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Abstract

Results are presented from a series of simulations undertaken to investigate the effect 
of adding small spherical particles to a fluid of rods which would otherwise represent 
a liquid crystalline (LC) substance.

Firstly, a bulk mixture of Hard Gaussian Overlap particles with an aspect ratio of 3:1 
and hard spheres with diameters equal to the breadth of the rods is simulated at var
ious sphere concentrations. Both mixing-demixing and isotropic-nematic transition 
are studied using Monte Carlo techniques.

Secondly, the effect of adding Lennard-Jones particles to an LC system modelled 
using the well established Gay-Berne potential is investigated. These rod-sphere 
mixtures are simulated using both the original set of interaction parameters and 
a modified version of the rod-sphere potential proposed in this work. The subject 
of interest is the internal structure of the binary mixture and its dependence on 
density, temperature, concentration and various parameters characterising the in- 
termolecular interactions. Both the mixing-demixing behaviour and the transitions 
between the isotropic and any LC phases have been studied for four systems which 
differ in the interaction potential between unlike particles. A range of contrast
ing microphase separated structures including bicontinuous, cubic, and micelle-like 
arrangement have been observed in bulk.

Thirdly, the four types of mixtures previously studied in bulk are subjected to a 
static magnetic field. A variety of novel phases are observed for the cases of positive 
and negative anisotropy in the magnetic susceptibility. These include a lamellar 
structure, in which layers of rods are separated by layers of spheres, and a configu
ration with a self-assembling hexagonal array of spheres.

Finally, two new models are presented to study liquid crystal mixtures in the presence 
of curved substrates. These are implemented for the cases of convex and concave 
spherical surfaces. The simulation results obtained in these geometries indicate 
segregation of spheres at the topological defect of the director field induced by the 
surface.
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Chapter 1

Introduction

Liquid crystalline phenomena are observed in a wide range of areas in the physical 

and biological sciences. Ranging from such technological applications as liquid crys

tal displays (LCDs), and the wide-spread use of surfactants in the cleaning industry, 

through to the importance of self-assembly in a large number of biological processes, 

mesogenic behaviour is clearly a worthwhile topic for investigation.

Although many thousands of examples of liquid crystals (LCs) and their mixtures 

have been synthesised and studied, there is still a poor understanding of the inter

actions, at a molecular level, that drive many of the processes of self-organisation. 

It is also self-evident that a thorough understanding of these driving forces would 

open up enormous technological possibilities in the fields of micro-engineered de

vices and bio-medical applications [1]. Numerous novel high-tech applications of LC 

self-assembling systems, for example, as light modulators, as photoconductors, as 

polarised light emitting materials and as intelligent lubricants are in development [2]. 

Finally, it is relevant to note that it is the local supramolecular order, created by 

self-organising LC systems, that is responsible for the unique properties of living cell 

membranes [3].

It is, of course, important to realise that the complicated nature of LC systems means 

that experimental techniques can sometimes be of limited success in providing un
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CHAPTER 1. INTRODUCTION

derstanding of the origins of various phenomena. Also, the assumptions inherent in 

many theoretical treatments can make them too far removed from the real situation 

to provide useful information. It is here that computer simulation can come into its 

own - essentially lying in between the realms of theory and experiment, simulation 

can be of great use in gaining insight into phenomena which are difficult to access 

using other techniques [4].

1.1 Aims and Objectives

The motivation for this work was provided by previous simulations of two-component 

liquid crystal mixtures, in particular, mixtures of relatively similar molecule types 

which were found to undergo a degree of substrate-induced demixing [5]. This 

encouraged us to extend the project to cover mixtures of more extreme particle 

types. The work described in this thesis, therefore, relates to computer simulations 

performed with the aim of promoting greater understanding of the mechanisms and 

nature of LC behaviour in the presence of non-mesogenic additives. Specifically, 

attention has been focused on the phase behaviour of the Gay-Berne model [6] in 

the presence of additive Lennard-Jones particles.

The aims of this work initially were defined as follows:

• to combine existing computer codes and develop new variants in order to 

model and characterise the bulk phase behaviour of mesogens diluted with 

small spherical additive particles;

• to use the results of these bulk simulations to plan and perform an extensive 

programme of simulations in a confined geometry, paying particular attention 

to the effects of differential adsorption on bulk and surface region structure;

• to investigate the migration of volatile additive molecules towards orientation- 

ally disordered regions, and their effect in healing defects in the director field;

2



CHAPTER 1. INTRODUCTION

• to improve understanding of dilute liquid crystals in bulk, in the presence of 

substrates and around defect structures.

The next Section reviews the overall structure of this thesis describing the work 

undertaken to meet the aims stated above.

1.2 Outline of Thesis

Aside from this introduction, this thesis is organised as follows.

In Chapter 2, an introduction to liquid crystals in given, concentrating on the types 

of molecules which exhibit such phases and details of the structures involved. It also 

reviews relevant LC theoretical models, particular attention being paid to rod-sphere 

system studies.

Chapter 3 considers experimental approaches used in the study of LC systems. At

tention is focused on studies which are relevant to the results presented within this 

report, although some effort has been made to give a wider consideration of experi

ments performed on LC mixtures.

Chapter 4 reviews simulation techniques and models of LC systems. A detailed 

description is given of the Gay-Berne potential and a review is presented of some 

literature results from simulations of pure and mixed systems performed using this 

model.

Chapter 5 presents some of our preliminary simulation results. These include simu

lations of the original Gay-Berne fluid using the Molecular Dynamics (MD) approach 

and simulations of Hard Gaussian Overlap (HGO) particles of the same aspect ratio 

using Monte Carlo (MC) techniques. Then, mixtures of these HGOs and small hard 

spheres are studied at different concentration ratios in order to build an approximate 

system phase diagram.

In Chapter 6, the Gay-Berne type of model of a rod-sphere system being used

3



CHAPTER 1. INTRODUCTION

here is described, followed by the results of a series of simulations of bulk mixtures 

performed in order to determine the effect of the rod-sphere interaction on the phase 

diagram. Four types of mixture are studied.

Guided by these results, some of these mixtures are then investigated in Chapter 7 

in the presence of an applied field. The effect of the field on the structural properties 

of the systems is studied.

Chapter 8 presents results from simulations of rod-sphere mixtures in the presence 

of curved substrates. The two cases of convex and concave spherical surfaces are 

considered, these being used to represent, respectively, colloid-LC and Polymer Dis

persed LC systems.

Finally, Chapter 9 summarises the main results of this thesis and presents conclusions 

and suggestions for future work. A bibliography is included.
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Chapter 2

Theoretical Approaches used in 

the Study of LCs

This Chapter describes the classification of different types of liquid crystals and 

explains methods of their theoretical study.

2.1 Liquid Crystals

The term liquid crystals (LCs) refers to materials which exhibit intermediate prop

erties between those in liquid and crystalline states. It is a m atter of common 

knowledge that m atter exists in three states: solid, liquid, and gas. How, therefore, 

can the LC state be classified? These three states of aggregation refer to the me

chanical properties of m atter such as volume and shape. In these terms, a gas is 

compressible and does not maintain its shape (it flows and expands in a vacuum). 

A liquid, by comparison, is incompressible while still being fluid. And finally, a solid 

maintains its shape and volume and resists external shears. Importantly, none of 

these characteristics refer in any way to the internal structure of the matter. On 

referring to the microscopic structure of the matter we can state that a crystalline 

phase is characterised by a periodic lattice whereas an isotropic liquid phase pos

5



CHAPTER 2. THEORETICAL APPROACHES USED IN THE STU D Y OF LCS

sesses only short range order. So, the term phase refers to the internal structure of 

the matter, while state of aggregation corresponds to its mechanical properties. The 

majority of liquids are isotropic and the majority of solids have crystalline structure, 

but there are some exceptions. There are a lot of examples of solids with amorphous 

structure (like glasses). These amorphous phases form because their constituent 

molecules, due to their large size, low mobility or some specific properties, become 

quenched in liquid-like configurations. In the case of LCs, the molecules are small 

enough to have high mobility but they have another feature. They are essentially 

anisotropic in shape (disc-like or rod-like) and they develop orientational order while 

the material is still in the liquid state. A classic example of this sort of substance 

is p-azoxyanisole (PAA) with the molecular formula: From a steric point of view,

Figure 2.1: Typical mesogen: p-azoxyanisole (PAA).

this molecule is a rigid rod of length ~  20A and width ~  5 A [7]. The molecules 

which form LC materials are called mesogens, and a LC phase is often termed a 

mesophase. For the sake of completeness, let us mention all of the different classes 

of molecule which form LCs. There are four of them:

• small organic molecules, either rod-like or disc-like.

• main-chain and side-chain polymers which are composed of rigid mesogenic 

parts attached in consecutive or parallel fashion.

• amphiphilic compounds - compounds of two or more components, one of which 

is an amphiphile (e.g. containing a polar head group attached to one or more 

long hydrocarbon chains) [8].

• rods in a liquid substrate - suspensions of synthetic polypeptides or other rigid 

polymers, glass or plastic fibres floating in water, etc.



CHAPTER 2. THEORETICAL APPROACHES USED IN  THE STU D Y OF LCS

We will be particularly interested in the first type of mesogens.

2.2 Classification of LCs

Liquid crystals can be classified into two main categories: thermotropic LCs, and 

lyotropic LCs. These two types of LC are distinguished by the mechanisms that drive 

their self-organisation. Thermotropic LCs form different mesophases with variation 

in temperature, while lyotropic LCs do so by changes in concentration. Thermotropic 

liquid crystals can be classified into two types: enantiotropic liquid crystals, which 

can be changed into the LC state from either lowering the temperature of a liquid 

or raising of the temperature of a solid, and monotropic LCs, which can only be 

changed into the LC state from either an increase in the temperature of a solid or 

a decrease in the temperature of a liquid, but not both. In general, thermotropic 

mesophases occur because of anisotropic dispersion forces between the molecules and 

because of packing interactions. In contrast to thermotropic mesophases, lyotropic 

ones occur as a result of solvent-induced aggregation of the constituent mesogens 

into micellar structures [8].

Thermotropic mesophases have been found to be produced by two distinct types of 

molecular shape, rod-like - called calamitic LCs - which were the first to be discov

ered, and disc-like - called discotic LCs - which have been discovered only relatively 

recently [9]. The observed phases vary depending upon the shape of molecule being 

used, and upon the chemical details of the molecular structure.

Since the work described within this report is concerned with thermotropic calamities, 

a brief description of the observed phases follows. There are two types of calamitic 

LC phase: nematic, in which there is orientational order such that the long axes 

of the molecules are aligned in a preferential direction but there is no translational 

order; and smectic, in which the molecules are arranged in regularly spaced layers 

or planes, such that there is a density wave running through the material, but only 

have short ranged positional order within these layers. Therefore, smectic phases

7
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show a degree of translational order not present in the nematic phase (Fig. 2.2). 

When the molecules that make up a nematic LC are chiral (i.e. they are not sym-

a) b)

Figure 2.2: Schematics of nematic (a) and smectic A (b) LC phases.

metrical under reflection) the chiral nematic (or cholesteric) phase will form instead 

of the normal nematic. In this phase, the molecules prefer to lie next to each other 

in a slightly skewed orientation. This leads to the formation of a structure which 

can be visualised as a stack of very thin 2-D nematic-like layers with the director 

in each layer twisted with respect to those above and below. Thus a helical direc

tor configuration develops, in which the director rotates through the material. As 

with chiral nematics, there are chiral forms of the smectic phases. There are also 

several further smectic phases, classified in terms of the degree of ordering within 

the layers, the presence of any tilt and correlations between the layers [7]. In ther

motropic systems, different mesophases are formed by changing the degree order in 

the sample by varying the temperature: the lower the temperature, the greater the 

order in the system. According to this rule LC phases are expected to appear in the 

sequence [10] shown in Fig. 2.3. This sequence is given only as a guide and does not

Isotropic Liquid Crystalline Solid

blue phase -^N — SA-^ S C— SE
i

Sj SE-^ SK— Sf

Figure 2.3: Sequence of LC phases.
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include phases observed for some specific types of LCs (for example, flexoelectrics). 

The classification of the various smectic phases observed experimentally corresponds 

to both the arrangement of molecules within each smectic layer and any correlations 

between the arrangement in neighbouring layers. For example, a Sa phase has the 

highest symmetry and there are no long-range correlations within the layers; in a Sc  

phase, molecules are tilted in respect to the director; in a S b phase, the molecules 

form a hexagonal pattern within a single smectic layer and so on. The only type of 

smectic phase exhibited by the Gay-Berne model (Subsection 4.2.3) which is stud

ied within this work is the Sb phase. Note that no single compound has yet been 

found for which the complete sequence shown in Fig. 2.3 may be observed. In most 

pure mesogenic materials only a small subset of these phases exists, though they 

form in the order predicted by this sequence. The preceding statement is not always 

true for mixtures, however; for such systems there are some examples of a strong 

enhancement of the smectic phase region, resulting in the appearance of reentrant 

nematic regions on the phase diagrams [11]. Studies of binary mixtures of 60CB 

and 80CB also exhibit nematic reentrance as a function of temperature, pressure 

and concentration [12]. These examples indicate that the mixing of two or more 

components can dramatically change the properties of the resultant fluid.

The large number of LC phase transitions provides numerous examples for much 

of the theoretical work on critical phenomena. Since many mesophase transitions 

are either weakly discontinuous (first order transitions) or continuous (second order 

transitions), they display behaviour associated with critical points, including strong 

fluctuations and diverging susceptibilities. One of the most significant findings of 

theory is that, in the vicinity of such a transition, the microscopic details of the 

system become unimportant in describing the details of the transition [10]. Instead, 

the range of the interactions, the dimensionality of the system, and symmetry of the 

order parameter determine the behaviour of the system close to a transition point.

9
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2.3 Descriptions of Ordering in LC System s

In LC phases, molecules are aligned along a preferred axis called the director. To 

quantify the degree order in the system, an order parameter is defined. The nematic 

order parameter S  is given as follows:

g = ( p 2( c o s e ) ) = (3cos22g ~ 1), (2.1)

where 0 is the angle between the director and the long axis of each molecule and P2 is 

the second order Legendre polynomial. The angled brackets denote an average over 

all of the molecules in the sample. In an isotropic liquid, the average of the cosine 

terms is one third and, therefore, the order parameter is equal to zero. For a perfectly 

aligned system, the order parameter saturates to one. Typically, the value for the 

order parameter of a thermotropic LC ranges between 0.3 and 0.9 and depends on 

temperature. This dependence is illustrated schematically in Fig. 2.4, where T ^i

1.0

0.5
LC

Temperature

Figure 2.4: Schematic dependence of the nematic order parameter, S, on
temperature.

denotes the nematic-isotropic transition temperature. Above this temperature the 

isotropic liquid phase is stable, whereas below T/vj the liquid crystal phase forms. 

The transition between nematic and isotropic phases is weakly first order [13].

The nematic order parameter, 5, does not provide us with complete information 

about the alignment of the molecules in the system. In general, the orientation of 

each molecule is determined by three independent coordinates - the set of Euler

10
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angles {9i,(pi,'ipi). To characterise the orientational order in a system on micro

scopic level, we could use the function f (9 , (p, ip) that gives the probability of finding 

a molecule with given orientation. It is usually assumed that the ordered phase 

symmetry is not lower than the symmetry of the constituent molecules [10], and

orientational order is described using scalar or tensor quantities. For example, bi

axial mesophases (i.e., biaxial nematic, smectic C, etc.) are characterised by the 

symmetric tensor order parameter with zero trace. If the molecules have cylindrical 

symmetry ( /  is independent of ip) and the LC phase is cylindrically symmetric too 

( /  is independent of <p), the distribution function /  depends only on 0. In this case 

the scalar nematic order parameter (2.1) is used to describe the orientational order 

in the system.

Taking into account the symmetry of the nematic phase, we can expand the func

tion f(9)  under even Legendre polynomials:

/ ( C O S < 9 ) =  ^ 2  2 U 2  1 ( F>n ( C 0S 8 ) ) p n {  C O S # ) ,  ( 2 -2 )
n(even)

where (Pn(cos0)) are coefficients of the expansion:

(Pn(cos0)) =  27r J  f  (9)Pn(cos 9) sin 9d9. (2.3)

Equation (2.2) can be used to approximate the distribution function f (9)  using the 

experimental values of (P2) and (P4). The higher terms do not make significant 

contribution and, since they are quite difficult to measure, are often omitted [14].

The nematic phase does not possess long range translational order so ordering in 

the system is described in terms of orientational but not spatial variables. In or

der to explore spatial ordering in LC phases, it is convenient to consider various 

distribution functions. The radial distribution function g(r) provides structural in

formation about the system. It is defined as the probability of finding a pair of 

molecules a distance r  apart, relative to the probability expected for a completely 

random distribution at the same density. In calculating g(r) in computer simula

tion we actually calculate the number of neighbouring molecules found in a series 

of concentric spherical shells centred on a certain molecule. If, instead, we calculate

11
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the number of molecules found in thin slices oriented perpendicular to the sample 

director, we will evaluate the parallel distribution function, ^ii(t’h), where ry =  (r-n). 

In a smectic A or B phase, this will show how the molecules are distributed in lay

ers perpendicular to the director. The perpendicular distribution function, g±(r±), 

where r± = y jr2 — rjj, shows how many molecules (subject to normalisation) reside 

inside cylindrical shells around a certain molecule. It can be used to infer in-plane 

structure in smectic phases.

The microscopic definition of the nematic order parameter given by equation (2.1) 

includes some assumptions about molecular properties that are often rather approx

imate. Experimentally, the order and, as a consequence, anisotropy in the sample 

expresses itself through changes in all macroscopic tensor properties. For instance,

the diamagnetic susceptibility tensor Xa/3 f°r an isotropic liquid:
X 0 0

0 X 0

0 0 X

is different from that of a uniaxial nematic phase:
Xi 0 0
0 x± 0
0 0 XII

(where the director is taken to be parallel to z-axis). The macroscopic tensor order 

parameter Qap, that vanishes in the isotropic phase, is defined as

Qa/3 — G

i ( x x - x n )  o o

o | ( x ±  — X||) 0

o o |(X|| -  Xx)

(2.4)

where G is a normalisation constant chosen to set Qzz =  1 in a perfectly aligned 

system. For relatively simple systems and in theoretical approaches the macroscopic 

order parameter is found to be in a good agreement with the microscopic one. It was 

shown by Saupe and Maier in their NMR experiments that for PAA (Fig. 2.1) the 

difference between the parallel and perpendicular components of the diamagnetic 

susceptibility tensor is proportional to the microscopic order parameter S(T) [15].

12
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2.4 Review of Theoretical Descriptions of LC Phase 

Behaviour

The statistical mechanics of LCs is exceptionally difficult, and even for the simplest 

physical models no exact solution has been worked out. The vast majority of meso

gens are rod-like in shape and in 1949, in his seminal work, Onsager [16] showed that 

a system of hard rods develops orientational order above a certain number density. 

Onsager used a mean field type approximation and made a number of assumptions: 

rods can not interpenetrate (steric repulsion); volume fraction is much less than one 

(sparse system); rods are very long. Within these limits, it was successfully shown 

that the system undergoes a first order phase transition from the isotropic to the ne

matic phase. This was the first evidence that attractive forces are not necessary for a 

system to show spontaneous alignment. However, apart from the assumptions made 

above, this model differs from actual observations on thermotropic systems in many 

respects (the transition density is too low, the jump in density at the transition is 

too abrupt and the order parameter at the threshold is too high [7]). Like all models 

involving only infinite repulsive forces, the system is “athermal” , i.e. independent 

of temperature.

Another mean-field calculation for the dense hard-rod system was performed by 

Flory in 1956 [17]. He described a rod as a set of points inscribed on a lattice, the 

number of points in each rod playing the role of elongation. This approach proved to 

be useful for treating dense, highly ordered system, but neither Flory nor Onsager 

calculations can be entirely reliable over the whole range of density.

Maier and Saupe [18] developed a theory which takes into account attractive in- 

termolecular interactions, using a lattice model with nearest neighbour interactions. 

Solving the problem with a mean-field approximation, they predicted a strongly first 

order transition to occur between the isotropic and nematic phases, at a temperature 

dependent upon the intermolecular potential. In particular the order parameter for 

the nematic phase was found to be much smaller than that predicted by Onsager

13
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and a lot closer to those observed experimentally.

A relatively simple but powerful tool for the theoretical study of anisotropic systems 

is Landau theory. It is based on the assumption that the free energy can be expanded 

in a power series of a suitable order parameter, where only those terms compatible 

with the symmetry of the system are included. It is also possible to include in the 

expansion spatial variations of the order parameter; this introduces a new dimension 

not considered in mean-field theories [10]. Landau theory was first applied to LCs 

by de Gennes in 1971, with a result that this type of treatment of nematic LCs 

is now known as the Landau-de Gennes theory [19]. Subsequently, the de Gennes 

approach was extended and generalised to enable treatment of various systems and 

phase transitions. For example, there are generalised Landau-de Gennes theories 

for uniaxial and biaxial nematic LCs [20] and for the nematic-smectic-A tricritical 

phase transition in a binary mixture of LCs [21].

Continuum theories of LC phases are used to study flow properties, topological de

fects, responses to electric and magnetic fields, etc. These theories normally assume 

that the fluid is incompressible and at a constant temperature. The director is de

fined at each point of space and represents the direction of preferred orientation 

of the molecules in the immediate neighbourhood. The foundations of continuum 

theory were laid out in the 1920’s by Oseen and Zocher [22] who developed a suc

cessful static theory. Thirty years later, Frank [23] reexamined Oseen’s treatment 

and presented it as a theory of curvature elasticity. Dynamical theories that de

scribe the mechanical behaviour of the nematic state were subsequently proposed 

by Ericksen [24] and Leslie [25].

2.5 Theoretical Studies of Rod-Sphere M ixtures

Most of the models of LC behaviour described above may be classified as meso

scopic, which means that a structural unit of the model represents a large number 

of molecules. In a mixture of two or more species, however, a majority of the pro-
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cesses of interest occurs on a molecular scale so that microscopic details are essential. 

Mesoscopic models can still be applied to composite systems in which phenomena of 

interest occur on the mesoscopic scale (i.e. emulsions), or if there is a big difference 

in the sizes of the species, so one of them can be treated mesoscopically. Classical 

examples of such systems can be colloid-LC and colloid-polymer mixtures. A colloid 

is considered as a spherical particle of radius R  suspended in a continuum medium. 

The liquid crystal is represented as a director field n(r), where the unit vector n 

points in the direction of the average alignment of molecules in the vicinity of point

r. Provided that changes in the director field are on a much larger scale than the

molecular size, the free energy density fd due to bulk elastic deformation of the 

nematic can be expressed as a sum of the energies of splay, twist and bend of the 

director field. The Frank elastic constants associated with these deformations are 

often of the same order of magnitude and the one-constant approximation of Frank 

elastic energy is employed [26]:

f d =  [(div n )2 +  (curl n )2] (2.5)

For homeotropic boundary conditions, where the director has to be perpendicular 

to the surface of the colloid, a topological mismatch is created between the director 

fields near the colloid and at large distances. A deviation from uniform field n  is 

penalised by the surface energy [27]

Fs = - \ w  J ^ - O f d S ,  (2.6)

where W  is the anchoring energy and v is the surface normal. If W R / K  1, where 

R  is the colloid radius, the anchoring is strong and there are two possibilities: the 

liquid crystal can form a quadrupolar Saturn ring structure (Fig. 2.5(a)) or a dipolar 

structure with a satellite defect (Fig. 2.5(b)). The theoretical comparison of the en

ergy of both structures critically depends on the core energies of the disclination ring 

and the point defect. In experiment, the structure formed appears, to a large extent, 

to be determined by the system history (e.g. the cooling regime employed) [27].

If W R / K  <C 1 the anchoring is weak and the bulk elasticity prevails over the surface 

energy. The director field in this case is only slightly distorted as shown in Fig. 2.5(c)
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a) b) c)

Figure 2.5: The calculated director field around a single spherical particle in a 
uniform nematic matrix: (a) the quadrupolar defect or Saturn ring, (b) the dipolar 
structure with a satellite point defect, (c) no topological singularities in the case of 
weak anchoring (from [27])

Since the pioneering work of Asakura and Oosawa [28], complex colloidal systems 

have been of great interest to theoretical physicists. It is known that two colloidal 

particles in a suspension of rod-like molecules experience an effective attraction 

due to the depletion effect. If the radius of the colloid is R  and the length of the

rod is A, there is a depletion zone of thickness L/2  around the colloid in which

a reduced number of possible orientations is available to the rod, so reducing its 

entropy. When two colloids approach each other, their depletion zones overlap and 

more volume becomes available for the rods. Since this increases the rods’ entropy 

here is a resultant attractive force between the colloids. The depletion potential 

between two colloids separated by distance h in the limit R^> L has the form [29]

Uiepletion(h) = - ^ k BT ^ R L 2 ( ^ - E j  , (2.7)

where (j> is the number density of the rods. If R  and L  are comparable this approach 

overestimates the potential and, in general, its exact analytical form is not available. 

Nevertheless, a numerical solution of the form

U Y j m { K  R/L)  = - k BT(j)RL2K{h/L ,  R / L ), (2.8)

also known as YJM model, was proposed by Yaman, Jeppesen, and Marques [30]. 

Here, the function K ( h / L ,R / L )  was computed to fit the simulation data. Despite 

the numerical nature of this solution it only considers rod density to first order
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and the rods are assumed to be noninteracting needles. Since the rods do not 

interact they are always in the isotropic phase. The phase diagram of a mixture 

of hard spheres and noninteracting needles therefore only has mixed and demixed 

regions [31].

In order to study the behaviour of LC phases, a number of systems have been 

studied with rods being treated as hard parallel spherocylinders [32-34]. The order 

parameter in such a mixture is always equal to one and while it is possible to observe 

the demixing behaviour there is no isotropic-nematic transition. Mixtures of spheres 

of diameter d and parallel spherocylinders of the same diameter with length I was 

studied using density functional theory by Koda et al  [32] for l /d  ratios 5, 7, 10, 

and 20. It was shown that the addition of small spheres induces a smectic A phase 

due to microphase separation between the spheres and the parallel spherocylinders. 

The stability of this layered structure was found to grow with increasing rod length. 

Figure 2.6 shows the stability boundaries for the system with l /d = 20. If the length

0.7

immiscible
0.6GO

o
lamellar

0.5
o>
cds—>O 0.4

miscible
0.3

0.020.00 0.01 0.03 0.04

volume fraction of spheres

Figure 2.6: Stability boundaries for a mixture of parallel spherocylinders {l/d = 20) 
and spheres of the same diameter. The full line indicates the theoretical prediction of 
the volume fraction at which the system becomes unstable with respect to lamellar 
fluctuations. The dashed line indicates instability with respect to demixing into two 
macroscopically distinct phases (from [33]).
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of the rod is decreased the region of lamellar phase becomes narrower and moves to 

higher total volume fractions (more shorter rods are required to obtain the lamellar 

phase at the same volume fraction of spheres). At an aspect ratio of 5 the stability 

boundary of lamellar phase is nearly horizontal which makes it difficult for theoretical 

analysis to predict the phase diagram for even smaller aspect ratios. The effect of 

sphere diameter on the phase diagram of the mixture was also studied [33]. It was 

found that decreasing the sphere size increases the stability of the layered phase 

whereas adding spheres with diameters essentially larger than the spherocylinder’s 

diameter dramatically alters the phase diagram. For example, adding spheres of 

diameter 6d to spherocylinders with aspect ratio l/d  — 10 stabilises the nematic and 

not the smectic phase. The layered phase is formed to persist at low volume fraction 

of spheres but here the large spheres fit into the spherocylinder layers rather than 

into the gaps between them [33].

The effect of depletion-driven demixing separately in both isotropic and perfectly 

aligned binary mixture of hard rods with the same length but different diameters 

was studied by van Roij and Mulder [34] using second virial coefficient approxima

tion of the Helmholts free energy. It was shown that the demixing spinodal was 

thermodynamically stable with respect to the isotropic-nematic transition, if the 

diameter ratio was larger than about 5.

A theoretical approach formulated first by Rosenfeld [35] and then developed by 

Perera and co-workers [36], has brought new perspectives into the study of hard 

particle mixtures. In this theory, the Helmholtz excess free energy is written in 

terms of a series of weighted densities, and the weights are related to such geometrical 

properties of the components as volume, surface area, and mean radii. This approach 

may be used to study entropy driven demixing for the general case of isotropic binary 

mixtures of convex bodies. In particular, within this approximation, demixing is 

forbidden for binary mixtures of two dimensional fluids, regardless the shape of the 

components [37]. In 3D , prolate or oblate particles are expected to demix more easily 

than spherical ones. In the case of rod-sphere mixtures, the fluid-fluid demixing 

is explicitly forbidden if the breadth of the rods and diameter of the spheres are
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equal. The theory, however, does not consider demixing being preempted by an 

orientational transition of the rods, which is associated with a significant entropy 

change [38].

As the undertaken literature review shows, there is no theory capable of describing 

both mixing-demixing and the isotropic-nematic transition. Moreover, the theoret

ical predictions seem to work better for long and thin rods while real liquid crystal 

molecules have aspect ratios less than 5. Importantly, non-steric interactions have 

not been incorporated into any of the theoretical models described above. There

fore, computer simulation can be a useful tool for studying mixtures of rods with 

moderate aspect ratios and small spheres.
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Chapter 3

Experim ental Approaches used in 

the Study of LCs

3.1 Experimental Techniques

A large number of experimental methods are employed to study the dynamic and 

static properties of LCs. This Chapter gives an overview of some of them with an 

emphasis being given to the methods used in experiments on rod-sphere systems, 

and particularly those methods which recover structural properties.

3.1.1 LC Microscopy

LCs were first discovered and then found their practical application due to their 

specific optical properties. This is why different optical techniques are the most 

often used tools for experimental analysis of LCs.

LCs are found to be birefringent, i.e. they have two indices of refraction. For a 

nematic phase, the index of refraction n\\ for light polarised parallel to the director 

differs from the index n± for light polarised perpendicular to the director. When 

light enters a birefringent material, it is broken into fast (called the ordinary ray)
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and slow (called the extraordinary ray) components. These two components travel 

at different velocities and when they are recombined, as they exit the sample, the 

polarization state is found to have changed because of the resultant phase differ

ence. This property is exploited for phase characterisation by placing a sample 

between crossed-polarisers under a microscope. Figure 3.1(a) shows the typical pat

tern observed for a nematic phase, with dark areas indicating whether the director is 

parallel or perpendicular to the light propagation. If the birefringence of the sample

(a) (b) (c)

Figure 3.1: (a) polarization microscope image of nematic phase [40]; (b) confocal 
image of cellular structure of colloid-LC composite [41]; (c) STM image of 8CB 
molecules on M0S2 [42].

is wavelength dependent, patterns of colours can be seen as well.

There are some advanced techniques as Confocal Microscopy and Scanning Tun

neling Microscopy (STM) which can provide three-dimensional high-resolution im

ages. Examples of such images of sizes 150(i x 150p, and l ln m  x l ln ra  are shown in 

Fig. 3.1(b) and (c) respectively. The illumination in a confocal microscope is focused 

on one volume element at a time. Then a pinhole placed in front of the detector 

rejects the out-of-focus information, so that only the region that is in focus is de

tected. This technique gives sharp, blur-free images with resolution of order lOnra. 

STM imaging is widely used to study the structure of matter at the nanoscale, re

vealing details of the size of a single atom. The principle of this technique is based 

on the tunnelling (without physical contact) current between a metallic tip, which 

is sharpened to a single atom point, and a conducting material. The magnitude of 

the tunneling current is extremely sensitive to the gap distance between the tip and
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the sample. As the tip is raster scanned across the surface, atomic information of 

the surface can, therefore, be recovered from the resultant tunnelling map.

3.1.2 DSC

Differential Scanning Calorimetry (DSC) is a useful tool which complements optical 

methods in the study of LC phase transitions. As a m atter of fact, not all phase 

transitions lead to changes in the optical properties of LC materials, and not all 

changes in optical properties are caused by phase changes. DSC can reveal the 

occurrence of phase transitions but cannot be used to characterise the types of 

phase present.

DSC instruments measure the energy change in a sample as it is heated or cooled at a 

constant rate. Typically, a DSC instrument consists of two pans, one containing the 

sample and one empty, each with its own heater and thermocouple. The instrument 

records the difference in energy required to keep the pans at the same temperature as 

that temperature is slowly raised or lowered. If the sample undergoes, for example, 

a nematic to isotropic transition at a certain temperature some heat is required to 

“melt” the sample and, therefore, more energy is needed from the heater to maintain 

the required heating rate. This results in a sharp peak in the energy difference 

recorded and, thus, indicates the transition point.

3.1.3 Other Techniques

Information about the structure of an LC sample can be obtained from experiments 

on scattering of various sorts of radiation. This includes light scattering, X-ray 

diffraction, polarised Raman spectroscopy, small angle neutron scattering (SANS) 

and so on. All of these methods are based on the fact that a beam of radiation 

changes its properties while passing through the sample and so can provide informa

tion on the sample’s structure. The higher the frequency of the radiation the higher 

the resolution of the method. Thus light scattering is used to study supramolecular
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structures while X-ray diffraction can reveal periodic features in the structure of 

materials at a molecular scale [43]. SANS can look even in even more detail and is 

used to investigate molecular conformations and orientations as well as to build up 

radial distribution functions [44].

A number of spectroscopic methods are employed to study orientational order in 

LC phases. The classical method of measuring the second rank order tensor (of 

which (P2 ) is the unique component for a cylindrically symmetric phase) is nuclear 

magnetic resonance (NMR). NMR is a phenomenon which occurs when nuclei with 

nonzero spin are immersed in strong static magnetic field and exposed to a second, 

perpendicular to the first, oscillating magnetic field. The spins rotate at the Lar- 

mor frequency in the static magnetic field and “flip” if the oscillating field has the 

same frequency. This changes the magnitude of the magnetization vector and can, 

therefore, be recorded.

Electron spin resonance, fluorescence depolarisation and polarised Raman spec

troscopy techniques are now also widely used, since they can provide both the (P2 ) 

and (P4) order parameters [44]. Magnetic susceptibility measurements and opti

cal birefringence can also give information about order in a sample but, since they 

operate with macroscopic properties, integral characteristics are evaluated.

Methods like dynamic light scattering and slow neutron scattering are employed to 

study dynamic properties of LC phases. “Guest-Host” techniques which use deuter- 

ated molecules or fluorescent dye molecules have also found application especially 

in the study of biological systems.

3.2 Experimental Studies of Rod-Sphere System s

Several experimental studies of rod-sphere systems have been performed using colloid- 

LC composites. The phase ordering of colloids suspended in a thermotropic LC 

has been studied by Terentjev et al. [39] using confocal microscopy and DSC. This
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showed that colloidal particles, rather than being homogeneously dispersed in a 

nematic phase, tend to aggregate to reduce the orientational elastic energy. Spher

ical PMMA particles in 5CB were aggregated to form thin interfaces surround

ing large volumes of pure nematic liquid, thus forming an open cellular structure 

(see Fig. 3.1(b)). In this study, small steric PMMA particles dispersed in a LC 

matrix were found to pack at cell interfaces, below T^r/, but mix reversibly with the 

mesogens when the system was heated above T^r/. The low temperature material 

was found to have a remarkably high elastic modulus (G' > 0 .1  MPa), which varied 

approximately linearly with particle concentration. Subsequently, Petrov conducted 

DSC measurements of PMMA/5CB mixtures [41] investigating the transition kinet

ics and the effect of particle size on the mechanical properties of these composites. 

Two separate first order phase transitions were observed near T;v/. The first was an 

ordinary isotropic-nematic transition, while the second, which took place at lower 

temperature, was associated with structural rearrangement of the rods and spheres 

in the system [41]. It was found that smaller particles produced more rigid structures 

well below the transition temperature, whereas the storage module was independent 

of particle size in the vicinity of T^j.  Poon and coworkers carried out experimental 

studies of the optical properties of colloid-LC composites [45]. Over a wide range of 

particle concentrations and across the full temperature range of the nematic phase, 

strong electro-optical switching was observed for 5CB and a series of other com

mercially available LC mixtures. The analysis of observed electro-optical responses 

suggested that the local viscosity (controlling molecular reorientation) was decoupled 

from the (much higher) bulk viscosity. Contrast ratio, viewing angle characteristics, 

switching time and optical hysteresis were also found to depend strongly on particle 

density [45].

The structure of colloid-LC systems have also been studied by Poulin and cowork

ers [46,47]. An inverted nematic emulsion composed of water droplets dispersed in 

a thermotropic LC was used [46] to demonstrate the effect of the anchoring of LC 

molecules at the surfaces of droplets. The anchoring was controlled by using various 

amphiphilic compounds which were observed to accumulate at the water-LC inter
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face. Molecular surfactants were used to induce strong homeotropic anchoring, while 

a PVA polymer was used to induce strong planar anchoring. The amphiphilic com

pound also prevented small water droplets, generated by vigorous shaking of the 

sample, from coalescing. The resultant structures were observed through crossed 

polarisers with optical microscopy to map the distortions of the director field. An 

isolated water droplet in a nematic film formed a dipolar defect, whereas a quadrupo- 

lar defect was found in an homeotropically aligning LC. For planar anchoring, a pair 

of topological point defects, known as boojums, was observed. In order to mini

mize the orientational elastic energy, water droplets formed linear chains when the 

anchoring was normal. When the anchoring was planar, the droplets formed more 

compact but still anisotropic clusters. In this case the lines of water droplets were 

not parallel to the director but made an angle of about 30° to it [46].

Highly ordered arrays of macroscopic chains (several millimetres long) were found 

to be formed [47] in a binary mixture consisting of isotropic fluid (silicon oil) and 

LC (E7). This system has the phase diagram shown in Fig. 3.2. Rapid cooling from
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Figure 3.2: Phase diagram of the mixture of liquid crystal and silicone oil. The 
figure shows the isotropic phase (I), equilibrium between an isotropic and a nematic 
phase (N+I), and the nematic phase (N).

a mixed state induced microphase separation which developed through the initial
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formation and subsequent growth of small monodisperse colloidal droplets. It was 

found that the size and spatial organization of the droplets were controlled by the 

orientational elasticity of the LC phase.

The group of Prof. Tanako has studied microemulsions of water in 5CB in the pres

ence of the surfactant DDAB [48]. When 5CB is in the isotropic phase, this system -—

was found to behave the same way as a conventional water-in-oil microemulsion.

When nematic order developed below the transition temperature, the inverse mi

celles dispersed in the nematic were found to distort long-range orientational order.

The inverse micelles composed of water and surfactant molecules were only about 

4nm  in diameter, i.e. of the order of the length of a LC molecule. As a result of 

strong homeotropic anchoring, the LC became ordered around the droplets, but the 

phase formed did not exhibit the strong light scattering generally associated with 

bulk nematic. Therefore, this optically transparent phase was called “transparent 

nematic” (TN). As shown in Fig. 3.3, the TN phase can be distinguished in exper

iment by DSC and dynamic light scattering. The DSC scans showed two distinct

— I-TN (theory)
• • -Phase separation
■ Static light scattering
•  Microscope observation 
O DSC
•  DSC
A Dynamic light scattering 
A Dynamic light scattering

Isotropic

TN+N 
2 phase

TN+N

Figure 3.3: Phase diagram from [48]. The three insets show schematic diagrams of 
the states of the microemulsion (a) in the isotropic phase, (b) in the “transparent 
nematic” phase, and (c) after phase separation.

peaks, indicating the existence of two first order transitions. The first peak was as-
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signed to the I-N transition because it becomes the I-N transition peak in the limit 

of pure 5CB. The second peak was associated with phase separation in which pure 

nematic droplets developed in coexistence with the TN phase.

A number of experimental studies of rod-sphere system of colloidal rod-like and 

sphere-like particles have also been performed recently [49-51]. The phase behaviour 

of suspensions of Tobacco Mosaic Virus (TMV) and polyethylene oxide spheres was 

studied by Adams and Fraden using optical microscopy [49]. The phase diagram 

of the mixture was found to comprise six regions, each representing a distinct mor

phology. Rod-like drops of TMV, hexagonal domains, different kinds of lamellar 

structures, and a homogeneous gel-like state were observed as the concentration of 

TMV was increased. This phase behaviour gave qualitative agreement with theoret

ical predictions for depletion interactions in rod-sphere mixtures (Section 2.5). To 

reduce the effect of electrostatic repulsion between the rods, suspensions of f d  virus 

and polystyrene spheres of different sizes were studied with some salt added [50]. The 

phase diagram of this system (Fig. 3.4) resembles that predicted by theory for spheres

-Filaments/smectic 

rFilaments/nematic
Disordered 

lamellar
Columnar (highly defected)

O  60

S  4 0 -

c  30—

Lamellar

o  10—
Miscible + 

lamellari 1
Miscible
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Figure 3.4: Phase diagram for f d  and 100-nm diameter polystyrene spheres from [50].

and parallel spherocylinders (Fig. 2.6) as well as incorporates isotropic-nematic and 

nematic-smectic transitions for the rods. Figure 3.5 illustrates photographs and 

diagrams of the observed phases. The micrographs shown cannot clearly resolve 

single particles, so the drawings of an approximate representation of the structure 

are given. While phase diagrams of identical topology were observed for polystyrene
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Figure 3.5: Photographs and diagrams of regions of the phase diagram shown in 
Fig. 3.4. Length bars are 3fim.

spheres ranging from 22 to 120nm diameter, for spheres of size greater than 200nm 

the lamellar phase was not found. When low concentrations of 300—nra-diameter PS 

spheres were added to f d  nematics, rapid association of the spheres into chain-like 

structures was observed. At higher concentrations, the spheres packed into a cubic 

array with a lattice constant of one rod length, which suggests effective ” rod-sphere” 

attraction in the system.

Lekkerkerker and co-workers studied mixtures of colloidal rods and spheres using 

fluorescence confocal microscopy [51]. Silica spheres 370 ±  8nm  in diameter and 

silica coated boehmite rods of length 230 ±  90nm and 9 ±  2nm  in diameter were 

used in these experiments. At different volume fractions, the particles were dispersed
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in dimethylformamide (DMF) with added salt (LiCl), and sphere aggregation and 

subsequent crystallisation was observed for some of these systems. This process 

was found to be controlled by a surprisingly low limiting rod concentration. In 

the studied systems, the aggregation of the spheres at 1 — 5% volume fraction was 

observed at rod volume fractions around 0.3%. Although both rods and spheres 

could not to be taken as hard bodies, the depletion interactions were considered as 

the main reason for the sphere aggregation.

An interesting set of results for a rod-sphere system at molecular scale were ob

tained by Cheung et al. [52]. They studied a 10% mixture of n-octadecane (spheres) 

in Merck Phase 5 (rods) in the vicinity of the isotropic-nematic transition temper

ature using a deuterium NMR method. According to molecular field theory the 

field-induced orientational order in the isotropic phase of a nematogenic mixture 

should diverge as the nematic phase is approached. As soon as the biphasic re

gion, in which nematic and isotropic phases coexist, is entered, the pretransitional 

divergence is predicted to be quenched, the field-induced order decreasing slightly 

with decreasing temperature. However, the authors’ experimental findings showed 

that the divergence of the field-induced order was not quenched immediately on en

tering the biphasic region. This disagreement between theory and experiment was 

explained by the presence of concentration gradients within the sample; a method 

for the elimination of such gradients was demonstrated.
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Chapter 4

Computer Simulation of LCs

In this Chapter, a computer simulation approach to LC study is presented. First, the 

major methods of simulations are considered together with their theoretical back

ground. Then a review of LC models and some examples of their implementation 

are given.

4.1 M ethods of Computer Simulation

Computer simulation of LCs provides a direct route from the microscopic details 

of a system to macroscopic properties of practical interest. It aims to predict the 

properties of real materials and test theories based upon model systems, by providing 

essentially exact results for problems in statistical mechanics which otherwise would 

be solved by approximate methods, or might be quite intractable [4]. In computer 

simulations we operate with a system containing several hundreds or thousands of 

molecules, the aim being to represent a real macrosystem of 1023 molecules or so. To 

simulate bulk behaviour, the small idealised system is replicated periodically through 

space. A number of assumptions are made about the system and an appropriate 

computational technique is applied to study the properties of interest. A detailed 

analysis of the methods used in such computer simulations is given in Chapter 5.
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There are two main simulation methods for modelling molecular liquids, namely 

Monte Carlo (MC) and Molecular Dynamics (MD). Both methods yield essentially 

exact results for the behaviour of the model system in the chosen statistical ensem

ble. MC uses random numbers to generate a series of configurations of the system 

and then accepts each with an appropriate probability. MD uses the forces be

tween molecules to solve Newton’s equations of motion (to an acceptable degree of 

accuracy using finite difference methods) to determine the evolution of the system 

with time. For this reason, MD is advantageous as it allows dynamical information 

to be obtained, whereas MC is conceptually easier and normally computationally 

cheaper. MC also allows any sort of move to be attempted (not necessarily realistic) 

and, through careful choice of moves, certain systems can be brought to equilibrium 

with greater ease. This Chapter presents the basics of the both methods.

4.1.1 Molecular Dynamics

Molecular dynamics is a method which solves the classical equations of motion for a 

system of N  molecules with potential energy U. If we consider a system of molecules 

with Cartesian coordinates r l: then the equations of translational motion are

^ (m jr i)  =  Fj, (4.1)

where ra* is the mass of molecule i and

F i = - V riU (4.2)

is the total force acting upon molecule i. If the molecules are not spherically sym

metric they can also rotate as a result of their interactions. This rotation has to 

be taken into account through equations of rotational motion that are similar to 

equation (4.1). The angular acceleration of the molecule, ft, and the total torque 

acting upon it, 7*, are connected by

IiPi = n ,  (4-3)

where L  is the second rank tensor of inertia. This equation, applicable to molecules 

of arbitrary shape, can be simplified for symmetric rod-like molecules. For a linear
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molecule, only the force g* which rotates the molecule needs to be considered. If the 

orientation of a linear molecule is defined by the unit vector u t h e  torque can be 

written as:

Ti =  ui x gi. (4.4)

However, the vector g* can always be replaced by its component perpendicular to 

the molecular axis, such that,

n  = u* x g 1 , (4.5)

where

gt  = S i -  (gi • Ui)u. (4.6)

The algorithm for rotational motion presented in App. A introduces an extra force 

which constrains the length of vector u f. For a linear molecule, the angular velocity 

vector, cjt-, is perpendicular to vector Uj and

Ui = [uji x u i]. (4.7)

This allows us to rewrite equation 4.3 as follows

^ ( / iU i )  =  gj-. (4.8)

This resembles equation (4.1) with the difference that vector Uj has to be con

strained on the unit sphere.

A number of different numerical methods can be used to solve the system of 6N sec

ond order differential equations of motion [4]. However, there seems little advantage 

of considering techniques other than the Verlet-like algorithms which were especially 

designed for numerical solution of this type of differential equations. These algo

rithms are simple to program, exactly reversible in time and, given conservative 

forces, guaranteed to conserve linear momentum. They have also shown excellent 

energy conserving properties and are relatively stable with increasing time step. The 

Velocity Verlet algorithm implemented in this work is discussed in Subsection 5.2.1.

Whatever the MD algorithm used to solve the equations of motion, the structure of 

an MD programme is always as follows:
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1. Setting of the initial configuration of the system

2. Calculation of the forces and update of the molecular positions and velocities

3. Calculation of instantaneous properties

4. ...............  Return to step 2 ...............

5. Calculation of time average properties

The number of repetitions of the loop 2 — 3 — 4 multiplied by the time step defines 

the total time of simulation run.

4.1.2 M onte Carlo

The term Monte Carlo has come into use to designate numerical methods in which 

stochastic elements are introduced, in contrast to the deterministic MD approach. 

While MD explores the configuration space by following a time evolving trajectory, 

the MC is an importance-sampling technique for generating states of the system in a 

particular statistical ensemble. Each molecular configuration is defined by a unique 

set of coordinates. These include the positions of all the particles, {rj}, as well as 

their orientational coordinates, {fi,-}, if the particles are not spherically symmetric. 

The MC method generates a sequence (a Markov chain) of molecular configurations 

each new arrangement being generated by making random changes to the previous 

one. A new configuration is accepted or rejected according to a criterion which 

ensures that, in the limit of an infinite number of transitions, a given configuration 

occurs with a probability proportional to its Boltzmann factor. Properties of interest 

are then calculated as an ensemble average over all states of the system. A more 

detailed analysis of this method applied to the constant N V T  and N P T  ensembles 

now follows.

The canonical or constant N V T  ensemble is a set of systems each consisting of N  

particles confined in a fixed volume V  and at a fixed temperature T. The probability
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of finding a certain configuration, m , is proportional to the Boltzmann factor of the 

potential energy, Um,

PWT = ^ exp (" /& )’ {49) 
where Z ^ v t  is the sum of the Boltzmann factors for all possible configurations of

the system:

U(ri,Qi)
'N V T

I exp ( knT
dridPli. (4-10)

If the potential energy is assumed to be independent of velocity (no dissipative forces 

in the system), the statistical average of an observable A(rj) can be written as

( A )  =  j  p N V T (Ti% L l i )A (Y i ,  L l i )d v id L l i  (4 .1 1 )

While this integral is calculated over the whole configuration space, the

distribution of pNvri^i, ^f) is very inhomogeneous and tends to be zero in the major 

of {r;, fi;}: significant contributions to the average (A) are made, therefore, by those 

configurations with high values of PNvri^i, ^z)- The MC method uses the importance 

sampling technique to estimate the average (A) by concentrating the computational 

efforts on the most likely configurations of the system.

Let T =  {Ti, r2, ...} be a set of all possible configurations of the system. A Markov 

chain is a series of trials which satisfies two conditions:

• the outcome of each trial belongs to a finite set of outcomes T

• the choice of each new state depends only on the state that immediately pre

cedes it.

The stochastic matrix 7r is defined as the transition matrix, with the element 7Tmn 

being the probability of moving from state m  to state n. If the vector p =  {pi, p2 , ...} 

contains the probabilities of finding the system in state Ti, I^, etc., then, at equi

librium, it satisfies the eigenvalue equation

P7T =  p,

^   ̂PmTmn  =  Pn,' (4 -12 )
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The sum of the probabilities of moving to any state n from the set T (including state 

m) has also to satisfy

=  (4-13)
n

The assumption normally made about the elements of the transition matrix is that

—  =  —  (4.14)
'Knm P m

This so-called “microscopic reversibility” condition narrows the scope of searching 

for solutions to equations (4.12) and (4.13). The first such solution was suggested by 

Metropolis et al. [53] in 1953. In this, for a given probability vector p the stochastic 

matrix can be defined as:

Pn  ^  P m  771 7̂  71 

'Kmn  ̂ & m n ( P n /P m )  Pn  <-' P m  Vfl ^  Tl ( 4 * 1 5 )

 ̂ 1 “  E m ^ n  n rnn 171 =  71

where a  is a symmetrical stochastic matrix, often called the underlying matrix of 

the Markov chain.

When performing simulations in the canonical ensemble, we assume that the prob

ability vector p is given by the Boltzmann factors 4.9. The state space T is then 

explored according to the following scheme

• Generate a new configuration n by a random change of the existing configura

tion m  (MC move or trial)

• Calculate energy change AUmn = Um — Un

• Calculate Xmn = min ( l ,  exp

• Generate a random number ij) on [0 ,1]

• Accept new state m  if < Xmn
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The probability a mn is incorporated in choosing the move and if A Umn < 0 it can 

be accepted automatically. If the move is uphill in energy, i.e. A Umn > 0, then 

Pn < Pmj and the move is accepted with probability =  exp •

The underlying stochastic matrix a  is determined by the MC move being used. For 

instance, at every MC step, we can select in random particle j  and give it a small 

displacement S r j .  Let new coordinates of the particle be

x ]  =  x f  +  (2ipi -  1)A r max

Vj  =  V7  +  ( 2 ^ 2 “  1 ) A r ma®

Zj  = ZT  +  (2^3 “  (4-16)

where are random numbers on [0,1]. In this case, all possible new config

urations differ from configuration m  only by the position of particle j  within S r j .  

The rest of state space T is not available for this particular move, giving zero ele

ments a mn in row m. On the computer there are a large but finite number of new 

configurations, Nnew, and all of these states can be selected with an equal proba

bility a mn = -rr—. The fact that state n can be chosen with the same probabilityWnew
following a trial move from state m, as m  can be a move from state n, then satisfies 

the requirements of microscopic reversibility.

It is also possible to generalise the Metropolis solution to other statistical ensembles, 

by means of an appropriate modification to the probability vector p designed to 

ensure that the correct thermodynamic distribution of states is given. For example, 

in the isothermal-isobaric (constant N P T )  ensemble, the configuration integral is 

given by

Z npt  =  J  exp -00 dV J  exP dTid^ i' (4’17)

This means that a particular configuration m  is adopted with probability

P n p t  =  exp +  N l o g , (4.18)
%NPT \  kB-L J

and a trial move to state n  can be accepted with probability given by

. ( ,  (  AUmn+ P ( V n - V m) - N k B log(Vn/Vm) \ \
X m n  =  min ( l.exp  I --------------------------— ------------------------- I I . (4.19)
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4.2 M odels of LCs

The methods described in the previous Sections can be applied to a number of 

different models. Here, a model implies a theoretical description of the system 

which incorporates information about its intrinsic properties (such as interaction 

potentials, for example). It can have some special and sometimes unrealistic features 

and demand an application of a specific method to study the properties of interest.

Simulation of LCs is a particulary challenging task. Firstly, the molecules are com

plex, having flexible or semi-flexible structures and often possess complicated elec

tronic charge distributions, making them computationally expensive to model real

istically^ Secondly, LC phenomena occur over relatively large time and length scales, 

that require lengthy simulations of large systems [54].

For these reasons, a great deal of powerful CPU time is required, and it is not 

surprising that early attempts to simulate mesogens in the 1970s [55,56] suffered 

greatly from insufficient computer time preventing any definite conclusions from 

being drawn. It was not until the 1980s that there was sufficient computer power 

for mesogenic phases to be definitely observed.

There are four types of models in LC simulation:

• lattice models

• hard nonspherical models

• soft nonspherical models

• realistic atom-atom potential models

Brief descriptions of these are given in the following with special attention being 

paid to binary mixtures.
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4.2.1 Lattice M odels

Lattice models represent a LC as a set of classical spin vectors, located on the sites 

of a cubic lattice. In the Lebwohl and Lasher lattice model [57] spins are allowed 

to rotate on their lattice sites, interacting with their nearest neighbours via the 

potential:

3 cos2 a ,-,— 1
Uij =  - «  f  , (4.20)

where e is a positive coupling constant, is the angle between neighbouring spins 

i and j .  The spins should not be taken to represent individual molecules in a LC. 

Rather each site represents a small region of the LC sample, with the spin denot

ing the locally-averaged nematic orientation within that region [54]. Simulation 

results [58] indicate that the Lebwohl-Lasher lattice model exhibits an isotropic- 

nematic transition in good agreement with Landau-de Gennes theory. There are 

some alternative lattice models that differ in terms of the type of lattice and inter

action potential used. Adding extra terms to the potential energy (4.20) allows the 

Lebwohl-Lasher model to be used to simulate a LC in an external field, in confined 

geometry, etc. To simulate a rod-sphere mixture the Lebwohl-Lasher model was 

extended by Hashim and Luckhurst [59]. The spheres were represented as vacancies 

in their model. While nematogenic solvent molecules interacted via potential 4.20, 

the spherical solute molecules had no anisotropic interaction with them neither they 

interacted with each other. This system exhibit phase behaviour similar to that 

of LC-oil mixture shown in Fig. 3.2. The main features here are decreasing of the 

transition temperature with increasing concentrations of spheres and presence of a 

re-entrant biphasic regime at low concentrations of spheres.

4.2.2 Hard Particle M odels

A hard particle model implies that each particle has an infinitely repulsive core 

within which no penetration is possible. Such a model contains no attractive forces,
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and is expressed mathematically, for a sphere, as,

0 (r > a)
(4.21) 

oo (r < cr)

where a is the diameter of the molecule. The simplicity of equation (4.21) makes this 

class of model particularly simple to simulate using the Monte Carlo technique. The 

first simulations of hard particle systems were surprisingly effective at reproducing 

features of the liquid state, showing that the main driving forces behind liquid 

structure are excluded volume effects. Simulations of LCs performed using hard 

particles have shown that a primary cause of mesogenic behaviour is the degree of 

shape anisotropy. That said, attractive interactions can certainly affect the phase 

behaviour drastically.

To simulate calamitic LCs hard ellipsoids and spherocylinders are usually used. An 

ellipsoid is one of the simplest shapes to be studied. It is simply a sphere subjected 

to elongation or compression. By defining semi-axes to be a, b and c, if a =  b 

=  c we have a sphere, a 7= b =  c is an axially symmetric molecule (ellipsoid of 

revolution) and a ^  b /  c a general biaxial molecule. When defining the shape 

of an axially symmetric molecule a factor e is used as a measure of elongation or 

axial ratio (e =  a/b). If e is less than 1, the molecule is discotic and if e is greater 

than 1, the molecule is calamitic. Frenkel and co-workers [61-63] explored the phase 

diagram of the hard ellipsoid system, considering a whole range of axial ratios from 

infinitely thin discs through hard spheres up to various lengths of rod-like molecules. 

It was found that the degree of anisotropy of the molecules determines the degree 

of stability of the nematic phase. A nematic phase was observed for e =  1/2.75 and 

3, no nematic was seen for less extreme ratios. For e w l a  plastic crystal phase was 

observed. More extreme shapes, e — 1/10, 1/5, 5 and 10 have been studied [54] and 

in each case a spontaneous ordering to the nematic phase was observed as the system 

underwent uniform compression. It was also noticed that upon transformation from 

discotic to calamitic (e to 1/e) the phase diagram is almost symmetrical.

It was suggested by Frenkel [63] that a hard-core system composed of ellipsoids can 

not exhibit smectic phases, that can be observed in systems of spherocylinders. A
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spherocylinder is a cylinder of length L and diameter D with hemispherical end caps 

of diameter D. The overall length to breadth ratio is given by 7 =  (L-\-D)/D. The 

first simulations using this model [64] considered a system of parallel spherocylinders 

with 7  =  5, thus even at the lowest densities, the system possessed a nematic order. 

The most striking result of this work was that the system displayed a stable smectic 

phase, the range of which was increased with the non-sphericity of the particles. 

More recent work [65] has examined the effect of the orientational degrees of freedom 

of the system by removing the parallel constraint for a 7  =  5 system, and later for 

other aspect ratios [66]. It was shown that for 7  < 3 only isotropic and crystalline 

phases can occur, and that for larger 7  stable nematic and smectic phases are present. 

The complete phase diagram of a pure spherocylinder fluid was mapped by Bolhuis 

and Frenkel [67].

There are some more examples of hard-core models. To simulate discotic LCs coin

like particles and spheres from which the top and bottom have been removed are 

employed [54]. Prolate chain-like particles composed of hard spheres with either 

rigid or semi-flexible bonds have also been used in calamitic LC simulations [68].

Hard particle modelling is widely used in the simulation of LC mixtures. The very 

first simulations of binary mixtures of hard parallel spherocylinders with different 

lengths were presented by Stroobants [69]. The behaviour of these mixtures differs 

markedly, quantitatively as well as qualitatively, from the phase behaviour of the 

separate monodisperse components. In particular, it was observed that the mixture 

favours columnar order over smectic order.

Hard ellipsoid rod-plate mixtures were studied by Camp and Allen [70] using On- 

sager theory and constant-pressure Gibbs ensemble Monte Carlo simulation. Four 

distinct phases for mixtures of uniaxial ellipsoids with elongations e and 1/e  were 

observed: isotropic, uniaxial nematic (N+ and AL), and biaxial nematic [71]. Koda 

and Ikeda [32] conducted constant pressure Monte Carlo simulation of parallel hard 

spherocylinders and hard spheres. They found that the smectic layer periodicity was 

stretched when the spheres were added to the smectic-A phase of the spherocylin-
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ders. Recent simulations of binary mixtures of hard spheres and spherocylinders [33] 

have revealed that adding spheres smaller then the rod length decreases the total 

volume fraction needed for the formation of a layered phase. Small spheres, there

fore, effectively stabilise the layered phase; the opposite is true for large spheres. 

It was shown by comparison of computer simulation results with experiments and 

theory that entropy driven microphase separation takes place in mixtures of parallel 

rods and spheres [33].

4.2.3 Soft Particle M odels

Despite the inherent problems of simulating mesogens, a surprising number of fea

tures have been reproduced using hard core models. However, realistic interactions 

between molecules are known to have both attractive and repulsive components. 

This is mimicked in so-called soft particle models in which the potential comprises 

an attractive tail at large intermolecular separations and a short range repulsive core. 

The best known example of such a potential is the Lennard-Jones pair potential:

This potential has a long-range attractive tail of the form — (^)6, a negative well of 

depth 6o and a steeply rising repulsive wall of the form (^ )12 at distances less than 

'f'ij ~  cr0. The exponent 6 is used to model the Van der Waals interactions between 

non-polar molecules, whereas the exponent 12 does not have any explicit theoretical 

basis. It is chosen mainly to reduce the computational costs while maintaining a 

reasonable fit to realistic interatomic potentials [4].

For the purposes of modelling an anisotropic molecule, several Lennard-Jones po

tentials would have to be used for each molecule. Such simulations of LC phases 

were successfully performed, for example, by Paolini et al. [72]. They employed a 

system of molecules composed of a few (11) atoms, constrained to form a linear 

molecule, and in mutual interaction via a continuous repulsive site-site potential of
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Figure 4.1: Schematic diagrams of orientations and separation of the particles.

the form (^ )12. It was found that such a model was capable of exhibiting nematic 

and smectic liquid-crystal phases.

The idea of using an anisotropic site-site potential to represent an intermolecular in

teraction was first proposed by Corner [73]. His work was based upon a numerical fit 

to a multi-site Lennard-Jones based potential with orientationally dependent range 

and energy parameters. A similar approach was made by Berne and Pechukas [74], 

but they considered the angular dependence of a determined by the overlap of two 

Gaussian ellipsoidal functions. The Berne-Pechukas potential takes the Lennard- 

Jones form which has orientation dependent parameters:

y BP(r«,ui,Uj) =4e(ui,uj)
V(ru,Ui,Uj)' 12

<7 (fy,Ui ,Uj)

rij
(4.23)

where Ui and uj are unit vectors describing the orientation of the molecules (Fig 4.1). 

The energy parameter is given by

e(ui.“ j) =  eo[l - X 2 (fli.Uj)2] _1/2, (4.24)

where eo is a constant and x  is a measure of the shape anisotropy and is determined 

from the major and minor axes of the ellipsoid being used to describe the molecule

(ae/a s)2 -  1
X = (4.25)

( a e/ a s ) 2 +  1 ’

where ae and os are the length and the diameter of the molecule, respectively. The
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shape parameter is given by

=  <70
,  _  X  (  (fjj.Uj +  fjj.Uj) 2 (fjj.Uj -  fjj.Uj) 2 

2 I 1 +  x(ui-Uj) 1 -  x(ui-uj)

- 1 /2

( 4 . 2 6 )

where <To is a constant. This model was studied by Kushick and Berne [56] us

ing constant temperature molecular dynamics. They applied an electric field to the 

isotropic phase, which promoted orientational order, and then monitored the system 

with the electric field removed. It proved easy to generate an ordered system when 

the electric field was applied, but in its absence a stable ordered state was difficult 

to achieve, and any observed order was lost after sufficiently long simulations. Fur

thermore, the strength parameter e does not depend on intermolecular vector fy so 

that there is no difference between side-side and end-end interaction well-depths. 

Taking into account these unrealistic features of the Berne-Pechukas potential, Gay 

and Berne [6] proposed another anisotropic potential. The Gay-Berne potential is 

expressed as follows:

\  12
U G B { f y ,  U i ,  U j )  =  4 c ( r y ,  U i ,  U j )

<?o
K U j  - < 7 ( f y , U i , U j )  +  (T0

 00__________
rij -  < r ( f y , U i , U j )  + < 7 0

(4.27)

In this expression, the shape parameter, a, has the same form as in the Berne- 

Pechukas model (4.26), while the energy parameter e is given by

e ( f « .  U i .  u j )  =  eo h ( u i ,  U j ) ] "  M f « ,  u i ,  u j ) ] "  , ( 4 . 2 8 )

where eo  is a constant and e i ( u i , u . j )  is the energy parameter used in the Berne- 

Pechukas potential. e2(fy, U i ,  U j )  is a function analogous to that for cr,

r  I t  ,*, f , ) - 1  X' f ( f « . f i i + n i . f i j ) 2 ( f y . U i - f y . U j n  ,  .
-  1  -  -  {  j  +  +  1 -  x ' f u i . U j )  ) ’ ( 4 -2 9 )

where

, _  (Cgj/Cee)1̂  -  1 
X (GsAee)1̂  +  1

(4.30)
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The parameter ess is the depth of the potential for a pair of parallel molecules 

arranged side-to-side and eee is equivalent depth for two parallel molecules arranged 

end-to-end. The exponents fx and v were originally adjusted to obtain a good fit 

to the linear four site Lennard-Jones potential. From the same comparison it was 

found that the elongation of the molecule (Te/a s should be set to 3, and ess/eee to

5. The anisotropic nature of Gay-Berne potential is depicted in Fig. 4.2, where the

side-by-side — 
X-configuration —
T-confiauration — 

end-to-end —
0.8

0.6

0.4

0.2

- 0.2

- 0.4

- 0.6

10 2 3 4

Figure 4.2: Energy profiles for different orientations of two Gay-Berne particles.

equipotential lines resulting from the interaction between a pair of parallel molecules 

are presented. The parameters of the Gay-Berne potential can be varied to yield a 

wide range of anisotropic potentials. If the anisotropy parameters, x  and x!, are set 

to zero, corresponding to a spherical molecule, the Gay-Berne potential reduces to 

the simple Lennard-Jones potential.

The original Gay-Berne parameterisation was studied by Adams et al., de Miguel et 

al., Emsley et al., etc. Adams et al. [75] in their molecular dynamics simulations in 

the canonical ensemble showed that a spontaneous isotropic to nematic transition 

occurs at p* = 0.32 between T* =  1.7 and 1.8. De Miguel et al. studied liquid
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vapour coexistence of a Gay-Berne fluid using the Gibbs Ensemble Monte Carlo 

method [76]. They obtained a saturation curve that appeared higher than that pre

dicted by the density-functional approximation method. A complete phase diagram 

of the original Gay-Berne (Fig. 4.3) fluid was reported by de Miguel et al. in [77]. 

Using molecular dynamics simulations in the constant N V T  ensemble, they iden-

0.9
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Figure 4.3: Gay-Berne phase diagram from [77]. The density and pressure are given 
in reduced units which are discussed later in Subsection 5.1.3.

tified isotropic fluid, nematic and smectic B phases. Emsley et al. [78] studied the 

temperature dependence of the nematic orientational order parameter (P2). They 

calculated the parameter T = AinV(p2)’ rela^ ve sensitivity of (P2) to tempera

ture and density. It was found that T obtained for Gay-Berne model differed from 

experimental values. The authors showed that changing the Gay-Berne potential
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by increasing the steepness of the repulsive term increased the calculated value of 

T, whilst changing the relative well depths for side-by-side compared to end-to-end 

arrangements of Gay-Berne particles left T virtually unchanged. These exploratory 

calculations suggested that V is a useful parameter for testing the parameterisations 

of model potentials.

The set of parameters (ae/ a s = 3; ess/eee =  5; fi =  1; v  =  2) was studied by Luckhurst 

et al [79]. The existence of isotropic, nematic, smectic A, smectic B and crystalline 

phases was demonstrated. The phases were observed by monitoring appropriate 

correlation functions, order parameters, and also by graphical visualisation. Later, 

Luckhurst and Simmonds [80] estimated the parameters in the Gay-Berne potential 

by comparison with the multi-site potential constructed for p-terphenyl, which has 

a molecular structure typical of many mesogens. Two p-terphenyl molecules were 

constructed, each with 32 Lennard-Jones sites. As with the original Gay-Berne 

fitting, parameters were obtained from comparison of the Gay-Berne potential with 

the contours of a biaxially averaged set of multi-site interaction potentials. The 

resultant parameters were found to be fi =  0.8, v =  0.74, cre e /c r ss =  4.4 and ess/eee 

=  39.6. Thus, the repulsive core was more elongated in shape and the well depth 

anisotropy was considerable greater than that used in the previous examples.

Recently, more complete investigations of the phase diagram using parameterisa

tions slightly different from original one have been conducted. De Miguel et al. [81] 

studied the effect of the anisotropic attractive interactions on the orientationally 

ordered phases by varying the ratio ess/ t ee in the range [1; 25] with fixed values of 

the other parameters. It was found that for this parameterisation smectic order is 

favoured at lower densities as ess/eee is increased. When it is lowered, the smectic 

phase is preempted by the nematic phase. As a result, the nematic phase becomes 

increasingly stable at lower temperatures as ess/eee is decreased. Also, evidence was 

found of a vapour-isotropic-nematic triple point for ess/eee =  1 and ess/eee =  1.25. 

For temperatures below this triple point, nematic-vapour coexistence was observed 

as, is found for many LCs in experiment.
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The effects of elongation on the phase behaviour of the Gay-Berne fluid were studied 

by Brown et al. [82]. They explored a range of length-to-width ratios 3 < ae/ a s < 4, 

using a variety of molecular dynamics and Monte Carlo techniques, to determine 

the phase behaviour for each shape studied. Within the small range of elongation 

studied, the phase diagram showed significant changes. On increasing the ratio 

cre/<rs, the liquid-vapour critical point moved to lower temperatures until it fell below 

the I —S b  coexistence line, where liquid-vapour coexistence proved hard to establish. 

The liquid-vapour critical point seemed to be completely absent at ae/ a s =  4.0. Also 

as elongation was increased, the I  — N  transition was seen to move to lower density 

(and pressure) at given temperature. The lowest temperature at which the nematic 

phase was stable did not vary dramatically with oej o s. On cooling, no 5s-crystal 

transition could be identified in the equation of state for any of these elongations, 

and it was suggested that, on the basis of simulation evidence, Sb and crystal are 

really the same phase for these models.

We have considered the use of the Gay-Berne potential in modelling of calamatic 

LCs, but it also can be used to model the interactions between disk-like molecules. 

Such simulations were performed by Bates and Luckhurst [83], and the system was 

found to exhibit isotropic, nematic discotic, and columnar phases. Generalisation of 

the Gay-Berne potential as well as its application to the simulation of mixtures will 

be considered in Subsection 4.2.5.

Quite recently a new Corner potential has been developed suitable for computer 

simulation studies of pure and mixed systems composed of rod-like, disk-like, and 

spherical molecules [84]. In this, the strength parameter e and the range parameter 

a are expanded in terms of a complete orthogonal basis set of functions, called 

S-functions, to obtain expansion coefficients typical of mesogenic molecules. The 

coefficients for the range parameter are determined by mapping the expansion onto 

prolate and oblate spherocylinders which are considered to be more realistic models 

for rod-like and disk-like molecules, respectively. Using this approach the expansion 

coefficients for the strength parameter were obtained by mapping onto those of two 

well-studied models: the original Gay-Berne model and the parameterisation with
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exponents /i =  1, v =  2.

4.2.4 Realistic Atom -Atom  Potential M odels

Despite the success achieved in simulating LCs with relatively simple models, in 

order to understand the stability of the various mesophases it can be necessary to 

incorporate detailed aspects of molecular structure into the model. The classical 

approach, involving assignment of Lennard-Jones potentials to each atom in the 

molecule, provides a complicated intermolecular potential [54]. Such a molecular 

potential can account for both changes in excluded volume and polarizabilty between 

different molecules, by the use of different nonbonded parameters for each atom 

type. For improved efficiency, some groups of atoms, like benzene or phenyl rings 

in the mesogen, can be treated as enlarged spherical extended atoms [85]. The 

combination of Gay-Berne and Lennard-Jones sites can provide even more realistic 

molecular models [86].

Applying the standard MD method to such a system is possible but requires a very 

small time step. So, the simulations are incredibly expensive and were actually im

possible until the mid 90’s. The quantum dynamics method is even more precise 

but much more expensive. In 1998 Clark, Adam and Crain determined accurate 

molecular structures, dipole moments and intermolecular potentials for mesogenic 

fragments and LC molecules from quantum mechanical computer simulations per

formed on 256 nodes of a Cray T3D [87]. They employed density functional theory 

(DFT) and used ab. initio pseudopotentials for the interaction between valence 

electrons and ions and the generalised gradient approximation to account for the 

many-body effects of exchange and correlation. The ab initio molecular dynamics 

method allows the simulation of motion of the individual atoms based on forces 

which are calculated quantum mechanically. It was initiated in 1985 [88] and com

bined DFT (an accurate and efficient scheme to treat the electronic structure) with 

classical mechanics (Newton’s law for the nuclei) in a joint set of equations of motion.
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4.2.5 Generalisation of the Gay-Berne Potential

The first attem pt to simulate a bi-disperse Gay-Berne mixture was undertaken by 

Lukac and Vesely [89]. They studied a system of 256 Gay-Berne particles of two 

different length to breadth ratios using the standard MC method. The interaction 

between two unlike molecules was calculated by applying the Lorentz-Berthelot rule:

& a b  = g  [ v a a  + 0 b b ], £a b  — y / e AA ' £b b - (4.31)

This rule, applicable to spherical molecules, fails for anisotropic ones, because it 

does not distinguish between the two different T configurations (it incorrectly gives 

them both the same energy). Subsequently Cleaver et al. [90] proposed a generali

sation of the Gay-Berne potential for the interaction between two unlike molecules 

which distinguished the two different T configurations. The shape parameter a  that 

describes the interaction between two molecules, i and j ,  with lengths (breadths) U 

and lj (di and dj) was found to be

< r ( f i j ,  U i ,  u j )  =  (70
X  f  ( a f i j . U j  +  a  ‘ f j j . U j ) 2  ( a f j j . U j  —  a  ‘ f j j . u , ) 2

2 \  l  +  x(fli.Uj) l -x ( u i .U j)
(4.32)

Here the parameters <to, x  and a  are well defined functions of U, lj , di and dj. Since 

the work described in the following Chapters deals with the rod-sphere mixtures, 

let us consider the case of the rod-sphere interaction. If, for example, particle i is a 

sphere of diameter d, so li = di = d, both x and a  go to zero. The shape parameter, 

nevertheless, remains finite in this limit and tends to

, V 1/2
1 -  I f T v  ■ {ry-U j) .

(4.33)

The energy parameter e for the rod-sphere interaction is given by

e(nhAi) =  e0 (4.34)

where the ratio ~  controls the well-depth anisotropy of the interaction. Normally

this would be set equal to the ratio but it could be varied as an independentCss
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parameter. Using the generalised form of the Gay-Berne potential, mixtures of two 

species with different axial ratios have been studied. Bemrose et al. [91] performed 

constant N V E  and N P T  MD simulations of mixtures of rods with axial ratios 

of 3.5:1 and 3:1 at a range of concentrations. The order parameter of the longer 

molecules was found to be greater than that for the shorter molecules in both nematic 

and smectic phases. The transition temperature between ordered and disordered 

phases appeared to vary linearly with mole fraction. A 50/50 mixture of 1000 

generalised Gay-Berne particles with axial ratios 2.0:1 and 2.5:1 was studied by 

Mills and Cleaver [92] using the Gibbs ensemble Monte Carlo method. This allowed 

nematic-isotropic coexistence and the processes of fractionation to be studied.

50



Chapter 5

Prelim inary Simulations

This Chapter contains our first simulation results as well as some practical aspects of 

simulations and descriptions of the algorithms which were developed, computed, and 

validated for further utilisation. The practical aspects described here include the 

concepts of the periodic boundary conditions, the Neighbour List, and reduced units, 

which are used throughout in our simulations. The description of how we calculate 

the nematic order parameter, pressure and various distribution functions is given as 

well. The MD algorithm for elongated molecules is presented and then implemented 

to a system of original Gay-Berne particles. The simulations are performed under 

constant isochoric-isothermal conditions at a constant temperature and different 

densities (a compression series). Then a system of Hard Gaussian Overlap (HGO) 

particles of the same aspect ratio is simulated in both constant N V E  and N P E  

ensembles using developed MC codes. Finally, the results of MC simulations of hard 

rod-sphere mixtures with different sphere concentration are presented, from which 

an approximate phase diagram of the system is built.
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5.1 Practical Aspects

5.1.1 Periodic Boundary Conditions and Minimum Image 

Convention

A typical computer simulation system includes only 102 - 106 particles due to the 

computational overhead involved when considering large systems. In order to avoid 

surface effects in such a small system, periodic boundary conditions are applied. 

These involve effectively replicating the simulation box in all directions through 

space. If a particle leaves the system through one side, it then re-enters on the 

opposite side, thus keeping the number of particles constant. In such a system,

0 = yWm

m

(MM

Figure 5.1: A two-dimensional periodic system.
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the interaction between particles is computed according to the ‘minimum image 

convention’ - a particle interacts with its nearest neighbours (or ‘images’ from the 

neighbouring boxes). Implementation of a cutoff distance rc (see Fig. 5.1), allows for 

short range potentials to neglect weak interactions on distances of a few molecular 

lengths. If L  is a side of a cubic simulation box, the requirement L  > 2rc has 

to be satisfied. This prevents direct interactions between any molecule and two 

or more periodic images of another molecule. Such interactions would impose an 

extra unphysical degree of symmetry upon the system. Since the simulation box has 

microscopic size it can not exhibit long wavelength fluctuations. For a cubic box 

of side L, the periodic boundary conditions suppress any density or orientational 

waves with a wavelength greater than L. Thus, care has to be taken in interpreting 

simulations of system behaviour in the vicinity of critical or transition points, where 

the range of fluctuations can become macroscopic, i.e. much greater than L.

Using a cutoff creates discontinuities in the potential energy and the force functions 

that can affect the results. The discontinuity in energy can be removed by imposing 

an appropriate shift on the potential so that it is zero at the cutoff distance. Both 

the energy and its first derivative can be made continuous at the cutoff point if a 

quadratic function is used [93]. In our simulations, we neglect discontinuity in forces 

and a simple energy shift is used (see App derivation for details).

5.1.2 Verlet Neighbour List

In computer simulations using a cutoff, we have to determine the nearest neighbours 

of each molecule at every time step. It is computationally expensive to check at each 

step the distances between each pair of molecules and compare it to rc. Instead, the 

Verlet neighbour list can be used as an extremely useful tool for keeping track of 

the nearest neighbours of each molecule in the system. Here, a list of molecules 

within a distance ri from each molecule is associated with that molecule (blue circle 

in Fig. 5.1). When calculating the forces and torques acting on that particle, the 

program does not therefore loop through all of the particles but only those appearing
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in the list. From time to time it is necessary to renew the neighbour list, because 

molecules are moving and can either enter or leave the “neighbourhood” of the 

molecule. The value of r* and the associated frequency of list rebuilding are set to 

ensure that the molecule always “knows” its neighbours within the distance r c.

5.1.3 Reduced Units

Within computer simulations reduced units are used instead of dimension ones. If a 

system has some characteristic length, i.e. the length of the molecule, it is convenient 

to chose it to be a unit of length. The mass of the molecule can be chosen as 

a unit of mass which makes molecular momenta p* and velocities vt- numerically 

identical, as well as the forces F* and accelerations a*. In a mixture of two or more 

components, the assignment of masses of different species to some specific values does 

not affect its static properties as long as there are no mass-dependent interactions 

(i.e. a gravitational field) in the system. Since we do not concentrate on dynamic 

properties, we can therefore set all masses and moments of inertia to unity without 

losing generality.

There is a characteristic length, do, and a characteristic energy, eo, in our model. 

Therefore, it is natural to measure all distances in units of cr0 and energies in units 

of eo- As a consequence, the unit of temperature becomes e0/&£, where is Boltz

mann’s constant, the unit of time is equal to y/rno^T^o, and the unit of pressure 

is co/ctq. The following data from [4] is indicative of the correspondence between 

physical quantities and simulation parameters. For example, if for a Lennard-Jones 

model of liquid argon eo/&£ =  120K  and <To =  0.34nra, then the unit of time is 

2 x 10- 12s. In our MD simulations, a typical time step is 0.0015 units of time which 

corresponds to 3 x 10-15s and the time available for the simulation as a whole is of 

the order of a few nanoseconds.
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5.1.4 Observable Quantities

Such thermodynamic quantities as potential energy, temperature and pressure can 

be evaluated in a MD simulation every time step. The potential energy is given by 

the sum of all pairwise potentials in the system:

N  N

^  =  E E ° « -  (s-1)
2=1 j>i

The kinetic energy is essentially the sum of quadratic translational and rotational 

velocity terms. For example, for a system of N  linear molecules the total kinetic 

energy is

N  o N  T 2

(5-2)
2=1 i=l

The value of the kinetic energy is directly connected to the temperature in the 

system. According to equipartition theory, on average an energy \ k s T  is associated 

with each harmonic translational and rotational degree of freedom. This means that 

the kinetic temperature T  of the mixture of Nr0d rods and N sph spheres can be found 

from the following equation:

Nsph 2 Nrod 2 Nrpd t 2 /  cr o  \

E NlsphNi ^  mrodYi . l u i (5  AT , 3  \  .  r  / c  o \

— 7j—  +  z ^ — 2—  \ 2 Nr o d +2 sph) B ( >1=1 2=1 2=1 '

A simple constraint method can be applied to simulate the system in the canonical or

constant N V T  ensemble. Here, translational and rotational velocities are re-scaled

at each time step by a factor of (T /T )1̂ 2, where the instantaneous temperature T

is defined by equation (5.3) and T  is the constant thermodynamic temperature.

The pressure is calculated using the virial theorem,

1 N  N

p = PkBT + — Y r« • F «- (5-4)
2=1 j>i

As well as the thermodynamic quantities mentioned above we are also interested in 

structural properties which can be reflected by order parameters and distribution
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functions. The orientational order parameter is measured as the largest eigenvalue 

of the Q-tensor:

compiling histograms. The same technique is used to calculate the rod-rod, sphere- 

sphere, and rod-sphere pair radial distribution functions. The volume around a par-

thickness of shells defines the resolution of the method and is typically about 0.02<7q 

in our simulations. The number of particles in each shell is counted and divided 

by the shell volume giving the local density. The radial density distributions are 

then averaged over all particles, and normalised with the overall number density to 

obtain the radial distribution function for this given configuration of the system. 

The same procedure is repeated several hundred times and averaged over a number 

of different configurations.

Similar methods are used to evaluate the parallel, Ph(t'h), and perpendicular, g±(r±)1 

distribution functions. The director is defined first as the eigenvector of the Q- 

tensor (5.5) corresponding to the largest eigenvalue, and then the volume around 

a rod is divided into thin parallel layers perpendicular to the director to calcu

late P||(r*||) or thin cylindrical shells to evaluate g±(r±). In the isotropic phase, the 

director changes its direction chaotically and both parallel and perpendicular distri

bution functions tend to unity at all distances after averaging. Nevertheless, some 

information about short range order can be obtained when choosing the direction 

of a given molecule as a guide to measuring those functions. The contribution of 

the nearest neighbours will be even more significant if we calculate ^n(^n) within a 

thin tube and g±.(r±) within a layer which is a few molecular lengths thick. These 

functions, called in the future gtube{r\\) and giayer{^i )  respectively, depend on the 

choice of the radius of the tube and the semi-thickness of the layer.

(5.5)

The radial and other pair distribution functions (see Section 2.3) are calculated by

tide is divided into thin concentric spherical shells with radii ranging up to L / 2. The

It must be noted that any structural properties can be measured using the same 

approach in both MD and MC simulations. This is not true for the time dependent
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thermodynamic quantities (the diffusion coefficient, for example).

5.2 MD simulations of the Pure Gay-Berne Fluid

5.2.1 The Algorithm

To compute the evolution of the system with time the so-called Velocity Verlet al

gorithm is used in this work. It has shown good long-term energy conservation

properties and works relatively efficiently when compared with some other meth

ods [94]. This algorithm stores the positional and rotational coordinates of each 

molecule at time t  as well as their first derivatives with respect to time. Concerning 

the translation motion, velocities Vi(t) and current positions T i ( t )  are updated every 

time step by the following rules:

v ; ( i + y )  =  Vj(f) +  y a j ( f )

Vi  ( t  +  d t )  =  Vi  ( t )  +  d t  V i  { t  +  y )

Then the forces in the system are evaluated, giving accelerations at time t  +  d t , and 

new velocities are calculated by:

V i ( t  +  d t )  =  V i ( t  +  y )  +  +  d t ) .

When computing rotational coordinates and angular velocities special measures have 

to be taken to maintain the orientational vector uj at unit length, and to keep its first 

derivative, li*, in a plane perpendicular to u;. The Lagrange multiplier method is an 

efficient tool for tackling this problem. According to this method, the orientational 

vector and its first derivative with respect to time are updated as follows:
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where g/-(£) is the perpendicular component of the force which causes rotation of 

particle i and A is the Lagrange multiplier calculated as

1 . / .  . d t g j - d t  lx\
= ~2  (Ui' Ui + * +  ~2S i 7

and further refined by two iterations of

(1 +  A dt)2(\ii • u i) — 1 — 2A dt 
new =  2dt(l  +  Adf) *

Finally, after calculating the new torques (this is done simultaneously with calculat

ing the forces in the programme) the angular velocities at time t -f dt are evaluated:

This completes the set {ri(t + 6t)]Vi(t + 5t)]Ui(t + dt)]Ui(t + dt)} required to to 

evolve the system on to the next time step.

Explicit expressions for the forces and torques acting on a Gay-Berne particle can 

be found in Appendix A.

5.2.2 Simulation Results

The following MD simulations were performed using a system of 380 Gay-Berne par

ticles with the original parameterisation in the constant N V E  and constant N V T  

ensembles. Periodic boundary conditions, minimum image convention and Verlet 

neighbour list were applied. The intermolecular potential was truncated and shifted 

at a distance rc = 4cr0. The Velocity Verlet algorithm was used with a time step 

dt =  0.0015. Firstly, the initial configuration was melted from a cubic lattice and 

equilibrated in the constant N V T  ensemble at temperature T  =  0.7. In order to 

check validity of the developed code a constant N V E  ensemble simulation was con

ducted then to study deviations of the total energy in the system from its start 

value. It was found that for both short times (10 time steps) and long times (106 

time steps) the total energy deviations were within 7 • 10-5 units of energy per parti

cle or 0.003% of the average. The average values of the order parameter and pressure
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were found to be the same measured first at constant temperature at equilibrium and 

then under adiabatic conditions. The ratio of the transitional and rotational terms 

in the total kinetic energy was monitored during the constant N V E  run. According

0.8

Translational part of kinetic energy
0.6

0.4
Rotational part of kinetic energy

0.2

time

0 1 2 3 4 5 6 7 8 9 10

Figure 5.2: Distribution of kinetic energy between the translational and rotational 
terms.

to the theory for a system of linear molecules in equilibrium the translational and 

rotational kinetic energies have to be equal to |  and |  of total kinetic energy respec

tively. This is in perfect agreement with our simulation results shown in Fig. 5.2. 

The conservation of total linear momentum in the system was checked as well. It 

appeared that it had good short time conservative properties but at long times it 

went in a “random walk”-like fashion from zero. To keep the total momentum near 

zero it was decided to re-scale velocities every 10000 time steps.

The dependence of the order parameter and pressure on density was studied in the 

constant N V T  ensemble. Starting from low density, the system was compressed 

at a constant temperature T  =  0.7. Each run was started from the final config

uration obtained at a neighbouring density and was equilibrated for 7 x 104 time 

steps. Quantities of interest were calculated and averaged over 5 x 104 additional 

time steps. The resulting values of the pressure and order parameter are shown in 

Fig. 5.3. These results were compared with analogous data obtained by de Miguel 

et al. [81], and found to be in excellent agreement. The isotropic-smectic transition 

was observed at the same pressure and density and pair distribution functions were
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Figure 5.3: Order parameter and pressure versus density.

calculated to explore these phases. The radial, g(r), parallel, g(r\\), and perpendicu

lar, g(r±), distribution functions for both isotropic (p =  0.20) and smectic (p =  0.31) 

are presented in Fig. 5.4. In order to investigate the isotropic-smectic coexistence 

region several long runs were undertaken in the density range 0.29 < p <  0.32. A 

subsequent series of decompression runs (up-side-down triangles in Fig. 5.3) revealed 

the existence of hysteresis as shown in the diagrams. For densities p =  0.305 and 

p =  0.310 two distinct states were found to be stable for long run times (106 time 

steps).
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3.2
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Figure 5.4: The pair distribution functions g(r)} <?(r||) and g{r±) for isotropic and 
smectic phases.

5.3 Hard Gaussian Overlap Particles

Since, in later Chapters, we will study the role of attractive interactions in mixtures it 

is reasonable to consider first a system without any attractions at all, i.e. a system of 

hard particles. The Gay-Berne potential possesses, at its core, the shape parameter 

of Hard Gaussian Overlap (HGO) model. This is why the results of simulations of 

HGO particles when compared with those obtained in the previous Section, can give 

us an idea of the role played by attractive interactions in the Gay-Berne fluid. This 

idea can be extended to mixtures of hard and soft particles of the same shape and 

will be revisited later in this thesis. Since in a system of hard particles, temperature 

becomes redundant as well as time, the methods described in the previous Section 

are not the most appropriate for use here. Instead, the Monte Carlo techniques will 

be used to study these hard particle systems.

5.3.1 The M ethod

Here the algorithms used for MC simulations of HGO particles in the constant 

N V E  and N P E  ensembles are presented. Note that the energy of the system of 

hard particles is always equal to zero and any simulation is always conducting under 

adiabatic conditions. If the system volume is constant, only two types of MC moves 

are considered:
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•  random displacement of a particle;

•  random rotation of a particle.

The displacement is tackled using the standard MC algorithm described in Sec

tion 4.1.2. In order to turn a rod by a random angle $  the Barker-Watts method [95] 

has been employed. After generating an angle <j> within —<j)max <  <t> <  <l>max a ran

dom space-fixed axis is chosen and the rod is rotated around this axis by the angle 

<j). A new configuration is accepted if there are no overlaps with neighbouring rods. 

The rotational and displacement moves were combined together in our simulations 

after choosing appropriate values of <j)max and maximal displacement rmax. This 

meant that a single overlaps calculation was required for two moves that reduced 

the acceptance level by a factor less than 2. Typically, if the acceptance levels of 

the single moves were about 60%, then the acceptance of the combined move was of 

order 40%.

An extra MC move has to be employed to simulate the system under isobaric con

ditions. Here the volume of the system is changed by a random value A V  ranging 

within — AVmax <  A V  <  AVmax• To do so, instead of re-scaling all particle posi

tions, their sizes can be changed as

Then, if the particles have become larger, the check of overlaps is conducted and, if 

none are found, the trial move is accepted with the probability

If the particles have become smaller, no overlaps in the system can appear, and 

the acceptance criteria can be checked immediately. This method is applicable 

provided that the pressure tensor can be assumed to be isotropic and geometry of 

the simulation box is not expected to change during the run.

pressure than constant volume in the sense that previous configuration can be used

&new

(  Gold Y \ \  
\  &new J J /

X =  min (1 , exp —P A V  +  SN  In

For hard particle systems, it is easier to conduct a series of simulations at constant
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to start a new run in the series. The system then changes its size automatically in 

response of the change in pressure. In the constant N V E  simulations, compressing a 

system to higher density by simply re-scaling positional coordinates causes a number 

of overlaps which need to be removed. Two pragmatic ways of overcoming this 

problem are as follows. Firstly, to create a configuration of higher density the N P E  

algorithm can be used. Simply by setting the pressure to a high value this will 

compress the system up to the required density without creating overlaps. The 

other way around the problem requires use of MD code developed previously. If code 

written for the Gay-Berne fluid is modified by raising the steep repulsive interaction 

to the power of 24 instead of 12 and eo is made 10 times greater, the forces and 

torques prove sufficient to remove existing overlaps in a matter of a few MD time 

steps. This method was employed because it required much less computer time at 

the studied range of densities.

5.3.2 Simulation Results

The system of 1000 HGO particles with aspect ratio 3 was studied in the constant 

N V E  and N P E  ensembles. The orientational order parameter and pair distribution 

functions were calculated at different densities. The constant volume simulations 

started from a configuration at p  — 0.25 previously obtained using N P E  algorithm 

from a low density simple cubic lattice configuration. The compression series was 

performed up to density p  =  0.33 with a step of A r h o  =  0.01. After equilibration 

at a given density for 5 x 105 — 106 MC cycles and calculation of the observable 

for further 5 x 105 MC cycles the system was compressed to a higher density using 

the MD algorithm described above. Here, one MC cycle involves N  random MC 

displacement moves, where N is the number of particles in the system. Therefore, 

on average each particle experiences one trial move per cycle. The mean square 

displacement measurements were carried out to adjust appropriate values of maxi

mum translational displacement A r max and rotation <j)max• It is a common practice 

to keep acceptance level about 50% although this does not always provide the best
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convergence properties. The maximum mean square displacement was used as a 

criterion and the highest displacement was achieved at about 20% acceptance level. 

The displacement rate at both low and high densities was found to be about 2.5 

times higher at 20% acceptance level than at 50%.

The constant volume simulation series revealed the isotropic-nematic transition to 

occur at a density of about 0.305. Then the system was studied further by the 

constant pressure simulations. It was found that the pressure of isotropic-nematic 

coexistence was between 4.95 < Pin < 5.00 and the densities of the coexisting phases 

were pj =  0.301 and pN =  0.307. In analogous simulations done by de Miguel and 

del Rio [96] using a smaller system of 500 HGO particles, these values were found 

to be Pin  =  4.918, pi =  0.2989, and pN =  0.3046. Normally due to the finite size 

effects the nematic-isotropic coexistence pressure and densities are expected to be 

slightly higher in a bigger system [97], therefore our results was found to be in a 

good agreement with the literature data.

The orientational order parameter measured in both ensembles in the range of den

sities 0.27 <  p < 0.33 is shown in Fig. 5.5. Here the results obtained from constant

N V T  
- N P T  P = 5 . 2 0
NPT P=5 .10 

.NPT P=5.05 
NPT P=5.00 

.NPT P=4.95 
NPT P=4.90 
NPT P-=4.80
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0.5

0.4

0.3

0.2
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0.27 0.28 0.29 0.3 0.31 0.32 0.33

Figure 5.5: Isotropic-nematic transition in the system of HGO particles studied in 
both constant N V T  (black line) and constant N P T  (colour marked dots) ensembles.
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pressure simulations are presented as sets of colour marked dots, whereas average 

values of the order parameter from the constant N V E  simulations are shown along 

with their mean square deviations. Both methods gave essentially the same de

pendence of the order parameter on density, however, the simulations at constant 

pressure did not exhibit the metastable states seen at near transition densities in 

the constant volume runs. Comparing Fig. 5.5 to Fig. 5.3 we can see that ordering 

in the Gay-Berne fluid starts at lower densities. At the same time, HGO particles 

do not exhibit a smectic phase which is promoted by the relatively strong side-side 

attractions in the Gay-Berne fluid. The short range order in the isotropic phase is 

also different in the system of HGO and Gay-Berne particles. Figure 5.6 shows the 

set of pair distribution functions for both systems calculated at low density p =  0.25 

(the temperature was set to T  = 0.7 for the Gay-Bene system). The radius of the

g(r) HGO -  
GB — 

g tube HGO — 
GB -  

gjayer HGO — 
GB -

0.6  -

0.4

0.2 -

10 2 3 4 5 6

Figure 5.6: Pair distribution functions g(r), gtube(T\\) and giayer(r±), for HGO and 
Gay-Berne particles at the same density p — 0.25.

tube for gtube{r\\) and the semi-thickness of the layer for giayer{'f'j.) were chosen to 

be y/5 which is the closest distance between two HGO particles in the T configu

ration. This provided that giayer(r±) approached zero at r± = 0 in the system of 

hard particles. In the Gay-Berne fluid, separations less than 1 can be found and 

9iayer(r±) approaches 0.0066 at r_L =  0. This is because of the “softness” of the
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particles which allows them to form configurations prohibited for the hard core par

ticles. The higher the temperature, the higher the number of such configurations. 

Thus, at high temperatures, the isotropic-nematic transition density will be shifted 

up for the “soft” particles because of the decrease in their effective volume. This 

is the main reason why the corresponding phase boundaries on the phase diagram 

shown in Fig. 4.3 have a slope.

The radial distribution functions in both systems (see Fig. 5.6) have two peaks 

corresponding to side-side and T configurations. Both peaks are higher for the 

Gay-Berne fluid because of the attractive regions near to the sides and ends of the 

particles. No signs of stable end-to-end configurations can be seen in either system 

and all distribution functions approach unity at a distance of about 4cro-

5.4 M ixtures of Hard Rods and Spheres

Binary mixtures of HGO particles of length to breadth ratio 3:1 and small hard 

spheres with diameters equal to the breadth of rods are studied in this Section. 

Sphere concentrations of 5%, 10%, 15%, 20%, 30%, 40% and 50% are studied in 

the constant N V E  ensemble using the MC technique. The total number of par

ticles in the system was kept N  =  2048 while the numbers of rods and spheres 

were adjusted to provide each desired concentration. A compression sequence was 

performed for each concentration, starting from a low isotropic density configura

tion and continuing until the nematic order parameter had reached a high value. 

The initial configuration for each run was obtained by taking an isotropic config

uration with lower sphere concentration and substituting of some of its rods with 

spheres. The mean square particle displacement was monitored within these simu

lations to ensure that, within each run, the particles travelled distances comparable 

with the simulation box side; had the runs been significantly shorter than this, it 

would have been impossible to assess any possible demixing occurring in the system. 

Table 5.4 shows the number density range for which each mixture simulated. A step
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Concentration P  ST A R T P F I N I S H
5% 0.290 0.330

10% 0.295 0.350
15% 0.300 0.360
20% 0.320 0.410
30% 0.350 0.405
40% 0.410 0.445
50% 0.420 0.510

Table 5.1: Number density range of the performed compression series.

of Ap = 0.005 was used between neighbouring data points in each compression se

quence and a modified version of an MD code (see Section 5.3.1) was employed to 

generate the initial configuration after each density increment. Figure 5.7 presents
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Figure 5.7: Order parameter dependence on number density for various mixtures.

the resultant density dependencies of the order parameter in all of the compression 

sequences performed. These indicate that an isotropic-nematic transition occurred 

during each sequence. However, the number density is not a convenient parameter 

with which to characterise systems with different concentrations. Since spheres are 

smaller than rods, a given number density corresponds to a different volume fraction
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at different concentrations. If we take a rod as a linear assembly of three spheres, 

the total volume occupied by hard particles can be approximated by

Voccupied  ~  -^VspA ' V sph N rod  • 3 V Sph — V Sph ' {N gpfr  +  3 N ro d )  , ( 5 - 6 )

where Nsph and Nrod are the numbers of spheres and rods and Vsph =  7r/6  is the 

volume of a sphere with unit diameter. The number density, p, is defined as the 

total number of particles divided by the volume. Therefore, the volume fraction can 

be written as

£ V occupied, V sph ' ( A to t  T  2 A r̂ od )  T r / o  n / r  i-?\
Joccupied  —  7 J ^  77  —  P ' f s p / i  * (3 2 CSp h )  , (5.7 )

* to ta l Vtotal

where csph is the sphere concentration ratio ranging from 0 to 1. Figure 5.8 shows
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Figure 5.8: Order parameter dependence on volume fraction for various mixtures.

the nematic order parameter as a function of occupied volume fraction at various 

sphere concentrations. These show a clear tendency for the transition point to shift 

towards higher volume fractions as the concentration of spheres is increased. At the 

highest concentration of spheres studied, 50%, the density at which the isotropic- 

nematic transition occurred was such that the mobility of the particles was very 

low: 1.5 x 107 MC cycles were required to equilibrate the last configuration in this
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compression sequence. Therefore, higher sphere concentrations were not studied 

because of the dramatic increase of the required computational time. Whether 

rod-sphere mixtures of even higher sphere concentrations exhibit a nematic phase 

depends mainly on their demixing properties. Clearly, there is no nematic phase in 

a system of pure hard spheres and addition of a small number of rods would not be 

able to induce orientational order unless these rods became segregated. This would 

require a relatively strong rod-rod attractive depletion interaction. The literature 

data show that a mixture of hard spheres with diameters a and 10cr does not exhibit 

stable fluid-fluid coexistence [98]. However, although the components of our mixture 

have more moderate size difference, their shape difference may be sufficient to induce 

entropy driven demixing [36,99].

The demixing properties of our 50% mixture were studied by monitoring the sphere- 

sphere radial distribution function. Figure 5.9(a) shows the corresponding #ss(r)

2
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0.51

1.5

1

0.5

0
41 2 3 6 7 80 5

(a) (b)

Figure 5.9: (a) Sphere-sphere radial distribution functions measured in 50% mixture 
at p — 0.50 and p =  0.51; (b) configuration snapshot taken at p =  0.51.

curves measured at p = 0.500, and p — 0.510. The latter clearly exhibits a monotonic 

decrease at large separations, typical behaviour for a macrophase separated system. 

At p — 0.500, however, no signs of demixing were apparent from gss(r), although the 

observed nematic order parameter was 0.301 ±0.020. A configuration snapshot taken
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at p =  0.51 (Fig. 5.9(b)) confirms the demixing and shows a rod-rich phase, almost 

free of spheres, coexisting with a rod-sphere mixture with a high concentration of 

spheres. This suggests that the volume fraction of the mixing-demixing transition 

depends only weakly on sphere concentration especially at 0 < csph < 0.50.

Subsequently, a 20% mixture was compressed to high densities to investigate its 

mixing-demixing behaviour. The sphere-sphere radial distribution function and clus

ter size distribution were calculated at each density to assess system homogeneity. 

Figure 5.10 shows these simulation results, averaged over at least 105 MC cycles.

250
total number of clusters 

number of single spheres
■ of dusters of 2 and more 
size of the largest cluster

200

150

100

50

0  1------1------1------1------1------■—
0.35 0.36 0.37 0.38 0.39 0.4 0.41

0.41 -  
0.40 -
0.39 -  
0.38 -
0.37 -

1.8

1.6

1.4

1.2

1.0

0.8

71 4 5 6 80 2 3

(a) (b)

Figure 5.10: (a) Sphere-sphere radial distribution functions measured in 20% mix
ture at different densities; (b) average cluster size distribution at various densities.

The gss(r) curves indicate weak but growing signs of demixing as the density is 

increased. Despite the increased probability of finding another sphere at short separ

a tio n s  at high densities, #ss(r) approaches unity at larger r. This suggests a random 

distribution of small clusters of spheres. The data shown in Fig. 5.10(b) also suggest 

that this demixing was not macroscopic: about a hundred clusters of spheres (half 

of which were just single spheres) separated by distances greater than 1.5< t o  were 

found even at the highest density. However, the largest cluster contained about 20% 

of the total number of spheres at high densities. Since these runs were sufficiently 

long to allow an average sphere displacement to be greater than the simulation box 

side, these systems were certainly not glassy. Also, the clusters of spheres were
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found to change dynamically during the runs. When compared to the 50/50 simu

lations, dembdng would have been expected at about the same volume fraction, i.e. 

/  =  0.52, which corresponds to a number density of p & 0.38. This is the density at 

which the size of the largest cluster started to increase significantly (Fig. 5.10(b)). 

This suggests that the 20% mixture had a weak tendency to demix, although, no 

macroscopic demixing was observed for this system size.

The simulations performed show that binary mixtures of hard spheres and HGO 

particles with aspect ratio 3 do not exhibit lamellar structures but only isotropic 

and nematic phases. The approximate phase diagram of the system is shown in 

Fig. 5.11, blue diamonds representing the simulation points. The solid red line
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Figure 5.11: Approximate phase diagram of binary mixture of the hard particles.

connects points in which the increase of the nematic order parameter indicated a 

phase transition. It was impossible to evaluate the isotropic and nematic coexistence 

densities from our exploratory N V E  simulations. However, we would expect these 

to be in close proximity to the red line in Fig. 5.11, due to the weakness of the 

transition.

Clearly, there is an upper limit on the occupied volume fraction in a system of hard 

particles. For a system of monodisperse hard particles, the random close packing
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volume fraction is about 0.64 [100] (the dashed green line in Fig. 5.11). The freezing 

point in a hard sphere system, of approximately 0.494 is represented by the black 

dashed line. At this volume fraction, the entropy in a system of hard spheres can 

be maximised by the formation of crystal structure. We note that an analogous 

phenomenon takes place in rod-sphere mixtures. At zero and low sphere concen

trations, an isotropic-nematic transition occurs at even lower volume fractions. At 

low concentrations of spheres we observed a nematic phase with randomly dispersed 

spheres in it, which supports the argument that mixing entropy is high. As the 

concentration of spheres was increased, the transition shifted towards higher volume 

fractions. For sphere concentrations of 50%, the onset of demixing occurred at a 

volume fraction of /  «  0.52. The simulation method we used is not applicable to 

studying whether the system exhibits a crystalline phase at sufficiently high volume 

fractions or remains in a glassy configuration. It also fails at both low and high 

sphere concentrations, therefore, we cannot speculate about these parts of the phase 

diagram.

Incorporating attractive interactions into the model can reduce the relative influence 

of the mixing entropy and so give rise to macro or micro-phase separation. In the 

next Chapter, we will study various binary mixtures of Gay-Berne and Lennard- 

Jones particles in the bulk.
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Chapter 6

Rod-Sphere M ixtures in bulk

In this Chapter, various mixtures of rods and spheres interacting via attractive- 

repulsive soft potentials are studied in the bulk. Maintaining the sizes of the particles 

as those there used in the previous Chapter, we concentrate on the role of attractive 

interactions in these systems.

Four mixtures, which differ only in their interactions between unlike particles, are 

studied at various concentrations using MD in the constant N V T  ensemble. Some of 

the results are also validated in the constant N P T  ensemble using MC techniques. 

First, we study the original parameterisation of the rod-sphere potential, charac

terised by a relatively strong side attraction. Then the behaviour of a system with 

a relatively strong end attraction is described in Section 6.3. A system with inter

action strength independent of relative orientation of rod and rod-sphere vector is 

studied in Section 6.4. Finally, in Section 6.5, we consider a system which possesses 

a very strong end attraction, so combining the physical properties of both calamatic 

and lyotropic LCs.
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6.1 The M odel

The systems considered here are binary mixtures of Lennard-Jones particles and 

Gay-Berne particles with the original parameterisation (3,5,2,1) (see Section 4.2.3 

for details). The parameters <r0 and eo are taken to be equal for both particle types. 

This means that the diameter of the spheres is equal to the breadth of the rods 

and the well depth of the sphere-sphere interaction is equal to that of two rods in 

the X-configuration. The interaction between unlike particles is described by the 

Generalised Gay-Berne potential considered in Section 4.2.5. Its parameters were 

originally derived in relation to the interaction between two Gay-Berne particles and, 

therefore, reflect their energetic properties. The relative strengths of the interactions 

in this system are given in Tab. 6.1. The energy parameter e of the rod-sphere

Type of interaction Well depth
Two spheres 1

Two rods (X-configuration) 1
Two rods (side-by-side) 1.666666
Two rods (end-to-end) 0.333333

Two rods (T-configuration) 0.381966
Rod and sphere (side) 1
Rod and sphere (end) 0.2

Table 6.1: Strengths of different types of interactions for system with original 
parameterisation.

potential, given by

1 - 1 (m Y 7"'
t s )

(fij-Uj)2 (6.1)

contains the ratio f5- which controls the well-depth anisotropy of the interaction. In*-E
the original model, this ratio is set to n f =  5 which means that spheres favour the 

sides of the rods rather than the ends. The potential energy contours corresponding 

to this case are shown in Fig. 6.1(a). By changing the ratio ^  it is possible to 

create systems in which the spheres either favour the ends of the rods ( | |  >  1, see 

Fig. 6.1(b)) or make no distinction between the rods’ ends and sides (f5- =  1, seeÊ
Fig. 6.1(c)). To assess the significance of this interaction, in this Chapter we are
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(b)

(c)

Figure 6.1: Rod-sphere potential energy contours for different values of the ratio 
(a) f t  =  5, (b) §  =  0.2, (c) f f  =  1.
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going to look at four systems which differ only in their parameterisation of the rod- 

sphere potential. Table 6.2 contains the values of the parameters of equation (6.1) 

and the corresponding side, 65, and end, €e , well depths which define the rod-sphere 

interaction anisotropy in each system. System (i) has the original parameterisation,

System £rs £s / ze £s £e

(0 1 5 1 0.2
(ii) 0.2 0.2 0.2 1
(iii) 1 1 1 1
(iv) 1 0.2 1 5

Table 6.2: Rod-sphere energy parameters of four mixtures.

in systems (ii) and (iv) the spheres favour ends of the rods, and system (iii) has the 

interaction shown in Fig. 6.1(c). Systems (ii) and (iv) both have the potential 

energy contour map shown in Fig. 6.1(b), the difference being that all rod-sphere 

interactions in the latter are five times stronger then those in the former. In the 

following sections, we present MD and MC simulations performed on these systems, 

with a view to constructing their approximate phase diagrams.

6.2 System  (i)

This Section presents the results of MD simulations performed on mixtures with 

the original interaction parameters of the rod-sphere potential given in the previous 

Section. Several series of compression and cooling runs were performed to build up an 

approximate phase diagram of the mixture, first, at a 50/50 rod-sphere concentration 

ratio, and then at lower concentrations of spheres.

6.2.1 50 /50  M ixture

The behaviour of system (i) was investigated by surveying the temperature and den

sity dependence of a 50/50 mixture of Lennard-Jones and Gay-Berne particles. The
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system, which contained 512 rods and 512 spheres, was simulated using the MD 

algorithm described in Section 5.2.1 and the expressions for the forces and torques 

given in Appendix A. Analogous to the simple GB fluid study presented in Sec

tion 5.2, firstly, the developed code was validated in the constant N V E  ensemble. 

After it had passed the conservation and stability tests, a compression series was 

performed over the range of densities 0.22 <  p  <  0.50 at a constant temperature of 

T  =  0.7. At each density, the nematic order parameter, potential energy per particle 

and pressure were measured for 2 x 105 time steps preceded by at least 5 x 105 time 

steps of equilibration. Table 6.3 presents the average values of these quantities

Number density Potential energy Order Parameter Pressure
0.40 -3.972 ±  0.030 0.074 ±0.027 1.03 ±0 .08
0.41 -4.064 ±0.031 0.084 ±0.037 1.17 ± 0 .0 8
0.42 -4.145 ±0.028 0.101 ±  0.044 1.37 ±0 .09
0.43 -4.207 ±0.029 0.142 ±  0.061 1.58 ±0 .08
0.44 -4.281 ±0.033 0.181 ±0.088 1.82 ± 0.10
0.45 -4.402 ±0.041 0.495 ±  0.049 1.93 ±0.12
0.46 -4.536 ±  0.055 0.658 ±0.063 2.07 ±0 .10
0.47 -4.910 ±0.033 0.856 ±  0.016 1.85 ±0 .10
0.48 -5.050 ±0.032 0.891 ±0.011 2.04 ±0 .10
0.49 -5.149 ±0.032 0.912 ±  0.008 2.32 ± 0.11
0.50 -5.241 ±0.032 0.926 ±0.006 2.67 ±0.11

Table 6.3: Potential energy per particle, the nematic order parameter and pressure 
calculated on 0.40 <  p  <  0.50 at T  =  0.7.

together with their mean square deviations. The nematic order parameter indicates 

a phase transition at a density of about p  =  0.45. The high values of the order 

parameter at densities greater than p  — 0.46 suggest a smectic phase. The parallel 

distribution function, p||(r||), measured in the vicinity of the transition and shown in 

Fig. 6.2(a), confirms the presence of a smectic phase with an interlayer separation 

of about 2.62<t o . Since the rod length is 3cr0 this suggests overlapping of neighbor

ing layers. The rod-rod and sphere-sphere radial distribution functions calculated 

at p  =  0.42 and p  =  0.47 and shown in Fig. 6.2(b) indicate that the structure of 

the sphere-rich phase remained almost unchanged in this density range, implying 

that density changes were accommodated by the rearrangement of the rod-like par-
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Figure 6.2: (a) Parallel distribution function, p||(r||), at T  — 0.7 and different den
sities; (b) radial distribution functions for like particles measured at p — 0.42 and 
p = 0.47.

tides. The peak distribution of the rod-rod radial distribution function measured at 

p — 0.47 also suggests a hexagonal arrangement within the smectic layers, typical 

for the Sb phase. The high values of the sphere-sphere radial distribution functions 

at short separations indicate that some demixing occurred in this system. Indeed, 

if the spheres group together then the probability of finding one sphere close to an

other is higher than in the case a homogenous mixture. Two configuration snapshots 

taken below and above the transition point are shown in Fig. 6.3. These indicate 

coexistence between rod-rich and sphere-rich phases at both densities considered, 

as well as the isotropic-smectic transition exhibited by this system. The spheres 

formed a cylinder at (p =  0.42) and (p =  0.47), whereas snapshots taken at lower 

densities (not shown here) showed the spheres forming a spherical droplet suspended 

in the rod-rich phase. There are two principal mechanisms that could induce the 

observed drop-shape change. The first is that due to the periodic boundary con

ditions and, therefore relevant at all densities. The second mechanism driving the 

droplet elongation is the ordering transition of the rod-rich phase. Simulations were 

performed for a system containing a half of the particles of each type in order to 

explore the periodic boundary condition effect. To describe the droplet elongation
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Figure 6.3: (a) Isotropic (p =  0.42) and (b) LC phase (p =  0.47) at T=0.7.

quantitatively, its tensor of inertia was calculated at every density for runs of 105 

time steps. For this purpose an algorithm was developed to determine the location 

of the centre of mass of the droplet taking into account the periodic boundary condi

tions. First, sphere j  from which the sum of squared distances to the other spheres 

was minimal was found and all particles were translated by vector —rj. This was 

to place the centre of mass of the droplet close to the origin of the reference frame 

which coincided with the center of the simulation box. Then, further translation by 

the vector

1 N
r s h i f t  —  TT  ^  ^  r i ( 6 - 2 )

was performed to provide the center mass of the droplet to be exactly in the centre 

of the simulation box. Finally, the inertia tensor was calculated as follows

N

I  a/3 ~  r iQ r ig  ; ( 6 * 3 )

i = l

and diagonalised using a standard numerical method [101]. The elongation of the 

droplet was calculated as a run average of the ratio of the greatest eigenvalue of 

tensor (6.3) to the semi-sum of the other two. Figure 6.4(a) shows the density de

pendence of both the order parameter and the elongation of the droplet of spheres for
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Figure 6.4: (a) The elongation of the droplet and the order parameter measured in 
the systems containing 1024 and 512 particles in total, (b) The order parameter 
versus pressure for the 50/50 mixture and pure Gay-Berne fluid.

both systems. In the system of 512 particles in total, the droplet started to elongate 

at a lower density while the isotropic-smectic transition occurred at approximately 

the same point as in the larger system. In both systems the droplet changed from 

spherical to prolate well below the isotropic-smectic transition density, at p «  0.345 

in the smaller system (see blue diamonds in Fig. 6.4(a)) and at p «  0.385 in the 

larger system (blue triangles in Fig. 6.4(a)). The droplet then underwent further 

elongation at the density of the rods’ orientational transition (p «  0.46) in both sys

tems. When expansion runs were performed for the larger system staring from the 

configuration at p — 0.39 (blue up-side-down triangles in Fig. 6.4(a)), the droplet 

remained cylindrical until p — 0.24. No such hysteresis was observed for the smaller 

system, however. These simulations show that the system of 1024 particles was still 

too small for the effect of the periodic boundary conditions to be neglected. Another 

point to note is that the system configuration at a particular density and tempera
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ture was found to be dependent on the initial configuration (the observed hysteresis). 

Therefore, the time available for simulation was not sufficient for the system to dis

tinguish between the metastable state induced by the periodic boundary conditions 

and the thermodynamically stable state.

As well as causing an obvious increase in the transition density, the presence of small 

spheres also led to a shift in the transition pressure. Fig. 6.4(b) shows that a higher 

pressure was needed in this 50/50 rod-sphere mixture to obtain the order parameter 

values seen in the pure Gay-Berne fluid.

The presence of the cylinder formed by spheres broke the orientational and trans

lational symmetry of the simulation box as well as inducing some alignment of the 

rods. In order to explore the role of the rod-sphere interactions and distinguish it 

from the excluded volume effect a series of auxiliary runs was performed with hard 

particles. For this, system configurations were taken at various densities and sim

ulated as mixtures of HGO particles and hard spheres after all overlaps had been 

removed. The coordinates of the spheres were kept fixed allowing the rods, driven 

by pure steric repulsion, to find their preferred arrangement near the cylinder. The 

distribution of cosines of the angles f a  between the cylinder axis and the rods’ ori

entation vectors, Uj, was evaluated and averaged over a number of configurations. 

Equivalent distributions were calculated for the angles ft between the radial direction 

of the cylinder and the vectors Uj. The results for densities p  =  0.42 and p  =  0.47, 

calculated for the systems of soft and hard particles, are shown in Fig. 6.5. It can be 

seen that in the isotropic phase the rods’ alignment with the cylinder axis is similar 

in both systems (the red and black lines in Fig. 6.5(a) practically coincide). However, 

the radial distributions are slightly different; due to the relatively strong rod-sphere 

side attraction, more rods were found “laying” on the surface of the cylinder in the 

soft particle system. At higher density, the soft particles formed a more ordered 

phase (smectic not nematic) characterised by a higher order parameter value and 

narrower and higher peaks of the corresponding probability distributions. Thus, we 

can conclude that the preferred orientation of the rods near the cylindrical surface is 

parallel to the cylinder axis. It does not change as rods undergo a phase transition
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Figure 6.5: Probability distribution of the orientation of the rods along the axis of 
the cylinder and along the radial direction in the systems of soft and hard particles 
at (a) p =  0.42 and (b) p =  0.47.

from an isotropic to an LC phase, and it is the same for both systems studied.

More simulations were performed at low temperatures and low densities to explore 

the effect of attractive interactions. The mixture was also studied over a wide density 

range at high temperatures to define a mixing-demixing line. The rest of this Section 

relates to a switching effect found at low temperatures and is followed by a discussion 

of the composed phase diagram.

An interesting switching effect was found at low temperatures when cooling the 

system from the configurations obtained during the compression run at T  — 0.7 

described above. If the system was cooled down at density p =  0.45 or p =  0.44, 

then at a temperature of above T  =  0.6 it developed smectic order analogous to 

that shown in Fig. 6.3 with the director parallel to the axis of the cylinder. If 

the cooling run was started from the configuration at p =  0.43 and T  = 0.7, the 

system remained isotropic at T  — 0.6, and a smectic phase formed at T  =  0.5 with 

the director perpendicular to the axis of the cylinder (Fig. 6.6(a)). The cooling 

run at lower density p =  0.42 did not reveal the smectic phase at T  =  0.5. The 

nematic order parameter was S  = 0.18 ±  0.05 which was too high for an isotropic
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Figure 6.6: (a) Snapshot taken at p = 0.43 and T  =  0.5; (b) probability distribution 
of the rods’ orientation along the axis of the cylinder and along the radial direction 
for configurations with perpendicular (p =  0.43) and parallel (p =  0.44) alignments 
at T  =  0.5.

phase but the director did not have preferable orientation and changed during the 

simulation. The probability distribution analysis indicated rods’ orientation similar 

to that calculated at higher temperature T  =  0.7 and the same density. This suggests 

that the order parameter increase was due to pre-transitional behaviour rather than 

the influence of the cylinder.

The type of the alignment was found to be stable in respect to compression or 

expansion at constant temperature. If we started the simulation from the higher 

density configuration at p — 0.44 and expanded the simulation box to p — 0.43 and 

then p =  0.42, the system did not switch to the configuration with perpendicular 

alignment. Instead, the director remained parallel to the cylinder axis as it had been 

oriented before the expansion. The opposite was also true: the director remained 

perpendicular to the axis of the cylinder if the configuration shown in Fig. 6 .6 (a) 

was compressed to a higher density. Typical probability distributions of the rods’ 

orientations with respect to the cylinder axis are shown for both types of alignment 

in Fig. 6 .6(b). These quantitatively describe the preference of the rods to be per
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pendicular at p — 0.43 and parallel at p — 0.44 to the cylinder axis. Table 6.4

Alignment p = 0.42 p =  0.43 p =  0.44
parallel -4903 db 37 -5066 ±  27 -5167 ± 2 7

perpendicular -4701 ±  24 -4996 ±  26 -5104 ± 2 8

Table 6.4: Potential energies of configurations with different types of alignment at 
T  = 0.5.

shows the total potential energies of the configurations obtained from both cooling 

and compression/expansion runs. The system’s favouring of the higher energy per

pendicular configuration at p =  0.42 and p =  0.43 when cooled down must be a high 

entropy of this arrangement. The entropy of the isotropic state seen at p = 0.42 

is certainly much higher than that of the smectic phase. Similarly, at p — 0.43, 

the two line defects formed parallel to the cylinder (6 .6 (a)) possess higher entropy 

than uniform smectic layers. The free volume appears to be sufficient to allow these 

defects to form at p = 0.43 and but this is not the case at p = 0.44 where the 

configuration with parallel alignment appears thermodynamically favorable. The 

configuration with perpendicular alignment at p = 0.43 and T  — 0.5 was observed 

if the final configuration of the cooling run at p = 0.42 and T  =  0.5 was compressed 

up to p =  0.43.

Two more runs with the sphere positions frozen were performed for hard particle 

systems at p =  0.43 and p — 0.44 after all overlaps had been removed. These were 

started from the final configurations of the cooling runs at T  — 0.5 which were 

considered to be the low free energy configurations. It was found that at p — 0.43 

the rods did not form a nematic phase whereas at p = 0.44 the nematic order 

parameter was S  =  0.38±0.07, certainly was too high for an isotropic phase. In both 

cases the preferred alignment of the rods was along the cylinder axis, as would be 

expected from the previous results (Fig. 6.5). This implies that in the absence of side 

rod-sphere attractions to impose planar alignment upon the rods near the cylinder 

surface, the preference of the rods is to be parallel to the cylinder axis, this being an 

excluded volume effect. At density p — 0.43 HGO particles do not develop nematic 

order, whereas the Gay-Berne particles form a smectic at this point at T  =  0.5
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due to their strong side-side interactions. As the smectic phase develops under 

isochoric conditions from less dense isotropic phase, some extra volume becomes 

available in the simulation box. This would normally be compensated by stretching 

the interlayer spacing to avoid developing of empty space in the box. This suggests, 

therefore, that the configuration observed at p  — 0.43 and T =  0.5 develops due 

to this particularity of the constant N V T  ensemble. Several MC runs in constant 

N P T  ensemble were carried out to clarify this point. The simulations were started 

from an MD configuration equilibrated at p  =  0.42 and T =  0.7. The temperature 

was set to T  — 0.5 and pressure to P  =  0.5 which was slightly less than the pressure 

calculated in MD runs at p  — 0.42 and T =  0.5. The resulting data for this and 

the following run are shown in Tab. 6.5 They indicate that the isotropic-smectic

Pressure 0.5 0.6
Density 0.414 dt 0.003 0.481 ±  0.002

Order Parameter 0.123 ±0.042 0.927 ±0.006

Table 6.5: The equilibrium densities and order parameters evaluated in constant 
N P T  MC runs.

coexistence pressure at T =  0.5 is between 0.5 and 0.6 pressure units. They also 

suggest that the isotropic and smectic coexistence densities are close to p i  =  0.414 

and p s  =  0.481 respectively. This summaries that all MD configurations observed 

in the density range 0.42 <  p  <  0.48 were metastable.

Several runs at various concentrations and temperatures were undertaken to build 

up an approximate phase diagram of the 50/50 mixture. Figure 6.7, the resulting 

diagram, shows isotropic, nematic, and smectic phases separated by coexistence re

gions. The dashed line separates a homogenous isotropic mixture from a mixture 

with some signs of demixing. Figure 6.7 shows that with increasing temperature 

the density of the order-disorder transition is shifted to higher values and eventually 

disappears. The fact that the analogous mixture of hard particles is homogeneous 

at these densities supports the existence of an upper limit temperature above which 

neither LC ordering nor demixing can be observed in the system of soft particles. 

At temperatures below T =  0.85, the pure Gay-Berne fluid does not have a ne-

85



CHAPTER 6. ROD-SPHERE MIXTURES IN BULK

"O"
o"

1.2
2
I
£

Isotropic

Nematic

0.8

0.6 Smectic

0.4
0.4 0.42 0.460.44 0.48 0.5

Density

Figure 6.7: Phase diagram of the 50/50 mixture. Diamonds indicate state points at 
which simulations were conducted; dashed line is the demixing line.

matic phase; therefore, states with a nematic-like order parameter observed at low 

temperatures are likely to be metastable. Apart from the metastability typical for 

the constant N V T  ensemble near a phase transition the presence of the cylinder 

formed by spheres imposes some degree of order upon the rods. This creates a 

paranematic-like state with a director parallel to the cylinder axis. In contrast with 

the pretransitional behaviour of pure Gay-Berne particles, the order parameter does 

not fluctuate significantly if the cylinder is present in the simulation box. This sup

ports the idea of the low temperature paranematic phase which can be observed due 

to a relatively small simulation box size. In a bigger system, however, once macro

scopic demixing had occurred the phase behaviour of the rod-rich phase would be 

similar to that of the pure Gay-Berne fluid.

At all densities, demixing occurs at a higher temperature than that at which LC 

phases can be observed, and the LC phase always forms in the presence of a cylinder 

formed by the spheres. This breaks the symmetry of the simulation box and, in 

the N V T  ensemble, conflicts with the formation of smectic layers, because only a
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whole number of layers can be accommodated in the box. In order to satisfy this 

condition the smectic layers tilt and the director makes an angle with the cylinder 

axis. This tilt, which can be clearly observed, for example, at T  — 0.7 and p =  0.50 

(Fig. 6.8(a)) is an artifact of the ensemble used here. Due to it the smectic phase

0 1 2 3 4 5 6

(a) (b)

Figure 6 .8: (a) System configuration at T  — 0.7 and p — 0.50; (b) parallel distribu
tion functions, <7||(r||), measured at density p — 0.50 and different temperatures.

might have formed at lower temperatures if the simulation box geometry had allowed. 

Figure 6.8(b) shows parallel distribution functions calculated during the cooling run 

at p =  0.50.

To locate the demixing curve we cooled the system down at constant density ob

serving the sphere-sphere radial distribution functions. When the spheres started 

to form a droplet, the probability of finding one sphere close to another increased, 

whereas the probability of finding two spheres far apart decreased. Figure 6.9 shows 

how the sphere-sphere radial distribution functions changed with decreasing tem

perature at densities p — 0.40 and p =  0.44. The points at which demixing started, 

according to increase of gss{r) at short separations, are taken to be T  — 1.35 for 

both densities. When cooling the system at density p = 0.40, some signs of demixing 

were seen at T  =  1.50, but the system mixed again at lower temperatures. This 

effect was reversible and was also seen in a system twice the size of that considered 

in Fig. 6.9. Therefore, it is not associated with a metastable state or the size of
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Figure 6.9: Sphere-sphere radial distribution functions calulated at (a) p = 0.40 and
(b) p =  0.44 at different temperatures.

the simulation box. At p — 0.44, this effect was not so significant but was, nev

ertheless, observed at temperature T  =  1.55. In Section 6.2.3 we will look at the 

mixing-demixing transition in more details using Gibbs ensemble MC method.

6.2.2 Low Concentrations of Spheres

Two systems containing N  =  2048 particles in total are considered in this Section. 

One is an 80/20 mixture of 1638 rods and 410 spheres and the other contains 1844 

rods and 204 spheres, i.e. a 90/10 concentration ratio. Both systems were simulated 

in the constant N V T  ensemble using MD methods and their approximate phase 

diagrams were constructed.

The 80/20 simulations were started from a hard particle configuration previously 

equilibrated at density p =  0.30, the initial temperature being set to T =  1.0. After 

equilibration, the system was compressed at constant temperature up to a density 

of p — 0.42 with a step of p = 0.01. Typically, each equilibration run consisted of 

5 x 105 time steps. The potential energy per particle, the nematic order parameter, 

and pressure were monitored and then averaged for additional 2 x 105 time steps
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when the system was believed to be in equilibrium. The resulting average values 

of these quantities and their mean square deviations are presented in Tab. 6 .6 . 

The variation of the nematic order parameter indicates a phase transition at a

Density Energy Order Parameter Pressure
0.30 -2.550 ±0.021 0.034 ±  0.012 1.79 ±0.05
0.31 -2.625 ±0.022 0.036 ±  0.013 2.07 ±0.06
0.32 -2.687 ±0.023 0.035 ±  0.012 2.39 ±  0.06
0.33 -2.743 ±  0.024 0.037 ±0.014 2.76 ±  0.07
0.34 -2.792 ±  0.025 0.045 ±  0.016 3.19 ±0.07
0.35 -2.835 ±  0.025 0.050 ±0.018 3.66 ±  0.08
0.36 -2.860 ±0.027 0.083 ±  0.044 4.20 ±  0.08
0.37 -3.265 ±  0.039 0.533 ±  0.024 4.30 ±  0.09
0.38 -3.374 ±  0.030 0.652 ±0.016 4.72 ±  0.09
0.39 -3.480 ±  0.036 0.729 ±  0.013 5.22 ±0.10
0.40 -3.510 ±0.038 0.769 ±0.011 5.90 ±0.10
0.41 -3.568 ±  0.043 0.810 ± 0.010 6.63 ±0.11
0.42 -4.355 ±  0.032 0.917 ±0.004 6.64 ±0.11

Table 6 .6: Potential energy per particle, nematic order parameter (S), and pressure 
at T=1.0 and different densities.

density of about p — 0.37. The run at this density required 2 x 106 time steps 

for equilibration which suggested that some slow process occurred at this phase 

point. The sphere-sphere radial distribution functions calculated at p =  0.36 and 

p =  0.37 (Fig. 6.10(a)) confirm this to be macrophase separation. According to 

system snapshots, this involved the spheres forming a droplet suspended in the 

rod-rich phase. On further compression at T  =  1.0, smectic order developed at a 

density of about p =  0.415 as the parallel distribution functions measured at different 

densities indicate (Fig. 6.10(b)).

Configurations of the system at nematic (p =  0.39) and smectic (p =  0.42) states 

are presented in Fig. 6.11. In the nematic, two point defects, boojums, can be seen 

near the poles of the droplet which interacted with each other due to the periodic 

boundary conditions. This resembles the case of two colloidal particles in close 

proximity suspended in a nematic. If rods favour planar alignment on the colloid’s 

surface, two boojums form making an angle of 30 — 45° with the colloid separation 

vector [46]. At higher densities, where the smectic phase was formed, the droplet
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Figure 6.10: (a) Sphere-sphere radial distribution functions, pss(r), and (b) parallel 
distribution functions, </||(rj|), measured at T  =  1.0 and various densities.

(a) (b)

Figure 6.11: Droplet of spheres suspended (a) in a nematic (p =  0.39) and (b) 
smectic (p =  0.42) phase at T  = 1.0.

of spheres was encapsulated within several smectic layers and no distortion of the 

director field was observed.

The density dependence of the droplet’s shape was studied by calculating its tensor 

of inertia. The elongation was measured as the ratio of the highest component 

of the tensor and the semi-sum of the two others. The resulting values of the
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elongation, averaged over 105 time steps, are presented in Tab. 6.7. These data

Density 0.38 0.39 0.40 0.41 0.42
Elongation 1.28 ±0.18 1.32 ±0.12 1.41 ±0.13 1.65 ±0.15 1.94 ±0.14

Table 6.7: Density dependence of the droplet elongation.

indicate higher elongation of the droplet at higher densities, suggesting both that 

the droplet was elongated along the director and that the rod-rich phase induced 

higher elongation as its elastic constant increased with density. In order to check 

whether the droplet was elongated along the director the angle between the director 

and the eigenvector corresponding to the highest eigenvalue of the inertia tensor was 

measured at different densities. The resulting data confirm that most of the time 

the droplet is elongated along the director although there were some configurations 

in which it is not. At densities p =  0.41 and p =  0.42, the droplet was found always 

to be elongated along the director.

A cooling run was undertaken at constant density p =  0.37. Starting from the 

configuration at p = 0.37 and T  = 1.0, the temperature was decreased down to 

T  =  0.7 with a step of AT =  0.1. The radial and parallel distribution functions 

shown in Fig. 6.12 indicate a nematic-smectic transition occurring at a temperature 

of about T  =  0.85. The positions of the peaks of the radial distribution function 

resembles that of the pure Gay-Berne fluid in its S b phase (Section 5.2). The par

allel radial distribution function gives an interlayer distance of about 2.44cr0, which 

indicates that neighbouring smectic layers interdigitated significantly, as suggested 

by Fig. 6.11.

A similar cooling run was conducted at a lower density, p = 0.30, in order to study 

the mixing-demixing behaviour of the system in its isotropic phase. It was found 

that at a temperature of about T  =  0.9 the first signs of demixing appeared and 

at T  =  0.8 a single droplet of spheres was observed. The corresponding radial rod- 

sphere and sphere-sphere distribution functions are shown in Fig. 6.13 Several further 

runs were performed at other temperatures and densities in order to map out the 

system’s phase diagram more completely. The resulting phase diagram (Fig. 6.14)
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Figure 6.12: (a) Radial, g(r), and (b) parallel, .̂ || (r ||) ? distribution functions calcu
lated at density p =  0.37 and different temperatures.
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Figure 6.13: (a) Radial rod-sphere, grs(r), and (b) sphere-sphere, gss(r), distribution 
functions at density p = 0.30 and different temperatures.

shows that the simulated 80/20 rod-sphere mixture exhibits the same phases as the 

pure Gay-Berne fluid, i.e. Isotropic, Nematic and Smectic B. The presence of the 

spheres, therefore, does not change the phase behaviour of the rods dramatically; 

it only adds an extra mixing-demixing transition to the system behaviour. Unlike 

the 50/50 mixture studied in the previous Section, the demixing line now crosses
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Figure 6.14: Phase diagram of a 80/20 mixture. Diamonds indicate state points at 
which simulations were conducted; dashed line is the demixing line.

the phase boundary and we were able to observe the formation of a nematic when 

compressing a well mixed isotropic mixture at T  =  1.0 and p  =  0.36. The dynamics 

of this transition involves two processes: formation of the sphere-rich phase and 

the isotropic-nematic transition of the rod-rich phase. The gradually decreasing 

potential energy and monotonic growth of the nematic order parameter during the 

p  =  0.37 run indicate that those two processes take place cooperatively. At densities 

below p  =  0.36, the phase transitions and demixing are driven mainly by energy, 

since the system of hard particles is isotropic and homogenous at those densities. 

If the system is cooled down at constant low density 0.33 <  p  <  0.36, it first 

demixes into two coexisting phases and then, at a lower temperature, the rod-rich 

phase develops smectic order. At higher densities, the nematic order develops at 

temperatures T  >  0.9 and the spheres demix to form a single droplet at the same 

temperatures. The nematic with randomly dispersed spheres was not observed. 

Instead, on heating at p  — 0.37, the system remixed and lost its orientational order 

at T =  1.1. At p  — 0.38 and T  — 1.1 the system remained demixed and kept its 

nematic order. Demixing at high densities was not studied properly because of the
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increasing computer time required to allow it to occur fully.

Analogous simulations were performed for a 90/10 mixture containing 1844 rods 

and 204 spheres. The initial configuration was produced by changing the identity of 

some of the rods in an 80/20 configuration at p  — 0.26 corresponding to an isotropic 

well mixed state. The system was equilibrated at T =  0.7 for 7 x 105 times steps 

and then compressed from this point at constant temperature. The nematic order 

parameter and radial distribution functions indicated that the mixture remained 

uniform and homogeneous up to a density of about p  =  0.32 at which both an 

isotropic-smectic transition and demixing occurred. A heating run was conducted 

at constant density p  =  0.34 in the range of temperatures 0.7 < T  <  1.2. The 

measured values of the nematic order parameter and their mean square deviations 

are shown in Tab. 6.8 These data suggest that as the temperature was increased the

T 0.7 0.8 0.9 1.0 1.1
S 0.90 db 0.01 0.65 ±  0.02 0.58 ±  0.02 0.41 ±0.05 0.16 ±  0.03

Table 6.8: Temperature dependence of the nematic order parameter, S ,  at p  =  0.34.

system underwent a smectic-nematic transition at a temperature of about T=0.8. On 

further heating, the nematic order parameter decreased further and dropped down 

to the values typical for the isotropic phase around T = 1.2. Figure 6.15 shows how 

the parallel distribution function changed with temperature. It indicates some weak 

long-range positional correlations at T =  0.8, where the order parameter suggests a 

nematic phase. However, neither the pure Gay-Berne fluid nor the 80/20 mixture 

studied above (Fig. 6.14) exhibited nematic order at such a low temperature. This 

suggests that this is a metastable configuration which might be retaining a memory 

of the smectic layering of the initial configuration even after equilibration for 1.4 x  

106 MD time steps. The complete schematic phase diagram of a 90/10 mixture is 

presented in Fig. 6.16. It recovers all of the phases observed for the pure Gay-Berne 

fluid and shows that the mixing-demixing transition in this mixture always occurs 

cooperatively with the phase transition. Once the droplet of spheres forms in the 

system, the rod-rich phase behaves like the equivalent pure Gay-Berne fluid.
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Figure 6.15: Parallel distribution functions, g{r\\), at p = 0.34 and different 
temperatures.

1.2

Nematic
3
S3 Isotropic

suH

0.7 -

Smectic0.6

0.5

0.26 0.3 0.320.28 0.34 0.36
Density

Figure 6.16: Phase diagram of a 90/10 mixture.

6.2.3 Dem ixing Transition

It is difficult to study the demixing transition accurately simply by analysing the 

sphere-sphere radial distribution functions obtained in constant N V T  simulations.
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Firstly, the smaller the system the higher the energy barrier between mixed and 

demixed phases because of the contribution of surface energy terms. This also shifts 

the temperature of demixing from its macroscopic value and makes it simulation box 

size dependent. Secondly, if macroscopic demixing has taken place, the simulation 

box does not represent adequately the bulk state. Instead, we have a microscopic 

droplet suspended in a rod-rich phase. Thirdly, if the size of the droplet is compara

ble with the simulation box and the phase boundary is extended, it is difficult to say 

whether or not demixing has taken place. So far, the criterion used to characterise 

demixing in our simulations has been the observation of a steep change in the radial 

sphere-sphere distribution function.

A good tool for the direct study of two phase equilibria is the Gibbs Ensemble 

Monte Carlo (GEMC) method developed by Panagiotopoulos [102]. In the original 

formulation of this approach, the system simulated comprises two separate boxes 

that represent two coexisting phases. Each of these boxes is surrounded by peri

odic images of itself and there are no real interfaces between the phases. The total 

number of molecules in the system N 1 +  N 11 = N  and total volume V 1 +  V H — V  

are kept constant as well as the thermodynamic temperature T.  Three kinds of 

trial moves are used to generate new configurations of the system: particle displace

ment, particle exchange and volume rearrangement. The algorithm ensures that the 

coexisting boxes have the same pressures and chemical potentials, i.e. they are in 

thermodynamic equilibrium. In our implementation of this algorithm, every MC 

cycle consisted of N  single particle displacement moves, 3N  exchange moves and 

one volume rearrangement move. The displacement move was implemented using 

the standard Metropolis algorithm described in Subsection 4.1.2. For the exchange 

move, a particle was chosen at random and, if it was a sphere, an attem pt was made 

to insert it in the other box at a random position. If a rod was selected, an attem pt 

was made to swap it with a random sphere from the other box, so as to increase the 

probability of achieving a successful move. This move was accepted with probability
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given by

« xexp(w ))  <64)
if a rod was selected in box J, and by

* = min (*’ v W H T )  x 6X11 ( i f O ) ' (6'5)

if it was a sphere. The volume rearrangement move consisted of a correlated change 

of the simulation boxes’ volumes. In this we made a uniform random change in the 

volume of one of the boxes, for example, compressing it and respectively expanding 

the other box by simply scaling the particle coordinates. If we attempted to change 

volume of box / ,  V by A V  the move was accepted with probability given by

x  =  min ( l ,  exp +  N '  M l  +  y r )  +  N n  ln(l -  ^ ) )  )  . (6.6)

A GEMC code was developed to study the coexistence of sphere-rich and rod-rich 

phases at 50% sphere concentration. The simulated system consisted of N  =  2048 

particles in total and two identical replicas of an MD box were used as an initial 

configuration. The level of acceptance of insertion moves appeared to be too low 

at near transition densities. Even at low density p  — 0.35 only about 6 out of 

1000 sphere insertions were successful. This lead to the conclusion that the system 

was too dense for successful application of the GEMC method at near transition 

densities. Nevertheless, a cooling run was undertaken at p  — 0.35 to see how the 

system would demix at low density. In parallel with this, a cooling series of MD 

runs was conducted for comparison.

Starting from high temperature T =  1.4 the isotropic uniform configuration was 

cooled down to T  =  0.8 with a step of 6 T  =  0.1. Typically each run consisted of at 

least 2 x 105 MC cycles, but runs up to 4 times longer than this were required to 

equilibrate the system at low temperatures. When cooled, the two simulation boxes 

were found to contain equivalent 50/50 isotropic rod-sphere mixture at temperatures 

down to T  =  1.1. The evolution of the box energies during the simulation at T  =  1.1 

are shown in Fig. 6.17(a). As the temperature was decreased further, the potential
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Figure 6.17: Energies of the two coexisting boxes at (a) T  =  1.1 and (b) T  — 0.9.

energy fluctuations increased (Fig. 6.17(b)), although both boxes contained similar 

mixtures. At temperature T  = 0.9, the coexistence between rod-rich (on average 

containing 57% of rods) and sphere-rich (containing about 43% of rods) phases was 

observed. At temperature T  =  0 .8, phase separation occurred and one of the boxes 

contained mainly spheres, while the other one contained almost all of rods and some 

spheres at a concentration of about 12%. There were, however, some successful 

insertions of rods into the sphere-rich phase, the average number of rods being 1.66 

which corresponded to the a concentration of less than 0 .2%.

On heating this system did not exhibit the same behaviour at T  — 0.9 as it had 

on cooling. Instead, it remained in a demixed state, with the average number of 

rods in the sphere-rich phase stabilising at about 7.5. On further heating, the 

system followed the same path as on cooling. Figure 6.18 shows the evolution of the 

potential energy for each simulation box during the cooling run and then during the 

reverse heating runs. The total potential energy is the same in both cases which 

suggests that the state observed on cooling was not metastable and the simulation 

length was sufficient to achieve equilibrium at this temperature. Therefore, the 

temperature of mixing-demixing transition was determined to be about T  «  0.9.

•2800
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Figure 6.18: Energies of the two coexisting boxes at T  =  1.0 at cooling and heating.

MD simulations were performed at the same state points to assess the behaviour of 

these mixtures at different temperatures. Figure 6.19 shows sphere-sphere radial dis-

MC T=1.0 Box I --------
Box II .......... '

MD T=1.00 --------
T=1.20 --------
T=l,25 --------
T = 1 .30------- ---
T=1.35 --------
T -1 .4 0 --------

Figure 6.19: Sphere-sphere radial distribution functions at p =  0.35 and different 
temperatures.

tribution functions evaluated from our both MC and MD simulations. The functions 

calculated in the MD runs indicate that demixing took place at noticeably higher 

temperature than T  =  0.9, namely it started at a temperature of about T  — 1.2. 

The two coexisting phases in our MC simulations at temperature T =  1.0 had dis

tribution functions typical for demixed states. This suggests that first changes in
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g Ss { r )  observed in our MD simulations were associated with earlier stage of demix

ing when small domains of spheres were rapidly formed and destroyed, whereas no 

macroscopic demixing occurred in the system.
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6.3 System  (ii)

In the original parameterisation of the rod-sphere potential studied in the previ

ous Section, the spheres were attracted to the sides of the rods five times more 

strongly than to their ends. In this Section we will study a rod-sphere mixture 

which has the opposite tendency, i.e. the end attraction is five times stronger than 

the side. However, all other interaction and shape parameters remain unchanged in 

this and the following Sections. Figure 6.20 shows the rod-sphere potential profiles

0.2

-0.2

- 0.8 -

system (i) side configuration------
system (i) end configuration------

system (it) side configuration-------
system (it) end configuration........

- 1.2

0.5 1 1.5 2 2.5 3 3.5 4

Figure 6.20: Rod-sphere potentials for systems (i) and (ii).

for different configurations in systems (i) and (ii). The corresponding parameters of 

equation (6.1), which provide the strong end rod-sphere interaction, are €rs — 0.2 

and es/eE — 0.2. The next Subsection presents results of MD and MC simulations 

of a 50/50 mixture. This is followed by a Subsection containing the results obtained 

for lower concentrations of spheres and a brief discussion.

6.3.1 50/50  M ixture

A system of 512 rods and 512 spheres interacting via the potentials described above 

was simulated in the constant N V T  ensemble using the same MD method as was
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used to study system (i). Simulations were started at high temperature T  — 1.5 

and the mixture was compressed from density p =  0.40 up to p =  0.50. The ne

matic order parameter measured during this compression sequence indicated that 

the system remained isotropic over the whole range of densities. The sphere-sphere 

radial distribution functions, shown in Fig. 6.21, suggest however that the compres-

0.40 ----
0.42 ----
0.44 —
0.46 ----
0.48 ----
0.50 ----

1.2

41 30 2 5 6

Figure 6.21: Sphere-sphere radial distribution functions at T  — 1.5 and different 
densities.

sion was performed close to the demixing line and it was crossed at p «  0.49. In 

order to define the demixing line more precisely, two cooling runs were undertaken 

at densities p =  0.42 and p = 0.50. A steep change in the sphere-sphere radial 

distribution function was observed at a temperature between 1.40 < T  < 1.50 at 

the lower density (Fig. 6.22(a)) and between 1.50 < T  < 1.60 at p = 0.50. This 

indicates that the demixing line has a slight positive slope and it is consistent with 

our conclusion that it was crossed during the compression run at a density of about 

p = 0.49. Comparing this behaviour to system (i)’s demixing behaviour (Fig. 6.7) 

we note that system (ii) does not exhibit reverse mixing on cooling, i.e. its demix

ing properties vary monotonously with temperature at constant density. Also, the 

demixing shown by system (ii) occurred at slightly higher temperatures, i.e. its 

tendency to demix was stronger than that of system (i).

Figure 6 .22(b) shows a system configuration at the end of the cooling sequence 

performed at p = 0.42. Here, the sphere-rich phase forms a cylindrical droplet 

surrounded by the rods aligned by the droplet’s surface. This configuration shows 

significant distortion resulting from the periodic boundary conditions and clearly
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does not represent a macroscopic bulk system. To study the system’s behaviour at 

higher densities, we chose to use a non-cubic simulation box instead of compressing 

this unphysically formed configuration. A box with dimensions 9.261 x 9.261 x 25.403, 

which correspond to the density of p — 0.47, was simulated at different temperatures. 

The initial configuration was obtained by applying a nonsymmetric constant volume 

MC move to an initially cubic box at high temperature T  =  1.7. To monitor 

demixing in the system the probability distributions of rods and spheres along the 

long simulation box side were calculated over 5 x 105 time steps preceded by 106 time 

steps of equilibration. The resulting distributions shown in Fig. 6.23 indicate that 

the concentrations of the spheres and rods were not uniform along the simulation 

box, and suggest coexistence between sphere-rich and rod-rich regions. A snapshot 

of the last configuration of this run is shown in Fig. 6.24(a). This system was cooled 

down to T  — 0.7 starting from this configuration with a step of AT =  0.05. The 

constant pressure and constant volume MC methods both failed when applied to 

this system because the shortest simulation box side half length became too close 

to the radius of the Verlet neighbour list, R l = 4.5<Jo. Therefore, the geometry 

of the box was kept unchanged and standard MD methods were applied in the 

constant N V T  ensemble. The nematic order parameter and profiles of the particle 

probability distribution were measured during this cooling sequence. The resultant

6

5.5 

5

4.5 

4

3.5 

3

2.5 

2

1.5 

1

0.5 

0
(a) (b)

Figure 6 .22: (a) Radial sphere-sphere functions at p — 0.42 and different tempera
tures; (b) configuration snapshot taken at p =  0.42 and T  =  0.7.
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Figure 6.23: Distribution of rods and spheres along the simulation box at T  =  1.70.

concentration profiles indicated that with decreasing temperature the sphere-rich 

phase became free of rods, whereas the rod-rich phase still contained some spheres. 

Figure 6.24 shows the configuration snapshots, taken at various temperatures, to 

illustrate this process. The nematic order parameter indicated an orientational phase 

transition at a temperature of about T  =  1.20. It was classified as an isotropic- 

nematic transition according to the parallel distribution functions measured at sub

transition temperatures. Some spheres could be still found in the rod-rich phase at 

this point. The director was found to be parallel to the longest side of the simulation 

box, which can be explained by the influence of the phase interface present in the 

system. Those rods close to the interface between the rod-rich and the sphere- 

rich phases were aligned perpendicular to it, thus inducing the orientation of the 

other rods. The development of smectic order at lower temperatures was affected 

by the periodic boundary conditions. The long simulation box side proved unable 

to accommodate a whole number of layers and the director, therefore, was forced to 

tilt slightly in order to establish an acceptable commensurability (Fig. 6.24(d)). A 

constant pressure MC run was then performed at constant temperature T  =  0.70 and 

pressure P  =  2.0. This time the box side fluctuations remained within the allowed 

limits, i.e. all sides were always longer than 2R^. The equilibrium simulation box size 

was found to be 9.357±0.047 by 9.163±0.040 by 24.898 ±0.120, which corresponds 

to a density of p «  0.48. This run revealed that, under isobaric conditions, the stable 

configuration was one in which the smectic layers were parallel to the interface and 

the director was parallel to the longest simulation box side.
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(a) T=1.70

(b) T=1.35

(c) T=1.10

(d) T=0.70

Figure 6.24: Snapshots of a noncubic simulation box at p = 0.47 and different 
temperatures.

105



CHAPTER 6. ROD-SPHERE M IXTURES IN  BULK

6.3.2 Low Concentration of Spheres

In this Subsection two mixtures containing 20% and 10% of spheres are studied. 

Both systems were simulated in the constant N V T  ensemble using MD methods 

and their behaviour was compared to that of the analogous mixtures with strong 

side rod-sphere interaction described in Section 6 .2.2 .

The simulations of an 80/20 mixture were started from a hard particle configuration 

of 1638 rods and 410 spheres at density p =  0.30. The temperature was set to 

T  =  1.0 and the system was equilibrated for 1.4 x 106 time steps. High values 

of the calculated sphere-sphere distribution function at short distances suggested 

some local clustering of the spheres, although it also approached unity at large 

separations, indicating random distribution of these clusters (Fig 6.25(a)). There

T=1.0 -------
multi-droplet T=0.7 -------

o n e  d ro p le t  T = 0 .7  ----------

10

8

6

4

2

0
40 2 6 8

(a)

Figure 6.25: (a) Radial sphere-sphere functions, gss(r), at p — 0.30 and T  =  1.0 and 
at T  =  0.7 for one and multi-droplet configurations; (b) A multi-droplet configura
tion at p — 0.30 and T  =  0.7.

were found 153 db 17 clusters separated by distances greater than 1.5cr0 at p = 0.30 

and T = 1 .0 . By comparison, an analogous mixture of hard particles at the same 

density contained 248 ± 1 2  randomly formed clusters. The cluster size distribution 

was found to be quite different as well. 7 clusters of 20 or more spheres (the largest 

of them was of 38 ±  13) were found in the soft particle system whereas the largest 

cluster in the system of hard particles contained only 10 ±  3 spheres. Analogous
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analysis of the 80/20 mixture of type (i) at p  =  0.30 and T  =  1.0 revealed 182 ±  11 

clusters the largest of which contained 20 dt 4 spheres. These data show that at low 

sphere concentration system (ii) has a higher tendency to demix when compared 

to system (i) which, in turn, has more signs of segregation than the hard particle 

system.

If the system’s temperature was quenched down to T =  0.70, coalescence of some 

of the clusters was observed reducing their total number down to 53 db 4. Most of 

the clusters were single or paired spheres but 4 of them, with on average about 85 

particles each, contained most of the particles (Fig. 6.25(b)). The time available 

for simulation was not sufficient for all of these droplets to coalesce and, having 

developed this arrangement, the system structure remained relatively unchanged 

after 3 x 106 time steps.

In contrast, a configuration with a single droplet was obtained if a cooling sequence 

with a moderate temperature decrement of A T  =  0.05 was performed starting from 

the configuration previously equilibrated p  =  0.30 and T  =  1.0 At T =  0.70, the 

single droplet configuration was found to have lower potential energy than the multi

droplet one (—3.413 db 0.023 against —3.359 ±0.027 per particle). It also had higher 

orientational entropy because fewer rods were aligned by the surface. Thus, despite 

its slightly lower mixing entropy, the configuration with a single droplet is the ther

modynamically favourable arrangement. The fact that on rapid cooling we observed 

the multi-droplet configuration shown in Fig. 6.25(b) was due to the initial formation 

of several droplets each surrounded by a layer of rods. These layers kept the droplets 

apart at a distance of order of 6cr0 and made it impossible for them to coalesce.

It would be pointless to study cluster size distribution or their arrangement at low 

temperatures in a simulation box containing 4-5 large clusters. Therefore, the single- 

droplet configuration was chosen for our further simulations in order to explore the 

shape of the droplet of spheres suspended in the rod-rich phase. A compression series 

at constant temperature T =  0.7 was performed in the density range 0.30 <  p  <  0.35 

with a step of A p  — 0.01. Significant influence of the periodic boundary conditions
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upon the system’s structure was found. Due to the strong homeotropic anchoring, 

the droplet of spheres was surrounded by a layer of rods and the resultant sub

particle was of size comparable to the simulation box side. The periodic boundary 

conditions caused some unrealistic effects, i.e. with increasing density the droplet’s 

shape started to resemble the geometry of the box. Due to this failure of the method 

at low temperatures, only the high temperature system behaviour was studied.

The configuration obtained at p  — 0.30 and T =  1.0 was compressed at constant 

temperature up to density p  =  0.42 with a step of Ap  =  0.1. The nematic order 

parameter, potential energy, pressure and distribution functions were measured dur

ing this sequence and averaged over 2 x 105 MD time steps after at least 7 x 105 

time steps of equilibration. Then, cluster analysis was undertaken to investigate the 

demixing property of the system. Table 6.3.2 shows how the nematic order parame-

Density Order parameter Number of clusters Largest cluster size
0.30 0.031 dr 0.012 153 dr 17 38 dr 13
0.31 0.036 dr 0.013 136 dr 11 131 dr 14
0.32 0.040 db 0.014 137 dr 9 126 d: 8
0.33 0.049 db 0.016 129 dr 7 148 dr 8
0.34 0.046 dr 0.013 117 dr7 197 db 7
0.35 0.052 db 0.017 111 dr 6 236 ± 5
0.36 0.103 dr 0.041 93dr6 273 dr6
0.37 0.480 dr 0.031 60dr6 330 db 8
0.38 0.564 dr 0.018 43 d: 3 359 dr 2
0.39 0.707 ±0.013 36 dr 3 366 dr 3
0.40 0.778 dr 0.011 29 dr 3 377 dr 3
0.41 0.811 dr 0.009 21 dr 2 387 dr 2
0.42 0.932 dr 0.003 11 dr 1 398 dr 1

Table 6.9: The order parameter and cluster distribution at T  — 1.0.

ter and the cluster distribution changed with increasing density. The sphere-sphere 

radial distribution functions shown in Fig. 6.26(a) indicate a macroscopic phase sep

aration at density p  «  0.31. At p  — 0.35 more than a half of the spheres formed a 

single droplet while the others were dispersed in the rod-rich phase which was still 

isotropic (Fig. 6.26(b)). With increasing density, even a greater number of spheres 

became segregated from the rod-rich phase reducing the total number of clusters
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Figure 6.26: (a) Radial sphere-sphere distribution functions, #ss(r), measured at 
T  = 1.0 and different densities; (b) configuration snapshot taken at p = 0.35 and 
T  =  1.0.

in the system. An isotropic-nematic transition was observed at a density of about 

p = 0.365 analogous to 80/20 mixture of type (i). However, here the demixing oc

curred before the phase transition, not cooperatively. An analogous scenario was 

seen for the 80/20 mixture of system (i) at lower temperatures, which again indicates 

a higher tendency of system (ii) to demix.

Once a single droplet of spheres had formed, the homeotropic anchoring on its surface 

imposed radial alignment upon the rods (Fig. 6.26(b)). When, at higher densities, 

the nematic phase developed, conflict arose between this orientation and the nematic 

bulk alignment. This could affect both the shape of the droplet and give rise to a 

defect of the director field. The tensor of inertia of the largest cluster was calculated 

during the simulations to quantify the shape anisotropy of the droplet. The ratio 

of the semi-sum of two largest components of the inertia tensor to the smallest 

one was then used as a characteristic parameter of how oblate the droplet was. 

Table 6.10 presents the data averaged over at least 3 x 105 time steps. There is 

no clear correlation between the droplet’s shape and the density. At the density 

range 0.37 < p <  0.39 the droplet became more oblate as the density increased 

while at higher densities this trend reversed. The mean square deviations of this
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Density 0.37 0.38 0.39 0.40 0.41
Shape parameter 1.62 ±0.23 1.90 ±0.19 2.22 ±  0.36 1.76 ±0.23 1.73 ±0.21

Table 6.10: Density dependence of the shape parameter of the droplet suspended in 
a nematic.

shape parameter were relatively large, therefore, indicating significant droplet shape 

fluctuations. Figure 6.27(a) shows how the droplet shape parameter changed with
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Figure 6.27: (a) Shape parameters and (b) directional cosines corresponding to the 
smallest component of the inertia tensor at p — 0.37 and p =  0.40.

time in the runs at p = 0.37 and p — 0.40. These data indicate that the droplet 

shape was subject to rapid changes due to the dynamic process of its composition. 

Indeed, the sphere-rich phase can be considered as a dense core surrounded by an 

outer cloud of spheres. Due to Brownian motion, every time the cluster analysis 

was performed, different spheres from the “cloud” were counted as being united 

with the “core” to form the main cluster. This lead to the significant fluctuations 

of the droplet shape and orientation shown in Fig. 6.27. Another aspect explored 

here is the correlation between the droplet shape and the director of the rod-rich 

phase. The direction cosines of the director were calculated in the reference frame 

of the inertia tensor eigenvectors. It was found that the eigenvector corresponding 

to the smallest eigenvalue was aligned along the director most of the time. In
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other words, the droplet of spheres was found to be flattened along the director. 

Figure 6.27(b) demonstrates that this correlation was enhanced at higher density: 

(cos#/) =  0.83±0.17 at p = 0.37 and (cos#/) =  0.94±0.06 at p — 0.40. At a density 

of about p — 0.42 a smectic phase developed. At this point almost all of the spheres 

belonged to the largest cluster and its shape was found to be more stable than those 

formed at lower densities. The shape parameter was equal to 2.34 ±  0.12 and the 

average directional cosine was (cos#/) =  0.986 ±  0.009. Figure 6.28 shows system

(a) (b)

Figure 6.28: (a) Nematic phase at p = 0.38 and T  =  1.0; (b) smectic phase at 
p =  0.42 and T =  1.0.

configurations at nematic and smectic phases at p — 0.38 and p — 0.42 respectively. 

The Saturn ring defect would be expected in the equatorial plane of the spherical 

droplet suspended in a nematic with strong homeotropic anchoring [27]. Taking 

into account the large fluctuations of the droplet’s shape and the relatively small 

simulation scale it would be difficult to locate this line defect. In the smectic phase, 

by contrast, the droplet adjusted a cylindrical shape about 3 smectic layers thick 

and no defect was observed (Fig. 6.28(b)).

A 90/10 mixture was studied at temperature T =  1.0 in the density range 0.30 < 

p < 0.36. A hard particle configuration at p =  0.30 was used to start this com

pression series. The system was equilibrated for 7 x 105 time steps, after which it
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remained homogenous and isotropic. It was then compressed to higher densities with 

a step of A p  =  0.1. The nematic order parameter and radial distribution functions 

were monitored as before to determine the system’s structure. Cluster analysis was 

performed as well since it proved to be an informative tool for studying demixing at 

low sphere concentrations. Table 6.11 presents the resultant data. These indicate

Density Order parameter Number of clusters Largest cluster size
0.31 0.054 ±  0.019 130 ± 8 9 ±  3
0.32 0.049 ±  0.014 124 ± 6 10 ± 2
0.33 0.072 ±  0.021 129 ± 7 9 ±  2
0.34 0.392 ±  0.036 117 ±  8 11 ± 4
0.35 0.617 ±0.021 106 ± 7 16 ± 4
0.36 0.714 ±0.011 73 ± 6 102 ± 3

0.35e*p 0.630 ±  0.020 84 ± 6 84 ± 4

Table 6.11: The order parameter and cluster distribution at T  = 1.0.

that the mixture remained mixed in the interval of densities 0.30 < p <  0.35 even 

after the isotropic-nematic transition had taken place at p & 0.34. The correspond

ing sphere-sphere radial distribution functions and a configuration snapshot taken 

at p =  0.35 and T  =  1.0 are shown in Fig. 6.29. The homogenous nematic phase at
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Figure 6.29: (a) Sphere-sphere radial distribution functions, ^ ( r )  , at T  = 1 .0  and 
different densities; (b) homogenous nematic phase at p =  0.35 and T  =  1.0.

p =  0.35 was equilibrated for 106 time steps. During this run, stable values of the
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potential energy and the nematic order parameter were observed. At the higher den

sity p = 0.36, the system started to demix forming a single droplet. In a subsequent 

run, when the system was expanded back to p = 0.35, the single droplet reduced in 

size slightly, but remained stable at the simulation time scale. Thus, the nematic 

phase at p = 0.35 and T  = 1.0 was observed to be homogenous or heterogenous 

depending on the initial configuration the simulation was started from. Table 6.12 

shows that the heterogenous configuration has lower potential energy. However, its

Configuration Energy Order Parameter Pressure
homogenous -3.073 ±  0.033 0.630 ±  0.020 4.54 ±  0.09
heterogenous -3.228 ±  0.032 0.642 d b  0.024 4.43 ±  0.09

Table 6.12: Parameters of two stable configurations at p = 0.35 and T  =  1.0.

mixing entropy is much lower making it unclear which configuration has lower free 

energy. The observation of hysteresis at such a transition is not, however, surprising.

6.3.3 Discussion

According to the simulation results, system (ii) is found to have stronger demixing 

than system (i). Indeed, at the same concentration and density it starts to demix at 

slightly higher temperatures. Interestingly, a 20/80 mixture under compression at 

T  — 1.0 demixes before the isotropic-nematic transition, whereas a 10/90 mixture 

does not demix until post-transitional densities. At the same temperature system

(i) cooperatively undergoes isotropic-nematic transition and demixing for both con

centrations.

Under rapid cooling from an isotropic mixed configuration at 20% sphere concen

tration, system (ii) exhibits a micellar structure. The core of each micelle, formed 

by spheres, is nearly spherical in shape and is covered by a layer of rods. On the 

contrary, a thermodynamically more favourable single large droplet configuration 

develops at low cooling rate. This configuration has lower potential energy and 

higher orientational entropy, because there are more rods in the isotropic phase not
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aligned by the surface. The only entropy term which benefits from a multi-droplet 

configuration is the mixing entropy. However, this is expected to be small because 

spheres have already been demixed. At 50% concentration of spheres, only a single 

droplet configuration was observed. This suggests that spheres would demix in a 

macroscopic system at this concentration rather than form small separate droplets. 

On the other hand, at low concentrations of spheres, there is a possibility of a macro- 

scopically stable micellar phase. In experimental systems, micelles form in a solution 

above the critical micellar concentration and are known to be dynamic aggregates, 

making and breaking on time scales of 10-6 to 10“3 s [103]. To draw an analogy with 

typical surfactant systems we can consider a rod with a sphere attached to its end 

as an amphiphilic entity and all single rods as solvent. The sphere concentration, 

therefore, represents the concentration of surfactant in the system. The fact that 

the mixing behaviour is so different at 10% and 20% concentration of spheres may 

be due to the onset of micelle formation concentration in the isotropic phase of the 

20% system. Time scales of order of 10~6s are well beyond those available to our 

method, however, making investigation of micellar processes inaccessible for current 

computational hardware.

The shape of a single droplet suspended in a rod-rich phase is found to depend 

on the parameterisation of the rod-sphere potential. It was nearly spherical in 

both systems (i) and (ii) at low temperatures and low densities when the rod-rich 

phase is isotropic. In a nematic phase, the shape of the droplet was defined by the 

competition between the anchoring energy, nematic elasticity and surface tension. It 

was also strongly affected by the periodic boundary conditions due to the relatively 

large size of the droplets formed. In system (i) there was some evidence of elongation 

of the droplet, whereas a droplet suspended in a nematic in system (ii) was rather 

oblate. This tendency was not fully consistent and proved somewhat difficult to 

observe, especially in system (ii). Once smectic order developed, in each system, 

however, the droplets were encapsulated between the smectic layers and adopted 

shape anisotropies which were stable and of the expected type.

According to the continuum theory the order of nematic phase leads to the conflict
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between the alignment of the rods on the droplet surface and the bulk director. This 

can give rise to defect formation a pair of boojums if the anchoring is planar (like in 

system (i)) and the Saturn ring or the Satellite defect if the anchoring is homeotropic 

(like in system (ii)) (see Section 2.5 for details). If k is a unit vector normal to the 

surface, the anisotropic part of the surface free energy density is expressed [104] as 

following:

f s  =  A ik  • Q • k +  AoQ : Q +  A ik  • Q • Q • k +  /?22(k • Q • k )2, (6.7)

where Q is the tensor order parameter and Aj are elasticity constants. If K  is the 

curvature of the surface a t a given point then this area is subject to the force which 

normal component can be written as:

F±_ =  - t f / s k  +  k (/He -  V s ) (6 .8)
v '  ak

Consider the case of a droplet suspended in a liquid crystal with a strong homeotropic 

anchoring. If the Saturn ring defect forms, the director field near the surface will not 

be radial but have a splay in the equatorial plane of the droplet (Fig 6.30(a)). The

Bulk director

Bulk director

(b)

droplet and (b) near

divergence of the director field is much higher near the defect than on the droplet’s 

poles where there are no singularities of the director field (Fig 6.30(b)). This means 

that the derivative ^  is much greater in the equatorial plane, and higher surface 

forces are required to compensate the second term in equation (6.8) in order to

(a)

Figure 6.30: Director field (a) in the equatorial plane of the 
the pole. Dashed lines shows the radial direction.
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achieve the equilibrium condition, F± =  0, on the surface. This causes the droplet 

to become oblate along the director in the case of homeotropic anchoring. Note that 

in any case the surface of the droplet has higher curvature near the defect.

6.4 System  (iii)

The mixture studied in this Section is of type (iii) as described in Section 6.1. The 

strength of the rod-sphere interaction here has no orientational dependence and is 

characterised by a constant well depth e0. Analogous to the previous two systems, 

the results of simulations are presented for different concentrations of spheres. A 

50/50 mixture is studied first followed by simulations of mixtures with lower con

centrations of spheres.

6.4.1 50 /50  M ixture

A system containing 512 rods and 512 spheres interacting via potential of type (iii) 

was simulated in the constant N V T  ensemble using previously validated MD code. 

Starting from a hard particle configuration at p — 0.40 the system was equilibrated 

at temperature T  = 1.2 for 7 x 105 time steps during which it remained isotropic and 

uniform. Then it was compressed at constant temperature up to density p — 0.50. 

The nematic order parameter remained low over this whole range of densities and 

no isotropic-nematic transition was observed. Figure 6.31(a) presents the sphere- 

sphere radial distribution functions calculated at different densities which indicate no 

demixing in the system. To study the effect of attractive interactions we then cooled 

the system down to T  =  0.7 with a step of A T  =  0.1 at low density p =  0.40 and then 

compressed it up to p =  0.50 with a step of Ap =  0.01. During these cooling and 

compression series the nematic order parameter was always low indicating no long- 

range orientational ordering in the system. The sphere-sphere radial distribution 

functions shown in Fig. 6.31(b) did not reveal any significant changes in the system’s 

structure for the compression sequence at T  — 0.7. Analogous to the compression
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Figure 6.31: Sphere-sphere radial distribution functions, gss(r), at temperature (a) 
T =  1.2 and (b) T =  0.7.

run at higher temperature, the system’s behaviour was found to be similar to that 

of the hard particle system, i.e. neither demixing nor orientational ordering was 

observed at this concentration. Figure 6.32(a) shows a set of radial distribution

2. 5
T=0.7 rod-rod —  

hardrod-rod —
T=0.7 rod-sph — 
hard rod-sph — 

T=0.7 sph-sph -—  
hard sph-sph —2

1.5

1

0.5
31 4 5 60 2

(a)

Figure 6.32: (a) Radial distribution functions, grr{r), grs(x)> calculated at
p — 0.50 and T =  0.7 compared to those of the hard particle system; (b) A snapshot 
of configuration at p — 0.50 and T =  0.7.

functions calculated at the same density p =  0.50 in the studied mixture at T  — 0.7
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and in the system of hard particles. They indicate that the system of soft particles 

has a greater number of the rod side-by-side configurations. The relatively strong 

rod-rod attractions affect the short-range order, leading to a small increase the 

nematic order parameter. For comparison, the nematic order parameter measured 

in the hard particle system at p =  0.50 was 0.089 ±0.020, whereas system (iii) yields 

values 0.142±0.053 and 0.188±0.061 at T  = 1.2 and T  = 0.7 respectively. However, 

as the radial distribution functions indicate, qualitatively system (iii) forms the same 

structure as was seen in a hard particle system. This suggests that a temperature 

of T  — 0.7 is still quite high for this type of mixture and that a lower temperature 

is required for the effect of the attractive interactions to become more significant.

Two short series of cooling runs were performed, therefore, at low, p = 0.42, and 

high, p = 0.48, densities. Starting from the configurations equilibrated before at 

T  = 0.7, the system was cooled down to T  =  0.6 and then further to T  =  0.5. 

The order parameter remained low at both densities, although system snapshots 

indicated some local structuring: fragments of smectic layers and sphere-rich layers 

were observed. The sphere-sphere radial distribution functions calculated at p = 0.42 

and p =  0.48 and different temperatures are shown in Fig. 6.33. They suggest the

T=0.5
T=0.6
T=0.71.15
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Figure 6.33: Sphere-sphere radial distribution functions, <7ss(r), at density (a) p =  
0.42 and (b) p =  0.48.

presence of structural regularities at low temperatures with periodicity of about
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5<70. Cluster analysis indicated a bicontinuous interconnected network, i.e. there 

was no separate clusters of spheres. The observed structure was formed due to 

a combination of the relatively strong rod-rod attraction and the weak demixing 

properties. This effect were not observed in systems (i) and (ii) because of the 

strong demixing which occurred at much higher temperatures.

Since the periodicity of the low temperature structure was of order of a half of 

the system box side, a larger system was required to study this structure properly. 

There was a possibility of a lamellar phase in which layers of rods were separated 

by layers of spheres. The structure observed in the small simulation box might, 

therefore, have been affected by too rapid cooling or/and the influence of the peri

odic boundary conditions. A system of 8192 rods and 8192 spheres was simulated 

on 64 nodes of parallel supercomputers (SG Origin 3000 and Cray T3E-1200E) at 

CSAR in Manchester. The parallel code used for these simulations was a version of 

GBMOLDD [105] which had been modified by Richard Webster so as to include the 

specific rod-sphere interaction used in this system. Richard Webster also assisted 

in the submission and running of these CSAR-based simulations. The initial config

uration was obtained by replicating eight images of a simulation box of 2048 hard 

particles, so giving a system of 16384 particles in total. In order to prevent simu

lation of eight identical configurations in parallel, the initial translational velocities 

were randomised according to the Maxwell-Boltzmann distribution [4]. Thus, for 

each velocity component required

•  two random numbers f a  and f a  were generated on (0,1);

•  a velocity component v f  =  cos 27r f a y / —2 T I n  f a  was calculated.

This configuration was equilibrated at T =  0.6 for 3.5 x 105 time steps. Here such 

parameters as the time step, cutoff radius, neighbour list radius etc., were set to the 

same values as were used in our previous MD simulations. Series of large system runs 

were then performed, a complete list of which, in the order in which they were per

formed is given in Tab. 6.13. These runs consisted of two cooling series at p  =  0.40
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Density Temperature Time steps Potential energy
0.40 0.60 350,000 -4.6216 ±  0.0084
0.40 0.58 300,000 -4.6910 ±  0.0089
0.40 0.57 150,000 -4.7275 ±  0.0086
0.40 0.56 300,000 -4.7720 db 0.0083
0.40 0.55 300,000 -4.8121 ±  0.0096
0.41 0.55 250,000 -4.9529 ±  0.0092
0.42 0.55 580,000 -5.0963 ±  0.0087
0.42 0.54 580,000 -5.1467 ±0.0078
0.42 0.53 580,000 -5.1963 ±  0.0096
0.42 0.52 500,000 -5.2592 ±  0.0076
0.42 0.51 250,000 -5.3145 ±  0.0096
0.43 0.51 480,000 -5.4694 ±  0.0090
0.44 0.51 440,000 -5.6305 ±  0.0092
0.45 0.51 900,000 -5.7993 ±  0.0087

Table 6.13: Parameters of the CSAR-based runs performed for a system of 16384. 
Each run was started from the final configuration of the previous one.

and p = 0.42 and two compression series at T  =  0.55 and T =  0.51. The first 

cooling series was started at p — 0.40 and carried on with a step of A T  = 0.01 while 

the pressure was positive. According to the results of linear extrapolation, the pres

sure would have gone negative at T  = 0.54, therefore, the system was compressed 

to higher densities to maintain positive pressure. The temperature dependence of 

the potential energy was almost linear in both cooling runs. It also showed nearly 

linear density dependence during the compression run. Thus, no discontinuities 

were observed in the potential energy or its first derivatives while the system trans

formed from the uniform isotropic configuration to that shown in Fig. 6.34. Cluster 

analysis was performed and radial distribution functions calculated to map out the 

structural changes in the system. Table 6.14 shows that with decreasing tempera

ture and increasing density the size of the largest cluster increased and that this was 

accompanied by a corresponding decrease of the total number of clusters. Since at 

T =  0.51 almost every sphere in the system had a neighbouring sphere a t separation 

less than 1.5cr, they formed a single cluster that contained all but a few spheres. 

Together with the absence of macroscopic phase separation, this indicates tha t the 

formed structure remained bicontinuous. Figure 6.35 presents sphere-sphere radial
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Figure 6.34: Snapshot of a system of 16384 particles at p — 0.45 and T =  0.51. The 
simulation box side is 33.144<70.

Density Temperature Number of clusters Largest cluster’s size
0.40 0.60 235 ±  15 7802 ±  47
0.40 0.58 225 ±  12 7840 ±  39
0.40 0.56 210 ± 1 4 7869 ±  42
0.43 0.51 90 ± 9 8074 ±  26
0.44 0.51 71 ± 9 8110 ± 1 3
0.45 0.51 49 ± 7 8139 ± 9

Table 6.14: The cluster size distributions for the cooling run at p = 0.40 and com
pression run at T  =  0.51.
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Figure 6.35: Sphere-sphere radial distribution functions, ffSs(r), at temperature T  =  
0.51 and different densities.

distribution functions measured during the compression run at T  = 0.51. They indi

cate the same periodicity as was observed in the system of 1024 particles (Fig. 6.33). 

However, these functions approach unity at separations greater than 10<7o which sug

gests that, despite some local ordering developed in the system, there are no long 

range transitional correlations in the observed microphase-separated structure.

The temperatures at which microphase separation occurred in this system were 

relatively low, and there was a possibility that the system’s state was rather glassy. 

To check whether the observed state was fluid or the networks of rods and spheres 

were frozen, the particle displacement was calculated. Figure 6.36 demonstrates how 

rod and sphere displacement probability densities changed with time at p — 0.45 

and T  = 0.51. These indicate that all particles in the system were moving around 

and that none of them became immobilized at a fixed location. Figure 6.37 shows 

how the mean square displacement changed with time. In the case of Brownian or 

random walk motion, the mean square displacement is known to be a linear function 

of time:

< (r(£) — r(0 ))2 > =  6Dt, (6.9)

where D  is the diffusion coefficient. However, this dependence is not linear in the case 

of some complex systems such as polymers, for example, for which the mean square 

displacement is proportional to t", where u < 1 [106]. The double logarithmic scale 

used in Fig. 6.37 reveals how the exponent v changed in the time range 0.3 <  t  < 450.
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Figure 6.36: (a) Rod and (b) sphere displacement probability densities at p = 0.45 
and T =  0.51 calculated after a given number of time steps.
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Figure 6.37: Time dependance of the mean square displacement at p — 0.45 and 
T =  0.51 plotted in the double logarithmic scale.

At small times of several thousands time steps, the diffusion of both rods and spheres 

was not macroscopic due to the strong short time correlations in particle positions.
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Only after about 30,000 time steps, when each rod, on average, had moved from 

its initial position by about 1.3<r0 (1.8cr0 for spheres) did both dependencies became 

linear. The slopes of the tangents shown in Fig. 6.37 are almost equal for both curves 

at v — 0.91 ±0.02. The average rods’ displacement for the whole simulation time at 

p =  0.45 and T  = 0.51 (9 x 105 time steps) was estimated as 5.8cr0. The equivalent 

figure for the spheres was 8.3cr0. This indicates that the system was in a liquid state 

and suggests that the particles were moving in an approximately Brownian manner 

when in structures such as that shown in Fig. 6.34.

6.4.2 Low Concentration of Spheres

In this Section we study mixture (iii) at sphere concentrations of 20% and 30% for 

the systems containing 2048 particles in total. Since a 50/50 mixture, studied in the 

previous Section, remained isotropic and uniform over a wide range of temperatures, 

we will concentrate here mainly on the low temperature behaviour.

Constant N V T  MD simulations were started from a hard particle configuration 

at 20% sphere concentration at density p — 0.32 and equilibrated at temperature 

T  =  0.7 for 106 time steps. Then the system was compressed at constant tempera

ture up to density p =  0.38 with a step of Ap — 0.01, allowing 7 x 105 time steps 

for equilibration followed by 7 x 105 steps for each production run. The potential 

energy per particle and nematic order parameter calculated during these simulations 

are presented in Fig. 6.38. The potential energy changed almost linearly with in

creasing density; this indicated the weakness of the phase transition which occurred 

at a density of about p =  0.36. The parallel distribution functions measured in 

the vicinity of the transition indicated development of smectic layers at a density of 

about p =  0.37 (Fig. 6.38(b)). There were weak signs of demixing at high densities 

but neither macroscopic demixing nor long-range periodicity of the sphere distribu

tion were observed. The compression run at lower temperature T  — 0.6 revealed a 

stable smectic phase at densities higher than p =  0.37 with an order parameter of 

more than 0.85. Figure 6.39(a) shows that the distribution of spheres in this system
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Figure 6.38: (a) Potential energy per particle and nematic order parameter measured 
during the compression run at T  =  0.7; (b) parallel distribution function, g\\(r\\), 
calculated at temperature T  =  0.7 and different densities.
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Figure 6.39: (a) Sphere-sphere radial distribution function, gss(r), calculated at 
T  =  0.6 and different densities; (b) configurational snapshot at p = 0.38 and T  =  0.6.

was not homogeneous, i.e. they tended to form groups. Since these sphere-sphere 

radial distribution functions approach unity at large separations, these groups must 

have been distributed randomly throughout the system. The corresponding struc

ture of such a system, taken at p = 0.38 and T  =  0.6, is pictured in Fig. 6.39(b).
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The cluster analysis of this configuration confirmed local clustering in the system. 

The sizes and numbers of the clusters separated by distances greater than 1.5o are 

shown in Tab. 6.15. A third compression series, at T  — 0.5, did not reveal any

Size 1 2 3 4 5 7 8 9 12 62 83 129
Number 13 21 1 4 2 2 1 2 1 1 1 1

Table 6.15: Cluster size distribution at p = 0.38 and T  = 0.6.

qualitative changes in the system behaviour. It remained isotropic and mixed in the 

range of densities 0.30 < p < 0.34 and then, at p — 35, a structure similar to that 

shown in Fig. 6.39(b) was observed.

A compression run at temperature T  =  1.0 was performed in the range of densities

0.36 < p <  0.40. The main motive for running this series was to find a stable ho

mogeneous nematic phase. So far, only the system of hard particles had exhibited 

a nematic phase in which the spheres were uniformly distributed over the simula

tion box. Systems (i) and (ii) showed very strong demixing and spheres tended 

to separate macroscopically from the rod-rich phase. During the performed com

pression sequence, the behaviour of the nematic order parameter indicated a phase 

transition at p «  0.38. On further compression, the system remained in a nematic 

phase as indicated by the parallel distribution function g\\{r\\). The sphere-sphere 

radial distribution functions were measured and the cluster analysis was performed 

to study the demixing property of these configurations. Figure 6.40(a) illustrates no 

macroscopic phase separation at densities 0.38 < p < 0.41. However, the decrease 

of the total numbers of clusters with increasing density suggests some local cluster

ing. Figure 6.40(b) shows how the total number of clusters changed with simulation 

time at p = 0.38 and p — 0.40 and Tab. 6.16 summarises the simulation results 

for all densities. These closely resemble analogous data obtained for hard particles, 

so indicating that the effect of attractive interactions in this mixture was weak at 

T  = 1 .0 , leading to the formation of a homogeneous nematic phase.

If the sphere concentration was reduced to, for example 10%, the demixing tendency
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Figure 6.40: (a) Radial sphere-sphere distribution functions, #ss(r), measured at 
T  =  1.0 and different densities; (b) cluster number during the runs at p =  0.38 and 
p =  0.40.

Density Order parameter Number of clusters Largest cluster size
0.36 0.069 ±  0.021 182 ± 1 1 17 ±  5
0.37 0.087 ±  0.034 180 ±  10 19 ± 6
0.38 0.522 ±  0.028 151 ± 1 0 28 ± 9
0.39 0.650 ±0.021 139 ± 8 29 ± 9
0.40 0.718 ±0.015 124 ± 9 38 ± 11
0.41 0.768 ±  0.013 114 ± 8 44 ± 1 5

Table 6.16: The order parameter and cluster distribution at T  =  1.0.

would be enhanced and the structures formed would be similar to those seen at 20% 

but containing fewer spheres. However, at higher sphere concentrations, there is 

a possibility of locating a lamellar phase in which spheres are present in a num

ber sufficient to fill in the spaces between the smectic layers. A 70/30 rod-sphere 

mixture was, therefore, simulated at low temperatures and a range of densities to 

explore the possible existence of such a phase. Two compression series were per

formed at temperatures T  =  0.6 and T  =  0.5. Starting from density p =  0.36, the 

compressions were carried on until the nematic order parameter indicated a phase 

transition. This occurred at a density of about p — 0.40 at T  — 0.6, and at p «  0.39 

at T  = 0.5. Very long runs (5 x 106) time steps were required to equilibrate the sys
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tem at these data points. The sphere-sphere radial distribution function calculated 

at pre-transitional densities did not indicate macrophase separation (see the red 

graph in Fig. 6.41 for example). However, the cluster distribution was quite differ-
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Figure 6.41: (a) #ss(r) and (b) <?[|(r||) distribution functions calculated at (p =  0.40, 
T  =  0.6) and (p =  0.39, T  =  0.5).

ent from that typical for a uniform mixture, e.g. 10 clusters of size ranging between 

20 and 60 were observed at p = 0.36, T  =  0.6. This distribution did not change 

significantly with increasing density up to the transition point, were the sphere-rich 

phase became continuous. Analogous compression at temperature T  =  0.5 revealed 

somewhat different system behaviour. Here, two large clusters were observed once 

smectic order had developed at p — 0.39. Figure 6.41(a) shows that the sphere dis

tributions were different in the structures formed on cooling at T  =  0.6 and T  =  0.5. 

The former had signs of macroscopic phase separation, whereas the latter suggested 

some microscopic structure with a periodicity of about 7uq. The parallel distribution 

functions calculated for both structures are shown in Fig. 6.41(b). There is a clear 

difference in the interlayer spacing which suggests that layers of spheres may have 

been sandwiched between the smectic layers in the lower temperature configuration. 

Figure 6.42 shows configuration snapshots of both, microphase separated and peri

odic, structures. The higher temperature configuration presents the coexistence of 

two phases: the bicontinuous phase similar to that formed by the 50/50 mixture and
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(a) (b)

Figure 6.42: (a) Configuration snapshot taken at p = 0.40 and T  = 0.6; (b) config
uration snapshot taken at p — 0.39 and T  =  0.5.

the rod-rich smectic phase. The low temperature configuration is a lamellar phase 

in which spheres do not fill completely the space between the layers of rods but do 

form a periodic supramolecular structure. The peak of the sphere-sphere radial dis

tribution function observed at separations about 7cr0 corresponds to the separation 

of two layers of spheres having two smectic layers between them. A weak peak at 

separations of about 4a corresponds to the spheres situated at a single rod’s ends. 

There are no distinct peaks in #||(r||) corresponding to the neighbouring smectic lay

ers, however its peaks are broader than those of the defect-free Gay-Berne smectic. 

This suggests that neighbouring layers of rods and layers separated by a layer of 

spheres contribute to a single peak in g\\{r\\).

To check whether the periodic structure observed at p = 0.39 and T =  0.5 was 

thermodynamically stable, auxiliary MC runs in the constant N P T  ensemble were 

performed. A configuration previously equilibrated at p = 0.38 and T  — 0.5 was 

used to start the first MC run, the pressure being set to P  = 1.4. Each MC cycle 

comprised 2048 particle displacement moves and one volume change move. The 

initial run, comprising 3 x 105 MC cycles yielded equilibrium density of 0.388±0.001, 

at wdiich the nematic order parameter indicated no LC phase. A much longer run 

of 2 x 106 was required to equilibrated the system at P  =  1.5. At this pressure, a
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smectic phase developed at a density of p — 0.406 ±0.001. Further equilibration was 

performed using an unsymmetrical MC volume move to reduce the effects of periodic 

boundary conditions. After 106 MC cycles, the system still was not fully equilibrated,

i.e. the potential energy was still slowly decreasing. The system did not macrophase 

separate at this point, but a lamellar-like structure was seen. Figure 6.43(a) shows
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Figure 6.43: (a)Distribution functions gss(r) and #j|(rj|) calculated at P  = 1.5 and 
T  =  0.5; (b) configurational snapshot taken at P  = 1.5 and T  =  0.5.

distribution functions gss(r) and £||(r||) calculated at P  =  1.5 and T  — 0.5. The 

gss(r) indicates some periodicity of the same order observed in our MD simulations 

at p = 0.39 and T  =  0.5. It can be seen (Fig. 6.43(a)) that <7||(r ll)  P e a ^ s  have 

contributions from both neighbouring smectic layers and smectic layers separated 

by spheres. Figure 6.43(b) illustrates the configurational snapshot taken at this data 

point. This suggests that the slow equilibration of this state point was associated 

with rearrangements of the smectic layers.

6.4.3 Discussion

System (iii) exhibits very weak demixing when compared to systems (i) and (ii). 

Here, the rod-sphere potential has a well-depth function which is independent of the 

relative orientation of the particles. The same energy of the rod-sphere interaction is
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realised in the side configuration of system (i) and in the end configuration of system

(ii). However, the demixing appears to be more favourable for these systems rather 

than staying in the homogeneous high energy configurations. Since, in system (iii), 

the potential energy would not change much with demixing, the entropic consider

ation ensure that the system remains mixed over the wide range of densities and 

temperatures. At low temperatures, however, the side-by-side configurations of the 

rods make a significant contribution to reducing the potential energy and dominate 

the entropic effect. This results in the formation of microphase-separated structures 

in which the spheres are expelled from the layers of rods but do not demix fully, 

because of the associated entropy penalty. The single particle dynamics for these 

structures was found to be approximately diffusive, which may explain the absence 

of long-range correlations in the system. The 50/50 rod-sphere concentration ratio 

appeared to be too sphere-rich to allow development of lamellar phases and it was 

difficult to observe it at lower concentrations too. The reducing of the sphere-sphere 

interaction would decrease the surface tension of the sphere-rich phase and make it 

energetically cheaper to form layers of spheres.

6.5 System  (iv)

In this Section, the results of simulations performed on the system of type (iv) 

are reported together with appropriate analysis. Here, the rod-sphere interaction 

is characterised by a very strong end attraction. It is five times as strong as the 

sphere-sphere interaction or the rod-rod interaction in the X configuration. The mo

tivation for this parameterisation comes from the idea of combining the calamatic 

and lyotropic LC properties, thereby, introducing possibilities of novel phase format 

tion. As before, the model behaviour is first studied starting for a 50/50 mixture, 

before lower sphere concentrations are considered.
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6.5.1 50 /50  M ixture

In this Section, a 50/50 mixture of rods and spheres interacting via the potentials 

of type (iv)(see Section 6.1 for details) is studied using our standard constant N V T  

MD method. A system of 1024 particles in total was equilibrated at density p =  0.40 

and temperature T  =  1.5 for 3 x 106 time steps. Due to the very strong interactions 

present in the system, this temperature, quite high for the systems studied above, 

appeared to be relatively low, i.e. the calculated pressure was close to zero in this 

simulation. The nematic order parameter indicated no orientational ordering at this 

point, whereas the sphere-sphere distribution function suggested some periodicity 

of order of about 5cro- Cluster analysis indicated a bicontinuous structure and a 

configurational snapshot was similar to that of the mixture (iii) at low temperatures 

(Fig. 6.34). The system was heated to T  =  2.9 with a step of A T  =  0.2. The radial 

distribution functions measured during this series are shown in Fig. 6.44(a). These

T=2.7

-13.5
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

Temperature

(b)

Figure 6.44: (a) Sphere-sphere radial distribution functions and (b) potential energy 
per particle calculated at p — 0.40 and different temperatures.

indicate that the periodicity observed at low temperatures disappeared on heating 

and that the mixture became uniform. This process was not accompanied by any 

measurable discontinuities of the potential energy (Fig. 6.44(b)) or pressure.

132



CHAPTER 6. ROD-SPHERE M IXTURES IN  BULK

In order to determine the density dependence of the formed structure, two com

pression series were undertaken at high, T  =  2.9, and low, T  =  1.5, temperatures. 

Figure 6.45 shows the rod-sphere radial distribution functions measured at densities
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Figure 6.45: Rod-sphere radial distribution functions calculated at different densities 
at (a) T =  1.5 and (b) T  =  2.9.

p = 0.40, p =  0.45, and p =  0.49. These do not indicate any significant density 

dependency of the system’s structure at both low and high temperatures.

To explore the long-range order further, a larger system of 8192 particles in total 

was simulated. The initial configuration was obtained by replicating 8 configurations 

of a system of 1024 particles at p — 0.40 and T  — 2.7. The initial velocities were 

set according to the random Maxwell-Bolzmann distribution scheme described at 

page 119. The system was cooled from T  =  2.7 with a step of AT =  0.2 allowing 

at least 4 x 105 time steps of equilibration after each decrement. Runs two and 

three times longer than this were required at temperatures 1.7 and 1.5 respectively. 

The structures formed in large and small simulation boxes were characterised by 

essentially the same distribution functions. Nevertheless, it actually became possible 

to visualise the long range correlations when using the larger box. Figure 6.46 shows 

a set of radial pair distribution functions calculated at p =  0.40 and T  =  1.5. The 

positions of the peaks of the rod-rod and sphere-sphere distribution functions almost 

coincide at large separations while the radial distribution of pairs of unlike particles
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Figure 6.46: Radial distribution functions grr(f’)i and grs(r) measured at
p =  0.40 and T =  1.5.

has minima at these same points. This suggests that rods and spheres formed 

two similar and interpenetrating structures. Two configuration snapshots taken at 

p =  0.40 and T  = 1.5 are shown in Fig 6.47. Here, the rods are represented by

Figure 6.47: Two semitransparent snapshots of the same configuration at p = 0.40 
and T  = 1.5 taken from different points of view.

thin blue lines and the spheres are empty yellow circles, this simple graphics make 

it possible to see significant depth into the simulation box. There is a clear cubic 

pattern in the first snapshot, whereas the yellow spots form a hexagonal pattern in 

the second. These suggest that the formed structure has the symmetry of a cubic 

phase.
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Particle mean square displacement measurements were carried out to explore the 

dynamic properties of this structure. It appeared that both rods and spheres ex

perienced quite significant diffusion and did not have fixed positions. The average 

displacement of rods over 3 x 105 time steps was found to be more than 6<Jo, and 

about 8<t0 for the spheres. The time dependencies of these are shown in Fig. 6.48. 

These indicate that both rods and spheres diffused similarly at long times, i.e. the
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Figure 6.48: Time dependance of the mean square displacement at p =  0.40 and 
T  =  1.5 plotted in the double logarithmic scale.

slopes of both curves in double logarithmic scale are the same and equal to 0.93±0.01. 

The short time behaviour (for times less then 30,000 time steps and displacements 

less than 2cr0) was different and did not match that for long times.

6.5.2 Low Concentration of Spheres

In this Section several mixtures containing 10%, 20%, 30%, and 40% of spheres 

are studied. The systems were simulated in the constant N V T  ensemble using 

MD method. Some of the results were validated in the constant N P T  using MC 

techniques.

The simulations of a 90/10 mixture were started from a hard particle configuration
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of 1844 rods and 204 spheres at density p =  0.30. The temperature was set to 

T  = 2.0 and the system was equilibrated for 7 x 106 time steps. According to the 

nematic order parameter it remained in an isotropic phase, and the cluster analysis 

did not reveal a macroscopic phase separation, i.e. about a hundred clusters with 

the largest one composed of 7 particles were observed. A cooling series with a step 

of A T  =  0.1 was performed at a constant density starting from this point. The size 

distribution of the clusters did not change much with decreasing temperature. At 

temperatures below T w 1.1 the spheres formed stable clusters and their distribution 

did not change with time. Table 6.17 shows the cluster size distribution which was

Size 1 2 3 4 5 6
Number 19 32 13 11 4 3

Table 6.17: Cluster size distribution at p — 0.30 and T  < 1.0.

established at T  =  1.0 and remained unchanged at lower temperatures. This static 

distribution suggests that these clusters of spheres were localised in the rod-rich 

phase. The sphere-sphere and rod-sphere radial distribution functions calculated 

at different temperatures are shown in Fig. 6.49. They indicate supramolecular
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Figure 6.49: (a) Sphere-sphere, #ss(r), and (b) rod-sphere, #rs(r), radial distribution 
functions measured at p — 0.30 and different temperatures.

periodicity developed at low temperatures. The fact that there are some prohibited
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sphere-sphere separations at around 3cro is consistent with the hypothesis of clusters 

of spheres forming a stable pattern. The rod-sphere distribution function indicates 

that the probability of finding a sphere near the rod’s side decreases with decreasing 

temperature, whereas it becomes more likely to find a sphere near the rod’s end 

at low temperatures. Figure 6.50(a) shows a configurational snapshot taken at
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Figure 6.50: (a) Configuration snapshot taken at p = 0.30 and T  =  0.7; (b) time 
dependance of the mean square displacement of rods at T  — 0.7 and T  =  1.0.

p =  0.30 and T  =  0.7. This shows a periodic structure which resembles the symmetry 

of the hexagonal close packed (HCP) lattice. The dynamic characteristics of this 

structure were studied by measuring the mean square displacement of the particles. 

Figure 6.50(b) shows the rods’ displacements measured at temperatures T  =  0.7 

and T  = 1 .0 . In the double logarithmic scale, both have tangents with an identical 

slope of v =  0.93 ±  0.02 which coincides with that measured for the 50/50 mixture. 

The diffusion coefficients at these temperatures were quite different; although at 

the lower temperature the rods were still clearly diffusing (after 7 x 105 time steps 

the average displacement was about 3.5c t o ) .  The sphere displacement was difficult 

to analyse due to the relatively small number of spheres in the system and very 

low displacement rate. For example, at T  =  0.7, the average sphere displacement 

after 7 x 105 time steps was less than <Jo and the data were too noisy for a fit to 

be attempted. Since the cluster distribution did not change with time, however,
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this observed sphere displacement was restricted to being within clusters of spheres, 

whereas rods were able to move around from cluster to cluster.

The system density dependence was studied at constant low, T  =  1.0, and high, 

T =  2.0, temperatures. Both compression series were performed in the interval 

of densities 0.30 < p < 0.40 with a step of Ap = 0.01. Quantities of interest were 

averaged over 2 x 105 time steps after the system had equilibrated for at least 5 x 105 

time steps. The averaged values of the nematic order parameter along with their 

mean square deviations are shown in Fig. 6.51(a) for both compression sequences. 

The micellar structure formed at low temperatures proved to be very stable. The
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Figure 6.51: (a) Density dependence of the nematic order parameter measured at 
T  — 1.0 and T  =  2.0; (b) cluster distribution during compression series at T  =  1.0 
and T  =  2.0.

order parameter was always low and the cluster distribution remained unchanged 

as well (Fig. 6.51(b)). At higher temperature, the excluded volume effect overcame 

attractive interactions at high densities and the increase in order parameter indicated 

an isotropic-nematic transition. We did not compress the system further because it 

was already at a very high density, and particle diffusion was already slow.

So far, we have seen system (iv) exhibiting a cubic-like structure at 50/50 rod-sphere 

concentration ratio and a micellar crystal phase in a 90/10 mixture. These phases
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are typical for amphiphilic systems in which solute molecules have a hydrophilic and 

hydrophobic ends [103]. The system we study here is quite different from this, how

ever, since the interaction is symmetrical and the spheres cannot be considered as a 

solvent. Nevertheless, amphiphilic systems are known to form a hexagonal structure 

in a concentration range between micellar and cubic phase concentrations. In this 

phase, cylinders of radially aligned prolate molecules form a supramolecular hexag

onal periodic structure. To this end, several series of cooling runs were performed 

at 20%, 30%, and 40% sphere concentrations in search of a similar self-assembling 

structure. Since both 10% and 50% systems had shown a little density dependence, 

the cooling series were performed at low densities where particle mobility was higher.

A system of 1638 rods and 410 spheres (20% of spheres) was cooled down at a 

constant density p =  0.30. Starting from T  =  2.4 the temperature was reduced to 

T  = 1.0 with a step of AT =  0.1. Cluster analysis was carried out and distribution 

functions were calculated to study the system’s structure. It was found that at 

low temperatures, about T  =  1.0, a number of relatively stable clusters of spheres 

formed. Table 6.18 shows the size distribution of these clusters observed at T  = 1.0.

Size 3 4 5 6 7 8 9 10
Number 5 11 21 21 11 3 1 1

Table 6. 18: Cluster size distribution at p =  0.30 and T  =  1.0 for an 80/20 mixture.

There were about 74 clusters separated by distances greater than 1.5<t o , most of 

them containing 5 or 6 spheres. The sphere-sphere and rod-sphere radial distribution 

functions, shown in Fig. 6. 52, indicate a structure similar to that observed for the 

90/10 mixture at low temperatures. It has the same periodicity but this time the 

cluster size is bigger and the distribution functions capture slightly different sphere 

distribution within the clusters.

A 70/30 mixture was simulated in the constant N P T  ensemble using MC techniques. 

To study a low temperature and low density configuration, the temperature was 

set to T  =  1.2 and pressure to P  =  0.5. The system was equilibrated for 5 x
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Figure 6.52: (a) Sphere-sphere, gss(r), and (b) rod-sphere, grs(r), radial distribution 
functions measured at p — 0.30 and different temperatures.

105 MC cycles which resulted in an equilibrium number density of p = 0.342 d= 

0.002. The measured radial distribution functions, shown in Fig. 6.53(a), indicate

i i-------1-------1-------1-------1-------1-------»
rod-rod --------
rod-sph
sph-sph

(a) (b)

Figure 6.53: (a) Radial distribution functions grr(f'), grs(r), and <?ss(r) measured at 
P  = 0.5 and T =  1.2; (b) configurational snapshot taken at P  — 0.5 and T  =  1.2.

periodicities similar to those seen for 10% and 20% mixtures. Cluster analysis, 

however, indicated much larger clusters. There were about 15 clusters containing 

more than 20 spheres. Figure 6.53(b) shows a configurational snapshot taken at
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this data point. It illustrates that here the concentration of spheres was too high to 

accommodate the micellar structure seen at lower sphere concentrations. When 30% 

of spheres are present in the system, it appears that some of the micelles merge to 

form large prolate assemblies. These elongated structures appeared to be randomly 

oriented, however, rather than adopting the high degree of alignment needed for a 

conventional hexagonal supramolecular structure.

An N P T  MC simulation of a 60/40 mixture at T  =  1.2 and P  =  1.0 did not 

reveal any hexagonal phase either. The radial distribution functions again indicated 

some periodicity of order of 5cr0 but cluster analysis showed that more than 90% 

of the spheres were members of the same cluster, indicating the structure to be 

bicontinuous.

6.5.3 Discussion

The end rod-sphere interactions are the dominant interactions in system (iv). The 

addition of some spheres to the pure Gay-Berne fluid here, therefore, dramatically 

changes its properties. At temperatures about T  =  1.0, relatively high for the pure 

Gay-Berne fluid, mixtures develop highly ordered structures. The isotropic and 

uniform configuration is now only found at much higher temperatures of order of 

T  =  3.0. One consequence of this effective temperature shift is that weak attractive 

interactions become insignificant. Therefore, all of the novel phases formed mainly 

due to the strong end rod-sphere attractions. Following this idea, we went on to 

explore a simpler model which possessed this property. A hard particle mixture 

with added square well attractive regions was simulated. In this model, a rod had 

two spherical attractive regions situated near its ends at distance L  from its centre 

(Fig. 6.54). The diameters of the attractive regions were set to cro to ensure that 

only one sphere could “stick” to each rod’s end. The distance L  which controlled 

the size of the active area accessible to the spheres, could be adjusted within the 

range y/E — 0.5 < L < y/E. If the centre of a sphere was found within the attractive 

region then the energy of such a rod-sphere configuration was ers and zero otherwise.
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Figure 6.54: Model of hard particles with embedded attractive regions (shown as 
red circles).

50/50 and 80/20 rod-sphere mixtures interacting via this potential were studied at 

two values of L, L\ — — 0.3 and L2 =  y/h. The temperature was set to 0.2ers

and remained unchanged for all simulations. Two 50/50 mixtures with different 

values of L  were equilibrated in the constant N V T  ensemble at p — 0.40 for 2 x 106 

MC cycles. The equilibrium values of the potential energy were (—1836 ±  l l)e rs for 

Li and (—1942 ±  10)ers for L2. These corresponded to the number of rod-sphere 

configurations, i.e. there were 1024 rods in the system, therefore, the lowest energy 

possible was —2048ers. The nematic order parameter measured during both runs 

was typical for an isotropic phase. Figure 6.55(a) shows the sphere-sphere and rod-
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Figure 6.55: (a) Radial distribution functions grr(r), tfrS(r), and #ss(r) measured at 
P  =  0.5 and T  — 1.2; (b) configurational snapshot taken at P  =  0.5 and T  =  1.2.

sphere radial distribution functions calculated for both systems. These indicate
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neither demixing nor supramolecular periodicity. A weak peak of gss(r) observed 

at separations about 4.5cr0 corresponds to two spheres attached to the ends of the 

same rod.

Analogous simulations were performed for two 80/20 mixtures with the same values 

of the parameter L  (Li  =  y/E — 0.3 and L 2 = y/E). These systems were simulated at 

p — 0.30 for 106 MC cycles and the nematic order parameter indicated an isotropic 

phase in both cases. Figure 6.55(b) shows the resultant set of the radial distribution 

functions. No long range correlations were observed for Li, whereas a small peak 

at sphere-sphere separations of about 8.7<r0 was observed for L2. This suggests that 

increasing of the attractive regions is in favour of micellar phase formation. However, 

the systems simulated failed to exhibit stable pariodic structures. The compression 

of these systems did not reveal any qualitative structural changes either.

The reason why this simple model did not reproduces the phase behaviour observed 

for system (iv) might be the saturation of the rod-sphere bonds. In mixtures of type 

(iv), the number of spheres attracted to the rod’s end was limited only by steric 

repulsions, whereas a single sphere screens the rod’s end attraction in the model 

studied above. When comparing areas under the peaks of the rod-sphere distribution 

functions (for example, Fig 6.52 and Fig. 6.55(b)) we can conclude that, on average, 

about two spheres can be found near each rod’s end in mixture (iv) and less than one 

sphere in the model considered above. This indicates that the structures observed in 

the previous Section were formed due to strong end rod-sphere attractions which had 

coordination numbers of more than one. The structural periodicity slightly changed 

with the sphere concentration (and system density as well) and was of order of 4.70- 

in the micellar, cubic and all intermediate phases.
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Chapter 7

Rod-Sphere M ixtures Subjected to  

a Field

This Chapter presents our simulation results on bulk rod-sphere mixtures subjected 

to an external field. Here, as well as the pairwise interactions with its neighbours 

each rod-like particle will be subject to an additional energy which depends only 

on its orientation in the global reference frame. The spheres, however, will not be 

affected by this field. Without loss of generality we will present and discuss our 

results in terms of an applied magnetic field.

The response of liquid crystal molecules to an external field is the major charac

teristic utilised in device applications. If a magnetic field is applied, the molecules 

experience an aligning torque: if the molecules have positive magnetic susceptibility, 

they tend to align parallel to the field forming an ordered phase under sufficiently 

strong field; in the case of a negative magnetic susceptibility, the molecules tend to 

lie in the plane perpendicular to the field and are free to rotate in that plane. Thus, 

the magnetic field breaks the orientational symmetry of the system by introducing 

either a preferred direction to align with or a plane to align in. The sense of this 

response depends only upon the intrinsic properties of the molecules.

An applied field can cause significant changes in the microscopic structure of a liq
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uid crystalline system. The following Sections describe how the structure of the 

rod-sphere mixtures studied in Chapter 6 can be influenced by such a field. Mix

tures of spheres and rods with positive magnetic susceptibility are considered in the 

next Section. This is followed by an equivalent set of results for negative magnetic 

susceptibility Section and, finally, a discussion.

7.1 Positive M agnetic Susceptibility

The behaviour of a liquid crystal in an applied magnetic field is determined by the 

sign of the magnetic susceptibility

x  =  xii -  x±>

where X|| and X± are molecular susceptibilities along and normal to the molecular 

axis. The majority of LCs have positive x  aad this scenario is the most often studied. 

In the presence of static magnetic field H , a molecule gains an extra energy

U h ^ - ^ x H *  c o s 2 0, (7 .1 )

where 0 is the angle between H  and the orientational unit vector Uj. More nega

tive energy values correspond to larger cos# which are achieved at small angles 6. 

Therefore, molecules with positive x  t end to align parallel to the field to minimise 

their energy.

Overall, the forces exerted on a molecule by a magnetic field may influence only 

its rotation without affecting directly its translational motion. Substituting expres

sion (7.1) into formula (A.6) from Appendix A we obtain the torque acting upon 

rod i :

o r  r

Th =  ~  Hv \  * H ] =  X #  cos<9[u* x Hj. (7.2)a(Uj • n j

To update orientational coordinates in the computer code we need expressions for 

gJL, which act perpendicular to the molecular axis. If the field is applied in the
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^-direction, i.e. H  =  (0,0, H), the components of g_L are:

g \  = - x H 2u2zux

9± = ~ x H 2u2zuy

g± = x H 2u z ( l - u 2z).

The response of nematic LCs to external fields is of great interest for LC applications 

and also provides information about fundamental dynamic processes [107]. Whether 

the system has orientational order or not, application of an external field increases 

the degree of order. For example, field-induced demixing and phase transitions are 

known to occur [8]. If a magnetic field is applied to an ordered phase it can both 

change the orientation of the director and increase the degree of order in the system. 

In the case of a nematic phase, this process involves rotation of the molecules such 

that they align with the field. In contrast, the magnetic field-induced alignment in 

smectic phases is qualitatively different. This complex process involves the flow of 

molecules and is strongly influenced by the nature of the containing surface for the 

smectic A phase [108]. Within this work, we do not address the dynamics associated 

with switching the field: only the final equilibrium configuration and its structural 

properties are of the immediate interest. The following Subsections investigate the 

effect of a static magnetic field on the rod-sphere mixtures of types (i)-(iv) studied 

previously in Chapter 6 .

7.1.1 System  (i)

The first simulations performed using a field were based on a 50/50 mixture of 

system (i) described in Section 6.2. Without loss of generality, the magnetic sus

ceptibility, x > was set to 2 , making H 2 numerically to be the maximum energy of a 

rod under an applied field H. The system’s response to fields of different strengths 

was studied for a system of 1024 particles in total at low density, p =  0.40, and 

high temperature, T  — 1.7. At this data point, this system is known to exhibited 

an isotropic uniform configuration under zero field (Subsection 6 .2.1). Fields in the 

range 0 <  H  < 4 with a step of A H  — 0.5 were applied and the nematic order
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parameter, S,  was measured and averaged over 105 time steps after the system had 

equilibrated at each field strength. Figure 7.1(a) shows the resultant dependence
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Figure 7.1: (a) Order parameter versus magnetic field at p = 0.40 and T =  1.7; (b) 
distribution function gss{r) measured at p — 0.40 and T  = 1.7 without and under 
field {H = 3.0).

S(H).  The stronger the field the less disorientating effect of the particles’ thermal 

fluctuations and, therefore, the higher the measured order parameter. Note that the 

average kinetic energy associated with each rod is equal to |T ,  whereas each rod’s 

maximum energy in the field is H 2. If these two energies are of the same order, the 

magnetic field will impose significant alignment upon the rods. In out simulations, 

this corresponds to fields of about H  = y/2.b x 1.7 «  2 which is in a reasonable 

agreement with the results shown in Fig. 7.1(a). Unlike the isotropic-nematic tran

sition, the field-induced ordering is continuous and the mean square deviations of S  

at given H  are small when compared to the order parameter fluctuations near the 

transition point (see Fig. 5.3 for example). Figure 7.1(b) shows the sphere-sphere ra

dial distribution function calculated both without a field and under relatively strong 

field H  =  3.0. These indicate some very weak signs of demixing under the applied 

field. Despite the high order parameter observed in this run, the parallel distribu

tion function did not indicate any smectic layering, i.e. only orientational long range 

order is present in the system.
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Rather, a field H  — 2.0 was applied to a 50/50 mixture previously equilibrated 

at high density p = 0.50 and high temperature T  =  1.7. Without the field, the 

system was isotropic and uniform at this data point, whereas at lower temperatures 

it demixed and phase separated forming a cylinder of spheres embedded in a smectic 

phase (Subsection 6 .2.1). Applying the field resulted in the formation of a similar 

structure, i.e. the spheres formed a cylinder while the rods ordered into an LC phase 

with a high value of the order parameter S  =  0.798 ±  0.010. Figure 7.2(a) shows
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Figure 7.2: (a) Sphere-sphere radial distribution functions, #S5(r), calculated at 
p = 0.50 and T  = 1.7 without magnetic field and under H  = 2; (b) </||(r||) a t this 
data point under field H  = 2.0.

the sphere-sphere radial distribution functions illustrating that demixing occurred 

in the system under an applied field. <7||(r||), shown in Fig. 7.2(b), does not indicate 

smectic layers, however. This leads to the conclusion that the temperature of T  =  1.7 

would appear to have been too high for the Gay-Berne particles to develop a smectic 

phase at this density. The low temperature behaviour of this 50/50 mixture was not 

studied because, once demixed, the system had already attained axial symmetry. 

Even in the isotropic phase, a cylinder of spheres was found which imposed this 

type of symmetry. Applying a field would only increase the degree of order along 

this cylinder axis.

A field was applied to a 90/10 mixture at p — 0.31 and T =  0.7. W ithout the field,
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at this data point, the mixture was isotropic and homogeneous (Subsection 6.2.2). 

Since the temperature was relatively low, a moderate field of H  =  1.0 was set. 

After equilibration for 1.5 x 106 MD time steps the order parameter was found to be 

S  =  0.86i0.01 and the parallel distribution function, shown in Fig. 7.3(a), indicated
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Figure 7.3: (a) Parallel distribution function, 0 ||(r||), measured at p — 0.31, T  = 0.7 
under field H  = 1.0; (b) configuration snapshot taken at this data point.

smectic layers. The calculated sphere-sphere radial distribution function was typical 

for macrophase separated systems. Therefore, applying the field in this data point 

caused both isotropic-smectic and demixing transitions. Figure 7.3(b) illustrates the 

final configuration of this run. The direction of applied field, in this figure and all 

the following figures in this Section, is horizontal.

7.1.2 System  (ii)

In this Subsection, assuming positive magnetic susceptibility of the Gay-Berne par

ticles, we study mixtures of type (ii), previously described in Section 6.3, under a 

magnetic field. Here we concentrate on the high temperature system behaviour. 

Low temperature behaviour is studied only at low sphere concentration because 

of the strong influence of the periodic boundary conditions observed for demixed 

configurations of 50/50 mixtures (see Section 6.3).
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A 50/50 mixture was studied in the constant N V T  ensemble under applied field H  =  

2.0 at high temperature T  =  1.7 using MD. Two runs were performed starting from 

isotropic uniform configurations at p — 0.40 and p — 0.50. After equilibration for 

7 x 105 MD time steps, the sets of distribution functions were computed. The lower 

density configuration exhibited behaviour very similar to that observed in system 

(i) under the same conditions, i.e. very weak signs of demixing were seen. Similarly 

rods were aligned by the magnetic field although no smectic layering was observed. 

The resulting #ss(r) and <7||(f||) distribution functions for the higher density run at 

p =  0.50 are shown in Fig. 7.4(a). These indicate macroscopic phase separation
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Figure 7.4: (a) Sphere-sphere, gss(r), and parallel, #||(r||), distribution functions 
measured at p — 0.50, T  =  1.7 under field H  = 2.0; (b) configuration snapshot 
taken at this data point.

and no smectic layers in the system. This behaviour is similar to that observed 

in system (i) under the same external conditions. However, the snapshot shown in 

Fig. 7.4(b) illustrates that the cylindrical droplet of spheres formed perpendicular to 

the director. The tensor of inertia of this droplet was measured and the eigenvector 

corresponding to its largest eigenvalue was found to be nearly perpendicular to the 

director at all times. Clearly the formation of the cylinder was due to the periodic 

boundary effect. In a macroscopic system corresponding to 50/50 mixture of type 

(i) or (ii), macroscopic phase separation would occur and the rod-sphere potential
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would affect the rods’ anchoring on the phase interface. The field-induced change in 

the orientation of the cylinders of sphere is not, therefore, a significant observation.

Subsequently, a 90/10 mixture was simulated at p = 0.31 and T =  1.0 under fields 

H  = 1.0 and H  =  2.0. After an equilibration run of 7 x 105 MD time steps at 

H  = 1.0, the nematic order parameter was found to be of 0.638 db 0.018. The 

sphere-sphere radial distribution function, shown in Fig. 7.5(a), indicates uniform
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Figure 7.5: (a) Sphere-sphere, gss(r), and (b) parallel, <7||(U|)> distribution functions 
measured at p — 0.31, T  =  1.0 under fields H  = 1.0 and H  = 2.0.

distribution of the spheres in the system. In a subsequent run, at H  = 2.0, the 

resultant order parameter was 0.8404:0.007, and the distribution functions continued 

to indicate a homogeneous sphere distribution. Figure 7.5(b) shows that, under the 

higher field, some weak (note the scale along the y-axis) positional correlations of 

the rods’ arrangement were observed. Unlike for a 90/10 mixture of type (i) at 

T  = 0.7, temperature T =  1.0 appeared to be too high to allow development of a 

stable smectic phase at this density.

A droplet of spheres suspended in the rod-rich phase was studied, therefore, at low 

temperatures below the demixing point. A 90/10 mixture was subjected to a con

stant magnetic field of H  = 2.0 under isochoric-isothermal conditions at temperature 

T  =  0.7 and pressure P  =  1.0. After equilibration for 2 x 105 MC cycles, the system
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was found to be in a smectic phase. The order parameter was 0.938 =1= 0.007 and the 

director was parallel to the field. Configuration snapshots indicated that a disk-like 

droplet of spheres was encapsulated within one smectic layer. The measurements of 

the inertia tensor gave the following values of its components: I\ =  1240, h  =  700, 

and Is =  96 in units of mol.  The eigenvector corresponding to Is was parallel to 

the applied field.

7.1.3 System  (iii)

The mixture described in Section 6.4 exhibits very weak demixing properties over 

a wide range of densities and temperatures. Only at relatively high sphere concen

trations was the development of smectic layers affected by the spheres, resulting in 

microphase separated bicontinuous structures. Applying a field to a 50/50 mixture 

of type (iii) might be expected to both change this low temperature structure and 

lead to some order if it is applied at higher temperatures and densities. In this 

Subsection, the effect of a field on a 50/50 mixture is studied using both MD and 

MC techniques.

A system of 1024 particles in total at 50/50 rod-sphere concentration ratio was 

simulated in the constant N V T  ensemble at densities p — 0.40 and p =  0.50 at 

a relatively high temperature of T  =  1.2. The system’s behaviour was studied 

at fields H  = 1.0 and H  = 2.0. After equilibration for 7 x 105 MD times steps, 

the configurations were further equilibrated under isobaric-isothermal conditions for 

2 x 105 MC cycles. Each cycle included 1024 random displacement moves and one 

asymmetrical volume rearrangement. All three dimensions of the simulation box 

were allowed to fluctuate independently so as to reduce the effect of the periodic 

boundary conditions. The constant pressure chosen for the lower density runs was 

P  = 2.43, P  = 7.40 being used for the higher density ones. These were the pressures 

calculated at T  = 1.2 in the constant N V T  ensemble for zero field at densities 

p — 0.40 and p =  0.50 respectively. There was a small field dependence on the 

pressure in the constant N V T  ensemble and, consequently, the equilibrium density
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varied slightly with field strength in the constant N P T  ensemble. Table 7.1 shows

Pressure Field Density Order parameter
2.43 1.0 0.401 ±0.010 0.292 ±  0.035
2.43 2.0 0.408 ±0.012 0.720 ±  0.014
7.40 1.0 0.498 ±  0.008 0.559 ±0.021
7.40 2.0 0.507 ±  0.008 0.827 ±  0.008

Table 7.1: The equilibrium density and nematic order parameter in various constant 
N P T  runs at T  =  1.2.

average values of the equilibrium densities and nematic order parameters in the 

performed MC runs. These indicate that the same field induces higher order at 

higher densities. The distribution functions, however, do not indicate any significant 

changes in the systems’ structure. Figure 7.6 shows <?ss(r) and <?||(r||) distribution
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Figure 7.6: (a) Sphere-sphere, #ss(r), and (b) parallel, <?||(r||), distribution functions 
measured at P  — 7.40, T  — 1.2 under fields H  = 1.0 and H  — 2.0.

functions calculated at the higher densities under fields H  =  1.0 and H  =  2.0. 

These indicate that the spheres were uniformly distributed in the simulation boxes 

and that the rods did not form a convincing smectic. The effect of the applied field 

was even weaker at lower densities.

The low temperature behaviour of this 50/50 mixture under an applied field was 

studied at temperatures T  =  0.7 and T  = 0.6. A field of H  = 1.0 was applied to the
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configuration previously equilibrated at p = 0.40 and T =  0.7 in the constant N V T  

ensemble. After 7x 105 MD steps, the system was further equilibrated for 6 x 105 MC 

cycles under constant pressure P  =  0.6. The nematic order parameter was found to 

be 0.567 ±  0.018, although the pair distribution functions did not indicate any sig

nificant changes in the system’s structure. In a subsequent MC run at H  = 2.0, the 

nematic order parameter rose to 0.867 ±  0.007 and the structural properties of the 

mixture changed. Figure 7.7 shows the gss{r ) and #||(H|) distribution functions for
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Figure 7.7: (a) Sphere-sphere, ^ ( r ) ,  and (b) parallel, ^||(^||), distribution functions 
measured at P  = 0.60, T  = 0.7 under fields H  = 1.0 and H  = 2.0.

both the H  = 1.0 and H  = 2.0 runs. They indicate that a stable lamellar structure 

developed under the stronger field, whereas the more moderate field influenced only 

the rods’ orientations leaving their translational correlations unaffected. Similar re

sults were obtained for this same mixture at the lower temperature of T  =  0.6. Here, 

the mixture was simulated using constant N P T  MC method at P  = 0.6 and T  = 0.6 

under a field of H  =  1.0. This time the H  = 1.0 field proved sufficiently strong to 

cause development of a lamellar structure. Figure 7.8 shows the corresponding set 

of distribution functions and the final configuration from this MC run.

Equivalent behaviour was then found in a high density, low temperature system. A 

50/50 mixture at p — 0.50 and T  = 0.7 was simulated under a field of H  — 1.0 for 

7 x 105 MD time steps. Then it was equilibrated further at a constant pressure of
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Figure 7.8: (a) Sphere-sphere, gss(r), and parallel, p||(r||), distribution functions 
measured at P  — 0.6, T  =  0.6 under H  — 1.0. (b) configuration snapshot taken at 
this data point.

P  — 4.00 for 106 MC cycles. Eventually a lamellar structure, similar to that seen at 

lower densities, developed.

The response of system (ii) to an applied magnetic field may be summarised as 

follows. With or without an applied field, a 50/50 mixture of type (iii) exhibits 

very little density dependence. If a field is applied at high temperatures, the rod’s 

orientation changes and a paranematic phase is formed with spheres homogeneously 

distributed within it. As the temperature is decreased, the rod-rod side interac

tions promote stable layers provided the rods are aligned by a sufficiently strong 

field. Thus, a lamellar phase forms in which layers of rods are separated by layers 

of spheres. At even lower temperatures, the system develops a bicontinuous struc

ture at zero field. If a strong field is applied, this structure orders into a lamellar 

configuration.
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7.1.4 System  (iv)

This Subsection presents simulation results obtained when system (iv) was subjected 

to a constant magnetic field. It was shown in Section 6.5 that this type of mixture 

exhibits long range positional ordering at low temperatures. A cubic phase was 

observed at a 50/50 rod-sphere concentration ratio (Subsection 6.5.1) and a micellar 

crystal phase with hexagonal symmetry developed at lower sphere concentrations. 

50/50 and 80/20 mixtures are studied in this Subsection using the constant N P T  

MC method.

A 50/50 mixture of type (iv) under an applied field of H  — 2.0 was simulated in the 

constant N P T  ensemble at T  =  1.5 for 3 x 105 MC cycles. The pressure was chosen 

to be P  — 0.3 to yield a low density simulations with high particle mobility. Under 

these conditions, the system formed a lamellar structure similar to that shown in 

Fig. 7.8. Figure 7.9(a) shows a set of distribution functions indicating microphase
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Figure 7.9: Sphere-sphere, gss(r), and parallel, 0||(r||), distribution functions mea
sured under field H  =  2.0 at P  = 0.3: (a) 50/50 mixture at T  — 1.5 (b) 80/20 
mixture at T  =  1.0.

separation in the system. Here the layers of rods are separated by a distance of 

about 3.44cr0 and the interlayer space is filled with spheres.

An 80/20 mixture was simulated at T  = 1.0 and P  = 0.3 under a field of H  = 2.0.

156



CHAPTER 7. ROD-SPHERE M IXTURES SUBJECTED TO A FIELD

Its distribution functions, measured after 3 x 105 MC cycles of equilibration run, 

are shown in Fig. 7.9(b). The periodicity of the hexagonal close packing observed 

without the field (see Fig. 6.52) is preserved at H  = 2.0 according to #S5(r). The 

<7||(r||) curve indicates a weak correlation in the rods’ arrangement, due to the posi

tional correlation of rods in the HCP-structure which are now aligned by the field. 

Cluster analysis was performed and its results are presented in Tab. 7.2. They show

Size 3 4 5 6 7 8 9 11 12
Number 6 15 21 17 8 2 2 1 2

Table 7.2: Cluster size distribution at P  =  0.30 and T  = 1.0 under H  =  2.0.

that the cluster size distribution was very similar to that observed at zero field in 

Subsection 6.5.2. This indicates that a field of H  =  2.0 was too weak to change 

the topology of the system’s structure. Therefore, a stronger field of H  — 3.0 was 

applied to the 80/20 mixture under the same conditions (T =  1.0, P  = 0.3). Start

ing from the final configuration of the previous run, 106 MC cycles were performed. 

Figure 7.10(a) shows the resulting distribution functions gss(r) and #||(r||)- They 

indicate a novel structure which has not been observed in our simulations this far. 

According to <7||(r||), the rods formed layers separated by a distance of about 3.15cro. 

The distinctive shape of the peaks in #||(r||) suggests that these layers also had some 

internal structure. gss(r) indicates that the system was still microphase separated 

but that it was no longer in the HCP-structure observed at zero field. Figure 7.10(a) 

shows a configuration snapshot taken in the end of the MC run. It illustrates that, 

under this strong field, spheres formed threads perpendicular to the field which, in 

turn, were arranged in a hexagonal array. Cluster analysis indicated 14 large clusters 

ranging from 17 to 48 spheres. This cluster size distribution was completely different 

from that observed under the weaker field (Tab. 7.2). Therefore, under sufficiently 

strong field, it appears that rearrangement of the rods caused the clusters of spheres 

to unite and form narrow channels which were aligned perpendicular to the field in 

a distorted hexagonal array.
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Figure 7.10: (a) Sphere-sphere, gss(r), and parallel, 9\\(r\\), distribution functions 
measured at T  =  1.0 and P  — 0.3 under field H  =  3.0; (b) configuration snapshot 
taken at this data point.

7.2 Negative M agnetic Susceptibility

In this Section, mixtures (i)-(iv) are studied under a static magnetic field for the case 

of negative magnetic susceptibility of the Gay-Berne particles. As was mentioned 

in the beginning of this Chapter, LCs with negative magnetic susceptibility tend 

to align perpendicular to the applied field. Rotation within the plane of preferred 

alignment is not affected by the field, however, so that the reduction in the rods’ 

rotational entropy is not so great as it was in the case of positive susceptibility. As 

a result, field-induced effects are generally weaker.

7.2.1 System  (i)

In this Subsection, mixtures of type (i) are studied in the presence of a field but 

now the magnetic susceptibility of the Gay-Berne particles is treated to be negative 

(x =  —2.0). As in Subsection 7.1.1, a 50/50 mixture was studied first at high tem-

g_sph-sph
g_parallel
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perature T  = 1.7 and at both low, p =  0.40, and high, p = 0.50, densities. For the 

former, an isotropic and homogeneous configuration, previously equilibrated at zero 

field at p = 0.40 and T  =  1.7, was subjected to fields ranging between 0 <  H  <  4.0 

with a step of A H  = 0.5. The average values of the potential energy per particle and 

the nematic order parameter obtained for the even runs of this sequence are shown in 

Tab. 7.3. Unlike the case of the positive magnetic susceptibility material, the poten-

Field Energy Order parameter
0.0 -2.343 ±  0.051 0.051 ±  0.018
1.0 -2.220 ±0.051 0.091 ±  0.021
2.0 -2.101 ±0.050 0.193 ±0.025
3.0 -2.069 ±  0.052 0.247 ±0.025
4.0 -2.059 ±  0.055 0.280 ±  0.034

Table 7.3: Potential energy per particle and nematic order parameter measured at 
p =  0.40 and T  = 1.7 under various fields.

tial energy did not change significantly when the field was applied. Here, a positive 

energy penalty was associated with rods which were not aligned perpendicular to 

the field. As a result, the potential energy increased with increasing field. The 

nematic order parameter did not describe the structure adequately because there 

was no preferred axis for the rods to align along. The radial distribution functions 

measured under various fields did not indicate any signs of demixing. Figure 7.11(a) 

shows gss(r) measured under both a relatively strong field H  =  3.0 and zero field.

For 50/50 mixture of system (i) the effect of the applied field at high density, p = 

0.50, was more significant. Here, the system was subjected to a magnetic field of 

H  — 2.0 at p = 0.50 and T  = 1.7 and was equilibrated for 1.4 x 106 MD time 

steps. The run-time energy evolution indicated that the system underwent some 

changes during this run. Figure 7.11(b) shows sphere-sphere radial distribution 

functions which indicate that demixing took place in the system. Configuration 

snapshots taken at this data point showed a cylindrical droplet of spheres with 

indistinct boundaries which was surrounded by rods aligned perpendicular to the 

field (S =  0.58±0.03). This was confirmed by the anisotropy of the droplet’s inertia 

tensor (the anisotropy parameter (Subsection 6 .2.1) was found to be of 2.05 ±0.08).
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Figure 7.11: Sphere-sphere radial distribution function, gss{r), calculated at T  =  1.7 
at (a) p =  0.40 and (b) p =  0.50 with and without applied field.

The eigenvector corresponding to its largest eigenvalue was found to be aligned along 

the ^-direction, i.e. was perpendicular to the field. Cluster analysis was performed 

to confirm that most of the spheres (more than 90%) were members of the largest 

cluster.

Subsequently, a field H  =  2.0 was applied to a 90/10 mixture of type (i) at T  =  0.7 

to study its low temperature behaviour. An isotropic homogeneous configuration, 

previously equilibrated at p = 0.31 using MD, was used to start a constant N P T  

MC run. The pressure was set to P  — 1.8, which was the equilibrium pressure 

measured in the MD run with zero applied field. After 2 x 106 MC cycles, the system 

equilibrated at a density of about 0.34 and a high value of the order parameter, 

S  =  0.65 ±  0.03, indicating an LC phase. The distribution functions, shown in 

Fig. 7.12(a), indicated both demixing and layering in the system. These are typical 

for the case of a droplet of spheres embedded in a smectic phase. This is confirmed 

by Fig. 7.12(b), a configuration snapshot taken at the end of the MC run, which 

shows several droplets of spheres encapsulated in a smectic phase.
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Figure 7.12: (a) Sphere-sphere, gss{r), and parallel, <7||(r||), distribution functions 
measured for 90/10 mixture of system (i) at T  — 0.7 and P  — 1.8 under field 
H  =  2.0; (b) configuration snapshot taken at this data point, field into the page.

7.2.2 System  (ii)

According to the results of the previous Subsection, the application of a magnetic 

field to system (i) did not reveal any qualitatively new behaviour when compared to 

the analogous results of Section 7.1. From our previous study (Section 6.3), system 

(ii) is known to have stronger tendency to demix than system (i) under equivalent 

conditions. This means that it can be found in a uniform mixed state only at high 

temperatures. However, at such high temperatures the difference between mixtures 

(i) and (ii) becomes irrelevant . This suggests, that applying a field to an isotropic 

homogeneous mixture of type (ii) is unlikely to cause any changes at low densities but 

may cause macroscopic demixing at high densities. Therefore, for this system only 

a phase separated 90/10 mixture was simulated at low temperature to investigate 

the effect of applied field on the shape of the droplet of spheres. Analogous to 

Subsection 7.1.2, the system was studied in the constant N P T  ensemble at T  = 

0.7 and P  =  1.0 under a field H  = 2.0. After 3 x 105 MC sweeps, the nematic 

order parameter was found to be 0.663 ±  0.018. The parallel distribution function 

was calculated to investigate the presence of layers in the system. Figure 7.13(a) 

illustrates that while stable smectic layers were not present, ^||(rj|) showed some
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Figure 7.13: (a) The parallel distribution function, <7||(r||), distribution functions 
measured at T  — 0.7 and P  = 1.8 under field H  =  2.0; (b) configuration snapshot 
taken at this data point, field is horizontal.

correlations not typical for a nematic phase. Figure 7.13(b) shows a configuration 

snapshot taken at the end of this MC run. It illustrates a droplet of spheres, almost 

cylindrical in shape, elongated along the field. The tensor of inertia of this droplet 

was measured and a time average of the ratio of the largest of its component to the 

semi-sum of the other two was found to be of 6.46 ±0.17.

The responses to an applied field on the 90/10 mixtures studied in this Subsection 

and in Subsection 7.1.2 were found to be quite different under the same external 

conditions. In both cases the shape of the droplet suspended in the isotropic rod- 

rich phase changed when the field H  — 2.0 was applied. If the rods had positive 

magnetic susceptibility a filed-induced isotropic-smectic transition was observed and 

the droplet of spheres became flattened along the field. In case of the negative mag

netic susceptibility, the droplet became highly elongated along the field direction, 

but no smectic phase was observed.
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7.2.3 System  (iii)

This Subsection presents simulation results for system (iii) subjected to a constant 

magnetic field. Only low temperature low density behaviour was studied here for 

two reasons. Firstly, mixtures of this type demonstrate weak density dependence, 

but low densities are more attractive for simulation purposes as equilibration is 

established quicker. Secondly, no unusual behaviour was shown by this this system 

at high temperatures (Subsection 7.1.3). Therefore, there is no expectation that any 

novel phase formation will be seen in the case of a negative magnetic susceptibility.

A 50/50 mixture of type (iii) was simulated under constant N P T  conditions at 

T  =  0.6 and P  =  0.6 under a field of H  — 2.0. As usual, the asymmetrical volume 

rearrangement move was employed to reduce the influence of the periodic boundary 

conditions. After equilibration for 106 MC cycles, the system developed a microphase 

separated structure similar to that observed in Subsection 6.4.1. Figure 7.14(a) 

shows the calculated grr{f') and gss{r) distribution functions. <?ss(r) increases at
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Figure 7.14: (a) Rod-rod, #rr(r), and sphere-sphere, gss(r), radial distribution func
tions calculated at T  =  0.6 and P  =  0.6 under field H  = 2.0; (b) configuration 
snapshot taken at this data point.

separations greater than 4ao, which suggests that some periodicity is present in the 

system. Unfortunately, the standard method of calculating the distribution functions
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fails at separations larger than half of the shortest simulation box side, which, in 

this run, was found to be 9.52 ±  0.23. Nevertheless, the analysis of configurational 

snapshots indicated that several cylinders of spheres were formed, aligned along 

the field axis (Fig. 7.14(b)). Here, the rods are represented by thin blue lines and 

spheres are empty yellow circles, so that it is possible to see a significant depth into 

the sample. The direction of the applied field in this Figure is out of the page. 

The simulation box appeared to be too small to distinguish whether these cylinders 

formed a regular structure or a random arrangement. Cluster analysis failed to 

resolve individual cylinders, however, a single cluster of spheres being found instead.

7.2.4 System  (iv)

Two mixtures of type (iv) are studied in this Subsection. Analogous to Subsec

tion 7.1.4, a cubic phase structure at 50/50 rod-sphere concentration ratio and a 

hexagonal micellar phase at 80/20 are subjected to a constant magnetic field.

A field H  — 2.0 was applied to a 50/50 mixture of type (iv) at T  =  1.5 and P  =

0.3. Starting from a configuration previously equilibrated in the N V T  ensemble, 

a constant N P T  MC run was performed with the field on for 4 x 105 MC cycles. 

Figure 7.15(a) shows the calculated distribution functions which are typical of those 

obtained for microphase separated systems. A snapshot, shown in Fig. 7.15(b), 

illustrates a hexagonal array of cylinders of spheres aligned parallel to the field. 

Cluster analysis was performed to explore whether these cylinders were isolated one 

from another. Most of the time when the separation distance was set at 1.5cro this 

returned one large cluster, but sometimes 1-3 clusters of 50-65 spheres each were 

found separated from the rest. When separation distance was reduced to 1.2<jo, 

however, all 9 large clusters, seen in Fig. 7.15(b), could be distinguished. Despite 

the dynamics of the process and constant changing of the cluster size distribution, 

at some point, the snapshot distribution shown in Tab. 7.4 is instructive. This 

distribution suggests that there were indeed 9 large clusters of spheres, although 

some single spheres could be still found in the regions between them.
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Figure 7.15: (a) Sphere-sphere, .9ss(r), and parallel, <7||(r||), distribution functions 
measured at T  =  1.5 and P  =  0.3 under field H  — 2.0; (b) configuration snapshot 
taken at this data point.

Size 1 2 44 49 51 52 53 56 63
Number 34 1 1 1 1 2 1 2 1

Table 7.4: Snapshot distribution of clusters separated by a distance more than 1.2cr0.

An 80/20 mixture was simulated under conditions analogous to those used in Subsec

tion 7.1.4. Fields H  =  2.0 and H  = 3.0 were applied to the HCP micellar structure 

at P  =  0.3 and T =  1.0. The simulation results of these two runs of 2 x 105 MC 

cycles each are summarised in Tab. 7.5. The cluster size distribution at H  = 2.0 was

Applied Field 2.0 3.0
Order Parameter 0.156 ±0.006 0.234 ±  0.007

Number of clusters 68 27
Largest cluster 17 27

Table 7.5: Simulation results of two constant N P T  MC runs performed at P  — 0.3 
and T =  1.0 under fields H  — 2.0 and H  =  3.0.

similar to that observed at zero field, i.e. about 70 clusters were found most of which 

contained 5 or 6 spheres were found. In contrast, most of the clusters observed at 

H  =  3.0 consisted of 10-25 spheres. Figure 7.16(a) shows the sphere-sphere radial 

distribution functions measured at both H  =  2.0 and H  =  3.0. Whereas the former

165



CHAPTER 7. ROD-SPHERE M IXTURES SUBJECTED TO A FIELD

2.5  r-

2 -

1.5 - 

1 -------

0.5 -

0 ------
0 1

(a) (b)

Figure 7.16: (a) Sphere-sphere radial distribution functions measured at P  = 0.3 
and T  — 1.0 under fields H  = 2.0 and H  =  3.0; (b) configuration snapshot taken at 
H  =  3.0, field into the page.

resembles sphere distribution observed under zero field, the latter resembles gss{r) 

seen in Subsection 7.1.4 for a hexagonal array of channels of spheres. The period of 

this structure is about dh =  4.26<t0, and peaks typical for a hexagonal arrangement 

at \/3dh and 2dh can be seen. Figure 7.16(b) illustrates that these well defined 

channels of spheres are aligned parallel to the field.

7.3 Discussion

When a magnetic field is applied to an LC system, whether characterised by pos

itive or negative magnetic susceptibility, it imposes some degree of order upon it, 

therefore, reducing its entropy. In terms of the free energy, F  = U — T S ,  a similar 

effect may be caused by decreasing the temperature which reduces the entropy con

tribution too. In other words, both the decrease of temperature and the application 

of a field may provoke similar system responses. The difference is that while T  acts 

isotropically, an applied field affects different modes in different directions.

Several examples of field-induced demixing and phase transitions were found in our
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simulations. The resultant structures were often of the same type and symmetry 

as would have formed at a lower temperature. Nevertheless, in some cases a novel 

phase was developed when a sufficiently strong field was applied to the rod-sphere 

mixture. In all cases, these were systems with a tendency to develop microphase sep

arated structures. A low temperature bicontinuous structure formed by system (iii) 

at 50% sphere concentration (Fig. 6.34) transformed, under a magnetic field, into a 

lamellar phase (Fig. 7.8). A completely different configuration was developed by the 

same system under the same external conditions if the rods had negative magnetic 

susceptibility. In this case, the system tended to form cylinders of spheres coated by 

layers of rods (Fig. 7.14). Structures of the same kind but with hexagonal periodicity 

were formed by system (iv) at both 20% and 50% sphere concentrations. Interest

ingly, with positive magnetic susceptibility, these two mixtures developed structures 

of different symmetry. A 50/50 mixture exhibited a lamellar phase, whereas an 

80/20 mixture developed a novel structure with spheres forming a hexagonal array 

of channels perpendicular to the applied field (Fig. 7.9)

The property of formation of a hexagonal array of channels under an applied field has 

the potential to be utilised in switching devices or in field controlled drug delivery 

systems. For example, an 80/20 mixture of type (iv) at low temperatures develops 

an HCP micellar structure in which the spheres are isolated in small clusters. If a 

field is applied, these clusters transform in a hexagonal array of channels, therefore, 

dramatically changing system’s transport properties. This process is time reversible,

i.e. the isolated clusters of spheres re-form after the field has been switched off. 

This relaxation was simulated in the constant N P T  ensemble and an MC run of 

6 x 105 cycles was found to be sufficient to equilibrate the system. This run took 

about four times as long as the switching under applied field which suggests that, 

in an experimental system, both processes would be achieved on similar time scales. 

At higher temperatures, the relaxation time would decrease, and the conductive 

properties of the sample would increase at the same time. Provided a temperature 

window exists in which the system has low conductivity under zero field and short 

switching and relaxation times, the possibility of creating a field controlled device
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arises. The properties of the mixture to allow the self-assembly of the conductive 

channels under the applied field are expected to be as following:

•  the mixture does not have a tendency to macroscopic demixing;

•  the end rod-sphere interactions are the dominant interactions in the system 

(the results obtained in Section. 6.5.2 suggest this interaction may also have 

to be not saturating);

•  the rod-rod side-by-side interactions are significant;

•  the rods tend to align perpendicular to the applied field.

To our knowledge, there are no evidence of such experimental systems exists.
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Chapter 8

Rod-Sphere M ixture near a 

Curved Surface

In this Chapter, a rod-sphere mixture is studied in two cases involving spherical 

geometry: near convex and concave surfaces. The motivation for this work comes 

from a number of experimental, theoretical and simulation works on LC-colloid and 

Polymer Dispersed LC (PDLC) systems. The following Section introduces a new 

potential developed to describe the interaction between the mixture components and 

a large spherical colloidal particle. A rod-sphere mixture with the original Gay-Berne 

parameterisation is then used to explore the capabilities of this model. The second 

Section of this Chapter addresses the alternative scenario of a rod-sphere mixture 

confined in a spherical pore. Again, a novel model description and exploratory 

simulation results are given. The method employed in both Sections is the constant 

N V T  MD.

8.1 LC-Colloid system

W ith a wide variety of practical applications and numerous opportunities for in

vestigating basic chemistry and physics, colloidal systems such as suspensions of
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solid particles and emulsified dispersions of surfactant-coated liquid droplets, are of 

great interest to a variety of researchers. In Section 2.5, a theoretical background 

to colloid-LC systems was given. Here, some literature simulation results are briefly 

considered first as a basis of our research. A description of our model is given then, 

followed by simulation results and their analysis.

Since the size of colloidal particles is normally much greater than the size of a 

single LC molecule, molecular scale simulations are limited to the study of single 

colloidal particles suspended in an LC. Even in this limit, these simulations suffer 

significantly from periodic boundary effects [109]. Nevertheless, different kinds of 

computer simulation methods are capable of studying defects of the director field 

near a colloidal particle, as was described in Section 2.5. The aggregation of several 

colloids due to director-field mediated interactions have been successfully demon

strated for two dimensional systems using numerical simulations [110] and Lattice 

Boltzmann technique [111]. Interesting results have also been obtained for relatively 

small 3 D  systems with a single colloidal particle. For example, a Saturn ring defect 

was observed by Billeter and Pelcovits [112] in a system of 2048 Gay-Berne particles 

with the original parameterisation and one spherical particle with a diameter of 3<Jo. 

A system similar to this, although containing up to a million rods and a colloid up 

to 30<7o in diameter, was studied by Andrienko and Allen [109]. Here, it was found 

that for homeotropic anchoring, only the Saturn ring defect was stable at small 

colloid sizes and that only with a colloid 30oo in diameter a satellite defect remain 

stable over simulation time scales. According to the density and order parameter 

maps measured in this study [109], the position of the core region of the ring defect 

in these simulations was found to be a linear function of the colloid radius R .  For 

a relatively small colloid with radius 3.0<7o, the estimated radius of the defect was 

R d =  3.162cro, meaning that it was located very close to the colloid surface. The 

order parameter profiles from [109] also indicate no irregularities at distances larger 

than 40q from the colloid surface. This implies that a relatively small simulation 

box can be used to simulate colloid-LC systems even in the case of homeotropic 

anchoring. In this Section, a rod-sphere mixture containing a colloidal particle of
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radius 3<to is studied in the constant N V T  ensemble using MD. The main aim is 

to study the effect of spherical additives on defect formation. A 90/10 rod-sphere 

mixture of type (i) is used throughout these studies.

8.1.1 The M odel

To introduce a spherical colloidal particle in our simulations the colloid-rod and 

colloid-sphere interactions have to be defined. The forms of the colloid-rod poten

tial used in both [112] and [109] were not found satisfactory. The potential used 

in [109] was a shifted Lennard-Jones potential with both energy and shape param

eters independent of the rod’s orientation. The potential used in [112] consisted of 

two terms, one purely repulsive and the other controlling surface anchoring, :

U(Ui,Ti) = 4e0 f  )  -  W  (8.1)
\ r  — cr(ui,ri) +  cr0/  r 6

Here the shape parameter a(ui , r ,•) is defined according to the Generalised Gay-Berne 

mixing rules (4.33) and the parameter IT is a phenomenological anchoring coefficient. 

The exponent 18 instead of 12 was chosen here to reduce the active interaction 

region and make the repulsion “harder” . Therefore, equation (8.1) was based on an 

assumption of a particular orientation dependence of the anchoring energy (which 

is the only attractive interaction in this model) and contains artificially adjusted 

parameters.

A new form for the potential describing the interaction between a small spherical or 

prolate particle and a large spherical colloid was therefore developed. To be consis

tent with our previous model, the large colloidal particle was considered as a number 

of smaller spherical particles taken to interact with a given external particle via one 

of the 6- 12-power potentials previously studied. Direct evaluation of such a multi-site 

interaction would be quite expensive and alternative effective colloid-small-particle 

potentials are proposed here. This approach assumes a uniform distribution for the 

particles forming the colloid and a pair-wise potential interaction approximation.

The colloid-sphere potential was defined as the Lennard-Jones potential integrated
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over the colloid volume. To determine this, we first evaluate the potential created by 

a spherical shell of radius a at a distance r  from its centre. For the sake of simplicity,

Figure 8.1: Spherical particle near colloid

The interaction between two point particles is considered here to be proportional to 

T-. A ring on the sphere given by constant 6 and 0 < U <2ix has its points equally 

separated from the point A (Fig. 8.1). If da is the thickness of the spherical shell 

and a dO is the width of the ring, the potential created by this ring in the point A 

is:

2ir
. .   [  a dO dapa sin 6 dU _  2 sixiOdO
r ’Gj J  2 _j_ a 2 _  2ar cos 0)n/2 na Ĝ ( r2 +  a2 — 2ar cos0)n/2’ 

o

where the constant p =  is the number density of the microscopic particles

being assumed to make up the colloid. Integration over the whole sphere surface 

gives:

sin 9 d6
U(r, a) =  27tcl dap / (r2 +  a2 — 2ar cos 0)n/2

\x =  cos <91 =

X to ta l  f  d x  M t 0t ai 1 1
2 J  (r2 + a2 — 2arx)n/2 2ar(n — 2) (r — a)n~2 (r + a)n~2_

- l

The total potential created at the point A by a colloid is a sum of potentials of 

concentric spherical shells. In order to calculate it we have to integrate U (r, a) over
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all radii 0 <  a < R,

UcollmdiX) =  J
f  4na2pda 1 1
' 2ar(n — 2) _(r — a)n~2 (r +  a)n~2 _

2lTp
R

27Tp
r(n — 2)

r(n — 2) 

1

/•
1 1

(r — a)n 2 

1 \

(r +  a)n 2 

1
n

da

1 1
3 \  (r — R)n~3 (r +  R)n~3 )  n — 4 \  (r — R)n~4 (r +  R)n~A

In the vicinity of the colloid’s surface {r — R) (r +  i? ) and terms containing (r + R )

in their denominator can be neglected at sufficiently large n. For exponents n =  6 

and n =  12, this approximation is reasonable, and the resultant expression for the 

colloid-sphere potential is:

1 1 1 1
Ucs(r) — ecs + (8 .2)

45(r — R)9 6(r — R )3 40r(r  — R )8 4r(r — R )2J ’

where ecs is an adjustable parameter that depends on the packing of particles form

ing the colloid and on the strength of their interaction with an external particle. 

Figure 8.2 shows the colloid sphere potential for R  =  3<to and ecs =  4eo as an 

example. The blue line in this Figure corresponds to a 3-9 potential obtained for a

R=3.0
R-inf

0.6

0.4

0.2

-0.2

-0.4

-0.6

r-R

1.5 2.50 0.5 2 3 3.5 4

Figure 8.2: The colloid-sphere potential for R  =  3oo and and R  =  oo at ecs — 4eo-

plane surface, which is the limit of expression (8.2) at R  =  oo.
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Formula (8 .2) can be generalised to describe the interaction between the colloid and 

an elongated particle. An analogous approach was made for the Gay-Berne potential 

which took the Lennard-Jones form with orientation dependent parameters. Thus 

the colloid-rod interaction in our model will be described by:

1 1
Uc r (r, u) =  €cr

45(r -  R  -  gCr +  l )9 6(r -  R -  aCR +  I )3
1 1

+
40r(r — R  — cfcr +  l )8 4 r(r  — R  — ctcr +  I )2

(8.3)

where

eCR(r, u ) 

gCr{ r, u)

X

O  O'

1 — X” sin 0

^1 -  x sin2g 
1 - X

(8.4)

(8.5)

Here, 6 is the angle between the vectors r and u and the parameters x and x ” are 

the same as those defined for the rod-sphere interaction (see Subsection 4.2.5). The 

expressions (8.4) and (8.5) were originally determined for a rod-plane system and 

can be adopted for the colloid-rod interaction for two reasons:

•  The size of the colloid is large in comparison to the size of the rod and the 

curvature of the colloid’s surface can be neglected in the first approximation.

•  We are most interested in strong anchoring when the rods tend to have radial 

alignment, an arrangement in which the a parameter has the same values for 

both convex and planar surfaces.

Due to the orientational dependence of the potential (8.3) its shift at a spherical 

cut-off distance, rc, has to be orientation dependent as well in order to provide a 

zero potential at the cut-off. The shifted colloid-rod interaction potential is, then, 

expressed as

U%?(r , u) =  UCr (t  u) -  u), (8 .6)
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where

Uc r (t, u) =  ZCR
 1 1_________
45(rc -  R  -  tfc# +  l )9 6 (rc -  R  -  g Cr  +  l )3 

1 1
+ (8.7)

40rc(rc -  R -  g Cr  +  l )8 4 rc(rc -  A -  crCH +  l )2

The explicit forms of the forces and torques exerted by a colloidal particle are cal

culated in App. A.

8.1.2 Simulation Results

This Subsection presents simulation results of a 90/10 rod-sphere mixture of type (i) 

(2048 particles in total) in the presence of a spherical colloid of radius 3cro- The 

new model described above introduces three new independent energy parameters: 

the strength and anisotropy of the colloid-rod interaction and the strength of the 

colloid-sphere interaction. Following the concept of the colloid being composed of 

smaller spheres, we will consider two cases of the colloid-rod interaction anisotropy: 

k'CR=5.0 and k'CR=0 .2. These correspond, respectively, to radial and planar anchor

ing. However, the resultant anisotropy of the interaction, when calculated according 

to formula (8.3), ^c r /^cr i 1 k'CR, is a function of the colloid’s radius. The values of 

eCft/eCR f°r R  = were found to be 5.599 and 0.224 respectively. The strength 

of the colloid-sphere interaction was set to ecs — 4 * 2.285871e0 to provide a unit 

well depth (compare to Fig. 8.2). The planar anchoring interaction was scaled as 

well so esc R =  K a and eecR — 0.224K a , where the parameter K A controlled the 

strength of the anchoring. In a similar way, the radial anchoring interaction was set 

to provide =  0.2001^ and =  1.120/^ 4- This normalised the side colloid-rod 

interaction to have well depth K a^q for planar anchoring and O^OOAT^o for radial 

anchoring.

In our model, whether a radial anchoring is strong or not is determined by the 

well depth of the end colloid-rod interaction, However, if it is too deep (the 

case =  5 was tested), the rods will simply form a radially aligned shell around 

the colloid, effectively forming an enlarged colloid of diameter 12<70. To avoid this,
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we set K a = 2 which gives a colloid-rod interaction depth 2.24e0 for rod aligned 

along the radial direction. Note that this energy is of the same order as the average 

kinetic energy, =  §kBT,  of a single rod at T  «  1.0. The same anchoring 

strength K A =  2 was used for the simulation with planar anchoring. In this case, 

the maximum side colloid-rod interaction well depth was 2e0-

One compression sequence and one cooling sequence were performed for a system 

with radial anchoring of strength K a = 2.0. The initial configuration was artificially 

created from a bulk configuration of 2048 particles by placing a colloidal particle of 

zero size in the simulation box and gradually growing it up to R  = 3ao. This 

configuration was then equilibrated in the constant N V T  ensemble for 7 x 106 MD 

time steps at p = 0.30 and T  — 1.0. The system remained isotropic and homogeneous 

and no signs of surface alignment could be seen on configurational snapshots. The 

system was then compressed at a constant temperature of T  =  1.0 up to density 

p =  0.35 with a step of Ap =  0.01. The potential energy per particle and nematic 

order parameter measured during this sequence are presented in Tab. 8.1. These data

Density Energy Order Parameter
0.30 -2.756 ±  0.022 0.044 ±0.014
0.31 -2.792 ±  0.024 0.058 ±0.016
0.32 -2.845 ±0.029 0.063 ±  0.018
0.33 -2.938 ±  0.029 0.183 ±0.024
0.34 -3.037 ±  0.029 0.590 ±  0.022
0.35 -3.098 ±  0.031 0.688 ±  0.017

Table 8.1: Potential energy per particle and nematic order parameter measured at 
T  =  1.0 and different densities.

indicate an isotropic-nematic transition at p «  0.33. Figure 8.3(a) shows the rod-rod 

and sphere-sphere distribution functions measured at p =  0.35 and T  = 1 .0 . These 

are typical for a homogeneous mixture and Fig. 8.3(b) illustrates a configuration 

snapshot which confirms this.

According to our simulation results, it was not clear whether the colloid caused any 

stable defect of the director field. The results also suggest that, at T  =  1.0, the an

choring of strength K A — 2 was not sufficiently strong to induce radial alignment of
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Figure 8.3: (a) Radial distribution functions and #ss(r) measured at p = 0.35
and T  — 1.0; (b) configurational snapshot taken at this data point.

the rods. Therefore, lower temperature behaviour was studied to effectively increase 

the effect of attractive interactions.

A cooling sequence was performed at a constant density of p — 0.34. The temper

ature was reduced with a decrement of A T  =  0.05 down to T =  0.85. Table 8.2 

summarises the results of this run. The nematic order parameter increases with de-

Temperature Energy Order Parameter
1.00 -3.037 ±0.029 0.590 ±0.021
0.95 -3.263 ±  0.028 0.626 ±0.014
0.90 -3.582 ±  0.029 0.653 ±  0.002
0.85 -3.869 ±  0.033 0.692 ±  0.002

Table 8.2: Potential energy per particle and nematic order parameter measured at 
p — 0.34 and different temperatures.

creasing temperature while the potential energy decreases. The radial distribution 

functions indicated the onset of macroscopic phase separation at T  = 0.90. Inter

estingly, according to configurational snapshots, the droplet of spheres was formed 

in the equatorial plane of the colloidal particle. To this end, the sphere probabil

ity distribution in the simulation box along the director was studied at T  — 0.85.
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Here the number of spheres was calculated in slices perpendicular to the director 

and normalised by their volume and the total number of spheres counted (similar to 

calculating ^|| (r ||))- Figure 8.4(a) shows the simulation results averaged over 2 x 105

0.01 

0.008

> s

w _ _ _C 0.006©0
>.
15
• | 0.004
01

0.002 

0

(a) (b)

Figure 8.4: (a) Sphere probability distribution along the director at p = 0.34 and 
T  =  0.85; (b) configurational snapshot taken at this data point.

time steps. This indicates that the spheres indeed were allocated in the equatorial 

plane. Moreover, distributions similar to that shown in Fig. 8.4(a) but averaged 

over shorter times were not symmetrical around zero (the equatorial plane), even 

though they resulted in a symmetrical distribution after averaging. This suggests 

that the droplet of spheres oscillated around its equilibrium. Since it did not couple 

directly with a colloid, the force which kept it in the equatorial plane was associated 

rather with the nematic elasticity than with the attraction by the colloid. It must 

be noted that a droplet of spheres can be considered as a sub-particle with planar 

surface anchoring. Therefore, our simulation results suggest that two spherical par

ticles with different types of the surface anchoring will experience an attraction when 

suspended in a nematic. To our knowledge, experiments involving such mixtures of 

colloidal particles have not been performed yet. However, this effect may introduce 

new possibilities of establishing novel self-assembling structures at mesoscopic length 

scales.

Distance along the director
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When compared to the bulk simulations, the studied 90/10 mixture demonstrates 

different mixing properties. The presence of the colloid in the simulation box reduces 

the free volume available for rods and spheres, i.e. it occupies approximately 3.5% 

of the box. Therefore, under compression at a constant temperature T  = 1.0, the 

mixture was expected to demix at p =  0.34. However, it remained homogeneous 

even at p = 0.35 in the presence of the colloid. This suggests that the distorted 

director field associated with a colloid stabilises the homogeneous nematic phase. 

When the temperature was reduced, the nematic phase was not stable any longer 

and the spheres segregated to minimise the system’s free energy.

A 90/10 mixture of type (i) was also simulated near a colloidal particle with planar 

anchoring of strength 2K a - Analogous to the simulations discussed above, the sys

tem was compressed at a constant temperature of T  =  1.0 in the range of densities 

0.30 < p < 0.35. The potential energy per particle and nematic order parame

ter measured during this sequence are shown in Tab. 8.3. These data indicate an

Density Energy Order Parameter
0.30 -2.761 ±  0.024 0.044 ±  0.016
0.31 -2.834 ±  0.026 0.068 ±0.018
0.32 -2.901 ±  0.027 0.125 ±0.031
0.33 -2.982 ±  0.029 0.455 ±  0.017
0.34 -3.061 ±  0.029 0.581 ±0.018
0.35 -3.129 ±0.034 0.678 ±  0.019

Table 8.3: Potential energy per particle and nematic order parameter measured at 
X =  1.0 and different densities.

isotropic-nematic transition, however, no demixing was found according to the cal

culated distribution functions. Subsequently, a cooling run was performed starting 

from the final configuration at p — 0.35 and T  =  1.0. The system was cooled to 

T  =  0.85 with a step of AT =  0.05. According to the sphere-sphere radial distri

bution function, at T  =  0.90 a mixing-demixing transition occurred. The sphere 

probability distribution was also measured at this point, as was done in the case 

of homeotropic anchoring considered above. Figure 8.5 shows that this time the 

spheres were located near to the poles of the colloid. A configuration snapshot
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Figure 8.5: (a) Sphere probability distribution along the director at p = 0.35 and 
T  =  0.9; (b) configurational snapshot taken at this data point.

taken at p — 0.35 and T  =  0.9 illustrates two droplets of spheres of different size 

located near the colloid’s poles.

In this case, the simulation results indicate that the spheres segregate in the region 

of defects: a colloid with planar anchoring is known to form a pair of boo j urns at 

its poles [47].

8.2 PDLC system

Polymer Dispersed LC (PDLC) systems are currently attracting considerable atten

tion because of their large area of optical applications including flat panel displays 

and light shutters. Here, the nematic LC is confined to sub-micrometer size cavities 

of the polymer matrix. The size, shape, and distribution of these cavities as well 

as their surface interactions can be adjusted by a suitable choice of a polymer and 

the process of the sample preparation [113]. PDLC systems are of particular in

terest for computer simulation because the LC droplets contain a sufficiently small 

number of molecules, i.e. a few thousand, to be close to the number of particles
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normally used in simulations. The very first simulations of PDLC systems were per

formed [114] using the Lebwoh 1-Lasher lattice model [57]. Many features, typical for 

PDLC systems, were observed for this model subject to various boundary conditions 

and external field. Figure 8.6 shows director configurations for both homeotropic
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Figure 8 .6: Director configuration within a spherical domain for strong (a)
homeotropic and (b) planar anchoring conditions (from [115]).

and planar anchoring conditions. The director is horizontal in both cases and pair 

point defects of the director field can be clearly seen on each snapshot. A general case 

study of the director field within an ellipsoidal domain [115] reveals that homeotropic 

surface anchoring leads to very different director configurations in non-spherical el

lipsoidal domains, whereas planar anchoring gives similar bipolar configurations in 

all cases. Despite the success of the mesoscopic approach, lattice models cannot 

provide information about density distribution, for example. The Gay-Berne model 

was employed by Emerson and Zannoni [116] to simulate a PDLC system. The case 

of the homeotropic surface anchoring was studied and the development of concentric 

shells of radially aligned particles was observed. However, this order did not prop

agate towards the centre of the domain, unless it was either relatively large or an 

alternative to the original parameterisation of Gay-Berne potential with exponents 

fi — 1 and v =  3 was used.

In all examples above the anchoring was controlled by setting both the positions and 

orientations of the rods on the domain surface and keeping them unchanged during 

the simulation. In this Section, a new surface potential is developed to describe the
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interaction between particles and spherical walls more naturally. This is followed by 

exploratory simulation results and discussion.

8.2.1 M odel Description

Analogous to the way the case of a concave surface was studied in Section 8.1, 

the sphere and rod interactions with a convex surface are evaluated here. Due to 

its different topology, potential (8 .2) cannot be used to describe interaction with a 

convex surface just by substituting positive curvature radius R  with — R. However, 

both potentials have to approach the same limit of the flat-wall potential as R  

approaches infinity.

Consider a Lennard-Jones particle inside a spherical cavity of radius R  a t distance 

h from its surface (Fig. 8.7). The space outside the cavity is occupied by a polymer

Figure 8.7: Spherical particle near a convex surface

which interacts with this particle within the cut-off distance rc. Therefore, to calcu

late the total potential, the interaction has to be integrated over the volume shaded 

in Fig. 8.7. This volume can be presented as a number of spherical shells with radii
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r ranged h < r < R. The contribution to the total potential of each such a shell is 

proportional to

S(r)dr
pTl ’

where

S(r) — 27rr2(l — cos#)

is the surface of the shell and 6 is the angle between vectors h  and r. Substituting

n 2hR -  h2 - r 2
COS V  =  — — — ------ r r -------

2 (R — h)r

into expression for S(r)  and integrating over the whole range of r we obtain the 

total potential:

rc
U(h) j f  2 ( -i 2/lR — h2 — r 2k / — 2irr I 1

h

kn
R - h

kir

2 (R — h)r

rc rc rc

J  r~n+sd r +  2 ( R - h )  J  r~n+2dr -
Lh

1
R  — h \n  — 4 \ hn~4 r™

1
h h

1 \  2 ( R - h )  f  1 1
n — 3 \ / i n~3 r^~3

h(2R -  h) (  1 1
n — 2 \  hn~2 r™~2

For the exponents n = 6 and n — 12 this gives the potential we will use in our 

simulations:

Uspk{h) tps
R - h

1 ( 1  1 \  2(R -  h) /  1 1 \  h(2R -  h) (  1 1
¥~  r! /  +  9 U 9 "  r? j  “  10 U 10 _  rj°C /  v  \  '  C

1 /  J_ _1 \  2(i? -  /t) / J _  _  j _ \  _  /i(2i? -  h)
 ̂ 2 v h2 r? /  3 \  h3 r3 )  4 I h4 r4

(8.8)

Potential (8.8) can be employed to describe interaction between the spherical wall 

and prolate particle i by introducing orientation dependent parameters

H  - h -  cr(r,-,uf) +  1, R c = rc -  cr(ri?u x) +  1.
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This gives

Urod tPR
R - H  
h(2R -  H)

8 \ H S + 2 (R  -  H  1
9

1 1 \  1 /  1 1
i o  2 \ 1p ~ r i

2(R -  H) (  1 1 \  -  1
H 3 RlJ 4 Itf4h

(8.9)
3 \H *  R l )  4

where the parameters ePR and cr(rj,uz) are used in the forms (8.4) and (8.5) re

spectively. The angle 9 is defined now as the angle between the positional vector of 

the particle r* and its orientational vector Uj, and cos# is expressed via their scalar 

product:

cos# =
u,

R  — h R  — h

Analogous to the interaction with a colloid, potentials (8 .8) and (8.9) introduce 

three new independent energy parameters. These are the strength and anisotropy of 

the surface-rod interaction and the strength of the surface-sphere interaction. These 

potentials also depend on R , therefore, the interactions depend on the domain size 

and change with density. The black solid lines in Fig. 8.8 show both planar and

R=inf
R=10

0.5

-0.5

1.5 2 2.5 3 3.5 40 0.5 1

R=inf
R=10

0.5

-0.5

1.5 2 2.5 3 3.5 40 0.5 1

(a) (b)

Figure 8.8 : Potential profiles for (a) planar and (b) homeotropic anchoring as a 
function of separation from the surface. The black lines are for a flat surface and 
blue lines are for a curved surface of radius R  =  10ct0.

homeotropic types of potential (8.9) normalised to provide respectively to and 0.2eo
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well depths for planar and homeotropic arrangements of rods near a flat surface. The 

blue lines here are the potential profiles for a curved surface of radius R  = lOcro- 

These illustrate that the contribution of the surface curvature to the potential is 

rather smaller than was this case for the colloid-rod potential.

8.2.2 Simulation Results

A 90/10 rod-sphere mixture of type (i) confined in a spherical domain was simulated 

for both planar and homeotropic anchoring conditions.

First, a PDLC system with planar anchoring was simulated in the constant N V T  

ensemble using MD. The anchoring strength was set to K A — 1 which means that 

the interactions were as shown in Fig. 8.8 in blue. The system did not have periodic 

boundary conditions and only direct interactions were calculated. The coordinates 

of 2048 particles in a cubic simulation box of side L =  18.97 were used as the initial 

configuration for a spherical simulation box with initial radius R  = | \ / 3 L. Then, 

the radius was gradually reduced to provide a number density of p =  0.29. Here, 

under a number density we understand a number of particles per unit volume, taking 

the total volume to be the volume of the spherical cavity, i.e. V  = | n R 3. However, 

the actual volume available for the particles is less than this, due to the interaction 

with the spherical wall. This point must be taken into account when a comparison 

is made to a bulk mixture.

After equilibration for 1.4 x 106 time steps at p — 0.29 and T  — 1.0, a compression 

sequence was performed up to p — 0.335 at a constant temperature with a density 

step of Ap =  0.005. The average values of the potential energy per particle and the 

nematic order parameter obtained for the even runs of this compression sequence 

are shown in Tab. 8.4. These data indicate an isotropic-nematic transition at a 

density of p «  0.31. The transition density, as was expected, appeared to be lower 

than the bulk transition density at the same temperature. The system homogeneity 

was difficult to assess because the standard procedure of calculating the pair radial
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Density Energy Order parameter
0.29 -2.694 ±  0.026 0.063 ±  0.026
0.30 -2.728 dr 0.026 0.072 ±  0.026
0.31 -2.765 ±  0.027 0.173 ±0.027
0.32 -2.827 ±0.030 0.292 ±  0.022
0.33 -2.857 ±0.031 0.425 ±  0.023

Table 8.4: Potential energy per particle and nematic order parameter measured at 
T  =  1.0 during the compression sequence.

distribution functions was not applicable due to the geometrical confinements. In

stead, the radial density particle distribution was calculated to assess the system’s 

structural properties. Figure 8.9 shows the probability density distributions for rods
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Figure 8.9: Probability density distribution of (a) rods and (b) spheres as a function 
of the distance to the spherical wall at T  =  1.0 and different densities.

and spheres averaged over 2 x 105 MD time steps at different data points of the 

compression sequence. To make these data more comprehensible they are presented 

not as radial dependencies but as functions of the distance to the spherical wall. 

Both rod and sphere distributions exhibit short range order at short separations 

from the wall. This suggests that rods formed concentric layers, some spheres also 

residing within these layers. The interlayer distance was of order 0 .95<ro and slightly 

decreased as the density was increased.
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The radial probability density distribution does not allow clear distinction between 

mixed and demixed configurations, however, and cluster analysis was performed to 

assess the homogeneity of the system. It was found that the total numbers of clus

ters separated by distances greater than 1.5<Jo were practically the same for all runs 

performed. There were about 100-120 clusters in the system, most of which were 

single spheres. The number cluster distribution slightly changed with increasing 

density showing enlargement of bigger clusters. However, the largest cluster con

tained only about 25 spheres even at the highest density p =  0.335. This suggests 

that no macroscopic demixing occurred during this compression, although, a weak 

tendency to demixing was observed at high densities.

Therefore, a cooling sequence was performed at a constant density of p = 0.32. The 

temperature was reduced with a decrement of A T  =  0.1 from T  =  1.0 to T  =  0.7. 

Table 8.5 summarises the results of this sequence. The nematic order parameter

Temperature Energy Order parameter
1.0 -2.827 ±0.030 0.292 ±  0.022
0.9 -3.043 ±  0.030 0.427 ±0.034
0.8 -3.350 ±  0.028 0.529 ±0.015
0.7 -4.149 ±0.029 0.741 ±  0.008

Table 8.5: Potential energy per particle and nematic order parameter measured at 
p — 0.32 during the cooling series.

increased as the temperature was decreased, whereas the potential energy decreased 

markedly indicating a possible isotropic-smectic transition at T  =  0.7. Configuration 

snapshots taken at the beginning and the end of this compression series are shown 

in Fig 8.10. The low temperature configuration is typical for a smectic phase and 

also exhibits demixing in the system. Cluster analysis revealed that the system 

indeed had separated microscopically under cooling. Table 8.6 summarises these 

simulation results averaged over 104 time steps. These data indicate that the clusters 

started to enlarge significantly at T  =  0.8, and two clusters of almost identical size 

contained almost 90% of the total number of spheres at T  — 0.7. Therefore, the 

macroscopic demixing, cooperatively with the nematic-smectic transition, took place 

under cooling and spheres segregated near the defect points as shown in Fig 8.10(b).
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(a) (b)

Figure 8.10: Configuration snapshots taken at p — 0.320 at temperatures (a) T  — 1.0 
and (b) T  =  0.7.

Temperature 1.0 0.9 0.8 0.7
Number of clusters 112 106 62 21

Single spheres 77 72 47 15
Largest cluster 15 23 68 94

Next to the largest 10 13 53 87

Table 8 .6: Cluster size distribution at p =  0.32 and different temperatures.

To study the case of homeotropic anchoring conditions, the anchoring strength was 

set initially to K a =  2. This meant that the interactions were twice as strong as 

those shown in Fig. 8.8 (b) in blue. The same 90/10 mixture as considered above was 

equilibrated for 1.4 x 106 MD time steps at p — 0.32 and T  =  1.0. This resulted in a 

configuration which did not exhibit a radial alignment of the rods near the spherical 

wall, i.e. the anchoring was not sufficiently strong. Figure 8.11(a) shows the proba

bility rod density distributions as functions of rod-wall separation calculated for this 

configuration and for a configuration at K A =  3 which was simulated subsequently. 

The peak distribution is qualitatively different for these two curves and indicates 

that rods were aligned in a more radial direction at K A =  3. Figure 8 .11(b) shows 

a configuration snapshot taken at this data point which confirms a degree of radial 

alignment.

188



CHAPTER 8. ROD-SPHERE M IXTURE NEAR A CURVED SURFACE

4.5 

4

3.5 

3

2.5 

2

15 

1

0.5 

0

(a) (b)

Figure 8.11: (a) rod probability density distributions calculated at p — 0.32 and 
anchoring K A =  2 and K A =  3 at T  =  1.0; (b) configuration snapshot taken at 
p =  0.32 and T  — 1.0 for anchoring K A = 3.

A cooling series was performed for anchoring K A =  3 at a constant density p =  0.32 

over range of temperatures 0.70 < T < 1.00 with a decrement of AT =  0.05. The 

average values of the potential energy per particle and the nematic order parameter 

obtained for the even runs of this cooling sequence are shown in Tab. 8.7. These data

Temperature Energy Order parameter
1.00 -2.977 ±0.050 0.123 ±0.026
0.90 -3.526 ±  0.044 0.057 ±0.026
0.80 -4.081 ±  0.037 0.077 ±0.034
0.70 -4.636 ±  0.027 0.113 ±0.015

Table 8.7: Potential energy per particle and nematic order parameter measured at 
T  = 1.0 during the cooling sequence at p = 0.32.

do not indicate any phase transition, i.e. the potential energy is an almost linear 

function of the temperature and the nematic order parameter is low in each run. In 

comparison, an equilibrium bulk system forms a stable nematic phase at T  =  1.0 

and a stable smectic phase at T  =  0.7 (Subsection 6.2.2). However, the confined 

mixture was found to exhibit different behaviour due to the strong interactions with 

the spherical wall. The probability density distributions were calculated to assess the 

system structure. Figure 8.12(a) demonstrates that the correlations in rod positions
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Figure 8 .12: Rod probability density distributions calculated at p — 0.32 and an
choring K a — 3 at different temperatures, (b) snapshot taken at p — 0.32 and 
T  =  0.70.

increased as the temperature was decreased. This indicates that concentric shells 

of the radially aligned rods were established under cooling. The final configuration 

equilibrated at T  =  0.7 for 1.8 x 106 MD time steps is shown in Fig. 8.12(b). It 

resembles the director field configuration shown in Fig. 8 .6 (a) with a droplet of 

spheres situated in one of the point defects. The homogeneity of the system was 

assessed by cluster analysis, and the resultant data are summarised in Tab. 8 .8 . 

The enlargement of the clusters indicates demixing at T  «  0.8. Therefore, under

Temperature 1.00 0.90 0.80 0.70
Number of clusters 128 130 113 89

Single spheres 79 82 67 36
Largest cluster 9 11 44 86

Table 8.8 : Cluster size distribution averaged over 2 x 105 MD time steps at p — 0.32 
and different temperatures.

cooling from a homogeneous configuration shown in Fig. 8.11(b), the studied mixture 

underwent a phase separation at T  «  0.8 and spherical particles segregated in the 

defect of the director field.

In summary, we have developed a model which can generate efficient potentials to
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deal with large length-scale curved substrates. They provide more realistic descrip

tions of the surface anchoring when compared to the reviewed literature models. 

These potentials also allow both the sense and strength of the anchoring to be 

controlled independently. Here, exploratory simulations have shown that the bulk 

mixing-demixing behaviour of rod-sphere mixtures is different from that in the pres

ence of curved substrates. The system structure can also be modified by the change 

in either the substrate’s geometry or its preferred surface anchoring condition. In the 

cases when demixing does occur, spheres tend to accumulate at defect points. This 

process is found to take place more easily on cooling, whereas the entropy driven 

demixing, which occurs on compression, is much weaker.
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Chapter 9

Conclusions and Future Work

In this Chapter, the principal results of this thesis are summarised and suggestions 

for future work are made.

9.1 Conclusions

The aim of this project, as specified in Chapter 1, was to use computer simulations 

of the Generalised Gay-Berne model to achieve greater understanding of the mecha

nisms and nature of LC phase behaviour in the presence of non-mesogenic additives. 

We have focused on the phase behaviour of binary mixtures of original Gay-Berne 

particles with small Lennard-Jones particles subject to different types of rod-sphere 

interaction potentials. From this, we have found that such mixtures exhibit fasci

nating and very rich phase behaviour which is particularly sensitive to the strength 

and symmetry of the rod-sphere interaction, as well as the concentration ratio.

Preliminary simulations of binary hard rod-sphere mixtures were conducted in Chap

ter 5 to investigate the purely entropic effects occurring in the system. The rods were 

modelled as Hard Gaussian Overlap particles of length to breadth ratio 3:1 and hard 

spheres with diameters equal to the breadths of the rods. Both the isotropic-nematic 

and mixing-demixing transitions were studied over the sphere concentration range
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0 < csph < 0.50. An isotropic-nematic transition was observed at each sphere concen

tration simulated, this being found to occur at higher volume fractions as the sphere 

concentration was increased. At low sphere concentrations, the mixtures remained 

homogeneous even above the transition point and only started to demix under fur

ther compression. This suggests that the mixing entropy was high and maintained 

the mixture in its well-mixed state at moderate volume fractions ( /  < 0.52). At 

sphere concentration of about 50%, the density range of the mixed nematic phase 

was substantially reduced, despite the fact that the mixing entropy should be at 

its greatest at this concentration. The subsequent simulations of Gay-Berne and 

Lennard-Jones particles, which had the same shapes as the hard particles, were per

formed in this same density regime, so that, any possible demixing behaviour can 

be regarded to the attractive interactions.

Four types of mixtures, which differed from each other only by the interaction be

tween unlike particles, were studied in Chapter 6 using both MD and MC techniques 

to build up their approximate phase diagrams. System (i), which had the original pa- 

rameterisation of the Generalised Gay-Berne rod-sphere potential, exhibited strong 

demixing: the mixture components separated macroscopically at 10%, 20%, and 

50% sphere concentrations. The anisotropy of the rod-sphere potential was inverted 

in system (ii) as that the end interaction was made 5 times as strong as the side 

interaction. This system showed similar behaviour to system (i) at 50/50 rod-sphere 

concentration ratio, whereas at low sphere concentrations it tended to form a mi- 

cellar phase at low temperatures. This suggests that the structural properties of 

thermotropic LCs are more sensitive to additives that are more attracted to the end 

groups of LC molecules rather than to their sides. No supramolecular organisation 

was observed in either of these systems.

System (iii) exhibited a completely new type of phase behaviour. Here, the strength 

of the rod-sphere interaction had no orientational dependence, which resulted in 

enhancing the mixing properties. At 50/50 rod-sphere concentration ratio, this mix

ture exhibited neither isotropic-nematic nor mixing-demixing transitions. Instead, 

it underwent microphase separation at low temperatures and formed a bicontinuous,
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relatively dynamic structure. At 30% sphere concentration, the rods underwent an 

isotropic-smectic transition under compression at low temperature and the spheres 

occupied the interlayer spacing, leading to a periodic structure. At lower sphere 

concentrations, no novel mesophases were seen.

The rod-sphere interaction in system (iv) was characterised by a very strong end at

traction, which combined the calamatic and lyotropic LC properties, thereby, intro

ducing possibilities of novel phase formation. At different concentrations of spheres, 

mixtures of type (iv) exhibited micellar, cubic and lamellar phases. All of these 

mesophases were found to posses supramolecular positional periodicity. The hexag

onal phase, typical for surfactant-solvent systems, was not found for these mixtures. 

However, it was observed in Chapter 7 when a sufficiently strong field was applied 

to these bulk systems. In particular, both micellar and cubic phases transformed 

under a strong field to form a hexagonal array of channels of spheres. This process 

was found to be time reversible, i.e. at zero field, the hexagonal phase was not stable 

and system reverted back to its original structure. This opens up the prospects of 

experimental systems with similar properties which could form self-organising nanos

tructures with applications, for example, as field switchable membranes or display 

devices.

New potentials were developed in Chapter 8 to describe interactions with convex and 

concave surfaces to allow the study of colloid-LC and PDLC systems. The newly 

developed models, unlike those in the literature, provide more realistic descriptions 

of the surface anchoring. These potentials also allow both the sense and strength of 

the anchoring condition to be controlled independently. It was found in Chapter 8 

that small spheres tended to accumulate at the defects of the director field. Another 

finding of these simulations was that colloidal particles with different types of an

choring may exhibit some self-organisation when dispersed together in a nematic LC. 

To our knowledge, only systems with a single type of colloidal particles (either with 

planar or homeotropic anchoring) have been studied up to date by experimentalists 

and theorists working on such systems.
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9.2 Future Work

The work presented in this thesis has produced encouraging results and opened up 

several possible avenues for further research. These include computer simulations as 

well as theoretical and experimental studies.

The performed literature analysis has shown that, to date, mixtures of mesogenic 

and small spherical molecules have been simulated at molecular scale only in the hard 

core approximation. The current project, in which a rod-sphere mixture is considered 

as a mixture of Gay-Berne and Lennard-Jones particles is, therefore, novel. Due to 

the great number of independent model parameters, the work described in this report 

is largely preliminary, and there remain several directions for further investigation. 

The most interesting of these are to:

• study the effects of subtle changes to the system, such as variation of the 

Gay-Berne parameterisation used;

• study the effects of more significant changes to the system, such as the size 

of the spheres. Particularly, to study LC ordering in the presence of low 

concentrations of relatively large spherical particles;

•  conduct a detailed analysis of the defects of the director field formed under 

various geometrical confinements;

• study LC-colloid and PDLC systems using different types of rod-sphere inter

action potentials;

• study the cooperative effects of surface interactions and an applied field on the 

system structure. Both the cases of pure LCs and LC mixtures are of interest;

• investigate the dynamic properties of the structures observed as well as their 

stability;

• employ more advanced Monte Carlo methods to study the phase equilibria 

exhibited by these systems.
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It is also vital to obtain a sound theoretical understanding of the parameters which 

control the formation of new phases in order for their behaviour to be optimised. 

Therefore, our work is expected to initiate some theoretical research in this field. 

Some progress can be made using density functional theory (DFT) which is an 

excellent tool for the predictive calculation of both phase behaviour and spatial 

structure in systems with well-specified microscopic interactions. DFT has been 

successfully applied to both thermotropic LCs [117] and amphiphiles [118], and it has 

been generalised to associating fluids as self-associating field theory (SAFT) [119]. 

SAFT is a powerful tool for studying systems which incorporate relatively strong 

interactions, hydrogen bonds, for example, similar to those of our system (iv). It 

also relates system behaviour to the intermolecular forces involved and can be tested 

against molecular simulations, if refinements to the theory are needed.

As was mentioned above, the competing interactions present in the systems stud

ied here lead, in some cases, to complex self-assembled structures which could be 

switched or deformed by external fields. It is evident that a range of exciting new 

functional materials could be fabricated by real molecular systems exhibiting equiv

alent behaviour. For this reason, experimental research in this field is now being 

considered through a collaborative link with a Liquid Crystals and Advanced Mate

rials Group at Hull University. Several starting points for this experimental research 

have been suggested, particular systems to be investigated being:

• systems with hydrogen bonding through a variety of common moieties such as 

hydroxyl, amino, carboxyl, amido;

• fluorocarbon-hydrocarbon systems;

• non-polar hydrocarbon systems which assemble through shape and conforma

tional factors only.

The targeting of the materials have to be synthesised will be based on the dimen

sional constraints (e.g., length to breadth aspect ratios) provided by our simulation 

results. Through chemical design protocols, it should also be possible to vary the
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relative strengths of the various inter-species interactions, the goal being to produce 

practical realisation of the novel phenomena discovered using our model systems.
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D erivation  o f forces and torques

The explicit forms of the forces and the torques exerted on the particles are neces

sary to perform molecular dynamics simulations (Subsection 4.1.1). Provided the 

analytical expression of a potential is continuous it is possible to calculate the force 

as a gradient of this potential:

F(r) =  - V rU( r). (A.l)

In our models, the torques make sense only for anisotropic particles as there is no 

rotational degree of freedom for the spherical particles.

W ithin this Appendix, a brief overview of the methods used to deprive these explicit 

forms for the spherical Lennard-Jones and prolate Gay-Berne particles are given, fol

lowed by details of the implementation of these methods to the potentials describing 

interaction with curved surfaces.

A .l Calculation of forces for single-site spherical 

particles

The spheres in our model interact via Lennard-Jones potential which depends only 

on separation between two particles i and j .  Therefore, formula (A .l) can be

198



APPENDIX A. DERIVATION OF FORCES AND TORQUES

p  =  dULJ(n j) rtj _  24e 
%1 drtj Ttj rtj

12

21  —  ) -
r,- Tij

written as
/  cr

ij /  \ 1 u
If cut-off at distance rc is applied, the potential between two spheres becomes

ULj(Xij) -  ULJ(rc) (:Tij < rc)

0 {Uj > rc)

Since U u  (rc) is a constant, the cut-off does not affect the expression for forces.

UssiDj) =

(A.2)

(A.3)

A.2 Calculation of forces and torques for single

site anisotropic particles

Consider two single-site biaxial particles with centre of mass position vectors r; for 

particle i and Tj for particle j. The intermolecular vector is given by r^  =  

Tj — and unit vectors u z and u ;  are parallel to the longest axis of the molecules 

as illustrated in Fig. A.l. The force exerted on the centre of mass of particle % is

Figure A.l: Representation of interaction between two elongated
particles.

denoted by F ^  = —V rijUij. Using the chain rule we obtain,

f « - - E 5 <*•<>

where the notation for the sum indicates that all scalar products involving the in

termolecular vector are considered, including = (fy • r^ ). Now,

v  (s ■ r - )  -  \ d { r f j SX)  ^  ) =  (a* s* ? )  =  8
” ,3> 1 dr% ’ drfj ’ 1 {S ’S '* ’ S'
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Therefore equation (A.4) becomes,

F i j  =  -  X  a f Ut3 \ s ’ (A '5 )8 ( S  ■ Ti j )

According to the third Newton’s law the force on particle j  has the same magnitude 

as that acting upon molecule i and acts in the opposite direction.

The torque on particle % can be written [120] as:

T i j  =  - [ U i  X V ^ U i j ]  =  -  X  s ) X Sl> (A -6 )

where the notation implies that the sum is over all scalar products in which one 

vector, Uf,  does not change its coordinates in the body-fixed frame while the other, 

s, does so. We now apply equations (A.5) and (A.6) to the truncated and shifted 

Gay-Berne potential, considering it as a function of scalar products r = • r^ ,

a =  Ui • T{j, b = Uj • , and c =  uz • uj,

URR(r,a,b,c) = 4  e (r ,a ,6,c) 

4e(r, a, b, c)

\  12 /  \  6 
00 \  f 00

r -  <r(r, a, b, c) +  a0 J  \ r  — a(r , a, b, c) +  a0
\  12 /

0o \ ( 0-q
rc -  a(r , a, b, c) + cr0 J \ r c -  a(r , a, 6, c) +  <70/

The potential energy is shifted at a spherical cut-off distance, r c, such that the 

potential at the cut-off is equal to zero, thus eliminating a discontinuity in the 

potential energy due to truncation. It should be noted that parameters e and a 

remain functions of r not r c, being defined [6] as dependent upon scalar products 

of the form r#  • u t-, not • u;. Indeed, the r  dependence within e and a  is used to 

normalise a and 6, such that,

.  _  Tij  ' f i t  _  a  _l Tij  ’Tij • Uj- — — 7*=
r r rc 

Expression (A.5) for the rod-rod potential can be written as:

•c, d U RR  „ d U RR  „ d U RR „ / a

F * =  " - d T Tii ~  ~ d T Ui ~ ~ d T ^  (A'7)

Similarly the torques may be evaluated by the expansion of equation (A.6), to give,

„ f d U j u t  , d U R R , \  /A 0,
r «  =  “ u * x  +  (A '8)
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for particle i, and

3l
(  9 U r R  d U R R  „ ^

=  - ^ x { - d T ri’ + ~ d r Ui)

for particle j .  The explicit forms of all derivatives are given below. 

9 U r r

dr
= 4e r t  ( A - A c) - ^

e2r 3 \  1 4- x 'c 1 — X'c 
o»X f(a + b ) \ ( ^ b l ) iB_ Bc)

V 0

2a b 3 \  1 +  x c 1 “  XC

(A.9)

(A.10)

dU:RR

da
=  4 e

PX! (  a + b a - b  '
2 V 1 _J_ -\/l n ^  q62r *  \  1 +  X 'c

(A -  Ac)

a3x  {  a +  b , a - b \  _
+  2^ { T W c  +  T ^ c )

(A .ll)

dURR

db
=  4e

H X 1 (  CL +  b a  — b  

e 2 r 2 \  1 +  x 'c 1 — x!c,
(A -  Ac)

(A.12)

9Urr

dc
= 4e

ct3x 2 (  (  a + b \  2 (  a — b x 2
Xc.

where

A =

A r  =

v0
12 VO

r -  a(r, a, b, c) +  a0 J \ r  — a(r, a, b, c) +  v0 J
\  12 /  \  6

Vo v o

B  = 12

B,  =  12

rc -  v (r, a, b, c) + o 0J \ r c -  a(r, a, b, c) +  a0
\  13 /

0o \  ^ I v 0- 6

(A.13)

r  -  cr(r, a, 6, c) +  cr0/  " Vr — c) + °o
13 /  \  7

— 6 ao ^Vo

rc -  a(r, a, b ,c )+ v 0J ~ V^c ~  a, b, c) + a0 J

The explicit forms of the force and the torque exerted on Gay-Berne particle i by 

Lennard-Jones particle j  can be evaluated in a similar way. To evaluate the force
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equation (A.5) is applied to potential

URS(r, a) = 4e(r, a) 

4e(r, a)

12

r — a(r, a) +  a0 J \ r  — a(r,a) + a0 
12

0o
rc -  a(r , a) +  a0

0o
rc -  cr(r, a) +  <r0

which yields,

9 U r s  - 9 U r s  .
r „  - — U,;.

<9r da
(A.14)

The torque acting upon the rod is

T{j 'RS—Uj x — — r
dUi

(A.15)

Using expressions (4.33) and (4.34) for e(r, a) and <r(r, a) we can calculate the deriva

tives:

dU,RS

dr
= 4e

dU,RS

da
=  4e

(1 -  X" * 2  )r3 

2 nx"a

<JZr

iAc ~ A )  + ^ { B - B c)
U n i

(A.16)

(A.17)

A .3 Derivation of forces and torques exerted by 

a colloidal particle

In this Section, the forces and torques exerted by a colloidal particle on rods and 

spheres are calculated. Formulas (8.2) and (8 .6) obtained in Section 8.1 are differen

tiated with respect to r to yield the explicit expressions of the forces in this model. 

Then the colloid-rod potential is analysed to obtain the explicit form of the torques 

exerted on the rods.

The derivative of colloid-sphere potential (8.2) with respect to r is:

Ucs(r)
dr = tcs +

1 + 1
5(r — R )10 2(r — R )4 40r(r — R )8 \ r  — R  r

1 /  2 1
4r(r — R )2 \ r  — R  r

(A.18)
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To obtain explicit expressions of the forces and torques exerted on the rod the 

derivatives of the colloid-rod potential (8 .6) are calculated. Analogous to the previ

ous Section we denote

r =  r  • r ,  a =  u  • r

and differentiate the potential U c r 1(r ,  u) with respect to r and a.

d U ^ ( r , u )  2 f t X ”a 2 rtotai , r  ( d ° c n

 ^ ---------- ( 1 _________ I )  +
4r2(r -  R  -  o CR + I)2 V 10(r  - R ~  ° c r  +  l ) 10/

+  z c r ^ X c (A.19)

3 t # A 0‘ ( r , u )  _  d a C R (  . .

— Fa—  ~  { x  ~  Xc) ’ (A'20)

where

1 1 \  /  1 1 \
X  =

X r =

5(r — R  — o C r  +  l )9 2(r -  R - (Jc r  + 1)3)  \ r  -  R - ctcr + 1 r

1
5(rc -  R -  oCR +  I )9 2(rc -  R -  oCR +  l ) 3/  \ r c -  R  -  oCR +  1 rc

doCR vcrX0? 1
d r  r3 ( 1 - X  +  X?sr)

d o c R  _  &CRXa  1_____
da ~  r2 (1 - X  +  X?J)

The final expressions of the force and the torque exerted on the rod by the colloid can 

be obtained now by substituting these derivatives into formulas (A.14) and (A.15).

A.4 Derivation of forces and torques in PDLC  

model

The explicit forms of the forces and torques in the PDLC model developed in Sec

tion 8.2 are evaluated below.
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The derivative of potential (8.8) with respect to h  was found using the software

package Mathematica [121]:
8 U ( h )  - 1

8 h  40(1? -  h ) 2

h 2 ( 1 0 h 6 -  1) -  R ( R  -  h ) ( 2 0 h 6 -  8)

(A.21)

h 10

+  2 ( 5 r t - 2 ) ( ( R - h ) 2 +  R 2) +  5r2(l -  4r«)
r 10 ' c

It must be noted that the force on the particle is equal to

F. = _v l/(r )^ = ^ M -V riU [r,)^  gh h ,

not
8 U ( h )  h  

d h  h '

because dr; =  —dh. In order to differentiate the potential (8.9) U rod is to be con

sidered as a complex function

U rod =  e P R ( h ,  a )  U ( H ( h , a ) ,  R c ( h ,  a)),

where a  =  r; • Uj as it was defined above. Therefore,
d U rod d e P R ( h , a ) r r . „  D . ,, . ( d U ( H , R c ) d H  d U ( H , R c ) d R cT j t  r r  ^  „  J d U { H , R c ) d H  , d U ( H , R c ) d R c \

^  +  € p « { h ’ a )  { — H - J h  +  d R c ~ d h  )d h  d h

The expression for d u ^ Rc) has the form of (A.21) but depends on (H , R c) rather 

than (h , r c). The explicit forms of the other derivatives are given below.

depR  ________ytpR________2x”fl2
dh ~  ( 1 - X ” + X ” p ^ ) ( f l - ^ ) 3

m  -  - « - « a ( t - 4 ; )

d H  x  a 2
-  1 -

dh l  — x&{R — h)3
dRc _  x  Q2 
dh 1 — x a {R ~  h)3'

In a similar way the derivative with respect to a are calculated:

dU r°d dePR{ h , a ) TUTJ , , ,  , ( d U ( H , R c) d H  , d U ( H , R c) d R c
~l fo~ =  '  d a ~ U { H ’ Rc) +  €pR(k’a) \ ~ d H  ^  +  ' d R c

where
depR _ ________/i epR_________

da  (1 -  ^  [R -  h )2

dH  _  dRc _  X a 
da da 1 — x&{R — h)2'
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