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Abstract

Most quality control and quality improvement procedures involve making assumptions 
about the distributional form of data it uses; usually that the data is normally distributed. 
It is common place to find processes that generate data which is non-normally 
distributed, e.g. Weibull, logistic or mixture data is increasingly encountered.

Any method that seeks to avoid the use of transformation for non-normal data requires 
techniques for identification of the appropriate distributions. In cases where the 
appropriate distributions are known it is often intractable to implement.

This research is concerned with statistical process control (SPC), where SPC can be 
apply for variable and attribute data. The objective of SPC is to control a process in an 
ideal situation with respect to a particular product specification. One of the several 
measurement tools of SPC is control chart. This research is mainly concerned with 
control chart which monitors process and quality improvement. We believe, it is a 
useful process monitoring technique when a source of variability is present. Here, 
control charts provides a signal that the process must be investigated.

In general, Shewhart control charts assume that the data follows normal distribution. 
Hence, most of SPC techniques have been derived and constructed using the concept of 
quality which depends on normal distribution. In reality, often the set of data such as, 
chemical process data and lifetimes data, etc. are not normal. So when a control chart is 
constructed for 3c or R , assuming that the data is normal, if in reality, the data is non­
normal, then it will provide an inaccurate results.

Schilling and Nelson has (1976) investigated under the central limit theory, the effect of 
non-normality on charts and concluded that the non-normality is usually not a problem 
for subgroup sizes of four or more. However, for smaller subgroup sizes, and especially 
for individual measurements, non-normality can be serious problem.

The literature review indicates that there are real problems in dealing with statistical 
process control for non-normal distributions and mixture distributions. This thesis 
provides a quantile approach to deal with non-normal distributions, in order to construct 
median rankit control chart. Here, the quantile approach will also be used to calculate 
process capability index, average run length (ARL), multivariate control chart and 
control chart for mixture distribution for non-normal situations. This methodology can 
be easily adopted by the practitioner of statistical process control.

2



Acknowledgements

I wish to express sincere appreciation to my supervisor, Professor Gopal G. Kanji for 

his direction, assistance, encouragement and patience during the research's years. My 

appreciation also goes to the second supervisor, Professor Warren Gilchrist for his 

valuable comments, discussion and encouragement.

I would like to extend my special thanks to my mother, sisters and brothers for their 

love and constant encouragement. Finally my great appreciation goes to my wife 

"Nisrin" for taking care of our children "Faris and Deema" and for her . love, support 

and patience while preparing this thesis.

3



Statistical Process Control by Quantile Approach

Table of Contents

Abstract.................................................................................................................................2

Acknowledgements...............................................................................................................3

Table of Contents.................................................................................................................4

Chapter 1 : Introduction.....................................................................................................7

1.1 General Overview.........................................................................................................7

1.2 On-line SPC................................................................................................................10

1.3 Off-line SPC...............................................................................................................10

1.4 Outlines of Thesis......................................................................................................12

Chapter 2: Literature Review for Statistical Process Control.......................................14

2.1 Introduction................................................................................................................. 14

2.2 Statistical Process Control.......................................................................................... 15

2.3 Control Chart.............................................................................................................. 16

2.4 Source of Process Variation........................................................................................ 19

2.5 Hypothesis Testing in SPC.........................................................................................20

2.6 Capability Index..........................................................................................................20

2.7 Average Run Length (ARL).......................................................................................26

2.8 Multivariate Control Chart.........................................................................................27

2.9 Mixture distribution....................................................................................................32

2.10 Effect of Non-normality on control chart.................................................................32

Chapter 3: Control Chart Methodology for Non-Normal Situation............................35

3.1 Introduction.................................................................................................................35

3.2 Quesenberry Technique (Q-Chart).............................................................................36

3.3 Box-Cox Transformation............................................................................................40

3.4 New Approach............................................................................................................42

4



Chapter 4: Theoretical Development of Quantile Approach........................................ 44

4.1 Introduction................................................................................................................ 44

4.2 Quantile Approach..................................................................................................... 45

4.3 Quantile Function for Logistic Distribution............................................................... 49

4.4 Quantile Function for Exponential Distribution.........................................................54

4.5 Quantile Function for Uniform Distribution...............................................................56

4.6 Quantile Function for Extreme-value........................................................................ 59

4.7 Quantile Function for Weibull Distribution...............................................................61

4.8 Quantile Function for Power Distribution..................................................................6 6

4.9 Quantile Function for Pareto Distribution..................................................................69

4.10 Quantile Function for Geometric Distribution.........................................................72

4.11 Summary.................................................................................................................. 75

Chapter 5: An Evaluation of Quantile Control Chart for Non-Normal Situation 76

5.1 Introduction................................................................................................................ 76

5.2 Quantile Control Chart for Non-Normal Distribution................................................78

5.3 Quantile Control Chart for Logistic Distribution.......................................................79

5.4 Quantile Control Chart for Exponential Distribution.................................................8 6

5.5 Quantile Control Chart for Extreme-value Distribution.............................................90

5.6 Quantile Control Chart for Weibull Distribution........................................................91

5.7 Quantile Control Chart for Power Distribution..........................................................95

5.8 Control chart for non-normal distribution using subgroups of size five................... 99

5.9 Summary...................................................................................................................103

Chapter 6: Process Capability Indices using Quantile Approach...............................104

6 .1 Introduction...............................................................................................................104

6.2 Process capability indices for non-normal distribution............................................106

6.3 Clement's methods and its weakness........................................................................110

6.4 Quantile Approach for Non Normal Capability Indices...........................................112

6.5 Methodology.............................................................................................................115

6 . 6  Summary...................................................................................................................119

Chapter 7: Determination of Average Run Length (ARL) for Non-Normal Data ....120

7.1 Introduction...............................................................................................................120

7.2 ARL for non-normal distribution.............................................................................. 121

5



7.3 ARL for Exponential Distribution.......................................................................... 122

7.4 Application...............................................................................................................126

7.5 Summary...................................................................................................................138

Chapter 8 : Evaluating Multivariate Control Chart using Quantile Approach 140

8.1 Introduction...............................................................................................................140

8.2 Multivariate Control Chart using Quantile Approach (MCCQA).............................142

8.3 Application...............................................................................................................146

8.4 Summary...................................................................................................................149

Chapter 9: Quantile Control Chart for Mixture Distribution: AN INNOVATIVE 

APPROACH.....................................................................................................................151

9.1 Introduction...............................................................................................................151

9.2 Characterisation Theory............................................................................................153

9.3 Quantile Mixture Distribution..................................................................................156

9.4 Quantile Control Chart Theory for Mixture Distribution........................................157

9.5 Application...............................................................................................................162

9.6 Summary...................................................................................................................166

Chapter 10 Conclusion and Future W ork.....................................................................168

10.1 Conclusion..............................................................................................................168

10.2 Future Work............................................................................................................170

References.........................................................................................................................172

Appendix...........................................................................................................................188

Appendix 1.....................................................................................................................188

Appendix 2.....................................................................................................................188

Appendix 3.....................................................................................................................190

Appendix 4.....................................................................................................................191

Appendix 5..................................................................................................................... 191

Appendix 6 ..................................................................................................................... 194

Appendix 7..................................................................................................................... 196

Appendix 8 .....................................................................................................................203

Appendix 9.....................................................................................................................209

6



Chapter 1: Introduction

1.1 General Overview

The science of statistics itself goes back only to two or three centuries ago. Its greatest 

developments have been in the last 70 years. Early applications were not made until the 

1920s, that is when theory of statistics began to be applied effectively to quality control. 

These statistical methods, which investigate the problems of quality control, were first 

suggested by Walter A. Shewhart of the Bell Telephone Laboratories. In a 

memorandum prepared on May 16, 1924, he made the first sketch of a modem “control 

chart”, which he subsequently developed in various memoranda and articles. In 1931 

Shewhart published a book on statistical quality control, titled "Economic Control of 

Quality of Manufactured Product".

Statistics has a very important role to play in the field of manufacturing, covering 

marketing plan, sales predictions, research and developments, and processes 

improvement. Statistics is also vital in manufacturing processes, such as incoming 

quality control, in-process quality control, outgoing quality control, quality assurance, 

etc. Therefore, statistical understanding plays a major role in product and service 

quality, care of customers through statistical process control (SPC), customer surveys, 

process capability and cost of quality etc.

In addition, experimental design using statistics is of an importance in distinguishing 

between special cause and common cause within Quality Improvement. The latter 

defined as the reduction of variability in processes and products. If we accept that all 

processes are variable and that there is a relationship between management action and 

quality, then statistical understanding becomes an essential aspect of quality 

improvement process. Here, quality improvement processes are about performance
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improvement of individuals, groups and organisations. "In order to improve 

performance, people need to know what to do, how to do it, to have the right tools to do 

it, to be able to measure performance and to receive feedback on current levels of 

achievement", (Kanji 1995).

Quality improvement is important and needed for achieving good quality product 

features with freedom from deficiencies. To maintain and increase sales revenue, 

companies must continually add new product features and introduce new improved 

processes to produce such features. Moreover, companies should realise that customers' 

needs are in a state of change, hence the need to be aware of meeting them. To keep cost 

competitive, companies must also continually aim at reducing the level of product and 

process deficiencies. Reduction in production costs besides improving the quality of a 

product, should be a prime concern to a company, as it would lead to customer 

satisfaction and consequently arise in sale and profit.

In reality, a company cannot survive in an open market or competitive economy for 

long if it is not achieving a reasonable level of profits. Such survival would require the 

company to look for improvement of product and cost reduction in its operations and 

carry out research and development. There are essential activities for an organisation to 

take in order to remain competitive and to maintain Business Excellence.

To manufacture a higher proportion of products within given specifications and to 

reduce the variability in quality of such products, it is necessary to increase the use of 

process control. In quality improvement, process control can be divided into two types: 

Statistical process control (SPC) and Engineering process control (EPC) or Automatic 

process control (APC). Statistical process control and Engineering process control, are 

two techniques relied on for quality improvement, which have developed independently. 

Box and Kramer (1992) provide an excellent comparison of SPC, which they refer to as 

statistical process monitoring and engineering process control, i.e. EPC. They explain 

the origin of statistical process monitoring as being in the parts industry, whereas APC 

is in the process industry. The aim of SPC and EPC techniques is the same, i.e., 

bringing all the process levels to their target with small variability.



Both techniques have the reduction of variability as their main objective, despite the fact 

that different methods have been employed to accomplish such an objective. SPC looks 

for signals representing assignable causes, which may be thought of as external 

disturbances that increase variability. It also assumes that the process data can be 

described in terms of statistically independent observations, which fluctuates around a 

constant mean. On the other hand, EPC actively reverses the effect of process 

disturbances by making regular adjustments to process variables. EPC is usually 

discussed in the framework of a process with a drifting mean, and the process 

adjustments to keep the output quality characteristics on target. EPC accomplishes this 

basically by transferring variability in the output variable to an input control variable.

The reason why EPC and SPC suggest different strategies for achieving the above 

mentioned goal, is because of the fact that traditionally they have different processes i.e. 

two different models. For many engineering systems, it is not only possible to describe 

them using control behaviour perspective, because they go out of control. This 

necessitates a form of intervention that will keep such systems in a state of equilibrium, 

with a small variance. On the other hand, in traditional applications of SPC, it is 

assumed that in normal conditions the process mean and variance are stable, but abrupt 

changes in the mean, variance or both, can occur at some unknown moments of time.

This research is concerned with the statistical process control (SPC). The objective of 

SPC is to control a process in an ideal situation with respect to a particular product 

specifications, (Chen, 1996). A widely used process indicator is its output distribution, 

characterised by the mean and variance. If the values of mean and variance are within 

prescribed limits, the process is operating in an in-control state. An assignable cause of 

variability may result in a shift in mean, variance or both, to an out-of-control state. 

Such shift leads to a defective product, down-time and costly corrective action. SPC 

uses the process information from samples to identify process shifts and to initiate 

timely remedial actions. SPC aims to maintain a process in its ideal status and to keep 

product quality loss at the minimum level during production. In addition, SPC's major 

aim within quality management is to decrease costs by improving process quality.
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Usually, process quality can be improved by reducing output variability, the process 

failure rate or both.

Statistical process control can be divided into two types. These are on-line SPC and off­

line SPC.

1.2 On-line SPC

On-line SPC methods are technical aid for quality and cost control in manufacturing. 

On-line SPC consists of preventative and screening processes. In preventative SPC, 

methods are always preferred, and in which the process itself is being inspected to avoid 

production of defective items. While, in screening SPC, the output of a process is 

checked by a system of sampling inspection. Screening helps to provide a basis for 

making decisions to investigate whether or not to accept the sample batch as 

satisfactory. This is always an expensive process because it takes more time and money 

to detect poor performance of the process. Taguchi (1978a) strongly believes that the 

main objective of an on-line SPC system should be prevention.

1.3 Off-line SPC

Off-line SPC methods are quality and cost control activities conducted at the product 

and process design stages, in order to improve product manufacturing and reliability, 

and reduce product development and lifetime costs. Design experiments are a major off­

line SPC tool, because they are often used during activities and the early stages of 

manufacturing, rather than as a routine on-line procedure.

The Taguchi Method of experimental design (off-line quality control) has been 

promoted very strongly in the US and Europe; partly because it is thought to be a 

somewhat simpler and more defined approach to experimentation and partly because 

many successful applications have been attributed to it. However, the statistical content 

of Taguchi Method has been of an interest to statisticians and has been widely reviewed 

and criticised, (John 1990).
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Taguchi, Elsayed and Hsiang (1989) discussed the robust design approach for 

determining the optimum configuration of design parameters for performance, quality 

and cost. The robust design method is an efficient, disciplined approach that can aid 

product delivery teams in designing for cost. Designing quality with product in mind 

would prove a cheaper process than trying to inspect and re-engineer such a product, 

after it hits the production floor, or worse, after it gets to the customer. The robust 

design method provides a systematic and efficient approach for finding the near 

optimum combination of design parameters, so that the product is functional, exhibits a 

high level of performance, and is robust to noise factors. Noise factors are those 

parameters that are uncontrollable or are too expensive to control.

However, introducing quality at the design stage to improve a process, requires the 

following overlapping factors:

9 Inspection 

9 Quality control 

« Quality improvement 

« Quality by design

In order to minimise the effects of noise sources or error in the process, Taguchi 

suggests that certain counter measures have to be taken for the implementation of the 

following:

System design the process of applying scientific and engineering knowledge to 

produce a basic functional prototype design, as in Kackar (1985). The prototype model 

defines the configuration and attributes of the product undergoing analysis or 

development. The initial design may be functional, but it may be far from optimum in 

terms of quality and cost.

Parameter design is 331 investigation conducted to identify the settings of design 

parameters that optimise the performance characteristic and reduce the sensitivity of 

engineering designs to the sources of variation (noise). Parameter design requires some 

form of experimentation for the evaluation of the effect of noise factors on the 

performance characteristic of the product, defined by a given set of values for the design 

parameters. This experimentation aims to select the optimum levels for the controllable 

design parameters.
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Tolerance design the process of determining tolerances around the nominal settings 

identified in the parameter design process. Tolerance design is required if a robust 

design cannot produce the required performance without costly special components or 

high process accuracy.

In this thesis, off-line methods will not be discussed, partly because the aim of the 

research is to develop and improve quality of product or process through statistical 

process control using quantile approach. Therefore, the focus of this thesis is on the on­

line preventative SPC on process variable.

1.4 Outlines o f  Thesis

This thesis is divided into ten chapters. Chapter one presents a general review of quality 

control and process control. Process control is divided into two kinds of SPC i.e. on-line 

SPC and off-line SPC.

Chapter two introduces SPC methodologies, techniques and strategies. It defines control 

chart under the assumption of normality and discusses the effects of non-normality on 

control chart, the source of process variation i.e. common cause and assignable (special) 

cause, Average Run Length (ARL) and the hypothesis test used in SPC. In addition, it 

reviews the capability index, multivariate control chart and mixture distribution, in 

normal situation.

Chapter three introduces control chart methodology for non-normal situation and the 

effect of non-normality on control chart. Some techniques dealing with non-normal 

situation e.g. Q-chart, Box-Cox transformation are considered. Finally, quantile 

approach is introduced to deal with the non-normal situation of quality control chart.

Chapter four provides the theoretical development of quantile approach for continuous 

and discrete distributions. For continuous distributions, Uniform, Extreme-value, 

Exponential, Logistic, Weibull, Power and Pareto are considered. For discrete 

distributions Geometric is discussed.
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Chapter five is dedicated to developing the theoretical aspects of quantile approach, 

which have been discussed in chapter four, in order to construct quality control charts 

for non-normal situation.

Chapter six discusses the capability index for non-normal situation, using quantile 

approach. It also discusses the performance of control charts using average run length 

(ARL) in chapter seven. Chapter eight, extends the quantile approach to dealing with 

the multivariate control chart and its applications.

Chapter nine, provides the quantile control chart for mixture distribution and its 

application. A conclusion of the thesis and future work in this area, are presented in 

chapter ten.
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Chapter 2: Literature Review for Statistical 

Process Control

2.1 Introduction

The idea of using statistical methods for quality improvement easily extends to the 

general problems of process improvement. A good way to approach any of these 

problems is to define performance, measure it, determine the special causes of poor 

performance, and monitor it, which would result in continuous improvement in quality. 
Such approaches are generally known as Statistical Process Control (SPC), Carlyle, et 

al  (2000); Montgomery and Woodall (1997).

Control charts and other related techniques for statistical process control monitoring are 

in widespread use. The last 20 years have seen increasing emphasis on statistical 

process control, as practical approach for reducing variability in industrial processes. 

Control charts and other related methods for process monitoring are discussed, as 

Multivariate quality control in Kourti and MacGregor (1996), Sullivan and Woodall 
(1996), Mason ef ai  (1997) and Tracy, et ai  (1992). Autocorrelated data has considered 

by Faltin, et aj. (1997) and Zhang (1998). For Shewart control chart, various 

contributions can be seen in Woodall and Montgomery (1999), Amin and Ethridge 
(1998), Palm, ei ai  (1997), Chen (1996), Montgomery (1997), Wood (1995), Patel 

(1993) and Rigdon, ef ai (1994). Economic design and related issues are discussed in 

Keats, et ai (1997). The relationship of Statistical process monitoring and direct process 

adjustment through engineering control, Integration and comparison of SPC and 

Engineering Process Control (EPC), are also discussed in Montgomery, et at. d994), 

Box, et ai (1997) and Box and Kramer (1992). In addition, Capability Process Index is 

discussed in Palar and Wesolowsky (1999), Kotz and Lovelace (1998), Rodriguez 

(1992) and Kane (1986).
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Statistical Process Control (SPC) have several major tools which can be applied to any 

process. They are, histogram or stem-and-leaf display, check sheet, pareto chart, cause 

and effect diagram, defect concentration diagram, scatter diagram and control chart. 

This research is mainly concerned with control chart which monitors process and 

improvement. We believe it is a useful process monitoring technique when an unusual 

source of variability is present, i.e. when the sample average values lie outside the 

control limits. This provides a signal that the process must be investigated to undertake 

corrective action

2.2 Statistical Process Control

Statistical process control (SPC) is part of a statistical quality control (SQC), which 

provides a system of quality control used in place of industrial or other operations.

The purpose of SPC is to control a process in an ideal status with respect to a particular 

product specification (Chen, 1996). A widely used process indicator is its output 

distribution characterised by the mean and variance. If the values of mean and variance 

are within prescribed limits, the process is operating in-control state. An assignable 

cause of variability may result in a shift in mean or variance, or both to an out-of- 

control state, and thus lead to a defective product, downtime, costly corrective resulting 

in action. SPC uses the process information from samples to identify process shifts, and 

to initiate timely remedial actions. SPC aims to maintain a process in its ideal status and 

keep product quality loss at a minimum during production. Furthermore, the objective 

of SPC is to monitor the performance of a process over time in order to detect any 

unusual events that may occur. By finding assignable causes for these events, 

improvements in the process and in the product quality can be achieved, by eliminating 

the causes, improving the process or its operating procedures, (Kourti and MacGregor, 

1996). The purpose of statistical process control (SPC) is to find as many sources of 

variation as possible and then eliminate them. When stable process with small variation 

is achieved, the target is to maintain or, if possible, improve the process even further. In 

these cases, it is often not possible to make improvement by eliminating sources of 

variation. Instead, a creative change in the process structure is need.
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In addition, one of SPC's major concerns relates to quality management, which is to 

decrease costs by improving process quality. Usually, process quality can be improved 

by reducing output variability or the process failure rate, or both. This is in order to 

quickly detect the occurrence of assignable causes or possible shift, so that investigation 

of the process and corrective action may be undertaken, before many nonconforming 

units are manufactured.

Usually, statistical process control uses control charts for monitoring the evolution of a 

manufacturing process: upper and lower control limits are computed, and if the process 

operates outside these limits, it is declared out of control and a search for an explanation 

of this abnormal behavior is initiated. An important tool in statistical process control for 

finding assignable causes and for monitoring a manufacturing process is the use of the 

control chart.

2.3 Control Chart

A control chart is a graph of a quality measurement, plotted against time with control 

lines superimposed to show statistically significant deviations from the normal level of 

performance. Any significant deviations are assumed to correspond to assignable or 

special causes, which deserve investigation. A large number of different control charts 

are discussed in the literature. Each of these charts has the same underlying format but 

embodies a different statistical model. Control charts can be used for two main 

purposes. Firstly, it gives an indication of how the level of performance varies with 

time. Secondly, it monitors improvement, (Wood 1995). Control charts are the basic 

statistical tools used to monitor and control processes. They can be easily constructed, 

visualised and interpreted.

The basic Shewhart x  or x-Chart for monitoring the mean of a process, consists of a 

centre line at the historical process level, upper and lower control limits. Sample means 

are plotted over time. An out-of-control signal is given when a sample mean falls 

beyond the control limits. The control limits are most often set at + 3G from the 

centrelines, where sigma is estimated standard error of the sample means. Other
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methods have been proposed to improve sensitivity to small and moderate sized shifts in 

the mean. In particular, runs rules have been used to signal for other unusual patterns on 

the chart, such as having eight sample means in a row either all above or all below the 

centreline. Runs rules improve the sensitivity, but also increase the number of false

alarms. Some of these run rules, which are useful with an J  chart in detecting a small 

sustained shift in the mean, such are rule 1-of-l, rule 2-of-3, rule 4-of-5, rule 9-of-9 an 

so on, For more details, see Nelson (1984) and Lucas and Saccucci (1990).A typical 

Shewart control chart is shown in figure 2.1.

U p p er  C ontrol Limit

In-C ontrol P o in ts

Central C ontrol Limit

L ow er C ontrol Limit
O u t-o f-con tro l poin;

0 5 10 15
S a m p l e  N u m b e r

Figure 2.1 Shewhart Control Chart

In practice, Shewhart charts have been widely used for process monitoring because of 

an interest in involving production operators in quality improvement and the feeling that 

they cannot be trained to use other charting methods. Lucas (1976), Crowder (1987) and 

Lucas and Saccucci (1990) have shown that CUSUM and EWMA charts provide faster 

detection of small step changes than a non-modified Shewhart chart without an increase 

in the false-alarm rate.

Control charts for individual measurements are often used when production volume is 

too low to justify subgrouping or when automated inspection equipment is used to 

measure every unit produce. Montgomery (1997) considered control charts for 
individuals measurements, and Rigdon, ei ai (1994) suggested that the Individual
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control limits should be based on a short-term estimate of the process variability, such 

as the moving average, rather than a long-term estimate, such as sample standard 

deviation of the process.

The primary purpose of a control chart is thus to quickly detect whenever a change has 

occurred in a process resulting in an alteration in the mean value or in the dispersion. 

Control charts may be used to estimate the parameters of a production process and 

process capability through this estimate. The control chart may also provide useful 

information for improvement of the process. The eventual goal of statistics process 

control is the elimination of variability in the process. It may not be possible to 

completely eliminate variability, but the control chart is an effective tool in reducing 

variability as much as possible.

In application of statistical method to quality engineering, it is very important to classify 

data on quality characteristics as either variable or attribute data. Attributes data are 

usually discrete measurement, often taken the form of counts. On the other hand, 

variable data are usually continuous measurement, such as length of stay. Most of the 

work in this thesis will dealing with variable data.

The essential idea of a statistical control chart is that a reference distribution of ‘usual 

background noise’ may be obtained by pooling experiences from groups of 

observations, called rational subgroup taken over short periods within which the process 

is judged to be stable. Continuous comparison of current with control limits based on 

this reference distribution can lead to the detection of unusual and undesirable 

distributions. Moreover, the idea of a control chart is to take a number of units produced 

by the process at regular intervals and check one or more characteristics of them. This 

information is then weighed together in a suitable manner, for instance to an arithmetic 

mean or to a standard deviation, and plotted in a diagram. Not only is the process 

variation illustrated as a function of the time, but process changes are indicated too. 

Another way to increase sensitivity, is to use more information from the collected data, 

for instance by also using information from earlier plotted points in the chart. Control 

charts are widely used in manufacturing to distinguish between variation that is inherent 

(common) to the process and variation that signals a special (assignable) event or 

problem.
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2.4 Source o f Process Variation

A control chart is a statistical tool used to study and control repetitive processes in 

industrial setting. Shewhart control charts developed to help distinguish between 

variation in manufacturing that is intrinsic to the production system and variation which 

is due to external factors. In many production processes, there are many small sources 

of variation that are inherent in the system itself, which are summarised under the name 

chance (common) variation. In addition, there is variation that is relatively large and can 

be assigned to a particular cause, and this is called assignable (special) variation.

A system that only exhibits chance variation is said to be in statistical control; 

otherwise, it is out of control. There are many types of control charts for different 

situations, such as individual control charts, x-bar control charts etc. Control charts have 

upper and lower control limits, often placed three standard deviations from the average. 

If an observation falls outside these limits, it is considered to be a signal that the process 

is not in control. These upper and lower control limits are based on estimates of the 

mean and variance of the process when it is in statistical control.

The ability to separate special/common cause of variations within a process, has enabled 

management to analyse data and take the necessary actions to improve quality and 

productivity, at economical cost levels. The basis of such improvement, however, is in 

the selection, application and interpretation of statistical data generated through the use 

of the correct type of control charts, (Patel, 1993).

A widely used process indicator is its output distribution characterised by the mean and 

variance. If the values of means and variance are within prescribed limits, the process is 

operating in an in-control state. An assignable cause of variability may result in a shift 

in mean or variance or both, to an out of control state, and thus lead to a defective 

product, (Chen, 1996).

Variation remaining in a stable process reflects common causes, which cannot be 

removed easily from the process without fundamental changes in the process itself. If 

the underlying probability distribution of the quality characteristic is stable over time, 

the process is said to be in statistical control. One purpose of a control chart is to detect 

unusual variation due to assignable causes. When the control chart signals the possible
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presence of an assignable cause, an effort is made to find and remove it from the 

process, if this action is to reduce variability or improve quality. It is also important to 

detect improvements in process performance, (Woodall and Montgomery, 1999).

2.5 Hypothesis Testing in SPC

There is a connection between hypothesis testing and control charts. Suppose that the 

vertical axis in figure 2.1 is the sample average (process, say). If the process points lie 

between the control limits, we conclude that the process mean is in-control and the 

processes have the same mean and average over time. On the other hand, if the process 

points exceed control limits, then we conclude that the process mean is out-of-control. It 

indicates that the process being monitored by SPC control chart, does not have the same 

mean and variance over time. There is significant evidence that the process is not in- 

statistical control. Two kinds of error can be occur in testing hypotheses, the first is 

commonly called a type I error (a) , which occurs, if the null hypotheses rejected when 

it is true. The second error called a type II error (ft), it takes place, if the null 

hypotheses is not rejected when it is false. In quality control studies, a  is called the 

producer's risk and p  is called the consumer's risk.

2.6 Capability Index

The concept of process capability was introduced by Juran et al. (1974), but did not 

gain considerable acceptance until the early 1980s. The concept enhances the idea of 

achieving a process output with minimal variation centred at a target value. Juran 

realised that there was a need in industry for the development of a single ratio or index, 

in order to compare the specification interval with the actual process variation.

USL — LSLTherefore, Juran defined the first process capability index C as C = -------------- ,
6a

where USL and LSL are the Upper and Lower specification limits, respectively, and a

is the standard deviation of the process. The general idea of Cp is to understand what

the process is actually doing, in order to reflect the usability of the product, by 

controlling the process.
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Juran & Gryna (1993) and Montgomery (1997) suggested that the purposes of Process 

Capability are to:

« Meet or exceed the customer need.

• Predict how well the process will hold the tolerances.

9 Assist product developers/designers in selecting or modifying a process.

• Assist in establishing an interval between sample for process monitoring.

• Specify performance requirements for new equipment.

• Select between competing vendors.

0 Plan the sequence of production processes when there is an interactive effect of 

processes on tolerance.

0 Reduce the variability in a manufacturing process.

The process capability indices are appropriate only when measurements of the process 

data are independent, normally distributed and statistically process control. For various 

development of rules, confidence limits for r  , r  > C > C and various
p  p k  pm  p m k

assumption, see Kane (1986), Bissell (1990), Chou et ai (1990), Boyles (1991) and 

Rodriguez (1992) and Gilchrist (2000).

Process capability indices are numerical values capable of demonstrating the 

relationship between the customer specification and the process variation. If the process 

follows normal distribution, then r  , r  and r  can be obtained as follows:
p  p k  pm  ^  pm k

The Cp index
The q  index measures potential capability of the process, assuming that the process

average is equal to the midpoint of the specification limits and the process is operating 

under statistical control. Here q  only provides the process variability G without

indicating any sensitivity of the process departure.

The process capability index q  relates the allowable (tolerance) process speed to the 

actual (natural) process spread in the form of a ratio
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£  _ allowable process variability _ USL -  LSL 
p actual process variability 6a

Supposing the process follows normal variation and the process is exactly capable i.e. 

C = 1 , then the process target is at the midpoint of specification limits

^  A USL+LSL T arget=------------

The probability of obtaining a value outside the specification limits is 

2<p(—3C  ) =0.0027, where cp( ) denotes the standard normal cumulative distribution

function. When q  =1, the Upper Specification Limit (USL) and Lower Specification

Limit (LSL) equal the Upper Control Limit (UCL) and Lower Control Limit (LCL), 

which means that the variability of the distribution is exactly the width of the 

specification interval (for instance, Kane (1986)).

The actual process spread is taken to be six-sigma, which is represented in normal 

distribution, i.e. the width of the interval contains 99.73% of the population. The 

difference in the specification limits is used to indicate allowable process spread. The 

allowable process spread is considered fixed, while the actual process spread must be 

estimated.

q  was considered as a measure of non-conforming product. If q  is one, which

represents 2700 parts per million (ppm) non-conforming, while 1.33 represents 63 ppm,

1.5 represents 7 ppm, 1.66 represents 0.6 ppm and 2 represents 0.0018 ppm. These 

results are correct if the process measurement arises from a normal distribution (see 

chapter 6  for non-normal situation). A minimum value of q  =1.33 is generally used for

an ongoing process, (see Juran, Gryna and Bingham 1979, pp. 9-22). If the value of six- 

sigma is less than the tolerance, the process is capable of meeting the specification, and 

if not, then process is incapable of meeting the specification.
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The Cpk index

In the previous section, q  assumes that the process has both upper and lower

specification limits. It does not take into account the possibility that the process mean 

H may differ from the centre (midpoint) m  • If // ^  M  > then the value of q  =1 will

correspond to an expected non-conforming proportion, greater than the nominal 0.27%. 

To avoid this situation( i.e. Cp X a C k index is more suitable to use. It is better to work

with q  , because it represents both the spread and location of the process. Kane (1986)

used the terms of process potential and process performance indices for r  ^ d  C
P Pk

respectively.

Cpt = min(Cpu, Cp, ) = (1 -  k)Cp

where

USL-ft  USL-T
3cr 3cr

jj-LSL T -L S L

1 -

k =

3cr

2 \ T - n \
USL-LSL

3cr
1 -

\t - m\
USL-T

1 T ~»\ ' 
T - L S L

0 < k < \

has been suggested for symmetric tolerance i.e. 7  = ^ . If the process is on-target then 

k= 0  (i.e. 7  -  jj,)>

The is one side of the q  specification limit nearest to the process mean. The value

of q  does not determine the probability of non-conformance. It does, however,

provide its limits, and in fact, the probability of non-conformance is never more than 

2(j){-2>Cp) • C k yield-based and is independent of the target T. This fails to account

for process centring with symmetric tolerance, and presents an even greater problem 

with asymmetric tolerance (see, Peam and Chen (1998)).
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The goal o f  C k impossible to meet when source of variability in a measurement 

error is large (Herman (1989)). However, q  provides a meaningful measure of process
pk

quality, when a process is not in statistical control, q  k should not be computed by

either method if the process is unstable, because without statistical control, a process is 

unpredictable (Gunter (1989)).

The Cnm indexpm

A capability index can also be calculated around a target value rather than the actual 

average. This index called r  or the Taguchi index, focuses on reduction of variation
pm

from a target value rather than reduction to meet specifications. See Chan et ai  (1988), 

Peam ef ai (1992), Boyles (1991), Spiring (1991) and Kane (1986) for more dissuasion.

Chan, Cheng and Spiring (1988), proposed the index

C =^  p m
USL-LSL USL-LSL USL-LSL

6o-' 6 ^ E [ ( X - T ) 2] 6̂ <t 2 + ({ i -T )2

CDm =pm

cr cpk

1 + Cu - T ) \ 2
1 - L , (M-T)

According to r  above, if the process variance increase or decrease, the denominator
pm

of r  increase or decrease too, and r  will decrease or increase. If the process drifts
^  pm  ’  ^  pm  r

from its target value, the denominator of r  will again increase, causing r  to
pm pm

decline. When the process mean and process variance change, the r  index changes as
pm

well. Note that the quadratic term (^  - T ) 2 reduces the value of the index, as a penalty 

for lack of co-ordination between the process and the desired results.
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Parlar and Wesolowsky (1998) have noticed that r  r  and C are related by the
p  ’  p k  ’  ^  pm

formula

\ 2

pm  J

- 1

then

c _  = C'pm
J i+ 9 (c p - c pty

Accordingly,

c„ >max(Cpt,Cpm)

The Cpmk Index

The third generation index q  k was introduce by Peam ef a\ (1992). Cpmk 

constructed by combining the modification of q  that produces q  k and q  . Cpk 

obtained from q  by modifying the numerator; q  is obtained by modifying the 

denominator of r  - I f  the r  and r  are combined then r  is produced as
'■'pk pm ° p m k

follows:

mm(USL LSL)
3jo-2 + ( p - r y

c pk

1 +
/  rr\21 j u - T '

d - \ p - M \  

d J Pm 34<j2 + ( p - T y

The concept of variation about the target provided by Hsiang and Taguchi (1985) as

r 2 = cr2 + ( / / - T ) 2» which illustrate that r 2 incorporates two variance component, 

variance about the process mean and variance of the process mean about the target. The 

term (jj- T ) 2 in the denominator may be viewed as an additional penalty to lack of 

process quality, i.e. the departure of process mean from target. This penalty ensures that 

C will be more sensitive to departure than r  and therefore r  is better for
^  pm k  ° p k  pm k
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distinguishing between off-target and on-target processes. Wallgren (1996) found that 

the advantage of q   ̂ is having more sensitivity to deviations from target than q  or

C • Vannman (1995) compared r  index to r  , r  , r  and found that r  is
^  pm \ / r  ^  p mk 5 ^ p k ’ ^  pm pmk

more restrictive, with regard to process means deviation from the target value, than the 

other indices.

In most statistical literature and quality assurance, distribution of properties of indices 

discussed above, are investigated under the assumption that the process measurement 

arise from normal distribution. However, in the real situation, most of the process data 

is non-normal distributed, (Clement, 1989) and (Gunter, 1989). The process capability 

indices for non-normal situation will be discussed in chapter 6 .

2. 7  Average Run Length (ARL)

The run length of a control chart is defined as the sample number until a signal is issued 

by the chart and the expectation of run length is commonly defined as the average run 

length (ARL). ARL will be large when the process is in-control and small when the 

process is out-of-control.(Gan, 1996)

ARL is the average number of points that must be plotted before a point indicates an out 

of control, where the run length is the number of samples required to obtain a signal.

For normal situation or Shewhart control chart, the run length of the basic J  chart is 

geometric random variable with expected value

ARL = -  
P

where p is the probability of any point plot out-of-control chart, i.e. the probability of a 

signal at a given time period when the process is in control, (see Quesenberry 1995c).

For x -chart or individual chart with 3 q- limits, p=0.0027 "3.09cr limit, p=0.002 in 

British Standard" is the probability that a single point falls outside the limits when the 

process is in control. The number of observations until an observation falls outside of 

the control limits is geometrically distributed since the sample statistics are independent. 

So, the ARL of the control chart when the process is in control, i.e. normal situation, is
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370 samples "500 samples for British Standard", that means, on the average, if the 

process remains in control, an out of control signal will be generated every 370 samples. 

These run length properties are calculated under the conditions of normality.

Optimum design criteria for EWMA control chart can be found from Crowder (1987) 

and Lucus and Saccucci (1990) who derive theoretical properties for the chart in order 

to ARL. The latter compare EWMA chart to the CUSUM chart, concluding that there is 

little difference between them.

2.8 Multivariate Control Chart

Control charts play a very important role in industrial situations for monitoring 

processes. Multivariate control chart is necessary when monitoring of several correlated 

quality characteristics simultaneously is desired. Traditional multivariate control chart 

based on f 2 statistics, which are very effective for detecting events, when the 

multivariate space is not very large, (Kourti and MacGregor, 1996).

Many of the concepts of multivariate quality control are associated with Hotelling 

(1947). Several approaches to multivariate control chart have been discussed in the 

literature such as economic design, can be found in Alt (1985), chart based on principle 

components can be found in Jackson (1980,1981a, 1981b, 1985), Ryan (1989) and 

Montgomery (1997). Jackson (1985) proposed using principle component analysis 

(PCA) for selecting the problem variables. The PCA technique decomposes the 

j 1 statistic into a sum of independent squared principal components, which are linear 

combinations of the original variables. These principle components must be examined 

to see why the process is statistical out of control.

Kourti and McGregor (1996) provide a newer approach based on PCA. j 2 is expressed 

in terms of the normalised principal component scores of the multinormal variables. 

When an out of control signal is received, the normalised scores with high values are 

detected, and contribution plots are used to find the variables responsible for the signal.
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Alloway (1994) have considered the accuracy of multivariate control charts. The latter 

can be improved through a three step graphic process: identify and remove outliers, 

examine the distribution of the data relative to assumptions and use alternative 

approaches if the assumption of normality is not justified.

The values plotted on multivariate control charts are usually statistical based on his 

well-known Hotelling’s f 2 distribution. This distribution is the multivariate counterpart 

to student's t distribution. The multivariate j 2 chart is particularly appropriate when the 

characteristics of interest are correlated.

In constructing the multivariate control charts, it is assumed that the covariance matrix 

is constant over time. One of the visual method for checking this assumption is to 

monitor the process variability.

An obvious idea is to consult the corresponding univariate control charts when a 

multivariate control chart signals that the process is out of control. Two aspects must be 

considered. Firstly, the overall significance level of the simultaneous use of p univariate 

control charts is difficult to determine. Secondly, it is not necessarily one quality 

characteristic that causes an out of control situation.

Development of Multivariate Control Chart

The SPC approach for process monitoring, currently in practice in several industries, is 

to chart a small number of variables, usually the final product quality variables, and 

examine them one at a time. However, when the quality of a product is defined by more 

than one property, all the properties should be studied collectively. Multivariate SPC 

charts developed for this purpose have been based on the %2 statistics or on Hotelling 

jr2 statistic.

Assume that the p-quality characteristics are jointly distributed as a p-variate normal 

and that a random sample of size n is available from the process. The likelihood ratio 

test of h o : ju = ju0 vs- H x:ju* /jq specifies that the null hypothesis be reject if
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x 2 = O- Ao)' Xo' ( x ~  Mo)> X 2«.p

Where % denoted the (Px 1) vector of sample mean and %2ap is corresponding 

j 2 -percentile. Plotting the value of %2 versus time with an upper control limit (UCL) 

given by %2atP, where a  is an appropriate significance level for performing the test 

(e.g. a = 0.05 or 0.01). The %2 statistic represents the direct or weighted distance 

(Mahalanobis distance) of any point from ^ . If ^ 2 statistic plot above the upper 

control limit, the process mean is out-of-control, and assignable causes of variation are 

sought. For the two quality characteristics, an elliptical control region, centred at ^ ,

can be used in place for %2 -chart.

When the in-control covariance matrix £ is not known and must be estimated from a 

limited amount of data, it is suitable to plot Hotelling f 2 statistic given by

T 2 = (x -  x)' s ' 1 (x -  x)

Where s is an estimate of covariance matrix £ . An upper control limit t 2cl is then

obtained based on the F distribution and will depend upon the degree of freedom 

available for the estimate s, (Wierda, 1994a).

There are two distinct phases in constructing control charts, Alt (1982, 1985). The first 

phase, which offers a retrospective view, involves testing whether the processes were 

in-control, when the initial individual or subgroup data were collected on the process. A 

subgroup represents a sample of observations taken at some point in the process, such as 

a sample taken during a specified time period. This phase is often termed the start-up 

stage of the process for the purpose of obtaining a set of data to establish the control 

limits for monitoring purposes. The goal of this stage is to establish statistical control 

and find accurate control limits for stage two. The second phase consists of using the 

control chart to maintain control, that is, detecting any departure from the process 

standards as future subgroups are drawn. The multivariate f 2 statistic is often utilised 

as the charting statistic for both phases of control chart construction.
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The phase 1 control limits for the p 2 is given by

_ p(m - l)Q i- l)
U L / L  —  , ,  r a , p , m n - m - p + 1m n - m -  p  + 1 
LCL = 0

chart is used for monitoring future production, the control limits 

r  p(m + l)(n -1) ^
.  r a ,p ,m n - m - p + 1m n - m -  p  + 1 

LCL = 0

where 77 is Snedecor's F with y and y degree freedom, p is the number of quality
Vi ,V2 1 2

characteristics , m is number of preliminary sample and n is size of preliminary sample.

When n  and £ are estimated from a large number of preliminary samples, it is 

customary to use UCL=^2ap as the upper control limit in both phase 1 and phase 2. 

Retrospective analysis of the preliminary samples to test for statistical control and 

establish control limits also occurs in the univariate control chart setting. For the j  - 

chart, it is well known that if we use m >20or 25 preliminary samples, the distinction 

between phase 1 and phase 2 limits will nearly coincide, (Montgomery, 1997, pp: 366- 

367).

Multivariate control chart for individual case i.e. n=l

This case always occurs in the chemical and process industries. Since these industries 

frequently have multiple quality characteristics that must be monitored, multivariate 

control charts with n=l.

Suppose that m sample (preliminary sample), each of size n=l are available, and that p

is the number of quality characteristics observed in each sample. Let x  and s be the 

sample mean vector and covariance matrix, respectively, of these observations. The 

Hotelling p 2 statistic in the above becomes

T 2 = ( x -  x)'s~l (x -  x)

In phase 2, when the 

are as follows:
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p 2 test statistic is distributed as

T * _  p ( p / 2 , ( m - p - 1) / 2 )
m

see Sullivan and Woodall (1996) and Gnanadesikan and Kettenring (1972).

Then the control limits for this statistic are suggested by Tracy ef ai (1992) as follows

UCL = * j3 (a /2 ;  p / 2 , ( m  -  p  - 1)/2)
m

( m - 1) 2 ( p / ( m -  p - \ ) F ( a l 2 \ p , m - p - l )
m I + (p  /(m — p  — I)) F ( a  /  2; p , m  — p  — V)

and

LCL  = & L J L * p ( i  _ a /2; p / 2 , ( m  -  p  - 1 )/2) 
m 

_  (in - 1) 2 ^ (p  /{pi -  p - 1) F {  1 -  a !  2; p , m -  p - Y )  
m \ + ( p / ( m - p p , m - p - I )  

where 0 ( a / 2 ;  p / 2 , ( m -  p  —1) / 2 ) and j 3 ( \ - a / 2 ;  p / 2 , ( m  -  p  - l ) / 2 )are.the 

1 _  ££ percentile of the beta distribution.

As well as control limits for a s in g le^ / multivariate observation vector and an estimate 

s based on m past multivariate are

rim  _ + „
m — mp

LCL = 0

and when the number of preliminary sample is large, i.e. m>1 0 0 , many practitioners use 

an approximate control limit

°r v a ' z %
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2.9 Mixture distribution

Mixture distribution needs when the data represented by two or more kinds of 

distribution, for example, Laplace and Normal distribution. In this thesis the author 

assumes that the data from the mixture distributions are statistically independent from 

each other.

Statistical analysis of mixture data has proved not to be straightforward, for two main 

reason. Firstly, explicitly formulae generally do not exist for estimators of the various 

parameters, so the numerical methods are required. Secondly, theoretical difficulties 

which arise in certain aspects of the statistical analysis reveal some common mixture 

problems to be non-standard .

As a result, detailed investigation of the analysis of finite mixture problems offers more 

than just a catalogue of straightforward applications of standard methods to a particular 

class of statistical methods.

In this thesis will dealing with quantile approach for mixture distribution in order to 

develop quality control chart.

2.10 Effect o f  Non-normality on control chart

One of the underlying assumptions of SPC is the use of the normal distribution. Such 

assumptions are implicit in the construction of control charts and process capability 

studies. It has long been realised that the variability associated with many engineering 

processes does not have a normal distribution. In continuous batch manufacture the 

normality assumption is often justified, but the distribution of the process variation is 

more critical when considering the sample sizes associated with small batch 

manufacture.

An unstable process can lead to a seemingly non-normal distribution. If the process 

shifted upward after two-thirds of the data were collected, then the histogram would be 

skewed to the right. A mixture of two processes could lead to the same problem. In
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these cases a transformation would be inappropriate. It is thus that the data be taken 

from a stable process.

Schilling and Nelson (1976) investigated the effect of non-normality on charts and 

concluded that the non-normality is usually not a problem for subgroup sizes of four or 

more. For smaller subgroup sizes, and especially for individual measurements, non­

normality can be serious problem.

Control charts and process capability calculations remain fundamental techniques for 

statistical process control. However, it has long been realised that the accuracy of these 

calculations can be significantly affected when sampling from a non-normal population. 

Many quality practitioners are conscious of these problems but are not aware of the 

effects; such problems might have on the integrity of their results. Use is made of the 

Johnson system of distributions as a simulation technique to investigate the effects of 

non-normality of control charts and process control calculations. An alternative 

technique is suggested for process capability calculations which alleviates the problems 

of non-normality while retaining computational efficiency, (Spedding, 1994).

In general, there is the need for widespread realisation that non-normality can be a 

major problem for a wide variety of control chart procedures. For sample sizes, less than 

five, the central limit theorem does not apply. This has been demonstrated for an

X  chart by Yourstone and Zimmer (1992), Ryan and Howley (1999), Janacek and 

Meikle (1997) , Moore (1957) and for attributes charts by Ryan and Schwertman (1997) 

and Ryan (1989).

For positively skewed data, simple transformations such as the logarithmic, cube root or 

square are often useful. If we are dealing with proportions and if binomial variations is 

found, the inverse sine of the square root may remedy the problem.

Shewhart control charts assume that the variable of interest is normally distributed. 

Often, in practice, this assumption is violated (Montgomery, 1997). The distribution of 

the variable in question may be strongly skewed, as for example when measuring the 

eccentricity of a part or hole-drilling errors in a manufactured part, (Gunter, 1991). 

Further, a test on the variable may reject the normality assumption, but use of a 

transformed variable is generally not desired, due to resulting difficulties in
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interpretation of control charts. In such circumstances, the standard method of assuming 

a normal distribution may perform poorly, especially for very skewed process 

distribution, (Burr, 1967) and (Schilling & Nelson, 1976).

The above literature review indicates that there are real problems in dealing with 

statistical process control for non-normal distributions and mixture distributions. The 

main purpose of this thesis is to develop quality control charts and capability index for 

non-normal distribution and mixture distribution which can be easily adopted by the 

practitioner of statistical process control.

Many techniques can be used to deal with the data violating the assumption of 

normality, e.g. Quesenberry technique, Box-Cox transformation, Quantile technique, 

etc. These techniques will be discussed in the following chapters. This chapter has 

identified the limitation of the small sample sizes and the transformation as well as the 

inability of traditional SPC chart to cope with mixture distribution situation. In order to 

address this problem, we will develop and use the quantile method which offers 

relatively new and generally powerful techniques for non-normal and mixture situation 

in the area of SPC.
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Chapter 3: Control Chart Methodology for Non- 

Normal Situation

3.1 Introduction
In general, Shewhart control charts assume that the set of data comes out from the 

process, following normal distribution, and the probabilities of points falling outside 

control limits, when the process is in control is 0.0027. Hence, most of SPC techniques 

have been derived and constructed from the concept of quality characteristics which 

depends on normal distribution, (see the reference of the central limit theorem in chapter 

2). In reality, often the set of data such as, chemical process data, lifetimes data and 

cutting tool wear processes are not normal. So when constructed, a control chart of * or 

r , supposes that the data is normal and the actual sets of data are not normal. 

Therefore, it will give inaccurate results of quality characteristics.

Measuring quality characteristics often involve non-normal distribution. The point 

which arises from that is the effect of non-normality on the accuracy of control limits. 

Schiling and Nelson (1976) investigated the effect of non-normality on quality control 

charts. They concluded that the effect of non-normality on quality control is not a 

serious problem, when subgroup size is four or more. There is a serious problem of non­

normality effect, faced, when the sample size of subgroup is less than four, especially 

for individual measurements. Moving range and individual measurement charts provide 

non suitable control limits for non-normal data, (Montgomery, 1997). By using the 

fourth root of the set of data, the positive skewed exponential distribution can be made 

into almost symmetric distribution, then plotted on individual measurement and EWMA 

and CUSUM for SPC, (Kittlitz, 1999). It has been discovered that the capability indices 

gives the false or inaccurate process fallout rates for non-normal data. Therefore, this 

issue for non-normality situation will be discussed in chapter 6 .
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There are some useful and validity techniques for transforming the non-normal data to 

normality situation. Therefore, it is possible to perform SPC technique on non-normal 

data. Rigdon, et al. (1994) suggest two remedies for dealing with non-normality, using a 

suitable non-normal distribution for a particular data, by physical consideration of the 

process; and seeking a transformation of the original data, which leads to an 

approximate normal distribution. From the literature search, it was found that there are 

many techniques used for such procedures. This chapter deals with some of these 

techniques, such as Quesenberry transformation or Q-Chart, Box-Cox transformation 

(1964) and Quantile Approach. In addition, there are other techniques, such as Johnson 

transformation, Pearson System and others, which will not be discussed here.

3.2 Quesenberry Technique (Q-Chart)

Statistical Transformation

In classical mathematics e.g. Laplace transformation when the original data is transform 

and a solution is found we perform an iverse transformation on the situation. Thus the 

solution refers to the original data. However, in statistics when we perform a 

transformation we model the relationships and solution in the transformation space only 

and by inference we claim that the same relationship exist in the original data. Quantile 

technique overcome this deficiency of refered to the original data at all times.

Quesenberry (1991) has suggested a new technique for short-run SPC using a 

transformation. This technique plays a role in monitoring a process mean or variance for 

a normally distributed quality variable. He refers to this technique as Q-Chart and 

defines it as being distributed approximately as standard normal statistics and is also 

approximately independent. The technique is plotted on standard normal scale, when the 

parameters are known and unknown. He notes that, the technique can be used for short- 

run and for long-run production

Q-chart concept converts independent identical distribution ;cr into independent 

identical distribution standard normal (0,1) observation Q(*r ) called Q statistics . Q 

statistics are plotted on a Shewhart chart with control limits at ± 3 and centreline at 0.
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Quesenberry uses the Q-chart for variable data x ,s  or R and for individual measurement 

of the process mean and the process variance. Both processes are discussed for the four 

cases below, which are, ( ^  known, a  known); ( ^  unknown, G known); known, 

Q- unknown) and unknown, a  unknown). Table 1 provides the Q statistics for 

individual measurement and Q statistics for sample mean, and Table 2 provides the Q 

statistics variance process for individual measurement and Q statistics for sample 

variance.

Table 1: Quesenberry statistics from sample mean

Q statistics tor individual 

measurement

Q statistics for sample meanCases

jU  known 

(j known
Q r ( x r )  =  ^ — ^ - - , r  =  1 , 2 , Q r ( x r )  =  -   > r  = 1,2,...

j  unknown 

( j  known

Q r  (x r )  =
( x r - x r_i)

Q r ( Xr )  =
CTn

n r ( n x + . . .  +  n r _l )

; r = 2,3,4...

«! +  . ..  +  n r 

r  =  2,3,...

f  -  -  ^
x r ~ Xr- 1

k °o ;

j j  known 

( j  unknown

-l
r /  \

' * r  1

01H

>

{  S 0,r-l )

-1
Qr(xr ) ~  ® yn\+...+nr

yjnr Cxr MO )
s 0,r

r  =  2,3,4,...

Slr
r j =1

r  = 2,3,...

r na

2 _ g»i M
s 0,r ~

unknown Qr(xr) = O X\tr-2
(j unknown

r - 1  j xr - x r - \
r J I sr - l

Q r ( x r ) ~ ®  \ n \  +...+/Jr_j C^V)]n \  + . . . + n r . 

r  = 2,3,...

;r  = 3,4,5,...
n r ( n x + . . .  +  n r _ l )

«! + ... + nr_j

( -  = \  
x r ~ x r- 1
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Table 2: Quesenberry statistics from sample variance

Case Q statistics variance process for 

individual measurement

Q statistics tor sample variance

a  known e r = ® " ‘-
V

*r'-

Rr ' 

= xr - x

► ’ r = 2,4,6,...

r - 1

Q A S ? )  = © -1- 

r

x l - i  

= 1,2 ,...

(»r - W ?

[ J
>

a  unknown
e r = 4 .- | = | f i iV vRr j |

[  F-2 + R% +... + R}-2 Jj

Qr (Rr ) -  ^  j/7nr +..+«r_j -r+\ (wr )] 

(Wj + ... + T27._j — V  + 1)jS'̂
r = 4,6,... v = ( r /2 ) - l (»! -1)5? +...+ («r_ !-1 )^2_!

r = 2,3,..

Quesenberry also applies the Q-chart for attributes of Binomial, Poisson and Geometric 

distributions. Q-chart can be applied for common distribution, which are used to 

describe variable and attribute data. Table 3 gives the summary of Q-chart for attributes 

of such distributions. The transform observations from such distributions are given in 

table 3, for attribute case, values plotted on standardised normal Q charts, for the two 

cases when the parameter is known and unknown before charting is begun.

By transforming the observations through such distributions function in the table 3, the 

u 's are approximately uniform on (0 ,1), and the q_'s  are approximately standard

normal distribution, N(0,1) • The values of Ql9Q2,Q3i... can plotted on a chart with

control limits at LCL=-3, CL=0 and UCL=3. The distributions function for unknown 

parameters for the results in column 3, table 3, are derived by using the uniform 

minimum variance unbiased (UMVU) estimating distribution function, where the 

UMVU of Binomial is Hypergeometric distribution, the UMVA of Poisson is Binomial 

distribution and the UMVU of Geometric distribution is Geometric distribution.
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Table 3: Quesenberry statistics for attribute

Distribution
Parameters

Known Unknown

Binomial
Uj = B{x,',n,,p) 

Qi =4>_1(»,)

ut =H(x,;t„nl,N l_l)

Qi =4>_1(«,) , i = 2,3,.. 

where N , = £ « .  and ti = £ * ,-
j .  i j - t

Poisson
ut =F(y,\ntX)

Qi = « “'(«/) ; / = 1,2,..

u, =B(yi\t„nl I N l) 

Qi=9~\ui) ; / = 2,3,... 

where N . = and t . = ^ y .
7=1 7=1

Geometric
u, =G(x,;p0) = ! - ( } - p 0)x‘ 

Qi=-®-'(ui) > i = 1.2....

u{ = G{xiti n)

e /= -® _1(«,-) > i = 2,3,...

where / = £ * .
i=1

G(x.;t,n) defines in Q95, p308

Quesenberry concludes from the distributions above, that Q-chart can be applied for 

these two cases. The interpretation of the Q-charts for the two cases, are nearly the 

same, but basic differences must be borne in mind. Q-chart for unknown parameters are 

plotted from the second sample, but no points are plotted for the first sample because, 

the parameter must be estimated from the set of data. Meanwhile, Q-chart for known 

parameters are plotted from the first sample. Quesenberry discussed some examples 

where to apply Q-chart on the distributions above. The observations plotted on these 

charts were very similar for both cases, when parameters are known and unknown.

Furthermore, Quesenberry (1995 a,b,c) discussed the properties of Q-chart for variable 

and attribute, such as the sensitivity of four test on Shewhart Q-chart and EWMA and 

CUSUM Q charts to detect one-step permanent shift of a Binomial, Poisson and 

Geometric. He found that the classic test of one point outside 3-sigma control limits i.e.
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the 1-of-l test, have poor sensitivity. Whereas, the test consisting of four out of five 

points beyond one sigma control limits i.e. the 4-of-5 test, is found to be a good test. 

The EWMA and CUSUM Q charts are most sensitive and are nearly comparable in 

overall performance.

Del Castilo and Montgomery (1994) have investigated the average run length 

performance of the Q-chart for variables and show that in some cases the ARL 

performance is inadequate. They suggested some modifications to the Q-chart 

procedures and some alternative methods based on the EWMA and a related technique 

called the Kalman filter which have better ARL performance than the Q-chart.

3.3 Box-Cox Transformation

Most statistical methods were created under the assumption of normality. Shewhart 

(1931) mentioned that most industrial measurements violate this assumption. Quality 

characteristics are always required to be normally distributed. If quality characteristics 

are not normally distributed, but the techniques are based on normality, then we will 

have inaccurate results. So, it is important to transform the data to normal situation. In 

most cases, the choice of the transformation is not obvious. For positive measurements, 

i.e. skew to the right, a family of power distribution was introduced by Tukey (1957). It 

is convenient to transform the data to normality using the formula below

y t = xf  ;A * 0  
yj = log*. ;A = 0

One of the best techniques for choosing a transformation which could simultaneously 

achieve:

1- normality of distribution

2 - constancy of error variance, i.e. independence between cell means and cell variance

3- simplicity (linearity) of the model structure
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is Box and Cox's (1964). In addition, such transformation chosen to achieve 

independence between cell mean and cell variance often has the effect of improving the 

closeness to normality.

Box and Cox suggested a useful modification for family of power transformation, which 

is defined only for positive values, using a maximum likelihood estimate of x-  

However, this technique is not a restrictive one, because a single constant can be added 

to the data if there are some negative values.

y w =y\ogy ;A = 0

Where y = (]!"_, y.) lln = exp(-Z lnyf) ;y. >0  is the geometric mean.
n

The family of power transformations are chosen, where each value is replaced by x* at 

where x  always one of the value below:

X -2 -1 -0.5 0 0.5 i 2

 ̂
— 

HII 1 1

xl

1

*,°'5

log*,

For x  =-0.5 ,0 ,0.5, the data values must all be positive. To use these transformations 

when there are negative and positive values, a constant can be added to all the data 

values, which must be greater than 0. If all the data values are negative, the data instead 

should be multiplied -1. However, in this situation, data suggesting skewness to the 

right would now become data suggesting skewness to the left.

Box-Cox transformation has found more practical utility in the empirical determination 

of functional relationship in a variety of fields, (Sakia, 1992). This method is almost 

applicable for most positive skewness data. The disadvantage of Box-Cox 

transformation is that it works only with non-negative and non-discrete distribution.
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3.4 New Approach

Quantile function Q(p) can be used to provide non-parametric measures of location, 

scale etc. Q(p) can be applied for continuous and discrete random variable. 

Unfortunately, Q(p) does not exist for all points of the p th quantile in case of discrete 

random variable, but it gives general indication on the attitude of set of data. Q(p) is 

defined as the inverse of distribution function of the random variable. So quantile 

function is defined as Q(p) = F~1(p), 0 <p < l >  the sample quantile function 

define as

Q(p ) = f- \ p ) = x, < P < - -
n n

The density quantile function f(Q(p)) can be obtained by deriving the quantile 

distribution function

P = F(Q(P)) 3.1

where and q q  are the inverse function of each other.

Differentiation (3.1) in respect to p

1 = f(x)q(j>) ; x = Q(p)
then

f ( x )  = \lq(p)

is the density quantile function. So a plot yy*) against x  = Q(p) , will give the desired 

density plot. For more details see Parzen 1979.

Assessment of the suitability of the normal situation for a set of data is provided by 

quantile-quantile plot, (theoretical quantile q vs. empirical d a ta ^ ) .  If the

distributions are nearly the same, then quantiles will be nearly the same.
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Quantile population q  for standard normal distribution N(0,1) are defined by

P ( X < %)) = Pu)= - f -  
n + l

If the data follows a normal distribution, the plotting of theoretical quantile against 

observed quantile will be approximately linearly related. If the plotting of data does not 

give linear, then the derivation from this line will reveal how the distribution differs. So, 

the quantile approach for non-normal situation is discussed here.

For non-normal distribution, data can be transformed to normality, by using the square 

root for all random variable, Somerville and Montgomery (1996) or by taking the fourth 

root of the data, Kittlitz (1999). Moreover, some authors have recommended the use of 

distribution of power family or its extension, as done by Box-Cox (1964). On the other 

hand, Quesenberry technique (1991) can be used for common distribution, in order to 

deal with non-normal data.

The advantage of the quantile method is that it is very simple and fully applicable and 

can be easily used by a practitioner. Quantile approach also plays a very important role 

in continuous random variable.

So in the following two chapters, we will concentrate on the development of quantile 

approach for non-normal situation. In addition, we will discuss the theory of quantile 

approach for non-normality for various distributions, and then create the quantile 

control chart for some of these distributions.
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Chapter 4: Theoretical Development of Quantile 

Approach

4.1 Introduction

Statistical process control techniques are widely used in industry for process monitoring 

and quality improvement. Various statistical control charts have been developed to 

monitor the process mean and variance. Traditional SPC methodology is based on the 

fundamental assumption that the process data are statistical normal distributed. 

Although, the process data are always non-normal distributed, (see Box and Luceno, 

1997, p.6 ). For example, Chemical reactions follow Logistic; Bulb life follow Weibull, 

Power, Lognormal; Mechanical properties of material follow Extreme-value, etc.

As discuss before, the effects of non-normality on quality control charts have been 

suggested by Schiling and Nelson (1976), and concluded that the non-normality is 

usually not a problem for subgroup size of four or more. But for small subgroup size 

and especially for individual measurements, non-normality can be a serious problem. 

There are two ways of dealing with non-normality: firstly, using an appropriate non­

normal distribution for the particular data suggested by the physical considerations of 

the process charts for the Weibull distribution (see Nelson, 1979) and secondly, seeking 

a transformation of the original data that results in an approximate normal data, such as 

the Box-Cox transformation, SPC Q chart proposed by Quesenberry, (1995) and the use 

of distribution families, e.g. Pearson, Johnson.

In recent years customers have exerted enormous pressure on organisations to improve 

the quality of their products and services. As a result, many organisations have 

implemented various quality improvement processes, as part of their everyday business 

activities. Some of these improvements are due to the application of statistical process 
control and process improvement methods (Blache et ai  1988). Due to complexity of
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data, it is sometimes difficult for people to interpret the various approaches of statistical 

process control, especially when they are modified with the help of various 

transformations (DuBois ei ai  1991).

It is desirable that the data for statistical control charts be normally distributed. 

However, if the data is not normal, then a transformation can be used to produce a 

suitable control chart. A control chart is proposed which monitors the conformance of a 

sample using the quantile or inverse cumulative distribution function. This method also 

helps to detect changes in the distributional shape, which may be undetected in control 

charts that are based on summary statistics.

A successful quality improvement process must be based on proper interpretation of 

statistical data and quality improvement methods. In this chapter we will be discussing 

quality improvement process through quantile distribution. In doing so we will first 

discuss the quantile process of monitoring and control, then develop a quality control 

chart for this purpose using the median rankit.

4.2 Quantile Approach

Tukey (1960) has introduced a family of random variables defined by the 

transformation

xf = [ p x - ^ - p f V X  4.1

where p is a uniformly distributed random variable on (0 ,1) and — oo -< /L -< oo • It can 

be shown that the rectangular and logistic distributions are also members of the above 

family. For example a limiting form of (4.1) when ^  Q is given by

xp = In p -  ln(l -  p) 4. 2

45



where x  is known as the quantile function o f logistic distribution. Location and scale

parameters could be introduced to obtain the Generalised Lambda Distribution (GLD), 

which is also true for all quantile distribution function. One of the important aspects of 

the lambda family is that the percentage points are available directly for use (Joiner & 

Rosenblatt, 1971).

Various distributions about Generalised Lambda Distributions (GLD) can be found in 
Shapiro & Gross (1981), Ramberg and Schmeiser (1972) and Ramberg & ai  (1979). 

However, a new quantile distribution can be obtained by using the inverse function of 

the generalised lambda distribution. For example, in GLD, a new quantile distribution, 

which is an extension of Tukey lambda distribution, Ramberg and Schmeiser (1974), 

can be obtained as follows

~ { \ - p ) l '} IX 2 - , Q < P < 1  4.3

where the range of r  can be determined by setting p=0 and p= l. Range of x  values
p

are discussed in Ramberg (1974), e.g. if X2, A, and ^ a re  all-negative and x 2 -» 0 then 

the range is (_oo,oo)-

In equation (4.3), if p is a uniform random variable, then x  will have a GLD. The 

skewness and peakedness of the GLD can be determined by ^  and x4 and. the scale by 

X2. The location of GLD can then be given any value using appropriate choice of xi • 

However, if the GLD is asymmetric ( x3 ^ X4)> then its expected value will not be equal 

to xi as is the case with the symmetric situation. Furthermore, if x3 =A4> the original 

lambda distribution will be given, i.e. symmetric random variable.

Tukey’s lambda distribution in a generalised form provides an algorithm for generating 

unimodel asymmetric random variables. This can also be generalised by using three or 

four parameters in the unimodel asymmetric distribution.
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Suppose x be a random variable with a distribution function F. The root of equation

F(xp) = P = prob(X < xp) 

is called the p-th quantile of the distribution F(xp ) • The p-th quantile is also called the 

lOOpth percentile. The p .-th percentile of the population described by the distribution 

Q(p) is simply Q(pt)> where lOO/?,-^ is a suitable percentage. The root of the above 

equation, for p=0.5, is corresponds to the median of F, and for p=0.25 and p=0.75 

which correspond to the lower and upper quantiles of F.

Here, the inverse cumulative distribution or quantile distribution Q (p) can be expressed 

as follows

= Q(P) = F~\p)  = [x : F(x) = p i p e  (0,1)

Here, F (x), f  (x) and Q (p) (i.e. cumulative distribution, density function and quantile 

distribution, respectively) can be used as alternative starting points for defining 

distributions (Parzen, 1979). Quantile density function is defined as

/(GOO) = i/*Q 0

Kanji & Arif (2000) have shown that the quantile approach can be used to develop the 

quantile distribution, which can be used to develop a control chart. For example, if we 

consider a distribution with parameters X^rpQ where q represents one or more 

parameters, e.g. Weibull, Pareto, Power, then Q(p) is

Q(p) =  ^  +  t jR(p;  0 )  4.4

can be defined as a quantile distribution. A standard quantile distribution can be 

expressed as

x - X  
 = R(P,0)
n

where x  an^ 77 as location and scale parameters, and R(p,0)  depends on the 

parameters (e.g. skewness, shape).
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Furthermore, a quantile distribution, which requires only two parameters (i.e. location 

and scale parameters), can be expressed as

Q(,P) = A + t}R(p) 4.5

where R(p) does not depend on the parameter (#). Distributions such as Exponential, 

Extreme value and Uniform belong to this category.

Probability rules for Quantile Approach

Various properties of the quantile distribution function (QDF) can be described as 

follows:

• ^  Q\ (p ) anc* Ql (p ) are then Qj (p) + Q2 (p) *s a ŝo QDF. This follows from the 

simple fact that all we require of a QDF is that it is a non-decreasing function of p.

9 If the product of the two is inherently non-decreasing QDF then the q  * q2 (p) =

Q(p) is also QDF.

•  The distribution ^ = -Q(\ -  p) is the reverse of the distribution x _ q ^  .

In some situations QDF is heavily biased or weighted towards a specific tail area. For 

such situations, it is necessary to look at the tails separately in order to apply a suitable 

one-tailed model. However, for some of the standard distributions, a simple 

transformation gives a linear QDF.

For example, let us consider some continuous distributions, such as Logistic, Uniform, 

Exponential, Extreme-value, Weibull, Power and Pareto, to construct the quantile 

function for each of them.
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4.3 Quantile Function for Logistic Distribution.

The density function of logistic distribution is define by

f i x ) -  eXpW  2 ; -OB< x < CO 4.6
(1 + exp(x))

and the Cumulative Distribution Function (CDF) in general is

F{x) = \ -  1
1 + exp(x)

Then

F (X(P)) = P = prob(X <xp) = prob{x -< Q(p))

where x  = Q(p) is the Quantile Distribution Function (QDF), i.e. the QDF is the 

inverse of the CDF

F(xp) = P = 1 - - --------------- ; />e(0,l)
1 + exp(x )

Reversing this to get the QDF simply gives

l - p =  1
1 + exp(x„)

i - p

Then the basic quantile distribution function for the logistic is

Q(p) = x = \ n  p
” 1 - p

The range of the quantile distribution from p=0 to p=T is ^
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Hence, the general quantile distribution for one tail gives us the exponential quantile 

distribution from a left tail or a right tail as follows

Q(p) = A + tj In (p) or Q{p) = A + _ p))

Hence, by using the property of the quantile distribution, and adding the two tails given 

above, we can obtain the logistic quantile distribution.

The logistic quantile distribution is

Hence the range of the quantile distribution from p=0 to p=l is (_oo9 qq), and x  ■> 77 are 

location and scale parameters respectively.

Here, we have a left and a right tailed distribution, which if combined, then a potential 

model for the data will be given. A convenient form of weighting brings in position and 

scale parameters is

defining the quantile logistic function for logistic distribution (Gilchrist, 1997), 

where £ represents the skewness of Q(p).

Properties of Logistic Quantile Distribution

Some properties of the logistic quantile distribution can be derived from e.g. 4.8 as 

follows

9 Median

Q(P) = + 7(lnCP) -  ln(l -  p)) 4.7

Q(.P) = -1 + \  (O'" S) ln(p) -̂  (1 + 5) ln(l - p ) ) 4.8

M = g (0 .5) = X + 5rj\n2 4.9

Inter Percentile Range
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R = 2 (0  -  P)A, ij, 8) -  Q(p, A, rj, 5)

R = -77 In ^  
l - p

4.10

« Difference between the Upper Tails and Lower Tails

D = 2 ( 0  “  /?)> A, ij, £) + 2 (p, rj, 5) -  2m
i.e.

D = - ^ ( l n  /?(1 -  /?) + 2 In 2) = - S tj In 4/?(l -  p) 4.11

9 Inter Percentile Range (R) > Difference

Estimation of Parameters

It is natural to describe Q (p) in term of percentiles/quantile rather than the method of 

moments. Therefore, we will look at a method of percentiles, as described by Dudewicz, 

Ramberg and Tadikamalla, 1974. The method of percentiles is the simplest method of 

estimation, which uses the natural percentile properties of distributions. However, the 

interest is often in the skewness and shape of distributions and in the limits that are 

exceeded with only low probability.

Parameters estimation of Logistic quantile distribution

Estimated parameters of logistic quantile distribution can be expressed as follows, using 

method of percentile (see eq. 4.9, 4.10, 4.11)

• Location

4.12
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9 Scale

77 = ------- —  4.13
l n - £ -

1 - p

Skewness

d\n- P
S  =  l~p 4.14

rln4 /?(l- p)

where m, d, r represents the sample median, difference between upper and lower tails 

and inter percentile range of sample population, respectively.

Measurement of the distance of tails from the median, the Right Percentile Range 

(RPR ) and Left Percentile Range (Lpp )for logistic quantile distribution can be

expressed as follows

RPR, = xt_p - jw = J/{(^(ln(l~ p ) ~ S ln(l- p ) - \ n p  — S \a p ) ) - (S In2)} ’P < ^

LPRg = m - x p =^{(^ln 2 ) - l ( l n / > - ^ l n p - l n ( l - p ) - ^ l n ( l - / 7))}

The Method Least Absolute

The aim of the distribution of least absolute is based on choosing parameters q , to 

minimise the sum of absolute deviation of the order observation values, which is

f  = Z |xr - M r |

For more details see Bloomfield and Steiger (1983) and Dodge (1987).

The median of the distribution of the rth order observation is called the median rankit, 

, and the median rankit is defined as

M r = Q(BETAINV{<d.5, r , n - r  +1)) = Q(pr ) 
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where p r is define as

p r = BETAINV(<d.5, r , n - r  +1)

When the distributions are not symmetric. The method of distribution of least absolute 

is more robust than the method of distribution of least square. Therefore, the distribution 

of least absolute is based on median rankit. It is also an advantage that the least absolute 

method of estimation can be implemented using Solver in Excel. However, the median 

in same cases is not unique. It is also not a sufficient statistics and most importantly, it 

is a biased estimator of the mean and can never be classified as UMVUE, (see page 38). 

For skew data and data from mixture distribution the quantile approach based on 

median is statistically and mathematically (untransformed) a superior statistic and for 

that reason alone quantile approach will be the basis for the research of the remaining 

chapters.

Residual plot for best estimate

Most of the models we have considered (Gilchrist 1997), are of the form 

Q(p) = X + ?jR(p) where R(p) contains two parameters e.g. exponential and extreme- 

value, and Q(p) = A + r/R(p,0) contains more than two parameters e.g. logistic and

pareto distribution. If we have ordered data, x(r), a fitted R(p) or R(p,0) and values of
A

the median percentiles p (r), then for a correct model, a plot of x(r) versus RQ?(r))will

be linear. For a fully fitted model Q(p(r)), we should get approximately a 45° line 

through the origin; such diagrams are a natural approach for identifying the appropriate 

QDF. A useful supplementary plot of the residual can be shown, using
A  A

= l x ( r )~Q(P( r ) ) \

in order to indicate the suitability of the model. It will use the same criteria which was 

used here, to the remaining distributions.
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4.4 Quantile Function for Exponential Distribution

The density function of exponential distribution is

f ( x )  = e~x ; x^O  

and the Cumulative Distribution Function (CDF) is

F(x) = l - e ~ x

Then

F (X(P)) = P = prob(X <xp) = prob(X < Q(p))

where x _ Q(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of 

the CDF

F(xp) = p  = 1 -  e~Xp \ x  >- 0 

Reversing this to get the QDF simply gives

Xp = — In(l —/>)

Then the basic quantile distribution function for exponential is

Q{p) = xp = -ln(l -  p)

The range of the distribution from p=0 to p=l is ( 0 ,o o )

Hence, the exponential quantile distribution is

Q(p) = l  + Tl(-\n(\-p))

The range of the distribution from p=0 and p=l is (^j0o) •

54



Properties of exponential Quantile Distribution

Some properties of exponential quantile distribution can be seen as follows

9 Median

M  = Q(0.5) = A, + rj\xi2 4.15

Inter p - Range

R = £?((i -  p ) ^ ,n ) - Q ( p , ^ ,n )

• Difference

D = Q(( 1 -  p) ,K n )  + Q(P,^,il) -  2 m

D = -^ { ln 4 p (l- p)} 4.17

Estimation of Parameters

9 Location

X  =m- ln2 *(--------  ) 4.18
-ln/?+ln(l-p)

Scale

i f  = (   ) 4.19
-ln/?+ln(l-p)
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# Skewness (Galton p-Skewness)

§ =Quantile p-Difference/ Quantile inter p-Range

Measurement of the distance of tails from the median, the Right Percentile Range 

(RPR ) and Left Percentile Range (ppp ) of exponential quantile distribution, can be

expressed as follows

RPRq = xx_p -  m = - 77{ln 2  + (1 / Inp)}

LPR = m - x  = 77{ln 2 + (1 / ln(l -  p)}

4.5 Quantile Function for Uniform Distribution

The density function of Uniform distribution is

f ( x ) ~  1 j 0 < x < l

and the Cumulative Distribution Function (CDF) is

F(x) = x

Then

= P = prob(X < x p) = prob(X -< Q(p))

where * = Q(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of 

the CDF
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F(xp ) = P = XP ’ P e (0,1)

Reversing this to get the QDF simply gives

Then the basic quantile distribution function for uniform is

2 0 ) = xp = p

The range of the distribution from p=0 to p=l is (0,1)

Hence, the uniform quantile distribution is

2 0 ) = A+ijp

The range of the distribution from p=0 and p=l is ^  + 77) • 

Properties of uniform Quantile Distribution

Some properties of uniform quantile distribution can be seen as follows 

• Median

M  -  2(0.5) = vl + 0.5 * 77 4.21

Inter p - Range

R =  2(0 -  p)A,n) -  Q(pA ,n)

R = j]*( l -2p) 4.22
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Difference

D = Q(( 1 -  p),X,rf) + Q(p,X,ij) -  2m

D = ;/{(l-.p) + .p -l}  = 0 4.23

Estimation of Parameters

• Location

X  = m-(0.5)*(—- —) 4.24
1- 2/?

Scale

77 = 4. 25

Measurement of the distance of tails from the median, the Right Percentile Range 

(RPR ) an(l Left Percentile Range (l p r  )o f uniform quantile distribution, can be 

expressed as follows

RPRq = -  m = 77{(1 -  p) -  0.5}

LPRq = m - x p = 77(0.5- p }
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4.6 Quantile Function for Extreme-value
The density function of extreme-value distribution is

f ( x )  = e~e e~x ; - oo x  -< oo 

and the Cumulative Distribution Function (CDF) is

F(x) = e"6"

Then

F(x(P)) = P = prob(X <Xp) = prob(X < Q(p))

where x = Q(p)  is Quantile distribution function (QDF), i.e. the QDF is the inverse of 

the CDF

F(xp) = P = e~‘ ’

Reversing this to get the QDF simply gives

Xp = - ln ( - ln p )

Then the basic quantile distribution function for extreme-value quantile is

Q(P) = = - ln (- ln (p ))

The range of the distribution from p=0 to p=l is &)

Hence, the extreme-value quantile distribution is

Q(p) = A + p {-ln (-ln p )}

The range of the distribution from p=0 and p=l is ( _ o o ,o o  )  •
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Properties of extreme-value Quantile Distribution

Some properties of extreme-value quantile distribution can be seen as follows

9 Median

M  = 2(0.5) = X + 77{-ln(-ln(0 .5))} 4.26

« Inter p - Range

R  = Q { { i - p ) & ,  n )  -  Q ( p . 4 v )

R = '/{ (- ln(- ln(l -  p))) -  ( -  ln(- In p))) 4.27

9 Difference

D  = £?(( 1 -  p),A,?7) +  Q(p,&,il)  ~  2m

D = 77{(-ln(-ln(l -  p))) + (-ln (-ln  pj) -  2(-ln(-ln(0.5)))} 4.28

Estimation of Parameters

• Location

(-ln(-ln(0.5)))X =m-r*(-------------— --------------) 4.29
{(—ln(—ln(l—/?)))—(—ln(—In/?))}

Scale

{- ln(- ln(l-p)) -  (-  ln(- In/?))}
4.30
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# Skewness (Galton p-Skewness)

§ =Quantile p-Difference/Quantile inter p-Range

j  ((—ln(- ln(l -  p))) + ( -  ln(- In p)) -  2 (- ln(- ln(0.5))> 4
((- ln(- ln(l -/> )))- ( -  ln(- In p)))

Measurement of the distance of tails from the median, the Right Percentile Range 

(RPR ) and Left Percentile Range (LPR ) of extreme-value quantile distribution, can

be expressed as follows

RPR, = x\-P ~ m = 7((“ ln(-ln (l- p j j ) - ( - ln(-ln(0.5)))}

LPRq = m - x p = 7 {(-ln(-ln(0 .5 )))-(-ln (-ln p ))}

In the next section, we will discuss the Weibull, Power and Pareto distributions in the 

form Q(p) = A + r]R(p; 6)»which have got more than two parameters.

4. 7  Quantile Function for Weibull Distribution

The density function of Weibull distribution is

/ (x) = yx7~x exp(-xr ) \ x > 0

F(x) = 1 -  exp(-xr )

Then the basic quantile distribution function for the Weibull is

G0») = * ,= (- ln(l -  P ) Y  where /? = -
7

The range of the distribution from p=0 to p=l is (0 ,oo)



Hence, the Generalised Lambda Distribution (GLD) for Weibull quantile distribution is

Q(p) = Z + r , ( - \n ( \ -p )y  >/?;- 0

The range of the distribution from p=0 to p=l is (^oo)^ where are location and 

scale parameters and p  is the shape of the distribution. It discusses various properties 

of weibull quantile distribution below.

Properties of Weibull Quantile Distribution

Some properties of the weibull quantile distribution can be seen as follows 

• Median

M  = 2(0.5) = A + ?7(-ln0.5)^ = X + tj(\n2)^ 4.32

• Inter p - Range

R  =  2(0 -  p)^>ri , P )  -  Q ( p ^ p i , P )

P 1 ~P
4.33

• Difference

D  =  2(0 -  P \ ^ P , P )  + Q(P,A,r?,/3) -  2m

D = 7/[(ln(—))/! + (ln(— —̂))f  -  2(ln 2 ) ' ]
P 1 ~P

4.34

• Inter p- Range (R) > Difference when f l y  q > p-< —
2
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Parameters estimation of Weibull quantile distribution

Estimated parameters of weibull quantile distribution can be expressed as follows, by 

using method of percentile (see eq. 4.32, 4.33, 4.34)

Location

X  ----  -----   )(ln2)^ 4.35
0 ni / _ ( i nJ _ )^

p  i - p

Scale

rj =----------------------  4.36
( I n i y - d n J - /

P 1 ~P

• Skewness (Galton p-Skewness)

§ =Quantile p-Difference/Quantile inter p-Range

P ,-------------------   4.37

P 1 ~P

Measurement of the distance of tails from the median, the Right Percentile Range 

(RPR ) and Left Percentile Range (LPR ) of weibull quantile distribution, can be

expressed as follows

RPR, =xl_p - m  = r i{ ( - \n p Y-{ \n2 )p} \ P < ~  4.38

LPRq = m - x p =?;{(ln2)/J -  (—ln(l -  Jp));ff} \P<\^  4.39
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Estimation of Shape Parameter ( J 3 -Value)

In this section we will consider the quantile distribution as continuous distribution of 

form

Q(p) = Z + t]R(p,0 )

The equation above consists of scale, location and some parameters in R(p,0) e.g. 

skewness and shape.

Exponential and uniform quantile distributions have two parameters only i.e. location 

and scale which are represented by

2(p) = J' + JjR(p)
In this section, we are going to estimate the shape parameter p  for the weibull 

distribution, and by the same method the shape parameter for power and pareto 

distribution are given.

The Quantile distribution of Weibull can be described as follows :

Q(p) = X + 7j{- ln(l - p ) } p 4.40

Here, three parameters needed to be estimated, i.e. x, 77, /? • A,jj which have already 

been estimated in the last section. Hence, estimate of p  for the distribution above is 

needed.

To estimate shape parameter ( p )  for the distribution with three parameters i.e. Power or 

Weibull distribution, we can use the following approach, as an iteration processes:

In the past the shape parameter ̂  has been estimated by using many methods, such as 

maximum likelihood, least square and probability plot and so on. In this section we are 

going to estimate p  shape by using quantile approach. Quantile approach for estimate 

p  shape is done by calculating the p  value mathematically, by using the difference 

(equation 4.34) for each distribution and developing equations of a median, range and 

difference as exponential terms. This is an iterative process.
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By using the percentile method, the form of p  -value can be seen as the same for the 

Weibull and Power distributions, and is given by

Where q & Q2 are defined below, R is the inter p-Range of QDF and D is the 

difference of QDF.

For Weibull distribution

"the proof of the q and q values are given in the end of this section"

Now, we try to solve the equation (4.41) for f ( p )  = 0 *n order to obtain the estimate of 

the p  value. Here,

ln(l/ p) 4.42

f ( P )  = ( R -  D)Exp(01P) + (R + D)Exp(-02P ) -  2 R 4.43

and = q when p=0  or p  = p A.

Hence, we seek the solution of p -  p* since p>. q , (see appendix 9).
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Proof of and 0 2 values for weibull quantile distribution

By using equation 4.17

q -value g2 -value

then

—  >  2

InT
kP j

> ln2

r ( 1  
In -

\ P )
ln(2 )

>1

In

/  f  

In
\ y j

ln(2 )
>0

0, = In

r ( 1  
In -

\ P J
ln(2)

>0 , > 0

then

1 < —!— < 2  
1 - p

0 <ln 1 N

\ l ~ P ;
< ln2

z' /  1
In

0 < } - P j
ln(2)

<1

z' /  I ^
In

In \ l ~Py
In 2

<0

 ̂ f  1
In

^2 = -In
In 2

; e2 z o

4.8 Quantile Function for Power Distribution
The density function of Power distribution is

f (x)  =
a ; , k ^ O  , a>- 0

where k is a fixed number.
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and the Cumulative Distribution Function (CDF) is

F(x) =
vA- /

Then

f (x(p)) = P = prob(X <xp) = prob(X < Q(p))

where x = Q(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of

the CDF

F{x v) ~ P ~
f x ' a ZL
\ k J

; /? e (0 ,l)

Reversing this to get the QDF simply gives

x = k * p Ua

Then the basic quantile distribution function for power is

Q ( p ) ^ x = k * p l> where p  = —
a

The range of the distribution from p=0 to p=l is (q, k)

Hence, the Power quantile distribution is

fi(p) = A + 7 ^ * (p /?) ; ft>-0

The range of the distribution from p=0 and p=l is + rjk)

67



Properties of Power Quantile Distribution

Some properties of Power quantile distribution can be seen as follows 

9 Median

M  = 2(0-5) = X + t]k(0.SY 4.44

,  Inter p - Range

R = 2(( 1 -  P)A, 1, p) -  Q(p, A, 77, /?)

R =  77& [ ( l - jp / 4,45

Difference

£  = 2((i -  p). &,n,P)+Q{p, a, n, P) -  2 m

Estimation of Parameters

Location

(

((i- p f - p P )
4.47

Scale

m - p Y - P p)
4.48

• Skewness (Galton p-Skewness)

§ =Quantile p-Difference/Quantile inter p-Range
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Measurement of the distance of tails from the median, the Right Percentile Range 

(RPR ) and Left Percentile Range (LPR ) ° f  Power quantile distribution, can be

expressed as follows

RPR, = x,_p -  m = ;;{(1 -  p f  -  0.5“ )

LPR, = m - x  „ =  n{0.5“ - p “ }

4.9 Quantile Function for Pareto Distribution

The density function of Pareto distribution is

/ (x) = "(r+1)» 1 < x < oo

And the Cumulative Distribution Function (CDF) is

F(jc) = l - x ‘ (r+1)+1

Then

F(X(P) ) = P = prob(X  < x p) = p rob(X  -< Q(p ))

Where x = Q(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse 

of the CDF

F(xp) = P = l - x ? * w  I p e m  

Reversing this to get the QDF simply gives



Then the basic quantile distribution function for Pareto is

where p

The range of the distribution from p=0 and p=l is qq)

Hence, the Pareto quantile distribution is

Q{p) = X + T1( - \ F) ,/}>  0
(1 - p )

The range of the distribution from p=0 and p=l is ^  oo).

Where % and ^ are location, scale parameters, and p  is the distribution’s shape.

Properties of Pareto Quantile Distribution

Some properties of Pareto quantile distribution can be seen as follows 

• Median

4.50

Inter p - Range

R = 2((1 -  p)&, if, P) -  Q(p, 2 ,77, p)

4.51

9 Difference

D = 2((1 -  p ), I ,  rj, P) + Q(p, X, rj, P) -  2m

4.52
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• Inter p-Range (R) > Difference when t f y o  , —
2

Estimation of Parameters

• Location

P (} -p )
4.53

Scale

p  (i -  p)
4.54

• Skewness

§ =Quantile p-Difference/Quantile inter p-Range

8 = p p  a  - P)P

A  *\ 

2 *2 ^ )

1 1

p p (i ~p)P

4. 55

Measurement of the distance of tails from the median, the Right p Percentile Range 

(RPR ) and Left p Percentile Range ( L P R  )for Pareto quantile distribution, can be

expressed as follows

RPR, = x ,  = < P < ) ;
p p  2

LPR = m - x  = tj{2 P --------- — -}  5p  -< —
(1 ~ P Y  2
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4.10 Quantile Function for Geometric Distribution

The density function of geometric distribution is

f ( x )  = 0 ( \ - e y ~ l ; * = 1,2,3

and the Cumulative Distribution Function (CDF) is

F{X) = e Y J{ i - ^ r 1
x= \

Then

f O(p)) = P = prob(X < x p) = prob(X -< Q(pj)

where x = Q(p) is Quantile distribution function (QDF), i.e. the QDF is the inverse of

the CDF

F(xp) = p = e L ( i - & ) x"'1 ’ p  e (o,i)
*=i

Reversing this to get the QDF simply gives

P = e
y

p  = \ - ( \ - 6 ) Xp

x p =
ln(l~^)
ln(l -  6)

Here, x  is a discrete distribution, so the basic quantile function for geometric 

distribution is
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Q(p) ~ XP ~ INTr W  - p ) '
ln(l -  6)

+ 1

The range of the distribution from p=0 to p=l is ^  ̂  

Hence, the GLD for geometric quantile distribution is

Q(p) = A + tj
r '\n(l - p ) '  'INT

ln(l -  6)
+ 1 

J J

The range of the distribution from p=0 and p=l is + 7̂  oo)

Properties of Geometric Quantile Distribution

Some properties of geometric quantile distribution can be seen as follows

• Median

M  = 2(0-5) = X + rj
f ' In 0.5 ' \
INT + 1

\ [ ln ( l - 0 )J /

Inter p - Range

R — TJ INT In p
+1 

J J
INT ln(l - P )

K ln(l - 6 )  j

\  \  
+ 1

« Difference

D = 2(0 -  p),A,7?) + Q(p,X,J]) -  2m

D = 7J* INT In p
+ 1 + INT

\  \

ln(l ~P)  
ln(l -  6)

+ l
J J

- 2 INT 
V v ln ( l - 0 )

+ l

4. 56

4.57

4. 58
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Estimation of Parameters

9 Location

X  —m - INT 
V V

+1 r!
( f
INT 

V V

In p \

M - 0 )
+1

J  J

r
INT

\  \

M - p )
ln(l-0 )

\

+1
J J

4.59

Scale

i f  - r ! INT
\  V

\np +1 INT 
V VM - 0

v
+i

j
4.60

0 Skewness (Galton p-Skewness)

£ =Quantile p-Difference/Quantile inter p-Range

5 =

v
INT

_v
f lnp ]

\
+ 1 +

f
INT

I
ln(l — />) ̂ \

+ 1
J

*(N1

/
INT

\

(  In 0.5 ] y
+1

i .ln ( l-0 )J
y

INT
\

{ In p  ^ >
+ 1 -

f
INT

\

f ln ( l-p ) ! y
+1

y.ln(l - 6 ) )

4.61

Measurement of the distance of tails from the median, the Right Percentile Range 

(RPR ) and Left Percentile Range (LPR ) of geometric quantile distribution, can be 

expressed as follows

f f
INT

\ \  V

In p
J n M .

+ 1 INT
r  ln0.5 N
m - 0 )

+ i
) )

4.62

f f
LPRq = m - x p = 77* INT

VV

ln0.5
M - 0 ) .

+ 1 INT
M " * ) .

\ \

+ 1
J)

4. 63
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4.11 Summary

It has provided the theoretical development of quantile approach for non-normal 

distribution, such as logistic, exponential, Uniform, extreme-value, Weibull, power and 

pareto distribution for variable measurement and geometric distribution for attribute 

data. Moreover, it also estimate the parameters of the distributions mentioned above. In 

the next chapter, we will be discussing the evaluation of quantile control chart for non­

normal situation.
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Chapter 5: An Evaluation of Quantile Control 

Chart for Non-Normal Situation

5.1 Introduction

A successful quality improvement process must be based on proper interpretation of 

statistical data and quality improvement methods. In this chapter we discuss the 

application of quality improvement process through quantile approach. In doing so we 

will first discuss the quantile process of monitoring and control and then develop a 

quality control chart for this purpose using the median rankit, which will be called a 

median rankit control chart.

Padgett and Spurrier (1990), discussed Shewhart type charts for 100th percentiles of the 

Weibull and lognormal distributions assuming unknown parameters. Kittlitz (1999) 

suggested that the long tailed positively skew exponential distribution, could be made 

into an almost symmetric distribution by taking the fourth root of the data. The 

transformation data can then be plotted conveniently on an individuals chart, EWMA, or 

CUSUM chart for statistical process control. For EWMA, Montgomery, Gardiner, and 

Pizzano (1987) recommend values of X in the range of 0.05 <X < 0.5, with smaller 

values of X being more effective in detecting smaller shift in the mean.

The Shewhart control chart for individual measurement is often used in situations that 

involve rational subgroups of size n=l in process monitoring and control. When the 

assumption of normality is violated, the average run length (ARL) of the individual 

control chart is adversely affected. For example, ARL for 3 cr is 370.4, and ARL for

3.02 cr is 395.6 under normality assumptions, the difference between them with 2%
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shift in process is obviously not small. Therefore, if we compute the in-control ARL for 

various non-normal distributions with control limits constructed under the assumption 

of normality, we will obtained inaccurate results, (see Ryan 2000 and Wheeler 2000). 

For more details in respect to ARL, see chapter seven. Further, Borror, Montgomery 

and Runger (1999) showed that EWMA control charts can be designed to be robust to 

the normality assumption. This implies that, ARL is reasonably close to the normal- 

theory value for both skewed and heavy-tailed symmetric non-normal distributions.

Box-Cox transformation can be used to transform the data from non-normal to normal 

situation. However, the Box-Cox transformation is only suitable for non-negative and 

non-discrete distribution. But it was found that the quantile distribution method can be 

used for any continuous sets of data.

However, most continuous distributions can be defined very simply in terms of the 

quantile distribution function. This approach to defining distributions enables the two 

tails of a distribution to be almost independently modelled. This is a very useful 

property for handling non-normal distribution

From the above, it is clear that by using the quantile approach, we can easily avoid the 

use of transformations (e.g. Box-Cox transformation, Quesenberry) for non-normal data 

in order to obtain a control chart.

Nelson, P. (1979), presented limits for weibull median and range charts, and proposes 

two additional (location, scale) control charts. According to Nelson, charts constructed 

with these limits have a risk of 0.003. The centrelines are positioned in such a way, that 

points have equal probability of falling above or below them. However, a family of 

weibull distributions approximates many empirical distributions, and provides a model 

for life and failure situation data. This chapter will present some accurate control limits 

using median rankit control charts for logistic, exponential, extreme-value, weibull and 

power distributions. In this chapter we will provide an example of such distributions to
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indicate how quantile approach could be used to construct control charts for non-normal 

distribution using median rankit.

5.2 Quantile Control Chart fo r Non-Normal Distribution

The control chart for quantile distribution can be constructed by using the 

Q(p) = X + rjR(p\ 6) f°r the distribution which has got more than two parameters and 

using Q(p) = X + rjR(p) f°r the distribution which has got two parameters. The action 

and warning limits can be derived from the formulas above, where the warning limits 

are Q(0.05) and Q(0.95), and the action limits are Q(0.01) and Q(0.99), and the central 

point is at Q(0.5).

The steps to construct control limits of quantile distributions are as follows:

9 Development of the quantile distribution function

Q(p) = X + r]R(p;0)

« Estimate the parameters x ,  rj, 8  by using least absolute method then

A  A A

Q(p) = A+T}R(p,e)

Where X* ,0*310 location, scale and skewness respectively.

« The control limits of the quantile distribution function can be obtained by 

substituting p=0.5 in Q (p) above. It will provide the central point which will be 

described as median rankit point, and similarly by substituting p=0.05, p=0.95 and 

p=0.01, p=0.99 will provide both the warning limits and action limits respectively of 

median rankit point.
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5.3 Quantile Control Chart fo r Logistic Distribution

The median rankit control chart for the Logistic Quantile Distribution (L.Q.D) is 

described below. The action and warning limits, which are used in the control chart 

procedures, can be derived as

GOO = A+ 1  {0 - S )  H p )  ~( \ +S)  ln(l -  p)}

where the warning limits are Q (0.05) and Q (0.95), the action limits are Q(0.99) and Q 

(0.01), and the central point (median rankit) is at Q (0.5). Therefore, a typical quantile 

control chart that can be constructed for logistical quantile distribution is given in the 

following steps.

The steps to construct control limits of logistic distribution is as follows:

• Development of logistic quantile distribution function

GQ») = A + | { ( l - £ )  ln(/>) -  (1 + S )  ln(l -  p)}

9 Estimate the parameters x ,  i j , 5  by using least absolute method (median rankit), then

A

Q(P) = X -+ ( ( 1  -  S '')  Inp  -  (1 + S'' ) ln(l -  p))

where £  r f  , 5 *are location, scale and skewness respectively.

0 The control limits of the logistic quantile distribution function can be obtained by 

substituting p=0.5 in Q (p) above. It will provide the central point which will be 

described as median rankit point, and similarly by substituting p=0.05, p=0.95 and 

p=0.01, p=0.99, will provide both the warning limits and action limits respectively 

of median rankit point.
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Example: Real Data. (Chang & Lu. 1994).

Below are 65 observations of the thickness of an oil seal, the sampling distribution is 

not known:

Table 1
2.4 2 .2 2 .0 1.9 " O 1.9 2 .0 1 .8 2 .0 1 .6 T 2

2.3 2.4 1 .8 O 1.9 1.6 2 .1 1 .8 2 .1 1 .6 2 .0

2 .0 2 .1 2.3 2 .1 2 .1 1.9 2 .1 1 .8 1 .8 2 .1 2 .2

2 .2" ~I.O  " 2 .0 1 .8 1.7 2.4 2 .0 2 .0 2 .1 1.9 2 .1

~ T T ~ 2 .2 2.4 2 .0 1 .6 1.9 1.9 2 .0 1.7 1 .8 2.3

2 .2 2 .0 2.4 2.3 2 .2 2 .1 2.5 1.9 2 .0 1.9

Chang and Lu (1994), mentioned that the data appear to come from a skew distribution. 

We are interested in finding out whether the thickness of an oil seal is outside the 

control limits of the production process.

The process of estimation and validation on a real set of data, which is believed to 

follow the logistic distribution, has been investigated. The data was compared with the 

model, by comparing the observed value and the fitted value. The observed values are 

the original set of data under investigation and the fitted values are the values, which are 

obtained when QDF is fitted to the model together with the scale, location and 

skewness. For a good fit of the data, the series of points is expected to lie on 4 5 0 line, 

which passes through the origin. Where a best model is found, it will then be used to 

construct a median rankit control chart.

Distribution of Least Absolute

The steps below are required to estimate distribution parameters

1. Find the initial value of , where p(r) = (BETAINV(0.5,r , n - r  +1)) •

2. Sort the skew logistic data which are treated in ascending order.

3. Put initial parameter values using quantile method for location, scale and skewness.
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4. Fitted Q(p ) = A + ̂  {(1 - S )  ln(/>) -  (1 + 8)  ln(l -  p)} model,

5. After fitting Q (p), the Solver tool in Excel Package is used to estimate the minimum 

values of the parameters by using the least absolute method

6 . Calculate the residual sum of least absolute
A  A A A A

= x r -Q {---- -,A ,7i ,8) '
n + 1

Then the estimation of the parameters X,tj,S f°r real data given in table 2 are 2.011055, 

0.253986, and 0.04226 respectively. The residual sum of least absolute is 2.041334-

M odel V alidation  o f L ogistic  D istr ibution  
(In d iv idu al M easu rem en t)

2.6
2 .4

S .R .L .A B S = 2 .0 4 1 3 3 4

2.82.2 2 .5

Figure 1: Model Validation Median Rankit for Logistic Distribution

By analysing figure 1, we can see that the model appears to give a reasonable fit. 

Following the verification of the above data as logistic distribution, the quality control 

limits of quantile logistic distribution can be calculated for median rankit at various p 

values and are shown in table 2 . Control limits for median rankit are calculated at 

p=0.05 and p=0.01 for warning and action limits respectively using the formula
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Q(P) = A + 2  {(1 - S )  In (p) - ( !  + <?) ln(l- p ) } -

Here x , 7],S are given by 2.011055, 0.253986, and 0.04226 respectively and the residual 

sum of least absolute is 2.0413. This will provide the required control limits as follows. 

Central point =2.018495, Warning limits = (1.653484, 2.40133) and Action limits = 

(1.452276, 2.619371). Figure 2 shows the logistic control limits for median rankit at 

2.0184 for levels p=0.01 and p=0.05 & p=0.005 and p=0.001 (see figure 3). Here no 

action is necessary as all the values are within the action limits.

Table 2 Quantile control limits for logistic distribution.

Percentile values 

(p)
Median Rankit (Least Absolute)

Q(p) Q(0.5) Qd-p)
0 .0 1 1.452276 2.018495 2.619371

0.05 1.653484 2.018495 2.40133

0 .0 0 1 1.171023 2.018495 2.925241

0.005 1.367304 2.018495 2.711729

0.00135 1.20757 2.018495 2.885477

Figure 3 shows the logistic control limits for median rankit at levels p=0.001 and 

p=0.005, where the warning limits = (1.367304, 2.711729) and the action limits = 

(1.171023, 2.925241). Here no action is necessary as all the values are within the 

warning and action limits.
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Median Rankit Control Chart of Logistic distribution 
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Figure 2 : Median Rankit Control Chart for Logistic Distribution

Median Rankit Control Chart for Logistic Distribution

3.5

3

cl
tS 2.5 

o z
g

1.5

1  1 1 i i I I I i I i i I I I

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Sample Number

Q(0.999)

Q(0:995)

Q(0.005)
0 (0.001)

F itx

——Action Limit=2.925 

— Warning Limit=2.712 

— Median Point=2.0184 

—— Warning Limit= 1.367 

— Action Limit=1.171

Figure 3: Median Rankit Control Chart for Logistic Distribution at p=0.001& p=0.005.

It is clear from the control chart in figure 2 that the sample numbers 29,32,42,55 and 56 

are outside the warning limits respectively. These points must be investigated to see
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whether an assignable cause can be determined. Furthermore, the chart shows that no 

single point is outside the action limits i.e. the production process is in control at

p=0 .0 1 .

In order to compare our methodology with the previous works, we have calculated a 

control chart for exponentially weighted moving average (EWMA) using the data in 

table 1. Figure 4 provides the control chart for the data in table 1, using EWMA method.

EWMA Control Chart

2.3

Action Limit = 2 .2 4 0
2.2

Warning Limit = 2 .167

Central Limit = 2 .022
2.0

Warning Limit = 1.876
Lambda=0.2

Action Limit = 1 .803

0 10 20 30 40 50 60 70

Sample Number

Figure 4: Control Chart for Exponentially Weighted Moving Average

The control limits in both figure 2 and 4 indicate that there are no signal points that lie 

outside control limits at point p=0.01. Whereas, there are some points that lie outside 

control limits at p=0.05.
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By using EWMA with X = 1, we obtained the Shewhart individual control chart of 

figure 5. The control limits in both figure 2 and figure 5 are nearly the same, due to the 

fact that the shape of the logistic distribution is close to the shape of normal distribution, 

especially when the skewness coefficient is small. However, the method of individual 

control chart is not suitable for non-normal distribution when skewness coefficient is 

large. Montgomery (1997) has pointed out that moving range and individual 

measurements charts can provide inappropriate control limits for non-normal data. 

EWMA is a better alternative to the Shewhart control chart when the aim is to detect a 

small shift. The individual chart is not robust to the normality assumption, when false 

alarms are concerned. Both the Shewhart and EWMA charts demonstrate the ability to 

detect shifts quickly, but the Shewhart chart has a higher false alarm rate (Borror et 

al 1999). In this research we are addressing these specific issues.

From the results above, we can conclude that the quantile approach is applicable to the 

dealing with non-normal data.

EWMA Control Chart

Action Limit = Z624
Lambda=1

V\feming Limit = Z423

Central Limit = Z  022

Warning Limit =1.620

1.5
Action Limit =1.419

0 10 20 30 40 50 60 70

Sample Number

Figure 5: EWMA Control Chart at Lambda =1
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5.4 Quantile Control Chart for Exponential Distribution

The median rankit control chart for the exponential quantile distribution can be 

described as

fiO>) = A + i7 ( - ln a -p ))

The action and warning limits, which are used in the control chart procedures, can be 

derived from the Q(p) above. Where the warning limits are Q (0.05) and Q (0.95), the 

action limits are Q(0.01) and Q (0.99), and the central point (median rankit) is at Q 

(0.5). A typical quantile control chart for the Exponential Quantile Distribution is given 

in the following steps.

Required steps for setting up the control limits of exponential distribution are as 

follows:

• Development of the Exponential quantile distribution function

Q{p) = A + tj( -  ln(l -  p))

• Estimate the parameters A, rj by using least absolute method then

Q(p) = X+ 7](-\n(l-p))

Where X  ,r f  are location and scale parameters respectively.

• The control limits of the exponential quantile distribution function can be obtained 

by substituting p=0.5 in Q (p) above. The latter provides the central point, which 

will be described as median rankit point. Similarly by substituting p=0.05, p=0.95 

and p=0.01, p=0.99, both the warning limits and action limits respectively for 

median rankit point would be obtained.
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Example to Apply Quantile Control Chart for Exponential Data.

Data

We have generated a 30 random number from exponential distribution using "Minitab 

Release 12 and Excel 97" where the mean is equal to one. The process of estimation and 

validation on a set of data, which is believed to follow the exponential distribution, have 

been investigated. The data was fitted to the model, to compare the observed value and 

the fitted value. The observed values are the original set of data under investigation and 

the fitted values are the values, which are obtained when QDF is fitted to the model. For 

a good fit of the data, the series of points is expected to lie on 45° line, which passes 

through the origin. Where a best model is found, it will then be used to construct median 

rankit control chart.

Table 3 : 30 random numbers for exponential distribution.

0.45729 3.35360 1.34826 0.32315 0.08523

0.47807 1.68641 0.73215 1.91830 0.24939

0.57271 0.41638 0.74227 0.37895 0.97464

0.34155 0.84433 1.26890 0.35953 0.95657

0.46069 2.27823 1.12539 0.94095 0.78817

1.40025 0.23362 0.77088 1.03936 3.12027

Estimations of the parameters & residual

The estimate of the parameters of location X and scale 77 for the data given in table 3 

are 0.173562 and 0.828119 respectively. Here the residual sum of least absolute is 

equal to 1.862325.
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Figure 6: Model Validation using Median Rankit for Exponential 

Model Validation

Figure 6 , indicates that the data provides a good fit for the exponential distribution, 

because the points lie approximately on the straight line 45 degrees to the horizontal 

axis.

On the confirmation that the data follows the exponential distribution, a quality control 

limits of quantile exponential distribution is provided for median rankit at various p 

values, in table 4. Various control limits are calculated (p=0.05 and p=0.01) for warning 

and action limits respectively using the formula

Q(p) = A + Tj(-\n(l-p))

Here X,tj are given by 0.173562 and 0.828119 respectively. This will provide the 

required control limit for the data as follows.

Central point =0.747571, Warning limits = (0.216039, 2.654384) and Action limits = 

(0.181885,3.98719).



Table 4: Quantile control limits for exponential distribution.

p Warning Limit

Q(p)

Median Point 
Q(0.5)

Action Limit 

Q(l-P)
0 .0 1 0.181885 0.747571 3.98719

0.05 0.216039 0.747571 2.654384

0 .0 0 1 0.174391 0.747571 5.894004

0.005 0.177713 0.747571 4.561198

0.00135 0.174681 0.747571 5.645482

Median rankit control chart

Figure 7 provides the exponential median rankit control chart at 0.747571. It is clear 

from control chart in figure 7 that the sample numbers 7,30 are outside the warning 

limits respectively and the sample number 25 is outside the action limit. These points 

must be investigated to see whether an assignable cause can be determined.

Median Rankit Control Chart for Exponential Distribution 
(Individual Measurement)

♦ — Fit x
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Figure 7: Median rankit control chart for exponential distribution
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5.5 Quantile Control Chart for Extreme-value
Distribution

The median rankit control chart for the Extreme-value Quantile Distribution is 

described below. The action and warning limits, which are used in the control chart 

procedures, can be derived as

g ( / ? )  =  ; i  +  7 7 { - ln ( - ln / ? ) }

where the warning limits are Q (0.05) and Q (0.95), the action limits are Q(0.01) and Q 

(0.99), the central point (median rankit) is at Q (0.5). Therefore a typical quantile 

control chart that can be constructed for Extreme-value quantile distribution is given in 

the following steps.

The steps to construct control limits of Extreme-value are as follows

• Development the Extreme-value quantile distribution function

Q{p) = A + r1{-\n{-\np)}

• Estimate the parameters A, rj by using least absolute method (median rankit) then

Q(p) = X+7] {- \n(-\np)\

Where £ , r f , are location and scale respectively.

• The control limits of the Extreme-value quantile distribution function can be 

obtained by substituting p=0.5 in Q (p) above. The latter provides the central point, 

which will be describe as median rankit point. Similarly by substituting 

p=0.05,p=0.95 and p=0.01, p=0.99 will provide both the warning limits and action 

limits respectively of median rankit point.
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5.6 Quantile Control Chart for Weibull Distribution

The median rankit control chart for the weibull quantile distribution (WQD) can be 

described as

Q(p) = ^  + r1{ - \n { \ -p )Y

The action and warning limits, which are used in the control chart procedures, can be 

derived from the (WQD) above. Where the warning limits are Q (0.05) and Q (0.95), 

the action limits are Q(0.01) and Q (0.99), and the central point (median rankit) is at Q 

(0.5). A typical quantile control chart for the Weibull Quantile Distribution is given in 

the following steps.

Required steps for setting up the control limits of weibull distribution are as follows:

• Development of the weibull quantile distribution function

Q{p) = Z + r t - W - p ) Y

• Estimate the parameters A, rj, /? by using least absolute method then

Q(p ) = X  +v \ - W ' - p )Y'

Where / f , i f , /T  are location, scale and shape parameters respectively.

• The control limits of the weibull quantile distribution function can be obtained by 

substituting p=0.5 in Q (p) above. It will provide the central point, which will be 

described as median rankit point and similarly by substituting p=0.05, p=0.95 and 

p=0.01, p=0.99, which will provide both the warning limits and action limits 

respectively for median rankit point.

Example to Apply Quantile Control Chart for Weibull Data.

Data

The data in table 5 are the times to failure measurement of 25 light bulbs on accelerated 

test. The data was taken from Wadsworth (1998, pp: 6.15). Here we are interested in
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finding out whether the failure times for 25 light bulbs are within the specific 

acceptance limit of the production process. First of all, the data was fitted to the weibull 

model, in order to evaluate the suitability of the model and then a control chart was 

developed to check the conformity of the production process.

Table 5: Times to Failure for Light Bulbs (Months).

1.25 1.17 0.42 0.96 1.03

1.37 0.65 1.39 0.45 0.67

0.28 1 .0 0 0.82 1.61 0.48

0.53 0 .6 6 0.57 0.31 0.29

0.98 1.76 1.71 0.95 0.25

The graph below provide the traditional Shewhart control chart for individual 

measurement, assuming the quality characteristics are following normal distribution. It 

can be conclude from this graph that, there is no reason to reject that, the process is in 

control. In the remain parts of this example, we will construct control chart using 

quantile approach.

2.5 3.0SL=2.403

2.0

1.5

1.0
X=0.8624

0.5

0.0
-2.0SL=-0.1645

-0.5
-3.0SL=-0.6779

- 1.0

10 150 20 255

Observation Number

Traditional Shewhart Control Chart for Individual Measurement
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Estimations of the parameters & residual

The estimates of the parameters /1,77,/? for the data given in table 5 are 0.008078, 

0.96979 and 0.563196 respectively. Here, the residual sum of least absolute is equal to 

1.142144.

M odel V alidation for W eibull D istribution  
(Individual M easurem ent)

S . R . L . A B S . =  1 . 1 4 2 1 4 403
«  1.2 Q
g  0.8 
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2.50 .5 1 1.5 20

Q A(P)

Figure 8: Model Validation Using Median Rankit values for Weibull Distribution 

Model Validation

Figure 8 indicates that the data provides a good fit for the weibull distribution, because 

the points lie approximately on the straight line 45 degrees to the horizontal axis.

On confirmation that the data follows the weibull distribution, a quality control limits of 

quantile weibull distribution is provided for median rankit at various p values, in table 6 . 

Various control limits are calculated (p=0.05 and p=0.01), for warning and action limits 

respectively using the formula:

COO = A+ irt-ln(l-/>))'

Here /I, 77,/? are given by are 0.008078, 0.96979 and 0.563196 respectively. This will 

provide the required control limit for the data as follows.

Central point =0.796995, Warning limits = (0.190127, 1.807124) and Action limits 

=(0.080774, 2.30008).
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Table 6: Quantile control limits for weibull distribution.

p Warning Limit

Q(p)

Median Point 

Q(0.5)

Action Limit 

Q(l-P)
0 .0 1 0.080774 0.796995 2.30008

0.05 0.190127 0.796995 1.807124

0 .0 0 1 0.027903 0.796995 2.888053

0.005 0.057209 0.796995 2.488407

0.00135 0.031556 0.796995 2.816904

Median rankit control chart

Figure 9 provides the weibull median rankit control chart at 0.796995. The action and 

warning control limits in figure 9, indicates no action should be necessary, as all the 

values are below the action and warning limits at level p=0.01and p=0.05 respectively.

M edian Rankit Control Chart for Weibull Distribution 
(Individual M easurement)

2 .5
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W arn ing  Lim i t= 0 .1 9 0 1 2 70 .5 Q ( 0 .0 5 )
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S a m p l e  N u m b e r

Figure 9: Median rankit control chart for weibull distribution

From the model validation (see figure 8), we are reasonably happy that the model is a 

good fit for the data with S.R.L.ABS=1.142144. However, for further improvement of 

the control chart, this data was tested for other distributions. Although, weibull 

distribution is a good fit for this data, we will now consider whether any other 

distribution of the weibull family provides an improved control chart. Accordingly, a 

power distribution is applied as follows in the next section:
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5.7 Quantile Control Chart for Power Distribution

The density function of Power distribution is

/ w = fk
; 0 -< * < A: , k ^ O  , a>- 0

and the Cumulative Distribution Function (CDF) is

F(XP) ~ P ~
rx '  _£
\ k  J

; p e (  0,1)

Hence, the Power quantile distribution is

Q(p) = X + j7k*(p/}) ; f l y O

The range of the distribution from p=0 and p=l is (A,X + r]k)

Where X =0.272271, ?7=0.859574 are location and scale parameters respectively. 

P  =1.574089 is the distribution’s shape and k=1.76. Here, the residual sum of least 

absolute is equal to 1.017205. In order to obtain the properties and estimation 

parameters of power quantile distribution (see chapter 4).
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Model Validation for Power Distribution

We can easily recognise that the data set used in this section follows a Weibull 

distribution (see probability plot figure 10). However, figure 11 indicates that the data 

provides a better fit for the Power distribution where most of the points lie an 

approximately 45 degrees to the horizontal axis.

0.1 1.0

Data

Figure 10: Weibull Probability Plot
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Figure 11: Model Validation using Median Rankit for Power Distribution
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It is clear from the control chart in figure 12 that the sample numbers 3,10,15 are 

outside the warning limits respectively. So the light bulbs failure times is not fully under 

control at p=0.05. These points must be investigated to see whether an assignable cause 

can be determined. Moreover, the chart shows that ‘sample point 25’ is outside the 

action limits, which indicate that the production process is out of control at p=0 .0 1 .

Median Rankit Control Chart for Power Distribution 
(Individual Measurement)
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Figure 12: Median rankit control chart for power distribution

Comparison with EWMA Control Chart

In order to compare our methodology with similar work in this area, we will consider 

the control chart for exponentially weighted moving average (EWMA), using the data 

given in table 5. Here we will consider the Shewart control chart for individual 

measurement as a special case of EWMA when X =1 and when X = 0.2, which is much 

popularly used to detect small shifts. Moreover, this value gives the lowest value of 

residual of least square, (see John 1990). A comparison between figure 13 (EWMA at 

A=l) and figure 14 (EWMA at A =0.2), shows that the failure times were not 

significant. On the other hand, Median rankit control chart for power distribution (figure 

1 2) indicates that some points are out of control i.e. significantly different from the 

median rankit point (0.78037).
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EWMA chart for lamp bulbs failure times
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Figure 13: EWMA Control Chart at Lambda =1

Recently, Borror, Montogomery and Runger (1999) suggested that the EWMA control 

chart is more suitable for dealing with normal and non-normal data, and EWMA is more 

robust to the normality. However, our analysis in this chapter shows that the quantile 

control chart for power distribution is more sensitive than the EWMA

EWMA Chart for lamp bulbs failure times
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Warning Limit= 1.205

Central point =0.8624

Warning Limit=0.5201 

Action Limit =0.3490
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Lambda=0.2
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Figure 14: EWMA Control Chart at Lambda =0.2
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It can therefore be concluded from figure 12, that the control chart using a power 

distribution is more appropriate than the weibull control chart (figure 9) and EWMA 

control chart at X -1  and X = 0.2.

5.8 Control chart fo r non-normal distribution using 
subgroups o f size five

In the previous sections, we present the control chart for non-normal distribution for 

median rankit using individual measurement. In this section we will apply the control 

chart for non-normal distribution for median rankit using subgroup five, such as logistic 

and weibull distributions.

Logistic Distribution

From table 1, we wish to establish statistical control of thickness of an oil seal, using 

median rankit. Thirty samples each of size five observations, have been generated (from 

table 1) when we assume the process is in control. The thickness of oil seals shown in 

table 7. Using the data in table 7, it found that the median point is 2.0143, which is a 

robust estimate and does not depends on 'n' values.

Table 7: The thickness of oil seals.

Sample
Number

Observation
1

Observation
2

Observation
3

Observation
4

Observation
5

Median

1 1.9 1.9 1 .8 1.9 1.9 1.9
2 2 .0 1 .8 1.9 1.9 2 .0 1.9
3 2 .2 2 .1 2 .0 2.3 1 .8 2 .1

4 2 .0 2.4 2 .1 2.5 2 .0 2 .1

5 2 .0 2 .0 2.4 2 .0 2 .1 2 .0

6 1.9 2.3 1 .6 1.7 1.9 1.9
7 1.7 2.3 1 .6 1.7 1.8 1.7
8 2 .0 2.3 1.8 1 .8 1 .6 1 .8

9 2 .0 2.3 1.9 2 .2 1 .6 2 .0

10 2 .0 2 .2 2 .0 2 .2 2 .2 2 .2

11 2 .1 1 .8 2 .1 2.3 2 .1 2 .1

12 2 .1 1 .6 1 .8 2 .0 2 .1 2 .0
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Sample
Number

Observation
1

Observation
2

Observation
3

Observation
4

Observation
5

Median

13 2.4 1 .8 1 .8 2 .0 2 .0 2 .0

14 2 .2 1 .8 1.9 1.9 2 .0 1.9
15 2 .2 2 .1 2 .2 1 .8 1.9 2 .1

16 2.4 2 .2 2 .0 2.3 2 .0 2 .2

17 2 .2 2 .2 2 2 .1 1.9 2 .1

18 1 .8 2.4 1.8 2 .2 2 .0 2 .0

19 2 .0 1 .8 2 .0 1.9 2 .0 2 .0

2 0 2 .1 1 .6 1 .6 1 .8 2.4 1 .8

21 1.9 1 .8 2 .1 oo 2.4 1.9
2 2 2 .1 2 .0 1.7 2 .1 1.9 2 .0

23 1.9 2 .2 2.3 2 .1 1.9 2 .1

24 2.4 2.3 1.7 2 .0 2.4 2.3
25 1 .8 2.3 2.4 2.4 1.9 2.3
26 2.4 2 .2 1.9 1.8 1 .8 1.9
27 1.9 2 .0 1.9 1 .6 1 .8 1.9
28 1 .8 1 .8 2 2 .2 2 .2 2 .0

29 2 .2 1 .8 2 .1 2.3 1 .8 2 .1

30 1.7 2 .0 2 .0 2 .0 1 .8 2 .0

To find out the control limits on the median point chart, for sample size five, it must 

find out the values of estimation parameters for location, scale and skewness. Then 

substitute the estimation parameters in the form

GOO = + y  (0--  s ' ) In p  -  ( 1 + s'') In(l -  p))

Where X  =2.021332, r f  =0.160773and £  = -0.06306

Then the control limits of logistic quantile distribution function, can be obtained by 

substituting p=0.05, p=0.95 and p=0.01, p=0.99, then will provide the warning and 

action limits respectively, (see figure 15).
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Median Rankit Control Chart of Logistic Distribution 
(Median Measurement)
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Figure 15: Median Rankit Control Chart for Logistic Distribution (Median Measurement)

When the preliminary sample median are plotted on this chart, there are indications of 

sample 7, 24, 25 of an out-of-control is observed from warning limits. Whereas, no 

indication of an out-of control condition is observed from action limits. Also there is no 

evidences against - the hypothesis that- the process is in control at the level p=0 .0 1 .

Weibull Distribution

From the data in table 5 which represents the time to failure measurement of 25 light 

bulbs on an accelerated test, twenty five samples, each sample of size five have been 

generated from the original data, table 5. It is assumed that the process is in control. The 

time to failure measurement are shown in table 8 .

Table 8 :Time to Failure for Light Bulbs

Sample
Number

Observation
1

Observation
2

Observation
3

Observation
4

Observation
5

Median

1 0 .6 6 0.29 1.76 1.17 0.57 0 .6 6

2 0.29 0.57 1.71 0.57 0.96 0.57
3 0.65 1.37 0.45 1.76 0 .6 6 0 .6 6

4 0.95 1.37 1.61 0.65 0.67 0.95
5 1.17 1.39 0.29 0.57 1.76 1.17
6 1.71 0.65 0.28 0.65 1.25 0.65
7 1.61 0.57 0.29 0.28 0.48 0.48
8 0.45 1.03 0.96 0.42 0.29 0.45
9 0.65 0.29 1.71 1.39 0.53 0.65

2.4

Q (0.95)
2.1

Q (0.5)

1.8
3 (0 .0 5 )

Q(0.01)
1.5
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Sample
Number

Observation
1

Observation
2

Observation
3

Observation
4

Observation
5

Median

10 0.57 1 0.82 1.25 0 .6 6 0.82
11 0.95 0.98 0.96 0.25 0 .6 6 0.95
12 0.53 0.96 0.25 1.17 1.71 0.96
13 0.98 0.42 0.48 1.25 0.25 0.48
14 1.17 0.48 0.95 0.28 0.95 0.95
15 1.17 1.61 0.57 1.61 0.57 1.17
16 0.57 1.71 0.95 0 .6 6 0.29 0 .6 6

17 1.61 0.96 0 .6 6 0.25 0.48 0 .6 6

18 0.25 0.29 0.31 1.39 1.39 0.31
19 1.25 1.39 1.76 0.95 0.29 1.25
2 0 0.57 1.03 1.76 0.25 1 .0 0 1 .0 0

2 1 0.65 0.31 0.42 1.39 1.39 0.65
2 2 0.96 1.37 1.03 0.48 0.31 0.96
23 1 .0 0 1.61 0.57 1.03 0.45 1 .0 0

24 1.03 0.45 1.76 1.61 0.48 1.03
25 0.25 1.17 1.76 1.37 0.25 1.17

It is require to compute the weibull control limits on the median point chart for this 

process. In order to investigate whether 25-subgroups of size 5 process is in control, it 

needs to find out the values of estimation parameters for location, scale and shape. Then 

substitute the estimation parameters in the form

eO>) = / + 77A* ( - l n ( l - / > ) /

Where /  =0.002064, i f  =0.909169, J3* =0.293165.

Then the control limits of weibull quantile distribution function can be obtained by 

substituting p=0.05, p=0.95 and p=0.01, p=0.99, then will provide the warning and 

action limits respectively, (see figure 16).
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Median Rankit Control Chart for Weibull Distribution 
(Median Measurement)

1.5
Q(0.99) ♦ —Median Value

1.2 Q(0.95) Action Limit=1.4246

0.9 Warning Limit=l .2562Q(0.5)

Median Limit=0.818610.6

_  Q(0.05)
Warning Limit=0.3 8260.3

Q(0.01) Action Limit=0.2381

Sample Number

Figure 16: Median Rankit Control Chart for Weibull Distribution (Median Measurement)

A median rankit chart for these data is shown in figure 16. Note that the subgroups 

median of sample number 18 out-of-control is observed from warning limit. Whereas, 

the subgroups median process operating in control is observed from action limits.

5.9 Summary
In this chapter, we provided an applications of quantile control chart for non-normal 

situation, such as, logistic, exponential, extreme-value, Weibull and power distribution. 

Therefore, in the following chapter, we will be discussing the process capability indices 

using quantile approach for non-normal situation.
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Chapter 6: Process Capability Indices using 

Quantile Approach

6.1 Introduction

Most of the literatures on process capability assume that data follow normal 

distribution. However, in application, most of the process data is non-normally 

distributed. Clement (1989) and Gunter (1989) were discussed the process capability for 

non-normal data and the limitation of c  k with non-normal data respectively. Vannman

(1995) suggested a general formula where the four basic indices, q  , q  , Cpm and

q  k as special case of (6.1). This general formula has been referred to as Cp(u,v)>

which can be defined as follows:

^  d - u \ j u - m \C (u,v) = — = = = = = =  6 .1
3 ^ a 2+v( f i -T ) 2

Where ^  is the process mean, G is the process standard deviation, d = (USL -  LSL) / 2 

which is half of the length of the specification interval, USL is upper specification limit, 

and LSL is the lower specification limit, and m _ (USL + LSL) / 2 the mid point 

between the two limits, T is the target value, and > q • It is easy to verify that the 

Cp (0,0) = CP, C P (1,0) = Cpk, Cp (0,1) = Cp,„ and c  (1;i) = Cpml as follows:

USL-LSL 
6cr

6.2
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where

Cpk = mm{Cpu,Cpl) = ( \ - k )C p 6.3

U S L -p  USL-T

CPi =

3a 3a

ju-LSL T -L S L

k =

3 a

2 \ T~M | 
USL-LSL

3a

\  \T ~»\  
USL-T

! \T ~»\  
T - L S L

0 < A: < 1

has been suggested for symmetric tolerance i.e. 7  = ^ . If the process is on-target then 

k=° (?’=//)•

c vm =pm

USL-LSL USL-LSL USL-LSL
6 cr' 6yjE[(X-T)]2 6 ^ a 2 + ( p - T ) :

6.4

C»m =pm
'p k

1 +
(P - T ) \ 2

1 - I / / - M |  L | ( / i - r )

min(C/*SX -  /u,j i -  LSL)
3 V<r2 + ( / / - r ) 2

'M

1 +
> - r \ 2

6.5

1 1̂ " ^ ^
3 yla2+(ju -T ):d ) pm
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Vannman's method (1997) is applied to handling cases with asymmetric tolerances. 

Vannman's method modified the basic indices by adding a new term | j u -T \  in the 

numerator of the definitions.

Here the estimates the q  ( u , v )  obtained by replacing ^  by the sample mean ^ and

e-2 by the sample variance $ 2, for normal distribution, both estimators are stable. 

However, for non-normal situations, these estimators are highly unstable.

Peam ef ai  (1998) investigated Vannman's method and pointed out that this method is 

not appropriate for processes with asymmetric tolerances. Peam and Chen (1997), found 

that the q  (w>v)are appropriate indices for processes with normal distributions and

inappropriate for non-normal distributions. Peam and Chen (1998) applied a new 

method and obtained a generalisation of q  k for asymmetric tolerances. The method

takes into account the asymmetry of the corresponding loss function, which is shown to 
be superior to the other existing methods. Peam ef ai (1999) suggested a generalisation 

of Clement's method for non-normal Pearsonian process with asymmetric tolerances.

6.2 Process capability indices fo r non-normal 

distribution

The use of the most common process capability indices assumes normal distribution, 

despite the fact that, process capability indices often are non-normally distributed (i.e. 

non-Gaussian) in practice. Here, there are some situations where non-normal process 

distributions are expected: Skew distributions, Heavy-tailed distributions and Short­

tailed distributions, Gunter (1989). It is common to see the data of the process capability 

is non-normal i.e. more or less skew distributed. Most of the contributions made are
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assumed that the process is normally distributed, Kane (1986), Bissell (1990), Chou et 

al (1990), Rodriguez (1992), Chan ef ai (1988), Spiring (1991).

Franklin and Wasserman (1992b) deal with bootstrap confidence limits for 

C ,C k, and C » which avoid the assumption of normality. There have been various

attempts to extend the definition of standard capability indices to non-normal 

distribution, e.g. Gilchrist (1995,1993), Clement (1989) and Gunter (1989). Clement 

proposed a method for calculating estimators of q  q  indices. He assumed that this

technique based on the percentage points of the Pearson curves to convert directly 

normal capability indices to compensate for the non-normality, (for more details see 

Kotz and Lovelace (1998, pp.145-156)). Clement has given tables for constructing 

process capability indices, based on the Pearson system of curves. He does not 

investigate the problem theoretically, or the distributions of estimators of process 

capability indices under other more general circumstance. Peam and Kotz (1994) 

applied Clement's method to obtain estimators for the q  > 'C k indices. The four

indices can be written in the general form, (Vannman, 1995), when a centre target does

T TOT I T Q T
fall on the midpoint of the specification interval i.e. jr -

2

USL-LSL

+«* min USL-M M-LSL
6.6

The above case is quite common in application.

It is easy to verify that Cp (0,0) = Cp, C„ (1,0) = Cpt, Cp (0,1) = Cpm, Cp (1,1) = Cpmt,

which can be defined as

USL-LSL
Up-Lp

6.7

107



Cpk =  min
U S L -M  M - L S L  
U p - M  ’ M - L p

6.8

C pm —
USL-LSL

6.9
' U p -L p v + (M -  Ty

Cpmk = min U SL -M M - L S L
6.10

1 . + ( M - T ) 2 3J M - L p ) \
3  J l  3 J

+(M -7 'y

Where Up, Lp and M are 0.99865, 0.00135 and 0.5 respectively. Clement's estimators 

( C and C k) are obtained by replacing the by Up-Lp> Peam and Kotz's

estimators r r  and C \ are obtained by replacing the two
\  pm pmk '

3a  by U p - M  and M  -Lp> f°r right and left tails using equations (6.2-63) and

(6.4-6.5 ) respectively, j  = ~ LSL represents half of the length of the specification
2

limits, m -  + LSL js mid point between the upper and the lower specification
2

limits and T is the target value, jj andLpare tabulated values from Clement (1989).

The process median is a more robust measure of central tendency than the process mean 

for skewed distributions with long tails. So that, the process mean here is replaced by 

the process median M.

Peam and Chen (1995), applied the new modification to improve the accuracy of 

Clement's method, by replacing the G by (Up -  Lp) / 6  f°r a^ cases regardless of right 

or left tail side, when the centre target does not fall on the midpoint of specification
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interval, i .e . j ^ USL + LSL 
2

. Vannman's superstructure provides the four indices in the

general form, (see appendix 3). Vannman (1997) considered an alternative method to 

handle cases with asymmetric tolerance. The method modified the basic indices by 

adding a new term |_/t/ -  in the numerator of the definitions. Peam ef ai  (1998)

investigated Vannman's method and pointed out that it can severely understate or 

overstate process capability. Therefore, Vannman's method is not appropriate for 

processes with asymmetric tolerances.

Peam, Chen and Lin (1999) discussed a generalisation of Clement's method for non­

normal Pearsonian process (by using the Peam and Chen method in 1998) where the 

manufacturing tolerances are asymmetric. They applied a generalisation of Clement's 

method for non-normal data, when the tolerances are asymmetric i.e.

The tolerances symmetric case is a special case from this method, when f  -  m • The 

generalisation Clement's method is defined as:

USL + LSLT ^ m - -------------
2

6.11

C Pk -  min
U SL -M  ± d'  M - L S L  „ d 

S U P- L P)!2 du ’ (Up - L p) /2  d, j
6.12



where d '= m m (d u,d,) , du = U SL-T  , d, = T - L S L  , d = (USL -  LSL) / 2 and 

a = max(d(M — T ) /d u , d(T-M)/d,)• If T = m then the process capability indices 

above is reduced to the modified original Clement method, Peam and Chen (1995), at 

a = \M -  T\» (see equations 6.30-6.33 in appendix 4).

The simplest way for dealing with non-normal data is to transform the data to normal or 

at least closer to normality than the original data, (Box and Cox, 1964). By using a 

square root transformation, skewed distribution may become normal. If the data passes 

the test of normality, then the transformed data can be used to estimate capability 

indices (see, Somerville, Montgomery, 1996). Some practitioners do not like to deal 

with transform data, because it may create difficulties in translating the results to the 

original data. Therefore, we suggest a new approach to dealing with non-normal data, 

which is called Process Capability Indices, using Quantile Approach q  .

6.3 Clement’s methods and its weakness

There have been various attempts to extend formula of capability indices to non-normal 

distribution. Because, in many applications, processes are not normally distributed. 

Process departure from normality may be difficult to detect. Gunter (1989) 

demonstrated the strong impact this has on the sampling distribution of the natural 

estimator of r  • Therefore, the natural estimators of four basic indices arePk
inappropriate for non-normal processes.
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Clement proposed a method for calculating the estimator q  and of process

capability indices for non-normal distribution, using the Pearson family of curves. Peam 

and Kotz (1994) applies Clement's method to obtain estimators r  and q  of the
p m  pm k

two advance basic process capability indices.

Clement's method is based on a set of available sample data for a well in control 

process, using estimates of the mean, standard deviation, skewness and kurtosis. Under 

the assumption that these four parameters determine the type of the Pearson distribution 
curve, Clement used the tables provided by Gruska ef aj. (1989) for a percentage of the 

family of Pearson curves, as a function of skewness and kurtosis. The estimators are 

defined as in equations (6.7)-(6.10), where jj =0.99865 and 7 , =0.00135 percentile

determine from the Gmska tables for the four parameters above. For the indices q  and

r  , Clement's estimators are obtained by replacing the in (6.2) and (6.4) by
pm

t j  - t  . Whereas, the indices for r  and C > Clement's estimators are obtained by
p  p  p k  pm k

replacing the 3 a  in (6.3) and (6.5) by j j  - M  and M  - L  respectively for the two 

sides. The process mean ^  is replaced by the process median M, where the median is 

more robust than the process mean, especially for skewed distributions with long tails.

The application of Clement's method is restricted to the process with symmetric 
tolerances. Peam ef aj. (1999) introduces a generalisation of the Clement method to 

handling cases with asymmetric tolerances.

Clement's technique which is based on the Pearson family of distributions, offers 

formulas which is in turn based on the percentage points of the Pearson curves to 

convert directly normal capability. The disadvantage of this technique is the possibility 

of choosing a distribution that does not fit; the generic family chosen may not offer the 

best fit possible.

Clement's method depends on the Gmska tables. To determine the t j  , 7  and M, it
p  p

needs to know the parameters value i.e. mean standard deviation, skewness and kurtosis, 

and use these values to determine the value of percentile from tables in Clement's 

(1989). These tables consist of a row which represent the skewness value and a column
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which represents the kurtosis. The row takes values from 0 to 2 increment 0.1 and the 

column takes value from -1.4 to 12.2 increment 0.2. If the skewness value is 0.3 and 

kurtosis is 2, then the value of t t  t  nnri M are the exact result we
u  0.99865 > 0.00135 u r , u  1VJ 0..5

obtained. The disadvantage which I faced here is, if the skewness is 0.33 and the 

kurtosis is 2.08, then the tables do not give an accurate result. In addition, Clement's 

approach requires estimates of skewness and kurtosis, that are based on the third and 

fourth moments, which may be somewhat unreliable for small sample size, (Chang and 

Lu, 1994).

6.4 Quantile Approach for Non Normal Capability 

Indices

There are so many methods used with non-normal data, and therefore one needs to 

distinguish the best method and the advantages and disadvantages of each. Some of 

these methods, can be used to fit the data sample with a generic family of distributions, 

then use the percentage points of the fitted distribution to compute equivalent value of 

C and C • ^  has been extracted technique based on the Pearson family of distribution
p  pk

provide formulas based on the percentage points of the indices to compensate for the 
non-normality, (Clement, 1989). Peam ef a\ (1998) established new techniques for 

dealing with non-normal data; other techniques followed.

Here, we are going to suggest a new technique for working with non-normal data 

through quantile approach. This technique is called Quantile Capability Index (QCI), 

and Capability indices denoted by r  > C > C a n ^  C • QCI helps to
p(w .r) pk(m .r) pm (m .r) ^  pm k(m .r)

measure the capability of the process when the process is in control. This is a different 

method for calculating Q(0.99865), Q(0.00135) and the median Q(0.5), where the 

percentile 0.99865 and 0.00135 represents the quantity of 3 a  . The idea is to generalise 

the formula for standard indices by replacing 3 ^  with the percentile above. This method 

is derived by using the generalisation lambda distribution, is based on percentiles and 

does not need the tables.
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Tukey (1960) was used to derive the Quantile Distribution Function (QDF). If we 

consider a distribution with parameters X̂ rj^O where q represent one or more 

parameters then Q(p), is

Q(p) = X + ?]R(p;0) 6.15

can be defined as a quantile distribution. A standard quantile distribution can be 

expressed as

x n - X  
zp = ~  = R(P,0)

n
where x  and rj as location and scale parameters and p(pt Q) depends on the parameters 

(e.g. skewness, shape).

Further, a quantile distribution, which requires only two parameters (i.e. location and 

scale parameters), can be expressed as

Q(p) = X + T]R(p) 6.16

where p(p) does not depend on the parameter (#). Distributions such as Exponential, 

Extreme value and Uniform, fall under this category. For more details about quantile 

approach, see Kanji & Arif (2000).

For the indices q  and q  , QCI estimators are obtained by replacing the by

Q(l-p)-Q(p). For the indices q  k and^ QCI estimators are obtained by replacing

3 (j by Q(l-p)-Q(0.5) and Q(0.5)-Q(p) respectively for the left and right side tail. The 

process mean is replaced by the process median Q(0.5).

Case 1: The central target does fall on the midpoint of the specification interval i.e.

t _ u s l +l s i  
2

C p { m . r )  ~
USL-LSL 

2(0.99865)-2(0.00135)
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min {USL -  6(0.5), 6(0.5) -  LSL) 
(2(0.99865) -  Q(0.00135))/2

Cp m (m .r)

_____________ USL-LSL

If 2(0.99865)-2(0-00135) \ 2
6.19

+ (2(0.5)- 7 ) :

min (t/SZ ~2(0.5) ,Q(0.5)-LSL)
' pm k(m .r) 6. 20

2(0.99865)-2(0.00135) \ 2
+ (2(0.5) - r y

Case 2: The central target does not fall on the midpoint of the specification interval 

^ t ^ USL + LSL

C p(m .r)  —

2  *d
2(0.99865)-2(0.00135)

6.21

C p k (m .r )  — TYliTl
USL- 2(0.5) d* 2(0.5) -LSL r * \

(2(0.99865)-2(0.00135))/2 du ’ (2(0.99865)-2(0.00135))/2 d,

6.22
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C p m ( m . r )  —
__________ 2*d*_____________

/  6(0.99865)-6(0.00135) V :
i f  6

6 . 2 3

C  pmk(m.r) — mill
U S L  -  0(0.5) 

0(0.99865) -  0(0.00135)')
J +fl

£ _  __________ Q ( 0 . 5 ) - L S L

d u ’ i f  0(0.99865)-0(0.00135) \ 2 d,

6.24

where d" =mm(du,d,) , du = U SL -T  , d, = T -L S L  , d = (USL-LSL)12 and 

a = max (cl(M - T ) / d u , d(T-M)/d,)- Q(0.99865), Q(0.00135 and Q(0.5) are

represented by using quantile approach explained above. If f  = m then the process 

capability indices above are reduced to the original Clement method using, quantile 

approach at a = \M -T\> (see equations 6.17-6.20 above).

6.5 Methodology

The aim here is to measure the process capability indices. First of all, we investigate 

whether the data is normal or not. If the data follows normal data i.e. the mid-point 

equals the process mean, then apply the 4 basic capability indices and take the decision 

whether the data is capable or not. If the data does not follow normal distribution i.e. the 

mid-point is not equal to the process mean, then there are two methods which can be 

used to calculate the capability indices.

The first method is Generalisation Clement's method through Pearsonian process, and 

the other method is Generalisation Clement's method through Quantile Approach. "The 

second method was proposed by the author". The next step is to calculate the capability 

indices, and take the decision whether the data is capable or not, (see figure 6 .1).
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i

Decision 
In / Capable

Figure 6 .1  Flow-Chart of Process Capability Indices.

Here, we are going to estimate the capability indices, by using the Generalisation 

Clement's method through Pearsonian process (GCMPP) e.g. Cp and calculate the

estimators of capability indices by using the Generalisation Clement's method through 

Quantile approach (GCMQA) e.g. Cp{jn r).
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A A

To calculate the values of the estimators C P , C Pk , C pm, C pmk using (GCMPP) as 

follows

We first proceed with calculating the following and check tables in Gruska et al. (1989) 

to find out U p , U L and the sample median, for more details, (see Clement, 1989)

Table 6 .1 Describe data for GCMPP

Mean St. Deviation Skewness Kurtosis Median u p

2.0215 0.2190 0.0568 0.047 2 .0 0 2.6025 1.44049

The upper specification USL=3.2, the lower specification^, the target value T is 2.1,

U S L  +  L S L
then substitute the results above in equations (6.11-6.14) for T  *  

U S L  +  L S L

, and for

T  = , substitute the process capability indices in equations (6.11-6.14) will

reduce to the modified Clement's method, (see equations 6.30-6.33, appendix 4).

The values of the estimators C P(m.r> , C Pk(m.r), C pm(m r), C pmk(m.r) are calculated using 

(GCMQA) as follows

We first proceed with calculating the following and check Quantile Approach to find 

out Q(0.99865), Q(0.00135), Q(0.5), for more details see chapter 5

Table 6 . 2 Describe data for GCMQA

Mean St. Deviation Skewness Kurtosis 0(0.5) Q(0.99865) Q(0.00135)

2.0215 0.2190 0.0568 0.047 2.0184 2.885477 1.20757
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USL + LSLThen substitute the results above in equations (6.21-6.24) for T  ^ ------  , and for

USL + LSLT = ------  , substitute the process capability indices in equations (6.21-6.24) will

be reduced to the modified Clement's method through quantile approach, (see equations, 

6.17-6.20).

Using MINITAB released 12.1, provided two programs to calculate the process 

capability indices for two method GCMPP and GCMQA. By using these programs it 

makes the process indices capability values much easier . The program required six 

observations, which are USL, LSL, T, Mean or Q(0.5), Up or Q(0.99865) and Ul or

Q(0.00135), then gives all capability indices Cp, Cpk, C and Cpmk respectively, (see 

appendix 5 and appendix 6 ).

Example:

Logistic Data

Process

Capability

Indices

Generalisation Clement's Method 

through Pearsonian Curve

Generalisation Clement's Method 

through Quantile approach

USL + LSL 
2

„  USL + LSLT * -------------
2

USL + LSL 
2

„  USL + LSLT * -------------
2

C, 1.89327 1.89327 1.31116 1.31116

Cpk 1.75816 1.60528 1.21389 1.10834

C  pm 1.75461 1.52585 1.25867 1.14127

Cpmk 1.62940 1.35536 1.16530 1.01067

Where USL=3.2 , LSL=1,

t  = u sl± l s l =21 t ^ ujl± l s l =215
2 2 

Up=2.6025 , Lp=0.144049 , M=2.0215

Q(0.99865)=2.885477, Q(0.00135)=l.20757, Q(0.5)=2.0184.
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We note that the all four index values are greater than one in both cases and methods 

which is quite good. Hence, conclude that the process is capable. From the table above, 

we can also conclude that the indices values using quantile approach are less than the 

indices values using Pearsonian curve, because the quantile approach gives more precise 

results than the Pearsonian curve. Capability process indices depends on factors such as, 

how far the target value from the medium value, the range of specification limits and the 

spread or variation of the process. A change in one of the these factors using the same 

data above, would yield other indices values.

6.6 Summary

Clement (1989) proposed the use of Pearsonian processes method for non-normal data. 

He proposed the first two estimators of the process capability. Peam and Kotz (1994) 

extended the application of Clement's method to other two estimators of the process 

capability. The disadvantage of this method is covering symmetric tolerances i.e.

Peam et al. (1999) proposed the Generalisation Clement's Method using 

Pearsonian Process (GCMPP). This method covers asymmetric tolerances, and the 

symmetric tolerances is a special case when T = //. We considered the Generalisation 

Clement's Method using Quantile Approach (GCMQA). GCMQA which is more 

accurate than GCMPP, because it gives accurate percentile results and does not depend 

on statistical tables. In order to measuring the performance of control chart for non­

normal distribution, average run length (ARL) is required. Therefore, ARL for non­

normal situation will be discuss in the next chapter.
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Chapter 7: Determination of Average Run 
Length (ARL) for Non-Normal Data

7.1 Introduction

It is assumed that using the Shewhart individual control chart is carried out under the 

assumption that the measures of quality characteristics follow normal distribution. 

When these measures actually come from non-normal distribution, the result will be a 

considerable deterioration of the in-control ARL performance of the chart.

The performance of a control chart for monitoring a process can be measured by the run 

length distribution and its mean, i.e. the average run length (ARL). When there is a 

significant change in the process, it is desirable to have a small ARL, so that the change 

could be detected quickly. However, if the process is in control, then it is preferable to 

have a large ARL corresponding to a low false alarm rate. A large ARL is desired when 

the mean has not shifted (or the shift is within an acceptable limit), whereas a small 

ARL is preferable when the size of a shift is unacceptable.

Rational subgroups of size one are frequently encountered in process monitoring and 

control. The Shewhart control chart for individuals is often used in this situation. It is 

known that the in-control average run length of this chart at 3cr is 370.4, under the 

assumption that the observations are selected at random from a normal population. 

When the assumption normality is violated, the ARL of the individuals control chart is 

adversely affected (Borror et al. 1999) Therefore, the ARL is constructed using quantile 

distribution for non-normal populations.

Crowder (1987) evaluated the joint performance of the x chart and the MR chart by 

using the computation of their joint ARL. He noted that the usefulness of this 

conventional procedure. Lucas and Saccucci (1990) and Roberts (1966) conclude that 

the EWMA and CUSUM charts are known to have very similar performances in
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monitoring a normal mean. Del Castillo and Montgomery (1994) investigated the ARL 

performance of Q-chart for variables, and found out that in some cases it is inadequate. 

They suggest some modifications to the Q-Chart procedure and alternate methods based 

on the EWMA.

Ng and Case (1992) provide a formula for the ARL of X charts with unknown 

parameters. Burroughs et al. (1993) uses the formula given by Ghosh et al. (1981) to 

find ARL of Shewhart control charts with run rules and unknown process parameters. 

Quesenberry (1991) proposed the Q-chart technique for process with unknown 

parameters. Albin et al. (1997) estimated the ARL to false alarms and to detection of 

shifts in the process mean and standard deviation. Amin et al. (2000) proposed a 

EWMA control chart based on the smallest and largest observations in each sample, 

which called is MaxMin EWMA control chart. The latter has good ARL properties for 

simultaneous changes in the mean and standard deviation.

The aim of this chapter is to derive the Average Run Length (ARL) for non-normal 

distributions, which will be concerned in the light of quantile development in Ch.4, with 

the distributions of Exponential, Extreme-value, Logistic, Weibull, Pareto and Power. In 

order to calculate the ARL “i.e. the average number of points that must be plotted 

before a point indicates an out of control”, when k is a fixed number, K>1, and the 

probabilities are varied, i.e. p has been generated from U(0.001,0.003). In addition, 

ARL is calculated, when p is fixed, i.e. p=0.00135 and k is variable. In the next section, 

the theory underpinning ARL for such distributions will be discussed.

7.2 ARL for non-normal distribution

Quantile distribution is defined as
Q(p) = X + ii* R(p) 

where A and TJ represents a location and scale parameters

let

So
x =  Q{u) =  A +  77 *  R(u) 

u - F
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Here, we consider a shift of scale from T] to krj in process, where k>l.

The probability limit for quantile distribution of a signal at a given time period, when 

the process is in control is

p  = prob(x >- xu or x < x t)

= l - F ( x u) + F(x,) = l - F
A + j ]*R(pm ) - A

krj
+ F

A + t j *R(p(L)) - A
krj

p  = \ - F R̂(PwO} . J R ( P ( L ) f+ F

As we know in normal situation, Montgomery (1997)

1
ARL = — 

P

then, ARL for non-normal distribution using quantile approach can be found as follows

ARL =
r . JR(pa))^1 - F + F

JJ

In the next section, we prove such probabilities, which are F r R {p m f and

F / R ( P a ^ in ARL for some non-normal distribution, such as exponential, extreme,

power, Weibull,pareto and logistic distribution.

7.3 ARL for Exponential Distribution

Quantile function for exponential distribution is

i?(j?) = - ln ( l- /7 )

By using this formula, the probability of p {L), i.e. lower limit, is calculated
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T R (PW ) = - T ln(l ~ P i J

= -ln (l -  p (L))

Let 1 P(l) 0  P(i)) 
then

F ±tf(/>(I))) = F ( - ln ( l- /> ; ,) )  

= F(R(p ' ) )

= P ( i )

Where p*L) = 1 — (1 — p {L))k, i-e. p*L̂ represents the lower limit, when k>l.

On the other hand, the probability of p {U), i.e. upper limit is calculated

k

Let 1 P(u) 0  P(u)) 
then

= -ln (l

F

= F ( R ( p ' ) )

= P m

Where p*V) = 1 -  (1 -  p (u)) k , i.e. p*{U) represents the upper limit, when k> l. 

at p u = 1  - p L

( L) .
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then

ARL =
I1 -  p'u, + Pw )

Table 7.1 provides the ARL's results for various distributions. For more details, proof 
etc. of the ARL, see appendix 7.
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7.4 Application

The ARL for non-normal distribution in the two cases was calculated mainly using ARL 

theory. In case 1, ARL is calculated, when k is variable and p-value is fixed, where k is 

generated from U(l,2), k value was generated from U(l,2), because when k>2 , ARL 

value will be very low, (see tables 7.2a for exponential, extreme-value and logistic and 

see table 7.2b for Weibull, power and pareto distribution). In case 2, ARL was 

calculated when p is variable and k is fixed, and where p-value is generated from 

U(0.001,0.003), (see table 7.3a for exponential, extreme-value, logistic and table 7.3b 

for Weibull, power and pareto distribution).

Graphs of the ARL for n=l for these distributions, are shown in figures (7.1-7.6) for 

case 1 and figure (7.7-7.10) for case 2.

Note from the tables and graphs that the ARL, when there is no shift for scale ( 77) we 

get an average of one false signal in 370.37 plotted points, i.e. when k=l. The ARL for

quantile control chart for such distributions at k=l, is the same for a 3-sigma X -chart, 

which is 370.37, when the probability of a false signal is 0.00135, (see tables 7.2a- 

7.2b).

Once k is shifted from k=l to k>l, the values of the ARL for n=l decreases very 

quickly. For example, at p=0.00135, ARL value for extreme-value when k=l.l is 

159.032, while ARL value for extreme-value when k=1.2 is 82.696, see table 7.2a. The 

shift in the process for just 0.1 when k changes from 1.1 to 1.2 , cost about 76.336 

samples. Another example, at p=0.00135, ARL value for weibull when k=1.4 is 

151.507, while ARL value for weibull when k=1.5 is 123.131, see table 7.2b. The shift 

in the process for just 0.1, costs about 28.376 samples. From tables 7.2a and 7.2b, ARL 

value for such distributions are different from each other, at fixed k or at fixed p, see 

table 7.3a and 7.3b.

On the other hand, it can be observed from the tables 7.3a and 7.3b, that the ARL gives 

the different value when k is fixed and p is change. For example, for exponential 

distribution at k=1.6, the ARL value for probabilities 0.001, 0.00135, 0.0027, 0.005,
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0.01 and 0.05 are 71.6315, 59.0655, 37.7402, 25.2581, 16.001 and 5.3962 respectively, 

see table 7.3a.

By using the ARL Formula in table 7.1, the information of ARL values in tables 7.2a, 

7.2b, 7.3a and 7.3b are given. It can be observed that, when there is no shift, the scale 

will average of one false signal in 370 plotted points, i.e. we will get an average of one 

false signal in 370 subgroups.

Figure 7.1-7.6 for such Distribution display the relationship between ARL value and k, 

when p is fixed and k is generated from U(l,2). It was found that the relationship 

between ARL and k is that when k increases, ARL decreases, and vice versa.

Figure 7.7-7.10 for such distribution display the relationship between ARL value and p- 

value, when k is fixed and p is generated from (0.001,0.003). It was found that the 

relationship between ARL and p-value is that when ARL increases, p-value decreases 

and vice versa.

The values in tables 7.2a, 7.2b, 7.3a and 7.3b were obtained by creating a program to 

calculate ARL for each distribution, using Minitab 12.1. For example, we will discuss 

the ARL program for exponential distribution here, and for other distributions, see 

appendix 8 .

ARL for Exponential

R(p)= -ln(l-p)

P*(u)=(l-((l-(l-pl))**(l/k)))

P*(l)=(l-((l-pl)**(l/k)))

ARL=1/(1-P*(u)+P*(l))

Case 1

#exponential

#p is fixed, k is variable

#k is generated from (1 ,2 )
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•  cl=k, c2 =p

let c3=(l-((l-c2)**(l/cl))) 

let c4=(l-((l-(l-c2))**(l/cl)))

let c5=(l)/(l-c4+c3)

•  c5=ARL

Case 2

•  exponential

•  k is fixed, p is variable

#Generate p from uniform (0.001,0.003)

#cl=p,c2 =k

let c3=(l-((l-cl)**(l/c2))) 

let c4=(l-((l-(l-cl))**(l/c2)))

let c5=(l)/(l-c4+c3)

#c5=ARL

Case 1 help us to calculate the ARL for exponential distribution, when k is variable and 

p is fixed. The procedures to run this program using Minitab 12.1 are as follows:

First

• Open Worksheet 1

• Generate n observation ( n=60, say) from Uniform(l,2), put it in Cl

• Put the p-value which you want to use (0.00135, say) in C2

Second

You need now to follow these procedures to write down the program

• Chose Edit

• Choose Command Editor

Now open window to write down the program,

• let c3=(l-((l-c2)**(l/cl)))
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• let c4=(l-((l-(l-c2))**(l/cl)))

• let c5=(l)/(l-c4+c3) 

then submit command.

You will find the results in Worksheet 1, where Cl=k, C2=p, C3 = p L, C4 = p v and 

C5=ARL.

If you want to calculate ARL using another probability, you need to change the p-value 

in C2, and so on.

Case 2 helps us to calculate the ARL for exponential distribution when p is variable and 

k is fixed. The procedures to run this program using Minitab 12.1 are as follows:

First

• Open Worksheet 2

• Generate n observation ( n=60, say) from Uniform(0.001,0.003), put it in Cl

• Put the k value, which you want to use (0.00135, say) in C2

Second

You need now to follow these procedures to write down the program

• Choose Edit

• Choose Command Editor

Now it will open a window to write down the program,

• let c3=(l-((l-cl)**(l/c2)))

• let c4=( 1 -((1 -(1 -c 1 ))* * ( 1 /c2)))

• let c5=(l)/(l-c4+c3) 

then submit command.

You will find the results in Worksheet 2 , where Cl=p, C2 =k, C3= p*L, C 4 = p v and 

C5=ARL.

If you want to calculate ARL using another k value, you need to change the k value in 

C2, and so on.
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Table 7.2a: ARL (p-fixed and k-variable)

k

Exponential Extreme-value Logistic

P P P
0.00135 0.0027 0.00135 0.0027 0.00135 0.0027

1 370.370 185.185 370.370 185.185 370.370 185.185

1.1 271.082 141.296 159.032 89.743 203.373 108.401

1 .2 192.830 105.418 82.696 51.234 123.490 69.448

1.3 138.101 79.059 49.711 33.027 81.029 47.700

1.4 101.195 60.387 33.214 23.258 56.516 34.609

1.5 76.248 47.190 23.976 17.480 41.397 26.240

1 .6 59.066 37.740 18.331 13.793 31.556 20.620

1.7 46.939 30.842 14.639 11.296 24.859 16.690

1 .8 38.163 25.700 12.091 9.523 20.129 13.846

1.9 31.657 21.789 10.254 8.215 16.681 11.727

2 26.725 18.757 8.882 7.219 14.099 1 0 .1 1 0

2 .1 22.912 16.365 7.828 6.440 1 2 .1 2 0 8.848

2 .2 19.909 14.447 6.997 5.818 10.572 7.845

2.3 17.506 1 2 .8 8 8 6.328 5.311 9.339 7.035

2.4 15.555 11.603 5.781 4.893 8.342 6.371

2.5 13.950 10.531 5.327 4.541 7.524 5.821

2 .6 12.614 9.629 4.944 4.243 6.845 5.358

2.7 11.490 8.861 4.617 3.987 6.276 4.966

2 .8 10.536 8 .2 0 2 4.337 3.766 5.792 4.630

2.9 9.718 7.632 4.093 3.572 5.379 4.340

3 9.011 7.135 3.879 3.402 5.022 4.087

3.1 8.397 6.700 3.691 3.251 4.712 3.867

3.2 7.858 6.315 3.524 3.117 4.441 3.672

3.3 7.384 5.974 3.375 2.997 4.202 3.499

3.4 6.963 5.669 3.241 2 .8 8 8 3.990 3.345

3.6 6.253 5.150 3.011 2.701 3.633 3.083

3.8 5.679 4.726 2.821 2.546 3.344 2.869

4 5.208 4.374 2.662 2.415 3.108 2.692
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Table 7.2b: ARL (p-fixed and k-variable) for weibull, power and pareto f5 =  1.4
>0 = 1.4

k

Weibull Power Pareto

P P P
0.00135 0.0027 0.00135 0.0027 0.00135 0.0027

1 370.370 185.185 370.370 185.185 370.370 185.185

1.1 298.807 153.671 14.634 14.113 7.857 7.714

1 .2 237.510 126.105 8.034 7.884 4.398 4.358

1.3 188.852 103.545 5.776 5.702 3.233 3.214

1.4 151.507 85.643 4.635 4.590 2.650 2.638

1.5 123.131 71.590 3.945 3.914 2.301 2.292

1 .6 101.514 60.552 3.483 3.460 2.068 2.062

1.7 84.896 51.828 3.151 3.133 1.903 1.898

1 .8 71.967 44.867 2.902 2.887 1.779 1.776

1.9 61.776 39.254 2.707 2.694 1.684 1.681

2 53.638 34.679 2.550 2.539 1.607 1.605

2 .1 47.056 30.909 2.422 2.412 1.545 1.543

2 .2 41.670 27.772 2.314 2.306 1.494 1.492

2.3 37.213 25.135 2.223 2.215 1.451 1.449

2.4 33.486 22.899 2.144 2.138 1.414 1.412

2.5 30.341 20.987 2.076 2.070 1.382 1.381

2 .6 27.663 19.339 2.016 2 .0 1 1 1.355 1.353

2.7 25.365 17.909 1.963 1.958 1.330 1.329

2 .8 23.377 16.659 1.916 1.911 1.309 1.308

2.9 21.647 15.561 1.873 1.869 1.290 1.289

3 20.130 14.590 1.835 1.831 1.273 1.272

3.1 18.794 13.727 1.800 1.796 1.257 1.256

3.2 17.610 12.956 1.768 1.765 1.243 1.243

3.3 16.556 12.264 1.739 1.736 1.231 1.230

3.4 15.612 11.640 1.713 1.709 1.219 1.218

3.6 13.999 10.564 1.665 1.662 1.199 1.198

3.8 12.676 9.671 1.624 1.621 1.182 1.181

4 11.576 8.919 1.589 1.586 1.167 1.167
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Figure 7.1 ARL for Exponential Dist. when p-fixed and k is generated from U(l,2).
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Figure 7.2 ARL for Extreme-value when p-fixed and k is generated from U(l,2)
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Figure 7.3 ARL for Weibull Dist. when p-fixed and k is generated from U(l,2)
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Figure 7.4 ARL for Logistic Dist. when p-fixed and k is generated from U(l,2).
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Figure 7.5 ARL for Power Dist. when p-fixed and k is generated from U(l,2).
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Figure 7.6 ARL for Pareto Dist. when p-fixed and k is generated from U(l,2).
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Figure 7.7 ARL for Exponential Dist. when k is fixed and p is generated from 
U(0.001,0.003)
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Figure 7.8 ARL for Extreme-value when k is fixed and p is generated from 
U(0.001,0.003).
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Figure 7.9 ARL for Logistic Dist. when k is fixed and p is generated from 
U(0.001,0.003)
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Figure 7.10 ARL for Weibull Dist. when k is fixed and p is generated 
from U(0.001,0.003)

7.5 Summary

The performance of a control chart for monitoring a process can be measured by the run 

length distribution and its mean, i.e. the average run length (ARL). Here, it provides the
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theoretical approach for exponential, extreme-value, pareto, power, Weibull and logistic 

distributions using quantile approach, (see table 7.1 and appendix 7). Moreover, the 

application of ARL has provided two cases, where easel, calculated ARL when k is 

variable and p-value is fixed, (see tables 7.2a-7.2b), and case 2, calculate ARL when p 

is variable and k is fixed, (see tables 7.3a-7.3b). From these cases, it has been found 

that, when k increases, ARL decreases. On the other hand, in case 2, when p increases, 

ARL decreases.

In the earlier chapters, we have introduced the evaluation of quantile control chart, 

process capability index and average run length for one variable. But, in reality, quality 

characteristic can depend on more than one variable, when a multivariate control chart 

is required. Therefore, in the next chapter, we will introduce the evaluation of 

multivariate control chart using quantile approach.
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Chapter 8: Evaluating Multivariate Control 
Chart using Quantile Approach

8.1 Introduction

Control charts for one quality characteristic are used in industrial applications to 

observe whether a process is in control. This procedure has been discussed in previous 

chapters. In order to control and monitor the process mean of two or more quality 

characteristics simultaneously, multivariate control charts are required, (Sullivan and 

Woodall, 1996).

Traditional multivariate method depends on data vector being a random sample from 

multivariate normal distribution. One advantage of this method is the sampling 

distributions of most multivariate statistics which are approximately normal, regardless 

of the form of the parent population, because of a central limit theory, (see Johnson and 

Wichem 1998). This method plays an important role in practice when dealing with more 

than one factor. Multivariate normal distribution is based on normality, but in reality, 

most sets of data do not follow normal distribution. Therefore, the distributional shape 

is different from one distribution to another. For example, if we generate two sets of 

data, one from normal with mean 1 & standard deviation 1 , and another from 

exponential with mean equal 1 , both would have the same mean and standard deviation. 

However, the distributional shape would not be the same, especially if a small sample 

was used. So, the multivariate normal method does not gives accurate results when the 

quality characteristic comes from non-normal distribution.

Featured in the literature reviewed, trimmed mean control charts for univariate case has 

been presented. The use of these control charts are advantageous if the distribution is 

non-normal, (see White and Shroeder (1987), Iqlewicz and Hoaglin (1987) and 

Langenberg and Iglewicz (1986)). Alloway and Raghavachari (1990 , 1991) extended
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trimmed mean control charts for multivariate case. Abu-Shawiesh and Abdullah (1997) 

proposed control charts based on the a  -trimmed mean. Cox T. F., (2000) suggested the 

use of Multidimensional Scaling used in Multivariate statistical process control, e.g. 

classical scaling, nonmetric scaling and biplots, when data are not normally distributed. 

Beirlant, Mason and Vynckier (1999) proposed a technique for description and analysis 

of non-normality data based on generalised quantiles of minimum volume ellipsoids.

Therefore, constructing multivariate control charts using multivariate normal method 

when the set of data are not normal would give inaccurate results. Grimshaw and Alt 

(1997), proposed a control chart using values of the quantile function. Estimating 

quantile function values requires a random sample to construct the sample quantile 

function,

for

Q(u) = n
2/ + 1 A
----------u

2 n j
x(i\ri) + n u

2i - 1   ̂2i +1
< u <

2 n 2 n

2i - 1  
2 n

x( i  + l;w)

i = 1 , 2 - 1

where

x (\,ri) < x (2,ri) < ...< x (n\ri) denote the order statistics.

This approach deals with the data as general data, i.e. it is not concerned with the 

distribution of quality characteristics. It concludes that the control charts for quantile 

values are quite effective at detecting changes in the distributional shape which would

be difficult to detect in x and R charts. Moreover, this technique concentrates on the 

distributional shape in case the sets of data are normal or not, regardless of what the 

distribution of the sets of data are when it is non-normal.

Discussed here is the multivariate control chart using quantile approach (MCCQA). 

This technique is concerned with the distribution of the quality characteristics. For 

example, if the quality characteristics follows Weibull distribution, then MCCQA is 

dealing with the Weibull distribution properties to construct a multivariate control chart.
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Multivariate control charts using quantile approach (MCCQA) is explained in the next 

section with an example that illustrates how the technique is used.

8.2 Multivariate Control Chart using Quantile Approach 
(MCCQA)

In order to improve the quality of a product, quality characteristics should be tested for 

causes of variation. The stability of variation means that it is produced by the common 

causes which is often present. These common causes do not always represent a major 

source of variation. The main role of control charts are to find out the occurrence of 

special causes of variation that affect from outside of the process. These variations can 

be used to repair the defect and improve the process.

This chapter discusses the use of quantile function defined by

Q(u) = F~l (u) = [ x : F(x) = u], 0 < u < 1

to construct multivariate control charts for non-normal data.

In order to estimate quantile distribution for non-normal data, take a sample (quality 

characteristic) for non-normal distribution and then calculate the quantile distribution 

Q(p) where

Q(p) = A + t ]*R(p)  

where X and 7J are location and scale parameters, respectively, and R(p)  is quantile 

function.

The steps of construct multivariate control charts are as follows:

1 . Calculate Q{ (p)  for each component in all factors

2 . Calculate the mean of Qt (p)  for each factor

3. Calculate the overall mean of step 2

4. Calculate the variance of each raw in each factor
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5. Calculate the mean o f  variance in step 4

6 . Calculate the covariance of the data. This can be calculated by taking the whole raw 

from each factor

7. For sufficient large n sample, the random factors are approximately multivariate 

normal, then calculate T-square value.

T2 = n ( x -  x)' Z _1 ( x - x )

where x is substituted by Q(p ) , x is substituted by Q ( p ) , £  is substituted by 

Cov(Qi (p ) ,  Qj (p )) and n is the sample number.

p ( m - l ) ( n - 1) 
m n - m -  p  + 1

9  L rC l  = (m ~ 1)2 * ( p / ( m - p - l ) F ( a / 2 ; p , m - p - l )  ^

m 1 + ( p  / {m -  p  - 1)) F( a  / 2; p , m -  p  - 1)

LCL = 0 ; for n=l

2
10. Plot T -value on the control chart using UCL and LCL shown in steps 8 and 9.

11. Then take the design whether there is a special cause or not.

Table 8.1 provides the whole process for constructing multivariate control charts using 

quantile approach, where p=2. Moreover, for p>2 the process uses the same method and 

extending the table 8 .1  to the number of factors.
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Table 8.1 multivariate control chart using quantile approach, where p=2

Steps Pi Pi
1 *121 *1,1 *112 *122 *ly’2

*211 *221 X2j\ *212 *222 X2j2

*311 *321 *3,1 *312 *322 *3 jl

. . . : . . .

*/ll */21 Xl j l */12 **22 ij 2

2 Calculate quantile function for each preliminary sample of both factors

2 (*n  i))

2(*/21))

2 0 o i)

where i = 1,2.., m ; j  = 1,2.., n and 

k  = 1,2,.., p  are represented by 

preliminary sample, sample number 

and factors number, respectively

2(*/12) )

2(*/22) )

2(*/j2) )

where i = 1,2..,/w; j  = 1,2..,ft and 

k  = 1,2,.., p  are represented by 

preliminary sample, sample number 

and factors number, respectively

3 Pi Pi

2 0 m ) Q(x  121) . . . 2 0 i , i ) 2 (* i 12) 2  (*122) . . .
(*1  j i )

2 O 211) 2  (*221) . . . 2 0 2yl) 2(*212 ) 2  (*222) 2 0 2y2)

2 O 311) 2  (*321) 2 0 3  j l ) 2(*312 ) 2(*322) . . . 2 0 3 y'2 )

. : : . : .

2 0 ; i i ) 2 0 ,2 .) 2 0 ,  j,) 2 0 ,12) 2(*/22 ) 2 0 , j2)
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4 Calculate the mean of the each raw 

in step 3

which called 2 0 *7yi))

Calculate the mean of the each raw 

in step 3

which called 2  0*7 y 2))

5 Calculate the over all mean in step 4 

which called 2 0 * 7  j i)

Calculate the over all mean in step 

4 which called 2 0 * 7  jz)

6 Calculate the variance of

Q(x, j , )

from each raw in step 3

Calculate the variance of

Q(xij2)
from each raw in step 3

7 Calculate the mean of variance in 

step 6

Calculate the mean of variance in 

step 6

8 Covariance of the data, 

can be calculated by taking the whole raw from each factor.

e.g. Cov (Q{xxfl ) ,Q{xm ))

9 Calculate Hotelling T2 -test

1 0 p ( m- l ) ( n - l )
, ■, a , p , m n - m - p + \m n - m -  p  + \

LCL = 0
1 1 Plot T values using control limits in step 1 0

2
Note: A program using Minitab 12.2 is required in order to calculate T  -value at p=2

#In order to calculate Hotelling T-square

#cl=n

#c2 =xl-bar

#c3=x2-baar

#c4=xl-bar-bar

#c5=x2-bar-bar

#c6 =var(xl)

#c7=var(x2)

#c8=cov(xl,x2 )
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#cl3=Hotelling T-square

let cl0=(cl/((c6*c7)-(c8**2)))

let cl I=(c7*((c2-c4)**2))+(c6*((c3-c5)**2))

let cl2=(2*c8*((c2-c4)*(c3-c5)))

let cl3=cl0*(cll-cl2)

8.3 Application

In this section, the concept of multivariate control charts is applied using a quantile 

approach. In industrial application, the sample size (subgroup size) is mostly n=l. 

Therefore, two quality characteristics i.e. p=2, with individual samples from Weibull 

distribution, with each factor having 30 preliminary samples, were generated. The 

reason or choosing these data is in order to construct multivariate control charts almost 

dealing with the data as a normal data dependent on the central limit theory. Whereas, in 

reality, most sets of data are not following normal distribution. On the basis of a 

Weibull data shown in table 8.2, the Hotelling T-square value, using the original method 

and quantile approach were calculated. The calculation quantile approach in table 8.1 is 

used based when n= l. The original method can be found in the literature on multivariate 

quality control of chapter 2, see table 8.2. The calculation for the original method is 

also based on n=l

Hotelling T-square control charts are presented on figure 8.1 for original method and 

figure 8.2 for quantile approach. The calculation of statistical control limit and a  can 

be discussed next.
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For quality characteristics multivariate charts, the probability that the chart indicates the 

control when the process is in control is 1 — a , which equal l-0.0027p, where a  can

cc
be calculated by —  = 0.00135, Alt (1982a). In this example, p=2, then a  =0.0054. 

2 P

Control limits and T-square values are needed to construct a multivariate control chart. 

The T-square value are given in table 8.2. The corresponding control limits are as 

follows

UCL = (m ~ 1)2 * ( p / ( m - p - l ) F ( a / 2 ; p , m - p - l )
m l + ( p / ( m - p - l ) ) F ( a / 2 ;  p , m - p - l )

where m=30, p=2 and a  /2=0.0027

then UCL=9.9447 and LCL=0, because any shift in the mean will lead to an increase in 

the statistics T-square.

These control limits are shown on the chart in figure 8.1 for original method and figure 

8.2 for quantile approach. Note that there are two points that exceed the limits, which 

are point 9 and point 21 in both graphs. Therefore, it can be concluded that the process 

is out-of-control, using both methods. In addition, from figure 8.2 and table 8.2, the T- 

square value using quantile approach is more sensitive than the original method.
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Table 8.2: Generated Weibull Data (p=2, m=30, n=l)

First

Variable

Second

Variable
2 i O ) e 2(p) T2 Using 

Original Method

T Using 

Quantile Method

0.49768 1.60048 0.124518 0.187012 0.8208 1.2917

0.27421 1.29882 0.149376 0.252207 0.7126 0.953

0.73444 0.91155 0.171868 0.306842 0.6907 0.4989

0.60762 2.44292 0.193241 0.35638 4.8634 7.0668

0.34679 0.46853 0.214037 0.402955 0.8493 1.085

0.1588 1.30821 0.234564 0.447685 1.4213 1.6815

0.37905 1.98865 0.255026 0.49126 2.3448 3.5387

0.59516 0.76282 0.275574 0.534157 0.2507 0.1965

1.51664 1.11038 0.296336 0.57674 11.7773 10.3288

0.29411 0.4076 0.317423 0.619302 1.1985 1.5019

0.85034 0.56975 0.338942 0.6621 1.8682 1.6486

0.68036 0.93597 0.360998 0.70537 0.4192 0.28

0.40606 1.27413 0.383701 0.749341 0.2475 0.4275

0.48438 0.41187 0.407173 0.794246 0.77 0.9928

0.83928 0.12253 0.431545 0.840332 3.09 3.3483

0.75684 1.24276 0.456969 0.887871 0.9386 0.84

0.24784 1.3752 0.483625 0.937168 0.9624 1.2722

0.11747 0.82459 0.511724 0.98858 1.591 1.6907

0.21567 1.37701 0.541525 1.042536 1.1485 1.4642

0.53503 0.09482 0.573353 1.099559 1.8551 2.4326

0.59071 0.79566 0.607619 1.160313 0.2082 0.1502

0.45503 3.10855 0.644866 1.225658 10.0444 14.7286

0.66969 1.40307 0.685828 1.29675 0.7378 0.8537

0.40722 0.6712 0.731533 1.3752 0.311 0.3992

0.19265 0.7108 0.7835 1.463372 1.1526 1.2791

0.22723 0.34137 0.844107 1.564944 1.7216 2.1025

0.74164 0.57204 0.917414 1.686158 1.1203 1.0189

0.09058 0.7487 1.011265 1.838994 1.8921 2.0048

0.09706 0.45101 1.144311 2.051693 2.3671 2.6463

0.63011 0.57463 1.384605 2.425972 0.6253 0.6238
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M u l t i v a r i a t e  C o n t r o l C h a r t  
( u s i ng  o r ig in a I m e th o d )

Figure: 8.1

Figure: 8.2

8 . 4  S u m m a ry

In the literature, multivariate control chart was discussed for normal distribution. 

Whereas, in the reality, most quality characteristics do not follow normal distribution. 

Therefore, it produces a new technique, in order to dealing with non-normal situation, 

which called Multivariate Control Chart using Quantile Approach (MCCQA). The latter
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was compare with the traditional multivariate control chart (MCC), it founds that the 

MCCQA is more sensitive than the (MCC).

Multivariate control chart used when quality characteristics depends on more than one 

variable. On the other hand, when quality characteristics depends on one variable, but 

this variable rely on more than one quality distribution, then a mixture distribution is 

needed. Therefore, in the next chapter, will be discuss the quantile control chart for 

mixture distribution.
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Chapter 9: Quantile Control Chart for Mixture
Distribution: AN INNOVATIVE APPROACH

9.1 Introduction

A mixture distribution can be considered when the data are represented by two or more 

kinds of distribution. Suppose that a random variable takes values in a sample space and 

its distribution can be represented by probability density function of the form

/ ( * ) =  i a j i x , )
i- 1

k
where <2 / >  0  , i=l,2 ,...,k , Z # / = l

i= 1

f i ( x) -  0 l f i (x)dx = \

where cZj denotes the mixing weight.

In general, mixture distributions have a wide application, for example, in biology it is 

sometimes used to measure certain characteristics in natural populations. Bhattacharya 

(1967) and Cassie (1954) discussed the length distribution of a certain type of fish, and 

found it useful to split their observations into age categories, where each category 

contributes a normal component distribution, to yield an overall mixture. Ashton (1971) 

used a mixture of a gamma distribution with a displaced exponential distribution to 

model the frequency distribution of time gaps in road traffic and fitted mixture with 

Weibull components, (see Kao 1959). A mixture distribution can be used to investigate 

whether a sample of blood pressure data can be separated into two normal populations 

(Clark, 1968). George (1969) also applied a mixture of normal distributions to data
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arising from measuring the content of DNA in the nuclei of liver cells of rats. In 

industrial context, a mixture distribution can be observed as in time failure to bulb life.

Kanji (1985) discussed a mixture of Laplace and normal density function with variable 

proportionality constant to describe a Wind Shear. He suggested that there was a 

systematic difference in the values mixing parameters for different bands widths. 

Kapoor and Kanji (1990) apply the characterisation theory to develop a model selection 

to choose the mixing parameter. Jones and McLachlan (1990) propose Kanji's technique 

for fitting a mixture of Laplace and normal distributions, but without the constraint that 

the component densities should have equal variance. Scallan (1992) discussed Kanji 

(1985) using composite link formulation to be fitted to data which may be cross­

classified by one or more factors. Titterington, et al. (1985), Everitt and Hand (1981) 

give some applications of finite mixture distribution and its properties.

Certain difficulties are associated with statistical analysis of mixture data due to mainly 

two reasons. Firstly, explicit formulae generally does not exist for the estimates of the 

various parameters, and therefore numerical methods are required. Secondly, there are 

theoretical difficulties which arise in certain aspects of the statistical analysis, that 

create some common mixture problems which are of non-standard nature. As a result, 

detailed investigation of the analysis of finite mixture problems provides more than just 

a catalogue of straightforward applications of standard methods to a particular class of 

statistical approach.

In quality control research, the output of a production process of quality characteristics 

are sometimes obtained from one or more distributions, that have different statistical 

properties. In such situations a mixture distribution approach helps us to find out the 

properties of the production process.

152



The purpose of this chapter is to develop median rankit control charts using quantile 

approach for individual measurements arising from a process which follow a mixture 

distribution.

It is observed from the reviewed literature that most of the work on mixtures with 

continuous components which are non-normal uses exponential components, (Everitt 

and Hand, 1981). Such mixtures arise in industrial applications, especially in the 

analysis of failure time data, and have important mathematical properties. Practical 

applications for mixture distribution seem to be rare in the literature.

Mixed failure population are encountered in many fields of applied science, such as in 

engineering applications. The engineer may divide the failures of a system or a device 

into two or more different types of distribution. An example, provided here, is to 

discussed the time of failure which follows two distributions. It provides the mixture 

model for these distributions, and the estimates of the parameters of the model. A 

control chart for the quantile mixture distribution will be discussed.

In reality, the construction of control charts for mixture distribution have some 

difficulties. In this research the author distinguishes between an unstable process and a 

mixture process, i.e. if the process is unstable then charting is not appropriate. Another 

reason for difficulties, is to identify the components of the mixture. Finally, the problem 

lies in the mathematical complexities of the mixture distribution.

9.2 Characterisation Theory

In this section characterisation theory will be discuss briefly, using Bhattacharyya 

bounds to understand a particular issue of distribution theory, used by Fosam and Kanji 

(1994) and Kapoor and Kanji (1990).
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A series of lower bound for the variance of an unbiased estimator of a function 

parameter was established by Bhattacharyya (1946), a special case of which is the

Cramer-Rao bound. The Bhattacharyya matrix is defined as the covariance matrix J r s

where r,s=l,2 ,...,k given by

Jr,s
Z,(r ) (q) L^s\ a )  

L(a) L{a)

where Lr (a)  denotes the rth derivatives with respect to a  of the likelihood function. 

Whittaker (1973) showed that for a mixture of two known densities,

p(x)  = afi (x) + (1 -  a ) f 2 (x) ,

where f \  and are such that they differ at each point of some set of positive 

Lebesgue measure (or positive counting measure in the discrete case), the 

Bhattacharyya matrix for the mixture distribution is given by;

Jr,s ~
( r i y

0

'* Y  1 -  1(a) 
a (  1 -  a )V )

,r = s = l,2,...k 

otherwith

where

m = i
f \ (x)f2(x)

p(x)

is the Fisher information. The diagonal nature of the matrix is particularly useful since 

construction of the lower bound involves inverting it. Shanbhag (19972,1979) has 

obtained characterisations based on the diagonality property. Kapoor and Kanji (1990) 

showed that for these two components mixture, the Bhattacharyya matrix is diagonal if 

and only if the mixing parameter is linear in the parameter of interest. Fosam and Kanji
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(1994) generalised this result to the case of mixtures with more than two components 

and constructed the Bhattacharyya matrices for such cases.

The latter authors applied the theoretical aspect mentioned above to wind shear data. 

The models considered included mainly mixtures of Normal, Lognormal and Laplace 

distributions. This resulted in two competing models, Normal-Lognormal and Normal- 

Laplace. The Normal-Laplace mixture was selected on the basis of goodness of fit to the 

data depending on the method used to estimate the mixing proportion.

In this section, the author will try to apply this method to Time of Failure for Light 

Bulbs, (see table 5, in chapter 5). It was found that this data can follow Weibull family, 

such as Weibull, Power and Pareto distributions. It can also follow a mixture of one of 

the following; Weibull-Power, Weibull-Pareto and Power-Pareto. The reason for 

applying mixture distribution through characterisation theory is to compare this 

methodology with the quantile approach, which is discussed in the next section.

Relying on robustness in estimating the mixing parameter, it is possible to use the 

special version of Theorem 3 (from Fosam and Kanji 1994), to select the better of the 

two models. This can be achieved by comparing the Bhattacharyya bound for the two 

models. The better model will have a bigger bound.

Let p \ (x)and p 2 (x) be the two competiting models, where p\(x)  represents a

mixture of Weibull-Pareto model and P2  (x) represents a mixture of Weibull-Power 

model.

Pl (x) = a7j  x77-1 e"X77 + (1 -  a)  rj

and

P2  (.x ) - a i j  x 77-1 e~X77 + (1 - a ) r f  x 77"1
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Suppose the Fisher information for the two models are I \  (a )  and I 2 (OC) respectively, 

then the model P 2 (x) to be considered the more robust require I \  ( a )< l2  (# )  •

This is so if

a r j x 11̂  e " x?7 +  (1 -  a )  77 x 7?"1 ^  

ccjjxV - 1 e 'X77 + ( l  - a ) / / x ^ +I) <

Such robustness of P 2 (x) is achieved by solving the above equation. Here, we can see 

that, it is not so easy to solve this equation as it requires a knowledge of complex 

mathematics. Moreover, most practitioners working in quality areas such as in quality 

engineering and quality management, will find difficulties to deal with such 

mathematics. Therefore, we will offer another simple approach which is more practical, 

and provide the required answer for quantile mixture distribution as follows.

9.3 Quantile Mixture Distribution

Let us assume that quality characteristics are produced from two distributions. Using 

quantile approach, the first distribution can be represented by Q\ (p )  and the other one

can be represented by Q2 (p )  • So, using the quantile rule, a linear model can be 

developed as follows

Q(p) = aQl (p) + ( l - a ) Q 2( p ) 9.1

which can be called a Quantile Mixture Distribution.

From the analysis conducted in chapter 5 (table 5), this study found that quality 

characteristics follow Weibull distribution, where the residual of sum of least absolute is 

1.142144. Whereas, for further improvement to investigate which better distribution can
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be represent quality characteristics, Power distribution was found to be more accurate 

than Weibull distribution, where the residual of sum of least absolute is 1.017205, (see 

table 1, page 163).

Here, we discuss quantile mixture distribution for Weibull-Power model, where 

Q\ (p) = X + rjir ln(l — py)P  represents weibull quantile distribution and

02 (.P) — A, + VP ̂  represents power quantile distribution and a  is a mixing weight, 

so the quantile mixture distribution for Weibull-Power is as follows

Q ( p ) = X + ij [ a ( - ln ( l  -  p ) ) fl + (1 -  a ) p fi] 9.2

In the next sections, we discuss the estimate of the parameters of the Weibull-Power 

mixture model, and then construct a median rankit control chart for mixture of Weibull- 

power distribution. Finally, we will apply the present theory an average run length 

(ARL) for Weibull-Power distribution.

9.4 Quantile Control Chart Theory for Mixture 
Distribution

9.4.1 Estimation of the Parameters for the Weibull-Power mixture Distribution

Some of the properties of the mixture of Weibull-Power distributions can be derived 

from equation 9.2 as follows

• Median

M  = 0(0.5) = A  + 7j(a  * (-ln0.5)^ + (1 -  a) * 0.5^)
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Inter p- Range

R = Q(( 1 -  P \  X, r j , P, d) -  Q(p,  X,r/,p, a)

R = 7(« ((-ln p )^  -  (-ln (l -  p ) f ) + (1 -  «)((! -  p f  -  p P ))

• Difference

D  = Q ( (  1 -  p),X, j] ,P,a)  + Q(p,X,T},p,a)  -  2m 

D = r/(a((- In p)@ + ( - l n ( l - p ) /  -  2(- In 0.5)^) + (1 -  «)((1 - p ) P  + -2(0.5)^))

Where A, rj and P  in the equations above represent the median, scale and shape of a 

sample population, respectively. Ct is a mixing weight of the model, the initial value of 

CC is 0.5. In order to estimate these parameters A, i j ,P and a , it is recommended 

that the method of least absolute be used. This method is more robust than the method 

of least square, because it utilises median rankit. The best model that represents quality 

characteristics has the smallest residual sum of least absolute.

9.4.2 Control Chart for Mixture of Weibull-Power Distribution

Described below is the median rankit control chart for the mixture of quantile Weibull- 

power Distribution. The action and warning limits, which are used in the control chart 

procedures, can be derived from:

Q(p) = X + n t« (-ln (l -  p)Y + (1 -  a ) p f }
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where the warning limits are Q (0.05) and Q (0.95), the action limits are Q(0.99) and Q 

(0.01), and the central point (median rankit) is at Q (0.5). Therefore a typical quantile 

control limits that can be constructed for mixture quantile of Weibull-power distribution 

by following the steps below:

• Develop the mixture of Weibull-power quantile distribution

Q(p) = A + n [« (-ln (l -  p)Y + (1 -  a)pp]
• Estimate the parameters 2 ,77, a,{3 by using the least absolute method (median 

rankit), then

Q(p) = X' + Y  [ a \ - \ n { \ - p j f  +(1 - a ' ' ) p p ]

Where /T , 77A, a  A, J3* are location, scale, mixing weight and skewness respectively.

• The control limits of the mixture quantile of Weibull-power distribution function 

can be obtained by substituting p=0.5 in Q (p) above. It will provide the central 

point which will be described as median rankit point, and similarly by substituting 

p=0.05, p=0.95 and p=0.01, p=0.99, will provide both the warning limits and action 

limits of median rankit point, respectively.

9.4.3 ARL for Mixture of Weibull-Power Distribution

Quantile distribution is defined as

Q(P) = X + i1R{p)

Quantile distribution for mixture distribution is defined as

Q(P) = ̂  + P[RI(P) + R2(P)]
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Here, we discuss the mixture o f  Weibull-power distribution, which is defined as

Q(P) = *  + V [« (-ln (l -  P)Y  + (1 -  a)/>']

So, quantile function of mixture of Weibull-power distribution is defined as

R(p)  = [a (-ln (l -  p ) Y  + (1 - a ) p fi] 9.3

where a  is the mixing weight, f t  is the distribution's shape and p is probability of lower 
limit p (L) and upper limit p (uy

By using equation 9.3, Lower Probability Limit can be found as

R(PW) = [« (-ln (l -  p m )Y  + (1 -  a ) p Y ]

1 . 1

Let

J R(Pm) = ̂ [«(-ln(l -  p w )Y  + (1 -  a )PuY

[a (-ln (l -  p'm)Y + (1 -  a)p'(Lf ]  = I [a ( - ln ( l  -  pw )Y + (1 -  a)pfa)] 9.4

= [a (-ln (l -  p ’(L))Y + (1-  a)P(D ]

F ( j R ( p w ) = F[a(-\n{\  -  p w )Y  + (1 -  a ) p w f ]

= F{R(p {l)))



By using equation 9.3 again, Upper Probability Limit can be found as

R(Pm ) = [«Hn(l -  Pm )Y + (1 -  «)/>(„,]

\ r {Pw)) = -  Pm )Y  + (1 -  « X ,]
Let

[« (-ln (l -  p W))Y  + (1 -  a)p'm l'] = ^ [a (-ln (l -  p {U))Y  + (1 -  a ) p ^ ]  9.5

= [ a { - l n { \ - p m ) Y + ( \ - a )  p m f ]

F ( \ R { p w)) = F [ a ( -  ln(l -  p m )Y  + (1 -  
= F(R(P;UI))

= Pm
then from 7.2

ARL = -------- 2 ------—

In order to find out the value of ARL, we need to know the values of lower probability
* * •limit p (L) and upper probability limit p (U) in equation 9.4 and equation 9.5. It is not

possible to solve these equations mathematically, but they could be solved, using 

iteration method. Excel 97, helps to make this job much easier.

In order to calculate thep*L) and p*{u) of ARL, using Excel 97, to generate 10000

numbers from U(0.0001,l), which are called p-value. Then, solve the right hand side of 

equation 9.4 for lower limit or equation 9.5 for upper limit, and look for which p-value

is present the result of right hand side of equation 9.4 or equation 9.5. This p-value
$ *

represents p {L) of equation 9.4 and p (U) of equation 9.5.
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9.5 Application

It will discuss quality characteristics of the time to failure measurement of light bulbs in 

table 5 in chapter 5. We are interested here in finding out whether the failure time for 25 

light bulbs are within the specific acceptance limit of production process. The data has 

been considered either for the Weibull and Power models separately. It has been found 

that quantile power distribution is better fit than quantile Weibull distribution. However, 

here we are interested in fitting a quantile mixture model for the light bulbs data.

9.5.1 Model Validation

The process estimation and validation of the data which is believed to follow quantile 

mixture distribution of Weibull and power, has been investigated. For a good fit of the

data, the series points is expected to lie on 45° line, see figure 1 .

Model Validation for Mixture of Weibull and Power
Distribution

as
P  1.2

I  0 8
0.4

S.R.ABSfiP.8029

2.10.6 0.9 1.5 1.80 0.3 1.2

QA(P)

Figure 1: Model Validation using Median Rankit Value for Mixture of Weibull-Power 
Distribution

It is shown from the result given in table 1 and figure 1, that the Weibull-power mixture 

distribution fits the data very well, as the sum of residual of least absolute is 0.8029, 

which is better than the other two distributions. Here, the sum of residual of least 

absolute of Power distribution is smaller than the sum of residual of least absolute of 

Weibull distribution, when dealing with these distributions as a single distribution, see
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figure 8 and figure 11 in chapter five. Therefore, the best model for the data, can be 

represented by a quantile mixture distribution of Weibull-power.

In order to estimate the parameters, it deals with the same technique used in chapter 5. 

In addition, use the mixing weight is 0.5 as initial value, then estimate the whole 

parameters in order the get the best parameters represent the mixture model, see table 1 .

Table 1: Estimate Parameters and Residual of Sum Least Absolute Value.
X 7 P S.L.ABS.

Weibull 0.008078 0.96979 0.563196 1.142144

Power 0.272271 0.859574 1.574089 1.017205

Weibull-Power 0.236137 0.775063 1.265184 0.8029

9.5.2 Mixture of Weibull-Power Distribution Control Limits for Individual 
Measurement

v
Median rankit control limits for mixture of Weibull-power distribution are calculated at 

p=0.05 and p=0.01 for warning and action limits respectively using the following 

formula

Q(p) = /  + f/' p))13 + ( l - a '  )p /} ]

Where X ,1J , f t  and a  are given by 0.236137, 0.775063, 1.265184 and 0.079598 

respectively and the residual sum of least absolute is 0.8029. This will provide the 

required control limits as, Control point=0.7973, Warning limits = (0.2659, 1.66) and 

Action limits =(0.24, 1.9017). Table 2, provides the quantile mixture control limits for 

Weibull-Power Distribution at different p levels.
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Table 2: Quantile Mixture Control Limits for Weibull-Power Distribution.
Percentile value Q(p) Q(0.5) QO-p)

0 .0 1 0.240023 0.79729 1.901763

0.05 0.265942 0.79729 1.660008

0 .0 0 1 0.23634 0.79729 2.201549

0.005 0.237753 0.79729 1.99236

0.00135 0.236446 0.79729 2.162115

Median Rankit Control Chart for Mixture of Weibull-Power
Distribution

2.1
Q(0.99) Fitx

1.8
Action Limit=1.90171.5

1.2 Warning limit=1.6600

0.9 Median Ftoint=0.7973

0.6
Warning Limit=0.2659Q(0.05)0.3

Q(0.01) Action Limit=0.2400

Sample Number

Figure 2: Median Rankit Control Chart for Mixture of Weibull-Power Distribution

It is clear from figure 2 that the sample number 10, 15, and 25 respectively are outside 

the warning limit. Therefore, the light bulbs failure time is out of control at p=0.05.

In order to compare quantile control chart for Weibull-power distribution, where the 

mixing weight is 0.079598, with the quantile control chart for Weibull and power as a 

single case, it was found in general that there are four samples needed to be 

investigated, which are samples 3,10,15 and 25.
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It has been found that in Weibull control chart, (see figure 9 in chapter 5) the four 

samples in question are in control. On the other hand, in power control chart, (see figure 

12 in chapter 5) it was found that the samples number 3, 10 and 15 are outside warning 

limit and sample 25 are outside action limit. While, the present mixture of Weibull- 

power control chart, indicates that the sample number 3 is with in control, and the 

samples number 10,15 and 25 are outside warning limit, respectively.

Therefore, we can say that the power control chart is more sensitive than Weibull 

control chart, and a mixture control chart of Weibull-power distribution is much better 

than the a single distribution, i.e. Weibull & Power.

9.5.3 ARL for Mixture of Weibull-Power Distribution

By using average run length (ARL), we can found out the average number of points that 

must be plotted before a point which indicates an out-of-control. It has used the ARL 

formula which has been shown in section 9.4.3, in order to calculate ARL when

p L = 0.00135 , a  = 0.079598and J3 = 1.265184. It has been found that the ARL is 

equal to 370.37, when k=l, i.e. there is no shift in the process. Whereas, when the 

process shifted, say at k=l.l, the ARL is decreased to 205.9474, ( see table 3). It can be 

noted from table 3 and figure 3, a relationship between the ARL and the shift in the 

process is, when k increases ARL decreases and vice versa.
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Table 3 ARL for Mixture o f Weibull-Power Distribution

K P l Pu ARL

1 0.00135 0.99865 370.37

1.1 0.00125204 0.9963964335 205.9474

1 .2 0.00116883 0.991712156 105.7454

1.3 0.001097175 0.983299618 56.1874

1.4 0.001034759 0.970214078 32.4457

1.5 0.000979843 0.952431949 20.5982

1 .6 0.000931115 0.930870222 14.2733

1.7 0.000887552 0.906868796 10.63617

1.8 0.00084835 0.881676203 8.3912

1.9 0.00081288 0.856227701 6.9163

2 .0 0.000780576 0.831140777 5.8948

4 0 0
370.370

3 0 0

>205.947_ ls? 200

105.745

100
56.187

32.446
20.598

 __________ 14273  1 0.636  8.391 .916

1.0 1.5 2.0

k

Figure 3. ARL for Mixture of Weibull-Power Distribution

9.6 Summary
It has constructed the mixture control chart using quantile approach for Weibull-power 

model and calculate average run length for this model. From the analysis, it found that
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the power control chart is more sensitive than Weibull control chart, and a mixture 

control chart of Weibull-power distribution is much better than a single distribution, i.e. 

Weibull & Power. Therefore, we can conclude that the mixture distribution plays very 

important role in quality control measurement of control chart.

In next chapter, it will discuss the conclusion of the thesis and the future work could be 

do, in the area of statistical process control by quantile approach.
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Chapter 10 Conclusion and Future Work

10.1 Conclusion

Statistical process control (SPC) can be divided into two types. These are on-line SPC 

and off-line SPC. This thesis has focused on the former.

One of the underlying assumptions of SPC is the use of the normal distribution. Such an 

assumption is implicit in the construction of control charts and process capability 

studies. It has long been realised that the variability associated with many engineering 

processes does not have a normal distribution.

This assumption investigated the effect of non-normality on control charts and 

concluded that the non-normality is usually not problematic for subgroup sizes of four 

or more. For smaller subgroup sizes, and especially for individual measurements, non­

normality can be a serious problem.

Control charts and process capability calculations remain fundamental techniques for 

statistical process control. However, it has long been realised that the accuracy of these 

calculations can be significantly affected when sampling is drawn a non-normal 

population. Many quality practitioners are conscious of these problems but are not 

aware of the effects of such problems on the validity of their results.

The above information indicates that there are real problems in dealing with statistical 

process control for non-normal distributions and mixture distributions. The main 

purpose of this thesis was to develop quality control charts and capability index for non-
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normal distribution and mixture distribution which can be easily adopted by 

practitioners of statistical process control.

Therefore, quantile approach was developed & used because it offered relatively new 

and generally powerful techniques for non-normal and mixture situations in the area of 

SPC. Moreover, it provided quantile distribution to construct median rankit control 

charts for non-normal distributions, e.g. Logistic, Exponential, Weibull, etc.

It compared the Shewhart control chart for individual measurements with median rankit 

control chart (MRCC) for individual measurement of logistic distribution, it achieved 

nearly the same results. This indicates that the median rankit control chart using quantile 

distribution plays an important role for quality improvement in industrial applications. 

In addition, it constructed this control chart for the rest of other distributions, such as 

Weibull and Power distributions.

In addition, it discussed and provided process capability indices using quantile 

approach. This is a new approach which is called, Generalisation Clement's Method 

using Quantile Approach (GCMQA). The latter was compared with the Generalisation 

Clement's Method using Pearsonian Process (GCMPP). It found that GCMQA is more 

accurate than GCMPP, because it gives accurate percentile results and does not depend 

on statistical tables.

Moreover, it provided the average run length using quantile distribution for non-normal 

distribution, and provided tables to make it easy to know the average number of sample 

which can be plotted before a sample indicating an out of control. Nonetheless, use of 

quantile approach to construct multivariate control chart was discussed. It was found 

that the T-square values using quantile approach are more sensitive than the original 

method.
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Finally, in some practical cases, the quality characteristics follows more than one 

distribution. Therefore, a mixture distribution using quantile distribution was 

considered. It discussed the mixture model of Weibull-Power distribution and found 

that this model gives good results compared to when Weibull and Power distributions as 

a single model are discussed.

10.2 Future Work

In general, quantile approach are not widely available in the literature. Therefore, it can 

be used properly to improve many areas of statistical applications, especially, in 

statistical quality control.

One of these areas can be implemented is in six-sigma technique, (see, Buckley and 

Caine, 2000). Six sigma is a data driven process methodology which resolves problem 

by five stages which are Define the problem, Measure, analysis, Improve and Control. 

Most of the research done on six sigma approach dealing with quality characteristics 

using the assumption of normality. Therefore, quantile approach can be used to develop 

the idea of six-sigma approach in a robust method.

In general, six sigma through quantile approach can be used for the development of 

health care quality improvement. Health care can be looked at a wide variety of 

processes such as emergency room treatment, surgery and clinical testing. There are 

number of important problems, e.g. improve patient care, reduce costs, reduce patient 

treatment cycle time, reduce treatment improvement, etc. can be solved. Moreover, 

health care has a number of well defined metrics that measure the performance of health 

care processes such as length of stay in hospital, treatment error, speed of recovery, 

cost, etc. which can be dealt with quantile approach.
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Shewhart control charts are constructed under the normality assumptions, which 

depends on the mean and variance. In this research, we provide control charts for non­

normal distribution. However, there one can construct a control chart for parametric and 

non-parametric distribution using Bootstrap method, (see Seppala 1995). A comparison 

between control charts using quantile approach and control chart using Bootstrap 

method will be useful for further research, (see Hutson 2000).
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Appendix

Appendix 1

Glossary of Terms

Off-line quality control: Quality control applied before production, at the product- 

development stage, or during installation of a process.

On-line quality control: Quality control applied during full production, for instance 

process capability index, SPC, control chart, reliability studies, cause and effect diagram 

are all known as on-line quality control methods.

SQC: The quality of a product is maintained by ensuring that the process is operating 

properly.

SPC: Work under the SQC assumption that if a process is operating properly, it will 

produce consistently high quality products.

Appendix 2

Relationship among the four indices Cp, C k, Cpm and Cpmk

• If C = Cpk, the process is centred at the midpoint of the specifications.

• If Cp < Cpk, the process is off-centre.

• Cp measures potential capability in the process.

• Cpk Measures actual capability.

• If the process mean is exactly equal to one of the specification limits, leading to

C,t = 0 .
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• Cpk <0, the implication is that the process mean lies outside the specification.

• Some authors define Cpk as non negative, so that values less than zero are defined 

as zero.

• CM = C„ where d = USL-LSL
\  u /  ^

• CPm =Cpk =Cp when p  = T

•  Cpmk — Cpk
• Cpmk = Cpk, if the process is on target (// = T )

• Cpmk < Cpk, if the process is not on target (// =£ T)

• Cpmk and C are related in the same thing as Cp and c Pk>

Cpmk= { \ -k )C pm

There is a unified relationship between Cpk and C for fixed values of Cp . The 

indices Cpm and Cp will be identical when the process mean and the target value

A  A

coincide. This implies that Cpm and Cp estimate the same value when T = ju, (see, 

Chan et al. (1988) for more details).

In general, the relationships among the four indices can be established as the following: 

c pm =C P{l + [(jU- 7 ’)/<r]2}-'/2>and Cmk = Cpi{\ + [ ( M ~ T ) I a f y ' n .

The four most sensitive indices to the departure of the process mean from the target 

value, from the upper sensitive to the lower sensitive, are as follows Cpmk , Cpm , Cpk

and Cp .

For the symmetric tolerances, Cpk= ( l -K )C p and Cpmk = ( l - K ) C pm, where 

K  =| fj. - T  | / d is the departure ratio. If the process is on target, then K=0 and (// = T) 

then C„ = Cpk = Cpm = Cpmt = d / 3cr = (USL -L S L ) /6 a .
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Appendix 3

When the centre target does not fall on the midpoint of specification interval, 

USL + LSLi .e .r  =£ 

form:

Vannman superstructure provides the four indices in the general

C .(h, v) = (!—»)

+ w*min

mmpSL-T,T-LSL}  

3j{[(Up - L p)/6}2+v(M -T)2}

(USL-T)- \M -T \  (T -L S L ) - \M -T \

3^{[(Up ~M-)/3}2+v( M - T ) 2} ’ 3^{[iM-Lp) l 3 f+ v { M - T ) 2}

6. 25

The four indices are obtained by setting Cp (0,0) = Cp, Cp (1,0) = Cpk, Cp (0,1) = Cpm 

and Cp( 1,1) = Cpmk which are:

m m {U S L -T J -L S L )  
(Up —L ) / 2

6. 26

Cpk = min
\ ( U S L - T ) - \ M - T \  ( T - L S L ) - \ M - T \

Up - M M - L .
6.27

Cnm =pm
mm{USL-T,T-LSL)

3^{[(Up - L p)/6]2 + ( M - T ) 2}
6.28

Cpmi =min!
(U SL-T)- \M -T \ (T - L S L ) - \M - T \

^ i l ( U p -M )/3]2 + (M -T )2} ’ 3 j{[(M-Lp) / 3 f + ( M - T ) 2
6.29
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Appendix 4

USL + LSLModified original Clement's method by Peam and Chen (1995) at T = -------------

C,=
USL-LSL  

Up-Lp

CPk = min(USL-M,M -LSL)  
(£/ - I J / 2

C pm  —

USL-LSL

Up-Lp \ 2

+ (M - T )  :

Cpmk ~
min (USL - M  ,M  -  LSL) 

U p -L
+ ( M - T y

Appendix 5

Generalization Clement's Method through 
curve(symmetric and asymmetric tolerances i.e. 
equal M and when T is not equal M, respectively)

MTB > #Pearn et al. (1999).
MTB > # cl=USL

6.30

6.31

6.32

6.33

Pearsonian 
when T is
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MTB > # c2=LSL
MTB > # c3=T
MTB > # c4
MTB > # c5=Up
MTB > # c6=Lp
MTB > # c7=M or X0.5 (medium)

MTB > let cl0=cl-c3
MTB > let cll=c3-c2
MTB > let cl2=( (cl-c2)/2)
MTB > stack clO ell cl3
MTB > minimam cl3 cl4

Minimum of stack (clO,cll) = 0.80000

MTB > let cl8=((cl2)*(c7-c3))/clO 
MTB > let cl9=((cl2)*(c3-c7))/ell 
MTB > stack cl8 cl9 c20 
MTB > maximam c20 c21 
Maximum of C20 = 0.34064
MTB > # if T=M then a=|M-T|, Go back to modified Clement's 
method (Pearn &Chen (1995).

MTB > let c22=c21**2

MTB > Let c25=cl-c7
MTB > let c26=c7-c2
MTB > let c27= cl4/cl0
MTB > let \—1 x—1o\i—1OII

o
o

C
Mo

MTB > let c30=c5-c6
MTB > let c31=c30/2
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MTB > let c32=c30/6 
MTB > let c34=c32**2

MTB > let c36=(c34+c22)**(0.5)

MTB > let c38=(2*cl2)/c30 
MTB > let c40=(c25/c31)*(c27) 
MTB > let c41=(c26/c31)*(c28) 
MTB > stack c40 c41 c42 
MTB > minimam c42 c43

Minimum of C42 = 0.55416

MTB > let c45=(2*cl4)/(6*c36)

MTB > let c47=(c25/(3*c36)) *c27 
MTB > let c4 8=(c26/(3*c36))*c28 
MTB > stack c47 c48 c49 
MTB > minimam c4 9 c50

Minimum of C49 = 0.37210

MTB > stack c38 c43 c45 c50 c52
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Appendix 6

Generalization Clement's Method through Quantile approach 
(symmetric and asymmetric tolerances i.e. when T is equal M 
and when T is not equal M, respectively), Pearn et al. 
(1999).

MTB > # cl=USL
MTB > # c2=LSL
MTB > # c3=T
MTB > # c4
MTB > # c5=Q(0.99865)
MTB > # c6=Q(0.00135)
MTB > # c7=Q (0.5)

MTB > let cl0=cl-c3
MTB > let cll=c3-c2
MTB > let cl2=((cl-c2)/2)
MTB > stack clO ell cl3
MTB > minimam cl3 cl4

Minimum of stack (clO,cll) = 0.95000

MTB > let cl8=((cl2)* (c7-c3))/clO 
MTB > let cl9=((cl2)*(c3-c7))/ell 
MTB > stack cl8 cl9 c20 
MTB > maximam c20 c21

Maximum of C20 = 0.26598
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MTB > # if T=M then a=|M-T|, Go back to modified clement 
method (Pearn &Chen (1995)).

MTB > let c22=c21**2

MTB > Let c25=cl-c7
MTB > let c26=c7-c2
MTB > let c27= cl4/cl0
MTB > let c28=cl4/ell

MTB > let c30=c5-c6
MTB > let c31=c30/2
MTB > let c32=c30/6
MTB > let c34=c32**2

MTB > let c36=(c34+c22)**(0.5) 

MTB > let c38=(2*cl2)/c30

MTB > let c4 0=(c25/c31)*(c27) 
MTB > let c41=(c26/c31)* (c28) 
MTB > stack c40 c41 c42 
MTB > minimam c42 c43 
Minimum of C42 = 0.88013

MTB > let c45=(2*cl4)/(6*c36)

MTB > let c47=(c25/(3*c36))*c27
MTB > let c4 8=(c26/(3*c36)) *c28
MTB > stack c47 c48 c49
MTB > minimam c4 9 c50
Minimum of C49 = 0.61409
MTB > stack c38 c43 c45 c50 c52
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Appendix 7

ARL for Extreme-value

Quantile function for extreme-value is

£ ( /0  = -ln(-ln />)

By using this formula, the probability of p (L), i.e. lower limit, is calculated.

^ G V ,)  = - ln( - ln P m )

Let

then

Where

( I ) .

= - ln (- ln  p'{L))

1

F

Pm = e x p ( - ( - l n p a ) ) ‘ J 

7^ (P W)1 = •F(-ln(-lnp(’I))
\K  7

= f (R(p (L)))

=  Pm

On the other hand, the probability of p {U), i.e. upper limit, is calculated.

^ 0 <y>) = _ ln (_ ln ^ W

Let

then

Where

= - \ n ( - \ n p w))1

~ n̂ P[u) = (— ln/7(c/)) 

= -ln (-ln /> ('£„)
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( U) .

F ^jRiPm')] = ^(-ln(-In
K  J

= F ( R ( P:m ))

= p (O)

At p u =1 ~p ,

Pm  = exp(—(—ln(l -  p (L)))k) 
then

ARL 1

ARL for Pareto Distribution

Quantile function for pareto distribution is

R(p) =
1

(1 - p Y
By using this formula, the probability of p (L), i.e. lower limit, is calculated.

Let

then

R(pw )
l

0 - p (i>) 
l . 1  

k

7 = 0  -P mY"

(1 -  p'm Tf p m r f

F

0 - A J  = ( t )  0 - P w ) 
\ k j

f  1 Y
P(«=1" T 0  ~ P W)\K J

r \ R ( p w ) \  = F { { \ - p a]y l>)
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= F(R(p 'a>)) 

=  Pm

On the other hand, the probability of p (u), i.e. upper limit, is calculated

Let

then

P(P(V)) =
1

C1 P(u))
1

0 - / W -p

P(U) 1 r 0- P(u0V/cy (U)

F - r (P(u)) = F ( a - p m r fi) 

= F ( R ( p ' ) )

= P ( U )

A t p u = l - p i
then

r i Y

\k) (O

ARL =
1

^  P(U) +  P(L) )

ARL for Power Distribution

Quantile function for power distribution is

R {p )  = p />
By using this formula, the probability of p (L), i.e. lower limit, is calculated.

198



R(Pw ) = Pm 

T r (P(l)) = t P ( L )

Let

then
P m  = 7  Pm

Pm =
m :
y k )

\

Pm

F \ 1- R(PW) = F { p J )

= F W w ))

= P(L)

On the other hand, the probability of p (u), i.e. upper limit, is calculated.

Let

then

At p u =1 - p L
then

( i / ) : 

\u)R{P(m) = P< . 

(U)J k ^ (u)j r (PwO = t P )‘

1

kP{U) , P(U)

P(U) =

F

T
\ k j

\

( U )

j R ( p w)) \  = F (p m P)

= n R ( p ' {U)))

= p (U)

p  =r (U)
P

ARL
(l - P m + P ' m )
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ARL for Weibull Distribution

Quantile function for Weibull distribution is

* 0 0  =  ( -1 n ( l- /> ) ) '

By using this formula, the probability of p {L), i.e. lower limit, is calculated

Let

then

(-ln (l -  p m ))p = L(_ln(l -  Pm)Y

p ’ = 1 -  exp(-(f (-ln (l -  p UlW

F( -  R(piL))) = F ( ( - \ n ( l - P;L))Y)
\K J

~ F(R(p*{L)))

= p (L)

On the other hand, the probability of p (u), i.e. upper limit, is calculated

let

then

(-ln (l -  p ’(U)) Y  = ̂ (-ln (l -  p m ) Y

P'W) = 1 “ exp(-(f -J-Y (— ln(l -  p m ))))
\ K j

F(f  7  W (U))) = ^ ((-ln (l -  PW) )Y  )
\ K J

= F{R{P ' ) )

= P(U)

^ P u = 1~ P l
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A R L  =  j -------^  n

ARL for Logistic Distribution

Quantile function for logistic distribution is

/? 0 )  = ln
l - p )

By using this formula, the probability of p (L), i.e. lower limit, is calculated.



- F ( R ( p ’J)
*

= P

Logistic distribution is a symmetric, then



Appendix 8

ARL for Extreme-value 

i?(j?) = -ln (-ln p)

Pm =exp(-(-lnpa))‘ )
I

Pm = exp(-(-ln(l -  p w )Y ) 

ARL = t  r~ n

Case 1

# extreme
# p is fixed, k is variable
# k is generated from uniform (1,2 )

# c l= p , c2 =k

loge cl c3 
#c3=ln p

let c4=expo(-((-c3)**(l/c2)))
# c4=pl*

Let c5=l-cl 
loge c5 c6 
#c5=l-pl 
#c6 =ln(l-pl)

let c7=expo(-((-c6)**(l/c2))) 
#c7=pu*

let c8=l/(l-c7+c4)
#c8=ARL

Case 2

# extreme
# k is fixed, p is variable 
#Generate p from uniform (0.001,0.003)

# c l= p , c2 =k 

loge cl c3
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#c3=ln p

let c4=expo(-((-c3)**(l/c2))) 
# c4=pl

Let c5=l-cl 
loge c5 c6 
#c5=l-pl 
#c6 =ln(l-pl)

let c7=expo(-((-c6)**(l/c2))) 
#c7=pu

let c8=l/(l-c7+c4)
#c8 =ARL

ARL for Logistic

R(p)=p/(l-p)

*
P =~  

1

ARL=(l/(2* p*))

Case 1

# Logistic
# p is fixed, k is variable
# Generate k from uniform(l,2)

# cl=k,c2 =p

let c3=(((c2 )/( 1 -c2 )) **(l/cl))/(l +(((c2 ) / (1 -c2 )) * * (1 /c 1)))

# c3=p*

Let c4=(l/(2*c3))
# ARL=c4

.1 - P .

+
r \  

P

\ S ~ P j
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Case 2

# Logistic
# k is fixed, p is variable
# Generate p from uniform(0.001,0.003)

#cl=p,c2 =k

let c3=(((c 1)/(1 -c 1 ))* *( 1 /c2))/( 1 +(((c 1)/(1 -c 1 ))* *( 1 /c2))) 

#c3=p*

Let c4=(l/(2*c3))
# ARL=c4

ARL for Weibull

R(p)  -  (- ln(l -  p ))‘

' l V
Pm = 1 - exP(-( T C—ln(i -  PWM

Pm = 1 “ exP(“( 7  ( - InAi)))) 

ARL 1
(l -Pm+Pm)

Case 1

# p is fixed, k is variable
# Generate k from uniform(l,2)

# cl=k,c2=p, c3=beta

let c4=l-c2 
loge c4 c5 
loge c2  c6

# c5=ln (l-c2)
# c6 =ln c2

let c7=l-expo(-(((l/cl)**(l/c3))*(-c5)))

# c7=pl*

let c8=l-expo(-((l/cl)**(l/c3))*(-c6))
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# c8 =pu*

let c9=l/(l-c8+c7)

# c9=ARL

Case 2 

#Weibull
#k is fixed, p is variable
#Generate p from uniform (0.001,0.003)

#cl=p,c2=k, c3=beta

let c4=l-cl 
loge c4 c5 
loge cl c6

#c5=ln (1-cl)
#c6 =ln cl

let c7=l-expo(-(((l/c2)**(l/c3))*(-c5))) 

#c7=pl*

let c8=l-expo(-((l/c2)**(l/c3))*(-c6)) 

#c8 =pu*

let c9=l/(l-c8+c7)

#c9=ARL

ARL for Pareto

R(p) =
1

^ , = 1 -

(i - p Y

\ k j
P

\ K j

P'l; = 1 -  T (1 ~ P W)

(L)
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ARL
(l - P m + P w )

Case 1

#Pareto
#p is fixed, k is variable 
#Generate k from uniform (1,2)

#cl=k,c2=p, c3=beta

let c4=(l-(((l/cl)**(c3))*(l-c2)))

#c4=pl*

let c5=(l-(((l/cl)**(c3))*(c2))) 
#c5=pu*

let c6=l/(l-c5+c4)
#c6 =ARL

Case 2

#Pareto
#k is fixed, p is variable
#Generate p from uniform (0.001,0.003)
#cl=p,c2=k, c3=beta

let c4=(l-(((l/c2)**(c3))*(l-cl)))

#c4=pl*

let c5=(l-(((l/c2)**(c3))*(cl)))

#c5=pu*

let c6=l/(l-c5+c4)
#c6 =ARL

ARL for Power

R ( p ) = p f 

P w  =

1
\2  

\ k J

p
PtL)
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ARL = j ----- = n
(1 P(U) +  P(L) )

Case 1

#Power
#p is fixed, k is variable 
#Generate k from uniform(l,2)

#cl=k,c2=p, c3=beta

let c4=((l/cl)**(l/c3))*(c2)

#c4=pl*

let c5=(((l/cl)**(l/c3))*(l-c2)) 

#c5=pu*

let c6=l/(l-c5+c4)

# c6 =ARL

Case 2

#Power
#k is fixed, p is variable
#Generate p from uniform (0.001,0.003)

#cl=p,c2=k, c3=beta

let c4=((l/c2)**(l/c3))*(cl)

#c4=pl*

let c5=(((l/c2)**(l/c3))*(l-cl)) 

#c5=pu*

let c6=l/(l-c5+c4)
# c6 =ARL
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Appendix 9

The Newton method is a method for solving equation /(/? ) where /(/? )  is assumed to 

have a continuous derivative /'( /? ) . The underlying idea is that we approximate the 

graph of /(/? ) by suitable tangents, using an approximate value fl0 obtained from the 

graph of /( /? ) ,  we let ftx be the point of intersection of the x-axis and the tangent to 

the curve of /(/? ) at /?0 (see figure below), then

tan z = /( /? „ )  = -/ ( A )
A  -  A

Hence,

/ ( A )  
/ '(A )

4.64

f '{Po) = Oi * (R -D )E xp (9 ,P ) -e i *(R + D)Exp(-e2P)

and

/ " ( A ) = ^  * (* -  D)Exp{6xP) + e l  * ( * +D)Exp(-e2P)

Where R>D and /  (/?0) is positive, then the minimum value of /( /? )  for distribution 

(Weibull and Power) is

B ■ = ( ) * ln(—̂ --------) 4.65
^ m,n 6x+G2 6X{ R - D)
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VPi Pi Po
Newton Method

Then

• Choose a starting value J30 =( roughly value * f3min)

• Calculate J3l by using equation (4.64)

• Repeat steps above until convergence i.e. p n+l -  Pn -  0

When J3n+l = p n then this P  is called p* or the root of equation.

Hence, substituting /T in  the equations 4.35 and 4.36, then we can obtain the values of 

/ f  and r f .
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