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Abstract

Most quality control and quality improvement procedures involve making assumptions
about the distributional form of data it uses; usually that the data is normally distributed.
It is common place to find processes that generate data which is non-normally
distributed, e.g. Weibull, logistic or mixture data is increasingly encountered.

Any method that seeks to avoid the use of transformation for non-normal data requires
techniques for identification of the appropriate distributions. In cases where the
appropriate distributions are known it is often intractable to implement.

This research is concerned with statistical process control (SPC), where SPC can be
apply for variable and attribute data. The objective of SPC is to control a process in an
ideal situation with respect to a particular product specification. One of the several
measurement tools of SPC is control chart. This research is mainly concerned with
control chart which monitors process and quality improvement. We believe, it is a
useful process monitoring technique when a source of variability is present. Here,
control charts provides a signal that the process must be investigated.

In general, Shewhart control charts assume that the data follows normal distribution.
Hence, most of SPC techniques have been derived and constructed using the concept of
quality which depends on normal distribution. In reality, often the set of data such as,
chemical process data and lifetimes data, etc. are not normal. So when a control chart is
constructed for ¥ or R, assuming that the data is normal, if in reality, the data is non-
normal, then it will provide an inaccurate results.

Schilling and Nelson has (1976) investigated under the central limit theory, the effect of
non-normality on charts and concluded that the non-normality is usually not a problem
for subgroup sizes of four or more. However, for smaller subgroup sizes, and especially
for individual measurements, non-normality can be serious problem.

The literature review indicates that there are real problems in dealing with statistical
process control for non-normal distributions and mixture distributions. This thesis
provides a quantile approach to deal with non-normal distributions, in order to construct
median rankit control chart. Here, the quantile approach will also be used to calculate
process capability index, average run length (ARL), multivariate control chart and
control chart for mixture distribution for non-normal situations. This methodology can
be easily adopted by the practitioner of statistical process control.
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Chapter 1 : Introduction

1.1 General Overview

The science of statistics itself goes back only to two or three centuries ago. Its greatest
developments have been in the last 70 years. Early applications were not made until the
1920s, that is when theory of statistics began to be applied effectively to quality control.
These statistical methods, which investigate the problems of quality control, were first
suggested by Walter A. Shewhart of the Bell Telephone Laboratories. In a
memorandum prepared on May 16, 1924, he made the first sketch of a modern “control
chart”, which he subsequently developed in various memoranda and articles. In 1931
Shewhart published a book on statistical quality control, titled "Economic Control of

Quality of Manufactured Product". |

Statistics has a very important role to play in the field of manufacturing, covering
marketing plan, sales predictions, research and developments, and processes
improvement. Statistics is also vital in manufacturing processes, such as incoming
quality control, in-process quality control, outgoing quality control, quality assurance,
etc. Therefore, statistical understanding plays a major role in product and service
quality, care of customers through statistical process control (SPC), customer surveys,

process capability and cost of quality etc.

In addition, experimental design using statistics is of an importance in distinguishing
between special cause and common cause within Quality Improvement. The latter
defined as the reduction of variability in processes and products. If we accept that all
processes are variable and that there is a relationship between management action and
quality, then statistical understanding becomes an essential aspect of quality

improvement process. Here, quality improvement processes are about performance
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improvement of individuals, groups and organisations. "In order to improve
performance, people need to know what to do, how to do it, to have the right tools to do
it, to be able to measure performance and to receive feedback on current levels of

achievement", (Kanji 1995).

Quality improvement is important and needed for achieving good quality product
features with freedom from deficiencies. To maintain and increase sales revenue,
companies must continually add new product features and introduce new improved
processes to produce such features. Moreover, companies should realise that customers'
needs are in a state of change, hence the need to be aware of meeting them. To keep cost
competitive, companies must also continually aim at reducing the level of product and
process deficiencies. Reduction in production costs besides improving the quality of a
product, should be a prime concermn to a company, as it would lead to customer

satisfaction and consequently arise in sale and profit.

In reality, a company cannot survive in an open market or competitive economy for
long if it is not achieving a reasonable level of profits. Such survival would require the
company to look for improvement of product and cost reduction in its operations and
carry out research and development. There are essential activities for an organisation to

take in order to remain competitive and to maintain Business Excellence.

To manufacture a higher proportion of products within given specifications and to
reduce the variability in quality of such products, it is necessary to increase the use of
process control. In quality improvement, process control can be divided into two types:
Statistical process control (SPC) and Engineering process control (EPC) or Automatic
process control (APC). Statistical process control and Engineering process control, are
two techniques relied on for quality improvement, which have developed independently.
Box and Kramer (1992) provide an excellent comparison of SPC, which they refer to as
statistical process monitoring and engineering process control, i.e. EPC. They explain
the origin of statistical process monitoring as being in the parts industry, whereas APC
is in the process industry. The aim of SPC and EPC techniques is the same, i.e.,

bringing all the process levels to their target with small variability.



Both techniques have the reduction of variability as their main objective, despite the fact
that different methods have been employed to accomplish such an objective. SPC looks
for signals representing assignable causes, which may be thought of as external
disturbances that increase variability. It also assumes that the process data can be
described in terms of statistically independent observations, which fluctuates around a
constant mean. On the other hand, EPC actively reverses the effect of process
disturbances by making regular adjustments to process variables. EPC is usually
discussed in the framework of a process with a drifting mean, and the process
adjustments to keep the output quality characteristics on target. EPC accomplishes this

basically by transferring variability in the output variable to an input control variable.

The reason why EPC and SPC suggest different strategies for achieving the above
mentioned goal, is because of the fact that traditionally they have different processes i.e.
two different models. For many engineering systems, it is not only possible to describe
them using control behaviour perspective, because they go out of control. This
necessitates a form of intervention that will keep such systems in a state of equilibrium,
with a small variance. On the other hand, in traditional applications of SPC, it is
assumed that in normal conditions the process mean and variance are stable, but abrupt

changes in the mean, variance or both, can occur at some unknown moments of time.

This research is concerned with the statistical process control (SPC). The objective of
SPC is to control a process in an ideal situation with respect to a particular product
specifications, (Chen, 1996). A widely used process indicator is its output distribution,
characterised by the mean and variance. If the values of mean and variance are within
prescribed limits, the process is operating in an in-control state. An assignable cause of
variability may result in a shift in mean, variance or both, to an out-of-control state.
Such shift leads to a defective product, down-time and costly corrective action. SPC
uses the process information from samples to identify process shifts and to initiate
timely remedial actions. SPC aims to maintain a process in its ideal status and to keep
product quality loss at the minimum level during production. In addition, SPC's major

aim within quality management is to decrease costs by improving process quality.



Usually, process quality can be improved by reducing output variability, the process

failure rate or both.

Statistical process control can be divided into two types. These are on-line SPC and off-

line SPC.

1.2 On-line SPC

On-line SPC methods are technical aid for quality and cost control in manufacturing.
On-line SPC consists of preventative and screening processes. In preventative SPC,
methods are always preferred, and in which the process itself is being inspected to avoid
production of defective items. While, in screening SPC, the output of a process is
checked by a system of sampling inspection. Screening helps to provide a basis for
making decisions to investigate whether or not to accept the sample batch as
satisfactory. This is always an expensive process because it takes more time and money
to detect poor performance of the process. Taguchi (1978a) strongly believes that the

main objective of an on-line SPC system should be prevention.

1.3 Off-line SPC

Off-line SPC methods are quality and cost control activities conducted at the product
and process design stages, in order to improve product manufacturing and reliability,
and reduce product development and lifetime costs. Design experiments are a major off-
line SPC tool, because they are often used during activities and the early stages of

manufacturing, rather than as a routine on-line procedure.

The Taguchi Method of experimental design (off-line quality control) has been
promoted very strongly in the US and Europe; partly because it is thought to be a
somewhat simpler and more defined approach to experimentation and partly because
many successful applications have been attributed to it. However, the statistical content
of Taguchi Method has been of an interest to statisticians and has been widely reviewed

and criticised, (John 1990).
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Taguchi, Elsayed and Hsiang (1989) discussed the robust design approach for
determining the optimum configuration of design parameters for performance, quality
and cost. The robust design method is an efficient, disciplined approach that can aid
product delivery teams in designing for cost. Designing quality with product in mind
would prove a cheaper process than trying to inspect and re-engineer such a product,
after it hits the production floor, or worse, after it gets to the customer. The robust
design method provides a systematic and efficient approach for finding the near
optimum combination of design parameters, so that the product is functional, exhibits a
high level of performance, and is robust to noise factors. Noise factors are those

parameters that are uncontrollable or are too expensive to control.

However, introducing quality at the design stage to improve a process, requires the
following overlapping factors:

o Inspection

¢ Quality control

o Quality improvement

o Quality by design

In order to minimise the effects of noise sources or error in the process, Taguchi
suggests that certain counter measures have to be taken for the implementation of the
following:

System design 1S the process of applying scientific and engineering knowledge to
produce a basic functional prototype design, as in Kackar (1985). The prototype model
defines the configuration and attributes of the product undergoing analysis or
development. The initial design may be functional, but it may be far from optimum in
terms of quality and cost.

Parameter design i an investigation conducted to identify the settings of design
parameters that optimise the performance characteristic and reduce the sensitivity of
engineering designs to the sources of variation (noise). Parameter design requires some
form of experimentation for the evaluation of the effect of noise factors on the
performance characteristic of the product, defined by a given set of values for the design
parameters. This experimentation aims to select the optimum levels for the controllable

design parameters.
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Tolerance design iS the process of determining tolerances around the nominal settings
identified in the parameter design process. Tolerance design is required if a robust
design cannot produce the required performance without costly special components or

high process accuracy.

In this thesis, off-line methods will not be discussed, partly because the aim of the
research is to develop and improve quality of product or process through statistical
process control using quantile approach. Therefore, the focus of this thesis is on the on-

line preventative SPC on process variable.

1.4 Outlines of Thesis

This thesis is divided into ten chapters. Chapter one presents a general review of quality
control and process control. Process control is divided into two kinds of SPC i.e. on-line
SPC and off-line SPC.

Chapter two introduces SPC methodologies, techniques and strategies. It defines control
chart under the assumption of normality and discusses the effects of non-normality on
control chart, the source of process variation i.e. common cause and assignable (special)
cause, Average Run Length (ARL) and the hypothesis test used in SPC. In addition, it
reviews the capability index, multivariate control chart and mixture distribution, in |

normal situation.

Chapter three introduces control chart methodology for non-normal situation and the
effect of non-normality on control chart. Some techniques dealing with non-normal
situation e.g. Q-chart, Box-Cox transformation are considered. Finally, quantile

approach is introduced to deal with the non-normal situation of quality control chart.

Chapter four provides the theoretical development of quantile approach for continuous
and discrete distributions. For continuous distributions, Uniform, Extreme-value,
Exponential, Logistic, Weibull, Power and Pareto are considered. For discrete

distributions Geometric is discussed.

12



Chapter five is dedicated to developing the theoretical aspects of quantile approach,
which have been discussed in chapter four, in order to construct quality control charts

for non-normal situation.

Chapter six discusses the capability index for non-normal situation, using quantile
approach. It also discusses the performance of control charts using average run length
(ARL) in chapter seven. Chapter eight, extends the quantile approach to dealing with

the multivariate control chart and its applications.
Chapter nine, provides the quantile control chart for mixture distribution and its

application. A conclusion of the thesis and future work in this area, are presented in

chapter ten.
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Chapter 2: Literature Review for Statistical

Process Control

2.1 Introduction

The idea of using statistical methods for quality improvement easily extends to the
general problems of process improvement. A good way to approach any of these
problems is to define performance, measure it, determine the special causes of poor
performance, and monitor it, which would result in continuous improvement in quality.
Such approaches are generally known as Statistical Process Control (SPC), Carlyle, o
al- (2000); Montgomery and Woodall (1997).

Control charts and other related techniques for statistical process control monitoring are
in widespread use. The last 20 years have seen increasing emphasis on statistical
process control, as practical approach for reducing variability in industrial processes.
Control charts and other related methods for process monitoring are discussed, as
Multivariate quality control in Kourti and MacGregor (1996), Sullivan and Woodall
(1996), Mason ¢ 7. (1997) and Tracy, ¢f 47. (1992). Autocorrelated data has considered
by Faltin, g 7. (1997) and Zhang (1998). For Shewart control chart, various
contributions can be seen in Woodall and Montgomery (1999), Amin and Ethridge
(1998), Palm, g 47 (1997), Chen (1996), Montgomery (1997), Wood (1995), Patel
(1993) and Rigdon, ¢ 47 (1994). Economic design and related issues are discussed in
Keats, g7 47 (1997). The relationship of Statistical process monitoring and direct process
adjustment through engineering control, Integration and comparison of SPC and
Engineering Process Control (EPC), are also discussed in Montgomery, ¢ 47 (1994),
Box, g1 g1 (1997) and Box and Kramer (1992). In addition, Capability Process Index is
discussed in Palar and Wesolowsky (1999), Kotz and Lovelace (1998), Rodriguez
(1992) and Kane (1986).

14



Statistical Process Control (SPC) have several major tools which can be applied to any
process. They are, histogram or stem-and-leaf display, check sheet, pareto chart, cause
and effect diagram, defect concentration diagram, scatter diagram and control chart.
This research is mainly concerned with control chart which monitors process and
improvement. We believe it is a useful process monitoring technique when an unusual
source of variability is present, i.e. when the sample average Valﬁes lie outside the
control limits. This provides a signal that the process must be investigated to undertake

corrective action

2.2 Statistical Process Control

Statistical process control (SPC) is part of a statistical quality control (SQC), which

provides a system of quality control used in place of industrial or other operations.

The purpose of SPC is to control a process in an ideal status with respect to a particular
product specification (Chen, 1996). A widely used process indicator is its output
distribution characterised by the mean and variance. If the values of mean and variance
are within prescribed limits, the process is operating in-control state. An assignable
cause of variability may result in a shift in mean or variance, or both to an out-of-
control state, and thus lead to a defective product, downtime, costly corrective resulting
in action. SPC uses the process information from samples to identify process shifts, and
to initiate timely remedial actions. SPC aims to maintain a process in its ideal status and
keep product quality loss at a minimum during production. Furthermore, the objective
of SPC is to monitor the performance of a process over time in order to detect any
unusual events that may occur. By finding assignable causes for these events,
improvements in the process and in the product quality can be achieved, by eliminating
the causes, improving the process or its operating procedures, (Kourti and MacGregor,
1996). The purpose of statistical process control (SPC) is to find as many sources of
variation as possible and then eliminate them. When stable process with small variation
is achieved, the target is to maintain or, if possible, improve the process even further. In
these cases, it is often not possible to make improvement by eliminating sources of

variation. Instead, a creative change in the process structure is need.
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In addition, one of SPC's major concerns relates to quality management, which is to
decrease costs by improving process quality. Usually, process quality can be improved
by reducing output variability or the process failure rate, or both. This is in order to
quickly detect the occurrence of assignable causes or possible shift, so that investigation
of the process and corrective action may be undertaken, before many nonconforming

units are manufactured.

Usually, statistical process control uses control charts for monitoring the evolution of a
manufacturing process: upper and lower control limits are computed, and if the process
operates outside these limits, it is declared out of control and a search for an explanation
of this abnormal behavior is initiated. An important tool in statistical process control for
finding assignable causes and for monitoring a manufacturing process is the use of the

control chart.

2.3 Control Chart

A control chart is a graph of a quality measurement, plotted against time with control
lines superimposed to show statistically significant deviations from the normal level of
performance. Any significant deviations are assumed to correspond to assignable or
special causes, which deserve investigation. A large number of different control charts
are discussed in the literature. Each of these charts has the same underlying format but
embodies a different statistical model. Control charts can be used for two main
purposes. Firstly, it gives an indication of how the level of performance varies with
time. Secondly, it monitors improvement, (Wood 1995). Control charts are the basic
statistical tools used to monitor and control processes. They can be easily constructed,

visualised and interpreted.

The basic Shewhart y or x-Chart for monitoring the mean of a process, consists of a
centre line at the historical process level, upper and lower control limits. Sample means
are plotted over time. An out-of-control signal is given when a sample mean falls
beyond the control limits. The control limits are most often set at +3,5 from the

centrelines, where sigma is estimated standard error of the sample means. Other
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methods have been proposed to improve sensitivity to small and moderate sized shifts in
the mean. In particular, runs rules have been used to signal for other unusual patterns on
the chart, such as having eight sample means in a row either all above or all below the

centreline. Runs rules improve the sensitivity, but also increase the number of false

alarms. Some of these run rules, which are useful with an . chart in detecting a small
sustained shift in the mean, such are rule 1-of-1, rule 2-o0f-3, rule 4-of-5, rule 9-0f-9 an
so on, For more details, see Nelson (1984) and Lucas and Saccucci (1990).A typical

Shewart control chart is shown in figure 2.1.

Upper Control Limit

In-Control Points

NAYAN

Central Control Limit

. Lower Control Limit
Out-of-control poin

1
I | I |
0 5 10 15

Sample Number

Figure 2.1 Shewhart Control Chart

In practice, Shewhart charts have been widely used for process monitoring because of
an interest in involving production operators in quality improvement and the feeling that
they cannot be trained to use other charting methods. Lucas (1976), Crowder (1987) and
Lucas and Saccucci (1990) have shown that CUSUM and EWMA charts provide faster
detection of small step changes than a non-modified Shewhart chart without an increase

in the false-alarm rate.

Control charts for individual measurements are often used when production volume is
too low to justify subgrouping or when automated inspection equipment is used to

measure every unit produce. Montgomery (1997) considered control charts for

individuals measurements, and Rigdon, ¢ 47 (1994) suggested that the Individual
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control limits should be based on a short-term estimate of the process variability, such
as the moving average, rather than a long-term estimate, such as sample standard

deviation of the process.

The primary purpose of a control chart is thus to quickly detect whenever a change has
occurred in a process resulting in an alteration in the mean value or in the dispersion.
Control charts may be used to estimate the parameters of a production process and
process capability through this estimate. The control chart may also provide useful
information for improvement of the process. The eventual goal of statistics process
control is the elimination of variability in the process. It may not be possible to
completely eliminate variability, but the control chart is an effective tool in reducing

variability as much as possible.

In application of statistical method to quality engineering, it is very important to classify
data on quality characteristics as either variable or attribute data. Attributes data are
usually discrete measurement, often taken the form of counts. On the other hand,
variable data are usually continuous measurement, such as length of stay. Most of the

work in this thesis will dealing with variable data.

The essential idea of a statistical control chart is that a reference distribution of ‘usual
background noise’ may be obtained by pooling experiences from groups of
observations, called rational subgroup taken over short periods within which the process
is judged to be stable. Continuous comparison of current with control limits based on
this reference distribution can lead to the detection of unusual and undesirable
distributions. Moreover, the idea of a control chart is to take a number of units produced
by the process at regular intervals and check one or more characteristics of them. This
information is then weighed together in a suitable manner, for instance to an arithmetic
mean or to a standard deviation, and plotted in a diagram. Not only is the process
variation illustrated as a function of the time, but process changes are indicated too.
Another way to increase sensitivity, is to use more information from the collected data,
for instance by also using information from earlier plotted points in the chart. Control
charts are widely used in manufacturing to distinguish between variation that is inherent
(common) to the process and variation that signals a special (assignable) event or

problem.
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2.4 Source of Process Variation

A control chart is a statistical tool used to study and control repetitive processes in
industrial setting. Shewhart control charts developed to help distinguish between
variation in manufacturing that is intrinsic to the production system and variation which
is due to external factors. In many production processes, there are many small sources
of variation that are inherent in the system itself, which are summarised under the name
chance (common) variation. In addition, there is variation that is relatively large and can

be assigned to a particular cause, and this is called assignable (special) variation.

A system that only exhibits chance variation is said to be in statistical control;
otherwise, it is out of control. There are many types of control charts for different
situations, such as individual control charts, x-bar control charts etc. Control charts have
upper and lower control limits, often placed three standard deviations from the average.
If an observation falls outside these limits, it is considered to be a signal that the process
is not in control. These upper and lower control limits are based on estimates of the

mean and variance of the process when it is in statistical control.

The ability to separate special/common cause of variations within a process, has enabled
management to analyse data and take the necessary actions to improve quality and
productivity, at economical cost levels. The basis of such improvement, however, is in
the selection, application and interpretation of statistical data generated through the use

of the correct type of control charts, (Patel, 1993).

A widely used process indicator is its output distribution characterised by the mean and
variance. If the values of means and variance are within prescribed limits, the process is
operating in an in-control state. An assignable cause of variability may result in a shift
in mean or variance or both, to an out of control state, and thus lead to a defective
product, (Chen, 1996).

Variation remaining in a stable process reflects common causes, which cannot be
removed easily from the process without fundamental changes in the process itself. If
the underlying probability distribution of the quality characteristic is stable over time,
the process is said to be in statistical control. One purpose of a control chart is to detect

unusual variation due to assignable causes. When the control chart signals the possible
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presence of an assignable cause, an effort is made to find and remove it from the
process, if this action is to reduce variability or improve quality. It is also important to

detect improvements in process performance, (Woodall and Montgomery, 1999).

2.5 Hypothesis Testing in SPC

There is a connection between hypothesis testing and control charts. Suppose that the
vertical axis in figure 2.1 is the sample average (process, say). If the process points lie
between the control limits, we conclude that the process mean is in-control and the
processes have the same mean and average over time. On the other hand, if the process
points exceed control limits, then we conclude that the process mean is out-of-control. It
indicates that the process being monitored by SPC control chart, does not have the same
mean and variance over time. There is significant evidence that the process is not in-
statistical control. Two kinds of error can be occur in testing hypotheses, the first is
commonly called a type I error (&), which occurs, if the null hypotheses rejected when
it is true. The second error called a type II error (), it takes place, if the null
hypotheses is not rejected when it is false. In quality control studies, « is called the

producer's risk and £ is called the consumer's risk.

2.6 Capability Index

The concept of process capability was introduced by Juran et al. (1974), but did not
gain considerable acceptance until the early 1980s. The concept enhances the idea of
achieving a process output with minimal variation centred at a target value. Juran
realised that there was a need in industry for the development of a single ratio or index,
in order to compare the specification interval with the actual process variation.

Therefore, Juran defined the first process capability index C, as C, =___USL6_ LSL ,
o

where USL and LSL are the Upper and Lower specification limits, respectively, and o
is the standard deviation of the process. The general idea of C,is to understand what

the process is actually doing, in order to reflect the usability of the product, by

controlling the process.
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Juran & Gryna (1993) and Montgomery (1997) suggested that the purposes of Process
Capability are to:

e Meet or exceed the customer need.

e Predict how well the process will hold the tolerances.

o Assist product developers/designers in selecting or modifying a process.

e Assist in establishing an interval between sample for process monitoring.

e Specify performance requirements for new equipment.

e Select between competing vendors.

e Plan the sequence of production processes when there is an interactive effect of
processes on tolerance.

o Reduce the variability in a manufacturing process.

The process capability indices are appropriate only when measurements of the process
data are independent, normally distributed and statistically process control. For various
development of rules, confidence limits for C,» Cpo Cos Comi and various
assumption, see Kane (1986), Bissell (1990), Chou 4 47 (1990), Boyles (1991) and
Rodriguez (1992) and Gilchrist (2000).

Process capability indices are numerical values capable of demonstrating the
relationship between the customer specification and the process variation. If the process

follows normal distribution, then ~ ,¢ , and can be obtained as follows:
C, C,-C,, Comt

The C, index
The C, index measures potential capability of the process, assuming that the process

average is equal to the midpoint of the specification limits and the process is operating

under statistical control. Here C, only provides the process variability , without

indicating any sensitivity of the process departure.

The process capability index relates the allowable (tolerance) process speed to the
C, p

actual (natural) process spread in the form of a ratio
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_ allowableprocess variability USL — LSL
actual process variability 60

p

Supposing the process follows normal variation and the process is exactly capable i.e.

c,=1s then the process target is at the midpoint of specification limits

Target: w

The probability of obtaining a value outside the specification limits is

2(1)(_3CP)=0.0027, where @(,) denotes the standard normal cumulative distribution

function. When C, =1, the Upper Specification Limit (USL) and Lower Specification

Limit (LSL) equal the Upper Control Limit (UCL) and Lower Control Limit (LCL),
which means that the variability of the distribution is exactly the width of the

specification interval (for instance, Kane (1986)).

The actual process spread is taken to be six-sigma, which is represented in normal
distribution, i.e. the width of the interval contains 99.73% of the population. The
difference in the specification limits is used to indicate allowable process spread. The
allowable process spread is considered fixed, while the actual process spread must be

estimated.

C_was considered as a measure of non-conforming product. If ¢ is one, which
p P

represents 2700 parts per million (ppm) non-conforming, while 1.33 represents 63 ppm,
1.5 represents 7 ppm, 1.66 represents 0.6 ppm and 2 represents 0.0018 ppm. These
results are correct if the process measurement arises from a normal distribution (see

chapter 6 for non-normal situation). A minimum value of C, =1.33 is generally used for

an ongoing process, (see Juran, Gryna and Bingham 1979, pp. 9-22). If the value of six-
sigma is less than the tolerance, the process is capable of meeting the specification, and

if not, then process is incapable of meeting the specification.
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The C,, index

In the previous section, C, assumes that the process has both upper and lower

specification limits. It does not take into account the possibility that the process mean

may differ from the centre (midpoint) 57 . If , then the value of =1 will
y7i M H*EM C,

correspond to an expected non-conforming proportion, greater than the nominal 0.27%.

To avoid this situation( i.e. o8 ),a C index is more suitable to use. It is better to work

with ¢ ,» because it represents both the spread and location of the process. Kane (1986)
p

used the terms of process potential and process performance indices for C, and C,

respectively.

C, =min(C,,,C, )= (1-k)C,

where

c _USL—;;_USL—T’I_ IT-4

P 30 30 \ USL-T

c _,u—LSL_T—LSLfl_ IT -4
" 30 30 T-LSL)

k=M_ 0<k<l
USL — LSL

has been suggested for symmetric tolerance i.e. 7 — - 1 the process is on-target then

k=0(ie.T = 4)

The C, is one side of the C, specification limit nearest to the process mean. The value
of C, does not determine the probability of non-conformance. It does, however,

provide its limits, and in fact, the probability of non-conformance is never more than

2¢(-3C,)- C, is yield-based and is independent of the target T. This fails to account

for process centring with symmetric tolerance, and presents an even greater problem

with asymmetric tolerance (see, Pearn and Chen (1998)).
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The goal of C, is impossible to meet when source of variability in a measurement
error is large (Herman (1989)). However, C provides a meaningful measure of process
quality, when a process is not in statistical control. C, should not be computed by

either method if the process is unstable, because without statistical control, a process is

unpredictable (Gunter (1989)).

The C,, index
A capability index can also be calculated around a target value rather than the actual

average. This index called C,n °F the Taguchi index, focuses on reduction of variation

from a target value rather than reduction to meet specifications. See Chan 4 4. (1988),

Pearn 4 47 (1992), Boyles (1991), Spiring (1991) and Kane (1986) for more dissuasion.

Chan, Cheng and Spiring (1988), proposed the index

USL-LSL  USL-LSL USL — LSL

C = n = =

pm 2 2 2
60" 6E(X-T)2] 6o +(u-T)

C — CP = pk

pm 2 _ 2
1+((ﬂ—T)) [l_lﬂ_Ml) 14+ @D
o d o

According to o above, if the process variance increase or decrease, the denominator
of Cym increase or decrease too, and Com will decrease or increase. If the process drifts
from its target value, the denominator of C,n will again increase, causing C,, to
decline. When the process mean and process variance change, the C,n index changes as

well. Note that the quadratic term (u-T)* reduces the value of the index, as a penalty

for lack of co-ordination between the process and the desired results.
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Parlar and Wesolowsky (1998) have noticed that C,,C,,andC,, are related by the

formula
1 C

Cpk—cp—g (C}:’} —

then
C
Con = £
J1+9(C, - C,,)?
Accordingly,
C, 2max(C,,C,,)

The C,,, Index

The third generation index Cme WaS introduce by Peamn o 47 (1992). Comt is
constructed by combining the modification of C, that produces C, and Con* Cr is
obtained from C, by modifying the numerator; Com is obtained by modifying the

denominator of C, - If the C, and C,, are combined then Come is produced as

follows:

_ min(USL — u, 1 — LSL)

Com
™ 3ot w(u-T)?
= Cpk =[l—l—!—l-_—]‘—l—|-}c _ d-l/.l—Ml
_7V d " 3ot +(u-T)*
(45
o

The concept of variation about the target provided by Hsiang and Taguchi (1985) as

2 = o2 + (u—T)%, which illustrate that 72 incorporates two variance component,
variance about the process mean and variance of the process mean about the target. The
term (4 —T)? in the denominator may be viewed as an additional penalty to lack of
process quality, i.e. the departure of process mean from target. This penalty ensures that

C ot will be more sensitive to departure than ¢ and therefore ¢ _ is better for
m pi pm
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distinguishing between off-target and on-target processes. Wallgren (1996) found that

the advantage of Comi is having more sensitivity to deviations from target than C, OF
Con Vannman (1995) compared Come index to C,C,> C,, and found that Coe 18

more restrictive, with regard to process means deviation from the target value, than the

other indices.

In most statistical literature and quality assurance, distribution of properties of indices
discussed above, are investigated under the assumption that the process measurement
arise from normal distribution. However, in the real situation, most of the process data
is non-normal distributed, (Clement, 1989) and (Gunter, 1989). The process capability

indices for non-normal situation will be discussed in chapter 6.

2.7 Average Run Length (ARL)

The run length of a control chart is defined as the sample number until a signal is issued
by the chart and the expectation of run length is commonly defined as the average run
length (ARL). ARL will be large when the process is in-control and small when the

process is out-of-control.(Gan, 1996)

ARL is the average number of points that must be plotted before a point indicates an out

of control, where the run length is the number of samples required to obtain a signal.

For normal situation or Shewhart control chart, the run length of the basic , chart is

geometric random variable with expected value

ARL=1

p
where p is the probability of any point plot out-of-control chart, i.e. the probability of a

signal at a given time period when the process is in control, (see Quesenberry 1995c).

For ;C-chart or individual chart with 35 limits, p=0.0027 "3 (9o limit, p=0.002 in
British Standard" is the probability that a single point falls outside the limits when the
process is in control. The number of observations until an observation falls outside of
the control limits is geometrically distributed since the sample statistics are independent.

So, the ARL of the control chart when the process is in control, i.e. normal situation, is
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370 samples "500 samples for British Standard", that means, on the average, if the
process remains in control, an out of control signal will be generated every 370 samples.

These run length properties are calculated under the conditions of normality.

Optimum design criteria for EWMA control chart can be found from Crowder (1987)
and Lucus and Saccucci (1990) who derive theoretical properties for the chart in order
to ARL. The latter compare EWMA chart to the CUSUM chart, concluding that there is
little difference between them.

2.8 Multivariate Control Chart

Control charts play a very important role in industrial situations for monitoring
processes. Multivariate control chart is necessary when monitoring of several correlated
quality characteristics simultaneously is desired. Traditional multivariate control chart
based on 7?2 statistics, which are very effective for detecting events, when the

multivariate space is not very large, (Kourti and MacGregor, 1996).

Many of the concepts of multivariate quality control are associated with Hotelling
(1947). Several approaches to multivariate control chart have been discussed in the
literature such as economic design, can be found in Alt (1985), chart based on principle
components can be found in Jackson (1980,1981a, 1981b, 1985), Ryan (1989) and
Montgomery (1997). Jackson (1985) proposed using principle component analysis
(PCA) for selecting the problem variables. The PCA technique decomposes the
T2 statistic into a sum of independent squared principal components, which are linear
combinations of the original variables. These principle components must be examined

to see why the process is statistical out of control.

Kourti and McGregor (1996) provide a newer approach based on PCA. 72is expressed
in terms of the normalised principal component scores of the multinormal variables.
When an out of control signal is received, the normalised scores with high values are

detected, and contribution plots are used to find the variables responsible for the signal.
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Alloway (1994) have considered the accuracy of multivariate control charts. The latter
can be improved through a three step graphic process: identify and remove outliers,
examine the distribution of the data relative to assumptions and use alternative

approaches if the assumption of normality is not justified.

The values plotted on multivariate control charts are usually statistical based on his
well-known Hotelling’s 72 distribution. This distribution is the multivariate counterpart

to student's t distribution. The multivariate 72 chart is particularly appropriate when the

characteristics of interest are correlated.

In constructing the multivariate control charts, it is assumed that the covariance matrix
is constant over time. One of the visual method for checking this assumption is to

monitor the process variability.

An obvious idea is to consult the corresponding univariate control charts when a
multivariate control chart signals that the process is out of control. Two aspects must be
considered. Firstly, the overall significance level of the simultaneous use of p univariate
control charts is difficult to determine. Secondly, it is not necessarily one quality

characteristic that causes an out of control situation.

Development of Multivariate Control Chart

The SPC approach for process monitoring, currently in practice in several industries, is
to chart a small number of variables, usually the final product quality variables, and
examine them one at a time. However, when the quality of a product is defined by more

than one property, all the properties should be studied collectively. Multivariate SPC

charts developed for this purpose have been based on the ,2 statistics or on Hotelling

T? statistic.
Assume that the p-quality characteristics are jointly distributed as a p-variate normal

and that a random sample of size n is available from the process. The likelihood ratio

testof g .y =y, Vvs. H :p#p, specifies that the null hypothesis be reject if
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2= 1) Y (o 1) = e

Where 5 denoted the (px 1) vector of sample mean and ,2,  is corresponding

2 -percentile. Plotting the value of ,2 versus time with an upper control limit (UCL)
given by 2lap where , is an appropriate significance level for performing the test
(e.g. = 0.05 or 0.01). The P statistic represents the direct or weighted distance

(Mahalanobis distance) of any point from ,. If ,2 statistic plot above the upper
control limit, the process mean is out-of-control, and assignable causes of variation are

sought. For the two quality characteristics, an elliptical control region, centred at Hy?

can be used in place for 22 -Chart.

When the in-control covariance matrix y is not known and must be estimated from a

limited amount of data, it is suitable to plot Hotelling 72 statistic given by
T*’=(x-X)s'(x-%)

Where s is an estimate of covariance matrix 3. An upper control limit T2, 1is then

obtained based on the F distribution and will depend upon the degree of freedom
available for the estimate s, (Wierda, 1994a).

There are two distinct phases in constructing control charts, Alt (1982, 1985). The first
phase, which offers a retrospective view, involves testing whether the processes were
in-control, when the initial individual or subgroup data were collected on the process. A
subgroup represents a sample of observations taken at some point in the process, such as
a sample taken during a specified time period. This phase is often termed the start-up
stage of the process for the purpose of obtaining a set of data to establish the control
limits for monitoring purposes. The goal of this stage is to establish statistical control
and find accurate control limits for stage two. The second phase consists of using the

control chart to maintain control, that is, detecting any departure from the process

standards as future subgroups are drawn. The multivariate 72 statistic is often utilised

as the charting statistic for both phases of control chart construction.
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The phase 1 control limits for the 72 is given by

ver - P =00-1
mn—-m-—p+1
LCL=0

a,p,mn—n—p+l1

In phase 2, when the chart is used for monitoring future production, the control limits
are as follows:
UCL = p(m+1)(n-1)

mn—m-p+1
LCL=0

a,p,mn—m=-p+l1

where is Snedecor's F with 1, and y, degree freedom, p is the number of quality
F 12 v,

Vi,V2

characteristics , m is number of preliminary sample and n is size of preliminary sample.

When ,, and 3 are estimated from a large number of preliminary samples, it is

customary to use UCL= ,2, = as the upper control limit in both phase 1 and phase 2.

Retrospective analysis of the preliminary samples to test for statistical control and
establish control limits also occurs in the univariate control chart setting. For the x -
chart, it is well known that if we use ,,; > 20 or 25 preliminary samples, the distinction
between phase 1 and phase 2 limits will nearly coincide, (Montgomery, 1997, pp: 366-
367).

Multivariate control chart for individual case i.e. n=1

This case always occurs in the chemical and process industries. Since these industries
frequently have multiple quality characteristics that must be monitored, multivariate

control charts with n=1.

Suppose that m sample (preliminary sample), each of size n=1 are available, and that p

is the number of quality characteristics observed in each sample. Let yx and s be the

sample mean vector and covariance matrix, respectively, of these observations. The

Hotelling 72 statistic in the above becomes

T? =(x-%)'s ' (x-%)
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T2 test statistic is distributed as

1~ 52,6 p-112)

see Sullivan and Woodall (1996) and Gnanadesikan and Kettenring (1972).

Then the control limits for this statistic are suggested by Tracy ¢ 47 (1992) as follows

ver =" % g0 /2 pi2,(m—- p—1)/2)
m

_(m-=1* . (p/m—p-1)F(a/2;p,m—p-1)
 m 1+(p/m-p-1D))F(a/2;p,m—-p-1)

and

LCL = *B(A-al2;p/2,(m—p-1)/2)

(m—1)°
m

_m-1", (@/m-p-HF(1-a/2Zp,m—p-1)
m l+(p/(m-p-1)FQ-a/2;p,m-p-1)

where B(e/2; p/2,(m—p-1)/2) ad B(1—a/2; p/2,(m— p—1)/2)arethe

1 — ¢ percentile of the beta distribution.

As well as control limits for a single 5,7 multivariate observation vector and an estimate

s based on m past multivariate are

UCL = p(”:n': 1__)(mn;— D F(a,p,m-p)

LCL=0

and when the number of preliminary sample is large, i.e. m>100, many practitioners use

an approximate control limit

_pm-1)
UCL = (m _ p) Ir(a;p.m-p) or UCL = Zza,p
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2.9 Mixture distribution

Mixture distribution needs when the data represented by two or more kinds of
distribution, for example, Laplace and Normal distribution. In this thesis the author
assumes that the data from the mixture distributions are statistically independent from

each other.

Statistical analysis of mixture data has proved not to be straightforward, for two main
reason. Firstly, explicitly formulae generally do not exist for estimators of the various
parameters, so the numerical methods are required. Secondly, theoretical difficulties
which arise in certain aspects of the statistical analysis reveal some common mixture

problems to be non-standard .

As aresult, detailed investigation of the analysis of finite mixture problems offers more
than just a catalogue of straightforward applications of standard methods to a particular

class of statistical methods.

In this thesis will dealing with quantile approach for mixture distribution in order to

develop quality control chart.

2.10 Effect of Non-normality on control chart

One of the underlying assumptions of SPC is the use of the normal distribution. Such
assumptions are implicit in the construction of control charts and process capability
studies. It has long been realised that the variability associated with many engineering
processes does not have a normal distribution. In continuous batch manufacture the
normality assumption is often justified, but the distribution of the process variation is
more critical when considering the sample sizes associated with small batch

manufacture.
An unstable process can lead to a seemingly non-normal distribution. If the process
shifted upward after two-thirds of the data were collected, then the histogram would be

skewed to the right. A mixture of two processes could lead to the same problem. In
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these cases a transformation would be inappropriate. It is thus that the data be taken
from a stable process.

Schilling and Nelson (1976) investigated the effect of non-normality on charts and
concluded that the non-normality is usually not a problem for subgroup sizes of four or
more. For smaller subgroup sizes, and especially for individual measurements, non-

normality can be serious problem.

Control charts and process capability calculations remain fundamental techniques for
statistical process control. However, it has long been realised that the accuracy of these
calculations can be significantly affected when sampling from a non-normal population.
Many quality practitioners are conscious of these problems but are not aware of the
effects; such problems might have on the integrity of their results. Use is made of the
Johnson system of distributions as a simulation technique to investigate the effects of
non-normality of control charts and process control calculations. An alternative
technique is suggested for process capability calculations which alleviates the problems

of non-normality while retaining computational efficiency, (Spedding, 1994).

In general, there is the need for widespread realisation that non-normality can be a
major problem for a wide variety of control chart procedures. For sample sizes, less than

five, the central limit theorem does not apply. This has been demonstrated for an

x chart by Yourstone and Zimmer (1992), Ryan and Howley (1999), Janacek and
Meikle (1997) , Moore (1957) and for attributes charts by Ryan and Schwertman (1997)
and Ryan (1989).

For positively skewed data, simple transformations such as the logarithmic, cube root or
square are often useful. If we are dealing with proportions and if binomial variations is

found, the inverse sine of the square root may remedy the problem.

Shewhart control charts assume that the variable of interest is normally distributed.
Often, in practice, this assumption is violated (Montgomery, 1997). The distribution of
the variable in question may be strongly skewed, as for example when measuring the
eccentricity of a part or hole-drilling errors in a manufactured part, (Gunter, 1991).
Further, a test on the variable may reject the normality assumption, but use of a

transformed variable is generally not desired, due to resulting difficulties in
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interpretation of control charts. In such circumstances, the standard method of assuming
a normal distribution may perform poorly, especially for very skewed process
distribution, (Burr, 1967) and (Schilling & Nelson, 1976).

The above literature review indicates that there are real problems in dealing with
statistical process control for non-normal distributions and mixture distributions. The
main purpose of this thesis is to develop quality control charts and capability index for
non-normal distribution and mixture distribution which can be easily adopted by the

practitioner of statistical process control.

Many techniques can be used to deal with the data violating the assumption of
normality, e.g. Quesenberry technique, Box-Cox transformation, Quantile technique,
etc. These techniques will be discussed in the following chapters. This chapter has
identified the limitation of the small sample sizes and the transformation as well as the
inability of traditional SPC chart to cope with mixture distribution situation. In order to
address this problem, we will develop and use the quantile method which offers
relatively new and generally powerful techniques for non-normal and mixture situation

in the area of SPC.
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Chapter 3: Control Chart Methodology for Non-

Normal Situation

3.1 Introduction

In general, Shewhart control charts assume that the set of data comes out from the
process, following normal distribution, and the probabilities of points falling outside
control limits, when the process is in control is 0.0027. Hence, most of SPC techniques
have been derived and constructed from the concept of quality characteristics which
depends on normal distribution, (see the reference of the central limit theorem in chapter
2). In reality, often the set of data such as, chemical process data, lifetimes data and
cutting tool wear processes are not normal. So when constructed, a control chart of 3 or
R > supposes that the data is normal and the actual sets of data are not normal.

Therefore, it will give inaccurate results of quality characteristics.

Measuring quality characteristics often involve non-normal distribution. The point
which arises from that is the effect of non-normality on the accuracy of control limits.
Schiling and Nelson (1976) investigated the effect of non-normality on quality control
charts. They concluded that the effect of non-normality on quality control is not a
serious problem, when subgroup size is four or more. There is a serious problem of non-
normality effect, faced, when the sample size of subgroup is less than four, especially
for individual measurements. Moving range and individual measurement charts provide
non suitable control limits for non-normal data, (Montgomery, 1997). By using the
fourth root of the set of data, the positive skewed exponential distribution can be made
into almost symmetric distribution, then plotted on individual measurement and EWMA
and CUSUM for SPC, (Kittlitz, 1999). It has been discovered that the capability indices
gives the false or inaccurate process fallout rates for non-normal data. Therefore, this

issue for non-normality situation will be discussed in chapter 6.
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There are some useful and validity techniques for transforming the non-normal data to
normality situation. Therefore, it is possible to perform SPC technique on non-normal
data. Rigdon, et al. (1994) suggest two remedies for dealing with non-normality, using a
suitable non-normal distribution for a particular data, by physical consideration of the
process; and seeking a transformation of the original data, which leads to an
approximate normal distribution. From the literature search, it was found that there are
many techniques used for such procedures. This chapter deals with some of these
techniques, such as Quesenberry transformation or Q-Chart, Box-Cox transformation
(1964) and Quantile Approach. In addition, there are other techniques, such as Johnson

transformation, Pearson System and others, which will not be discussed here.

3.2 Quesenberry Technique (Q-Chart)

Statistical Transformation

In classical mathematics e.g. Laplace transformation when the original data is transform
and a solution is found we perform an iverse transformation on the situation. Thus the
solution refers to the original data. However, in statistics when we perform a
transformation we model the relationships and solution in the transformation space only
and by inference we claim that the same relationship exist in the original data. Quantile

technique overcome this deficiency of refered to the original data at all times.

Quesenberry (1991) has suggested a new technique for short-run SPC using a
transformation. This technique plays a role in monitoring a process mean or variance for
a normally distributed quality variable. He refers to this technique as Q-Chart and
defines it as being distributed approximately as standard normal statistics and is also
approximately independent. The technique is plotted on standard normal scale, when the
parameters are known and unknown. He notes that, the technique can be used for short-

run and for long-run production
Q-chart concept converts independent identical distribution x, into independent
identical distribution standard normal (0,1) observation Q(x,) called Q statistics . Q

statistics are plotted on a Shewhart chart with control limits at =3 and centreline at 0.
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Quesenberry uses the Q-chart for variable data %, s o R and for individual measurement
of the process mean and the process variance. Both processes are discussed for the four
cases below, which are, ( ﬂknown, o known); ( u unknown, 4 known); (u known,
o unknown) and (, unknown, o unknown). Table 1 provides the Q statistics for

individual measurement and Q statistics for sample mean, and Table 2 provides the Q
statistics variance process for individual measurement and Q statistics for sample

variance.

Table 1: Quesenberry statistics from sample mean

Cases Q statistics for individual Q statistics for sample mean
measurement
known x, —
ﬂkn Qr(xr)=°r0-—luo 5 r=1:2’" Q’_ r)_ J—(X ”0) > r=l,2,...
o known 0
1/2 - - =
r-1 ( -—x,_,) —~_ (m(my +etn, )X, =X,
y unknown 0, (x,) = ( ) oo o) \/ n+..+n, oy
o'knOWIl Lr= 2,3’4.“ r=23,..

0, (x,)=0" {t,-l (%}} ;| o @)= {tn1+...+n, [\/Z (::)r —PO)J}
0,r-1 7

p known r=234,..

unknown 1 - r=2:3a"'
o Sor =~ 20 = #a)?
Jj=1 r n,
2.2 (g = o)’
2 _ a1 jA
S =
or ny +..+n,

p woknown Qr(xr)=<D'1{t,_2[(%1)”2(M}ﬂ Or (%) = o [tnl +otnp_ (Wr)]

Sr-1
unknown
o r=23,..
;r=345,.. - =
w. = n(ny +..+n._)| X, - %,
" ny+..t+n,, Spr
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Table 2: Quesenberry statistics from sample variance

Case Q statistics variance process for Q statistics tor sample variance

individual measurement

2 2
—o 1,2l R s, 2y _p-1),2 | -DS;
o known Or=0 {Zl [203] or =2,4,6,... 0,(S5)= {Z”V_I{Tg—

R

=X, =X, r=12,..

2 -1
0, = o 1= A Ver or(S7)=2 [F np~Lnj+.4np_1—-r+l (Wr)]
r - - ,V
RI+R}+..+R?,

r

o unknown

. (n +..tnp_ —r +1)S>
r =46 v=(r/2)-1 " —1)SE ot (g —1)SZ

r=23..

Quesenberry also applies the Q-chart for attributes of Binomial, Poisson and Geometric
distributions. Q-chart can be applied for common distribution, which are used to
describe variable and attribute data. Table 3 gives the summary of Q-chart for attributes
of such distributions. The transform observations from such distributions are given in
table 3, for attribute case, values plotted on standardised normal Q charts, for the two

cases when the parameter is known and unknown before charting is begun.

By transforming the observations through such distributions function in the table 3, the

u's are approximately uniform on (0,1), and the Q,'s are approximately standard

normal distribution, Njo,1) - The values of 0,,0,,0;,... can be plotted on a chart with

5o
control limits at LCL=-3, CL=0 and UCL=3. The distributions function for unknown
parameters for the results in column 3, table 3, are derived by using the uniform
minimum variance unbiased (UMVU) estimating distribution function, where the
UMVU of Binomial is Hypergeometric distribution, the UMVA of Poisson is Binomial

distribution and the UMVU of Geometric distribution is Geometric distribution.
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Table 3: Quesenberry statistics for attribute

Parameters
Distribution Kiown Unknown
u; = B(x;;n;, p) w; = H(x;3t,n;,N;)
Binomial .
0; =07 1(u;) » =L,2,... 0; =0 ;) » i=23,.
where N, = an and 4 = ij
Jj=1 J=1
u; =F(y;;nA) u; = B(y;;t;,n;/ N;)
Poisson ) )
0;=0"1(w;) s i=12,. 0; =01 () s i=23,.
where ._.an and ¢, = Zyj
j=1 j=1
. u; =G(x;;p,)=1-(1-p,)* ", =é(x,.t,n)
Geometric ) _
Ql =-0 (ui) » 1= 1,2,..- Ql =—(D-l (ut) » = 2,3,.“
where ;- \ X
2
E;( x,;t,n) defines in Q95, p308

Quesenberry concludes from the distributions above, that Q-chart can be applied for
these two cases. The interpretation of the Q-charts for the two cases, are nearly the
same, but basic differences must be borne in mind. Q-chart for unknown parameters are
plotted from the second sample, but no points are plotted for the first sample because,
the parameter must be estimated from the set of data. Meanwhile, Q-chart for known
parameters are plotted from the first sample. Quesenberry discussed some examples
where to apply Q-chart on the distributions above. The observations plotted on these

charts were very similar for both cases, when parameters are known and unknown.

Furthermore, Quesenberry (1995 a,b,c) discussed the properties of Q-chart for variable
and attribute, such as the sensitivity of four test on Shewhart Q-chart and EWMA and
CUSUM Q charts to detect one-step permanent shift of a Binomial, Poisson and

Geometric. He found that the classic test of one point outside 3-sigma control limits i.e.
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the 1-of-1 test, have poor sensitivity. Whereas, the test consisting of four out of five
points beyond one sigma control limits i.e. the 4-of-5 test, is found to be a good test.
The EWMA and CUSUM Q charts are most sensitive and are nearly comparable in

overall performance.

Del Castilo and Montgomery (1994) have investigated the average run length
performance of the Q-chart for variables and show that in some cases the ARL
performance is inadequate. They suggested some modifications to the Q-chart
procedures and some alternative methods based on the EWMA and a related technique

called the Kalman filter which have better ARL performance than the Q-chart.

3.3 Box-Cox Transformation

Most statistical methods were created under the assumption of normality. Shewhart
(1931) mentioned that most industrial measurements violate this assumption. Quality
characteristics are always required to be normally distributed. If quality characteristics
are not normally distributed, but the techniques are based on normality, then we will
have inaccurate results. So, it is important to transform the data to normal situation. In
most cases, the choice of the transformation is not obvious. For positive measurements,
i.e. skew to the right, a family of power distribution was introduced by Tukey (1957). It

is convenient to transform the data to normality using the formula below

yi=x}  ;A#0
y;=logx; ;4=0

One of the best techniques for choosing a transformation which could simultaneously

achieve:

1- normality of distribution
2- constancy of error variance, i.e. independence between cell means and cell variance

3- simplicity (linearity) of the model structure
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is Box and Cox's (1964). In addition, such transformation chosen to achieve
independence between cell mean and cell variance often has the effect of improving the

closeness to normality.

Box and Cox suggested a useful modification for family of power transformation, which
is defined only for positive values, using a maximum likelihood estimate of ;.
However, this technique is not a restrictive one, because a single constant can be added

to the data if there are some negative values.

i
Yo =2l a0

Ay
y? =ylogy ;4=0

i=

Where j = (117, y,)"" = exp(lZIn ;) ;y; > 0 is the geometric mean.
n

The family of power transformations are chosen, where each value is replaced by ,+ at

1 = 0, where ; is always one of the value below:

7 =) | 053 0 03 T y)
y, =x} 1 1 1 logx, x? X; x}
R B

For ; =-0.5,0,0.5, the data values must all be positive. To use these transformations
when there are negative and positive values, a constant can be added to all the data
values, which must be greater than 0. If all the data values are negative, the data instead
should be multiplied -1. However, in this situation, data suggesting skewness to the

right would now become data suggesting skewness to the left.

Box-Cox transformation has found more practical utility in the empirical determination
of functional relationship in a variety of fields, (Sakia, 1992). This method is almost
applicable for most positive skewness data. The disadvantage of Box-Cox

transformation is that it works only with non-negative and non-discrete distribution.
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3.4 New Approach

Quantile function Q(p) can be used to provide non-parametric measures of location,

scale etc. Q(p) can be applied for continuous and discrete random variable.
Unfortunately, Q(p) does not exist for all points of the p* quantile in case of discrete

random variable, but it gives general indication on the attitude of set of data. Q(p) is

defined as the inverse of distribution function of the random variable. So quantile
function is defined as Q(p)=F(p), 0<p<1, and the sample quantile function

define as

- -1 i1 i
Q(p)=Fl(p)=x,. > " SPS_.

The density quantile function f(Q(p)) can be obtained by deriving the quantile

distribution function

p=F(Q(p)) 3.1

where F(.) and Q(.)are the inverse function of each other.

Differentiation (3.1) in respect to p

1= f(x)q(p) > x=0(p)
then

J(x)=1/4(p)

is the density quantile function. So a plot f(x) against x = O(p), will give the desired

density plot. For more details see Parzen 1979.

Assessment of the suitability of the normal situation for a set of data is provided by

quantile-quantile plot, (theoretical quantile gp V& empirical data x(.-))° If the

distributions are nearly the same, then quantiles will be nearly the same.
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Quantile population 46 for standard normal distribution N(0,1) are defined by

i
P(XS‘I(;'))=P(1') ="’2-+"1‘

If the data follows a normal distribution, the plotting of theoretical quantile against
observed quantile will be approximately linearly related. If the plotting of data does not
give linear, then the derivation from this line will reveal how the distribution differs. So,

the quantile approach for non-normal situation is discussed here.

For non-normal distribution, data can be transformed to normality, by using the square
root for all random variable, Somerville and Montgomery (1996) or by taking the fourth
root of the data, Kittlitz (1999). Moreover, some authors have recommended the use of
distribution of power family or its extension, as done by Box-Cox (1964). On the other
hand, Quesenberry technique (1991) can be used for common distribution, in order to

deal with non-normal data.

The advantage of the quantile method is that it is very simple and fully applicable and
can be easily used by a practitioner. Quantile approach also plays a very important role

in continuous random variable.

So in the following two chapters, we will concentrate on the development of quantile
approach for non-normal situation. In addition, we will discuss the theory of quantile
approach for non-normality for various distributions, and then create the quantile

control chart for some of these distributions.

43



Chapter 4: Theoretical Development of Quantile
Approach

4.1 Introduction

Statistical process control techniques are widely used in industry for process monitoring
and quality improvement. Various statistical control charts have been developed to
monitor the process mean and variance. Traditional SPC methodology is based on the
fundamental assumption that the process data are statistical normal distributed.
Although, the process data are always non-normal distributed, (see Box and Luceno,
1997, p.6). For example, Chemical reactions follow Logistic; Bulb life follow Weibull,

Power, Lognormal; Mechanical properties of material follow Extreme-value, etc.

As discuss before, the effects of non-normality on quality control charts have been
suggested by Schiling and Nelson (1976), and concluded that the non-normality is
usually not a problem for subgroup size of four or more. But for small subgroup size
and especially for individual measurements, non-normality can be a serious problem.
There are two ways of dealing with non-normality: firstly, using an appropriate non-
normal distribution for the particular data suggested by the physical considerations of
the process charts for the Weibull distribution (see Nelson, 1979) and secondly, seeking
a transformation of the original data that results in an approximate normal data, such as
the Box-Cox transformation, SPC Q chart proposed by Quesenberry, (1995) and the use

of distribution families, e.g. Pearson, Johnson.

In recent years customers have exerted enormous pressure on organisations to improve
the quality of their products and services. As a result, many organisations have
implemented various quality improvement processes, as part of their everyday business

activities. Some of these improvements are due to the application of statistical process

control and process improvement methods (Blache g 47. 1988). Due to complexity of
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data, it is sometimes difficult for people to interpret the various approaches of statistical
process control, especially when they are modified with the help of various

transformations (DuBois ¢ 4. 1991).

It is desirable that the data for statistical control charts be normally distributed.
However, if the data is not normal, then a transformation can be used to produce a
suitable control chart. A control chart is proposed which monitors the conformance of a
sample using the quantile or inverse cumulative distribution function. This method also
helps to detect changes in the distributional shape, which may be undetected in control

charts that are based on summary statistics.

A successful quality improvement process must be based on proper interpretation of
statistical data and quality improvement methods. In this chapter we will be discussing
quality improvement process through quantile distribution. In doing so we will first
discuss the quantile process of monitoring and control, then develop a quality control

chart for this purpose using the median rankit.

4.2 Quantile Approach

Tukey (1960) has introduced a family of random variables defined by the

transformation

x,=[p* == p)'1/2 4.1
where p is a uniformly distributed random variable on (0,1) and — ¢ < 1 < 00 It can

be shown that the rectangular and logistic distributions are also members of the above

family. For example a limiting form of (4.1) when ;) _s ()is given by

x, =Inp—In(l- p) 4.2
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where x, is known as the quantile function of logistic distribution. Location and scale

parameters could be introduced to obtain the Generalised Lambda Distribution (GLD),
which is also true for all quantile distribution function. One of the important aspects of
the lambda family is that the percentage points are available directly for use (Joiner &
Rosenblatt, 1971).

Various distributions about Generalised Lambda Distributions (GLD) can be found in
Shapiro & Gross (1981), Ramberg and Schmeiser (1972) and Ramberg ¢ 47. (1979).
However, a new quantile distribution can be obtained by using the inverse function of
the generalised lambda distribution. For example, in GLD, a new quantile distribution,
which is an extension of Tukey lambda distribution, Ramberg and Schmeiser (1974),

can be obtained as follows

x, =4 +{p" -(1-p*}/2, ;0<p<l 4.3

where the range of x, can be determined by setting p=0 and p=1. Range of 3 values

are discussed in Ramberg (1974), e.g. if 2 | A,and 7 are all-negative and 3 0 then

the range is (—20, 0) -

In equation (4.3), if p is a uniform random variable, then X, will have a GLD. The
skewness and peakedness of the GLD can be determined by A and 5 and the scale by
Ay The location of GLD can then be given any value using appropriate choice of A
However, if the GLD is asymmetric ( X # A, ), then its expected value will not be equal

to 7 as is the case with the symmetric situation. Furthermore, if A=A, the original

lambda distribution will be given, i.e. symmetric random variable.

Tukey’s lambda distribution in a generalised form provides an algorithm for generating
unimodel asymmetric random variables. This can also be generalised by using three or

four parameters in the unimodel asymmetric distribution.
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Suppose x be a random variable with a distribution function F. The root of equation
F(x,)=p = prob(X <x,)

is called the p-th quantile of the distribution f( xp)- The p-th quantile is also called the

100pth percentile. The 2 -th percentile of the population described by the distribution

Q(p) is simply ¢ pi) where 100 D; -th is a suitable percentage. The root of the above

equation, for p=0.5, is corresponds to the median of F, and for p=0.25 and p=0.75

which correspond to the lower and upper quantiles of F.

Here, the inverse cumulative distribution or quantile distribution Q (p) can be expressed

as follows

x,=0(p)=F(p)=[x:F(x)=pl,p € (O,1)

Here, F (x), f (x) and Q (p) (i.e. cumulative distribution, density function and quantile
distribution, respectively) can be used as alternative starting points for defining

distributions (Parzen, 1979). Quantile density function is defined as

f(@p))=1/4(p)

Kanji & Arif (2000) have shown that the quantile approach can be used to develop the
quantile distribution, which can be used to develop a control chart. For example, if we

consider a distribution with parameters 3, g Wwhere g represents one or more

parameters, e.g. Weibull, Pareto, Power, then Q(p) is

Q(p)=A+1R(p;0) 4.4

can be defined as a quantile distribution. A standard quantile distribution can be

expressed as

x
z =L =R(p,0)
n

p

where 4 and p as location and scale parameters, and R(p,g) depends on the

parameters (e.g. skewness, shape).
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Furthermore, a quantile distribution, which requires only two parameters (i.e. location

and scale parameters), can be expressed as

Q(p) = A+nR(p) 4.5

where R(p) does not depend on the parameter (g). Distributions such as Exponential,

Extreme value and Uniform belong to this category.

Probability rules for Quantile Approach

Various properties of the quantile distribution function (QDF) can be described as

follows:

o If 0,(p) and g, (p)are QDF then 0(p)T 02(p) is also QDF. This follows from the

simple fact that all we require of a QDF is that it is a non-decreasing function of p.

o If the product of the two is inherently non-decreasing QDF then the ) (p) *0(p)=

O(p) is also QDF.
e The distribution x, = -0(1- p) is the reverse of the distribution xp=0(p)-

In some situations QDF is heavily biased or weighted towards a specific tail area. For
such situations, it is necessary to look at the tails separately in order to apply a suitable
one-tailed model. However, for some of the standard distributions, a simple

transformation gives a linear QDF.
For example, let us consider some continuous distributions, such as Logistic, Uniform,

Exponential, Extreme-value, Weibull, Power and Pareto, to construct the quantile

function for each of them.
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4.3 Quantile Function for Logistic Distribution.

The density function of logistic distribution is define by

_ ) L cr<om
f(x)_(l+exp(x))2 PSS

and the Cumulative Distribution Function (CDF) in general is

1

Fe=1- 1+exp(x)

Then

F(x,))=p=prob(X <x,) = prob(x < Q(p))

where x, =0(p) is the Quantile Distribution Function (QDF), i.e. the QDF is the

inverse of the CDF
1 .
F(x,)=p=l-———"— :5pe(0)])
1+exp(x,)
Reversing this to get the QDF simply gives
o 1
1+exp(x,)
p
x, =ln—/—
P 1_ p

Then the basic quantile distribution function for the logistic is

O(p) =x, =In—L—
1-p

The range of the quantile distribution from p=0 to p=1 is (~o0,0)
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Hence, the general quantile distribution for one tail gives us the exponential quantile

distribution from a left tail or a right tail as follows

O(p)=A+nin(p) °F  Q(p)=A+n(-In(-p))

Hence, by using the property of the quantile distribution, and adding the two tails given

above, we can obtain the logistic quantile distribution.

The logistic quantile distribution is

Q(p) = A+ n(n(p) — In(1 - p)) 4.7

Hence the range of the quantile distribution from p=0 to p=1 is (—w, ), and 4, , are

location and scale parameters respectively.

Here, we have a left and a right tailed distribution, which if combined, then a potential
model for the data will be given. A convenient form of weighting brings in position and

scale parameters is

0(p) = 4+ ((1-8)In(p) ~ (1+8) In(1- p)) 48

defining the quantile logistic function for logistic distribution (Gilchrist, 1997),

where § represents the skewness of Q(p).

Properties of Logistic Quantile Distribution

Some properties of the logistic quantile distribution can be derived from e.g. 4.8 as

follows

e Maedian

M =0(0.5)=4+nIn2 4.9
o Inter Percentile Range
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R=0(1~- p)A,n,6) - Q(p, 4,7,6)

p 1
R=-pln s p<— 4.10
n - p p 2

o Difference between the Upper Tails and Lower Tails

D =Q((~p),4,1,6) + Q(p, 4,7,6) — 2m

i.e.

D =-6n(Inp(l-p)+2In2)=-onndp(l- p) 4.11

o Inter Percentile Range (R) > Difference

Estimation of Parameters

It is natural to describe Q (p) in term of percentiles/quantile rather than the method of
moments. Therefore, we will look at a method of percentiles, as described by Dudewicz,
Ramberg and Tadikamalla, 1974. The method of percentiles is the simplest method of
estimation, which uses the natural percentile properties of distributions. However, the
interest is often in the skewness and shape of distributions and in the limits that are

exceeded with only low probability.

Parameters estimation of Logistic quantile distribution

Estimated parameters of logistic quantile distribution can be expressed as follows, using

method of percentile (see eq. 4.9, 4.10, 4.11)

e Location

A=mt(—% 2 4.12
Indp(1-p)
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e Scale

n=- r 4.13
n—-2—
l-p
o Skewness
. dlnlL
—p 4.14

O0=—m8m———
rindp(1-p)

where m, d, r represents the sample median, difference between upper and lower tails

and inter percentile range of sample population, respectively.

Measurement of the distance of tails from the median, the Right Percentile Range

(Rqu)and Left Percentile Range (Lqu)for logistic quantile distribution can be

expressed as follows

RPR, = 5., ~m=n{(; (n(l- p) - 810~ p) -l p~O1n p) - (G2} ip<

LPRq =m-x, =77{(51n2)—-;—(lnp—51np—ln(1—p)_51n(1_p))} ;p-<%

The Method Least Absolute
The aim of the distribution of least absolute is based on choosing parameters g , to

minimise the sum of absolute deviation of the order observation values, which is

&= ZI Xr —Mr I
For more details see Bloomfield and Steiger (1983) and Dodge (1987).

The median of the distribution of the rth order observation is called the median rankit,

M, » and the median rankit is defined as

M, = Q(BETAINV(0.5,r,n—r +1)) = O(p,)
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where p, is define as

pyr = BETAINV(0.5,r,n—r +1)

When the distributions are not symmetric. The method of distribution of least absolute
is more robust than the method of distribution of least square. Therefore, the distribution
of least absolute is based on median rankit. It is also an advantage that the least absolute
method of estimation can be implemented using Solver in Excel. However, the median
in same cases is not unique. It is also not a sufficient statistics and most importantly, it
is a biased estimator of the mean and can never be classified as UMVUE, (see page 38).
For skew data and data from mixture distribution the quantile approach based on
median is statistically and mathematically (untransformed) a superior statistic and for
that reason alone quantile approach will be the basis for the research of the remaining

chapters.

Residual plot for best estimate

Most of the models we have considered (Gilchrist 1997), are of the form
Q(p) =A+7nR(p) where R(p) contains two parameters e.g. exponential and extreme-

value, and Q(p)=A1+nR(p,0) contains more than two parameters e.g. logistic and

pareto distribution. If we have ordered data, x,,,, a fitted R(p) or R(p,0)and values of
the median percentiles p,,, then for a correct model, a plot of x,,versus R(p,,,) will

be linear. For a fully fitted model Q(p,,,), we should get approximately a 45° line

through the origin; such diagrams are a natural approach for identifying the appropriate

QDF. A useful supplementary plot of the residual can be shown, using

e(r) =|x(y — (P |

in order to indicate the suitability of the model. It will use the same criteria which was

used here, to the remaining distributions.
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4.4 Quantile Function for Exponential Distribution
The density function of exponential distribution is
f(x)=e™ ; x>0

and the Cumulative Distribution Function (CDF) is

F(x)=1-¢™*
Then

F(x(5)) = p = prob(X <x,) = prob(X < O(p))

where x, = 0(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of
the CDF

F(x,)=p=1-€7 x>0
Reversing this to get the QDF simply gives
x, =-In(l- p)
Then the basic quantile distribution function for exponential is
Q(p) =x, =~=In(l- p)
The range of the distribution from p=0 to p=1 is (0,0)
Hence, the exponential quantile distribution is

O(p) = A +n(=1In(1- p))

The range of the distribution from p=0 and p=1 is (A,0) -

54



Properties of exponential Quantile Distribution

Some properties of exponential quantile distribution can be seen as follows

e Median

M =0(0.5)=A+nIn2 4.15

e Inter p - Range
R= Q((l - p)a/?" 77) - Q(P:l,ﬂ)

R=n{(-Inp)+In(l- p)} ;p<% 4.16

e Difference

D=Q((1_p)a/’{:n)+Q(pala77)_2m

D =-n{lndp(l- p)} 4.17
Estimation of Parameters
e Location

R r
A =m-In2¥(———) 4.18
—Inp+In(-p)

e Scale

7 4 4.19

=(—lnp+ln(l—p))
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o Skewness (Galton p-Skewness)

5 =Quantile p-Difference/ Quantile inter p-Range

__ —{ln4pd-p)} 4.20
{(=In p) +In(1- p)}

Measurement of the distance of tails from the median, the Right Percentile Range

( Rqu)and Left Percentile Range (L qu)of exponential quantile distribution, can be

expressed as follows
RPR, =x,_,-m=-n{ln2+(1/1np)}

LPR,=m—-x,=n{ln2+(1/In(1- p)}

4.5 Quantile Function for Uniform Distribution

The density function of Uniform distribution is

fx) =15 0<x<l1

and the Cumulative Distribution Function (CDF) is

F(x)=x
Then

F(x)=p = prob(X <x,) = prob(X < Q(p))

where x, =0(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of
the CDF
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F(x,)=p=x, s pe(0,])
Reversing this to get the QDF simply gives
p=x,
Then the basic quantile distribution function for uniform is
Qp)=x,=p

The range of the distribution from p=0 to p=1 is ()

Hence, the uniform quantile distribution is

Q(p)=i+np

The range of the distribution from p=0 and p=1is (4, 1 +7)-

Properties of uniform Quantile Distribution

Some properties of uniform quantile distribution can be seen as follows

e Median

M =0(0.5)=A+0.5%p 4.21

e Inter p - Range
R= Q((l - p)’la 77) - Q(p3 /l) 77)

R=7*(-2p)  ip=3 .22
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e Difference

D=Q((1- p),A,m) +Q(p,A,1) —2m

Estimation of Parameters

e Location

e Scale

D=np{l-p)+p-1}=0 4.23

A r

A =m—-(0.5)* 4,24
0.5) (l—Zp)

g 4.25

1 1-2p) |

Measurement of the distance of tails from the median, the Right Percentile Range

( Rqu)and Left Percentile Range ( Lqu)of uniform quantile distribution, can be

expressed as follows

RPR, =x,_, —m=n{(1- p)-0.5}

LPR, =m-x, =1n{0.5- p}
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4.6 Quantile Function for Extreme-value

The density function of extreme-value distribution is

fx)=e*e* ; =00 < X <00

and the Cumulative Distribution Function (CDF) is

F(x)=e™*"
Then
F(xp)=p=prob(X <x,) = prob(X < Q(p))

where x, =0(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of
the CDF

F(x,)=p= e’
Reversing this to get the QDF simply gives
x, =—In(-In p)
Then the basic quantile distribution function for extreme-value quantile is
O(p) =x, ==In(-In(p))
The range of the distribution from p=0 to p=1 is (—00,00)
Hence, the extreme-value quantile distribution is

Q(p) = A+n{-In(-1n p)}

The range of the distribution from p=0 and p=1 is (—o0,00 )
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Properties of extreme-value Quantile Distribution

Some properties of extreme-value quantile distribution can be seen as follows

e Median

M =0(0.5) = A+ n{-In(~In(0.5))} 4.26

e Inter p - Range
R= Q((l - P)/?«J?) - Q(p:ﬂ',ﬂ)

R = 7{(=In(=In(1 - p))) - (~In(=1n p))} 4.27

e Difference

D =Q((1- p), 4, m) + Q(p,A,1) = 2m

D = p{(—In(-1n(1 - p))) + (= In(=In p)) - 2(=In(-1n(0.5)))} 4.28

Estimation of Parameters

e Location

A =m—r*( CInCIn0.9) 4.29
{~Int-In(-p)))—(-In¢-1np))}
e Scale
A r
n 4.30

" CInCIng-p)-(InCInp))}
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e Skewness (Galton p-Skewness)

5 =Quantile p-Difference/Quantile inter p-Range

s = (&InC=1n(d - p)) + (=In(=In p)) = 2(~In(~In(0.5)))
((-In(=1In(1 - p))) = (~In(-1n p)))

4.31

Measurement of the distance of tails from the median, the Right Percentile Range

(RPR,) and Left Percentile Range ( Lqu)of extreme-value quantile distribution, can

be expressed as follows
RPR, = x,_, —m=n{(—=In(=In(1 - p))) — (- In(-In(0.5)))}
LPR, = m-x, =n{(-In(-1n(0.5))) - (-In(-1n p))}

In the next section, we will discuss the Weibull, Power and Pareto distributions in the

form (p) = 1 + 7R(p; 6)» Which have got more than two parameters.

4.7 Quantile Function for Weibull Distribution
The density function of Weibull distribution is
f(x) =" exp(=x7)> x=0
F(x)=1-exp(-x")

Then the basic quantile distribution function for the Weibull is

1
Q(p)=x,=(-In(1- )’ where B = ;
The range of the distribution from p=0 to p=1 is (0, c0)
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Hence, the Generalised Lambda Distribution (GLD) for Weibull quantile distribution is

O(p)=A+n(-Inl-p)” >4>0

The range of the distribution from p=0 to p=1 is (A,0)> where 3 ,q are location and
scale parameters and g is the shape of the distribution. It discusses various properties

of weibull quantile distribution below.

Properties of Weibull Quantile Distribution

Some properties of the weibull quantile distribution can be seen as follows

e Median

M =0(0.5) = A+ 7(-In0.5)# = 1 +75(in2)? 4.32
o Inter p - Range

R =Q((l—p)ﬂ'a77>ﬁ)_Q(p:/lanaﬂ)

R=rl(lnl)? —(n(L9)*]  sp<i 4.33
p l-p

e Difference

D=Q((1—P)al,ﬂ,ﬂ)'*Q(P,ﬂ,ﬂaﬂ) —2m

D= q[(ln(l))/’ + (ln(—l——))"’ -2(In2)”] 4.34
p 1-p

e Inter p- Range (R) > Difference when B>05 p=< 1
2
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Parameters estimation of Weibull quantile distribution

Estimated parameters of weibull quantile distribution can be expressed as follows, by

using method of percentile (see eq. 4.32, 4.33, 4.34)

e Location

)(In2)? 4.35

e Scale

A r
n = 4.36

(Y- Ly
p 1-p

e Skewness (Galton p-Skewness)

5 =Quantile p-Difference/Quantile inter p-Range

()" +(n(—L)*" —202)"")
s=—2P — 1-p — 4.37
(In(=))*" - (In(—)”
p I-p

Measurement of the distance of tails from the median, the Right Percentile Range

(RPR,) and Left Percentile Range (7, PR)) of weibull quantile distribution, can be

expressed as follows

1

RPR, =x,_,-m=n{(-Inp)’ -(n2)"} ;p= > 438
1

LPR, =m—x, =n{(n2)" - (-=In(l-p))"} s p <= -3
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Estimation of Shape Parameter ( 5 -Value)

In this section we will consider the quantile distribution as continuous distribution of

form

Q(p) =4 +nR(p,0)

The equation above consists of scale, location and some parameters in R(p, ) €&

skewness and shape.

Exponential and uniform quantile distributions have two parameters only i.e. location

and scale which are represented by

Q(p) = A +1R(p)
In this section, we are going to estimate the shape parameter g for the weibull

distribution, and by the same method the shape parameter for power and pareto

distribution are given.

The Quantile distribution of Weibull can be described as follows :

O(p) = A +n{-In(1- p)}’ 4. 40

Here, three parameters needed to be estimated, i.e. 4 B AN which have already
been estimated in the last section. Hence, estimate of Y for the distribution above is

needed.

To estimate shape parameter ( '3) for the distribution with three parameters i.e. Power or

Weibull distribution, we can use the following approach, as an iteration processes:

In the past the shape parameter 3 has been estimated by using many methods, such as

maximum likelihood, least square and probability plot and so on. In this section we are

going to estimate B shape by using quantile approach. Quantile approach for estimate
S shape is done by calculating the g value mathematically, by using the difference

(equation 4.34) for each distribution and developing equations of a median, range and

difference as exponential terms. This is an iterative process.
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By using the percentile method, the form of ﬁ-value can be seen as the same for the

Weibull and Power distributions, and is given by

glﬁ +e -6,8 2

D=R*
( 0P

) 4.41

Where 6, & g, are defined below, R is the inter p-Range of QDF and D is the
difference of QDF.

For Weibull distribution

In(1/ p)
In2

In(t/(1- p))
In2

6, = In( ) 4.42

) 0, = -In(————=

"the proof of the g and g, values are given in the end of this section"

Now, we try to solve the equation (4.41) for f(B)=0 in order to obtain the estimate of

the Y’ value. Here,

S (B)=(R—D)Exp(6,) + (R + D)Exp(-0, 8) — 2R 4.43

and f(B)=0 when ﬂ=0 or ﬂ=ﬂ“.

Hence, we seek the solution of g = g" since g (, (see appendix 9).
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Proof of 6, and 6, values for weibull quantile distribution

By using equation 4.17

g,-value g,-value
1 >2 1< 1 <2
p 1-p
1 1
Inf —|=In2 0<In <In2
p 1-p
() (e
p > 0< NP«
In(2) In(2)
m[lJ h{ll ]
ol NP/ s S 4 P
In(2) In2
then then
In(l) ln(—1 L )
6, =l —L2| .9, >0 9,=-In| 22| 5 9,20
In(2) In2

4.8 Quantile Function for Power Distribution

The density function of Power distribution is

a-1
f(x)=%(%) . 0<x<k , k=0, a>0

where k is a fixed number.
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and the Cumulative Distribution Function (CDF) is

)

F(x(,)=p=prob(X <x,)= prob(X < Q(p))

Then

where x, =0(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of

the CDF

x, ‘.
F(x,)=p= % spe(0,)
Reversing this to get the QDF simply gives

1/
x,=k*p'®

Then the basic quantile distribution function for power is

0(p)=x, =k*p’ where 5= 1
(04

The range of the distribution from p=0 to p=1is (0, f)

Hence, the Power quantile distribution is

O(p)=A+nk*@") ; B>0

The range of the distribution from p=0 and p=11is (3, 1 + k) -

67



Properties of Power Quantile Distribution

Some properties of Power quantile distribution can be seen as follows

e Median

M =0(0.5) = A+ 17k(0.5)"

o Inter p - Range
R =01~ p)A,n,B)-Q(p, 4,1, )

R=nk[(1- p)’ - p’] sp<—

e Difference

D= Q((l—p)’ﬂ"nsﬂ) +Q(pa/1a773ﬂ)—2m

D =nk[(1- p)? + p# —2(0.5)"]

Estimation of Parameters

e Location

i =m—(0.5)’8(;]
@-pP-pP)

e Scale

A r

T Tk a—p -0

e Skewness (Galton p-Skewness)
5 =Quantile p-Difference/Quantile inter p-Range
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52 @=p)" +p” ~205")

= = 4.49
A-p) -p")

Measurement of the distance of tails from the median, the Right Percentile Range

( Rqu)and Left Percentile Range ( Lqu)of Power quantile distribution, can be

expressed as follows
RPR =x,_,-m=n{(l1- p)? —0.5%}

LPR,=m-x, =1n{0.5" - p’}

4.9 Quantile Function for Pareto Distribution

The density function of Pareto distribution is

f(x) =, 1<x<o

And the Cumulative Distribution Function (CDF) is

F(x)=1-x"0
Then

F(x(p)) =p = prob(X <x,) = prob(X < Q(p))

Where x, =0(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse
of the CDF

F(x,)=p=1-x7""  5pe(0))
Reversing this to get the QDF simply gives

_ 1
xp_ 1

a-p)’
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Then the basic quantile distribution function for Pareto is

where B = l

Op)==x, = =2y

The range of the distribution from p=0 and p=1is (J, o)

Hence, the Pareto quantile distribution is

1
(1-p)”
The range of the distribution from p=0 and p=1is (4 + 5, 0)-

O(p)=4+n(

) f>=0

Where ; and n are location, scale parameters, and B is the distribution’s shape.

Properties of Pareto Quantile Distribution

Some properties of Pareto quantile distribution can be seen as follows

e Median

M=005)=i+n =A+n*2”

(0.5)”

e Inter p - Range
R= Q((l—PMaﬂaﬂ)—Q(Pal’ﬂ,ﬁ)

1
) sp=<—

e Difference

D= Q((l—p)aﬂ'anaﬂ)"'Q(p:l:ﬂ’ﬂ) —-2m

_2*2/3)

1 1
D=n(—+
p’ (Q-p)
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o Inter p- Range (R) > Difference when g0, p< 1
2

Estimation of Parameters

e Location
R 1 1
A =m=-2° 0 I(—- ) 4.53
p? (A-p)
e Scale
R 1 1
7" =(rl—5 - » 4.54
p’ (-p)f
e Skewness
5 =Quantile p-Difference/Quantile inter p-Range
( 1A+ 1 __2%28
Ji4 -mB
s=| -2 1(1 r) 1 4.55
(—- =)
PP a-p#f

Measurement of the distance of tails from the median, the Right p Percentile Range

( Rqu)and Left p Percentile Range (Lqu)for Pareto quantile distribution, can be

expressed as follows

DY |
RPRq=x1_p-m=77{pﬂ -27} ,’p-<§
LPR, =m-x, =n{2” - b ip<t

! g (1-p)f 2
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4.10 Quantile Function for Geometric Distribution

The density function of geometric distribution is

f(x)=00-6)" ; x=1,23,...

and the Cumulative Distribution Function (CDF) is

F(x)= aj (1-6)*"

x=1

Then

F(x;))=p=prob(X <x,)= prob(X < Q(p))

where x,=0(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of
the CDF

F(x,)=p= 9i 1-6)"" 5pe(0,))

x=1

Reversing this to get the QDF simply gives

_ 1_ (1 _ 8)xp—1+1
p“'g( 1-(1-6) ]

p=1-(1-0)"

v = In(1- p)
P In(1-6)

Here, X, is a discrete distribution, so the basic quantile function for geometric

distribution is
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O(p)==x, = INT(ln(l p)J+1

In(1-6)

The range of the distribution from p=0 to p=1is (1 «)

Hence, the GLD for geometric quantile distribution is

In(1 - p)
o(p) n [ (ln(l—a)) J
The range of the distribution from p=0 and p=1 is (A +n,0)-

Properties of Geometric Quantile Distribution

Some properties of geometric quantile distribution can be seen as follows

e Maedian

" In0.5
M=0(05)=A+7 [INT( e G)J + IJ 4.56

e Interp - Range

R= Q((l - p):/?ﬁﬂ) - Q(pa/laq)

R=77*KINT[ Inp )+1J—(INT(III(1 p)j+l)j| 4.57
In(1-6) In(1-6)

° . Difference

D=Q(( - p),A,m+Q(p,4,1) - 2m

D=77*H1NT( Inp )+1]+(1Nr(ln(l p)) 1]—2*[11\/7( In0.5 ]+1ﬂ 4.58
In(1—8) In(l—6) In(1—6)
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Estimation of Parameters

e Location
yA =m—(IN [n0.5 )+1J* r (IN Inp ] J ( {ln(l p)] J 4,59
InQ-6) In(-6) In(-6)

e Scale

7 oy {2

e Skewness (Galton p-Skewness)

5 =Quantile p-Difference/Quantile inter p-Range

[(INT(ﬂ—] + 1J + (INT( In(-p )) + 1] _o% (JNT( [n0.5 J + 1}}
In(1 - 6) In(1— ) In(1—6)
In(1-6) ln(l 9)

Measurement of the distance of tails from the median, the Right Percentile Range

5=

4.61

( Rqu)and Left Percentile Range ( Lqu)of geometric quantile distribution, can be

expressed as follows

RPR, =2x_, —m=1] *[[IN?( Inp ) + 1) —(IN7( In0.5 ] + ID 4.62
In(-6) In(-6)

LPR, =m-x, =77*([IN7[ n0.5 )+1J—(I]V7(lna—p)J+IJ} 4.63
In(l-6) In(-6)
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4.11 Summary

It has provided the theoretical development of quantile approach for non-normal
distribution, such as logistic, exponential, Uniform, extreme-value, Weibull, power and
pareto distribution for variable measurement and geometric distribution for attribute
data. Moreover, it also estimate the parameters of the distributions mentioned above. In
the next chapter, we will be discussing the evaluation of quantile control chart for non-

normal situation.
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Chapter 5: An Evaluation of Quantile Control

Chart for Non-Normal Situation

5.1 Introduction

A successful quality improvement process must be based on proper interpretation of
statistical data and quality improvement methods. In this chapter we discuss the
application of quality improvement process through quantile approach. In doing so we
will first discuss the quantile process of monitoring and control and then develop a
quality control chart for this purpose using the median rankit, which will be called a

median rankit control chart.

Padgett and Spurrier (1990), discussed Shewhart type charts for 100™ percentiles of the
Weibull and lognormal distributions assuming unknown parameters. Kittlitz (1999)
suggested that the long tailed positively skew exponential distribution, could be made
into an almost symmetric distribution by taking the fourth root of the data. The
transformation data can then be plotted conveniently on an individuals chart, EWMA, or
CUSUM chart for statistical process control. For EWMA, Montgomery, Gardiner, and
Pizzano (1987) recommend values of A in the range of 0.05< A1 <0.5, with smaller

values of A being more effective in detecting smaller shift in the mean.

The Shewhart control chart for individual measurement is often used in situations that
involve rational subgroups of size n=1 in process monitoring and control. When the
assumption of normality is violated, the average run length (ARL) of the individual
control chart is adversely affected. For example, ARL for 3o is 370.4, and ARL for

3.02 o is 395.6 under normality assumptions, the difference between them with 2%

76



shift in process is obviously not small. Therefore, if we compute the in-control ARL for
various non-normal distributions with control limits constructed under the assumption
of normality, we will obtained inaccurate results, (see Ryan 2000 and Wheeler 2000).
For more details in respect to ARL, see chapter seven. Further, Borror, Montgomery
and Runger (1999) showed that EWMA control charts can be designed to be robust to
the normality assumption. This implies that, ARL is reasonably close to the normal-

theory value for both skewed and heavy-tailed symmetric non-normal distributions.

Box-Cox transformation can be used to transform the data from non-normal to normal
situation. However, the Box-Cox transformation is only suitable for non-negative and
non-discrete distribution. But it was found that the quantile distribution method can be

used for any continuous sets of data.

However, most continuous distributions can be defined very simply in terms of the
quantile distribution function. This approach to defining distributions enables the two
tails of a distribution to be almost independently modelled. This is a very useful

property for handling non-normal distribution

From the above, it is clear that by using the quantile approach, we can easily avoid the
use of transformations (e.g. Box-Cox transformation, Quesenberry) for non-normal data

in order to obtain a control chart.

Nelson, P. (1979), presented limits for weibull median and range charts, and proposes
two additional (location, scale) control charts. According to Nelson, charts constructed
with these limits have a risk of 0.003. The centrelines are positioned in such a way, that
points have equal probability of falling above or below them. However, a family of
weibull distributions approximates many empirical distributions, and provides a model
for life and failure situation data. This chapter will present some accurate control limits
using median rankit control charts for logistic, exponential, extreme-value, weibull and

power distributions. In this chapter we will provide an example of such distributions to
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indicate how quantile approach could be used to construct control charts for non-normal

distribution using median rankit.

5.2 Quantile Control Chart for Non-Normal Distribution

The control chart for quantile distribution can be constructed by using the
O(p) = A+ nR(p;6) for the distribution which has got more than two parameters and

using O(p) = 1 +nR(p) for the distribution which has got two parameters. The action

and warning limits can be derived from the formulas above, where the warning limits
are Q(0.05) and Q(0.95), and the action limits are Q(0.01) and Q(0.99), and the central
point is at Q(0.5).

The steps to construct control limits of quantile distributions are as follows:

e Development of the quantile distribution function

O(p)=A+nR(p;0)

o Estimate the parameters 3 7,6 by using least absolute method then

0(p) = A+ 7 R(p,6)

Where 3" »° g"are location, scale and skewness respectively.

e The control limits of the quantile distribution function can be obtained by
substituting p=0.5 in Q (p) above. It will provide the central point which will be
described as median rankit point, and similarly by substituting p=0.05, p=0.95 and
p=0.01, p=0.99 will provide both the warning limits and action limits respectively of

median rankit point.
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5.3 Quantile Control Chart for Logistic Distribution

The median rankit control chart for the Logistic Quantile Distribution (L.Q.D) is
described below. The action and warning limits, which are used in the control chart

procedures, can be derived as

Q(p) = l+%{(l—5)1n(p) —(1+8)In(1- p)}

where the warning limits are Q (0.05) and Q (0.95), the action limits are Q(0.99) and Q
(0.01), and the central point (median rankit) is at Q (0.5). Therefore, a typical quantile
control chart that can be constructed for logistical quantile distribution is given in the

following steps.

The steps to construct control limits of logistic distribution is as follows:

e Development of logistic quantile distribution function

o(p) = A+ g{a ~8)In(p) - (1+8)In(l - p)}

o Estimate the parameters ; 7,6 by using least absolute method (median rankit), then

Q(p)=lﬂ+ﬂ2—((l-5A)1np—(1+5")1n(1—p))

where 3° n" 5" are location, scale and skewness respectively.

e The control limits of the logistic quantile distribution function can be obtained by
substituting p=0.5 in Q (p) above. It will provide the central point which will be
described as median rankit point, and similarly by substituting p=0.05, p=0.95 and
p=0.01, p=0.99, will provide both the warning limits and action limits respectively

of median rankit point.
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Example: Real Data. (Chang & Lu. 1994).

Below are 65 observations of the thickness of an oil seal, the sampling distribution is

not known:

Table 1

2.4 2.2 2.0 1.9 1.8 1.9 2.0 1.8 2.0 1.6 2.2

2.3 2.4 1.8 1.8 1.9 1.6 2.1 1.8 2.1 1.6 2.0

2.0 2.1 2.3 2.1 2.1 1.9 2.1 1.8 1.8 2.1 2.2

2.2 2.0 2.0 1.8 1.7 2.4 2.0 2.0 2.1 1.9 2.1

2.2 2.2 2.4 2.0 1.6 1.9 1.9 2.0 1.7 1.8 2.3

2.2 2.0 24 2.3 2.2 2.1 2.5 1.9 2.0 1.9

Chang and Lu (1994), mentioned that the data appear to come from a skew distribution.
We are interested in finding out whether the thickness of an oil seal is outside the

control limits of the production process.

The process of estimation and validation on a real set of data, which is believed to
follow the logistic distribution, has been investigated. The data was compared with the
model, by comparing the observed value and the fitted value. The observed values are
the original set of data under investigation and the fitted values are the values, which are
obtained when QDF is fitted to the model together with the scale, location and
skewness. For a good fit of the data, the series of points is expected to lie on 45° line,
which passes through the origin. Where a best model is found, it will then be used to

construct a median rankit control chart.

Distribution of Least Absolute

The steps below are required to estimate distribution parameters
1. Find the initial value of P’ where p () = (BETAINV (0.5,r,n—r +1))-

2. Sort the skew logistic data which are treated in ascending order.

3. Put initial parameter values using quantile method for location, scale and skewness.
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4. Fited 9(p) = 2+ {(1~8)In(p) - (1 +8)In(1 - p)} model

5. Afier fitting Q (p), the Solver tool in Excel Package is used to estimate the minimum

values of the parameters by using the least absolute method

6. Calculate the residual sum of least absolute

A AN A

er=x, —0( 1,2.,77,5)-

r
n+

Then the estimation of the parameters 3 5 s for real data given in table 2 are 2.011055,
0.253986, and 0.04226 respectively. The residual sum of least absolute is 2 041334-

Model Validation of Logistic Distribution
(Individual M easurement)

Real Data

1.3 1.6 1.9 2.2 2.5 2.8

Q" (p)

Figure 1: Model Validation Median Rankit for Logistic Distribution

By analysing figure 1, we can see that the model appears to give a reasonable fit.
Following the verification of the above data as logistic distribution, the quality control
limits of quantile logistic distribution can be calculated for median rankit at various p
values and are shown in table 2 . Control limits for median rankit are calculated at

p=0.05 and p=0.01 for warning and action limits respectively using the formula
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o(p) =z+§{(1—6)1n<p)—(1+6)1n(1—p)}-

Here 2 p, s are given by 2.011055, 0.253986, and 0.04226 respectively and the residual
sum of least absolute is 2.0413. This will provide the required control limits as follows.

Central point =2.018495, Warning limits = (1.653484, 2.40133) and Action limits =
(1.452276, 2.619371). Figure 2 shows the logistic control limits for median rankit at
2.0184 for levels p=0.01 and p=0.05 & p=0.005 and p=0.001 (see figure 3). Here no

action is necessary as all the values are within the action limits.

Table 2 Quantile control limits for logistic distribution.

Percentile values Median Rankit (Least Absolute)
(p) Q(p) Q(0.5) Q(1-p)
0.01 1.452276 2.018495 2.619371
0.05 1.653484 2.018495 2.40133
0.001 1.171023 2.018495 2.925241
0.005 1.367304 2.018495 2.711729
0.00135 1.20757 2.018495 2.885477

Figure 3 shows the logistic control limits for median rankit at levels p=0.001 and
p=0.005, where the warning limits = (1.367304, 2.711729) and the action limits =
(1.171023, 2.925241). Here no action is necessary as all the values are within the

warning and action limits.
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M edian Rankit Control Chart of Logistic distribution
(Individual M e asure ment)

—e— Fitx

Action Limit=2.6194

Warning Limit=2.4013

Median Point=2.0184

Warning Limit=1.6534
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Figure 2 : Median Rankit Control Chart for Logistic Distribution

Real Data

3.5

Median Rankit Control Chart for Logistic Distribution

T 00001

—&—Fitx
—— Action Limit=2.925
—— Warning Limit=2.712

Median Point=2.0184

Warning Limit=1.367

= Action Limit=1.171

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Sample Number

Figure 3: Median Rankit Control Chart for Logistic Distribution at p=0.001& p=0.005.

It is clear from the control chart in figure 2 that the sample numbers 29,32,42,55 and 56

are outside the warning limits respectively. These points must be investigated to see
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whether an assignable cause can be determined. Furthermore, the chart shows that no

single point is outside the action limits i.e. the production process is in control at
=0.01.

In order to compare our methodology with the previous works, we have calculated a

control chart for exponentially weighted moving average (EWMA) using the data in

table 1. Figure 4 provides the control chart for the data in table 1, using EWMA method.

EWMA Control Chart

23 —
Action Limit=2.240
22 — Z\ . -
x Warning Limit=2.167
’.A 2 ] Central Limit=2.022
W
1.9 — . I
X Warning Limit= 1.876

Action Limit=1.803

EWMA

1.8 —

Sample Number

Figure 4: Control Chart for Exponentially Weighted Moving Average

The control limits in both figure 2 and 4 indicate that there are no signal points that lie
outside control limits at point p=0.01. Whereas, there are some points that lie outside

control limits at p=0.05.
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By using EWMA with 4 =1, we obtained the Shewhart individual control chart of
figure 5. The control limits in both figure 2 and figure 5 are nearly the same, due to the
fact that the shape of the logistic distribution is close to the shape of normal distribution,
especially when the skewness coefficient is small. However, the method of individual
control chart is not suitable for non-normal distribution when skewness coefficient is
large. Montgomery (1997) has pointed out that moving range and individual
measurements charts can provide inappropriate control limits for non-normal data.
EWMA is a better alternative to the Shewhart control chart when the aim is to detect a
small shift. The individual chart is not robust to the normality assumption, when false
alarms are concerned. Both the Shewhart and EWMA charts demonstrate the ability to
detect shifts quickly, but the Shewhart chart has a higher false alarm rate (Borror ef

al.1999). In this research we are addressing these specific issues.

From the results above, we can conclude that the quantile approach is applicable to the

dealing with non-normal data.

EWMA Control Chart

Action Limit =2.624

25 —
Warming Limit = 2.423

4
3
20 — !x Central Limit =2.022
b

% Waming Limit =1.620

=X
%

EWMA

1.5 —

Action Limit =1.419

| ! | | | | I |
0 10 20 30 40 50 60 70

Sample Number

Figure 5: EWMA Control Chart at Lambda =1
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5.4 Quantile Control Chart for Exponential Distribution

The median rankit control chart for the exponential quantile distribution can be

described as

Q(p) = A+n(-In(l- p))

The action and warning limits, which are used in the control chart procedures, can be
derived from the Q(p) above. Where the warning limits are Q (0.05) and Q (0.95), the
action limits are Q(0.01) and Q (0.99), and the central point (median rankit) is at Q
(0.5). A typical quantile control chart for the Exponential Quantile Distribution is given

in the following steps.

Required steps for setting up the control limits of exponential distribution are as

follows:

e Development of the Exponential quantile distribution function
Q(p) = A+n(-In(1 - p))

o Estimate the parameters 4,7 by using least absolute method then

O(p) = A+7(~In(l - p))

Where 1,7 are location and scale parameters respectively.

e The control limits of the exponential quantile distribution function can be obtained
by substituting p=0.5 in Q (p) above. The latter provides the central point, which
will be described as median rankit point. Similarly by substituting p=0.05, p=0.95
and p=0.01, p=0.99, both the warning limits and action limits respectively for

median rankit point would be obtained.
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Example to Apply Quantile Control Chart for Exponential Data.

Data

We have generated a 30 random number from exponential distribution using "Minitab
Release 12 and Excel 97" where the mean is equal to one. The process of estimation and
validation on a set of data, which is believed to follow the exponential distribution, have
been investigated. The data was fitted to the model, to compare the observed value and
the fitted value. The observed values are the original set of data under investigation and

the fitted values are the values, which are obtained when QDF is fitted to the model. For

a good fit of the data, the series of points is expected to lic on 45° line, which passes
through the origin. Where a best model is found, it will then be used to construct median

rankit control chart.

Table 3 : 30 random numbers for exponential distribution.

0.45729 3.35360 1.34826 0.32315 0.08523
0.47807 1.68641 0.73215 1.91830 0.24939
0.57271 0.41638 0.74227 0.37895 0.97464
0.34155 0.84433 1.26890 0.35953 0.95657
0.46069 2.27823 1.12539 0.94095 0.78817
1.40025 0.23362 0.77088 1.03936 3.12027

Estimations of the parameters & residual

The estimate of the parameters of location 4 and scale 7 for the data given in table 3
are 0.173562 and 0.828119 respectively. Here the residual sum of least absolute is
equal to 1.862325.
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Model Validation for Exponential Distribution
(Individual Measurement)

e

Generate Data
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o NOTWO S
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Q*(P)

Figure 6: Model Validation using Median Rankit for Exponential

Model Validation

Figure 6, indicates that the data provides a good fit for the exponential distribution,
because the points lie approximately on the straight line 45 degrees to the horizontal

axis.

On the confirmation that the data follows the exponential distribution, a quality control
limits of quantile exponential distribution is provided for median rankit at various p
values, in table 4. Various control limits are calculated (p=0.05 and p=0.01) for warning

and action limits respectively using the formula

O(p) = A +n(-1In(1- p))

Here A,n are given by 0.173562 and 0.828119 respectively. This will provide the

required control limit for the data as follows.
Central point =0.747571, Warning limits = (0.216039, 2.654384) and Action limits =
(0.181885, 3.98719).
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Table 4: Quantile control limits for exponential distribution.

P Warning Limit Median Point Action Limit
Q) Q(0.5) Q(-p)
0.01 0.181885 0.747571 3.98719
0.05 0.216039 0.747571 2.654384
0.001 0.174391 0.747571 5.894004
0.005 0.177713 0.747571 4.561198
0.00135 0.174681 0.747571 5.645482

Median rankit control chart

Figure 7 provides the exponential median rankit control chart at 0.747571. It is clear

from control chart in figure 7 that the sample numbers 7,30 are outside the warning

limits respectively and the sample number 25 is outside the action limit. These points

must be investigated to see whether an assignable cause can be determined.

Generated Data

(Individual M easurement)

Median Rankit Control Chart for Exponential Distribution

—e—Fit x

a==— Action Limit=3.987
e Warning Limit=2.654
=== Median Point=0.747
e Warning Limit=0.216

e Action Limit=0.182

Sample Number

Figure 7: Median rankit control chart for exponential distribution
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5.5 Quantile Control Chart for Extreme-value
Distribution

The median rankit control chart for the Extreme-value Quantile Distribution is
described below. The action and warning limits, which are used in the control chart

procedures, can be derived as

O(p) = A+n{-In(~1n p)}

where the warning limits are Q (0.05) and Q (0.95), the action limits are Q(0.01) and Q
(0.99), the central point (median rankit) is at Q (0.5). Therefore a typical quantile
control chart that can be constructed for Extreme-value quantile distribution is given in

the following steps.

The steps to construct control limits of Extreme-value are as follows

e Development the Extreme-value quantile distribution function
O(p) = A+n{-In(-Inp)}

e Estimate the parameters A,7 by using least absolute method (median rankit) then

0(p) = A+ 7{-In(~In p)}

Where A°,7", are location and scale respectively.

e The control limits of the Extreme-value quantile distribution function can be
obtained by substituting p=0.5 in Q (p) above. The latter provides the central point,
which will be describe as median rankit point. Similarly by substituting
p=0.05,p=0.95 and p=0.01, p=0.99 will provide both the warning limits and action

limits respectively of median rankit point.
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5.6 Quantile Control Chart for Weibull Distribution

The median rankit control chart for the weibull quantile distribution (WQD) can be

described as

O(p)=A+n(-In(-p))* ,B>0

The action and warning limits, which are used in the control chart procedures, can be
derived from the (WQD) above. Where the warning limits are Q (0.05) and Q (0.95),
the action limits are Q(0.01) and Q (0.99), and the central point (median rankit) is at Q
(0.5). A typical quantile control chart for the Weibull Quantile Distribution is given in
the following steps.

Required steps for setting up the control limits of weibull distribution are as follows:

e Development of the weibull quantile distribution function

O(p) = A +n(-In(l - p))’

e Estimate the parameters 4,7, f by using least absolute method then

O(p)=4"+1" (=In(l- p))*

Where 1°,7", B are location, scale and shape parameters respectively.

e The control limits of the weibull quantile distribution function can be obtained by
substituting p=0.5 in Q (p) above. It will provide the central point, which will be
described as median rankit point and similarly by substituting p=0.05, p=0.95 and
p=0.01, p=0.99, which will provide both the warning limits and action limits

respectively for median rankit point.

Example to Apply Quantile Control Chart for Weibull Data.

Data
The data in table 5 are the times to failure measurement of 25 light bulbs on accelerated

test. The data was taken from Wadsworth (1998, pp: 6.15). Here we are interested in
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finding out whether the failure times for 25 light bulbs are within the specific

acceptance limit of the production process. First of all, the data was fitted to the weibull

model, in order to evaluate the suitability of the model and then a control chart was

developed to check the conformity of the production process.

Table 5: Times to Failure for Light Bulbs (Months).

1.25 1.17 0.42 0.96 1.03
1.37 0.65 1.39 0.45 0.67
0.28 1.00 0.82 1.61 0.48
0.53 0.66 0.57 0.31 0.29
0.98 1.76 1.71 0.95 0.25

The graph below provide the traditional Shewhart control chart for individual

measurement, assuming the quality characteristics are following normal distribution. It

can be conclude from this graph that, there is no reason to reject that, the process is in

control. In the remain parts of this example, we will construct control chart using

quantile approach.

Individual Value

25
20
1.5
1.0

0.5
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\//wy\(

vy

3.0SL=2.403

2.0SL=1.889

X=0.8624

-2.0SL=-0.1645

-3.0SL=-0.6779

Observation Number

T
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T
15

T
20

25

Traditional Shewhart Control Chart for Individual Measurement
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Estimations of the parameters & residual

The estimates of the parameters A,7, 8 for the data given in table 5 are 0.008078,
0.96979 and 0.563196 respectively. Here, the residual sum of least absolute is equal to
1.142144.

Model Validation for W eibull Distribution
(Individual Measurement)

Real Data

Q*(p)

Figure 8: Model Validation Using Median Rankit values for Weibull Distribution

Model Validation

Figure 8 indicates that the data provides a good fit for the weibull distribution, because

the points lie approximately on the straight line 45 degrees to the horizontal axis.

On confirmation that the data follows the weibull distribution, a quality control limits of
quantile weibull distribution is provided for median rankit at various p values, in table 6.
Various control limits are calculated (p=0.05 and p=0.01), for warning and action limits

respectively using the formula:

O(p) = A+n(-In(1- p))”

Here A,n, are given by are 0.008078, 0.96979 and 0.563196 respectively. This will

provide the required control limit for the data as follows.

Central point =0.796995, Warning limits = (0.190127, 1.807124) and Action limits
=(0.080774, 2.30008).
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Table 6: Quantile control limits for weibull distribution.

P Warning Limit Median Point Action Limit
Q(p) Q(0.5) Q(1-p)
0.01 0.080774 0.796995 2.30008
0.05 0.190127 0.796995 1.807124
0.001 0.027903 0.796995 2.888053
0.005 0.057209 0.796995 2.488407
0.00135 0.031556 0.796995 2.816904

Median rankit control chart

Figure 9 provides the weibull median rankit control chart at 0.796995. The action and
warning control limits in figure 9, indicates no action should be necessary, as all the

values are below the action and warning limits at level p=0.01and p=0.05 respectively.

M edian Rankit Control Chart for Weibull D is tribution
(Individual M easureme nt)

2.5
—e—Fitx
2
st A ¢ tio n Lim it=2.30008
£ 15
a e Warning Lim it=1,807124
5 1
é sz M edian P 0int=0.796995
0.5 ———em—Warning Lim it=0.190127
0 - | | ——=—Action Limit=0.080774

0 5 10 15 20 25 30

Sample Number

Figure 9: Median rankit control chart for weibull distribution

From the model validation (see figure 8), we are reasonably happy that the model is a
good fit for the data with S.R.L.ABS=1.142144. However, for further improvement of
the control chart, this data was tested for other distributions. Although, weibull
distribution is a good fit for this data, we will now consider whether any other
distribution of the weibull family provides an improved control chart. Accordingly, a

power distribution is applied as follows in the next section:
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5.7 Quantile Control Chart for Power Distribution

The density function of Power distribution is

X

a-1
k) ; 0<x<k , k>0, a>0

f(x)=% (

and the Cumulative Distribution Function (CDF) is

x, “
Fx)=p=|—-| spOl
Hence, the Power quantile distribution is

O(p)=A+nk*@”) ; B>0

The range of the distribution from p=0 and p=1 is (1,4 +7jk) .

Where 1=0.272271, 7=0.859574 are location and scale parameters respectively.
P =1.574089 is the distribution’s shape and k=1.76. Here, the residual sum of least

absolute is equal to 1.017205. In order to obtain the properties and estimation

parameters of power quantile distribution (see chapter 4).
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provides a better fit for the Power distribution where most of the points lie an

We can easily recognise that the data set used in this section follows a Weibull
distribution (see probability plot figure 10). However, figure 11 indicates that the data

Model Validation for Power Distribution
approximately 45 degrees to the horizontal axis.
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Figure 11: Model Validation using Median Rankit for Power Distribution




It is clear from the control chart in figure 12 that the sample numbers 3,10,15 are
outside the warning limits respectively. So the light bulbs failure times is not fully under
control at p=0.05. These points must be investigated to see whether an assignable cause
can be determined. Moreover, the chart shows that ‘sample point 25° is outside the

action limits, which indicate that the production process is out of control at p=0.01.

M edian Rankit Control Chart for Power Distribution
(Individual M easurement)

—e—Fit x

Action Limit=1.7614

Warning Limit=1.6678

Median point=0.78037

Real Data

Warning Limit=0.28582

Action Limit=0.27335

0 5 10 15 20 25 30

Sample Number

Figure 12: Median rankit control chart for power distribution

Comparison with EWMA Control Chart

In order to compare our methodology with similar work in this area, we will consider
the control chart for exponentially weighted moving average (EWMA), using the data
given in table 5. Here we will consider the Shewart control chart for individual
measurement as a special case of EWMA when A=1 and when A = 0.2, which is much
popularly used to detect small shifts. Moreover, this value gives the lowest value of
residual of least square, (see John 1990). A comparison between figure 13 (EWMA at
A=1) and figure 14 (EWMA at A4=0.2), shows that the failure times were not
significant. On the other hand, Median rankit control chart for power distribution (figure
12) indicates that some points are out of control i.e. significantly different from the

median rankit point (0.78037).
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EWMA chart for lamp bulbs failure times
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Figure 13: EWMA Control Chart at Lambda =1

Recently, Borror, Montogomery and Runger (1999) suggested that the EWMA control
chart is more suitable for dealing with normal and non-normal data, and EWMA is more
robust to the normality. However, our analysis in this chapter shows that the quantile

control chart for power distribution is more sensitive than the EWMA

EWMA Chart for lamp bulbs failure times
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Figure 14: EWMA Control Chart at Lambda =0.2
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It can therefore be concluded from figure 12, that the control chart using a power

distribution is more appropriate than the weibull control chart (figure 9) and EWMA
control chartat A=1and 4=0.2.

5.8 Control chart for non-normal distribution using
subgroups of size five

In the previous sections, we present the control chart for non-normal distribution for
median rankit using individual measurement. In this section we will apply the control
chart for non-normal distribution for median rankit using subgroup five, such as logistic

and weibull distributions.

Logistic Distribution

From table 1, we wish to establish statistical control of thickness of an oil seal, using
median rankit. Thirty samples each of size five observations, have been generated (from
table 1) when we assume the process is in control. The thickness of oil seals shown in
table 7. Using the data in table 7, it found that the median point is 2.0143, which is a

robust estimate and does not depends on 'n' values.

Table 7: The thickness of oil seals.

Sample Observation | Observation | Observation | Observation | Observation Median

Number 1 2 3 4 5
1 1.9 1.9 1.8 1.9 1.9 1.9
2 2.0 1.8 1.9 1.9 2.0 1.9
3 2.2 2.1 2.0 2.3 1.8 2.1
4 2.0 24 2.1 2.5 2.0 2.1
5 2.0 2.0 2.4 2.0 2.1 2.0
6 1.9 2.3 1.6 1.7 1.9 1.9
7 1.7 2.3 1.6 1.7 1.8 1.7
8 2.0 2.3 1.8 1.8 1.6 1.8
9 2.0 2.3 1.9 2.2 1.6 2.0
10 2.0 2.2 2.0 2.2 2.2 2.2
11 2.1 1.8 2.1 2.3 2.1 2.1
12 2.1 1.6 1.8 2.0 2.1 2.0
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Sample Observation | Observation | Observation | Observation | Observation | Median
Number 1 2 3 4 5
13 2.4 1.8 1.8 2.0 2.0 2.0
14 2.2 1.8 1.9 1.9 2.0 1.9
15 2.2 2.1 2.2 1.8 1.9 2.1
16 2.4 2.2 2.0 2.3 2.0 2.2
17 2.2 2.2 2 2.1 1.9 2.1
18 1.8 24 1.8 2.2 2.0 2.0
19 2.0 1.8 2.0 1.9 2.0 2.0
20 2.1 1.6 1.6 1.8 2.4 1.8
21 1.9 1.8 2.1 1.8 2.4 1.9
22 2.1 2.0 1.7 2.1 1.9 2.0
23 1.9 2.2 2.3 2.1 1.9 2.1
24 2.4 2.3 1.7 2.0 2.4 2.3
25 1.8 2.3 2.4 2.4 1.9 2.3
26 2.4 2.2 1.9 1.8 1.8 1.9
27 1.9 2.0 1.9 1.6 1.8 1.9
28 1.8 1.8 2 2.2 2.2 2.0
29 2.2 1.8 2.1 2.3 1.8 2.1
30 1.7 2.0 2.0 2.0 1.8 2.0

To find out the control limits on the median point chart, for sample size five, it must

find out the values of estimation parameters for location, scale and skewness. Then

substitute the estimation parameters in the form

Where 4" =2.021332, " =0.160773 and § =-0.06306

Then the control limits of logistic quantile distribution function, can be obtained by

substituting p=0.05, p=0.95 and p=0.01, p=0.99, then will provide the warning and

Q(p) =/1A+%((1—5A)1np—(1+5A)1n(l—P))

action limits respectively, (see figure 15).
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Median Rankit Control Chart of Logistic Distribution
(Median Measurement)
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Figure 15: Median Rankit Control Chart for Logistic Distribution (Median Measurement)

When the preliminary sample median are plotted on this chart, there are indications of

sample 7, 24, 25 of an out-of-control is observed from warning limits. Whereas, no

indication of an out-of control condition is observed from action limits. Also there is no

evidences against - the hypothesis that- the process is in control at the level p=0.01.

Weibull Distribution

From the data in table 5 which represents the time to failure measurement of 25 light

bulbs on an accelerated test, twenty five samples, each sample of size five have been

generated from the original data, table 5. It is assumed that the process is in control. The

time to failure measurement are shown in table 8.

Table 8:Time to Failure for Light Bulbs

Sample Observation | Observation | Observation | Observation | Observation | Median

Number 1 2 3 4 5
1 0.66 0.29 1.76 1.17 0.57 0.66
2 0.29 0.57 1.71 0.57 0.96 0.57
3 0.65 1.37 0.45 1.76 0.66 0.66
4 0.95 1.37 1.61 0.65 0.67 0.95
5 1.17 1.39 0.29 0.57 1.76 1.17
6 1.71 0.65 0.28 0.65 1.25 0.65
7 1.61 0.57 0.29 0.28 0.48 0.48
8 0.45 1.03 0.96 0.42 0.29 0.45
9 0.65 0.29 1.71 1.39 0.53 0.65
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Sample | Observation | Observation | Observation | Observation | Observation | Median

Number 1 2 3 4 5
10 0.57 1 0.82 1.25 0.66 0.82
11 0.95 0.98 0.96 0.25 0.66 0.95
12 0.53 0.96 0.25 1.17 1.71 0.96
13 0.98 0.42 0.48 1.25 0.25 0.48
14 1.17 0.48 0.95 0.28 0.95 0.95
15 1.17 1.61 0.57 1.61 0.57 1.17
16 0.57 1.71 0.95 0.66 0.29 0.66
17 1.61 0.96 0.66 0.25 0.48 0.66
18 0.25 0.29 0.31 1.39 1.39 0.31
19 1.25 1.39 1.76 0.95 0.29 1.25
20 0.57 1.03 1.76 0.25 1.00 1.00
21 0.65 0.31 0.42 1.39 1.39 0.65
22 0.96 1.37 1.03 0.48 0.31 0.96
23 1.00 1.61 0.57 1.03 0.45 1.00
24 1.03 0.45 1.76 1.61 0.48 1.03
25 0.25 1.17 1.76 1.37 0.25 1.17

It is require to compute the weibull control limits on the median point chart for this

process. In order to investigate whether 25-subgroups of size 5 process is in control, it

needs to find out the values of estimation parameters for location, scale and shape. Then

substitute the estimation parameters in the form

0(p) = 2" +7" *(=In(1- p))?

Where A" =0.002064, " =0.909169, 8" =0.293165.

Then the control limits of weibull quantile distribution function can be obtained by

substituting p=0.05, p=0.95 and p=0.01, p=0.99, then will provide the warning and

action limits respectively, (see figure 16).
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Median Rankit Control Chart for Weibull Dis tribution
(Median Measurement)
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——— Action Limit=1.4246
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Median Value

— Warning Limit=0.3826

— Action Limit=0.2381

0 5 10 15 20 25 30
Sample Number

Figure 16: Median Rankit Control Chart for Weibull Distribution (Median Measurement)

A median rankit chart for these data is shown in figure 16. Note that the subgroups
median of sample number 18 out-of-control is observed from warning limit. Whereas,

the subgroups median process operating in control is observed from action limits.

5.9 Summary

In this chapter, we provided an applications of quantile control chart for non-normal
situation, such as, logistic, exponential, extreme-value, Weibull and power distribution.
Therefore, in the following chapter, we will be discussing the process capability indices

using quantile approach for non-normal situation.
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Chapter 6: Process Capability Indices using
Quantile Approach

6.1 Introduction

Most of the literatures on process capability assume that data follow normal
distribution. However, in application, most of the process data is non-normally
distributed. Clement (1989) and Gunter (1989) were discussed the process capability for

non-normal data and the limitation of C with non-normal data respectively. Vannman
(1995) suggested a general formula where the four basic indices, C,» Cp> C,, and
C o 3 special case of (6.1). This general formula has been referred to as C,(u,v)>

which can be defined as follows:

d—u|p—m]|

C,(u,v)=
3\/0'2 +v(u-T)*

6.1

Where ,; is the process mean, « is the process standard deviation, g = (USL — LSL)/2

which is half of the length of the specification interval, USL is upper specification limit,

and LSL is the lower specification limit, and ,, = (USL + LSL)/2 is the mid point

between the two limits, T is the target value, and 4 > . It is easy to verify that the

C,0,0=C,> C,(L0)=C,> C,(0)=C,, and C () =C,,, asfollows:

_USL-LSL

C
P 60

6.2
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C, =min(C,,,C,,)=(-k)C, 6.3

pu?

where

C

_USL-p _USL-T(,_|T-4
" 30 30 | USL-T

c =,u—LSL=T—LSL(1_ T - 4|
? 30 3¢ | T-LSL

_2[T-p|
USL - LSL

has been suggested for symmetric tolerance i.e. 7 = - I the process is on-target then

k=0 (7 = )

USL LSL  USL-LSL USL - LSL
"6 GEX-TF 6o +(u-T)

6.4

C

C

C = P = Pk

1+((u—T))2 (1-la=hel) o G

o g

_ min(USL — u, u — LSL)

pmk T
3\/0' +(u-T)>*
1f1+ “ T
6.5

___(1 Ju- M'J i
pm

d \/o- +(u~T1)°

C
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Vannman's method (1997) is applied to handling cases with asymmetric tolerances.

Vannman's method modified the basic indices by adding a new term | u—T]| in the

numerator of the definitions.

Here the estimates the C,(u,v) obtained by replacing , by the sample mean  and

o2 by the sample variance g2, for normal distribution, both estimators are stable.

However, for non-normal situations, these estimators are highly unstable.

Pearn g 4. (1998) investigated Vannman's method and pointed out that this method is
not appropriate for processes with asymmetric tolerances. Pearn and Chen (1997), found

that the C, (u,v)are appropriate indices for processes with normal distributions and

inappropriate for non-normal distributions. Pearn and Chen (1998) applied a new
method and obtained a generalisation of C for asymmetric tolerances. The method
takes into account the asymmetry of the corresponding loss function, which is shown to
be superior to the other existing methods. Pearn o 57 (1999) suggested a generalisation

of Clement's method for non-normal Pearsonian process with asymmetric tolerances.

6.2 Process capability indices for non-normal

distribution

The use of the most common process capability indices assumes normal distribution,
despite the fact that, process capability indices often are non-normally distributed (i.e.
non-Gaussian) in practice. Here, there are some situations where non-normal process
distributions are expected: Skew distributions, Heavy-tailed distributions and Short-
tailed distributions, Gunter (1989). It is common to see the data of the process capability

is non-normal i.e. more or less skew distributed. Most of the contributions made are
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assumed that the process is normally distributed, Kane (1986), Bissell (1990), Chou ;
al. (1990), Rodriguez (1992), Chan ¢ 47 (1988), Spiring (1991).

Franklin and Wasserman (1992b) deal with bootstrap confidence limits for

C,,Co> and Cpm which avoid the assumption of normality. There have been various

attempts to extend the definition of standard capability indices to non-normal
distribution, e.g. Gilchrist (1995,1993), Clement (1989) and Gunter (1989). Clement

proposed a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>