Equating the two volumes and substituting p« = 2.r0 and
H. = (>/2 - l)r0 gives:

dxi = 4>/2.r0/3 - 2r0 + r0/3

= 0.219 T o  <30)

Therefore, the axial deformation will cause an increase in the wall 

thickness of the cap from the start of the deformation until the axial 

displacement of each end of the tube equals 0.219 r0. After this further
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axial deformation will contribute towards forming the wall of the tubular 

branch. The thickness distribution on the spherical cap along the

longitudinal axis previously obtained is multiplied by the apparent

strain factor to allow for the thickening that occurs. This apparent

strain factor is given by the ratio of the original length to the

compressed length of the blank.

Note that this applies for the forming of both tee pieces and cross 

pieces. In the case of forming cross pieces the deformation occurring at 

each end of the tube is equated to the volumes of the two spherical caps 

formed. For tee pieces, half the deformation at the end of the tube is 

equated to the volume of the one spherical cap formed. The other half of 

the deformation contributes to the thickening of the main branch opposite 

the side branch.

Axial deformation in excess of dxi will contribute towards forming 

the wall of the tubular part of the branch. The wall thickness at the 

root of the branch will be governed by the apparent strain factor 

prevailing at that stage. As each plunger moves inwards by dx2, the wall 

of the blank thickens, and hence, the resulting height, Lo, of the branch 

formed from the deformation, becomes smaller than the axial displacement 

, d xz. The relationship between d xz  and Ld may be obtained by equating 

the displaced volume of the blank due to dxs>, to the volume of the

tubular branch formed, of height Lo and thickness varying from to at the

junction with the previously formed cap, to t' at the root. Thus:

dxz.to = Lo(t' + t0)/2 

but t'= f.to so that:

dX2.t0 = Lo.toCl + f)/2
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By rearranging, the length of the tubular branch formed, Lo, can be

obtained from the apparent strain factor, f:

Lo = 2,dx^  <31)
(1+f)

where f = original length of the blank
deformed length of the blank

The effect of axial deformation is shown diagramatically in Fig. 65.

This illustrates a blank, with a spherical cap and tubular branch already

formed due to internal pressure, subjected to various degrees of

deformation.

5 .2 .  APPLICATION QF THE THEORY

For different stages in the bulging process, different 

equations have to be used to determine the thickness distribution around 

the bulge. To illustrate this the bulge profiles will be determined for 

three different examples. These are the three different cases that can be 

obtained which are:

1. The formation of a dome of height Hz, which is less than H„,

and of radius of curvature, in the longitudinal direction, pi_

which is greater than p».
2. The formation of a spherical dome of height H», and radius of

curvature p«.
3. The formation of a spherical dome of height H«, and radius of

curvature p«, and a tubular branch of length L 0 .
These are illustrated in Fig. 66, which shows the various bulges formed

from the effect of internal pressure alone and also from the added effect

of axial deformation. For these three cases the analysis will be based

on the following dimensions:
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Original Length 

Original Radius

= 107 mm 

= 12.06 mm

5.2.1. For Case 1

the equation that applies in this case is equation <18>:

t».........  <18)
t = [1 + ha(Ha^ - H-i 2)~1 <1 -*-™ >

L Ha<H,2 + a2)J

where m = (3 - 2p«/p. )  <15)
p©/pi_

and a = r0

When considering the thickness distribution in the longitudinal direction, 

Hi = 0. Therefore equation <18> can be simplified to:

t =_____ to

[■ * a s r
Now considering a bulge height, Ha, equal to 3mm.

p® — r0 + Ha 

= 15.06 mm 

pL = (rQ2 + Ha2)/2H2 

= 25.7 mm 

p®/pi_ = 15.06/25.7 

= 0.586

From equation <15) m = <3 - 2 x 0.586)/0.586

= 3.12 

(Ha/r0)2 = <3/12.06)2 

= 0.062

Hence the wall thickness ratio is given by:

i_ = ___________________
to [ 1 +  0.062 ( h a / H a )  ]A -1 2
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This can be evaluated for various values of ihz/Ez) ranging from 0 to

1.0. The wall thickness ratios thus obtained are shown in Table 2.

hj>/nnn 0. 0 0. 6 1.2 1.8 2. 4 3.0

hz/Hz 0. 0 0.2 0. 4 0. 6 0. 8 1. 0

t/to 1. 0 0. 950 0. 904 0. 860 0. 819 0. 780

TABLE 2

5.2.1. For Case 2

For this case, when pi_ = p© = p», equation -(23) applies:

 _________   (23)
t = + h^Gh,2 - H i2)~|2

L  H *  ( H i2 + r o 2i

where H« = (/2 - l)r0

= 5.0 mm

Again, considering the wall thickness in the longitudinal direction,

H i = 0, so that:

i _  = ______ U 2______2 ”12L1 * f c f c ) ’  ]
” l)Ta)

= 0.172

Therefore, for this case, the thickness distribution around the spherical 

cap is given by:

i_ = ___________________
to t 1 + 0.172(h2/H.) I2
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The values of the wall thickness ratios are shown in TABLE 3 for values 

of (hz/H.) ranging from 0.0, at the root of the bulge, to 1.0, at the tip 

of the spherical cap.

hz/mm 0. 0 1. 0 2. 0 3. 0 4. 0 5. 0

hz/Hm 0. 0 0.2 0. 4 0. 6 0. 8 1. 0

t/tc 1. 0 0. 935 0. 875 0. 822 0. 773 0. 728

TABLE 3

5.2.3. For Case 3

This case involves rather more calculation than the previous

two cases. The original cap has been further expanded to form a new cap 

and a tubular branch. How considering an element that forms part of the 

junction between the spherical cap and the tubular branch. On the original 

cap this element would have been at an angle of 0L. This angle can be

evaluated from equation <27), considering, for this example, that a branch

length, Lo, of 3mm is formed.

9i_ = 2.tan-1 ttan(0o/2) .exp(-Lo/r0)3 ....<27)

where Go = sin-1 (ro/pm)

= sin-1 <r0/ 2.r0) = 45’

0u = 2.tan-1 [tan (45 °/2) .exp(-3/12.06)3 

= 35* 48'

This aî gle corresponds to a polar height, h©u, on the original

spherical cap of:

h©i_ = H. - p«(l - cos0i_) 

where p« = v/2.ro = 17.06 mm

and H« = 5.0 mm

- 157 -



h«*_ = 5.0 - 17.06(1 - cos(35* 48'))

= 1.78 mm

the wall thickness of this element on the original cap can now be 

obtained, using the equation used for Case 2, and substituting = h©i_ 

ie:

’[“ HrfclT
= ________U2________

[1 + (1.78/5)0.172]2

= 0.888

This is the wall thickness of the element on the original spherical cap. 

As the cap is expanded to form a tubular branch, of length 3mm, and a 

new cap, this element expands to form part of the junction. The new 

thickness of this element on the expanded cap can be found from equation 

<28):

ti_ = (t.p^.sin^tJ/ro2 

substituting for p» = V2.r0

gives t»_ ■ = 2.t.sin20i_

Thus ti_ = 2 x 0.888to x sin2 (35* 48')

ti_ =  0 . 6  0 8 t o

The thickness around the new cap can be found using a similar 

method as Case 2

* n tS n '
i J L  =  ___________ 0 . 6 0 8
t o  [1 +  0 . 1 7 2  ( h e / H » ) l 2
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Values for the wall thickness ratio around the new cap are shown in 

TABLE 4, for h e / H «  ranging fron 0 to 1.0. Note that these values are the 

same as the values in TABLE 3 multiplied by ti_/to (0.608).

A©/mm 0. 0 1. 0 2.0 3. 0 4. 0 5. 0

0. 0 0.2 0. 4 0. 6 0. 8 1. 0

t'/t^ 0. 608 0. 568 0. 532 0. 500 0. 470 0. 443

TABLE 4

To evaluate the wall thickness along the tubular branch, the process 

to find ti_ must be repeated. TABLE 5 shows values obtained at a polar 

height of L, where L varies from 0.0 at the root, to Lo at the junction.

L 0L- h&t_ t/to t/L/to

0. 0 45. 0 0. 0 1. 0 !. 0

1. 0 41. 74 0. 66 0. 956 0. 847

2. 0 38. 67 1.25 0. 919 0. 717

TABLE 5

The wall thickness distribution around the bulge profile is 

shown graphically in Fig. 67, for all three cases. The graph is generally 

labelled t/to against y which corresponds to:

FOR CASE 1 t / t o  =  t / t o  from TABLE 2 

y = h2 from TABLE 2
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F O R  CASE 2  t / t o  =  t / t o  from TABLE 3  

y = h2 from TABLE 3

for the 

spherical 

cap

also t / t o  =  t L / t o  from TABLE 5 for the

y = L from TABLE 5 tubular branch
\

Note that for Case 3, the graph is made up of two parts, one for the 

spherical cap, and another for the tubular branch

5.2.4 The.Effect of Axial Deformation
From the theory - see Section 5.1.5. - the initial effect of the 

axial deformation is to cause thickening of the cap. This continues 

until:

dxi = 0.219ro 

= 2.64 mm

At this stage the deformed length of the blank will be:

Deformed Length = 107 - 2.dxi

= 101.72 mm

The modified values for the wall thickness are obtained by multiplying 

the values previously obtained by the Apparent Strain Factor (f>. This 

is given by the ratio of the original length over the deformed length of 

the blank.

f = 107/101.72 

= 1.052

F O R  CASE 3 t / t o  =  t ' / t o  from TABLE 4

y = (h© from TABLE 4) + L0 

= h© + 3mm
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FQR-CASE I
hz/imp 0. 0 0.6 1.2 1.8 2. 4 3. 0

Orig.t/to 1.0 0. 950 0. 904 0. 860 0. 819 0. 780
Mod. t / t o 1. 052 0. 999 0. 951 0. 905 0. 862 0. 821

FQR-CASE 2
hz/ mm 0. 0 1.0 2. 0 3. 0 4. 0 5. 0

Orig. t / t o 1. 0 0. 935 0. 875 0. 822 0. 773 0. 728
Mod. t / t o 1. 052 0. 984 0. 921 0. 865 0. 813 0. 766

FOR .-CASE 3
hz/ mm 0. 0 1. 0 2. 0 3. 0 4. 0 5. 0

Orig.t '/ t o 0.608 0. 568 0. 532 0. 500 0. 470 0. 443
Mod. t ' / t o 0. 640 0. 598 0. 560 0. 526 0. 494 0. 466

L Orig. Mod.
t |_ / to t | - / t o

0. 0 1. 0 1. 052
1. 0 0. 847 0. 891
2. 0 0. 717 0. 754

TABLE 6

The wall thickness distribution around the bulge profile 

for the three different cases with (Mod.) and without (Orig.) 

the added effect of axial deformation
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The modified wall thicknesses are shown in TABLE 6 for all three 

cases. The original values have simply been multiplied by 1.052 to 

obtain the modified values.

Any addition deformation will cause a tubular branch to be formed. 

The theoretical length of this tubular branch can be calculated from the 

amount of deformation using equation <31). Considering a final deformed 

length of the blank of 70mm:
Then

Therefore

dxi

dxs>

L d

f= 107/70 

= 1.529 

= 2.64 mm

.= <107 - 70)/2 - 2.64 mm 

= 15.86 mm

= -2-,dXg .............. <31>
(1 + f)

= 2 x 15.86 mm
<1 + 1.529)

= 12.5 mm

Therefore, a tubular branch of length 12.5 mm. will be formed. The 

thickness at the root will be 1.529to, and at the top it will be 1.052to. 
For all three cases the tubular branch will be the same, and on top of it 

will be the cap previously determined for each case. Note that for 

Case 3, the bulge consists of a tubular branch formed from the axial 

deformation and another tubular branch formed from the expansion of the 

spherical cap.

The thickness distribution for the three cases after axial 

deformation are shown graphically in Fig. 68. Again the graph is 

labelled t/to against y, as in Fig. 67. t/to corresponds to the modified 

values of t/to, t/to and t'/to from TABLE 6, for Cases 1, 2 and 3
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respectively. y corresponds to h2 from TABLE 6 plus the length of the 

tubular branch, Lo, ie hz plus 12.5 mm, for Cases 1 and 2. The value of 

y for Case 3 is equal to the value of hs> plus Lo and Lo. For Case 3, 

t/to also equals the modified values of ti_/to, and the value of y 

corresponds to L plus Lo.

From the graph it can be seen that all three cases share the same 

tubular branch, ie. from y = Omm to y = 12.5mm. On this part of the 

bulge, thickening of the tube wall occurs. After this point the three 

graphs separate. Case 1, which has the smallest bulge, has the least 

wall thinning occurring at the bulge tip, although the graph is steeper 

than for Case 2. When a spherical cap is formed, as in Case 2, greater 

thinning occurs at the tip. However, severe thinning of the tube wall 

occurs in Case 3, when the spherical cap is further expanded to form a 

tubular wall. Along this tubular section, the rate of thinning of the 

tube wall is greatest. In practise it would be unlikely to be able to 

produce this example with such severe wall thinning occurring. Rupture 

of the tube wall would occur before the bulge could be fully formed. It 

would be possible, however, to produce a bulge of the Case 3 type, with a 

smaller tubular branch formed from the cap.
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5.3. COMPARISON QE THEORETICAL AND EXPERIMENTAL RESULTS

As has been previously illustrated, the bulge can be formed in 

three ways - Case 1, 2 and 3. It is possible ■ that each case could

produce a branch of the same length, eg. suppose a branch length of 15mm 

is produced. This could be made up of:

a cap of height 3mm, and a tubular branch formed from

axial deformation 12mm long.

a cap of height 5mm, and a tubular branch formed from

axial deformation 10mm long.

a cap of height 5mm, a tubular branch formed from the cap 

of length 3mm and a tubular branch formed from axial

deformation 7mm long.

In order to decide on how the branch has been formed, the theoretical 

predictions are based on the amount of axial deformation occurring.

Knowing the original and final lengths of the tube blank, the theoretical 

length of the tubular branch formed from the deformation can be obtained 

from equation <31). Also the theoretical height of the spherical cap ,H«, 

is known (5.0mm for the tube radius 12.06mm being used). Therefore,

subtracting the theoretical branch length from the actual length of the 

branch will leave the height of the cap or the height of the cap and the 

tubular branch formed from it. Comparison of this height with the H« 

will determine which case the example falls into. ie.

If the height of the cap is less than H» then Case 1 is used.

If the height of the cap equals H» then Case 2 is used.

CASE 1.

CASE 2.

CASE 3:
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If the height of the cap is greater than H« then Case 3 is used, 

where the length of the tubular branch expanded from the cap, Lo, is 

the difference between the height of the cap and H„.

With this information it is then possible to predict the wall thickness 

distributions around the bulge. The theoretical predictions are shown in 

graphical form in Figs. 69 to 107, plotted with the actual values of the 

component. A computer program has been used to evaluate the theory and 

produce the graph - see Appendix 2. For each component, this program 

initially evaluates the Theory as a Case 2 example. It then compares the 

heights of the branch as previously mentioned, and evaluates a second 

time as a Case 1 or Case 3 example. The graphical output shows a plot 

of the actual values - in solid line marked with the symbol - and the 

two theoretical plots - shown as dashed lines. The theory has been 

applied to both the tee pieces and the cross pieces.

5.3.1. lee .Pieces
Figs. 69 to 75 show the wall thickness variation for tee pieces 

formed with an axial compressive force of 85kN. All the components have 

been subjected to a similar amount of axial deformation, with a final 

blank length of 83-85 mm. The internal pressures used to form these 

components range from 2000psi (14N/mm2) in Fig. 69 to 6000psi (41N/mm2) 

in Fig. 75. In all the Figs, the theoretical prediction, based on a Case 

2 example', produces a plot much longer than the actual length of the side 

branch. In Fig. 66 the actual length of the branch is shorter than the 

length of just the tubular branch. For this reason, there is only one 

line plotted for the theory. Increasing the internal pressure increases 

the length of the branch. The theory shows this by an increase in the
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height of the cap. Note that as the internal pressure increases the 

theoretical branch length remains almost constant - shown by the single 

straight dashed line. This line then splits into two - Case 1 and 2. 

Case 1 is the steeper, shorter dashed lino., and Case 2 is the longer one. 

Increasing the internal pressure causes an increase in the length of the 

plot for Case 1 and a decrease in the wall thickness at the tip of the 

bulge. Comparison of theoretical and experimental values shows good 

agreement at the root of the bulge, y = 0, but there is a discrepency 

with increasing y. For the Case h plot there is as much as a 10% 

difference towards the tip of the bulge. For the components formed at 

higher pressure, with a more pronounced cap, the theoretical predictions 

are in better agreement.

Figs, 76 to 82 show the results of components formed with an axial 

force of 130 kN. Again, an increase in the internal pressure causes an 

increase in the branch length. Figs. 76, 77 and 78 are similar to those 

previous, showing the theoretical predictions for Case 1 and 2. As the 

branch length increases, the length of the Case 1 branch also increases 

in length. In Fig. 80 a spherical cap has almost been formed, and the 

plot of Case 1 and 2 are' almost identical - there are two dashed lines 

plotted, almost on top of each other. Figs. 79, 81 and 82 are of 

components with even longer branches. For these, the theory for Case 3 

examples has been evaluated. The Case 3 plot is the lower one with the 

step in it. This step represents where a tubular branch has been formed 

from the spherical cap. The theory compares fairly well with the actual 

results, at the root and at the tip of the bulge, although there is some 

discrepancy between the two between these two points.
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Similar graphs are plotted for tee pieces formed from the thinner 

tube. Figs. 83, 84 and 85 shows the comparison for components formed 

with an axial compressive force of 85kN. In these graphs, the actual 

length of the branch is shorter than just the tubular branch length 

predicted by the theory. Hence, only one theoretical line is plotted - 

the Case 2 one. However, the theoretical prediction for the wall 

thickness at the tip of the bulge is fairly close to the actual value, 

although the theory predicts greater wall thickening at the root of the 

bulge than actually occurs.

Figs. 86 and 87 are for components formed with an axial compressive 

force of 106kN. Fig. 87 is similar to the three previous figs, with the 

theory predicting greater wall thickening at the root, and a longer 

branch length. However, the component in Fig. 86 has a much longer 

branch length, and has greater wall thickening occurring at the root. 

For this component, the theory is able to produce a Case 1 and a Case 2 

plot. Comparison of the theoretical and actual values show better 

agreement at the root. At the tip there is also fairly good agreement 

with the Case 1 and Case 2 values, although Case 2 predicts a longer 

branch.

5.3.2. Cross ..Pieces
Similar graphs have been produced for the cross pieces. Figs. 

88 to 92 show the wall thickness variation around the bulge zone for 

cross pieces formed with an axial compressive force of 106kN. The 

theory predicts a greater amount of wall thickening at the root of the 

bulge than actually occurs. However, there is better agreement at the tip 

of the bulge. In Figs. 88 and 89, the theory predicts much greater wall
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thinning occurring at the tip than the actual values. With larger 

internal pressures, and longer branches being formed - Figs. 90 to 92, 

this discrepancy decreases to produce a good agreement between the 

theory and the actual values at the tip.

An axial compressive force of 127kN has been used in Figs. 93 to 98 

to produce the cross pieces. Comparison of the theoretical and actual 

values is similar to before, with greater wall thickening predicted at the 

root than actually occurring. Again there is a discrepancy between the 

two at the tip of the bulge at low internal pressures - small bulge 

heights - which decreases with increasing internal pressure.

Figs. 99 and 100 are for components formed with an axial force of 

148kN. The theoretical prediction in Fig. 99 are similar to the previous 

graphs. In Fig. 100, longer side branches have been produced than

previously, and on this graph the theory is shown for a Case 2 and 3 

example. Again there is good agreement at the tip of the bulge, this

time with the Case 3 theory, although there is some discrepancy for the

rest.

For cross pieces formed from the thinner tube with a low axial 

force, the comparison of theoretical and actual results are similar to the 

results with tee pieces. Figs. 101 and 102 are for cross pieces formed 

with an axial force of 63kN. For these the theory predicts a tubular 

branch length longer than the total length of one of the side branches, 

resulting in only the Case 2 theory being plotted. Again the theory

predicts greater wall thickening occurring at the root of the bulge, and 

fairly good agreement at the tip of it, although a longer branch length 

is predicted.
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With a greater axial compressive force, there are still

discrepancies between the theory and the actual wall thickness values. 

Figs. 103 to 106 show the results for cross pieces formed with an axial 

force of 85kN. In Figs. 104 and 105 the theory and actual values follow 

similar trends, but with discrepancies throughout. The components formed 

in Figs. 105 and 106 show very little wall thickening occurring at the 

root, unlike other components formed with similar axial deformation. 

Hence, there is a large error between the theoretical and actual values at 

this point. At the tip, however, there is good agreement in the wall 

thickness with the Case 2 theory, although it predicts a longer branch 

length.

5.4. DISCREPANCIES IN THE THEORY
The theory, when compared to the results of components that 

have been formed on the bulge forming machine, gives an approximate 

prediction of the wall thickness distribution. There are, however, a lot 

of discrepancies between the two. Considering, initially, the theoretical 

value of the wall thickness at the root of the bulge, for components 

formed from the tube of wall thickness 1.37mm. The tee pieces showed 

good agreement, whereas the cross pieces were not as thick as that 

predicted. This may be due to the radius in the die between the main 

branch and the side branch. This radius is to allow the metal to flow 

smoothly when forming the side branch. For the tee pieces, the die, the 

first one to be made, had only a small radius. In some cases it was 

found that the metal had difficulty in getting around this, resulting in a 

gap between the tube wall and the die at the bottom of the side branch.
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When the cross piece die was made, a larger radius was chosen to try to 

overcome this problem. The theory calculates the root value for a branch 

radius of r0. The actual radius at the root of the bulge will in fact be 

a little larger than this, due to radius between the branches, especially 

for the cross pieces. Hence, for the cross pieces the actual wall 

thickness at the root is likely to be thinner than if they were formed 

from a die with only a small radius between the branches.

Another place of error with the theory seems to be the 

determination of the tubular branch length. Generally it predicted a 

tubular branch length longer than the actual value. Although it is 

difficult to distinguish the tubular branch from the cap on the formed 

component, examination of the graphs give an idea of where the tubular 

branch ends and where the cap begins. On most of the graphs it is

possible to approximate the plot by two straight lines - a steep one for

the tubular branch and a flatter one for the cap. As an example, Fig.

107 shows this done to the original graph in Fig. 77. Note that the line

for the tubular branch is a lot steeper and finishes shorter than the 

theory. This leaves a much longer cap, which, if considered separately by 

the theory, would be predicted to undergo severe thinning. Hence, the 

effect of axial deformation must have greater effect on the cap formed 

than the theory predicts, and less of an effect on the length of the 

tubular branch. This may be in some way due to the theory assuming a 

constant volume during the process. On the bulge forming machine a 

relief valve allows out excess oil to prevent a high internal pressure 

being reached. If this occurs then the volume of the formed component 

will be smaller than the original blank. Another assumption the theory 

makes is that the cap forms the arc of a circle. Examination of the
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radius of curvatures of the actual caps - done in order to produce Fig. 

41 - showed that the radius decreases towards the edge of the cap in 

order to join onto the tubular branch.

Apart from the discrepancies, the theory will provide a fairly good 

idea of the thickness distribution around the branch of a tee or cross 

piece. This may be useful when considering the amount of axial 

deformation to subject a blank to, to produce a side branch of sufficent 

length without severe wall thinning occurring at the cap.
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Fig. 63.
<a>. The Geometric Expansion Mode of a Circular Arc. 

(h). The Force Equilibrium.
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Fig. 64.
The Formation of a Tubular Branch.
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Fig. 65.
The Effect of Axial Deformation During Forming.

- 174 - ' .



cc

8

<0<0
I
&

**• (0 a Q x fc*
5
Q)
S

w pa ca

(Xh «

Q H < OwW fx<cc ̂  H W

St—<H<
Sg
g

- 175 -



03

ID

CO
CO

o
CMO OCO

0Lo*
a>berH3
cq
a)
J3■P
bCQ□

dD•H•P3
. J3 b*-© H-P• ID bC-H - Qf*
10uoQ)dxv
J3

ao•r4
•P
G3P00)X]H
0)AH

- 176 -

Wi
th
ou
t 

Ax
ia
l 

De
fo

rm
at

io
n.



o<NI

CO
GO

cm

o

CD

cs'

O
OCNI ID

o
CD O

- 177 -

The
 

Th
eo

re
ti

ca
l 

Wa
ll
 

Th
ic

kn
es

s 
Di

st
ri

bu
ti

on
 

al
on
g 

the
 

Bu
lg
e 

Pr
of

il
Wi
th
 

Ax
ia
l 

De
fo

rm
at

io
n.



PE
RC

EN
TA

GE
 

OF 
OR

IG
IN

AL
 

WAL
L 

TH
IC

KN
ES

S
60

.0
0 

80
.0

0 
10

0.
00

 
12

0.
00

 
14

0.
00

 
i6

0
.0

0
 

1
8

0
.0

0

TEE PIECE:

Axial Force 
Original Length 
Final Length 
Ori ginal Wall

Thickness

= 85kN 
= 107mm 
= 84 mm

Actual

Case 2

* 20C0P5I/T111

28-008.00 12.00 i 5.00 24.0020.004.00
y < H e i g h t  u p  t h e  s i d e  b r a n c h  f r o m  t h e  root- )

Fig. 69.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 70.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 71.
Comparison of the Experimental Vail Thickness Distribution 

with Theoretical Predictions.
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Fig. 72.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 73.
Comparison of the Experimental Vail Thickness Distribution 

with Theoretical Predictions.
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Fig. 74.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 75.
Comparison of the Experimental Vail Thickness Distribution 

with Theoretical Predictions.
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Fig. 76.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 77.
Comparison of the Experimental Vail Thickness Distribution 

wi th The ore ti cal Predi cti ons.
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Fig. 73.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 79.
Comparison of the Experimental Vail Thickness Distribution 

wi th Theoretical Predictions.
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Fig. 80.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 81.
Comparison of the Experimental Vail Thickness Distribution 

with Theoretical Predictions.
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Fig. 82.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 83.
Comparison of the Experimental Vail Thickness Distribution 

with Theoretical Predictions.
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Fig. 84.
Comparison of the Experimental Vail Thickness Distribution 

with Theoretical Predictions.
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Fig. 85.
Comparison of the Experimental Wall Thickness Distribution

with Theoretical Predictions.

-  194 -



PE
RC

EN
TA

GE
 

OF 
OR

IG
IN

AL
 

WAL
L 

TH
IC

KN
ES

S
60

.CO
 

80
.0
0 

10
0.
00
 

12
0.
00
 

14
0.
00
 

16
0-
00
 

18
0-
00
 

20
0-
00
 

22
0

IEE PIECE.

A xi a 1 Fore e 
Original Length 
Final Length 
Original Wall

Thickness

= 106kN 
= 127mm 
= 58mm

= 1. 03mm

Actual

Case 1
Case 2

I^I[-5^L_PRESSyRE/IEST_Ng: 
* 4000P5I/T010

4.00 8-00 12-00 i^.OC
I y < Height up the side branch from the root )

Oc.o. GO 28.Oc.4 • 0r\vJ

Fig. 86.
Comparison of the Experimental Wall Thickness Distribution

with Theoretical Predictions.
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Fig. 87.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 88.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 89.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 90.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 91.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 92.
Comparison of the Experimental Vail Thickness Distribution

wi th Theoretical Predicti ons.
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Fig. 93.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 94.
Comparison of the Experimental Vail Thickness Distribution

with Theoretical Predictions.
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Fig. 95.
Comparison of the Experimental Vail Thickness Distribution 

with Theoretical Predictions.
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Fig. 96.
Comparison of the Experimental Vail Thickness Distribution 

with Theoretical Predictions.
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Fig. 97.
Comparison of the Experimental Vail Thickness Distribution

wi th Theoretical Predi cti ons.
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6, D I S C U S S I O N

6.1. THE.DESIGy.-AlfD- CQMMISSIOHIIG QF THE MACHINE
6.1.1. Operating .Parameters andPesign Considerations

The operating parameters and design considerations were based 

on tests carried out using a prototype bulge forming rig, and on an 

assessment of a literature survey that was carried out. The main 

problems encountered when using the prototype rig were the length of time 

it took to carry out each test and an inconsistency in the applied 

forces (it was impossible to carry out two tests in which all of the 

forming conditions were identical).

The first consideration in the design of the new bulge forming 

machine was that it should be free standing and self contained. The 

prototype rig required assembling on a Denison compression testing 

machine before each test and had to be dismantled afterwards. This 

considerably lengthened the time required for each test, and involved 

moving heavy lumps of metal around. The next consideration concerned the 

problems previously encountered trying to extract the formed component 

from the dies. These were split laterally in relation to the tube in the 

prototype. During forming the tube would expand along the entire length, 

and where restricted the tube wall would be forced against the wall of 

the die. This prevented the two halves of the die from being separated.

Therefore, to allow the easy separation of the two die halves and 

removal of the formed component, it was decided that the dies should 

split axially. However, this meant that the two die halves would have to 

be clamped together during forming in order, to resist the internal 

pressure trying to force the two halves apart. This could have been done
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with bolts or clamps, but a hydraulic cylinder was chosen as this would 

actually open and close the dies and would be quicker to use. Another 

reason for using a hydraulic cylinder was that the design of the machine 

had to incorporate facilities for subsequent automatic control using a 

micro-processor or computer.

6.1.2. Hydraulig System
Hydraulic cylinders were also selected for applying the axial

compressive forces to the ends of the tube. In the prototype this was 

done by the compression testing machine, which provided the deformation 

of both ends of the tube. However, this did not produce equal 

deformation of each end, sometimes resulting in a mishaped component

being formed. To avoid this it was decided to use two cylinders, one 

located at each end of the tube, hydraulically coupled together through a 

flow divider. Using this system would mean that the two cylinders would 

act approximately in unison, providing equal deformation of each end of 

the tube.

From the analysis of tests previously carried out on the prototype 

rig, an axial compressive force of 200kN and an internal pressure of 

lOOOOpsi (69 N/mm2) was considered necessary. This was so that tubes of 

copper and possibly some stronger material could be formed on the new 

machine. Using this value of internal pressure and assuming a tube blank

with dimensions 25mm diameter and 150mm long, a clamping force of 300kN

was required to resist the the forces separating the dies.

In order to provide the internal pressure of lOOOOpsi (69 N/mm2) a 

pressure intensifier to increase the pressure from a hydraulic pressure 

supply of 2500psi (17 N/mm2) was used. This was because of the expense
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that would be involved operating the whole system at lOOOOpsi (69 

N/mm2). Running the system at 2500psi (17 N/mm2) would mean that the 

system would be less costly, but the pressure was sufficiently high as to 

make the hydraulic cylinders of a manageable size. This lead to the 

choice of two cylinders, , with a diameter of 125mm and a stroke of 

100mm, for appying the axial compressive force. To clamp the die 

together a cylinder, with a diameter of 160mm and a stroke of 150ram

was chosen. These were to be powered by a variable displacement piston

pump driven by a 7.5kV electric motor.

Having decided on cylinders required for the machine, the next stage 

in the design was to consider the hydraulic circuit. This was required 

to control three operations:
\

1. Opening and closing (clamping) the dies.

2. Applying the axial force to the ends of the tube.

3. Pressurising the internal region of the tube.

The circuit allows independent control of these operations and is in

three parts, the simplest part being that supplying the clamping

cylinder. This contains a directional control valve to select to open or

close the dies, and flow' control valves to control the speed of the

opening and closing. Also included in this part of the circuit is a pilot

operated non-return valve, to prevent the dies from accidently closing

when the supply is turned off.

The part of the circuit supplying the two cylinders applying the 

axial force contains two parts, each with its own directional control

valve, pressure reducing valve, and flow control valve. This is to allow 

two different forces to be applied to the ends of the tube. The first 

one being small so as to bring the plungers into contact with the tubes
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and seal them, but without deforming them. The second force is required 

to actually deform the tube and therefore is set to a larger force. The 

flow from both these two halves pass through a flow divider, as 

previously mentioned, before reaching the cylinders'.

The final part of the circuit supplies hydraulic fluid to the 

internal region of the tube. As previously mentioned the supply pressure 

requires boosting through a pressure intensifier to provide the high

internal pressure. Also included in this part of the circuit are a

pressure reducing valve, a flow control valve and a directional control

_ valve. The directional control valve can either activate the pressure 

intensifier, or bypass it. Bypassing it is useful when the tube is being 

filled at the start of the test, as this produces a faster flow rate than 

the intensifier. In addition, the circuit also contains a valve which 

allows the air to be bled from the tube when it is being filled with 

oil.

The circuit has safety features, including pressure relief valves and 

check valves, to prevent damage to the circuit from too high a pressures 

and filters to keep the hydraulic fluid free from contamination. All of 

the operations, apart from opening the valve to bleed the air from the

tube, are activated by solenoid operated directional control valves. The 

pressures and forces being applied can be preset using the pressure 

reducing valves and the pressure relief valves. It would, therefore, be 

quite possible to apply automatic control to sequence the operation, using 

a micro computer or a micro processor, although at the moment operation 

is by manual control.
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6.1.3. Structural Design

Once the size and shape of the hydraulic cylinders had been 

ascertained the structural design was undertaken. The central and most 

important part of the machine is the die block' in which the actual 

forming process occurs. As previously mentioned the die block is split 

axially to allow access to the formed component. When the two halves are 

brought together it is important that they mate up with each other. This 

is achieved by mounting them on a "Desoutter" die set, consisting of two 

plates aligned by pins and bushes. To allow different components to be 

produced each die block half consists of an outer die holder and an inner 

die which can be removed and replaced with differently shaped dies.

Around this die block are mounted the three hydraulic cylinders. 

The two cylinders applying the axial compressive force are mounted 

horizontally at opposite ends of the die block acting inwards. The 

clamping force is achieved by mounting the third cylinder vertically, 

above the die block, acting downwards. To restrain this clamping force, 

the plate to which the cylinder is bolted is connected to a similar plate 

beneath the die block by four tie bars. The axial compressive force is 

restrained by mounting the cylinders on a pair of sturdy channel section 

beams. In the centre of these beams is positioned the die block and 

clamping cylinder. Orginally it had been intended to weld the assembly 

together. However, equipment was not available to machine the mounting 

surfaces square to one another. Instead the assembly was bolted together 

to avoid any distortion which might have occurred during welding.

To transmit the axial force from the horizontal cylinders to the 

ends of the tube, plungers are used which enter the ends of the die block 

through guides. These plungers are also used to deliver the oil to the
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internal pressurised region of the tube. Thus, they contain oil passages 

down their length. Another important job of the plungers is to seal the 

ends of the tube so that an internal pressure can build up. In the 

prototype, this was achieved using O-rings which were invariably damaged 

by the ends of the tube. This resulted in leakage , causing a loss of the 

internal pressure. On the new forming machine, the use of O-rings has 

been discarded and instead, the part of the plunger entering the tube is 

tapered. This produces a tight fit when fully inserted into the tube. 

Like the prototype rig the tube butts up against a step on the plunger 

and sealing is also achieved by the application of an axial compressive 

force.

To provide a reasonable working height and to support the assembly, 

the machine is mounted in a framework made up of angle iron. This 

allows easy access to the die blocks in order to position a tube blank 

prior to forming, and to remove the formed component afterwards. Onto 

this framework is also mounted all the hydraulic valves and pipework, 

with the hydraulic power supply unit positioned behind the machine on the 

floor, connected by flexible hoses.

- 222 -



6.1.4. Commissioning

The initial problem encountered after completion of the machine 

was the misalignment of the two horizontal hydraulic cylinders. These 

cylinders apply the axial compressive force to the ends of the tube. 

This force is transmitted to the tube via plungers which enter the ends 

of the die blocks through guides. In the initial design, the plungers 

were attached to the cylinders by bolts passing through them into a 

plunger mount attached to the end of the cylinder rod. As has been 

previously mentioned, machinery was not available to machine the mounting 

faces square. Although great care was taken in the building of the 

machine to keep everything in line, slight misalignment was present. 

This prevented the original mounting method being used. Instead a 

floating connection allowing movement of the plunger was required. This 

was achieved by fitting an oversized collar over the end of the plunger 

and bolting it to the original plunger mount. Now when extending the 

cylinders, the plungers are pushed directly by the plunger mount, but are 

allowed to move sideways within the collar. On retracting the cylinders, 

the plungers are pulled back by the collars.

At the same time a second problem was solved, which also concerned 

the horizontal cylinders. On the extension and retraction of the 

cylinders, rotation of the cylinder rods occurred. This had to be 

prevented because of the hydraulic pipes and hoses connected to the 

plungers to provide the internal pressure. Rotation of the rods could 

have caused rupture of these pipes if they snagged on anything during 

movement. The rotation of the rods was prevented by machining a flat 

onto the plunger mounting collars, and mounting a piece of angle iron
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along side each one. This sliding contact between the flat on the collar 

and the angle iron during extension and retraction prevents any excessive 

rotation occurring.

Problems in the hydraulic circuit were then identified. The first 

was the inability to create a high internal pressure using the pressure 

intensifier. This was corrected simply by shortening one of the pipe 

fittings screwed into the body of the pressure intensifier. However, 

having solved that problem, when the axial compressive force was applied 

to deform the tube, an excessive internal pressure was generated, which 

caused rupture of the tube. When forming tee and cross pieces there is a 

decrease in the internal volume - the axial deformation causes an 

increase in the wall thickness along the main branch. This decrease in 

volume causes an increase in the internal pressure, which should be 

released by the pressure relief valve once it reaches the level set by the 

valve. Therefore, the generation of an excessively high internal pressure 

indicated a fault in the operation of the high pressure relief valve. 

This was removed from the machine and another valve fitted. However, 

this did not remedy the fault, and the original pressure relief valve was 

found to work perfectly when set up on a test bench. The cause of the 

fault was eventually traced to the drain pipe from the valve. On its way

back to the tank, the drain from the relief valve joined the drain pipe

from the pressure intensifier and then the return pipe from the rest of 

the circuit. Apparently a large back pressure was being generated in the 

drain pipes, which prevented the pressure relief valve from operating

properly. Providing the pressure relief valve with its own separate 

drain pipe all the way back to the tank prevented this problem and

allowed the valve to function correctly.
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With these problems corrected, it was then possible to form tee 

pieces. After several tests, it was noted that the side branch was not 

being formed centrally on the tube. In the design of the machine, the 

use of a flow divider had been incorporated in order to synchronize the 

movement of the two horizontal hydraulic cylinders. Therefore, the 

components should be formed with the side branch approximately central 

on the tube. Obviously the two cylinders were not moving in unison, 

which indicated a fault in the flow divider. This was cured by simply 

removing the flow divider temporarily from the machine, and cleaning it 

out. The fault was due to a small amount of dirt inside the flow divider, 

causing the spool to stick. On replacement, the tee pieces were formed 

with the side branch central on the tube.

Once these problems had been sorted out, no further difficulties 

were encountered with the machine. The only work that needed doing to it 

during a long series of tests was the replacement of an oil filter and 

topping the main tank up with oil.

A large amount of oil is allowed out of the hydraulic system during 

the forming operation. Some of it is allowed to escape when bleeding the 

air out of the tube prior to forming. The remainder is contained within 

the cavity in the bottom die when the formed component is removed. This 

oil is allowed to drain into a large drip tray mounted underneath the 

machine. The drip tray is periodically drained and the dirty oil is 

cleaned by passing it through a filter. The oil is then returned back to 

the tank. If the forming machine was required for long runs, eg. running 

for 8 hours a day, this oil recycling operation may be a frequent 

requirement. In this case, the operation could be simplified, by
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attaching a small pump and filter unit to the drain in the drip tray , to 

automatically return cleaned oil to the main tank.

6.2. EXPERIMENTAL RESULTS

Having overcome all the problems encountered in the 

commissioning of the machine, the forming of tee pieces and cross pieces 

was attempted. These were found to be quite easy to produce from copper 

tube, especially the thicker walled tube (1.37mm original wall thickness). 

Components were formed with an internal pressure ranging from 3000psi - 

8000psi (21N/mm2-55N/mm2) and an axial compressive force of 26, 63, 85, 

106, 127 or 148 kN. From the resulting components formed it was

possible to predict the forming limits required for the successful 

production of a component. These limits are illustrated graphically in 

Figs. 38.a and 38.b for both the thick walled (1.37mm) and the thin 

walled (1.03mm) tube. The amount of internal pressure that is required 

to avoid rupture or buckling is dependant on the axial compressive force 

being applied. For example, forming the thicker walled tube with an 

axial compressive force of 50kN requires an internal pressure of between 

13 and 48 N/mm2. After initial deformation, this pressure can be 

increased up to a maximum of 55N/mm2. If a larger axial compressive 

force of 150kN was used, the internal pressure would have to be in the 

range 35 - 48 N/mm2, which may be increased to a maximum of 65N/mm2 

during the deformation. Hence, with a higher axial compressive force, a 

higher internal pressure range is required to prevent the tube from 

buckling due to the axial deformation.

The bulge forming machine allowed three different ways of 

controlling the internal pressure during the forming process. The choice

- 226 -



of control depended on the pressures required and the wall thickness of 

the tube. A constant internal pressure could be used during the process, 

set by the pressure relief valve. This was used when only a low internal 

pressure was required - below 6000psi (41N/mm2). When using a high

internal pressure - above 6000psi (41 N/mm2) - it was found that this 

would initially cause rupture of the tube. However, after partial 

deformation, a tube would be able to contain this pressure. Therefore, in 

these cases, a low internal pressure, in the range 4000 - 6000 psi (28 - 

41 N/mm2) would be applied initially (governed by the pressure reducing 

valve controlling the pressure intensifier). During forming, this 

pressure would increase, due to the axial deformation of the tube, to a 

high internal pressure of between 6000 and 8000 psi (41 - 55 N/mm2),set 

by the pressure relief valve.

The thin walled tube (1.03mm original wall thickness) was found to 

be much more difficult to form into a good component, especially with 

axial compressive forces of 106kN and over. A side branch would form, 

but this was sometimes squashed in the axial direction, or buckling would 

occur. To prevent this from occurring a high internal pressure - above 

5000psi (35N/mm2) - was required, but this would lead to rupture of the 

tube. Components were found to be more successfully produced when the 

process was taken in stages. The tube would be partly deformed with a 

low internal pressure of about 3000psi (21N/mm2). After this, the

internal pressure would be increased to about 6000psi (41N/mm2) and the 

axial deformation allowed to continue by increasing the axial compressive 

force. This produced components that were better shaped, although they 

still suffered from slight buckling.
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This method of forming the tube could have been performed using 

several stages, increasing the internal pressure at the end of each stage, 

and illustrates the need of control during the process. This could be 

achieved by a micro-processor, monitoring the axial compressive force and 

axial deformation, and adjusting the internal pressure as the deformation 

progresses.

From the components formed, it was noted that the axial compressive 

force had the greatest effect on the length of the side branch produced. 

Increasing the internal pressure had only a small effect, resulting in a 

small expansion of the cap and a decrease in its radius. However, its 

presence is very important to prevent buckling.

After forming the components, they were cut into half, and the wall 

thickness around the bulge was measured. The graphs produced from these 

measurements, shown in Figs. 42-62, show the variation of the wall 

thickness from the. root of the bulge to the tip. At the root, thickening 

occurs due to the axial deformation - the greater the deformation the 

greater the wall thickening. With the largest axial compressive force 

used - 148kN - the root wall thickness was approximately 180% of the 

original wall thickness. Up the side of the branch, towards the tip, the 

amount of wall thickening got less, until at one point near the cap, the 

wall thickness is the same as the original thickness. Above this point 

the wall gets thinner until it reaches its maximum value at the tip. It 

was at the tip that rupture would occur, if the wall thinning was too 

severe. In general, wall thicknesses of approximately 65% of the original 

thickness could be obtained at the tip before rupture occurred.

Comparison of the thickness distributions of components formed with

the same axial compressive force, illustrated in graphical form, shows
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that they follow the same trends. The effect of increasing the internal 

pressure is to extend the graph slightly, producing a slightly longer 

side branch with a thinner wall at the tip. Increasing the axial

compressive force causes an increase in the wall thickness at the root, 

as well as an increase in the length of the side branch, although there 

is little change in the wall thickness of the cap at the top of the bulge.

One problem encountered, in some of the tee pieces produced, was

'shrinkage' occurring at the base of the side branch - see Section 1.3. 

and Fig. 4. This was due to the small radius between the main branch 

and the side branch (radius of draw) forcing the tube wall away from the

die wall as it flowed around the radius to form the side branch. This

effect was more obvious on the tee pieces formed with a large side

branch and with a small internal pressure. Increasing the internal 

pressure helped to reduce this shrinkage, but the main reason for it 

occurring appeared to be that the radius of draw was too small. When the 

dies were made for forming the cross pieces, a larger radius of draw was 

used to try to overcome this problem. This produced better results, 

although it did not completely overcome the problem. Redesigning the 

dies, with a more complicated geometry between the main branch and the 

side branch(es) to provide a smoother flow, is needed to try to eliminate 

this problem completely. However, the problem was not too severe and 

fairly good results were obtained using these two dies.
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6.3. THEORETICAL J.RERISU QKS
Although there are discrepancies between the actual wall 

thickness distributions and the theoretical predictions, the two do follow 

the same trends. The best comparisons were obtained with components

which had a large side branch and were formed with a fairly high 

internal pressure. Tee pieces thus formed, showed good agreement at the 

root and at the tip of the bulge with the theoretical predictions. For 

the cross pieces, however, the agreement was not as good at the root of 

the bulge.

Components formed with only a little axial deformation seemed to

have branch lengths much shorter than the theory predicted. This seems 

to indicate that the axial deformation has a greater effect on the

formation of the cap than predicted by the analysis. For components with 

well formed branch lengths the theory gave good results. However,

estimating the tubular branch length from the graphs of wall thickness 

distribution for the actual results, showed that the theory predicted a 

longer tubular branch length, with a smaller cap on top of it. Again 

this shows that the axial deformation has less of an effect on the length 

of the tubular branch formed than the theory predicts, and a greater 

effect on the spherical cap. This may be due to the geometry of the cap 

being more complicated than the arc of a circle the theory assumes. Some 

of the axial deformation may contribute to the forming of the junction 

between the tubular branch and the spherical cap.

Other reasons for this discrepancy could be due to an initial axial 

deformation occurring before the application of an internal pressure. The 

tube blank is subjected to a small axial compressive force to seal the 

ends of the tube prior to filling with oil. Although only a small force
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is used, some deformation could occur, causing wall thickening along the 

entire length of the blank and shortening of the initial tube blank length. 

However, this effect would only be small, as nosignificant deformation was 

noticed when applying the sealing force.

At the root of the bulge the theory gave good predictions of the 

wall thickness for the tee pieces. However, for the cross pieces the 

theory generally predicted greater wall thickening than actually occurred. 

In the analysis, a sharp radius is assumed between the tube and the side 

branch. In practice, however, the large radius between the tube and the 

side branches on the cross piece dies may result in less thickening of 

the tube occurring at the root, than if they were formed in dies with a 

small radius. Alternatively, the more uniform flow encountered with the 

cross pieces may reduce the amount of wall thickening that occurs on the 

main branch during forming.

Although the theory had some discrepancies in its predictions, it 

could be used to give a fairly good idea of what wall thickness 

distribution may be expected for a tee or cross piece. For components 

formed with a fairly prominent spherical cap, the thicknesses at the tip 

of the bulge were in good agreement. This is a critical point of the 

component, as it is at this point that rupture may occur. Therefore, the 

theory may be useful in evaluating the amount of axial deformation the 

blank should be subjected to, in order to produce a side branch of 

sufficient length without causing rupture of the cap.
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6.4. FURTHER VQRK
The dies used produced fairly good results, however, further 

work is required into the design of the dies in the area of the joint 

between the tube and the side branch(es). At present the tube wall has 

to flow around a fairly sharp radius which resulted in shrinkage

occurring in some of the components. Making this radius much larger 

would correct this, but this is not a desirable feature on the finished 

component. An alternative solution may be to modify the geometry of the 

die in the region around the junction between the side branch and the 

tube along the centre plane. Considering, the centre line through the tee 

pieces and cross pieces (the centre line through which the components

were sectioned, as in Figs. 35 and 36), a sharp radius is required in this 

area on the formed component. However, moving away from the central 

plane and down the side of the tube, the radius is not so critical. 

Hence, in this region the radius could be increased to provide a

smoother flow path.

As well as modifications in the design of the dies, varying the 

shape of the ends of the plungers may help in forming some components. 

When tee pieces were formed, most of the metal flow to form the branch 

came from the top half of the ‘blank (the half that the side branch 

projects from). On the opposite side, thickening of the tube wall

occurred, and on a commercial product this would have to be machined 

away. With a different plunger end shape it may be possible to direct 

this metal to the bulge area, and prevent this excessive wall thickening 

from occurring. This might be done with plungers that are pointed at the 

bottom, to stretch the wall out sideways as they advance along the tube 

wall opposite the side branch.
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In the tests carried out only tee pieces and cross pieces were 

formed. It should be possible to produce a large variety of components

once the appropriately shaped die inserts have been made. Some examples 

of the shapes, both asymmetric and axisymmetric, that should be possible 

to bulge form are illustrated in Figs. 2.a and 2.b. At the moment the 

only limitation on the component is the diameter of the tube blank to be 

used, currently 24.12mm diameter. If a tube blank of a different diameter 

were to be used, new die inserts, die blocks and plungers would have to 

made. Once made up it would be fairly simple to set up the machine for 

the new tube blanks, which need not necessarily be made of copper. Other 

materials could be used, such as mild steel or brass.

Other important work that can be done using this machine is the

application of a micro processor/computer to sequence the operations and 

also to control the internal pressure and axial compressive force during 

the process. The sequencing of the process should be fairly simply, as 

the directional valves are all solenoid operated. These could be operated 

by relays controlled by the output port of a micro processor/computer. 

The only process that can not be automated at the moment is bleeding the 

air out of the tube prior to forming. The valve fitted is manually 

operated, but this could be replaced with a valve that will automatically 

bleed the air out and seal itself afterwards.

Controlling the process is a more complex problem, and would have

to be based on a relationship between the axial compressive force or the 

axial displacement and the internal pressure. The internal pressure on 

the machine is controlled by two valves - a pressure reducing valve 

controlling the pressure reaching the pressure intensifier and a pressure 

relief valve allowing excessive pressure to escape. At the moment these
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can only be manually adjusted, although the pressure supply to the 

intensifier can be turned on and off by a solenoid valve. Some extra 

equipment, therefore, may have to fitted to vary the setting of one of 

these valves during the process.

The control needs to maintain a sufficiently high internal pressure 

to prevent buckling of the component, whilst preventing excessive 

pressure from being generated that would burst the tube. In the test 

procedure, the best components were formed by increasing the internal 

pressure during the process to a pressure that would have caused rupture 

to the initial blank. This could be incorporated into the control of the 

process, using either a linear relationship between the internal pressure 

and the axial displacement or a step function. This could be evaluated 

from the forming limits, and ideally should incorporate as high an 

internal pressure as possible without causing rupture.
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7. CONCLUSIONS

The bulge forming process is a useful method of shaping tubular 

components, by the use of a internal hydrostatic pressure and an axial 

compressive force. It can be used to form a variety of components, both 

axisymmetrical and asymmetrical. For some of the components it can 

form, eg tee pieces and cross pieces, the only alternative form of 

production is from castings or from welded designs, as they could not be 

formed with customary rigid tools.

The design of the bulge forming machine was based on a literature 

survey and experience gained using a prototype rig. Once initial 

commissioning problems had been corrected, the machine was found to be 

easy to use in producing tee pieces and cross pieces. The difficulties 

experienced when using the prototype rig had been avoided with the new 

machine, allowing components to be quickly and easily formed.

A series of tests were carried out in order to evaluate the machine

and to establish the forming limits. These were carried out with various

internal pressures and axial compressive forces, forming tee pieces and 

cross pieces from copper ’ tube blanks of two different wall thicknesses. 

From the results obtained, it was found that the internal pressure 

required to prevent the tube from buckling became more critical with 

increasing axial compressive force,.

Analysis of the formed component showed that the size of the axial 

compressive force had the greatest effect on the formed component. 

Increasing this force caused an increase in the length of the side

branch, and thickening of the tube wall at the root of the branch. The

wall thickness at the tip of the branch remained almost unaffected.
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Increasing the internal pressure had only a small effect on the length of 

the branch, but would cause a decrease in the wall thickness of the

spherical cap at the end of the branch.

Comparison of the wall thickness distribution with theoretical

predictions showed a fairly good agreement, especially at the root and 

the tip of the bulge. Between these two, however, there was a 

discrepancy, which seemed to be due to the theory predicting a longer

tubular branch and a smaller cap than actually occurred.
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APPENDIX 1

THE HYDRAULIC COMPONENTS
The following is a list of the hydraulic components fitted to the 

bulge forming machine. The reference numbers refer to Fig. 12.

CYLINDERS:
A Mecman Series 206,160mm dia,150mm stroke

B Mecman Series 203,125mm dia,100mm stroke

PUMP:
Sperry Vickers PVB 10

PRESSURE IBTEBSIFIER:
PI Fluids Control Inc. 1T11-2V-66

FLOW DIVIDER:
FD Fluids Control Inc. 2V13-4-3-6-S

DIRECTIOBAL COITROL VALVES:
V1 Sperry V ickers

V2 Sperry Vickers

V3 Sperry Vickers

V4 Sperry Vickers

DG4V-3-OC-M-U-H7-30

DG4V-3-2A-M-U-H7-30

DG4V-3-2BL-M-U-H7-30

DG4V-3-2C-M-U-H7-30
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PRESSURE REDUCIFG VALVES:

PR1 Sun 

PR2 Sun 

PR3 Sun

RELIEF VALVES:
RV1 Sun 

RV2 Hawe

FLOW COHTROL VALVES:
FC1 Sperry Vickers 

FC2 Sperry Vickers 

FC3 Sperry Vickers 

FC4 Sperry Vickers

CHECK VALVES:
CV1 Sun 

CV2 Sun 

CV3 Hawe 

CV4 Hawe

SUBPLATE
Sperry Vickers

PBDB-FBN-EBP

PBDB-KAN-EBP

PBDB-KBN-EBP

RPEC-FAN-FBP

MV-41-AP

DGMFN-3-Z-P2V-2 0 • 

DGMFN-3-Z-P2V-20 

DGMFN-3-Z-P2V-20 

DGMFN-3-Y-A2V-B2N-20

CKCA-XAN-EBA

CKCA-XAN-EBA

RC-l-F

RC-l-F

DGMS-3-4E-10R
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APPENDIX 2

THEORETICAL ANALYSIS COMPUTER PROGRAM
The following computer program was used to evaluate the 

theoretical predictions of the wall thickness distributions around the 

side branch of tee pieces and cross pieces. The output is in graphical 

form, showing the theoretical wall thickness distribution together with 

experimentally obtained results, which can be seen in Figs. 69-106.
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REAL*8 FNAME(IO)
DIMENSION TITL(3),THICK(15),XPLOT(17),YPLOT(17)
*,MARK(10),YDIS(15)
*,RATTH(10),DISY(10)
DATA MARK/11,0,12,2,14,10,1,4,5,3/,Y/0.4/

*,RADIN/12.06/,PI/3.1415926/
WRITE(6,10)

10 FORMAT(' NUMBER OF TESTS TO ENTER - ')
READ(5,*)N 
DO 50 M=1,N 
WRITE(6,20)M 

20 FORMAT(' ENTER TEST NUMBER FOR TEST -',12)
READ(5,30)FNAME(M)

30 FORMAT(A8)
50 CONTINUE

XSTART=0.0 
XSCALE=28.0/14.0 
YSTART=60.0 
YSCALE=140.0/18.0 
CALL PLOTS(0,0,1)
CALL PLOT(1.5,6.0,-3)
CALL FACTOR(18.0/14.0)
CALL AXIS(0.0,0.0,'PERCENTAGE OF ORIGINAL WALL THICKNESS',37,14.0 

*,90.0,60.0,10.0)
CALL FACTOR(1.0)
CALL AXIS(0.0,0.0,'Y',-1,14.0,0.0,0.0,2.0)
CALL PLOT(0.0,6.0,3)
CALL DASHP(14.0,6.0,0.3)
DO 600 1=1,N
CALL FILEDF(IRET,3,'DISK',FNAME(I),'DATA','B')
WRITE(6,60)IRET 

60 FORMAT(16)
REWIND 3
WRITE(6,70)FNAME(I)

70 FORMAT(' LOADING TEST - ',A8)
READ(3,8 0)ORGTH,TITL 

80 FORMAT(F6.2,4X,3A4)
READ(3,90)BULHT,TOPTH,NUM 

90 FORMAT( F6.2, 4X, F6.2, 4X, 14)
READ(3,100)(YDIS(M),THICK(M),M=1,NUM)

100 FORMAT(4(F6.2,2X,F6.2,2X))
DO 150 J=1,NUM 
XPLOT(J)=YDIS(J)
YPLOT(J)=THICK(J)/ORGTH*100 

150 CONTINUE
XPLOT(NUM+1)=BULHT
YPLOT(NUM+l)=TOPTH/ORGTH*100
THICK(NUM+1)=TOPTH
XPLOT(NUM+2)=XSTART
YPLOT(NUM+2)=YSTART
XPLOT(NUM+3)=XSCALE
YPLOT(NUM+3)=YSCALE
NUM=NUM+1
WRITE(6,200)(XPLOT(M),THICK(M),YPLOT(M),M=1,NUM)

200 FORMAT(' Y = ',F6.2,2X,'THICKNESS = ',F6.2,2X,'THICKNESS RATIO = ' 
*,F6.2)
CALL LINE(XPLOT,YPLOT,NUM,1,1,MARK(I))
Y=Y+0.3
CALL SYMBOL(0.2,Y,0.2,MARK(I),0.0,-l)
CALL SYMBOL(0.5,Y-0.1,0.2,TIXL rO *.0,12)
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C*******************THEORY***********************************
WRITE(6,220)

220 FORMAT(' ENTER THE INITIAL AND FINAL LENGTHS OF THE BLANK')
READ(5,*)BLENIN,BLNFIN 
F=BLENIN/BLNFIN 
DX1=0.219*RADIN 
DX2=(BLENIN-BLNFIN)/2-DX1 
BRALEN=2*DX2/(F+1.0)
HS=(2.0**0.5-1.0)*RADIN 
WRITE(6,230)F,DX1, DX 2,BRALEN,HS 

230 FORMAT(5F10.4)
RATTH(1)=F*100 
DISY(1)=0.0
RATTH(2)=100*BLENIN/(BLENIN-2*DX1)
DISY(2)=BRALEN 
DISY(8)=XSTART 
RATTH(8)=YSTART 
DISY(9)=XSCALE 
RATTH(9)=Y S CALE 

C*******************CAgE 2*****************
SHRAT =3-2*2**0.5 
DO 300 1=1,5 
H=I
IF(H.GT.HS)THEN H=HS 
DISY(I+2)=BRALEN +H
RATTH(1+2)=RATTH(2)/((1.0+SHRAT*H/HS)**2.0)

300 CONTINUE
CALL DASHS(ARRAY,1)
CALL LINE(DISY,RATTH,7,1,0,3)
CALL DASHS(ARRAY,0)
WRITE(6,320)(DISY(I),RATTH(I),1=1,7)

320 FORMAT(' Y = ',F10.6,' THICKNESS RATIO = ',F10.6)
q*******************c/̂ SE l******************

H2=BULHT-BRALEN 
IF(H2.LT.O.O)GOTO 610 
IF(H2.GT.HS)GOTO 450 
ROEH=RADIN+H2
ROEL=(RADIN** 2+H2 ** 2)/(2.0*H2)
ROERAT=ROEH/ROEL 

C PM=ROERAT/(3.0-2,0*ROERAT)
PM=(3.0-2.0* ROERAT)/ROERAT 
HTRAT=(H2/RADIN)* * 2
WRITE(6,340)ROEH,ROEL,ROERAT,PM,HTRAT 

340 F0RMAT(5F10.4)
DO 400 1=1,5 
H=I
IF(H.GT.H2)H=H2 
DISY(1+2)=BRALEN +H
RATTH(I+2)=RATTH(2)/((1+HTRAT*H/H2)**(PM+1.0))

400 CONTINUE
RATTH(1)=RATTH(2)
DISY(1)=DISY(2)
CALL DASHS(ARRAY,1)
CALL LINE(DISY,RATTH,7,1,0,5)
CALL DASHS(ARRAY,0)
WRITE(6,420)(DISY(I),RATTH(I),1=1,7)

420 FORMAT(' Y = ',F10.6,' THICKNESS RATIO = '.F10.6)
GOTO 610
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450 WRITE(6,460)
460 FORMAT(' *****************************caSE 3**********************

* * * * * * * * * ' j
BL1 = BU LHT- ( BR ALE N+ HS )
THEL=2*ATAN(TAN(PI/8)*EXP((0.0-BL1)/RADIN))
HTHEL=HS-(2**0.5*RADIN*(1-COS(THEL)))
SHRAT=3-2.0* 2.0**0.5
TRAT=1/((1.0+SHRAT*HTHEL/HS)** 2)
RATTH(3)=RATTH(2)*2.0*TRAT*(SIN(THEL)**2)
DISY(3)=BRALEN+BL1
DO 520 N=1,2
DISY(11-N)=DISY(10-N)
RATTH(11-N)=RATTH(10-N)

520 CONTINUE
DO 530 1=1,5 
H=I
IF(H.GT.HS)H=HS 
DISY(I+3)=DISY(3)+H
RATTH(I+3)=RATTH(3)/((1.0+SHRAT*H/HS)**2)

530 CONTINUE
RATTH(1)=RATTH(2)
DISY(1)=DISY(2)
CALL DASHS(ARRAY,1)
CALL LINE(DISY,RATTH,8,1,0,5)
CALL DASHS(ARRAY,0)
WRITE(6,550)(DISY(I).RATTH(I),1=1,10)

550 FORMAT(' Y = ',F10.6,' THICKNESS RATIO = '.F10.6)
610 WRITE(6,620)
620 FORMAT(' NOW TYPE PLOT IF YOU REQUIRE A COPY ')

CALL SYMBOL(0.2,Y+0.4,0.2,'INTERNAL PRESSURE/TEST NO.',0.0,26)
CALL SYMB0L(0 .2, Y+0.2,0.2,'--------------------------',0.0,26)
CALL PL0T(10.0,0.0,999)
CALL EXIT
STOP
END
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THE DESIGN OF AN EXPERIMENTAL HYDRAULIC BULGE 
FORMING MACHINE

T. J. BARLOW, R. CRAMPTON and M. S. J. HASHMI 
Department of Mechanical and Production Engineering 

Sheffield City Polytechnic

SUMMARY
Preliminary investigations into hydraulic bulge forming of tubular 

components on a prototype machine produced useful but limited results. The need 
for a dedicated experimental bulge forming machine, which would be capable of 
producing a wider variety of components more readily and with more comprehensive 
instrumentation, quickly became evident. A new machine was designed and built 
on the basis of the operating parameters determined from the prototype machine. 
Axial compressive forces of up to 200 kN and internal pressures of up to 69 N/mm 
can be obtained. Facilities for future automation were incorporated early in 
the design stages. The machine is now in operation and results are promising. 
This paper describes the design of the machine and some-of the problems overcome 
in commissioning. Initial experimental results achieved from the machine are 
presented.

INTRODUCTION

The bulge forming process is used for 
shaping tubular metal parts by subjecting 
a tubular blank to internal hydrostatic 
pressure whilst being contained within a 
die bearing the shape of the component to 
be formed. The pressure is transmitted 
via a medium which can be a liquid, a soft 
metal or an elastomer. Where the tube is 
unrestricted within the die, expansion 
occurs until the required shape is formed.
Bulge forming using internal pressure 
alone causes considerable thinning of the 
tube wall which can lead to rupture of the 
tube at only moderate expansions. To form 
larger expansions, metal has to be fed 
into the deformation zone during the 
forming process. This is achieved by the 
application of an axial compressive force 
to the ends of the tube. If this force is 
great enough to cause axial deformation of 
the tube blank, ie. shortening of the tube 
length, much greater expansions can be 
obtained before rupture due to wall 
thinning can occur.
The technique of applying an axial force 
in conjunction with the internal pressure 
has been used industry and research 
institutions to produce tee pieces, cross 
pieces, reducer/expansion shapes and other 
axisymmetric and assymmetric components 
/l,2,3/. Results from preliminary 
investigations by the author have been 
published previously /4/. In those 
investigat ions, tests were carried out 
using a prototype bulge forming machine. 
This paper deals with the problems 
encountered in using the prototype machine 
and the resultant design and commissioning 
of a new forming machine.

PROTOTYPE BULGE FORMING MACHINE

The prototype machine consisted of two die 
halves each mounted in a robust die holder 
which was split laterally in relation to 
the tube (see Fig(1)). Each die half was 
drilled through to allow the insertion of 
a tube blank when the two halves were
together. An axial compressive force
could be applied to the ends of the tube 
by means of two plungers, one at each end, 
which entered the ends of the die to butt 
up against the tube. The plungers were 
turned down at the ends to allow then to 
locate inside the tube. This part of the 
plungers also housed an 'O' ring which 
sealed against the inside of the tube to 
prevent leakage of the pressure medium.
Axial alignment was maintained by mounting 
the plungers onto guide plates with the
die block suspended between the two on 
heavy duty springs. The plungers were
drilled down their length to allow the
tube blank to be filled with oil prior to 
forming. Axial compression was achieved 
by placing the whole assembly onto a 200kN 
Denison compression testing machine. The 
internal pressure was provided by a
hydraulic hand pump connected to the
bottom plunger via an adjustable pressure 
relief valve. A bleed screw in the upper
plunger allowed air to escape before
forming proceeded. The forming procedure 
involved increasing the internal pressure 
until some initial value was reached,
followed by axial deformation using the 
compression testing machine. Once the
required degree of deformation had been
obtained, or the tube burst, the axial 
compression force and internal pressure 
were released. The plungers were then 
withdrawn from the die blocks and, after 
separation of the two halves of the die
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476 DESIGN OF AN EXPERIMENTAL BULGE FORMING MACHINE

blocks, the formed component was removed. 
During the forming procedure, note was 
made of the maximum deformation force and 
internal pressure.

PROBLEMS WITH THE PROTOTYPE RIG
As mentioned previously, the rig had to be 
assembled before each test and dismantled 
afterwards to remove the formed component. 
However, because the die blocks split 
laterally in relation to the tube, it was 
sometimes difficult to separate the two 
die halves and remove the component from 
them. This was due to the internal 
pressure forcing the walls of the tube 
against the die walls during forming. 
Because of this, each test could take over 
half an hour to complete from set-up to 
extraction of formed component. 'O' rings 
were located at the ends of the plungers 
to seal the ends of the tube. These 
invariably became damaged by the ends of 
the copper tube and had to be replaced 
after only one or two tests. On some of 
the tests carried out, the tube would not 
seal properly and the internal pressure 
had to be maintained by constant use of 
the hydraulic hand pump. Leakage was not 
so much of a problem, though, when large 
axial compressive forces were used to form 
tees and cross pieces, especially when 
using the thickest walled tube. 
Unfortunately, this large axial force 
sometimes allowed the ends of the tube to 
form into the recess containing the 'O' 
rings at ther end of the plungers. This 
prevented the plungers from being 
withdrawn from the tube at the end of the 
test. Consequently, the removal of the 
plungers had to be achieved with the use 
of a hammer, but with caution since the 
springs between the die block and the 
guide plates were held in'a compressed 
state. These springs were used to keep 
the two die halves together and also to 
keep them central between the two guide 
plates, so that the bulge would be formed 
centrally on the tube. Unfortunately, 
this did not always work, resulting in the 
bulge being formed off central due to one 
plunger meeting a greater resistance than 
the other.
In addition to the problems in assembling 
and dismantling the rig, there was also a 
lack . of* process control and 
instrumentation. These deficiencies
caused large variations in the component 
formed and made accurate recording of the 
process difficult. The strain rate for 
the axi-al compression could be adjusted on 
the compression testing machine. However, 
there was little control over the internal 
pressure during the process apart from 
pumping it up to an initial value and 
setting its maximum value with the 
pressure relief valve. With the 
variations' in the effectiveness of the 
tube sealing, it was difficult to carry 
out a series of tests with similar 
internal pressure conditions.

Because of the problems previously 
mentioned, a new, dedicated experimental 
bulge forming machine was designed, built 
and commissioned.

The new machine is free standing and self 
contained. The main part of the machine 
is the die block in which the actual 
forming takes place. In the prototype, 
this was split laterally in relation to 
the tube and resulted in problems 
extracting the formed component. 
Splitting the die blocks axially overcomes 
this problem, but the two halves have to 
be clamped together to resist the internal 
pressure forcing them apart. For this, a 
hydraulic ram is used which has the 
secondary purpose of opening and closing 
the dies allowing access for insertion and 
removal of the component. Two hydraulic 
rams are also used for applying the axial 
compressive force to the ends of the tube.

DESIGN OF NEW MACHINE
The operating parameters for the design of 
the machine were based on tests carried 
out using the prototype tig. Internal 
pressures of up to 38 N/mm2 (5500 psi)
together with axial compression forces of
up to 110 kN were used to form
axisymmetric and asymmetric components. A 
maximum pressure of 69 N/mm2 (10000 psi) 
was chosen. This would provide sufficient 
internal pressure to form copper tubes and 
also tubes of harder material. A maximum 
axial force of 200 kN was considered
suitable. The clamping force required to 
hold the die blocks together was
calculated to be 300 kN.

The size of the cylinders necessary to
generate the desired forces obviously
depends upon the hydraulic circuit
pressure chosen. There are other 
constraints to take into account. The 
hydraulic pressure was required to do two 
things - to operate the cylinders and also 
provide the internal forming pressure. 
Running the hydraulic system at the same 
pressure as the maximum internal pressure 
would prove to be very costly.
Alternatively, a lower supply pressure 
could be chosen and this pressure 
increased through a pressure intensifier 
to provide the forming pressure. The
second route was taken, with a main
circuit pressure of 17 N/mm2 (2500 psi) - 
sufficiently high as to reduce the size of 
the cylinders required to a manageable
size, but not so high as to make the 
hydraulic circuit very expensive.
The sizes of the hydraulic cylinders 
needed were 125mm diameter to provide a 
200kN axial compressive force and 160mm 
diameter to provide a 300kN clamping 
force. These were powered by a variable
displacement piston pump driven by a 7.5kW 
electric motor. The pump can operate at 
pressures up to 21 N/mm2 but was set at an
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operating pressure of 17.5 N/mm which 
gives a delivery flow rate of 
approximately 25 litre/min. The maximum 
theoretical forces that can be applied by 
the hydraulic cylinders running under 
these conditions are an axial compressive 
force of 215kN and a clamping force of 
350kN.

Design of hydraulic circuit.
The hydraulic circuit has three functions, 
namely to connect and control the supply 
to: -
i) the hydraulic clamping cylinder,
ii) the two cylinders providing axial 

force,
iii) the internal pressurised region of 

the tube blank.
The first requirement was fairly simple 
and needed only the use of a directional 
control valve with three positions - one 
position to extend the ram, one to stop it 
and one to withdraw it. The second 
requirement needed some extra control. As 
previously mentioned, one of the 
considerations for the design of the new 
machine was that the two hydraulic 
cylinders applying the axial force should 
move in unison in order to form the bulge 
centrally on the tube. This was achieved 
by the use of a flow divider in the 
circuit between the pump and the two 
hydraulic cylinders. This divides the 
flow from the pump into two equal parts 
regardless of the forces acting on the 
cylinders, and so synchronises the 
movement of the two cylinders. A pressure 
reducing valve was also required to 
control the force that was being applied 
to the tube ends as was a directional 
control valve to extend and withdraw the 
rams as before. The third requirement was 
to provide the internal pressure for 
forming the component. The maximum 
required pressure of 69 N/mm2 was
achieved by the use of a pressure
intensifier between the pump and the high 
pressure circuit. Again, a pressure
reducing valve and directional control 
valve were required in this part of the 
circuit. The functions of the directional 
control valve in this case were:-
i) to bypass the pressure intensifier (in 

order to fill the tube blank quickly at 
low pressure),
ii) to stop the supply,
iii) to supply the pressure intensifier. 

Also needed in this part of the circuit 
was a valve to bleed the air while filling 
the tube with oil.
The full hydraulic circuit is illustrated 
in Fig (2).
Variable flow control valves were added in 
the circuit to the clamping cylinder so 
that the speed of opening and closing the 
dies could be adjusted. Also added was a 
pilot operated check valve to prevent 
closure of the dies when the supply is 
off.

The supply to the cylinders applying the 
axial compressive force was split into 
two, each with its own flow control and 
pressure reducing valve. These allowed 
two separate supply pressures and flow
rates to be used - one to bring the 
plungers into contact with the tube blank 
at low pressure and the second to deform
the tube at higher pressure.
The high pressure part of the circuit 
contains a pressure intensifier ( 6 - 1  
ratio) with a by-pass, two non-return 
valves and a pressure relief valve to
prevent excessive pressure being 
generated.
The directional control valves in the 
circuit are all solenoid operated, working 
on a 24V d.c. supply. This allows the 
application of a microcomputer or 
microprocessor to control the operation of 
the process, to be achieved with minimum 
modifications. Currently the operation of 
the process is by manual control.

The clamping cylinder is mounted on a top 
plate which is supported by four tie bars 
from a substantial base plate. The bottom 
half of the die block is position
centrally on the base plate. The top half 
of the die block is connected directly to 
the clamping cylinder and guided down 
precisely by a 'Desoutter' die set.
Each die block contains a removable die 
insert. This enables the component shape 
to changed with ease by simply replacing 
the die insert with the appropriate shaped 
die.
The two horizontal cylinders are mounted 
on brackets which are bolted to two 
channel section beams of size 305mm x 
102mm. Above these is mounted the base 
plate referred to earlier. The axial 
compression force is transmitted from the 
hydraulic cylinders to the ends of the 
tube to be formed by plungers which enter 
the ends of the die block through guides. 
These plungers have axially drilled holes 
through which the internal pressurising 
fluid can pass. The seal on the ends of 
the tube was achieved by turning down the 
plungers^ as in the prototype, but the 'O' 
rings were discarded and a tapered portion 
used instead.
The whole assembly was then mounted onto a 
sturdy framework to give the correct 
working height as can be seen in 
photograph, Fig (3).

COMMISSIONING THE MACHINE
One problem encountered before any tests 
were .carried out was the alignment of the 
plungers in the die blocks. It had been 
intended to bolt the plungers to the ends 
of the cylinder rods, but due to slight
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misalignment, an alternative method of 
connection was used. This involved a 
floating connection using a collar fixed 
to the end of the cylinder rod and going 
around the end of the plunger, allowing 
movement of the plunger within it. A 
second problem encountered before testing 
could proceed was that the pressure 
intensifier failed to work. This was 
traced to a pipe fitting.being screwed too 
far into the body of the intensifier and 
shutting off a port. This was rectified 
by shortening the pipe fitting and 
refitting. After these problems had been 
resolved, initial tests were carried out 
by forming- tee pieces from copper tube. 
These tests highlighted two other 
problems, one being that the bulge was 
being formed off central indicating that 
the flow divider was not operating 
correctly. This was corrected by simply 
cleaning the flow divider. It was assumed 
that dirt had entered the system on 
assembly of the hydraulic circuit. The 
second problem was excessive pressure 
being generated in the tube blank, causing 
early rupture of the tube. This was due 
to the pressure relief valve on the high 
pressure circuit not operating correctly 
due to a large back pressure forming in 
the drain pipe. Originally, all the drain 
pipes., from the various valves were piped 
together and led back to the oil 
reservoir. The relief valve was made to 
function correctly by providing it with a 
separate drain to tank.

INITIAL TEST RESULTS
After overcoming initial teething 
problems, a series of tests were carried 
out to produce both tee and cross pieces 
from copper tube. The results so far have 
been very promising and have highlighted 
the importance of the die geometry around 
the radius at the main and side branch. 
Figs (4) and (5) show a selection of tee 
and cross pieces that have been formed at 
various pressures and axial forces. These 
components have been sectioned to show the 
variations in wall thickness.
Figures (6), (7) and (8) show some of the 
results obtained when varying internal 
pressure and axial force.
Figure (6) show the variation in wall 
thickness around the bulged portion of a 
tee piece when varying the internal 
pressure between 2000 psi and 6000 psi, 
but maintaining the end load constant at 
85kN. It is evident that at the root of 
the bulge, thickening occurs to a value of 
approximately 30% with a gradual thinning 
to the tip of the bulged zone. The lower 
internal pressures cause less thinning at 
the tip of the bulged zone. Figure (7) 
shows the thickness distribution across 
the dome of the side branch for an axial 
force of 35kN. This is basically the same 
data as shown by Figure (8), but drawn in 
a different manner. The centre axis 
represents the centre of the bulged zone. 
The figure clearly illustrates the 
reduction in thickness towards the centre

of the domed portion with greater
reduction as the internal pressure 
increases. Figure (8) illustrates the 
increase in bulged height with internal 
pressure for end loads of 85kN and 130kN. 
It is evident that greater bulge heights 
are attainable both with increased 
internal pressure and increased axial
force. The results presented are as 
expected and do not represent new
knowledge, but show that the bulge forming
machine is capable of producing,
experimentally, a sound component.

CONCLUSIONS
The paper has described the design of an 
experimental bulge forming machine which 
can be used to form a variety of 
components. The machine in its current 
state is manually controlled, but was 
designed with future application of 
microcomputer control in mind. Initial 
tests on the machine are very promising 
and show that both tee and cross pieces 
are easily formed. Extensive tests on 
these are now being conducted, together 
with tests on more complex shapes and the 
results from these investigations will be 
reported in a future paper.
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FIGURE 3. General view of bulge forming 
machine.

FIGURE 4. Photograph of sectioned tee FIGURE 5. Photograph of sectioned cross 
p.ieces formed to various degrees. pieces formed to various degrees.
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FIGURE 6. Thickness distribution along 
side branch of a tee piece (Axial force = 
85kN).
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FIGURE 7. Thickness distribution across 
the dome of the side branch (Axial force 
= 85kN).
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FIGURE 8. Variation of side branch length 
with respect to the internal pressure at 
two different axial loads.

-A3.8 -



"PLUNDER. 2_ O F F
r.— “0-020 2_0—o -oo*i

r z \  - 3 B 5 >  - o - o o s I**" Z_ FfteKji&c.-rioi't
r 2 W S 6 3  ± o  o o s

M at1- EN2-4-
0  5 TO M E t  i S O R E

T A P E R  N.T.S.

•e.

P O L I S H E D
FINISH

V I E W  X X

150

V I E W  Y Y

o

M/.8x2 x A2 DE

20

65



60 60

L_I
 [• 1 7 

— r— i—-t—

i

V i el w XX

80

2̂4.'12_ nro Meet Boa








