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ABSTRACT

The work presented in this thesis is concerned with the issues involved in 
writing and demonstrating formal specifications of information systems written in Z. 
The use of Z in software development, to enhance productivity and improve software 
quality, is not without its problems. Whilst the notation itself is highly developed, ways 
of systematically using Z to create specifications are, by contrast, poorly documented. 
Also, given that most commissioners of software are not skilled in reading Z, ways of 
demonstrating the important features of a formal Z specification to a customer are 
needed if the effective validation of the specification against user requirements is to 
take place. In this thesis we present a systematic approach, known as OPERATOR, for 
developing Z specifications and evaluate it against the issues identified for writing 
formal specifications. We also look at various ways of demonstrating Z specifications. 
We describe how Z specifications may be animated using Crystal, but go on to present 
a prototype CASE tool, known as Zappa, that may be used to create and demonstrate 
faithful animations ofZ specifications. The thesis starts with a thorough review of 
software engineering and of the development and rise of formal methods. The 
development of the OPERATOR approach is then given along with a review of 
animation, a description of the Crystal technique, and the development of the CASE 
tool Zappa. An evaluation of the research against the stated aims is presented and 
areas where future research is needed are pointed out.
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CHAPTER 1: INTRODUCTION

Organic life, we are told, has developed gradually 
from the protozoan to the philosopher, and this development, 

we are assured, is indubitably an advance.
Unfortunately it is the philosopher, not the protozoan, 

who gives us this assurance.
Bertrand Rusell, Mysticism and Logic.

1.1 The Research in Perspective.

The research presented in this thesis is the culmination of work started in 1988 

as part of the NAB III Office Systems Project. The Office Systems Project involved 

teams of researchers from the then departments of Mathematical Sciences,

Management Sciences, Applied Social Studies, Communications, and Computer 

Studies at Sheffield City Polytechnic (now Sheffield Hallam University). The Project 

was concerned with all aspects of developing new office environments together with 

issues pertaining to the introduction of office automation. One of the components of 

the research involved the mathematical specification of office systems, and it was out 

of this that the work presented here grew.

The specific issue to be addressed in this component of the Project was how 

could one create a formal specification of a typical office information system in an 

interactive way with the client or user so that the essential features of the specification 

could be demonstrated, without necessarily having to implement the system first. As 

well as addressing this specific issue, the research, it was hoped, would also help to 

ameliorate some of the problems associated with the use of mathematics as a 

specification language in the software development process.

The uptake of the use of mathematics in software engineering (formal methods) 

has been disappointingly slow, and the reasons for this are many. In 1989, when the 

author registered for his PhD, the rationale for the research being proposed was given 

as follows (quoting directly from the Research Degree Registration document):



"The recent introduction o f formal methods into the software development 

process, to enhance productivity and improve software quality, has brought 

with it several problems:

As well as the problems associated with changing working practices that 

formal methods inevitably imply, there are also significant problems stemming 

from the difficulties associated with the reading and writing o f mathematics:

To create a formal, i.e. mathematical, specification o f any computer-based 

system, the software engineer must be able to build a mathematical model o f 

what the system has to do. He must therefore be able to write mathematics.

The customer, fo r his part, ideally needs to be able to read mathematics in 

order to understand the specification o f the system he has commissioned, so 

that he can satisfy himself that the system being developed will behave as it 

should

Within this particular context the following two points are relevant.

• Whilst the mathematical notation in which to write formal specifications is 

highly developed - Z and VDM are two industry standard languages, fo r  

example - ways o f systematically using these notations to create a 

specification are, by contrast, very poorly documented Methods, such as 

they are, tend to be acquired by software engineers the hard way - in the 

field, and are not readily passed on to others. There is thus a potential 

bottleneck here stemming from the problems associated with writing 

mathematics.

• Given that most customers or commissioners o f software systems are not 

skilled in reading mathematics, structured ways o f demonstrating
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important features o f a formal specification must become part o f the 

specification process. Something midway between animation or 

prototyping on the one hand, and an accompanying English commentary 

on the other, is what is ideally needed i f  the vital exchange o f ideas and 

discussions is to take place effectively between software engineer and 

customer.

Within the problem domain o f office automation the research work being 

proposed therefore aims to address each o f these problem areas, and to 

develop systematic and structured ways o f building and demonstratingformal 

specifications."

The rationale for the research is also captured succinctly by Sam Valentine (ex 

Logica, now at the University of Brighton) in his letter of support for the research, 

dated February 20th 1989, in his role as industrial advisor to the project:

"The quality o f the specification o f computer systems is an important factor in 

the success or otherwise o f the eventual implementation, yet methods fo r  

capturing specifications are often unsystematic and notations fo r engineering 

them are almost always informal.

Formal notations have been developed, but usage o f them in the industrial 

context has hitherto been slight. One factor hindering their adoption is the 

lack o f an agreed methodfor translating the perceived needs and informal 

specification into the formal language. Another is the lack o f tool support fo r  

those languages, o f which animation would be particularly useful as a way o f 

providing rapidfeedback to clients o f the implications o f the formal 

specification as it is developed "
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The original aims for the research, set down in the registration document, were 

actually given as follows:

• To investigate the issues involved in creating and demonstrating formal 

specifications of office systems and office objects, and to develop systematic 

ways of facilitating the creation of formal specifications.

These broad aims have not changed to any large extent. However, as the work 

has progressed over the years there has been a focusing on the three specific aims 

given below.

1.2 The Aims of the Research.

The aims of the research work contained in this thesis are as follows:

• To investigate the issues involved in creating and demonstrating formal 

specifications of information systems.

• To develop a systematic approach to creating formal specifications of 

such systems.

• To investigate ways of animating such specifications.

The focus has become sharper in that the formal specification language being 

considered is Z (and not VDM or other languages) and the approach to demonstrating 

formal specifications has become, in the main, one of animation. Reference to 

information systems, rather than office systems, has allowed the research to have wider 

applicability.
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1.3 The Research Work Plan.

The plan of research proposed has not been deviated from significantly as the 

research has progressed.

The work was to commence with the acquisition of background knowledge and 

skills needed to cany out the research. This was to include:

• Fluency in model-based specification languages, in particular the Z notation.

• Expertise in the use of suitable vehicles for animation such as Prolog, C,

Crystal and Kappa-PC.

Whilst acquiring these skills a literature search was to be undertaken along with 

visits to relevant workshops, colloquia, conferences and courses, in order to obtain 

information on current experiences and practices in the teaching and use of formal 

methods. The aim was to concentrate on issues to do with the creation and 

demonstration of formal specifications, rather than on issues of verification and > 

refinement.

From the findings of these investigations, and using the research skills outlined 

above, various approaches to creating and demonstrating Z specifications of 

information systems were then to be examined. These were to be tested on a range of 

examples such as features of security, library, and banking systems. The aim was to 

involve individuals such as students and software engineering practitioners not familiar 

with the research. In this way the first of the aims of the research would be achieved.

The building methods were to be evaluated from the point of view of how easy 

they were to understand and use, the ease of teaching them, and the quality of the 

resulting Z specification. The building methods were also to be evaluated as to their
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efficacy in communicating with the customer or user the essential features of the 

resulting specification, and how effectively the approaches worked as validation tools.

To achieve the second of the research aims, promising techniques were then to 

be developed further and refined to produce a systematic approach for creating Z 

specifications of information systems. A systematic tool-based means of animating Z 

specifications was to be developed, to achieve the final research aim.

1.4 Research Outcomes.

The research work presented here describes in detail the development of a 

systematic diagram-based approach to creating Z specifications, known as 

OPERATOR, and the development of a prototype CASE animator called Zappa.

OPERATOR enables a developer, or student, to construct Z specifications 

from natural language system requirements by first creating diagrams of the system 

state and system operations. These diagrams convert systematically into Z but, before 

this is carried out, they may be used to communicate essential features of the system to 

a would be client or user. When developer and client are satisfied that system 

requirements are being captured, the diagrams can then be used in conjunction with the 

original requirements document to produce the formal specification.

Zappa enables the developer to take a Z specification and, provided the 

specification is in a form suitable for animation by the tool (specifications produced via 

OPERATOR usually are), to then systematically engineer a working model of the 

system that is consistent with and mirrors the specification (a form of executable Z 

specification). This animation can be used to demonstrate the Z specification to the 

client or user.

6



1.5 Implementing the Research Work Plan.

As we have said, there has been little deviation from the original research work 

plan. However, it is important to note that the underlying ideas and associated research 

behind the development of OPERATOR and Zappa evolved very much in parallel with 

one another, and in many ways quite separately. There is the temptation to assume, 

perhaps, that the technique of systematically creating Z specifications would be 

developed and perfected before thought was given to how specifications could be 

animated. This was not how the research evolved.

The starting point of the work was a collection of Z specifications (of security 

systems, banks, libraries, vending machines, stock and production control systems, 

Email systems, etc.) produced by the author and others. Systematic ways of arriving at 

these, and various ways of developing working Z models were looked at in parallel. If 

anything, the major research effort initially focused on the problems of animation until 

the author had acquired substantial experience of teaching Z, at all levels, allowing the 

author to appreciate fully the problems faced by students, and experienced 

programmers alike, when using the Z notation to develop formal system specifications.. 

Only when it had been decided to develop an animation tool (Zappa), using the expert 

system shell Kappa-PC, was the problem of creating Z specifications in a systematic 

way seriously considered. By this time the author had considerable experience of 

writing and teaching Z and, drawing also on the experience of his supervisors, was able 

to feed this into his research.

It should be noted at this stage that the teaching duties of the author involved 

teaching Z (including refinement, implementation, basic proof and animation) to a 

range of students from HND level, through degree, to Masters level. The teaching in 

the Masters course was extremely valuable because the students ranged from graduates 

relatively fresh from their degree courses, to programmers, software engineers and 

other technical practitioners with considerable working experience in the software,
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computing and information technology-based industries, as well as those from IT or 

programming departments within a variety of other commercial organisations.

Research ideas, as they fed into (and indeed, back from) the teaching, particularly at 

Masters level, could therefore be evaluated by students and practitioners alike.

During the period of the research, the author has also supervised numerous fifst 

and Masters degree projects and overseen many learning contracts directly involving 

aspects of the research contained in this thesis. This experience has been invaluable and 

the opportunity to have been involved with students in the classroom is gratefully 

acknowledged.

1.6 Overview of the Thesis.

The research work in this thesis is concerned heavily with the process of 

software engineering and the use of formal methods within that process. Consequently 

it has been necessary to review, in rather more depth than is usual in theses on 

computer science, the history of software engineering and the development and rise of 

formal methods. Chapter 2, therefore, is devoted in its entirety to the history of 

software engineering and the need for formal methods. Chapter 3 looks in detail at the 

issues of using formal methods in software development together with the issues 

surrounding the acquisition of formal methods skills and knowledge. In particular, 

problems associated with learning and using the Z specification language are aired and 

the clear need for a step by step approach to creating Z specifications is demonstrated 

along with the need for animation and rapid prototyping tools.

In Chapter 4 the development of the OPERATOR method is considered. The 

rationale for the approach is first argued and set down, and then the development of 

the method is traced. We look at how the method has evolved from its origins as a 

systematic but abstract method developed some 2 years ago, to the fuller method it is 

today with its graphical front end and its structuring mechanisms for handling system
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complexity. The results of using the approach in the classroom are included in the 

chapter.

In Chapter 5 we investigate the status of computer-based tools that support the 

use of Z and thus point to the need for the provision of animation tools. We consider 

the issues surrounding the animation of formal specifications and review some of the 

pioneering work done in this area and highlight fundamental differences in approach. 

We also look specifically at how working Z models may be created using Prolog.

Chapter 6 is a technical chapter, describing the next phase of the animation 

research where the opportunities afforded by using an expert system shell for 

animating Z specifications are considered. Much time and effort was invested in 

developing a systematic way of animating Z specifications in Crystal - an expert system 

shell produced by Intelligent Environments Ltd. of Richmond. This research is 

presented, as well as classroom experience of the approach. Finally we give the reasons 

for turning to the more sophisticated knowledge-based expert system shell, Kappa PC.

Chapter 7 is another technical chapter where the development of the CASE 

animator, Zappa, is described and the advantages of Kappa PC over Crystal are 

explained. The fundamental differences between the two approaches are discussed.

The development of Zappa is likely to be ongoing and what is presented here is 

therefore a description of a prototype. The rationale for developing the tool in the way 

chosen is given and the use of the tool to animate example specifications is evaluated. 

Work in developing the tool with students is included.

In Chapters 8 and 9 we critically review the outcomes of the research in the 

fight of the aims of the research, and make our conclusions.
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Chapter 10 is the final chapter and suggests areas for future research and 

development.



CHAPTER 2 : THE DEVELOPMENT OF SOFTWARE 
ENGINEERING

spatcbcock n., & v. 1 1. n. fowl killed and then 
plucked, dressed, split open, and cooked immediately.

O.E.D.

2.1 Early Days

If we take the term software engineering to mean simply the production, by 

whatever means, of computer software, or even just written code, then, arguably, the 

world's first software engineer was Ada Augusta, the Countess of Lovelace, an able 

mathematician, who in the 1830s coded sets of instructions for Charles Babbage's 

Analytical Engine. Of course, the term software engineer was not in use at the time - it 

was adopted by NATO in the 1960s to describe the process of writing computer 

programs - and Augusta's sets of instructions were not actually implemented since the 

Analytical Engine remained conceptual. Nevertheless, the Analytical Engine is now 

widely recognised as the first computer as we understand the term today. It had 

memory, input, output, control and arithmetic units, and the operator of the machine 

could place instructions in the Engine to undertake and reproduce lengthy 

mathematical procedures.

It was not until the Second World War, however, that computers, utilising the 

vacuum tube technology of the day, were first employed for practical purposes: in the 

United Kingdom for decryption and in the United States of America for gunnery table 

computation.

As hardware technology progressed from the vacuum tube, through transistors 

and integrated circuitry, to today's Very Large Scale Integration (whereby hundreds of 

thousands of transistors are etched onto one small silicon chip), so the methods and 

languages used to instruct or program computers developed. Initially programs were 

no more than long lists of binary digits. The difficulty which programmers had writing



such code led to the development of interpreters and compilers of decimal code, 

mnemonic assembly languages and eventually higher level languages such as 

FORTRAN, COBOL, BASIC, C and so-called Fourth Generation Languages. The 

emphasis was on developing programming languages that were more natural, more 

easily comprehended by humans, and which could be translated automatically into the 

low level understood by computers. This development was facilitated by hardware 

technologists striving for ever faster computational speed, ever smaller scale and 

increasingly sophisticated computer architecture.

2.2 The Beginning of Software Engineering

It was during the period circa 1959 - 67 that career structures began to emerge 

for programmers, designers and systems analysts as the power and possible 

applications of computers started to be realised, and, by the early Seventies, once the 

minicomputer had been invented, that applications moved away from scientific and 

specialised areas towards more general and widespread aspects of society and industry. 

The computer began to be trusted in areas where human safety was a consideration. 

Today every person in the developed world is dependent, to a lesser or greater extent, 

on software systems. From gas bills to traffic signalling, from medical treatment to the 

operation of nuclear power stations, computers have a significant role to play.

Burnham [Bur83] puts it thus:

"The computer is the welfare agency, the police, the tax collection office, the 

insurance company, the bank, the telephone network, the security force and 

the credit rating firm  quietly cataloguing all our works and days."

If we take hardware technology and programming languages to be two strands 

of software engineering development, the latter dependent, to some extent, on the 

former, then the expansion of the domain of computer application is the third.
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As the complexity and size of computer software increased, so did the need for 

quality and reliability. Consequently, two further strands of development can be 

identified. One strand being methods and practices in software engineering, the other, 

the dissemination to practitioners and students of the ever widening knowledge base. 

The five strands now outlined are represented in Fig. 2.1.

hardware

languages

applications

methods

dissemination

Fig. 2.1: The five strands of the development of software engineering.

In the early Seventies, efforts were made to introduce sound engineering-like 

practices in the production of software. Top Down Step-Wise Refinement and the use 

of pseudo code, as an intermediate step between informal system requirements and 

program code, were expounded (for an example of this approach see Wirth [Wir82]). 

The first sense of formality emerged in the form of flow charts; still useful today and 

used later in this chapter to illustrate the software development life cycle. The move 

was to be away from software production as an art form, practised by software 

crafters, towards a more scientific, engineering-based, discipline: software engineering 

as a science in its own right.

In 1972, Bauer [Bau72] defined software engineering as :
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"The establishment and use o f sound engineering principles in order to obtain, 

economically, software that is reliable and works on real machines."

The definition centres on the need for the use of sound engineering principles 

and it would be wise for us to attempt to identify some of these principles. We believe 

(see also Buxton and Marco[Bux87]) that they should include:

•  Good project management - decision making and administration.

•  A well defined project structure - a procedure to follow, a modular 
approach.

• A common language or languages - standard notations, diagrammatic 
representations and documentation in general.

•  Tried and tested methods and techniques - a wealth of experience and 
knowledge from which to draw.

•  Scientific foundations - facts, rules and models.

•  The use-of engineering tools

Software engineering is, then, a very young discipline. It would be a lot to 

expect it to compare well with mature, highly developed, fields of engineering such as 

civil engineering, bridge building, aircraft construction, car manufacturing and the like, 

all of them solidly founded in the sciences of physics and chemistry, and all of them 

heavily dependent on the use of mathematics.

Indeed, in 1975, Tony Hoare [Hoa75] observed that:

"The attempt to build a discipline o f 'software engineering' on such shoddy 

foundations must surely be doomed, like trying to base chemical engineering 

on phlogiston theory, or astronomy on the assumptions o f a fla t earth."
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and asked:

"How many o f them [ software engineers ] are ignorant o f or prefer to ignore 

the known techniques used by others, and embark on some spatchcocked 

implementation o f their own defective inventions."

This sentiment had been expressed two years earlier by a clearly exasperated 

high-ranking United States Air Force decision maker [USA73]:

"You software guys are too much like the weavers in the story about the 

emperor and his new clothes. When I  go out to check on a software 

development; the answers I  get sound like 'we're fantastically busy weaving 

this magic cloth. Just wait and it'll look terrific'. But there are too many 

people I  know who have come out wearing a bunch o f expensive rags or 

nothing at all!"

(It may be interesting that Tony Hoare wrote a lecture paper in 1981 [Hoa81] 

describing his involvement, in the Sixties, with the less than successful Elliot 503 Mark 

II operating system and equally less than useful ALGOL 68 programming language, 

and entitled it: "The Emperor's Old Clothes", ending it with his own version of the age 

old tale!)

Another colourful analogy came from Fred Brooke, in 1982 [Bro82]:

"No scene from prehistory is quite so vivid as that o f the mortal struggles o f 

great beasts in the tar p its ... Large-System programming has over the last 

decade become such a tar pit, and many great beasts have thrashed violently 

in it. Large and small\ massive or wiry, team after team have become 

entangled in the tar. No one thing seems to cause the difficulty - any 

particular paw can be pulled away. But the accumulation o f simultaneous and
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interacting factors brings slower and slower motion. Everyone seems to be 

surprised by the stickiness o f the problem. "

This was notwithstanding the fact that a software development life cycle had, 

by this time, been well, if variously, described. Division of labour was now common 

practice within software houses - we have already mentioned the appearance of distinct 

professions - and good communication between software developers was important, 

see Fig. 2.2. Software engineering was now described by several phases, typically; 

requirements analysis, system specification, design, implementation, testing and 

maintenance. There are numerous texts on this subject, Sommerfield [Som92] for 

example, so we give only a resume:

Requirements analysis (or systems analysis) is the process by which the 

detailed requirements of a system are formulated. The exact nature of this process 

depiends on whether we are designing a system for our own needs or a client’s, and 

whether we are replacing or enhancing an existing system, or are creating an entirely 

new system. Communication between client and analyst is at a premium at this initial 

stage.

System specification is the process by which the requirements of the system 

are translated into a precise specification: A specification document - the software 

blueprint - should be unambiguous and free from the clutter of design and 

implementation details. It should make absolutely clear what has to be done but 

without the constraint of explicitly describing how it should be done: abstraction is the
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As proposed by the project sponsor As specified in the project request

As designed by the Senior Systems Analyst As produced by the programmers

As installed at the user’s site What the user wanted

Fig 2.2: A Problem of Communication.
Source: Essential Mathematics for Software Enginers, Peter Peregrinus, 1987.

key here. Ideally, the specification document should also provide an effective means of 

communicating the intentions of the software engineer to the client and the systems
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designer. At this stage the customer should be able to validate the specification with 

respect to his or her own intentions. A valid specification can be achieved by an 

iterative process of modification, if needs be.

Design: once the functionality of the system has been agreed upon, the systems 

designer must specify how it can be achieved. Suitable data structures and algorithms 

are designed. Consideration of performance and efficiency now comes into play. 

Decisions regarding hardware and target programming language requirements may be 

firmed up at this stage. The designer should have a clear and unambiguous system 

specification document to work from, and should be able to communicate effectively 

with the originator of the document in order to achieve a correct design that is close to 

being code.

Implementation is the process by which the data structures and algorithms in 

the design are coded in the target programming language and installed on the chosen 

hardware. The emphasis is on correctness of the code with respect to the design, and, 

hence, to the original system specification. Ideally, a well-defined step-by-step method 

of translation should be employed, which guarantees the preservation of constraints 

and conditions laid down in the specification. The more automatic and formal the 

process, the greater the confidence will be in the correctness of the implemented 

program.

Testing involves verification of the correctness of the implemented program 

with respect to the system specification document. Testing is also required to discover 

and eliminate syntactical errors that may have occurred during coding. Without formal 

methods of proof or an unusually high level of confidence in the correctness of the 

program, and especially when dealing with large and complex systems, testing can be 

very time consuming and, hence, very expensive. This can be true no matter how 

carefully test data are chosen. It should be noted that testing can only demonstrate that
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the program is correct with respect to the system specification: if the specification is 

invalid with respect to the actual requirements then the resulting program is unlikely to 

implement these requirements.

Maintenance of a system begins on the day that the system first becomes 

operational and is usually required, on and off, throughout the lifetime of the system. 

Maintenance may mean modification of the system due to a change in requirements, in 

which case a clear and unambiguous specification can be of great benefit. Maintenance 

can also mean the occasional and regular "spring clean" of system data, especially of 

long lasting data. Human error during data transcription will always be a problem, so 

stored data should occasionally be verified with respect to original source documents. 

Unfortunately, maintenance is also, all too often, a euphemism for an ongoing process 

of debugging.

2.3 Methods of Software Engineering

Fig. 2.3 is a representation of the software development life cycle as outlined in 

the previous section.

Having a well defined software development life cycle introduced two sound 

engineering principles; it gave a project structure and a framework for good project 

management.

As concepts, these stages are clear as to what should be done but not clear as 

to how it should be done. Methods were needed, so came the advent of Structured 

Methods which fleshed out the individual stages with procedural details, explicit inputs 

and outputs to and from stages and ways of checking consistency between and 

correctness of the products of stages. A key element in all such "semi-formal" methods 

was the use of various diagrammatic and tabular notations and, consequently, the 

employment of standard and universal languages to describe system procedures, data
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structures, functionality, etc. In short, the adoption of the third of our sound 

engineering principles, that of common language.

Reqirements 
Analysis

REQS.
DOC.

System 
Specification

SPEC.
DOC

7 / Revise
Specification

V  NO

CODE

YES

System
Design / DESIGN 

DOC.

Implementation

YES
Maintenance

NO

Modify
Code

Fig. 2.3: A flow chart illustrating a software development 
life-cycle.



An early example (early to mid Eighties) was Jackson Structured Programming 

(JSP) [Jac85]. This method bases program design on the characteristics of the data to 

be processed by the system. A well defined diagrammatic notation is used to represent 

hierarchical data structures, illustrating, progressively, more detail through a process of 

data refinement. A preliminary version of the program structure is then produced by 

identifying processes acting on the data structure. Once activities and conditional 

elements have been detailed within processes a detailed program design is derived that 

'can be converted directly into programming language statements. ' [Bur87] The same 

semi-formal diagrammatic notation is used throughout and the diagrammatic output 

from one stage is the input to the next stage, in which it is either enhanced, modified or 

refined in some way. However, JSP is not a complete method, in that it does not 

embody all of the software life cycle; it does not concern itself with requirements' 

analysis or the formation of a specification document (a specification document 

constitutes the start point of the method), and many of the stages in JSP rely on 

manual examination of the specification. There can be no formal guarantee of the 

validity of the resulting program.

In the mid Eighties, the United Kingdom government's Central Computer and 

Telecommunications Agency decided they needed a method of software development 

with the following features:

• A self checking mechanism

• Tried and tested methods

• Facility for tailoring

• 'Teachability'
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One Structured Method came to the fore: the Structured Systems Analysis and 

Design Method (SSADM) [Dow92, Ham93]. SSADM became the United Kingdom 

government's standard method for carrying out the systems analysis and design stages 

of information system projects and is now a recognised international industry standard. 

Indeed, in many application areas, in particular in safety critical system development, it 

is a legal requirement to use SSADM. The Ministry of Defence in the United 

Kingdom, for example, must use SSADM for all of its software development projects. 

Its popularity and widespread use has meant that it has undergone frequent revision 

and enhancement, its fourth incarnation, SSADM version IV, was released in July 

1990.

SSADM takes the structure for software development and project management 

forward. The software development life cycle is defined by five core stages or 

modules, roughly corresponding to the stages outlined previously, but now each 

module has within it one or more stages. Each stage is further broken down into steps 

and these, in turn, into tasks within each step. It is made explicit, at each level, as to 

when something is to be done. Each task, step, stage and module gives rise to 

products-, usually in the form of well defined documents. Particular products form the 

material required to accomplish the next task, step, stage or module. SSADM also 

supplies a raft of techniques to be applied within tasks in order to obtain the 

appropriate product. SSADM, then, describes what should be done (products), when 

things should be done (modules, stages, steps and tasks) and how things should be 

done (techniques). These aspects are represented in Figure 2.4.
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Fig. 2.4: Aspects of SSADM.

Source: Downs, Clare and Coe, 'Structured Systems Analysis and Design 
Method: Application and Context'.

It is not our purpose to describe the large number of SSADM tasks and steps, 

here (there are over 30 steps and around 150 tasks in the latest version), but a list of 

the modules will at least allow comparison with the software development life cycle 

described earlier.

23



The five modules of SSADM are:

1. Feasibility Study

2. Requirements Analysis

3. Requirements Specification

4. Logical System Specification

5. Physical Design

It is notable that there are clear levels of abstraction and the process is one of 

refinement from the most abstract model, given by the Requirements Specification 

module, which is a 'detailed and testable’ specification of what is required, to a non

procedural, logical design (given by the Logical System Specification module) which is 

independent of any implementation strategy, and finally to a physical design which 

introduces information about the target hardware, software and the organisational 

setting in which the system will operate. The basic software life cycle, however, 

remains the same.

The products of the various tasks are classified as either structural model 

diagrams, supporting text or reference text. The structural model diagrams form the 

core of the system description. They take the form of tried and tested semi-formal 

diagrammatic notations such as Data Flow Diagrams, Entity Relationship Diagrams, 

structure charts to model entity life histories, graphical models of entity attribute 

relationships, matrices to cross reference such things as entities and data stores, and 

process outline diagrams. Many structural model diagrams are inter-related and many 

begin as a logical model to be refined to a physical model. Much of the format and 

content of the supporting and reference text is standardised using a variety of 

proformas.
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As an industry standard SSADM enjoys excellent textual, tool and service 

support. The 1990 SSADM Directory of Services [CCT90] listed 139 organisations 

supplying consultancy, 28 accredited training agencies, 30 suppliers of Computer 

Aided Software Engineering (CASE) tools and 35 suppliers of fourth-generation 

languages who have published interface guides for SSADM compatibility. SSADM is 

widely taught in further and higher education establishments.

By 1992 SSADM was being used on billions of pounds worth of software 

development in the United Kingdom alone [Dow92].

However, whilst SSADM is designed to be flexible and can be "part used", 

smaller organisations may find the extra effort involved in using such methods 

unattractive. The time and costs involved in a radical change in working practice, such 

as staff training, tools and services, may be disincentives. The quantity of 

documentation that results can be difficult to manage and, combined with the large 

number of procedures involved, there might appear to be a need for a significant 

increase in project administration.

To some extent these problems have been addressed by the development of 

more affordable tools, often PC-based.

2.4 Computer Aided Software Enginering

In general, CASE is an attempt to speed up, help manage and simplify many 

procedures within software development, particularly in the use of structured methods. 

Any form of automation is usually perceived as a "good thing". Fairbum [Fai90] puts it 

thus:

"It is the rule rather than the exception that automating processes improves

the quality, consistency and reliability o f products over any but the most
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meticulously and expensively hand-crafted products. It would be surprising if  

this were not true also in the fie ld  o f software production."

In any case, the ever increasing size and complexity of software engineering 

projects makes it obvious that some degree of automation in production would be 

desirable if not, for the largest of systems, essential:

"How do you write the specification fo r a new project that has to meet 2,000 

main performance requirements and 6,000 detailed requirements without any 

o f them conflicting with each other or overlapping? How do you weed out 

ambiguity and over-engineering? How do you keep track o f changes in the 

specification and the decisions behind each one? "

asks John Dunn in a recent edition of the Production Engineer [Dun94]. He is 

referring to the Civil Aviation Authority’s 350 million pound national en-route traffic 

control centre, being built at Swanwick, Southampton, a highly safety critical system, 

heavily dependent on large and complex software systems. The answer, apparently, 

was to use a computer program called Requirements and Traceability Management 

(RTM), developed by GEC-Marconi in the mid to late Eighties to aid in the 

development of complex militaiy systems. A sort of automatic project manager cum 

validation aid, RTM is a text-based database program in which information from 

specification documents is "captured, tagged and sorted". It attempts to identify 

everything the product is required to do and present its findings in a way the client can 

understand and validate the specification. In the case of the national en-route air traffic 

control centre, 15,000 initial requirements were reduced to 2,000.

CASE tools appear to fell into three loose and overlapping categories; those 

that are designed to handle a particular procedure in a software engineering method, 

those that are designed to oversee a complete project from beginning to end (or at
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least a significant portion of a project) and those that are targeted at a particular 

programming language or type of project.

In terms of automation in structured methods (in particular SSADM and 

derivatives), Parkinson [Par91] describes tools as being single technique, single phase 

or multiple phase. According to Parkinson the evolution of CASE began in 1978-1983 

with first generation tools such as simple ’diagrammers' and project management aids. 

Second generation tools (1984-1986) included multi-diagrammers that were able to 

work with two or more types of diagram and sometimes form links between them, 

software dictionaries to store, collate and manage things like variable and procedure 

details, and simple 'rapid prototypers'. The third generation of tools (1986-1990) had 

added intelligence in diagram management, generation and manipulation, and included 

the first code generating systems (beginning to realise the software engineer's dream 

(or nightmare) of programs that write programs). In Parkinson's fourth generation of 

CASE tools (1991-1993) the industry saw the rise of dedicated support for structured 

methods and so-called Integrated Project Support Environments (IPSEs) "developed 

from the need to manage complex, large scale software projects, usually in 

telecommunications, aerospace and defence industries (RTM, although in use well 

before 1991, is a good example).

IPSEs are tools that fall into our second loose category; tools that attempt to 

address quality control and management by automating aspects of requirements' 

capture, design, construction and testing stages of a software development life cycle.

A useful 'mini-catalogue' of commercially available CASE tools can be found in 

Fisher [Fis88]: Teamwork from Cadre Technologies, Excelerator from Index 

Technology and PowerTools from Iconix Software Engineering are three examples 

given of tools that support structured methods, integrating tasks that involve such 

things as Data Flow Diagrams, structure charts, Entity Relationship Diagrams and data
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dictionaries. Also included are tools that would fall into our third loose category such 

as BRACKETS from Optima which generates COBOL procedures and data structures, 

and TAGSIIORL from Teledyne Brown Engineering, designed to aid in the production 

of ADA programs. (A more complete and wide ranging collection of software 

engineering tools and methods can be found in the STARTS Guide: Standard 

Descriptions [STA87], which lists most tools and methods currently in use or under 

development.)

2.5 The Software Crisis*

Software engineering, then, has evolved rapidly in the last twenty or so years 

(and we have not had the space here to include innovations in software metrics and 

quality assurance methods, the development of Object Oriented Programming and 

Design, and a host of other developments). All but one of our six principles of sound 

engineering practice would appear to have been addressed; project management, 

project structure, common languages, methods and techniques, and engineering tools. 

Indeed, Bauer's 1972 definition of software engineering now seems to lack detail, 

given the current software engineering environment, and Buxton and Marco [Bux87] 

have proposed an up-to-date version:

"The establishment and use o f sound engineering principles and good 

management practice, and the evolution o f applicable tools and methods and 

their use as appropriate, in order to obtain - within known and adequate 

resource provisions - software that is o f high quality in an explicitly defined 

sense."

(It is possibly less than encouraging that the above quote came from a text 

entitled The Craft o f Software Engineering.)
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Notwithstanding all of the above it is still widely argued that the industry is in a 

state of (almost perpetual) difficulty; the ’software crisis’. Potter, Sinclair and Till 

[Pot91] put it thus:

" The accumulated public perception o f computer systems is that they are 

inherently faulty. Errors are casually referred to as 'bugs', whereas the 

equivalent term in other engineering disciplines is 'faulty component'. This 

has led to a rather sloppy situation, where low standards are generally 

accepted as normal. "

A recent BBC Radio 4, File on Four, programme [BBC93] was devoted to the 

'software crisis' and contained some startling (and worrying) evidence:

On an August weekend in 1993, at the Stockholm Air Show, a Swedish Air 

Force Saab Grippon Fighter jet was going through its paces. The aircraft was in a 3000 

foot climb and banking when the pilot lifted the nose a further four or five degrees. It 

stalled and crashed. Luckily, the pilot was able to eject and there were no casualties. 

The reason the aircraft crashed was that the software on board that was supposed to 

make fatal manoeuvres impossible was not complete. According to Saab, the pilot had 

attempted something that was "highly unlikely". It was found that Saab's test routine 

for the Grippon had been "undemanding".

The Royal Air Force have also suffered from shortcomings in its own software: 

in April 1992 a Harrier Jump Jet, on loan to the Royal Navy (and therefore operating 

outside of its normal environment) was on a practice run when it dropped a bomb on 

its own carrier, the Ark Royal. The target had been a dummy, towed some 800 meters 

behind the ship. The target acquisition system on board the Harrier had been unable to 

process incoming data fast enough resulting in the bomb tracking the aft flight deck of
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the ship. The bomb impacted on the deck and penetrated several levels injuring several 

sailors. The pilot of the Harrier was mortified. He had been "let down by his software".

On October 20th, 1992, the London Ambulance Service switched on their new 

command and control computer system. Two days later it had to be switched off after 

delays in ambulance arrival times of up to ten hours had been reported. The 

Department of Health commissioned a report into the failure which found that "just 

about everything that could go wrong had gone wrong. The software was not 

complete, had not been fully tested and still had dangerous mistakes in it."

Speaking on the same File on Four programme Cliff Jones pointed out:

"Taking a program o f 10,000 lines o f code... there are more paths through

that program than there have been seconds in the existence o f the universe."

In 1993 British Nuclear Electric was installing a software system for the 

primary protection of its Sizewell B nuclear power station. It has 100,000 lines of 

code. They cannot say how safe it is.

In September 1991 there was a narrow escape at British Nuclear Fuels' 

reprocessing plant at Sellafield, where highly radioactive waste is solidified into glass 

at the vitrification plant. A crane hoists containers containing the waste into a cell 

where the process takes place. Two doors are supposed to prevent human access 

whenever containers are in the cell. Protection software, designed to prevent both 

doors being open at the same time, was deliberately modified by technicians, pressed 

for time, to circumvent the safety measure at a time when no danger was present. They 

forgot to undo their 'hacking' and later a container was hoisted into the cell with both 

doors open. In was found that a second level of software protection, that would have
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prevented the incident, was faulty. The fault was a plus sign missing from one line of 

code.

Martin Thomas, again speaking on the File on Four programme, thinks more 

professionalism in software engineering is needed:

"I characterise the industry really as a craft industry that ought to be an 

engineering industry. We are a very young industry; we've only been 

developing software in industry fo r 30 or 40 years, at the outside, and yet we 

are tackling very large scale engineering problems. "

It is not only in safety critical areas that good software is important. 

Information systems of all kinds play a crucial role in the running of governments, 

economies and innumerable aspects of our daily lives. Surely it is at least desirable for 

there to be a degree of confidence in all the software systems that we use. We may be 

mildly amused by stories of computers erroneously sending individuals million pound 

electricity bills, but it would be less amusing if the recipient was a person with a heart 

condition who suffered an attack as a consequence, or if millions of individuals were 

sent erroneous bills.

Bell, Morrey and Pugh [Bel92] cite "one of the few pieces of hard evidence 

available" of the 'software crisis', that of a study of a 1984 United States Federal 

software projects that found that less than two percent of software was used as 

delivered, out of a budget of 6.2 million dollars (see Figure 2.5).
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Fig. 2.5: Effectiveness of US Federal software projects carried out in 1984
Source: Bell, Morrrey and Pugh, ’Software Engineering: A Programming Approach',1992.

So it appears that something is missing from the "craft" of software 

engineering; a solid and scientific foundation from which to build. As File on Four put 

it:

"The computer industry has progressed so fast that it is taking on tasks fo r  

which it still lacks the basic analytical tools. It's like trying to build bridges 

without having first invented the set square."

Traditional engineering disciplines draw heavily on mathematics. Perhaps the 

use of mathematics in software development is what is missing.
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CHAPTER 3: FORMAL METHODS

The writing will be spare and lean, 
the concepts hard, the philosophy old 

and yet new bom.
John Steinbeck on East o f Eden.

3.1 Benefits of Mathematics

It may not be immediately apparent how mathematics can play a major role in 

software engineering. Just because mathematics is an essential modelling and design 

tool in more traditional engineering disciplines, why should it be equally essential in 

software engineering? However, mathematics does have certain properties that would 

make it well suited to the specification of software:

• Precision: mathematics is a more restricted language than, say, natural 

language, and therefore allows fewer opportunities for ambiguity. A 

mathematical statement is less likely to be misinterpreted.

• Brevity: a large amount of information can be conveyed concisely in a 

mathematical language. Brevity can often be an aid to understanding.

• Expressiveness: mathematics is a powerful language in which to express 

complex ideas.

• Facility for reasoning: mathematical statements can be formally investigated. 

Mathematics opens the way for calculations to be performed for predictive 

purposes. Ideas expressed in mathematical terms lend themselves to the formal, 

mathematical process of proof.

In addition to the above, mathematical descriptions can be very abstract. This 

can be of great benefit during the early stages of system development allowing the



software engineer to concentrate on the functional aspects of the system without the 

clutter of implementation details. In other words, the engineer can concentrate on what 

the system is to do without worrying about how this is going to be achieved. Valentine 

[Val87] cites this as a clear advantage over the use of algorithmic languages for system 

specification. An abstract mathematical specification says less than a definite algorithm 

and should therefore be easier to write. He points out that aspects of a specification 

which, at an early stage, need not concern the software engineer can, initially, be left 

out of a mathematical specification. Such things could include interface designs, 

hardware details and the target language for coding. These details and such things as 

performance requirements can be added later in the software development process.

Wordsworth [Wor92] illustrates this idea of abstraction with two versions of a 

simple set of system requirements:

"I need a system that will accept certain information as input and produce 

certain other information as output according to a certain rule."

Compared with:

"I need a system that will accept a text file  marked up with certain special 

signs, and produce formatted pages on a laser printer, the correspondence 

between the input and the output being given by the following rule..."

The first set of requirements may be so abstract as to be practically useless as a 

starting point for specification (at least without some idea of the rule to be used) and 

the second set could be made more specific, or concrete, by stating the type of text file 

(ASCH or WordPerfect, for example), by describing the special signs or by giving 

details of the formatting required. From this one can begin to formulate a notion of 

refinement of a very abstract specification through specifications that are consecutively 

more and more concrete until a final, complete and concrete design is achieved - as a
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painter may begin with sketches, then an outline drawing, before adding washes, detail, 

solid colours and final touches.

A mathematical description may be declarative rather than procedural, in terms 

of its being a logical statement that can be shown to be either true or false. Hoare 

[Hoa86] sees this offering a further advantage over program code when checking 

correctness. If a mathematical proof of a specification can be given then it should be 

easier to spot a flaw:

"This is because a proof checker only needs to check the validity o f each line 

o f proof comparing it only with one or two previous lines. For a program, the 

checker has to check each line in the context o f every other line o f code in the 

program - a task which is quite impossible fo r large programs."

A specification is the key software engineering document; all subsequent 

processes and stages of system development are dependent on or involve referring to 

such a document. Ince [Inc88] notes this and suggests a set of important properties 

that a specification should posses. He proposes that a specification should:

• be unambiguous, since a wrong interpretation only detected in the final stages 

of development could be costly to resolve and even disastrous if only 

discovered after implementation;

• be free o f design and implementation directives, allowing an unfettered 

approach to problem solving and leaving as much choice as possible in terms of 

algorithm design;
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• enable the developer to reason about the properties o f the system it describes, 

which lies at the heart of the analysis process that gives rise to a valid 

specification;

• be free o f extraneous detail, thus containing no more information than is 

required for the person who is to process the document;

• be partitioned into smaller parts or modules which are, as far as is possible, 

independent of each other, allowing consideration and modification of one part 

with minimal consideration of or effect on others;

• be understandable by the customer of the software system so as to improve the 

chances of achieving a valid system.

So far in our discussion it would appear that a mathematical specification could 

possess all but the last two of these properties: partitioning and 'understandability'. 

However, there is no reason why a mathematical specification cannot be modular, so 

we are left with the problem of'understandability'. Clearly, it would be unfair to expect 

all software system customers to be mathematically literate.

Mathematical methods (or formal methods as they are now known, thus 

making them clearly distinct from Structured Methods, that may be thought of as semi- 

formal methods, and from informal methods, such as the use of pseudo code and Top 

Down, Stepwise Refinement) may have other benefits or "spin-offs" as Norcliffe 

describes them [Nor91], to system designers, programmers and industry in general. 

Given an unambiguous formal specification, designers should know exactly what to do. 

The process of coding can become more formalised and mechanical, with each piece of 

code then able to be checked systematically to see that it meets its specification, thus 

building an inherent correctness into the resulting program. Theoretically, verifying
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that a program fulfils a formal specification could be done by machines using program 

provers. In fact, mathematics, with its formality, rigour and logical nature, should lend 

itself readily to investigation and manipulation by computer based tools (we investigate 

CASE for formal methods in a later section in this chapter). The process of 

mathematical specification itself a form of mathematical modelling, strongly 

encourages deep thinking about the system being specified which inevitably results in 

better communication between software engineer and client, and consequently a 

clearer and faster validation process. A  course entitled Essential Mathematics fo r  

Software Engineers [Sla87] has been produced by a consortium of Sheffield City 

Polytechnic, The Hatfield Polytechnic, Loughborough University of Technology and 

ICL Software Engineering. It justifies the word essential by stressing that good 

communication is a prerequisite for effective software development and that good 

communication is far more likely if a precise language such as mathematics is used:

"... we must have a language which allows, and encourages, precise and 

logical thought and expression. We must have a language which discourages, 

and prevents, vague andfuzzy thinking and expression. The language o f 

English has developed over the centuries to allow man to express vague and 

fuzzy thoughts, such as poetry and politics. The language o f mathematics has 

been developed over an equally long time to fu lfil exactly the needs which we 

require fo r thinking about programs. "

At Sheffield Hallam University, amongst students on the MSc Engineering 

Information Technolgy, MSc Computer Studies and BSc Computing Mathematics 

courses, the author has certainly found, during three years of teaching formal methods, 

that formal specification encourages deep thinking about the system to be specified. As 

lecturers we are often quizzed about real or imagined intentions within our system 

requirements documents. Any ambiguities are soon rooted out.
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Mathematical specification should also improve communication between 

software engineering team members involved in various stages of a project if a single, 

precise language is understood by all. Maintenance of formally specified systems 

should also become easier with a precise specification document to refer to. If the 

whole point of formal methods is the production of better software then less 

maintenance should be required.

Formal methods clearly put more emphasis on the early stages of software 

development; the production of an initial, abstract mathematical specification is key to 

the whole process. The extra investment in effort towards getting things right early on 

should mean that significantly less time and effort will be required during later stages, 

where currently vast resources are used in employing programmers to check and re- 

check, test and re-test and rewrite and maintain large and complex programs. It is an 

adage that we must all be familiar with: that preparation is the key to the successful 

completion of a task. Figure 3.1 illustrates this principle by graphically comparing the 

resources used at different stages of software development using current methods and 

formal methods. If the area under each graph represents the total resources used then it 

is clear that formal methods should be more productive [Sla87].

Many academics are clearly enthusiastic about formal methods. Martin Thomas 

of the BCS (at the time this comment was made) is certainly in favour [BBC93] :

"I would like a requirement that safety critical software should be fully  

analysable from its specification right through to its implementation as a 

computer program, and what I  mean by fully analysable is that you should be 

able to reason formally, using mathematical logic, about the way in which it is
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traditional

installdevelop maintain

Cost

formal methods

installdevelop maintain

Figure 3.1: Comparison of software engineering cost over project stages 
between traditional and formal methods.
Source: Essential Mathematics for Software Engineers, Edited by Gill Slater,
Peter Peregrinus Ltd. on behalf of the IEE.

possible fo r that software to behave and the ways it is not possible to behave. 

So you should be able to say, 'this engine controller cannot lead the engine to 

overspeed under these circumstances'. And i f  called upon to do so you should 

be able to create a mathematical proof that that is correct. Other engineers 

use mathematically based methods fo r carrying out their designs and 

analysing them. We have such methods, some organisations are using them. It 

seems to me that we need to accelerate the pace o f take-up o f these methods in 

industry by actually legislating fo r it in some way; building it into standards. "
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If formal methods can enhance productivity and quality then we would concur 

with the above view but suggest that such improvements need not be restricted to 

safety critical areas.

Bev Littlewoods could be described as an enthusiast with reservations 

[BBC93]:

"Mathematics is an idealisation - we don't actually think that way. Computers 

tend to do things fo r people, unfortunately... They [ Formal Methods ] are not 

the answer, but they are an answer. Certainly they are going to be a 

contribution to building safer systems."

The UK Technology Foresight Programme on IT and Electronics hopes that 

formal methods will be taken up by the software engineering fraternity. In its latest 

Delphi Questionnaire [For94] it asks:

"When will it be that... 25% ofprofessional programmers use formal 

techniques fo r the design, generation or validation o f software?"

3.2 Problems Associated with Taking the Mathematical Approach

The greatest task to be undertaken for there to be widespread adoption of 

formal methods will be in developing the mix of training needed for professional 

software engineers to acquire the necessary skills profile and to manage the major 

changes in working practice that will ensue. There would be more people involved in 

specification and probably less people concerned with writing and testing software 

code. Because formality lends itself to automation, redundancies within the industry 

are implied, as software engineering "catches up with" traditional engineering. The 

current software engineering work force is largely not mathematically trained and the 

resources required to retrain such a large and diverse body would be considerable.
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Mathematics is perceived, perhaps with some justification, to be difficult and 

experienced programmers may be sceptical as to its relevance. The resistance to such a 

radical change in approach has been and will be great. Maibaum and Sadler [Mai28] 

are well aware of this problem:

"Regarding the practice o f formal methods in industry. There is a natural 

conservatism in all organisations against the use o f new techniques and 

methods. Jobs depend on peiformance and tried, i f  not proved, methods are 

more dependable than new wonder cures. Old ways o f working are familiar 

and dependable, i f  not so effective. The job will be done, even i f  it is 

troublesome and may exceed the budget...It takes courage on the part o f a 

company manager or individual to take up the cudgels o f formal methods and 

risk all.”

Djikstra [Dji], however, is uncompromising:

"We have already heard all the objections, which are so traditional they could 

have been predicted: 'oldprograms' are good enough, 'new programs' are no 

better and are too difficult to design in realistic situations, correctness o f 

programs is much less important than correctness o f specifications, the 'real 

world' does not care about proofs, etc. Typically, these objections come from  

people that don't master the techniques they object to."

Nevertheless, senior management in the software engineering industry need to 

be convinced that formal methods do indeed lead to greater quality and productivity.

In the end this will only come about if commercial software, at least equivalent in 

quality to software produced using current methods, can be shown to be produced at 

lower cost, either in time or in resources. Academic institutions can play a leading role 

in developing and using formal methods and appropriate tools, in training future
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software engineers and in creating opportunities to collaborate with interested parties 

in industry. Upon them is the responsibility of dissemination.

Norris, Newsman and James [Nor87] agree:

"... the current situation may be changed by a more mathematical basis to the 

teaching o f computer science or by good support tools. In any case, it will be 

a while before the status quo changes significantly, and the type o f tools 

required to solve some o f the practical problems o f formal methods will be a 

quantum leap from the average compiler... A likely next step in the evolution 

offormal methods would be the application o f artificial intelligence 

techniques to prototype such tools."

Tool support for formal methods is certainly another area of concern, in that 

they are needed but are currently thin on the ground, at least in commercially available 

forms. Plat, Katwijk and Toetenel [Pla92] echo this:

"...formal methods need automatic support (tools). Error-free specifications 

(necessary fo r reasoning) can be constructed faster when using syntax- 

directed editors and type-checkers, and non-trivial proofs tend to be too 

complicated to be carried out depending on human intelligence 

alone...Nevertheless, the current availability o f tools is low, and those tools 

that are on the market offer a limitedform o f support."

Gibbins [Gib88] also sees CASE tools playing a vital role:

"It may be that the future applications o f formal methods lie both in the 

development o f software tools - syntax-checkers, proof-checkers and theorem 

provers - which enables control o f the formal software development process, 

and in an associated prototyping methodology which enables one to test 

formal specifications."

44



Another problem involves communication difficulties. We have suggested that 

a formal approach necessitates a deep understanding of a system by the software 

engineer and that this can only help towards more effective discussion with the 

software client but discussion is not enough in itself. A client wants to see something 

concrete and something that he or she can comprehend, and wants to see such things 

early in the system development process. Michael Jackson [Jac87] sees mathematics 

imposing difficulties in this area:

"Significant parts o f what software developers produce must be discussed’ 

explained’ negotiated and eventually agreed with users and customers. These 

activities must be carried out in the domain language' the language that 

users and customers rely on when they speak o f the real world in which they 

operate. There is therefore an important requirement fo r translation and 

interpretation between the formal language and the 'domain language'. It 

would be foolish and arrogant to castigate our users and customers fo r their 

refusal or inability to learn our formal languages, partly because we simply 

have no right to impose such an obligation on them, and partly because 

formal languages are unsuited to human communication."

Diagrammatic documentation, such as that produced by structured methods, is 

much more likely to elucidate the developer’s ideas than pages of mathematical text. 

Techniques of rapid prototyping have evolved to allow clients to interact with systems 

at an early stage. If we accept that using formal methods means more time and effort 

will be spent on system specification, and that it is highly desirable to obtain a valid 

specification before progressing, then it seems essential that some method be available 

to convey the meaning of formal descriptions to those not familiar with the notations 

used.
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Possibly the most worrying limitation of formal methods (at least to those 

currently engaged in commercial software production) is the lack of actual methods. A 

mathematical notation is a powerful modelling tool but on its own cannot be described 

as a method. McDermid [Der87] feels that in the area of formal methods "there is too 

much emphasis on the notation and too little on the methodological aspects o f their 

use." Michael Jackson [Jac87] is characteristically blunt:

"Formal methods tend not to be methods; most formalists are simply not 

interested in method except in a very attenuatedform... Today’s formalisms 

tend to be isolated from one another, research concentrating on improving 

each formalism in its isolation; we need to build many bridges between 

different formalisms, converting our existing archipelago into the solid 

ground on which software developers should be able to stand."

It is at least now well understood that formal methods embraces formal 

specification with stages of refinement and verified design through proof (the idea that 

programs produced using mathematics can be formally reasoned with, with respect to 

their formal specifications, from Jones [Jon90], for example). Guides to usage such as 

Fig. 3.2 [Nor87] and various texts such as [Ear86, Hay87, Kin89, Lit92] have 

suggested strategies and environments for specification, refinement and program 

design but it is less clear how one reaches a formal specification from informal 

requirements.

Ian Sommerville [Som92], whilst not purporting to give a detailed 

methodology, does suggest an overall strategy which incorporates formal specification 

(see Fig. 3.3). Formal techniques could be incorporated into existing regimes of 

software development where stages of development are seen as being inter-related and 

iterative processes. Although Sommerville believes that formal specification techniques 

are now sufficiently mature for them to be used in the specification of sequential
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systems he warns that "we need even better tools, techniques and methods and 

perhaps most importantly, better education and training".

IDEA CAPTURE ENHANCEMENT

ANALYSIS

SPECIFICATIOI

REFINEMENT

DESIGN

Figure 3.2: Interrelationship of S tages of Software Development using Formal Methods. 

Source: Norris, Newman and Jam es, A Step-by-Step Guide to Using Formal Methods, 

British Telecommunications Engineering, Vol. 5, Jan. 1987.

Requirements Formal
specification K

Requirements
definition

High-level
design

 7S

System
modelling

Architectural
design

Figure 3.3: Overview of software development incorporating formal specification.
Source: Sommerville, Software Engineering, 4th ed., Addison-Wesley, 1992.

There may be scope for incorporating mathematics into structured methods or 

integrating formal specification and structured methods. Semmens and Allen [Sem91]
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and Randell [Ran91] have shown that formal data structures written using the Z 

notation can be partly derived from data flow diagrams, whilst Stepney [Ste90] has 

worked on specifying entity relationship diagrams in Z. Polack [Pol91, Pol92] has 

drawn on this work to propose a draft technique for formalising products produced by 

SSADM. She sees an opportunity to introduce formal specification to existing 

Structured Methods users:

"The use offormal notations in the context o f structured analysis is seen as 

valuable in the introduction o f formal notations to industrial users. The 

systems analysis provides diagrams and dictionary definitions about which the 

Z notation can be structured This simplifies the production o f Z and improves 

the precision o f the system specification."

3.3 The Z Notation

The position of formal methods was certainly strengthened by the development 

of particular notations designed specifically for use in software engineering. These 

notations can be divided into three broad categories.

Process algebra, such as CSP [Hoa85] which describes the system as a group 

of sequential processes. Processes communicate with one another and only certain 

sequences are permissible.

Algebraic techniques, such as OBJ [Gog88] which model system behaviour 

divorced from the system state. A particularly abstract approach.

State based techniques including VDM [Jon90] and Z [Spi92, Spi88, Dil90, 

Wor92]. Both are based on discrete mathematics using typed set theory (sets contain 

objects of the same type) and Boolean predicate logic. They endeavour to describe a
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system as a set of possible states with invariants constraining the set of states and 

preconditions to possible changes between one valid state and another. The Z notation 

includes a schema calculus, a schema being a collection of constrained name-value 

pairs within a schema-box (see Fig 3.4). Schemas give a modular feel to a specification 

and the calculus provides ways of creating connections and procedures via 

conjunction, disjunction, piping and composition, as well as a means of constructing 

larger units by including one schema within another. There are conventions, exhibited 

through the use of certain ’decorations', to give notions of'before and after’ and ’input 

and output’.

The reader should note that the Z notation refered to here and throughout this 

thesis is the notation described by Spivey, who’s Z: A Reference Manual [Spi92] can 

be refered to for a glossary of Z symbols and names, and a syntax of Z.

SchemaTitle___________________________________

Signature

(schema inclusions

and variable declarations)

Predicate Section 

(preconditions and post conditions)

Fig. 3.4: A Z Schema.

It may be that with a selection of notations to choose from some are found to 

be more or less appropriate for different categories of system, or that different 

notations are used to specify different aspects of a single system.

Formal specification using the Z notation has already been used in diverse 

applications: for example, Morgan and Suffrin [Mor84] have reported on the
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specification of a UNIX filestore, Spivey [Spi90] has discussed the specification of a 

kernel for a real time system, Delisle and Garlan [Del90] have shown how an 

oscilloscope may be formally specified, AT&T Bell Laboratories [Zav91] have 

investigated the specification of telephone exchanges, Woodcock et a l [Woo94] have 

specified Defence Standard 00-56 (the British standard for the development of safety 

critical systems), we have given a generic specification for lift systems [And92] (this 

and our other published papers referenced in this text are included in a volume of 

appendices) and, in probably the most well known industrial application of formal 

specification, IBM have produced, in several volumes, a detailed specification of a 

Customer Information and Control System.

As a point of interest, IBM have called their formal software engineering 

Clecmroom Software Engineering, by analogy with semiconductor fabrication where 

defects are avoided by manufacturing in an ultra clean environment, based on the 

notion that defects in software should be prevented rather than discovered [MI1187].

A survey of Z users [Bar91], carried out as part of the ZIP project which is 

concerned with the enhancement of the use of the Z notation, provides interesting 

feedback from academic and commercial practitioners, the majority of a positive 

nature. It contains statistical information, on over 50 projects, concerning size and type 

of project, length of specifications, iterations undertaken and ratio of mathematical 

notation to natural language in specifications. The data concerning the use of computer 

tools was of particular interest to us, and indicated that tool use was common and, in 

general, the larger the project the larger the use of tools (see Fig. 3.5).

The Alvey Programme, a UK Government venture to stimulate British IT 

research, also noted and promoted interest in the Z notation and, in its 1987 annual 

report [Alv87] also mentioned method integration and tool support:
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Fig. 3.5: Use of tools compared with size of Z project.
Source: Barden et al., Report of a  Survey into the use of Z, Logica, 1991.

"[ Formal methods ] continues to be one o f the most successful parts o f the 

software engineering programme... The most-used methods appear to be VDM 

(seen as a mature method at the beginning o f the programme); Z, probably 

now a mature method with the publication o f the 'Z handbook'; and LOTOS 

fo r protocols. The rapid uptake o f these methods by industry and the 

associated dramatic rise in the number o f industrialists trained in these 

methods is creating feedback which is shaping the direction o f future 

research...the emphasis is towards developing the 'method' aspect o f these 

techniques and, in particular, linking them to existing design methods already 

widely used in industry and commerce, e.g. SSADM, JSD, etc. However, more 

advanced applications in the next few  years will require fundamental 

advances in more powerful logics and tools to support them and theorem- 

proving techniques."

It is encouraging to note that "formal specification, leading to 'animation' and 

verification" was cited amongst critical areas of technical development in the Alvey
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Programme's original strategy (we discuss animation and describe our techniques for 

animation in subsequent chapters).

There is no lack of academic and industrial courses offering schooling in the Z 

notation. In 1991 there were no less than 36 academic institutions offering 

undergraduate and/or graduate courses, and 18 offering industrial short courses 

[Nic91].

At Sheffield Hallam we can claim to have as much experience as most in the 

teaching of Formal Methods; the Z notation has been a part of undergraduate and 

post-graduate courses at the institution since 1988. Of particular interest, from the 

point of view of studying the use of Z, has been the author's experience of post

graduate students on the MSc Information Engineering Technology course. These 

students have had, perhaps, the best opportunity to follow software development from 

the conception of system requirements through to implementation. Having completed a 

unit studying the Z notation and its use they have then been able to enhance and put 

their new skills fully to the test by embarking on a learning contract [And93a].

In essence, a learning contract is a negotiated case study or mini-project. 

Student individuals or groups are encouraged to suggest systems that they may be 

interested in developing - part time students are often working in a technical capacity 

and are usually keen to apply Formal Methods to their areas of expertise. The contract 

is then divided into a schedule of development stages; the first being the production of 

a system requirements document, the second the production of an abstract Z 

specification. Further stages are negotiated and may include one or more stages of 

refinement, the construction of proofs of consistency within the specification, 

animation and implementation in a target language such as C.
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The experience from the student's and lecturer's point of view has almost 

always been a positive one and many interesting and practical systems have been 

developed including an Automated Teller Machine simulation, an electronic 

components thermal evaluation system, an intelligent multi-storey car parking system, 

a UNIX style process scheduler, a motorist's route planner, GEORGIS - a rail failure 

database system for British Rail, a warehouse stock control system and a registration 

system for an electronic mailbox system for practitioners in the medical professions.

It has been apparent that producing the initial, abstract, specification has 

invariably been an arduous task, but, once achieved, students have found the later 

stages of development (in particular, implementation) far more straightforward that 

expected.

The difficulty found by students in writing Z (especially when only given 

natural language system requirements) has been particularly apparent on undergraduate 

courses. Notwithstanding patchy knowledge of software engineering in general, a 

degree of trepidation when it comes to learning mathematics and a common confusion 

between programming and specification, students have shown difficulties in thinking in 

the abstract and then transforming such notions into correct mathematical 

interpretations. This has been observed from experience in the classroom, marking 

assignment and examination scripts, and in formal student feedback.

Consideration of such issues in the writing of Z specifications has led us to 

believe that a simple to use, step by step, method for producing specifications from 

natural language system requirements, would be of great benefit in enabling students 

and practitioners to master the mathematical skills required for formal specification.
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CHAPTER 4: WRITING Z - THE OPERATOR METHOD

Life is too short to learn German.
Richard Parson, British classicist (1759 - 1808).

4.1 Introduction.

Although most university computing courses now include a study of the Z 

notation, the teaching of Z, as we noted at the end of the previous chapter, is still not 

without its problems. Students not only find difficulties coming to grips with the 

notation and the underpinning mathematics, but experience enormous problems when 

they first come to use the notation to construct a system specification from given 

requirements. Students find it extremely hard coping with abstraction and identifying 

the particular variables that make up the state schema. Once through this abstraction 

bottleneck, and having produced the state schema, students find it much easier to build 

the associated operation and error schemas, and go on to complete the specification. 

They may not immediately specify the operations correctly, but they at least seem more 

comfortable with this part of the process - probably because it is more mechanical and 

there is less need of abstraction.

If students in academia experience these problems it is more than likely that 

software engineers in industry, when being trained in the use of formal methods, will 

experience similar problems. Not only does this impede the technology transfer 

process, but it makes it difficult to identify exactly what the technology is that is being 

transferred, other than abstraction and the ability to create mathematical models. Such 

abilities are learnt slowly and come only gradually with experience. The problems of 

replacing experienced staff when they move on, when a transferable technology or 

systematic method is unavailable, mitigates against the adoption of formal methods by 

industry.



The lack of a systematic method for developing Z specifications also means 

that tool support for the process is problematic. The type and syntax checkers 

currently available do not really assist the trainee software engineer to construct Z 

specifications, although they are of tremendous help to the experienced Z user.

In the previous chapter we mentioned the idea of integrating formal and 

structured methods and indicated some of the exploratory work that has been done in 

this area. This may well become an accepted approach and is certainly palatable to the 

software engineering industry. Once well defined, such methods will no doubt enter the 

mathematics curricula of computing courses and would be suitable for students already 

familiar with the systems analysis in methods such as SSADM and Yourdon. 

Nevertheless formal specification, and the mathematical notations thereof, form 

valuable disciplines for study in their own right, and we feel that a simple approach to 

enable students to progress from natural language requirements to a mathematical 

representation is what is needed.

The issue with the methods integration work of Semmens and Allen [Sem91], 

Randell [Ran91] and Polack et al. [Pol93] is that something verging on a full blown 

structured approach has to be carried out first. Admittedly there is tool support for 

this, such as SELECT and ASCENT, but a detailed knowledge of the structured 

approach being adopted is required, and carrying out a full scale structured approach, 

whilst beneficial, can be time consuming. Further, if the end product of these 

endeavours is a formal specification written in Z, then it has to be accepted that the Z 

produced by converting, for example, Yourdon diagrams, will not be as abstract or as 

simple as it might otherwise have been. Examples in Semmens and Allen [Sem91] bear 

this out, although the Z has been produced in a systematic fashion. Arguably, the 

ability to reason in abstract terms with the resulting Z has then been reduced by the 

complexity of the Z. Also the ability to animate the resulting Z is made harder.
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What is needed is a simple approach which enables the specifier to progress 

from the user requirements to the Z in a systematic but direct way. The OPERATOR 

method described in this chapter [And95] was developed with this goal in mind. 

Although as a method it draws on the well-proven ideas of structured methods, it does 

not require a full scale structured analysis to be carried out first and is essentially free 

standing.

4.2 The OPERATOR method - a simple example.

To see how the OPERATOR method works we use it to produce the state 

schema needed in the specification of a simple security system. Assume the system we 

are to specify has the following user requirements.

"The system is to monitor the whereabouts o f staff in an organisation.

The organisation is located in its own building and, as staff check 

themselves in and out o f the building, the system notes whether they are 

in or out as appropriate. The system can be queried at any time to see 

who is in or out, and must cope with sta ff joining and leaving the 

organisation."

The word OPERATOR is an acronym with the letters standing for Objects, Properties, 

Entities, Relationships, Assemble, Trim, Other and Repeat. Step 1 of the method 

therefore begins by identifying the objects that make up the system. In our example 

obvious candidates for objects are the staff who work in the building. Whilst it is not 

imperative that all objects be identified at this stage - indeed, the later identification of 

objects is an integral part of the method - it is worth noting that there are no other 

obvious objects making up the system that need concern us. It is worth noting, too, 

that we need not be overly strict about what constitutes an object other than that 

objects should be nouns and have some concrete existence [Sul93].
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Step 2 of the method requires us to identify the properties of these objects. At 

this stage it is important to note that we are looking only for simple has/have 

properties. Other relationships are established during step 4 of the method. From the 

requirements of our system it is clear that staff have whereabouts, and it is this 

property that the system must monitor. Staff in the organisation have no other 

properties of significance and thus we can proceed to step 3 and identify the entities 

making up the system.

The entities of the OPERATOR method are the nouns identified in steps 1 and 

2. The entities are thus the staff and their whereabouts. As part of this third step we 

must also describe the entities in terms of the Z notation. Basic types are therefore 

needed and we parachute in the type set STAFFJD and introduce the enumerated type 

IN_OUT containing the elements in and out. The system entities staff and whereabouts 

are thus declared as follows:

staff : PSTAFFJD
whereabouts : PIN_OUT

As system entities staff and whereabouts are sets of STAFFJD and lN_OUT 

values respectively, thus explaining the use of the powerset symbol in the declarations. 

The variables staff and whereabouts are possible state variables; additional state 

variables are identified via step 4 of the method, where relationships between system 

entities are established.

Relationships between entities are identified in a systematic way using the 

concept of the entity/entity matrix shown below. At this stage the aim is to identify 

binary relations only. More complicated relationships are introduced via the data 

invariant of the state schema once all state variables have been identified.
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staff whereabouts

staff - location of
whereabouts located -

In each cell of the matrix are put names of relevant binary relations between the 

pairs of entities involved. The assumption is that the entity in the row of the matrix is 

the domain of the relation, and the entity in the column is the range. Where system 

entities are not sets but single elements, they should be regarded as singleton sets if 

binary relations involving them are needed. In practice this seldom happens. Thus, 

location jo f  is a binary relation between staff and their whereabouts and, since at any 

time staff have unique locations, then the binary relation is actually a partial function 

with the following declaration:

location_of STAFFJD -+* INJOUT

The binary relation located is not a function as several staff may be in or out of 

the building at any one time. Its declaration is this:

Jocated : IN_OUT<STAFFJD

We should note that the remaining cells of the matrix are empty because no 

relevant relations exist between the entities concerned.

Step 5 of the method is to assemble the list of candidate state variables. This 

list contains the system entities together with the binary relations identified. The 

assembled list of variables and their declarations is thus as follows:

staff : P STAFFJD
whereabouts P IN_OUT
location_of STAFFJD •+> IN_OUT
located : IN_OUT<STAFFJD
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It is more than likely that this list is longer than it need be and, so, in step 6 of 

the method we trim it down. The trimming is achieved systematically by getting rid of 

redundant information. We can usefully note that staff is the same as dom locationjof. 

Thus, if we wish we need not include staff in the state schema provided we include the 

partial function location jo t  Similarly, we need not include the set whereabouts because 

this is the same as ran locationjof. Finally, we need not include located because this is 

just the inverse of locationjof.

In theory, then, all the information we might need is contained within the 

locationjof function. However, it may be sensible to include staff in the abstract 

specification even though the information is redundant, so that a direct record of the 

users of the building is ready to hand for specification purposes. The level of 

redundant information is really a matter of taste. Clearly it should not be great, but at 

the same time it is important to ensure that specifications are readable and easily 

understood [Gra91,Spi92]. The trimmed list of state variables is thus:

staff : P STAFFJD
location_of : STAFFJD -+» lN_OUT

The remaining 2 steps of the method require us to check whether there are 

other objects of note, and to repeat the process with them included. Fortunately there 

are no other objects and therefore no need to repeat the process. Repeating the 

process is in principle not difficult. Care should be taken to check for additional 

relationships between new and existing entities during the repeat step 4.

The culmination of the OPERATOR method is thus the listing of state variables 

given above. The state variables and the properties which they possess can now be set 

down in the system state schema:
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System

staff : P STAFFJD 
locationjof: STAFFJD lN_OUT

staff -  dom locationjof

The OPERATOR method will not determine the data invariant. However, 

having identified the state variables, the data invariant can be determined from 

knowledge about the system and the Z constructs used to model the system variables.

From here on, the rest of the system specification can be established. This will 

include specifying state changing operations such as checking in and checking out of 

the building by staff, adding new staff members and removing staff from the system 

when, for example, they leave the organisation. Querying operations, which do not 

change the state, can similarly be specified, and might include such operations as 

querying the system to see who is in or out of the building.

Such state changing and querying operations will not be specified here to save 

time. There is nothing complicated about their specification and given the system state 

schema they are easily produced. We shall, however, revisit the specification of system 

operations after the OPERATOR method has been enhanced by the inclusion of a 

diagramming notation and the means of addressing system complexity.
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4 .3  A n o th er  s im p le  exam ple.

To demonstrate the applicability of the OPERATOR method we consider, 

albeit briefly this time, another example - that of a simple banking system. The 

requirements of the system, we assume, are the following.

"The balances and overdraft limits o f accounts at a bank are to be 

monitored by the system. Account holders can make deposits and withdrawals 

and, i f  they have sufficient funds, can change their overdraft limits. As well as 

furnishing information on balances and overdraft limits, the system should 

cope with opening and closing accounts."

Application of the OPERATOR method, with brief annotations, is as follows.

O bjects: accounts, holders

P rop erties: accounts have balances

accounts have odjimits

E n tities: holders P HOLDER_lD
accounts : P ACC_NO 
balances : PZ 

odjimits : PZ

Here we should note that the basic type, Z, representing the integers, is being 

used to model the balances and overdraft limits (in pence) of individual accounts.

Other types used have their obvious meanings.
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Relationships: holders accounts balances odjimits
holders - accountjof - . -

accounts holderjof - balancejof odjimitjof
balances - - - -

odjimits - - - -

Assemble: holders 
accounts 
balances 
odjimits 

account_of 
holderjof 

balance_of 
od limit of

PHOLDERJD
PACC_NO
PZ
PZ
HOLDERJD -*» ACC_NO 
ACC_NO HOLDERJD 
ACC_NO -4* Z 

ACC A /0 -» Z

Note that the concept of joint accounts is being modelled by declaring holderjof 

to be a binary relation and not a partial function. By declaring account_of to be a 

partial function, the assumption is that holders can only hold one account.

Trim: holders 
account_of 
balance_of 
od limit of

PHOLDERJD 
HOLDERJD -+> ACC_NO 
ACCJNO -+» Z 

ACC NO+> Z

In trimming the list we have noted that accounts is dom balance_of, that 

balances is ran balance jo t\ that odjimits is ran odJimitjot; and that holderjof is the 

inverse of the function account of.

Other: There are no other objects of note.

Repeat: This step is unnecessary.
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The state schema, with its appropriate data invariant, is as follows:

  Bank _________________________

holders : PHOLDERJD 
accountjof : HOLDERJD ACC_NO
balance_of : ACC_NO -+> Z

odjimitjof : ACC_NO -+* Z

holders = dom account_of 
ran account_of = dom balance_of 
dom ba!ance_of = dom odjimitjof 
Vx : dom balance__of»
(balance_of (x) > odJimit_of (x) 

a  odjimitjof {x) < 0)

Note that the data invariant is reflecting the operating assumptions of a normal 

bank - namely that all accounts have balances and overdraft limits, that overdraft limits 

should not be exceeded, and that overdrafts represent negative amount of cash. Once 

again, to complete the specification, operations that change the state of the system, and 

those which only query the state, would now be specified.

4 .4  U sin g  th e  M eth o d  w ith  S tu d en ts.

The OPERATOR method as it has been described was the prototype of the 

method which now exists. The prototype was enhanced and extended following testing 

of the method with students. Here we now describe our experience of using the 

OPERATOR method in the classroom.

The method was first tested on second year Computing Mathematics degree 

students at Sheffield Hallam University. Students had already been exposed to discrete
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mathematics and the Z notation, and were familiar with reading Z specifications. They 

had, for example, studied the video-based A Z Readers Course produced at Sheffield 

[Coo92] and knew how specifications were structured. They had not, however, had 

any experience of writing specifications and the OPERATOR method was the first 

systematic approach they had used to develop Z specifications.

Working in small groups students had to specify a simple library system. An 

extract from the given user requirements document is as follows:

"In order to monitor who the users o f the library are, which copies o f 

books they have on loan, and which copies are available fo r borrowing, 

a simple computer-based system is to be developed. Any copy o f a book 

that has been borrowed will have a return date stamped inside it and 

this will be noted by the system. The system must also log the 

acquisition o f new copies o f books and note their removal, and should 

enable new users to join the library and existing users to leave. "

The marks for the complete (non-robust) specification were 50, of which 10 

were available for use of the OPERATOR method to determine the list of state 

variables and their declarations. The average mark for use of the OPERATOR method 

was 7.41 with a standard deviation of 1.57. The marks ranged from 4 to 9 and there 

were 17 groups of students. Most succeeded in using the method well and produced a 

variety of consistent specifications. Most lists of state variables were variations on the 

following:
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users PUSER ID

copies
books
borrower of

PCOPY ID
PBOOK
COPY I D U S E R  ID

book of COPY ID -+> BOOK
status of COPY I DS T A T US
duedate of COPY I D D A T E

Several groups had been harsher with their trimming than others and had 

removed copies and books. Others had introduced the concept of library cards and 

additional information about books such as their titles and authors. A common 

omission was the status__of function which indicates whether a book is available for 

borrowing or not. Since its inclusion in the specification is not essential, the omission 

was not penalised.

In summary, students found the method easy to understand and simple to use. 

The method had been demonstrated using the examples considered in Sections 2 and 3, 

and students were able to apply the ideas readily to develop the simple library system. 

Many of the specifications turned out similar as a result of applying the method, 

although there had been minimal copying of ideas by groups. Whether this high level 

of reproducibility is a good feature of the method is debatable. The approach certainly 

steers the specifier towards the use of functions and relations when perhaps simpler 

structures might have been used. The security system, for example, is easily developed 

in terms of just sets [Nor91, Coo92]. Students commented that they found the method 

enabled them to construct specifications in a systematic way. In general they found 

this helpful and were able to have sensible discussions about the system based around 

the approach being adopted.

Although the comments of the students were positive in the main, the method 

does have its limitations. The approach, though systematic, is still very abstract. It is 

interesting to note that some students were drawing informal diagrams to help them
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apply the method. Given that the success of structured methods such as SSADM, 

Jackson, and Yourdon seem to hinge on the use of accompanying diagrams, the author 

and his director of studies deemed it necessary that the OPERATOR method should 

also have a diagramming notation. Not only would this help the specifier with the 

process of abstraction, but the diagrams would be of potential help in communication 

with the would be client or user about the essential features of the system to be built.

In the next section we therefore show how the method was enhanced.

As well as being abstract, the approach as outlined so far does not really 

address system complexity. In discussions, the students commented that they felt the 

method could soon become unworkable if the number of entities became large. 

Drawing up a large entity/entity matrix would be difficult, for example, and ensuring 

that the data invariant of a large state schema was correct would also not be easy. In 

Section 6 we therefore show how the OPERATOR method, and its diagramming 

notation, can be extended to address system complexity and to embrace structural 

considerations such as partitioning a system into several subsystems.

4 .5  E n h a n c in g  th e  m eth od  w ith  a  g rap h ica l fro n t en d .

The graphical notation described in this section has been developed to 

accompany the method and to facilitate the O, P and E stages. Its use is therefore 

designed to help identify the objects and entities that make up the system being 

specified. The notation is as follows:

• The system at the top level is represented by an appropriate descriptor written

inside a rectangular box as shown:

System
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The convention is that the first letter of the descriptor is an upper case letter. If 

we were developing a banking system we may well expect to see Bank written inside 

the box instead of System.

Objects and other system entities, related by the has/have property, are also 

represented by names written inside rectangular boxes:

staff

The convention with system entities (objects are also entities) is that their 

names are written in lower case throughout.

Each of the boxes representing an entity has the set, to which the entity 

belongs, written alongside in Z, e.g.:

P STAFFJD

The convention here is that types and other sets used are written in upper case letters 

throughout, and are not contained inside boxes.

The hierarchical relationships between the above are represented by arrows of 

appropriate kinds:

 ► links the system at the top level to the objects out of which the system

is comprised.

 7* links objects to entities, and entities to their associated entities as

appropriate. The arrow characterises the has/have property.
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 links entities (including those identified as objects) to the types and

sets in Z to which they belong.

To show how the notation works, let us draw the diagrams that represent the 

security, banking and library systems considered earlier. Fig. 4.1 shows the simple 

security system.

System

1

staff

L i '  

PSTAFF ID whereabouts

PIN OUT

Fig. 4.1 - Graphical representation of the simple 
security system

The diagram tells us that the system state at the highest level is called System. 

The objects in the system are staff who have whereabouts. The system entities are 

therefore staff and whereabouts, and these are possible state variables. The variable 

staff is a member of the constructed type set PSTAFFJD, and whereabouts belongs to 

the constructed type set PIN_OUT.

Fig.4.2 shows the banking system and Fig. 4.3 represents one interpretation of 

the simple library system. If we take Fig. 4.3, for example, this is telling us that the 

library is comprised of users and copies, which are being regarded as the objects of the 

system. The sets users and copies are sets of USERJD and COPYJD values
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respectively. Properties of copies are that they have associated books, locations and 

dates stamped in them. The sets books, locations and dates are sets of BOOK, STATUS 

and DATE values respectively.

Bank

s '

holders

PHOLDER ID PACC__NO

PZ

accounts

V
balances

Fig. 4.2: Graphical representation of the banking 
system

Library

s '
users

PUSER ID PCOPY ID

PBOOK PSTATUS

Fig. 4.3: Graphical representation of the library system

od limits
\ \

'-A

copies

books dateslocations

PDATE

Hopefully, the diagrams speak for themselves. It should be noted that different 

diagrams may well lead to the same Z specification. In Fig. 4.2, for example, it is 

assumed that holders and accounts are both objects. There is nothing wrong with a 

diagram that regards just holders as objects and accounts as associated entities - in the 

sense that account holders have bank accounts. Since holders, accounts, balances and 

odjimits emerge as the system entities either way round, the odds are that the resulting
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Z specifications of the state will be the same. The prime purpose of the diagramming 

notation is to assist the specifier to identify system entities, and this we feel it does.

The strength of the notation is that it is graphical and hierarchical, and readily enables a 

picture of the system state to be created showing explicitly the entities that are part of 

it.

4 .6  A d d ress in g  S ystem  C om p lex ity .

Unless a method can be used to develop a large system, and therefore cope 

with complexity, it is really no method at all. In this section we show how the method 

and the associated graphical notation has been extended to cope with the specification 

of complex systems. The ideas in this section are relatively new and have not been 

tested out with students for their ease of use. The graphical notation presented in the 

previous section has, however, been taught to students. For the simple systems 

considered, the notation proved to be quite adequate and was apparently easy to teach 

and easily learnt.

The extended notation described here has been used to develop structured 

systems (for example a vending machine and a realistic library system coping with 

loans and reservations) with considerable success and we are confident that in its 

extended form the OPERATOR method will stand up well in future trials with 

students.

Complexity is addressed by partitioning a system into appropriate subsystems 

and applying the OPERATOR method to each subsystem in a 'divide and conquer' 

fashion. To do this the diagramming notation requires a new kind of rectangular box 

and a new kind of arrow. The new kind of box is one containing a subsystem name. 

Thus, in the case of the simple library system we considered in section 4, if it were felt 

that a partitioning of the system into three subsystems, namely Users, Copies and 

Loans, was needed, then a typical subsystem box would be the following:
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Users

The new arrow that is needed is the following one:

-O

which links a system to its subsystems.

To see how the ideas can be applied, let us revisit the library and think of it not

as a monolithic system, with no real structure, but comprising the three subsystems 

proposed above. This view of the library is illustrated diagrammatically in Fig. 4.4, 

where the extended subsystem notation is used.

Library

Copies LoansUsers

L l 
P USER ID PCOPY ID

V
books

borrowers

locations P USER ID

V
P BOOK P STATUS 

Fig. 4.4: Partitioned view of the library system

bcopies
\

dates

A
PCOPY ID

*
P DATE

The OPERATOR method can now be used to develop substate schemas to 

specify the states of the Users, Copies and Loans subsystems. The state schema,

Library, is then the schema which includes these three substate schemas. Application of
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the OPERATOR method, as described earlier, leads to the following Users, Copies and 

Loans substate schemas. Their derivation is straightforward and they are presented 

without explanation. In the Loans subsystem note that new variables borrowers and 

bcopies (borrowed copies) have been introduced.

Users 

users : PUSERJD

Copies

copies : P COPYJD
books : PBOOK

book_of : COPYJD -+> BOOK
status_of : COPYJD STATUS

copies = dom book_of 
dom book_of = dom status_of 
books = ran bookjof

Loans

borrowers : P USERJD 
bcopies : PCOPYJD 
borrower_of : COPYJD -f> USERJD 
duedate_of : COPYJD +> DATE

borrowers = ran borrower_of 
bcopies = dom borrower_of 
dom borrower_of -  dom duedate_of
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These three schemas can now be included into one Library schema to create the 

state schema for the library system. The data invariant serves to relate all the variables 

involved defining, in particular, the status of copies of books that have been borrowed, 

and those which should be available for borrowing:

Library _______________________________________________________

Users
Copies
Loans

borrowers c  users 
bcopies c= copies
Vc : bcopies •  status__of(c) = borrowed
Vc : copies • c e bcopies => statusjof(c) = available

By contrast, and for comparison, the state schema of the monolithic 

unpartitioned library system, again developed using the OPERATOR method, is as 

follows:
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Library

users : PUSERJD 
copies : PCOPYJD 
books : PBOOK
borrower_of : COPYJD-* USERJD 
book_of : COPYJD* BOOK 
status_of : COPYJD* STATUS 
duedatejof : COPYJD* DATE

ran borrowerjof c  users

dom borrower_of c  cop/es

dom book_of = copies
ran book_of = books

dom bookjof = dom statusjof
dom duedatejof = dom borrowerjof
V c : dom duedatejof • status_of(c) = borrowed
V c : dom bookjof* c g dom duedatejof => statusjof(c) = available

The 'divide and conquer' approach can now be seen to be working. Partitioning 

of the system has meant that the diagrams for Users, Copies and Loans are each fairly 

simple. Indeed these diagrams could have been drawn separately instead of on one 

diagram as in Fig. 4.4. The overall partitioned view of the library could well have been 

simply the Library box together with the Users, Copies and Loans boxes. Accompanying 

this would then have been the three subsystem diagrams.

Similarly, partitioning has meant that application of the OPERATOR method to 

each subsystem now becomes simpler than its application to the monolithic 

unstructured system. The resulting substate schemas bear this out.
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Clearly, were the library system more complicated than the simple one 

considered here, application of the original OPERATOR method would begin to 

become unworkable as entity/entity matrices grew in size and the number of binary 

relations expanded also (as the square of the number of entities). Keeping check on 

such large monolithic systems would be difficult when it came to trimming and then 

establishing the total system data invariant.

4.7 System Operations.

So far the whole emphasis of OPERATOR has been on the systematic 

construction of the system state schema. As we pointed out in the beginning it is 

usually this initial part of a Z specification which is hardest to write. Having obtained 

the system state schema, operations that change or query the state can usually be 

specified without too much difficulty.

The specification of system operations is, however, a very important (and time 

consuming) part of any specification and where diagrams can be used to help then they 

should be employed.

A very simple diagramming notation, akin to data flow diagrams in structured 

methods, can in fact be used to complete the OPERATOR diagramming notation. With 

reference to the library system of section 4, an operation diagram representing the 

BorrowCopy operation can be drawn as shown in Fig. 4.5.
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DATJEUsersUSER ID

BorrowCopy

Loans
COPY ID

Copies

user? date?

copy?

Fig. 4.5: Diagram showing the BorrowCopy operation in the library system.

The notation used is deliberately similar to that used to represent data flow 

diagrams. The operation name is put inside a circle as shown, as in Yourdon, for 

example. Inputs and outputs are drawn inside rectangular boxes. These are similar to 

the terminators of data flow diagrams in Yourdon. The sets from which inputs and 

outputs are drawn are indicated as shown. The dotted arrow is again used to indicate 

that data modelling is being used. The direction of the dotted arrow will signify 

whether an input or an output is being modelled. An output arrow would go into the 

output box and the output itself would have a shriek mark decoration - as in Z.

The system substates that are affected or needed by the operation are 

represented in the same way that data stores are in Yourdon. The solid arrows are also 

significant. Thus we see that the Users substate will not be changed by the operation. 

Its contents are only read. The Copies substate is both read and written to as the status 

of the borrowed copy will be changed to borrowed. The Loans substate is not read, but 

is written to.
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In the same way that the system entity diagram can be transformed into Z using 

the R, A, T, O, R part of the method, so too can the operation diagram be turned into 

Z, once the state schema has been produced. The diagram will enable the specifier to 

write down immediately what the signature of the operation schema is. The signature 

of the BorrowCopy operation is thus the following:

________  BnrrawConv ______________________________________________

ALibrary
EUsers
ACopies
ALoans
users? : USERJD 
copy?: COPYJD 
date? : DATE

ALibrary is needed because we wish to bring into scope all the before and after 

states of the library and their collective properties. EUsers is included to alert us to the 

fact that the state variables in the Users subsystem are not being changed. ACopies and 

ALoans are, strictly speaking, not needed because the appropriate before and after 

states of the Copies and Loans subsystems are already in scope. Their inclusion alerts 

us explicitly to the fact that these subsystems are changed by the operation. The inputs, 

users?, copy? and date? are those indicated on the operation diagram.

As with the production of the state schema previously, the use of the diagram 

does not help with the predicate part of the operation schema. This, however, can be 

written and systematically produced with reference to preconditions and 

postconditions.
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4.8 Discussion.

In this chapter we have traced the development of the OPERATOR method 

from its initial abstract but systematic approach to developing the system state schema 

to the fuller form it now takes with its diagramming front end and its system 

partitioning mechanism. Of note is the fact that the approach does comprise a method 

for going systematical from the system entities, identifiable graphically, to the system 

state schema in a way that addresses complexity in large systems. Of note also is the 

way in which the OPERATOR approach addresses the strengths and weaknesses of 

mathematics as a specification language.

Initially the diagramming notation allows the specifier to work interactively 

with the client to capture the essential features of the system state, including any key 

structural issues. Boxes and arrows are intuitively simple to work with and model well 

the hierarchical properties of the system. Data modelling (via the dotted arrows) does 

not have to involve the client and nothing is lost by not including the data modelling at 

this stage. Operations can also be represented as operation diagrams and drawn up 

with the client with direct reference to only the system entity diagrams. Again, data 

modelling via the dotted arrows does not have to feature on the diagrams at this stage. 

The diagrams thus serve to help the specifier through the abstraction bottleneck 

[Nor93] and at the same time facilitate effective communication at a crucial time with 

the system user or client.

Once the specifier and client are happy that the system requirements are being 

captured, the specifier can go away and via OPERATOR systematically produce the 

state schema, and the operation schemas as indicated above, bringing to bear all the 

power and formality of the mathematically based Z notation. Any revisions as a result 

of applying OPERATOR can be illustrated graphically and discussed with the client. 

All that remains now is to animate the Z specification that has been developed to
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enable the client to see, this time, the system in action. Animation is the subject of the 

next three chapters. Further discussion of OPERATOR is given in chapter 8.
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CHAPTER 5: ANIMATING Z SPECIFICATIONS

MORIARTY. How are you at mathematics?
HARRY SECOMBE. I speak it like a native.

Spike Milligan, The Goon Show.

5.1 Introduction

The previous chapter was devoted to the issues concerning writing Z 

specifications but now we turn to those involved in animating them. Here we review 

some of the tool support that is currently being offered for Z and identify the need for 

tools that enable Z specifications to be demonstrated in a way that a typical software 

system client or user might understand. We discuss the advantages and limitations of 

animation and look specifically at how Z specifications might be animated using 

Prolog.

5.2 Computer aided Z.

The importance of tool support for contemporary software engineering has 

been discussed in previous chapters. Formal specification is an area ripe for 

exploitation in the development of computer based aids. Dedicated document or word 

processing systems for the mathematical notations and specification constructs are 

needed. The logical nature of the mathematics used urges the development of tools to 

automate the laborious process of proof required to formally verify specifications and 

to show that they are internally consistent. Tools to check grammar and syntax, the 

correctness of specifications, would be of immense benefit. Rapid prototyping of 

specifications, executing or animating specifications, must have a role to play. As 

Sommerville [Som92] puts it

"Formal specifications may be automatically processed. Software tools can be 

built to assist with their development, understanding and debugging. 

Depending on the formal specification language used, it may be possible to 

animate a formal specification to provide a prototype system."



There are other considerations that are dependent on the specification language 

used. The Z notation, for example, requires that each variable, each item of data, has a 

strictly specified type and that types cannot be mixed. Z specifications are structured, 

modularised, using schemas in which only specified variables are in scope. Tools to 

check for type miss-matches and for variables referred, to but out of scope, will be of 

great help to the specifier.

It comes with little surprise, therefore, that there has been and still is a great 

deal of activity and interest within this area of tool support for the popular Z notation, 

although most developments are still prototypical, veiy few being commercial, industry 

standard products. These are early days.

Most of the tools that are now available take the form of dedicated word 

processing systems with intelligent features like checking for correct syntax, grammar, 

variable type and variable scope, thus providing a means of producing printed and 

'proof read' specification documents. These tools allow specifiers to work in a word 

processing style father than on paper, and offer various means of indexing elements of 

a specification, expanding schemas to show hidden or included information, and for 

manipulating specifications. Clearly, to be able to show such intelligence as described 

above, such Z processors must be able to parse the notation or require some form of 

translation from the notation into a form able to be understood by the tool.

Probably the first example of a Z processor was the FORSITE Evaluation 

System [FOR87] which allows users to enter, edit, print and check the syntax and 

correctness of specifications written in Z. The emphasis of the system is on allowing 

the specifier to work on a specification in a printable form rather than using 

transformations and keywords, thus requiring a multiple font editor, upon which the 

system is heavily dependent. fUZZ [Spi88a] is a package offering similar facilities to
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FORSITE - it allows printing of Z specifications and checks them for compliance with 

the Z scope and type rules - but takes a different approach in that the specification is 

not input or presented on screen in printable form. A specification has to be translated 

into a form to be processed by the LaTeX text formatting program [Lam86], Natural 

language text can be entered as read but fUZZ defines ASCII keywords, prefixed by 

"V, to express Z constructs and symbols.

Formaliser [For90] is another tool of the same genre. Produced by Logica it 

builds on the pioneering tools described above by combining the input of printable 

form Z and parsing and printing of the fUZZ/LaTeX package. As well as providing 

facilities for editing and viewing, type and scope checking, it also allows interactive 

queries of attributes at points throughout a specification, such as displaying all the 

variables that can be referred to within a particular expression or showing the type of 

an expression. In addition, specification documents are held within a libraiy allowing 

new documents to be created, existing documents to be copied, renamed, removed, 

and opened for editing. More than one document can be opened at one time and can be 

linked together allowing large specifications to be partitioned into convenient sections 

which can be edited and checked separately. We have a prototype Formaliser at 

Sheffield Hallam which has been used by staff and students producing excellent results.

A tool that is showing commercial success is CADiZ, produced by York 

Software Engineering at the University of York [Jor91]. Offering similar facilities to 

those described above, it operates within the UNIX environment rather than being PC 

based. It has sophisticated diagnostics of errors in Z syntax and a user-friendly 

specification browser including on-screen expansion of shcema calculus expressions. 

York Software Engineering are developing the tool to include aspects of verification, 

or specification proo£ taking the tool far beyond the basic word processor level.
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The Genesis Z Tool [Ash92] is another that, whilst also offering extensive 

checking and document handling facilities, moves into the realm of mathematical 

verification, allowing users to prove the validity of assertions made in their 

specifications via its 'extensible tactical proof system'.

Nevertheless, the tools described above are concerned only with the production 

of printable Z specifications that have been automatically checked for errors in Z 

syntax and grammar. They do not purport to demonstrate system behaviour. Tools that 

automate mathematical proof, such as CADiZ, the Genesis Z Tool and dedicated Z 

proof tools such as zedB [Nei91], are invaluable for showing that, for example, a 

System state can exist, or that a correct precondition for a change of state has been 

specified, or that a system operation does not violate the specified constraints on the 

system state. They cannot, however, prove semantic properties of a specification. They 

cannot execute a specification to show what the system actually does.

5.3 Animation - advantages and limitations.

Producing system prototypes has been a significant feature of software 

engineering for some time now, and so-called rapid prototyping, where a client is 

presented with a working model of a software system in the fastest possible time, is a 

popular practice. Whilst the value of a prototype is well understood in traditional 

engineering disciplines it is useful to put it in software engineering terms - take Blum's 

definition [Blu92], for example:

"A prototype software is a partially complete functional model o f a target 

system. Its purpose is to provide a better understanding o f the target system's 

requirements. "

Prototypes are cheaper than implementations; they need only model a system 

and are not encumbered with expensive peripherals. They give the opportunity to 'test
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before you buy1 and provide a medium for communication between provider and 

consumer. Kenmore Braithwaite [Bra90] makes several important points:

"The major assumption underlying the introduction o f prototyping is that 

software development is an interactive design process. Effective design is 

achieved only as a result o f feedback between designer and user... The 

prototype is designed with the expectation o f change...Prototyping tools play 

an important part in automating the early life-cycle phases. They are used to 

determine system requirements and answer questions about the behaviour o f 

the emerging system...One demonstration is better than two volumes o f 

specifications. "

Animation, in essence, is rapid prototyping applied to formal specification. 

Animation refers to the production of a working model of a formal specification that 

retains, as far as is possible, the characteristics of mathematical rigour and abstraction. 

An animation of a formal specification demonstrates the essential features and 

behaviour of a system whilst remaining faithful to and consistent with the mathematical 

model.

Typically, and until some sort of parsing of formal specifications to produce 

computer generated animations is achieved, the production of an animation will require 

some form of translation from the mathematical notation to an executable language 

without any need, or indeed scope, for subjective understanding. As Dick et al [Dic90] 

put it:

"Having invested in a formal specification, it is highly desirable that the 

process o f interpretation should have a formal basis. Thus, in order that we 

can say that an animation is a formal specification, the transformations must 

remain faithful to the structure and semantics o f the formal notation used"
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An animation, then, may be thought of as an executable formal specification, 

although, by its nature, must be less abstract than a mathematical model can be. If we 

ignore the usefulness of a user interface we must still consider concrete items of data, 

for example. Hayes and Jones [Hay89] point out other limitations of the animation 

approach:

"Many formal constructs are not easily transformed into code, especially non- 

deterministic expressions and some deterministic expressions when quantifiers 

(V, 3) are used."

Another consequence of using animation to demonstrate formal specifications 

is that the developer is likely to be restricted to a subset of a formal notation. After all, 

mathematics, free from computational constriction, is boundless in its power of 

expression. Hayes and Jones believe that such restrictions are undesirable, and they 

clearly are, but they are also unavoidable. So why throw the baby out with the bath 

water?

Referring to Braithwaite again:

"Executable specification languages are the most sophisticated prototyping 

tools. They change system development into an interactive process where the 

system is specified and the specifications are executed to determine i f  the 

system is complete and correct. Then, based on the experience o f using the 

prototype, the specifications are refined and then re-executed. This interactive 

process continues until the system is able to perform in a manner that meets 

all the user requirements."
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In summary, then, (and see Fig. 5.1) animation enables the software developer

to

• validate a formal specification by demonstrating it to a client or user

• reason with a specification with respect to system behaviour

In certain cases, an animation may even be suitable as an implementation.

METHODS INTEGRATION

OR

WRITING METHODS SUCH AS

OPERATOR

validation

co n sis tan cy

proof \1 S
ABSTRACT FORMAL SPECIFICATION ANIMATED SPECIFICATION

verification
refinem ent

proof

CONCRETE SPECIFICATION (DESIGN)

im plem entationverification

proof

CODE

Fig. 5.1: Animation as part of a formal software engineering process.

5.4 Animation Techniques for Z.

The basic process of animation is of translating the mathematical specification 

into an executable form whilst preserving its structure and the grammar and semantics
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of the mathematical language. For example, if the mathematical specification describes 

the union of two sets then the animation should describe the union of two sets.

In the case of animating Z this usually involves implementing or simulating set 

theory, functions, relations, sequences etc., as well as retaining as far as possible 

schemas and the schema calculus (for error handling, for example), the constraints on 

the system state (data invariants) and the strict data typing of Z. For the purpose of 

validation with a client or user it is also desirable to have a user-friendly interface to 

the animation and, possibly, other means of demonstration. All the techniques of 

animation we have seen have used Spivey [Spi92] as a standard text for Z.

Animation is often a process of straightforward translation into a target 

language using a set of pre-defined rules of translation and, possibly, a library of pre

programmed Z operations. In its most sophisticated form, animation might be carried 

out in a systematic way using an 'intelligent' animation tool, or animator. One 

interesting alternative approach has been suggested by Sam Valentine [Val92] who has 

produced an executable subset of Z, Z—.

There are many programming languages and environments that are suitable 

targets for the purpose of animating Z and especially popular are the so-called fourth 

generation languages that support logical expressions. Success has been had, for 

example, Diller, using Miranda [Dil90], a functional programming language, by 

Morrey et ai. [Mor90], using Lisp, a predicate based list processing language, and 

Love, using SQL forms [Lov93].

Perhaps the greatest interest has been shown in using Prolog as a medium for 

animating Z. The achievements of Dick, Cozens and Krause (based on pioneering 

work by Ron Knott at the University of Surrey) are worth particular note with their
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development of a Z-to-Prolog translator, animator and transformation system 

[Dick90]. Also see [Kno91].

This widespread interest in Prolog gave us an obvious starting point for 

looking at the issues of animation.

There is good correlation between Z and Prolog, both are based on predicate 

logic and are declarative in nature. There are few procedural considerations in Prolog 

and Prolog predicates and clauses have many similarities with schemas in Z. The 

domains section of some versions of Prolog, such as Turbo Prolog [Pro86] allow the 

construction of named types, while databases are ideal for simulating sets and most 

versions support lists (sequences in Z).

Take, for example, the simple security system specification, given in ̂ 4 Z 

Readers Course [Coo92]. Members of staff in an organisation are represented by three 

sets of unique identification codes. The members of staff in the organisation's building 

are represented by in, those out of the building by out, and the overall staff membership 

by users. The state schema is:

State

in, out, users: P STAFFED

in n  out = 0

in u  out = users

In Turbo Prolog the parachuted type and the state variables (along with an 

additional variable to be used later for input) are created thus:
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domains
staff_id = symbol 

database
in(staff_id) 
out(staff_id) 
users(staff_id) 
input(staff_id)

The operation to check a member of staff into the building is specified as: 

 Checkin__________________________________________________ _______

A State
staff?: STAFFJD

staff? e out 
in' = in u  { staff? } 

out' = out \ { staff? } 

users' = users

When the precondition, staff? e out, is violated the Checkin operation will fail. A 

robust Checkin operation, RCheckln, can be be specified as follows:

RCheckln = (Checkin a Success) v ChecklnError where 
ChecklnError= Staffln v NotUser

The success and error schemas being:

 Success_____________________________________________________ •

result! : REPORT

result! = ok
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Staffln

E State
staff?: STAFFJD 
result!: REPORT

staff? e  in 
result! = staffJn

NotUser_________

EState
staff? : STAFFJD 
result! : REPORT

staff? g users 
result! = not_known

In Turbo Prolog we use the commands assert and retract to add and 

remove elements to and from sets, and readin for input. The individual predicates 

provide the schema calculus while the clauses by which each predicate is defined 

represent the Z text:

rcheckln checkin, success.
rcheckln ChecklnError.
ChecklnError staffln.
ChecklnError notUser.
checkin write("enter name"), nl,

readin(X) , assert(input(X)), out(X), 
assert(in(X)), retract(out(X)), 
retract(input(X)).

success write("ok"), nl,
staffln input(X), in(X), write("staff in"), nl,

retract(input(X)).
noutUser input(X), not(users(X)),

write("not known"), nl, 
retract(input(X)).
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Turbo Prolog databases are used in a similar fashion to represent Z functions:

function' = function © { x? h» new?} in Z, for example, becomes

retract(function(X, _) ) ,

assert (function (X, New)). in Turbo Prolog.

Sequences are well catered for in Prolog using lists:

sequence: seq TYPE 
x : TYPE

x = head(seqrivence)

in Z, can be modelled in Turbo Prolog, using the list constructor, *, by:

domains
x = symbol 
sequence = x*

predicates
head_of_sequence(x, sequence)

clauses
head_of_sequence(X, [Head | Tail])

X = Head.

So, clearly, Prolog has many features that make it an excellent vehicle for 

animating Z, although the version of Prolog used here, Turbo Prolog, is a limited 

version of the fall standard Prolog and we do not present the more sophisticated 

approach of [Kno91], for example. However, Prolog does have drawbacks in that it 

can be inefficient - in our experience some lengthy animations have been ponderously 

slow. It is also clear that a deal of effort would be required to produce an animator that 

had the desired user-friendly interface to make it practical for demonstration to a client 

or user. These drawbacks, and the fact that we felt it more useful to investigate more
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novel approaches to animation, indicated to us that we might look towards some 

existing environment or shell that could provide tool-based support and pre-existing 

interface facilities. One possibility that presented itself to us was the expert system 

shell, Crystal.
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CHAPTER 6: ANIMATING Z SPECIFICATIONS - CRYSTAL

Mathematics may be defined as the subject 
in which we never know what we are talking about, 

nor whether what we are talking about is true. 
Bertrand Russell, Mysticism and Logic.

6.1 What Crystal has to offer

Crystal is reasonably well known in artificial intelligence circles and is sold as 

an expert system shell by Intelligent Environments Ltd. in Richmond, London [Cry87].

It is a rule-based programming language offering excellent input, output and 

menu creation facilities, as well as all the standard features expected of any expert 

system shell, such as forward and backward chaining, and reporting on the success or 

failure of rules via its Rule Trace system.

A typical rule in Crystal might well be the following (here written at the highest 

level before any low-level coding constructs are considered):

By refining the subrules, for example, a is true is a subrule, by eventually 

involving the low-level constructs of Crystal, the rule is thereby implemented.

The specific advantages that this environment offered as a means of animating 

Z were perceived to be as follows, see also [And90, And91]:

• The rule-based nature of Crystal means that lines of Z, in the predicate of a 

schema, transform almost one-for-one into rules in Crystal.

IF
AND NOT 
OR'

Rule works 
A is true 
B is true 
C is true



• The expandable way in which rules are built up in Crystal mirrors very closely the 

use of the schema calculus in Z. The developer, using the tool, can faithfully 

transform a Z specification starting at the schema level and finishing at the line-by- 

line predicate level.

• The user interface builder that comes with Crystal, including facilites for creating 

menus and display forms, and input and output fields, enables the developer to 

concentrate his efforts on transforming Z instead of worrying about how to create 

a user friendly interface. This is an added bonus given the fact that implementation 

issues are positively avoided in formal specifications.

• The animation that results can be viewed by the client at different levels. This is 

possible because of the folded nature of the rule-based programming in Crystal. At 

the highest level a system might be viewed as a menu having several options such 

as

quit
initialise state
save state
load state
print state
test data invariants
operation 1
operation 2

operation n

• Any operation chosen by the client can be systematically unfolded to discover the 

rules that make it work, thus promoting the vital interaction between client, 

developer and system that is necessary for requirements validation. In Crystal this 

is feasible because at the highest level the rules are written in English. Only at the 

lowest level does English give way to code. What the client sees, therefore, is a 

faithful English translation of the developer’s Z.
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6.2 Using Crystal for animation

To illustrate these points a short example is now considered. The following is 

part of the Z specification of a very simple security system that might be in operation in 

a building to monitor the whereabouts of staff users. The system is taken directly from 

A Z Readers Course [Coo92], and is identical to the example used in the previous 

chapter. As before, the system state consists of three subsets, in, out, and users, of type 

PSTAFFJD, and is represented by the following state schema:

 State___________________________________________ ________________

in, out, users: IP STAFFJD

in n  out = 0  

in u  out = users

Amongst other things, and again as before, the system checks people in to the 

building. For completeness, we show again how the robust Checkin operation is arrived 

at starting with the Checkin operation schema:

 Checkin__________________________________________________

A State
staff?: STAFFJD

staff? e  out 
in'= in u  { staff?} 
out'= out \ {  staff?} 
users' = users
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When the precondition, staff? e out, is violated the Checkin operation will fail. A 

robust Checkin operation, RCheckln, can be be specified as follows:

RCheckln = (Checkin a Success) v ChecklnError where 
ChecklnError = Staffln v NotUser

The success and error schemas being:

 Success_________________________________________________________

result! : REPORT

result! = ok

Staffln__________

EState
staff? : STAFFJD 
result!: REPORT

staff? e in 
result! = staffJn
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NotUser

E State
staff?: STAFFJD 
result!: REPORT

staff? e users 
result! = not_known

At the highest level the Crystal coding for this Z could be the following:

RCheckln works 
IF Checkin works
AND Success is indicated
OR ChecklnError works

ChecklnError works 
IF Staffln applies
OR NotUser applies

At the next level down these rules might be expanded as follows:

Checkin works 
IF staff__id is entered into the system
AND the staff_id currently belongs to the set out
AND the staff_id is then removed from the set out
AND the staff_id is then added to the set in
AND the set users is unchanged

Success is indicated 
IF the result "ok" is output

Staffln applies 
IF staff_id is entered into the system
AND the staff_id currently belongs to the set in
AND the result "staff in" is output

NotUser applies 
IF staff_id is entered into the system
AND the staff_id does not currently belong to the set users
AND the result "not known" is output

Obviously, the developer has to expand each of these individual rules further 

until they are capable of being executed. But, in principle, this is a fairly
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straightforward task given the available Crystal commands, and the fact that sets, 

functions, relations, sequences, power sets, bags, etc. can all be represented 

conveniently as arrays in Crystal.

Before looking at the advantages of this approach to animation it will be useful 

to look at another more involved example, where we include some lower level coding.

The example we consider is one of a library system. Note that this is not the 

same system as that described in Chapter 4, although the requirements are very similar:

"A library has members o f staff and borrowers o f books. Staff can also borrow 

books. The library records the borrowers o f copies o f books and keeps a 

database o f book details. There is a limit to the number o f books any one 

person can borrow."

The library state schema we arrive at is:

 LibState______________ ___________________________________________

staff: P PERSON 
borrowers: P PERSON 
booksjn : P COPYID 
checked_out: COPYID -* PERSON 
bookjdb: COPYID-* BOOK 
max books :N

staff n  borrowers = 0

booksjn n  dom checked_out = 0
booksjn u  dom checked_out= dom book_db
ran checked_out c  staffs borrowers
V p : ran checked_out •  #  checked_out > { p } < max_books
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In Crystal the state variables staff, borrowers and booksjn are represented by 

one-dimensional arrays. The variables check_out, and bookjdb are represented by two- 

dimensional arrays. Arrays are created in Crystal before coding commences. Single 

element variables such as max__books are created within the Crystal code when they are 

first assigned their values. All variables are global within Crystal within a given 

application.

Data variant testing is provided by the Crystal rule Test-lib-data shown

below:

Test-lib-data 
IF Assign m := 0

AND No-staff-is-ordinary-borrower-and-vice-versa 
AND Assign m := 0
AND No-copy-can-be-in-the-lib-and-checked-out 
AND Assign m := 0
AND All-lib-copies-have-book-info
AND Copies-are-checked-out-to-staff-or-borrowers
AND No-borrower-can-have-more-than-maxbooks-out

Note that each line in the state schema predicate has become a line of English 

text, each being another Crystal rule. The quantity m is simply an array counter, 

assigned the value zero before array searches are carried out.

Each of the lines of English text, i.e. each Crystal rule now has to be expanded. 

For example, the No-staff-is-ordinaiy-borrower-and-vice-versa becomes:

No-staff-is-ordinary-borrower-and-vice-versa 
IF Test staff$[m] = "empty"
OR Assign id$ := staff$ [m]

AND Assign n := 0
AND Search-for-id-in-borrowers
AND Test tf = 0
AND Assign m := m + 1
AND Restart Rule
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The search_for_id_in_borrowers rule is finally expanded in terms of 

Crystal code as follows:

Search-for-id-in-borrowers 
IF Test borrowers$[n] = id$

AND Assign tf := 1
OR Test borrowers?[n] = "empty"

AND Assign tf := 0
OR Assign n := n + 1

AND Restart Rule

The above describes an array search whereby if a match is found a test flag, t f ,  

is set to 1, causing the rule No-staf f-is-ordinary-borrower-and-vice-versa to 

fail.

The rules No-copy-can-be-in-the-lib-and-checked-out, All-lib- 

copies-have-book-info, etc. can be similarly expanded and implemented.

The library system operation of checking out a book to a borrower can be 

specified using schema calculus as follows:

RCheckOutBook = CheckOutBook v 
NotBorrowerv 
BookNotln v 
TooManyBooks

where the CheckOutBook operation is the following schema:
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CheckOutBook

ALibState

borrower? : PERSON 

copy? : COPYID 

report! : REPORT

borrower? e borrowers u  staff 

copy? e booksjn

#  checkedjout > { borrower? } < max_books
checkedjout' = checkedjout u  { copy? borrower? }

booksjn ' = booksjn  \ { copy?}
report! = "book checked out"
staff = staff
borrowers' = borrowers
bookjdb'= bookjdb
max books' = max books

And NotBorrower, BookNotln and TooManyBooks are the associated error 

schemas, not given here for simplicity. The Crystal animation begins with the following

:-out--book rule:

RCheck-out-book
IF Check-out-book
OR Not-borrower
OR Book-not-in
OR Too-many-books

Here, each subrule represents a schema and is systematically expanded, check- 

out-book, for example, becomes:



Check-out-book
IF Get-borower-id

AND Get-copy-id
AND Borrower-id-is-in-staff-or-borrowers 
AND Copy-is-in-library
AND Borrower-doesnt-have-too-many-books-out 
AND Put-borrower-and-copy-in-checkedout 
AND Delete-copy-id-from-booksin 
AND Display Form

BOOK CHECKED OUT

Note the use of a Crystal Display Form to provide output.

Get-borrower-id is simply another Display Form, this time with an input

field:

Get-borrower-id 
IF Display Form

Enter The Following:
The borrower id < id$ >

The expansion of Put-borrower-and-copy-in-checkedout demonstrates the 

animation of a postcondition:

Put-borrower-and-copy-in-checkedout 
IF Assign n := 0

AND Find-end-of-checkedout
AND Assign checkedout$[n,0] := cid$
AND Assign checkedout$[n,1] := id$

Find-end-of-checked-out
IF Test checkedout$[n,o] = "empty"
OR Assign, n := n + 1

AND Restart Rule

In this way, using the approaches described above, the other predicates of 

CheckOutBook, the error schemas associated with it, and, eventually, the entire system 

specification for the library could be animated.
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6.3 Use in the classroom

The use of Crystal to animate Z has been used in the teaching of formal 

methods on the MSc Engineering Information Technology course at Sheffield Hallam 

University. The author has used the approaches outlined above for three years in the 

teaching of animation and in tutorial work on animation. Animation, using Crystal, has 

been chosen by groups of students as part if their learning contracts (as discussed in 

Chapter 3). This has resulted in successful animations of several systems - a notable 

one being the intelligent multi-storey car parking system. Animation of Z specifications 

using Crystal has also been the subject of MSc projects, supervised by the author.

6.4 Advantages and limitations

Some of the advantages of using Crystal to animate Z specifications have been 

listed previously in 6.1, but it is worth expanding on these:

• We observe that the Crystal is very faithful to the Z. The simulation that is 

produced when the Crystal code is executed is indeed an animation of the 

specification and not an implementation that is far removed from Z.

• Since the Crystal mirrors the structure of the Z closely it is a relatively easy task for 

the developer to begin the process of developing the executable code. The 

developer takes the specification schema by schema, line by line, to arrive at the 

animation.

• There is a high degree of reusability of Crystal rules. Rules representing error 

schemas can be referenced again, in the same way as is common in error handling 

in Z. In addition, rules representing individual lines of Z are also reusable.

• The high level coding, being written in English, is clearly capable of being 

understood by a client even though he may know little or no Z. The English
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translation of the Z in Crystal does not introduce potentially harmful ambiguities 

and via this translation the client can thus interact with the specification and 

contribute meaningfully to the process of requirements validation.

• The three-way communication between customer, developer, and system, so vital 

for validation purposes, is thus possible via this approach.

The Crystal approach does have its limitations. A major disadvantage of 

Crystal is that although at a high level it faithfully represents the Z notation, at the 

lowest level the Crystal code can be somewhat lengthy. For example, the Crystal 

transformation of the function override operation could require upwards of 50 lines of 

coding. This problem is compounded by the fact that there is no parameter passing in 

Crystal, all variables being global; it is not possible to write a single routine for 

function override, for example, and pass the appropriate parameters to it. The code 

must be repeated each time it is required with the new variable names inserted in the 

rules.

Another disadvantage is that, in developing an animation, it is not possible to 

incorporate the strict data typing feature of the Z notation.

These limitations, of lengthy code, lack of parameter passing, and the inability 

to incorporate type checking were sufficient to persuade the author that Crystal did not 

readily possess the features needed to implement Spivey's Mathematical Tool-kit for Z 

[Spi92]. Intelligent Environments assured us that interfaces to Crystal written in C 

could be produced to surmount the parameter passing problem - and therefore to 

implement a library of Z operations. However, in the end, it was decided to turn to the 

more sophisticated Windows-based environment, Kappa PC, which offered excellent 

interface facilities as well as parameter passing and therefore the possibility of 

implementing the Mathematical Tool-kit of Z.
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CHAPTER 7: ANIMATING Z SPECIFICATIONS - ZAPPA

Just like a penguin in bondage, boingl 
Lyric by Frank Zappa, Artiste (deceased).

7.1 Introduction.

In chapter 6 we described an approach to animation using the expert system 

shell Crystal. One of the disadvantages of Crystal as an animation medium was that it 

was not possible to build a library of functions to represent the Mathematical Tool-kit 

of Z - the Tool-kit as given by Spivey [Spi92] - due to the lack of parameter passing in 

Crystal. Whilst not being a necessity, such a library is desirable if serious animation 

work is to be carried out, since such a library would considerably reduce the amount of 

code required to animate a Z specification.

One particular advantage of Crystal, however, was that a user-friendly interface 

was easy to create. A user-friendly interface to an animation was deemed to be an 

important feature, and its ease of creation is obviously of concern to the developer.

Ideally, we wished to combine a library of Z operations with an excellent user 

interface, and we felt that this might be taken further by providing the developer with 

an interface for the purpose of building an animation in a systematic fashion. In 

addition, if the Mathematical Tool-kit of Z were to be implemented then, ideally, type 

and syntax checking would have to be provided. Given that the construction of 

animation tools had been identified as a key issue in the demonstration of Z 

specifications, the idea of building an animator CASE tool began to take shape.

What was needed was an environment that provided excellent interfacing 

facilities, perhaps Windows-based, with a logic-based programming language whereby 

Z's Mathematical Tool-kit might be implemented.



At the time this need was identified, the Kappa-PC environment [Kap90] had 

just been acquired by Sheffield Hallam University (for the Schools of EIT, Engineering 

and Computer Management Sciences). Upon inspection and the advice of experienced 

users it was decided to investigate the possibility of constructing an animator using 

Kappa-PC.

In this chapter we therefore describe the features of Kappa-PC that we felt to 

be important for the creation of an animator and give an overview of the prototype 

tool, Zappa, that was eventually created. We then describe the use of the tool with the 

aid of a simple example before looking in detail at how the implementation of Z data 

structures (and, consequently, the Z Tool-kit library) was achieved. We go on to 

explain how Zappa was used by students and conclude by making an evaluation of the 

tool.

7.2 What Kappa has to offer.

Kappa-PC is a knowledge-based systems builder, for the mouse driven 

Windows environment, produced by InteliCorp Inc. It has several features that 

indicated that it might be a suitable vehicle for the development of an animation tool:

• It supports its own logic-based programming language supporting parameter 

passing, KAL (Kappa Applications Language), that offered the possibility of 

creating a Z operation library.

• It is an object oriented environment in which objects are easily created, given 

properties, manipulated and examined. Z structures such as schemas and state 

variables might be conveniently viewed as objects.

• Multiple session windows allow systems to be subdivided using separate interfaces. 

Thus it would be possible to have separate session windows for an animator and an
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animation. In fact, in Kappa-PC it is possible to create one application that can 

then be used to create another.

• Buttons can be created within session windows to help provide a user friendly 

interface.

• There are sophisticated Windows-based interface features such as pop-up menus 

for single and multiple selection, for selecting a basic type from a list of basic types, 

for example, and there are various other forms of input and output that might 

facilitate the animation of operation schemas or investigations of the system state.

• There is also a range of editing facilities and an error tracing mechanism.

7.3 An Overview of Zappa.

The first thing to note is that Zappa can only animate specifications which 

conform to the conventions of procedural systems as given by Spivey [Spi92]. The 

specifications also have to be deterministic with all schema output variables, 

preconditions and postconditions given explicit definitions. After-state variables and 

output variables must appear on the left hand side of predicates that define their values. 

The Z written so far in this thesis has been writen in this way.

Zappa uses two Kappa-PC session windows. The first is the ANIMATOR 

screen which the developer uses to construct animations. The second is the 

ANIMATION screen, in which the interface to the animation is progressively formed.

It is the intention of the tool that a would be client or user would use the 

ANIMATION screen to investigate essential features of the system that has been 

animated. The ANIMATION screen corresponds well with a typical animation menu 

screen created using Crystal for animation.
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Kappa-PC's Object Browser gives, in essence, a third screen - showing an 

overview of the animated specification, displaying the names of schemas and the 

variables associated with them.

A fundamental difference between Zappa and the Crystal approach, however, is 

the idea of an animator. By pressing the various buttons of the ANIMATOR screen the 

developer accesses the features of the tool that aid in the creation of an animation. For 

example, there are buttons that access features for parachuting basic types into an 

animation and for creating state variables and schemas. Buttons are also provided for 

switching between the three screens. A complete list of ANIMATOR screen buttons is 

given in Fig. 7.1. A list of buttons that are always present in the ANIMATION screen 

(whether a specification animation is loaded or not) is given in Fig. 7.2.

Other key features of the tool include:

• A systematic and robust approach - the system will not allow the developer to 

create an operation schema until the state schema has been created, for 

example.

• The use of templates for the animation of schema predicates.

• Syntax and type checking.

• The ability to save and load animations.
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OVERVIEW ANIMATION

KTOOLS NEW

Load Spec Save Spec

QUIT Show Variable

Create State Schema Box Parachute Type

Make Free Type* ' Make Schema Type*

Create State Variable Create Data Invariant

Create Initial State Create Input Variable

Create Output Variable Create Local/Dummy Variable

Create Operation Schema Create Robust Op Schema

Delete State Delete Type

Del State Var Delete DI

Delete Init Delete Input

Delete Output Delete Local

Delete Op 

Delete ROp

Delete Error

*Not yet implemented.

Fig. 7.1 ANIMATOR screen buttons.

overview 
animator 
ktools 

show variable 
Fig. 7.2: Permanent ANIMATION screen buttons
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7.4 Using Zappa - an example.

To see the tool in action and to demonstrate many of its features we shall take 

the example of animating the banking system given in A Z Readers Course [Coo92].

The specification models accounts with overdraft facilities and is essentially the 

one used in chapter 4. We shall consider the animation of the state schema, an initial 

state (that of a bank with no accounts) and one robust operation, the operation to open 

an account.

The state schema Account, is given below:

[ACC_NO]

 Account_____________________________________________ ____________

balance: ACC_NO -+> Z

odjimit: ACCJNO ■+» Z

dom balance = dom Odjimit
V x : dom balance • balance x > odjimit x
V x : dom odjimit • odjimit x < 0

The first task is to parachute the basic type ACCJNO into the animation. This is 

achieved by pressing the Parachute Type button on the ANIMATOR screen. The 

user is then prompted to enter the name of the type. Typing errors are corrected using 

the usual backspace and arrow keys. Once entered, Zappa will tell the user that the 

type has been parachuted into the animation.
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At this stage the user could check that ACC_NO had been parachuted into the 

animation by looking at the OVERVIEW. ACCJNO would be connected to the word 

ParaTypes in the OVERVIEW screen.

Next, the state schema, Account, is created. In Zappa, state schemas are created 

in three stages; the schema box, the state variables and the data invariant. The schema 

box is created by clicking on create state schema Box and entering the state 

schema name. The state variables are then created individually via the create state 

variable button, balance is entered as the first state variable and a pop-up menu 

appears, listing possible Z data structures such as tuple, function, sequence, etc. In this 

case the function option is selected.

Another pop-up menu is then used to select the form of the function from the 

list of forms supported by Zappa (a list of Z data structures currently supported by 

Zappa is given in figure 7.3). In this case A-f> B is selected. A third menu appears, this 

time listing parachuted types along with Z, N and , prompting the user to select the 

type for A. In this case ACC_NO is selected. A fourth menu prompts for the type for B, 

in this case Z. Zappa will then tell the user that balance has been created, giving its 

declaration. The function odjimit is created similarly.

Again, the OVERVIEW screen could be consulted to show that balance and 

odjimit are associated with the state schema Account

Note that when a function is created by the user, Zappa creates an algorithm to 

animate the function, giving it the property of functionality. This allows the function to 

be used in the form f(x) in animated predicates to provide output from the function.
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A FA

AxB F (AxB)

AxBxC F (AxBxC)

Ax(BxC) F (Ax(BxC))

(AxB)xC F ((AxB)xC)

seq B A-** B

seq (BxC) A -f» (BxC)

(AxB) -+> C

Figure 7.3: Z data structures currently supported by Zappa.

The next stage is to create the data invariant using a Zappa template. The 

create Data invariant button is clicked on and Zappa instructs the user how to 

proceed. A small window called KTOOLS appears (this is part of Kappa-PC). The 

user clicks on Function in the KTOOLS window, drags the arrow pointer down the 

pop-up menu that appears, to highlight E d it ,  and releases the mouse button. An E d it  

Function menu appears (again, part of Kappa-PC) and the user clicks on d icheck 

(standing for Data Invariant Check). A template (of KAL code) for the data invariant 

is displayed for the user to edit:

{
If NULL

Then zmessage("data invariant ok")
Else zmessage("data invariant error");

zend();
};

The user must now translate the data invariant of the state schema, Account, 

from Z to Zappa's Mathematical Tool-kit equivalent, and enter it where the n u l l is in 

the template. The user clicks on the template, just after the n u l l to position the 

flashing text editor cursor, and erases n u l l using the backspace key.
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The first predicate o f the data invariant o f Account is

dom balance = dom odjimit

In Zappa all Z toolkit functions begin with the letter Z and, as far as is possible 

conform to a direct or natural language translation of the Z notation. For example, dom 

in Z translates simply to zdom in Zappa.

In-fix functions and relations translate to post-fix form, hence x = y  in Z 

tanslates to zequai? (x, y) in Zappa, the question mark indicating that the function is a 

logical test returning true or false. A list of Zappa Z functions currently supported, 

along with the equivalent Z notation predicates, is given in figure 7.4.

So, using nesting of functions, the first predicate of the data invariant becomes, 

in Zappa:

zequai?(zdom(balance), zdom(od_limit))

Data invariants are entered into the DICheck template in the form:

If (predicate 1 And 
predicate 2 And

predicate n)
Then ...

In this Case, predicate 1 being zequai? (zdom(balance) ,  

zdom(od_iimit)) and predicate 2 being the Zappa translation of the second 

predicate in the data invariant of Account:

V x : dom balance • balance x> o d  lim itx
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Zappa Function Z Notation Predicate
zelement?(x,y) x e y
zequai?(x,y) x = yznot element?(x,y) x g  y
znot equal?(x,y) x * y
zsubset?(x,y) x c y
zpsubset?(x,y) x c y
zempty?(x) x = 0
znot empty(x) x * 0
zg? (x, y) x >  y
zge?(x,y) x > y
zl? (x, y) x <  y
zle?(x,y) x <  y
zfor all 01(d,set,x,rel,y) Vd : set • x rel y
znot(exp) -iexp
zunion(x,y) x u y
zintersect(x,y) x n  y
zsubtract(x,y) x \ y
zcard(x) # x
zequate(x,y) x' = y
zmake empty(x) x’ = 0
zno change(x) x' = X
zmake setl(x) {X}
zset comp 01(d,set,x,rel,y) { d : set •  x rel y }
zplus(x,y) x + y
zminus(x,y) x - y
zmult (x, y) x * y
zdiv(x,y) x d iv y
zmod(x,y) x mod y
zneg(x) -X
zmake map(x,y) xi-> y
zmake triple(x,y,z) (x,y,z)
zfirst(x) first x
zsecond(x) second x
zdom(x) dom x
zran(x) ran x
zdom res(x,y) x « y
zdom sub(x,y) x o y
zoverride(x, y) x © y
zran res(x,y) x >  y
zrel image(x,y) xfly D
zinverse(x) x~
zhead(x) head x
zlast(x) lastx
zfront(x) front x
ztail(x) tail x
zsquash(x) squash x
zrev(x) rev x
zconcat(x,y) x ~ yzextract(x,y) x 1 y
zfilter(x,y) x l-y

Figure 7.4: Zappa Z Functions.



Which translates in Zappa to:

zfor_all_01(x, zdom(balance), balance, >=, od_limit)

zfor_aii_oi is one of what will eventually be a library of multi-purpose 

quantified expression in Zappa, and has the format zfor_aii_oi (dummy_variabie, 

set, value, relation, value). zeroz is a typed constant, integer 0, supported by 

Zappa.

The translation of the last data invariant predicate in Account:

V x : dom odjimit • odjimit x < 0

is zfor_all_01 (x, zdom(od_limit), od_limit, <=, zeroZ)

Once the translated data invariant has been entered the user clicks on the 

Window Close Box of the Function Editor (the small grey box in the top left hand 

comer of the template window). The user is then prompted to save the function. If the 

function has been entered correctly, the user clicks on the YES button and the data 

invariant is entered into the animation, otherwise the user can continue to edit or 

correct the invariant.

All that is left is to create the dummy variable, x, refered to in the quantified 

expressions of the data invariant. The user presses the create Local/Dummy 

variable button in the ANIMATOR screen and enters x as the variable name. Pop-up 

windows appear allowing the user, as when the state variables were created, to select 

the form, structure and type of the variable, in this case tuple, a  and a c c_n o . Zappa 

then enquires if the user wishes to give the variable a value. In this case, since the 

variable is not a constant, the user clicks on NO.
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The next stage in the animation process is to animate the initial state of the 

banking system, InitAccount, which is given below:

 InitAccount______________________________________________ _

Account

balance -  0  

odjimit = 0

The user presses the Create Initial State button and enters the schema name at 

the prompt. As for the data invariant, a template is provided for animation. The user 

follows the same procedure as before to enter the Function Editor and now edit the 

simple initial sate schema template. This time the predicate to be translated and entered 

into the template is:

balance = 0  

odjimit = 0

which once translated into Zappa becomes

zmake_empty(balance); 
zmake_empty (od__limit) ;

Note the semi-colons, used at the end of a Zappa predicate when not nested 

within a logical construct such as if...Then...

If the user now switches to the ANIMATION screen two new buttons will 

have appeared: InitAccount and Dicheck. During an animation InitAccount can be 

pressed to initialise the system state. Dicheck can be used, after an operation is carried
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out for example, to check that the system data invariant is still intact (i.e. the animation 

can highlight inconsistancies between post conditions and the data invariant).

At this stage the user might wish to use the Show Variable button (available on 

the ANIMATION and ANIMATOR screens) to display the state variables. A pop-up 

menu lists the state variables for one to be selected and its structure and current value 

displayed in tabular form. At this stage both balance and odjimit should be empty.

The next stage in the animation process is to animate an operation schema. The 

operation schema to open an account in the banking system is given below:

 Open____________________________________________________________

AAccount 
new? : ACC_NO 
odl? : Z

new? e dom balance 
odl? > 0

balance' = balance u  { new? 0 }  

odjimit' = odjimit u  { new? h-> -odl? }

To animate the schema, Open, the user firstt has to create the input variables 

new? and odl? The user clicks on the create input variable button on the 

ANIMATOR screen and enters the first variable name, new?, at the prompt. A pop-up 

menu then allows the user to select the type of the input variable, in this case a c c_n o . 

Because the user is creating an input variable, Zappa asks for a prompt for the input to 

be used as part of the user interface for the animation. In this case the user might enter 

Enter a New Account Number as an appropriate prompt for new? A similar 

procedure is followed to create odl?

124



Note that input variables, once created, are available for inclusion in any 

schema that might be animated, they are reuseable and not the sole property of any one 

schema.

The user now presses the create Operation Schema button and enters the 

schema name, open. After answering YES to inputs a multiple selection menu allows 

the user to highlight the inputs, from the list of input variables so far created, that are 

required for inclusion in the operation schema. In this case the only input variables 

created are new? and odl?, both required by open, so the user highlights both and 

clicks on OK.

The user then follows the editing procedure for templates, via KTOOLS as 

before, this time to enter the predicate section of Open. (Note that the user can press 

the KTOOLS button at any time to edit schemas, for example, if syntax errors are 

reported.) The KAL function template for open (noting that the template is general for 

operation schemas, excepting the z input lines, generated by Zappa to provide the 

input variable inclusions particular to open) is given below:

{
zinput( GetNthElem( Open:Inputs, 1); 
zinput( GetNthElem( Open:Inputs, 2); 
If NULL

Then {
zmessage(" ");■ 
zend( );
TRUE;
}

Else {
zend?( );
FALSE;
};

Preconditions are then entered by the user in place of the NULL in the template 

and separated by the word And and postconditions are entered after the curly bracket
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after the Then. The postconditions are put within brackets, ( ), in much the same way 

the data invariants were. As before the user translates lines of Z into lines of Zappa. 

Thus, the first precondition:

new? e dom balance

for example, becomes:

zelement?(new?, zdom(balance))

whilst the postcondition

balance' = balance u  { new? h-» 0 } 

for example, translates into Zappa as:

zequate(balance, zunion(balance, zmake_setl(zmake_map(new?, 
zeroZ))));

After translating and entering the Z predicates the user then gives the operation 

a message to output, as part of the animation interface. The message is entered 

between the quote marks in zmessage (" ••); in the template, in this case a message 

Such as Account Opened.

Once the user is happy with the animated schema the small grey button in the 

top left hand comer of the Function Editor is clicked, followed by clicks on Close and 

YES in the prompt to save the Function.

The next stage is to animate the error schemas associated with Open; 

AlreadyExists (the error being that the account number entered into the operation is
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already in use) and NegOdLimit (the error being that a negative overdraft limit is 

entered into the operation by mistake). The error schemas are not given here as the 

process used to create them is much the same as that used to create operation 

schemas, excepting that the create Error schema button is used, inputs are not 

required (they are provided by association with the operation schema) and animated 

error schemas are associated with ErrorSchemas in the OVERVIEW.

Returning to our example, the next step, assuming that the error schemas 

AlreadyExists and NegOdLimit have been animated, is for the user to animate the robust 

Open operation specified by ROpen:

ROpen = Open v AlreadyExists v NegOdLimit

The user presses the create Robust op schema button and enters ROpen. 

The Function Editor is then invoked in the same way as before, this time to select and 

edit the robust operation template for ROpen. This time schema names are entered into 

the template in place of a n u l l statement, remembering to end each schema name with 

brackets and to separate them with the word or. Thus, in our example, the user edits 

the template as shown below:

If ( Open() Or
AlreadyExists() Or 
NegOdLimit() )

Then TRUE

At this stage the animation can be used, by the developer and client, to 

investigate the operation to open account. In the ANIMATOR window a button will 

appear upon the creation of a robust operation schema, in this case a button for ROpen. 

This can now be pressed to execute the animated robust operation. Accounts can be 

opened, entering appropriate values for account numbers and overdraft limits. The
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robustness of the operation can be tested ( Zappa will inform the user if values of data 

have been entered that have not been catered for in the specification, by displaying a 

message telling the user that the operation is not robust) and state variables examined 

via the show variable button. In addition, Zappa will also carry out full type 

checking and syntax checking, halting execution and informing the user if there is a 

type miss-match or syntax error.

The user now continues to animate the rest of the banking system specification, 

using the procedures described above, to create variables, animate operation and error 

schemas, and to combine operation and error schemas to animate robust operations.

7.5 Behind the Scenes.

Zappa introduces the concept of the sort of a variable in Z specifications to 

implement the strict data typing in Z.

A declaration of a variable in Z implies its type, which may either be a basic 

type or constructed from basic types using type construction operators. Further, 

variables may be given certain properties by the implicit imposition of constraints on 

their type. For example, the declaration, numbers: P N, is identical to the declaration, 

numbers : P Z, given the constraining predicate, \fn  : Z | n e numbers •n>0.  

Similarly, the declaration of a function,/: X-v> Y} is equivalent to the declaration of a 

relation, / :  X  <-» Y, given the constraining predicate,

y x : X ; y I,y2: Y * ( x ^ y 1) e f A ( x h ^ y 2)e f=>y1=y2.

Similarly, a sequence in Z is a function with a constraint on the domain of the 

function.
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Thus, although variables in Z may have the same type, we might say that they 

can be of different sorts. Conversely, variables of the same sort may be of different 

type if the basic types used to declare the variable are different.

In Zappa, sort codes are used to identify sorts of variables. For example, an 

element of a basic type is sort 10, a tuple of type XxY  is sort 11, a variable of type F X  

is sort 21, a relation declared using X <-> Y is sort 22, a variable declared using Y-+* Y 

is sort 71 and a sequence of elements from a basic type is sort 41.

Variables in Zappa are represented by Kappa-PC objects of the same name. 

Kappa-PC objects have slots which can be given slot names and in which information, 

such as sort codes, can be stored. In Zappa each variable has a slot for its sort code 

and a slot or slots for the basic type or types used to construct the variable and a slot 

or slots for its value. For example, a variable declared in Z using X - & Y  would be 

represented as an object with the following slots and slot values:

Slot Name Slot Value

sort 71

Atype X

Btype Y

Aelems list of domain elements

Belems list of corresponding range elements

In Zappa, KAL functions corresponding to the predicates and set operations of 

Z's Mathematical Tool-kit use the sort and basic type slots of variables to determine 

the type correctness of an expression. Retrospectively, within the animated invariant 

predicate of a system state, Zappa uses sort to flag violations of implicit variable
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constraints. Finally, sort is used by Zappa to select suitable algorithms to test 

predicates or carry out set operations.

KAL code for Zappa is given in the volume of appendices.

7.6 Use of Zappa in the Classroom.

Zappa has been used by the author in the teaching of animation to students on 

the HND Computing Mathematics and MSc Engineering Information Technology 

courses at Sheffield Hallam University.

The tool has been tested in laboratory workshops where students have been 

supplied with a simple Z specification and instructions on the use of Zappa with 

respect to the specification, along with details of the Zappa Z Functions required to 

animate the specification (a tutorial guide to Zappa, used in student workshops, is 

included in the volume of appendices). Results were mixed, with some students able to 

produce a working animation with apparent ease and others, possibly still having 

difficulties with the Z notation, struggling to make progress.

Zappa, and the investigation of animation using Kappa-PC have been subjects 

of several student projects supervised by the author, two of which have involved the 

student directly in the author's research [Dhe93, Jac94].

Zappa has also been used as part of a learning contract by one MSc student to 

animate GEORGIS, a British Rail track failure database (which was mentioned in 

chapter 3).

7.7 Strengths and Weaknesses of Zappa.

Zappa is an animator CASE tool, albeit a prototype. It aids the software 

developer in the production of an animation of a Z specification. The resulting
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animation can be used by the developer to investigate properties of a specification and, 

more importantly, the animation can be used to demonstrate the essential features of a 

specification to a software client or user to assist in the process of validation.

We see that Zappa has four key strengths:

1. A developer's interface, ANIMATOR, to aid in the systematic production of an 

animation. Many structures in the animation are created automatically by 

ANIMATOR, thus reducing the workload of the developer.

2. A client's interface, ANIMATION, to aid in the interaction between the client, the 

developer and the Z specification, for validation and development purposes. As 

well as providing an interface to system operations and allowing the developer to 

test operations for robustness, it provides a facility for the developer to test data 

invariants and a facility to initialise the system state.

3. Lines of Z translate, in a staightforward way, into lines of Zappa. Little or no 

programming skills or intuitive leaps are necessary as translation and animation is a 

matter of selecting equivalent Zappa Z functions and following instructions.

4. Zappa implements the srict variable typing of the Z notation and introduces the 

concept of a variable's sort to enforce any implied constraints on Z variables.

Nevertheless, we recognise Zappa's limitations.

Zappa has been used to animate a variety of specifications successfully but 

some specifications have not been well suited, as written, to be animated by the tool. 

The Birthday Book specification in Spivey [Spi92], for example, uses the state data 

invariant to implicitly specify operation postconditions, something that Zappa cannot

131



do. Zappa requires specifications to follow a certain conventional style, although we 

feel that this constraint is not excessive and that, if necessary, specifications could be 

rewritten to conform to Zappa's requirements. For example, Zappa requires that all pre 

and postconditions are explicit. This may give rise to slightly lengthier specifications 

than otherwise possible but it does have the benefit of encouraging the developer to 

consider such conditions carefully. Also, by making all pre and postconditions explicit 

within the specification, proofs concerning the specification can be more easily 

formulated.

Zappa also requires that specifications are entirely deterministic, but we feel 

that this is perhaps not surprising given that the specification is to be executed. It 

might be possible to incorporate non-determinancy into an animation by partial 

execution, whereby non-determinant outcomes are reported via the animation 

interface.

The implementation of Z's schema calculus is limited, being restricted to the 

basic logical operatives available in Kappa-PC, and Zappa can animate only one state 

schema - complex specifications involving multiple state schemas have to be treated as 

specifications with one, monolithic, state schema.

Zappa currently implements a limited, but we feel useful, range of Z variable 

types (see figure 7.3). It is envisaged that this range will be extended and it will always 

be possible for an experienced Kappa-PC user to implement a type not currently 

supported. Although there is a fair degree of reuasblity within Zappa's Mathematical 

Tool-kit library of algorithms (function override, for example, is implemented as per its 

definition in Spivey [Spi92] using more basic set operations, and needs little further 

consideration), the addition of a new variable type will involve the creation of Tool-kit 

algorithms to cater for it.
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CHAPTER 8: A CRITICAL REVIEW OF OPERATOR

La distance n'y fait rien; 
il n’y a que le premier pas qui coute.

Marquise du Deffand, 
letter to d'Alembert, 1763.

8.1 Introduction.

The research presented in this thesis has been carried out with the specific goal 

of achieving the three aims set down in chapter 1. They were,

"To investigate the issues involved in creating and demonstrating formal

specifications o f information systems.",

"To develop a systematic approach to creating formal specifications o f such

systems." and

"To investigate ways o f animating such specifications. "

The culmination of the research work has been the development of the 

OPERATOR approach to creating Z specifications together with the development of 

the prototype CASE animator, Zappa. These two research outcomes arose in 

response to the issues that were identified by addressing the first of our aims.

In this chapter we shall evaluate the development of OPERATOR against the 

first and second of our aims by listing the issues involved in creating formal 

specifications that have been identified by the research, and to consider how these have 

been addressed by the development of OPERATOR.

In the next chapter we shall evaluate the development of Zappa against the first 

and last of our aims in an analogous fashion.



8.2 Evaluation of the Research: Issues involved in creating Z specifications

The issues involved in creating Z specifications are those aired in chapters 3

and 4. Essentially they are the following:

• Although the use of Z to develop a specification, and then refine it to code, is 

regarded as applying a formal method, the reality is that there is no systematic 

method being used at all. The emphasis has been on the development of notations 

rather than methodologies. See McDermid [Der87] and Jackson [Jac87].

• This lack of any method means that acquiring writing skills in Z is more difficult in 

comparison to the acquisition of reading skills. This fact will have been observed 

by most teachers ofZ. At Sheffield Hallam University, students acquire writing 

skills by first acquiring reading skills. See, for example, Cooper et al [Coo92].

• All the classic 'abstraction bottleneck' problems emerge when trying to teach 

would-be software engineers how to use Z to develop system specifications. See 

Norcliffe [Nor93]. Going straight from requirements to written Z is not easy.

• This lack of a method means that tools to ease students through this abstraction 

bottleneck, or to assist the developer to capture user requirements simply and 

effectively, do not as yet exist. See Plat [Pla92]. The building of a tool requires at 

least some well understood step by step approach.

• In contrast, structural methods, with their well-defined methods, diagrams and 

tools, do not appear to suffer from these problems (see Chapter 2). Perhaps what is 

needed is a method based on diagrams for creating Z specifications.
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• Communicating with the client at all stages of requirements capture is important if 

the right system is to be built. The Z notation, whilst being a precise language with 

which developers can communicate with one another to develop a system correctly 

actually inhibits communication between developer and customer unless the latter 

is Z literate. See Jackson [Jac87].

8.3 Evaluation of the OPERATOR approach

If we look at the OPERATOR approach to developing Z specifications, then

considering each of the six points above, we see that:

/
• OPERATOR does represent the beginnings of a method. It has well defined steps

i

associated with it, i.e. 0,P,E,R, A,T,0 and R steps. These steps can be followed 

systematically to develop a range of system specifications. The method can be 

easily taught and learnt and is therefore transferable, as stated in [And95]. 

Application of the method appears to give a high level of reproducibility in the brief 

student trial carried out so far.

• The trials with students have suggested that the OPERATOR approach does help 

students to use Z systematically to develop specifications. It therefore facilitates 

the acquisition of Z writing skills.

• By being systematic and incremental in its approach the OPERATOR method does 

appear to ease students, and would-be software engineers, through the abstraction 

bottleneck. Because the approach is teachable it represents a method which 

students can follow to build the system state schema. Large intuitive leaps are not 

needed in using the method and, once the state schema has been obtained, the rest 

of the specification follows relatively easily.
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• Although OPERATOR is a paper-based method, there is no reason why the 

method should not be embedded in software to create a CASE tool.

• OPERATOR does draw heavily on the ideas of structured methods. However, it is 

free standing as a method and does not require prior knowledge of any proprietary 

structured method. This is not to say that there may not be advantages in 

integrating formal methods with existing structured methods (see Polack [Pol91, 

Pol92]), and valuable work is being carried out in this area [Sem91, Ran91, Ste90].

• The diagramming notation associated with OPERATOR does appear to help 

students, although evidence is anecdotal as yet. However, the operation diagrams 

have all the attributes of data flow diagrams in structured methods, and therefore 

must posses all their advantages. In contrast we would claim that the entity 

diagrams - being free of any relationships other than comprised o f and has/have - 

are intuitively more simple than the entity relationship diagrams of structured 

methods, and are easier to create and work with. We would claim also that 

OPERATOR, as a method, is simpler to work with than the methods integration 

approach. The latter is not a seamless joining of two methods to create a new 

approach. It capitalises on the strengths of both approaches, but inherits all the 

problems of integrating two different methods. OPERATOR was developed solely 

with the aim of helping students to create Z specifications and as a result is not 

cluttered with any unnecessary paraphernalia.

• The diagrams of the OPERATOR method, whilst helping the specifier to think in 

concrete terms about the system, have the additional advantage of being simple and 

sufficiently intuitive to be used in communicating with the client. All the 

advantages that diagrams bring to structured methods apply equally to the 

OPERATOR approach.
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OPERATOR may be criticised in that it tends to formulate a data structure in 

terms of functions and relations rather than sets with appropriate invariants, and this 

might be seen as restricting the choices of a software developer. For example in the 

case of a simple security system where identification codes of valid members of staff 

are stored in such a way as to indicate the whereabouts of staff (see Chapter 4), 

OPERATOR produces a function relating identification codes to whereabouts:

staff__whereabouts: STAFFJD-WHEREABOUTS

where WHEREABOUTS is an enumerated type,

WHEREABOUTS ::= staffJn I staff_out

The system could just as easily be modelled by sets of identification codes, each 

set representing a different whereabouts:

staff Jn, staff_out: P STAFF JD

with the constraint

staff Jn  n  staffjout = 0

It would seem that a general point can be made; functions that have ranges that 

can easily be enumerated can be modelled, alternatively, by sets.

However, we might point out that, at some stage in the implementation of such 

a system, refinement of these sets may well produce a more functional view (see 

Wordsworth [Wor92], for example). We would also note that, although OPERATOR 

naturally produces specifications that are amenable to our animator, the animator
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copes just as easily with a set based approach as it does with a function or relation 

based approach.

In summary, the success of a software development project depends heavily on 

the process of capturing the real requirements of a system and, in large systems, the 

appropriate partitioning of the system. As we have already stated, we feel that 

OPERATOR with its graphical front end, and its system partitioning capability has 

potentially much to offer the Z user. It has evolved from a limited abstract method to 

the fuller method it is today. Much remains to be done developing the method further 

and specific ideas for further research are presented in Chapter 10.
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CHAPTER 9: A CRITICAL REVIEW OF ZAPPA

Give us the tools, 
and we will finish the job.

Sir Winston Churchill, 1941.

9.1 Introduction.

As we have previously stated, the research presented in this thesis has been 

carried out with the specific goal of achieving the three aims set down in Chapter 1. In 

this penultimate chapter we look at what has been achieved with respect to the first 

and third of these aims.

In the next section we list the issues that have been identified in the thesis that 

relate to demonstrating formal specifications of information systems. We then expand 

on observations made in Chapters 6 and 7, and consider the extent to which the 

prototype CASE animator Zappa, and the animation work carried out with Crystal, has 

addressed these issues. We then compare the approach that we have taken, particularly 

in the development of Zappa, with the approach and views of others in the field.

Finally, we look critically at the style of Z that is required before an animation in Zappa 

is possible.

9.2 Evaluation of the Research: Issues involved in demonstrating Z 

specifications.

The issues involved in demonstrating Z specifications are those aired in 

Chapters 3, 5, 6 and 7. The issues can be listed as follows:

• The importance of validating a specification against user requirements is vital.

Formal methods, in principle, enable a system to be built correctly. They do not 

guarantee that the correct system will be built. Checking that the specification has 

captured the user requirements is essential.



• Checking, therefore, that the mathematical model of the system is capturing the 

correct user requirements is a vital part of developing a system using formal 

methods’ Animation may be one means of satisfying the user and the developer that 

what is specified is valid.

• Exercising the Z specification by dynamic testing via a rapid prototype or 

animation has many advantages. Work carried out reasoning about a static 

specification may not clearly reveal all aspects of system behaviour.

• Because Z will not execute, as yet, a translation to some form of executable code is 

needed. It is essential that this translation is faithful to the Z it represents and easily 

effected.

• With respect to animators used to demonstrate formal specifications, it is essential 

that they are effective as validation tools. It is no use having an animator that only 

helps the developer. It must be able to demonstrate the system to the customer in a 

way that facilitates the validation of the specification against user requirements.

• Any animator should be easy to use by the specifier.

• An animator should be able to animate a range of specifications. A clear issue is 

what are the restrictions on specification, if they are to be animated. Clearly the 

style of the written Z is a factor determining whether a specification can be 

animated or not, see chapter 7, section 3.
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9.3 Evaluation of Zappa and the Crystal approach.

This section evaluates the Zappa and Crystal approach in the light of the issues 

raised in the previous section. A further evaluation, comparing the approach to that 

taken by others is given in the next section.

Both the Crystal approach and Zappa provide dynamic demonstrations that 

may be used to show the essential features of systems specified in Z.

Zappa, with its interfaces, automation of animation and library ofZ functions 

certainly has the beginnings of a tool that can aid the developer in demonstrating the 

system for the purposes of requirements validation.

Both Zappa and the Crystal approach attempt to demonstrate a mathematical 

model of a system by remaining faithful to the Z notation, although it is not easy to say 

how faithfully the Z notation has been implemented. Types are not addressed using the 

Crystal approach, for example, and variables have global scope in Zappa.

The efficacy of Crystal and Zappa animations has not been evaluated in depth 

in terms of validation of a client's system requirements, although the author has had 

animations demonstrated to him by students, notably an intelligent multi-storey car 

park system (Crystal) and a rail failure data-base, GEORGIS (Zappa). Both animations 

provided a clear understanding of the systems being developed.

Both the Crystal approach and Zappa have proved themselves fairly easy to 

use, with students able to produce sensible animation code in tutorials and working 

animations in workshops, with little or no prior knowledge.

The issue of the style of Z required for animation using Crystal or by Zappa is 

one for debate. Restrictions are certainly there, but the impact they may have on formal
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software development, negative or positive, is, at this stage, difficult to resolve. We 

shall discuss the issue of style in a later section.

9.4 Comparison of the Zappa approach with related work.

From the points listed in 9.2, and the nature of the Zappa tool that has been 

developed, it is clear that the view taken of animation in this thesis has been one of 

providing a rapid prototype of the system, that is faithful to the original Z specification, 

that can be used to demonstrate the functionality of the system to a would-be customer 

or client. There are different views to animation and in this section we look at the work 

of others on animation and contrast their work with the work presented here.

r

To help illustrate a different view of animation let us consider the specification 

of two functions, a square root function and a square function. Their specifications are 

given below.

sqrt: N -+» N

V x, y : N •  y  = sqrt(x) <=> y*y = x 

square: N ->• N

V x : N • square(x) = x*x

Mathematics can be veiy abstract for the purpose of capturing system 

requirements, allowing the developer to concentrate on the what for ease of capture, 

but the how can often be more useful. In the function definitions above the
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specification of the square root function is a declarative one that is too abstract as it 

stands to be of much use for the immediate purposes of implementation. The definition 

of the square function, however, can be implemented as mathematically specified. 

When considering demonstration, the specification of the square root function may 

cause problems. It is not executable, as such, but could be considered ’animatable’ in 

terms of verification. Indeed, this view of animation is described by West and 

Eaglestone [Wes92] who have used Prolog to create ’simulations' of Z specifications 

by capturing their mathematical structure. They identify characteristics of Z such as 

schema signatures and predicates, data types and variable decorations (a similar 

approach to our own), and describe how these can be simulated in Prolog. The 

resulting translations are of a non-deterministic nature and provide a way of checking 

what is expected to be true of a specification, given a state space and a predicate. This 

compares with traditional software testing procedures where chosen input and output 

pairs are verified by execution.

It is worth noting, as it relates to the issues concerning the executability of 

mathematics (see Hayes and Jones, Specifications are not (necessarily) executable 

[Hay89]), that West and Eaglestone concluded that there was no straightforward 

mapping between Z and Prolog - a mapping had to be manufactured using some 

characteristics of Z:

"... the simulation depends on the characteristics o f a specification 

being within the bounds o f [their] stated rules... A Z specification gives a 

logical relationship, whereas Prolog, although in theory a declarative 

language, in practice does rely on the textual sequence o f the code. The lack 

o f data types also means that Prolog sets have to be implemented by lists. 

These factors could limit the subset o f Z that is capable o f translation by this 

technique and its possible mechanisation."
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We had similar problems with ZAL (the programming language of Kappa PC) 

in identifying a subset of Z that is translatable and we have been unable to be explicit in 

terms of what can and what cannot be demonstrated through animation (see 

suggestions for further work in the final chapter). We also note that sets are typically 

implemented as lists whichever programming language is chosen (Morrey, Siddiqi, 

Buckbeny and Hibberd [Mor92] use the same method with the functional 

programming language LISP). This in itself is a concrete refinement of an abstract 

object, imposing an order on elements in a set. The issue of whether Z can wholly and 

satisfactorily be animated is clearly a fundamental one. A final point on this area of 

executability is provided by Valentine [Val94] when he discusses the rationale behind 

Z—, his executable subset of Z:

"Many studies o f refinement and abstraction use different notations for  

the specification and the program. This obscures the fact that a program is a 

special case o f a specification, and creates pointless extra work in the 

translation. Some work has been done on creating specification subsets o f  

existing programming languages. In general this may produce rather messy 

results. Z— has been developed as the programming language which is a 

subset ofZ ."

It is clear that there is more than one view or purpose of animation. West and 

Eaglestone, above, have developed animation as a means of specification verification. 

Prolog, with its capability of backward and forward chaining lends itself to this 

approach and that of providing animation in terms of enumerating all possible solutions 

to a logical problem - give a state space and a constraining predicate an animation can 

be a means of providing instances within the state space that satisfy the predicate.

Our approach was to develop animation as a means of demonstrating Z 

specifications to the non-mathematically literate, a possible means of validating 

perceived with actual system requirements. Essentially, this is also the approach of
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Morrey et al. [Mor92] although they also see animation as a direct support for the 

development of a Z specification:

"Not only does the package [their LISP based Z animator] provide 

facilities fo r users to validate their own specifications, but its interactive 

technique also encourages and supports an experimental approach as a valid 

technique fo r the development o f Z specifications."

Cooling and Hughes [Coo94] have also identified the problem of 

communicating formal specifications to non-specialists, but have taken a more 

traditional view of animation, in that they aim to show the meaning of such 

specifications in computer generated pictures. However, as one might expect, their 

work is mainly concerned with the animation of real time systems (our problem domain 

is information systems) and hence further comparison with Zappa is not easily made.

Mukheijee [Muk95] also adopts a validation approach to the animation of 

VDM, with the view that a specification should be demonstated to the user. However 

he points out that there is a danger in that the effort involved in animation may be as 

much as the effort involved in refining the specification into a program, unless the 

specification is written in a procedural style.

Johnson and Saunders [Joh89] view animations as stepping stones towards 

final implementation. They show how Z can be translated into a 'specification-like' 

functional program, producing a prototype that forms the basis for further refinement. 

They see the main advantage of this approach being that the engineer is working in an 

executable design language, where the engineer can formally refine the animation 

rather than going back to the original specification.
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Sherrell and Carver [She93] again take a validation approach through rapid 

prototyping, implementing Z directly in the functional programming langauge Haskell. 

Worthy of note is the fact that they animate a similar style of Z to that which Zappa 

best animates, namely one that is deterministic and procedural in appearance.

It may be worth noting, given that Zappa views animations as procedural, 

deterministic demonstrations, that Zappa could be used to test non-deterministic or 

implicit specifications if the animation is developed in a particular way. Taking the 

example of the square root function above, if the quantified variables, x and y, were 

animated as state variables and the axiom was animated as a data invariant, values can 

easily be assigned to x and y and tested using Zappa's data invariant checker.

One area of commonalty in the various approaches to animations, including our 

own, appears to be the use of a library of Z operations; essentially the complete or 

partial implementation of Spivey's mathematical toolkit [Spi92]. Knott, for example, 

uses a library of Prolog procedures [Kno90, Kno92] which is now well developed and 

may be considered a benchmark for future work. He takes the theory of animation to 

encompass wider uses, say with working mathematicians and people interested in other 

executable mathematical notations. It could be argued that Zappa offers the possibility 

of investigating properties of discrete mathematics by animating sets, relations, 

functions and the like, although some consideration has to be given to the fact that 

Zappa is an environment for animation of software specifications - the developer's 

interface uses terminology and procedures commensurate with that activity. A cut 

down version of Zappa to cater for Computer Aided Learning of discrete mathematics, 

for example, could be produced with some modification to the existing tool, with new 

uses being made of the animation interface tailored to specific topics or lessons.

Knott also shares the goal of using a style of programming that relates closely 

to the mathematics, but goes further in that ideas of proof and correctness preserving
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transformation should be catered for. It is not clear that this level of formality could be 

achieved with adaptations to Zappa.

9.5 The style of Z required by Zappa.

The style of Z that is required by Zappa may be considered restrictive - Z AL 

does not allow flexibility in terms of such things as currying functions and 'lazy 

evaluation', things that Knott sees as advantages of using a functional programming 

language or the backtracking provided by Prolog to materialise alternative solutions. 

Zappa requires a Z operation schema to be deterministic in nature and procedural in 

appearance. Preconditions must be evaluated before postconditions are implemented. 

Given particular inputs to an operation, there can be either no change of state or one 

change of state. This may, to some extent, be because Zappa has been developed to 

animate software specifications of information systems, not for the execution of 

mathematics in general. It is also important to Zappa that post conditions are evaluated 

strictly from left to right, with a single variable to be evaluated. For example,

xuy=z*

becomes

t - x u y

A statement such as

z1 u  y = x

would, as it stands, be evaluated as a true or false statement and could not 

change the state of the system. It could be rewritten as

z* = x \ y
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if that was the intention in the first version. Zappa either tests for logical 

equality or assigns a new value to a variable; is x  equal to y? or make x  equal to y.

A statement such as 

x* u  y  = z

is more problematical. A possible deterministic solution could be given by 

y  = z \ y  a  y  = y

Statements that do not involve equality can only be considered by Zappa as 

logical tests. For example

x*cz

would be a test on an after state variable and would not determine a value for

x\

Further, the notation used must be explicit. Take the statements

staff = staffJ n  u  staff_out 
staffJ n ' = staff J n  u  { staff?}

The first is a data invariant of a simple security system, the second a post 

condition for a particular system operation. The conventions of schema inclusion in Z 

may give rise to the hidden post condition

staff = staff Jn ' u  staff_ouf
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in the system operation. Zappa does not follow that convention in that data 

invariants are used periodically by the user or developer to test the system state. For 

reasons of speed of execution, the data invariant is not automatically tested before and 

after an operation (although this is easily possible). The hidden post condition could be 

included by including it as an assignment of staff after the statement assigning staff Jn' 

but the preferred approach would to be explicit within the operation schema, i.e. to 

mention all after state variables. Hence

staff = staff u  {staff? }

would also appear in the operation schema predicate.
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CHAPTER 10: FUTURE WORK

Thou whoreson zed!
Thou unnecessary letter!

William Shakespeare, King Lear, II: 2.

10.1 Introduction.

In this final chapter we list areas of research that will need to be considered to 

take forward the work that has already been started on writing and animating Z 

specifications.

For simplicity we look at writing and animation separately. In particular we 

concentrate on how OPERATOR might be developed further and the research that is 

needed to improve Zappa.

10.2 Areas for future research - Developing OPERATOR further.

The OPERATOR approach certainly contains the beginnings of a method. 

However, this method needs to be defined more sharply and the separate steps of the 

method expanded.

A tighter definition of an object is needed so that system objects can be readily 

identified at the beginning of the method.

The has/have properties of objects that then flow also need tighter definition - 

and possibly need expanding in scope - so that all system entities can be identified with 

confidence. Whilst the present method has enabled complete specifications to be drawn 

up for the relatively simple systems to which it has been applied, there is no guarantee 

that the method will be capable of identifying all the entities in more complex systems.



The R step of the method is designed primarily to identify binary relations.

. Again, it is not clear that all systems can be specified in terms of sets of entities and 

binary relations. An approach for identifying general system relationships is needed as 

well.

Data modelling is also not well developed in the method as it stands and further 

research to enable this first vital link with the Z notation is needed.

In essence then, the steps of the method need to be defined yet again and 

developed further to enable the approach to have wider applicability. We are aware 

that research on all these aspects of developing OPERATOR further is being carried 

out by Tamarin Othman at Sheffield Hallam University [Oth95]. Recent discussions 

suggest that Object Oriented Analysis is proving useful in attacking many of the areas 

mentioned - particularly when systems are complex.

There is no reason why the OPERATOR method should cease with the 

identification of state variables and the signatures of operation schemas. Systematic 

ways of arriving at data variants together with pre and post conditions for specifying 

operations must now be researched.

The whole issue of addressing complexity and structuring large specifications 

needs to be researched more fully and clear ways for developing specifications of 

complex systems formulated. The approach outlined works for the systems considered 

so far, but needs to be extended to include the concept of different levels of 

subsystems.

Along with all of this needs to be developed the associated diagramming 

notation.
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Finally, once the OPERATOR method has been more sharply defined and the 

separate steps expanded, then tool support to enable the developer to use the method 

easily and consistently needs to be provided. Once again, we are aware that work 

aimed at supporting the method with a prototype CASE tool is being carried out by 

Tamarin Othman at Sheffield Hallam University. The outcomes of this research are 

awaited.

10.3 Areas for further research - Developing the Crystal Approach and Zappa 

further.

Areas of further development for the Crystal approach and for Zappa have 

already been briefly indicated in chapters 6 and 7, respectively. A library of Z functions 

might be supplied for Crystal, written in C and interfaced with the Crystal shell.

Zappa can be expanded by adding algorithms to cater for additional 

constructed types. The reusability of existing ZAL code in Zappa makes this less of a 

task as it may at first seem.

At present Zappa assumes that a single state schema is at the heart of a 

specification and that state variables have global scope. This is inadequate if Zappa is 

to be able to animate large systems. Provision will have to be made to implement the 

schema calculus of Z faithfully, schema inclusion in particular.

As we have presented only anecdotal evidence here, work still has to be done 

to investigate the efficacy of the Crystal approach and Zappa in terms of validation of 

user requirements.

The restrictions on the style of Z required for animation by Zappa highlights an 

important and general issue regarding the use and development of animators and other
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CASE tools for Z: What in Z is 'animatable' and how restrictions on the writing of Z 

specifications, imposed by tools, affect the formal software development process are 

areas that we feel need careful consideration. We are aware that research considering 

'animatability', and the definition and specification of an 'ideal* animator for Z, is being 

carried out by Alistair Jack at Sheffield Hallam University [Jac95].

Formal methods will surely play a part in the future development of software 

engineering, either as fully developed methods in their own right or as tools within 

existing structured software engineering approaches. Software systems will continue to 

become more complex, widespread and safety critical. Formal methods will be required 

to exert scientific rigour on the software development process, and, with well 

developed techniques and computer-based tools to aid in the process, will become ever 

more important.

Finally, we hope that what has been presented here will add a little to the 

experience and knowledge of practitioners and researchers in this challenging field.
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APPENDIX A.1: A CASE Tool for Demonstrating Z Specifications [And90]



CASE tool for demonstrating Z specifications

Andrews and A Norcliffe

he CASE tool we describe is designed to enable software engineers to produce a faithful 
nimation of specifications written in Z. Desirable properties which we feel animations of this 
'nd should possess, and which have guided us in developing the tool, are the following.

The executable code (ie the animation) must be easy to produce.

The structure of the code should not be too far removed from the Z.

The animation should be sufficiently user friendly to enable a client to understand and 
interact with it, thus facilitating the process of validating a specification against user 
requirements.

he CASE tool is based around the program development tool known as CRYSTAL. 
SYSTAL is reasonably well-known in AI circles and is sold as an expert system shell by 
telligent Environments Ltd in Richmond. It is essentially a rule-based programming language 

ffering excellent input, output, and menu facilities, as well as all the standard features 
pected of any expert system shell. The specific advantages we see, that this environment 

ffers as a means of transforming Z to executable code, are as follows.

The rule-based nature of CRYSTAL means that lines of Z, in the predicate of a schema, 
transform almost one-for-one into rules in CRYSTAL.

The expandable way in which rules are built up in CRYSTAL mirrors very closely the 
use of the schema calculus in Z. The developer, using the tool, can faithfully transform 
a Z specification starting at the schema level and finishing at the line-by-line predicate 
level.

The excellent user interface that comes with CRYSTAL enables the developer to 
concentrate his efforts on transforming Z instead of worrying about how to create a 
friendly user interface. This is an added bonus given the fact that implementation issues 
are positively avoided in formal specifications.

The animation that results can be viewed by the client at different levels. This is 
possible because of the folded nature of the rule-based programming in CRYSTAL. At 
the highest level a system might be viewed as a menu having several options such as

quit
initialise state 
save state 
load state 
print state 
test data invariants 
operation 1 
operation 2

operation n

Andrews and A Norcliffe are both members of the School of Engineering Information 
echnology at Sheffield Cit^ Polytechnic



Any operation chosen by the client can be systematically unfolded to discover the rules 
that make it work, thus promoting the vital interaction between client, developer and 
system that is necessary for requirements validation. In CRYSTAL this is feasible because 
at the highest level the rules are written in English. Only at the lowest level does 
English give way to code. What the client sees, therefore, is a faithful English 
translation of the developer's Z.

o illustrate these points a short example is now considered. The following is part of the Z 
pecification of a very simple security system that might be in operation in a building to 
onitor the whereabouts of staff users. The system state consists of three subsets, in, out and 
ers, of type P(STAFF_ID), and is represented by the following state schema

- s i a i e -----
in , out, users  : P(STAFF_ID)

in fl out -  {}
in U out — users

1 mongst other things the system checks people in and out of the building and the ChecklnOK 
peration may be specified as follows

—ChecklnOK-------------------------------
A S ta te
person_id? : STAFF_ID

person_id? e out 
o u t ' — out \  {person__id?}
in ' -  in  U {person_id?}
u se rs ' -  users

When the precondition is violated the ChecklnOK operation will fail. A robust Checkin 
operation can therefore be defined as follows

Checkin -  ChecklnOK V ChecklnError

ChecklnError -  ChecklnErrorl V CheckInError2

where the two error schemas are as follows

—ChecklnErrorl-----------------------------------------
S ta te
person_id? : STAFF_ID 
message! : REPORT

person__id? € in
message! — "Person already  in  bu ild ing"

4r



r— CheckInError2-------------
S t a t e
person_id? : STAFF__ID 
message! : REPORT

person_id? /  u sers
message! -  "Person is  not a v a lid  user"

t the highest level the CRYSTAL coding for this Z could be the following

Checkin works 
IF ChecklnOK works
OR ChecklnError works

ChecklnError works 
IF ChecklnErrorl applies
OR CheckInError2 applies

ChecklnOK works 
IF person_id is entered into the system 
AND the person_id currently belongs to the set out 
AND the personjd is then removed from the set out
AND the person_id is then added to the set in
AND the set users is unchanged 
AND completion of the operation has been signalled

ChecklnErrorl applies 
IF person_id is entered into the system 
AND the person_id currently belongs to the set in
AND an appropriate message is output

CheckInError2 applies 
IF person_id is entered into the system 
AND the person_id does not currently belong to the set users
AND an appropriate message is printed

bviously the developer has to expand each of these individual rules further until they are 
pable of being executed. But in principle this is a fairly straightforward task given the 

vailable CRYSTAL operations, and the fact that sets, functions, relations,, sequences, power 
ts, bags etc can all be represented conveniently as arrays in CRYSTAL.

hat we observe, then, is that CRYSTAL rules are not too far removed from Z and give a
ery faithful transformation of the Z. The animation at this level is also capable of being 
iderstood by a client even though he may know little or no Z. The client can thus interact 
*th the specification through the CRYSTAL animation and can thus contribute meaningfully to 
e process of requirements validation.

rith regard to the CASE tool, however, the following points are relevant. A major 
isadvantage of CRYSTAL is thatr-although at a high level it faithfully represents the Z
otation, at the lowest level the CRYSTAL code can be somewhat lengthy. For example, the
RYSTAL transformation of a function override operation could require 50 or more lines of 
ode. This problem is further compounded by the fact that there is no parameter passing in 
RYSTAL ie it is not possible to write i  single routine for © and pass the appropriates



rameters to it. The code must be repeated each time it is required. However, this 
roblem of low-level coding can be avoided by writing a "Z-functionH interface to CRYSTAL 

C and work is currently in progress to create a library of Z-function routines (©, U, fl, #  
c). These will eventually be amalgamated with the standard CRYSTAL function library 
pplied with the shell and used in the same way in the CRYSTAL code. The result should 

a CASE tool that software engineers can use, with relative ease, to animate specifications 
itten in Z.

6
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APPENDIX A.2: An Expert System CASE Tool for Simulating Z Specifications

[And91]
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An expert system CASE tool for simulating Z specifications

Simon Andrews and Allan Norcliffe *

School of Engineering Information Technology 
Sheffield City Polytechnic 
Pond Street 
Sheffield SI 1WB

Summary

In this paper we describe a prototype of an expert system support environment to 
assist software engineers in the development of information systems. The CASE 
tool is designed specifically to aid software engineers at the requirements capture 
and specification stage by providing a faithful simulation of specifications written in 
the formal notation Z. In the paper we consider the rationale for the tool and 
illustrate its essential features by showing how part of a Z specification may be 
implemented and therefore simulated using the tool. We look specifically at how 
the tool can be used by the developer to demonstrate the features of a system to 
a client and how the client, in turn, can interact with the specification without 
necessarily having to understand the Z notation used. Limitations of the tool are 
described together with some of the ways of overcoming these.

1. Background

Z is nothing more than a mathematical notation. It was developed originally by 
the Programming Research Group at Oxford to enable software engineers write 
formal specifications in a systematic way. As a language it has received much 
attention by both industry and academia and, along with VDM (Vienna 
Development Method), has become one of the standard languages for specifying 
secure and safety-critical systems. A handbook setting out the latest version of the 
language is provided by Spivey (1989), and examples illustrating the use of the 
notation in software development can be found in the specification casestudies book 
by Hayes (1987).

Formal methods, such as Z and VDM, offer one realistic way of combatting the 
software crisis, and their use in industry holds out the promise of improved 
software quality and better productivity of the software development process. By 
using formal methods the software engineer is able to produce a system 
specification that is precise and capable of being reasoned with mathematically. 
The specification can be shown to be internally consistent and any coding produced 
from it can be developed rigorously and systematically, and be shown to match the 
specification. The full force of mathematical analysis and proof can be brought to 
bear and this is what makes the use of formal methods so attractive. Formal 
methods therefore lead to verifiable code and thus enable the software engineer to 
build systems correctly.

2. The Rationale for the tool

Having the power to build software systems correctly throws into sharp focus the 
vital need to capture the user's requirements correctly at the specification stage. 
Building a system correctly using formal methods does not guarantee that the 
resulting system is the correct system for the user.

This state of affairs is not new, of course, and is one of the ever present 
problems that modellers have to face up to when solving problems using
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mathematics. Once formulated in terms of mathematics, a problem can in 
principle be solved correctly using mathematical techniques. The solution, however, 
is only as good as the assumptions behind the original model and exactly the same 
is true in software development. Once a formal specification has been drawn up, 
correct coding can certainly be produced, but this coding is only as good as the 
assumptions underpinning the original specification. If the assumptions are not 
what the user intended or wanted, then the system is in many ways invalid.

Validating specifications against user requirements is therefore a major problem in 
software engineering, and it is one for which formal methods do not readily 
provide an easy answer. It is hardly feasible to ask the user or client if the Z 
specification of their system is a valid interpretation of their requirements. 
Mathematics at the moment, unfortunately, is still for the initiated and is most 
likely to remain so. Somehow the software engineer has to be able to demonstrate 
the specification to the customer more directly in order to validate it against their 
requirements.

There are basically two ways in which a software engineer can demonstrate a 
specification. He could obviously specify the system in a language or notation that 
executes. PROLOG, OBJ or ML, for example, are such langauges. By executing 
the specification the customer requirements can be validated first hand by seeing 
the system in action. The second way is to develop the specification first in a 
language, such as Z, that does not execute, and then transform it to one that will. 
This is the essence of rapid prototyping. From the behaviour of the prototype, 
providing it is faithful to the original specification, the customer can then see if 
the requirements are being met. Rapid prototyping has the advantage of giving the 
developer more freedom at the specification stage since he is not constrained by 
working only in terms of a langauge that is capable of execution. In many ways 
mathematics is more expressive than most executable specification langauges, and 
rapid prototyping is often the preferred route.

The CASE tool that we now describe is a tool for validating a specification against 
user requirements via this second approach. With the CASE tool a simulation of 
the specification is provided which is faithful to the original Z and which animates 
or simulates the ideas captured in the specification.

3. The tool in outline

Desirable properties which we feel animations, or simulations, of this kind should 
possess, and which have guided us in developing the tool, are the following.

1. The executable code (ie the animation) must be easy to produce.

2. The structure of the code should not be too far removed from the Z.

3. The animation should be sufficiently user friendly to enable a client to
understand and interact with it, thus facilitating the process of validating a 
specification against user requirements.

The CASE tool is based around the program development tool known as
CRYSTAL. CRYSTAL is reasonably well-known in AI circles and is sold as an
expert system shell by Intelligent Environments Ltd in Richmond. It is essentially 
a rule-based programming language offering excellent input, output, and menu 
facilities, as well as all the standard features expected of any expert system shell. 
The specific advantages we see, that this environment offers as a means of
transforming Z to executable code, are as follows.



1. The rule-based nature of CRYSTAL means that lines of Z, in the predicate
of a schema, transform almost one-for-one into rules in CRYSTAL.

2. The expandable way in which rules are built up in CRYSTAL mirrors very
closely the use of the schema calculus in Z. The developer, using the
tool, can faithfully transform a Z specification starting at the schema level
and finishing at the line-by-line predicate level.

3. The excellent user interface that comes with CRYSTAL enables the 
developer to concentrate his efforts on transforming Z instead of worrying 
about how to create a friendly user interface. This is an added bonus 
given the fact that implementation issues are positively avoided in formal 
specifications.

4. The animation that results can be viewed by the client at different levels.
This is possible because of the folded nature of the rule-based programming
in CRYSTAL. At the highest level a system might be viewed as a menu
having several options such as

quit
initialise state
save state
load state
print state
test data invariants
operation 1
operation 2

operation n

Any operation chosen by the client can be systematically unfolded to discover the 
rules that make it work, thus promoting the vital interaction between client, 
developer and system that is necessary for requirements validation. In CRYSTAL 
this is feasible because at the highest level the rules are written in English. Only 
at the lowest level does English give way to code. What the client sees, 
therefore, is a faithful English translation of the developer's Z.

4. Using the tool

To illustrate these points a short example is now considered. The following is part 
of the Z specification of a very simple security system that might be in operation 
in a building to monitor the whereabouts of staff users. The system state consists 
of three subsets, in, out and users, of type P(STAFF_ID), and is represented by 
the following state schema

—S t at e-------------------------------------------

in , o u t, u sers : P(STAFF_ID)

in  fl out — {} 
in  U out ■= u sers

Amongst other things the system checks people in and out of the building and the



ChecklnOK operation may be specified as follows

—CheckInOK-------------------------------
A S ta te
person_id? : STAFF_ID

person_id? e out 
o u t ' — out \  {person_id?}
in ' — in  U {person_id?}
u se rs ' — users

When the precondition is violated the ChecklnOK operation will fail. 
Checkin operation can therefore be defined as follows

RCheckln -  (Checkin A Success) V ChecklnError

ChecklnError -  Staffln V NotUser

where the success and two error schemas are as follows

r e s u l t ! : REPORT

r e s u l t ! — ok

—S ta ff ln ----------------------
H S ta te
person_id? : STAFF_ID 
re s u l t !  : REPORT

person_id? j  in  
r e s u l t!  — already_in

—NotUser----------------------
H S ta te
person__id? : STAFF_ID 
re s u l t !  : REPORT

person_id? f  users 
r e s u l t!  — not known

A robust

At the highest level the CRYSTAL coding for this Z could be the following



RCheckln works 
IF Checkin works
AND Success is indicated
OR ChecklnError works

ChecklnError works 
IF Staffln applies
OR NotUser applies

At the next level down these rules might be expanded as follows

Checkin works 
IF personjd is entered into the system
AND the person_id currently belongs to the set out
AND the person_id is then removed from the set out
AND the person_id is then added to the set in
AND the set users is unchanged

Success is indicated
IF the result "ok" is output

Staffln applies 
IF personjd is entered into the system
AND the person_id currently belongs to the set in
AND the result "already in" is output

NotUser applies 
IF person_id is entered into the system
AND the person_id does not currently belong to the set users
AND the result "not known" is output

Obviously the developer has to expand each of these individual rules further until 
they are capable of being executed. But in principle this is a fairly straightforward
task given the available CRYSTAL operations, and the fact that sets, functions,
relations, sequences, power sets, bags etc can all be represented conveniently as 
arrays in CRYSTAL

5. Advantages of the tool

Most of these have been listed previously, but it is worth pointing out the 
advantages again.

(1) We observe that the CRYSTAL is very faithful to the Z. The simulation
that is produced when the CRYSTAL code is executed is indeed a 
simulation of the specification and not an implementation that is far 
removed from the Z.

(2) Since the CRYSTAL mirrors the structure of the Z so closely it is a
relatively easy task for the developer to begin the process of developing the
executable code. The excellent user interface that comes with CRYSTAL is
very helpful when lower-level coding has to be developed.

(3) The high-level coding, being written in English, is clearly capable of being
understood by a client even though he may know little or no Z. The 
English translation of the Z in CRYSTAL does not introduce potentially 
harmful ambiguities and via this translation the client can thus interact with



the specification and contribute meaningfully to the process of requirements 
validation.

(4) The three-way communication between customer, developer, and system, so
vital for validation purposes, is thus possible via the tool.

6. Limitations of the tool and suggested improvements

The tool does have its limitations. A major disadvantage of CRYSTAL is that 
although at a high level it faithfully represents the Z notation, at the lowest level 
the CRYSTAL code can be somewhat lengthy. For example, the CRYSTAL 
transformation of a function override operation could require upwards of 50 lines 
of coding. This problem is further compounded by the fact that there is no 
parameter passing in CRYSTAL, ie it is not possible to write a single routine for 
function override, for example, and pass the appropriate parameters to it. The 
code must be repeated each time it is required.

However, this problem of low-level coding can be avoided by writing a 
MZ-functionM interface to CRYSTAL in C and work is currently in progress to 
create a library of Z-function routines for the operations ©, U, fl, # , \  etc. 
These will be eventually amalgamated with the standard CRYSTAL function library 
supplied with the shell and used in the same way in the CRYSTAL code.

7. Discussion

It is perhaps important to point out that the tool we have described is not yet 
commercially available, and indeed a full-scale prototype has not yet been built. 
The tool is still very much the subject of final year student projects, and only 
parts of it currently exist. The CASE tool proper, when it is finally built, will 
possess the following features.

(1) It will be built around the CRYSTAL environment for ease of use on a 
pC.

(2) There will be an appropriate additional library of Z functions to enable
many standard Z operations to be carried out with few key strokes.

(3) It will contain an expert adviser on writing Z for various generic system
types such as information systems.

(4) There will be help screens for transforming Z.

(5) There will be standard macros for creating system menus, input and output
screens, initialising system states etc.

Given these features we believe the result will be a CASE tool that software 
engineers can use with relative ease to animate specifications v/ritten in Z.
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A LIFT SYSTEM

Although the Z notation is based on discrete mathematics, it can be used 
to model continuous systems if it is possible to define the evolution of the 
system in terms of discrete steps.

A lift system is such a system, where a lift moving from one floor to the 
next can be thought of as a discrete step.

The following describes the specification of a general lift system with m 
floors and n lifts.

System requirements

The requirements of the system are as follows.

• Each lift has a set of buttons, one for each floor. When 
pressed, a floor-request button will cause the lift to visit 
that floor.

• Each floor, except the ground and top floors, has two 
request buttons, one to request an up-lift and one to 
request a down-lift. At the ground floor only an up-lift 
can be requested, and at the top floor only a down-lift 
can be requested. The request is serviced when a lift 
visits the floor and is either moving in the desired 
direction or has no outstanding requests. In the latter 
case, if both floor buttons are pressed, only one should 
be cancelled. Waiting time for floors should be 
minimised.

•  When a lift has no requests to service, it should remain 
in a holding position.

•  All requests from floors must be serviced eventually, 
with all floors given equal priority.

• All requests from within a lift must be serviced 
eventually, with floors being serviced sequentially in  
the direction of travel.

• Each lift has an emergency button which puts it out of 
service, and each lift has a mechanism to cancel its out 
of service statusr—

ir



e system  state

e lift system has m  floors and n lifts. We define m  and n to be global 
ables as follows.

m, n:

et of floors, and a set of lifts, can then be defined in terms of m and n  in 
following way.

FLOOR == l..m  
LIFT == l..n

ch lift can be in one of four states: moving up, moving down, holding, or 
t of service. We thus define a free type, DIRECTION, as follows.

DIRECTION ::= up I down | holding I out

e status of all lifts can now be represented by a total function:

d ir : HFT-» DIRECTION

early, it is also important to know on which floor a lift currently is:

jlo o rjo n : LIFT -> FLOOR

moving lift is deemed to be at the floor it has just passed until it arrives 
or passes, the next floor. Requests for lifts to stop at particular floors 

j of three types: requests made within lifts, requests made on floors for 
wn-lifts, and requests made on floors for up-lifts. The requests made 
m within the lifts are modelled by the following total function.

r e q s jn j i f t : LIFT -» F FLOOR

e requests made on floors are modelled by finite sets alone:

reqsjdn : F FLOOR, 
reqsjup: F FLOOR

e now have all the components of the system apart from the fact that a: 
juest to go up on the top floor, and arequest to go down on the ground floors 
e impossible.

reqsjup  c  1 .. m-1 
reqsjdn  c  2 .. m



The state schema can now be written down as follows.

— U ftS ta te ----------------------

d ir : LIFT-* DIRECTION 
Jloorjon : LIFT -» FLOOR 
re q sjd n : F FLOOR 
req sju p : F FLOOR 
reqsjuiJLift: LIFT-* FFLOOR

reqs_up c  1 .. m-1 
reqs_dn c  2 .. m

The initial state

It is sometimes helpful to give an example of a valid starting state. One 
choice is the state where all the lifts are in a holding position on the ground 
floor, and there are no requests in the system.

— InitState ----------------------

U ftState

d i r = ( l : U F T + l h +  holding] 
Jhoorjon = { I : LIFT 1)
reqs_dn = 0  
reqsjup  = 0  
r e q s jn jif t = 0

The actions of the lift system

Now we have the state, we must consider the actions of the system. They are 
listed below.

StartDown - describes the conditions needed for lifts to 
start moving downwards from a holding 
position.

Startup - describes the conditions needed for lifts to
stait moving upwards from a holding 
position.

(7-



describes downward lifts moving down a 
floor.

describes upward lifts moving up a floor.

describes downward lifts remaining in a 
holding position.

describes upward lifts remaining in a 
holding position.

describes requests being made from within 
lifts.

describes requests to go up being made on 
floors.

describes requests to go down being made 
on floors.

describes lifts servicing floors (halting if 
necessary, opening the lift doors, waiting 
a pre-set length of time, and then closing 
the doors). There are several cases of the 
Stop action.

describes lifts going out of service, 

describes lifts coming back into service, 

e consider each of these system actions in turn, 

e S ta rtD o w tta n d  S tartu p  actions

lift will start to move downwards from a holding position if

♦ there is a  request for a lower floor made from within the 
lift, or

♦ there is a request to go down made on a lower floor, and

there is no holding lift above the floor and closer, and

there is no downward lift above the requestfloor, and 
at the same level or below the lift, or

IS

• MoveDown -

• MoveUp

• HoldDown -

• HoldUp

• ReqlnJUft

• ReqUp

• ReqDown

• Stopx

• OutOfService-

• BacklnService -



• there is a request to go up made on a lower floor, and

there is no upward or holding lift below the floor, and

there is no holding lift above the floor and closer.

This condition is complex but essential. The condition for a lift to start 
downwards (or upwards) is at the heart of the system. The lift in the best 
position should be selected to answer a particular request. Although it may 
be possible for there to be two or more lifts answering a particular request 
each request should be answered in the fastest way possible, and no request 
can remain unanswered. If the above condition is met for a particular lift, 
then its direction will be changed from holding to down.

The actual StartDown action that causes holding lifts to start to move down 
can be specified as follows.

 StartD ow n-------------------------------------------------------

AUftStaie

dir' = dir 0  {li/i : LIFT I dir (lift) = holding a

3/: FLOOR • ( ( /< jloorjon {lift)) a  (/<= reqsjnj i f t ) )  v

( / e  reqsjdn  a - i 3 I : LIFT* ( ( dir ( I )  =  holding a
/<  Jloorjon ( I) < Jloorjon ( lift)) v
{dir{I)  = do w n a /< J lo o rjo n ( I) <Jloorjon( lift)))) v

( / e  reqsjup  a-«3 I : LIFT* (((dir ( I) -  up v
dir{ I) =• holding) a  Jloorjon< J) v
I dir 11) = holdinga f< Jloorjon  ( I) < Jloorjon (lift))))).

• lift *-±down)

reqs_dn! -  reqsjdn  
reqsjup' = reqsjup  
re q s jn jift!  = r e q s jn jif t  
Jloorjon' = Jloorjon

The Startup  action is clearly going to take a  very similar form (a sort of mirror 
image in fact) and in thehiterest of brevity it is not given here.



Technical Note C\V
' % '^ C ii-' t \

• \  ■' ' ' %--'v''-̂ ' -> '
W  ^  V  \  %\ /// w '̂ ,  . ' \ ' y • v % -• \ ‘

and will alwaysapply. Ifthereareno holdlngllftssatisfyingthe predicate 
in the above set comprehension the value of diris left unchanged, along 
with the other state variables. The comprehension is thus empty. If 
there are holding lifts satisfying the predicate in the comprehension; 
their directions will be changed to dbw nand  the function d iris  updated 

v accordingly; Either way the StartDown schema applies; ,-<'

The S ta rtu p  schema when written out will similarly have no 
precondition and it, too, will always apply.

End of technical note

he M oveDown and MoveUp actions

ese actions are straightforward. If the direction of a lift is down, then it will 
ove down one floor; if the direction is up, it will move up one floor. The 
oveDown and MoveUp actions are designed to follow the StartDown and 
tartUp actions. Their specification is as follows.

 MoveDown-------------------------------------------------

AUftState

Jloorjon’ =Jloor_on ® [lift: LIFT | dir ( lift) = dow n
• lift ^  (Jloorjon ( lift) -1)}

dir' = dir
reqsjdn' -  reqsjdn  
reqsjup' = reqs_up 
r e q s jn jiftf = r e q s jn jift

—  MoveUp-------------------------------------------------

AU ftS ta te

Jloorjon' = Jloorjon 0  ( lift: LIFT \dir[ lift) = up
+ lift (Jloorjon( lift) +1)}

diT = dir
reqsjdn' = reqs_dn 
reqsjup' = reqsjup 
r e q s jn jiftf = r e q s jn jift



The HoldDown and HoldUp actions

The conditions for a downward lift to remain in a holding position are

• its direction is down

• there are no requests in the lift for a lower floor

• there is no downward request on a lower floor

• there is no upward request on a lower floor.

Again, these conditions ensure that all requests will be serviced even if it 
means that two or more lifts are “racing” to service a particular request. The 
conditions also ensure that a downward lift will hold once it has reached the 
ground floor ( and not continue downward into the foundations!). If the 
conditions are all satisfied a lift’s direction is changed to holding.

The HoldDown schema can be written as follows.

 HoldDown________________________________

A U ftState

dir' = dir 0  { lift: UFT I dir( lift) = down  a
- i  3J: FLOOR •  ( / <  Jloorjon {lift) a  

[ f e  r e q s _ d n v f  e reqsjup  v 
J e  r e q s jn jift {lift)))

• lift holding)

Jloorjon' = Jloor_on 
reqsjdn ' = reqsjdn  
reqsjup ' = reqsjup  
r e q s jn jiftf = re q s jn jift

The HoldUp action can be specified in a veiy similar mirror-image form, and 
for reasons of brevity is not given here.

The R eqlnLift action

For a request to be made from within a lift we simply specify that a pair of 
inputs must exist: a floor number and a lift number. The lift must also not 
be out of service. The floopiumber is then added to the function req sjn jift: 
for that lift.



e schema that specifies ReqlnU ft is the following one.

 R eq ln U ft____________________________

AU ftState
reqs? : F(UFTxFLOOR)

req sjin jift! = r e q s jn jif t  0
{ I : LIFT | le  dom reqs? a  dir ( I )*  out 

• I H  (r e q s jn jift (I) u  ran ( reqs?))}
dir' = dir
Jloorjon' = jloorjon  
reqsjdn ' = reqs_dn 
reqsjup ' = reqsjup

e ReqUp and ReqD ow n  actions

ese actions are even more straightforward than ReqlnU ft All that is 
quired is that an input of a floor number exists. If that is the case, the floor 
liber is added to the requests to go down in ReqDown or added to the 

quests to go up in ReqUp. The actions are very similar, so only ReqDown 
given here.

---------  ReqD own----------------------------------------------

AU ftState
Jloors?: IP ( FLOOR)

reqsjdn! -  reqsjdn  u
{ /:  FLOOR I / e  Jloors? a /*  0}

dir' = dir
Jloorjon' = jloorjon- 
reqsjup' = reqsjup  
r e q s jn jift!  = r e q s jn jif t

ie first of the schema predicates requires th at/*  0. This is because there 
no down button on the ground floor. Similarly in ReqUp,/ *  m  ensures an 

p request cannot be made from the top floor.

single request action, dealing with all requests, can now be formed as 
llows.

Reqs = ReqlnU ft %RBfDown % ReqUp

V



The Stopx actions

There are six cases we need to consider that describe lifts servicing floors.

• Stop1 - servicing floor requests made from within lifts

• Stop2 - servicing down requests whilst travelling 
downwards

• Stop3 - servicing up requests whilst travelling upwards

• Stop4 - servicing down requests whilst travelling upwards 
(this caters for the top floor)

• Stop5 - servicing up requests whilst travelling downwards 
(this caters for the ground floor)

• Stop6 - servicing floors by holding lifts where there is a 
request down and/or a request up on that floor.

1. The Stop^^ action

In this first case, of lifts servicing a floor request made froin within the lift, the 
conditions that must be satisfied are

♦ the lift is not out of service

• there is a request within the lift for the floor on which the 
lift is

If these are satisfied then it is assumed that the floor is serviced. The request 
is removed from the set of requests for that lift. The schema for Stop1 is as 
follows.

______ Stopl ___________________________________

AU ftState

req sjin jift1 = r e q s jn jif t & {lift : LIFT I 
dir ( lift) * out a
Jloorjon ( lift) e r e q s jn jif t( lift)
• lift req sjin jift {lift) \  {Jloorjon {lift)})

d if  = dir
Jloorjon' = Jloorjon 
reqsjdn ' = reqsjdrT  
reqsjup ' = reqsjup



The Stop3 action

the Stop2 case, of lifts servicing down requests whilst travelling 
nwards, the conditions to be satisfied by a lift are

• the lift is travelling downwards

• there is a down request on the floor at which the lift is

iese conditions are satisfied then the floor will be serviced. The request 
removed from the set of down requests.

--------- Stop2 -----------------------------------------------------

AU ftState

reqsjdn' = reqsjdn \  {lift : LIFT I 
dir ( lift) = dow n a
Jloorjon ( lift) e reqsjdn  • Jloorjon {lift)}

dir' = dir
Jloorjon' =jloorjon  
reqsjup' = req sjjp  
req sjtn jiflf = re q s jin jift

The Stop3 action

Is is the opposite of Stop2. A lift’s direction must be upwards instead of 
wnwards, and the request is to go up rather than down. For brevity we do 
t give the specification of the action here.

The Stop4 action

e Stop4 action, of lifts servicing down requests whilst travelling upwards,, 
a little more involved. The conditions to be satisfied by each lift are that

• the lift is travelling upwards

• there is a request to go downwards on the floor at which: 
the lift is

•  there are no requests within the lift for a  higher floor

• there are no requests up which are on or above the floor

• there are no requests down above the floor



If these hold then the floor is serviced and the request removed. Lifts are set 
to a holding position to allow them to change direction.

------------------- Stop4-------------------------------------------------------------------------------

ALiftState

reqsjdrC = req sjd n  \  { l i f t : LIFT | diriUft) = up a  floor_on(lif£j e req sjd n  a  
-i 3f :  FLOOR • ( ( />  floor_on(lift) a  ( / e  reqs_in_lift{lift) v 

/ e reqsjdn)) v ( / > Jloor_on {lift) a / g reqs_up))
• jloor_on{lift)}

dir' = dir © { lift: LIFT | dir{lift) = up a  Jloor_on(lift) e reqs_dn  a

- ,3 / :  FLOOR • ( ( / >  Jloor_on(lift) a  ( / e  reqs_in_lift(liff) v 
/ e reqs_dn)) v ( / > Jloor_on (lift) a / g reqs_up))
• lift holding}

floorjon ' = floorjon  
reqs_up' = reqs_jip 
reqs_in_lift' = r e q s jn j i f t

5. The Stops action

The Sfops action is the “mirror image" of StopA. Again, for reasons of brevity, 
we do not specify this action here.

6. The Stop6 action

Lastly, the Stop6 action is more complicated since it must cater for requests 
up and/or requests down.

A holding lift can service an up or down request on its floor. Where both 
requests exist, the down request is chosen if the lift is nearer to the bottom 
than the top, whilst the up request is chosen if it is nearer the top.

The necessary conditions are that for a holding lift to service a down 
request either there is no up request on the same floor, or there is. also an 
up request but the floor is on or below halfway. This halfway constraint 
will be incorporated into the specification of Stop6 by requiring that 
2*Jloor__onflifI) < t t l

To service an up request there must either be no down request or there is 
also a down request but the floor is above halfway. This halfway constraint 
will be incorporated by requiring that 2*floor_on{lift) > m.

The appropriate specification of Stop6, that encapsulates these conditions, 
and contains the appropriate system updates may be written as follows.

7 S ~



 Stop6

ALiftState

reqsjdn ' = reqs_dn \  [lift : LIFT I dir ( lift)  = holding a
((Jloor_on (lift) e reqs_dn a  Jloorjon (lift) £ req sju p ) v 
((Jloorjon ( lift) e  ( reqs_dn n  req sju p )) a  
2*Jloorjon (lift) <m)) • Jloorjon ( lift))

reqsjup' = reqsjup \  [lift : LIFT I dir ( lift)  = holding a
((Jloor_on (lift) e reqsjup  a  Jloor__on (lift) e req sjd n ) v 
(Jloor_on ( l i f t )e ( reqs_up n  re q sjd n )) a  
2*jloor_on (lift)> m)) • jloorjon  ( lift))

chi' = dir
reqsJnJiJL  = re q s jn jift

Jloorjon' = Jloorjon

of the above six stopping actions can be combined in one Stop action 
ing schema disjunction and schema composition as follows.

Stop = Stopl 5 (Stop2 v Stop3 v Sfop4 v  Stop5 v StopJ

hema composition is used following Stop1 because postconditions 
volving re q s jn _ lijt\ req sjd n ’ and reqs_up' would clash if a lift 

lultaneously serviced a floor request from within the lift and a request 
ade on a floor.

e OutOJService and BacklnService actions

ese two simple actions complete the action set. They both require that an 
put of a lift exists. Both schemas corresponding to these actions are given 
low.

ote that when a lift goes out of service, any requests that have been made 
thin the lift are lost.

ts that have been out of service are brought back into service via the 
acklnService action.



 OutOJService

AU fiState 
lifts?: P(LIFT)

dir' -  dir®  { lifts? *-»out ) 
reqsjdn' = reqsjdn  
reqsjup ' = reqsjup  

ftoorjori = Jloorjon
req sjin jiftf = r e q s jtn jift0  [lift: LIFT | 3 I ? = lift

•lift *-> 0 }

 BacklnService

ALiftState 
lifts?: P(LIFT)

dû  = dir ffi {liffc: LIFT |
li/te li/is?a dir ( lift) = out 
• lift: holding}

Jloorjon.' = Jloorjon 
reqsjup ' = reqsjup  
reqsjdn ' = reqsjdn  
reqs_inJifH = r e q s jn jif t

Lifts that are put back into service are therefore set to a holding position.

The Complete System

A single discrete step can now be formed as follows.

Step  = Reqs 5 Stop  § R eqs $ HoldDown $ R eqs §
HoldUp § Reqs § Startdown § Reqs § Startup  §
Reqs § MoveDown $ .Reqs § MoveUp $ Reqs § 
OutOJService $ Reqs $ BacklnService

The Reqs action is used a,t_every opportunity to try to simulate the fact that 
requests can be made at any time.



ally, let us assume that the system has a fixed life span in terms of a  
mber of steps. If we define k  : W v  such that k  is the life span of the 
tern, we can define the complete system by writing

Lift = InitState § Stepk 

‘s completes the specification of the lift system.

ritten by Simon Andrews, Aug 1990, Oct 1990, Nov 1990, May 1991.
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Case Study No. 16

Learning con trac ts  

Simon Andrews

School o f  Engineering Information Technology 

Sheffield Haiiam University

Characteristics of the 
Teaching & Learning 
•Strategy

The Problems Tackled Transferable Skills and 
Competences Developed

Project ✓ Increasing group size Initiative
Laboratory Different Student 

ability levels
V

Independence
Fieldwork Teamwork ✓
Feedback to Student n/ Non-specialist subject Management/leadership
Independent Study Part-time student Time Management v /
Ownership v / Relevance/realism v / Planning and Organising
CAL Teaching overload Written Communication > /
Group/Teamwork Staff assessment 

overload
Oral Communication

Written/Presentation v / Finding information
Software Presentation v ' Student assessment 

overload
Data analysis

Poster Presentation Decision making v /
Video Presentation Financial resources Information Technology v /
External Links Human resources Problem solving
Peer/self assessment Physical resources
Flexible Tutorials Quality of contact time ✓
Team Teaching Collusion in Coursework
Self-heb erouos Validitv of Coursework
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Authors:

Department:

Institution:
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Learning contracts
Simon Andrews 
School of Engineering Information Technology 
Sheffield Hallam University

Rationale

It has long been noted (1) that traditional mathematics courses do little to help the student 
acquire the wider transferable skills now needed by employers (see also 2, 3) - skills such as 
communication and negotiation, problem formulation, team work, and meeting deadlines. The use 
of learning contracts in the teaching of mathematics is one method that enables such skills to be 
developed and nurtured.

In industry contracts are drawn up for several good reasons. A contract, once negotiated, is afonnai 
statement of what is to be delivered by the contractor, and an important reference to both contractor 
and contractee during the lifetime of the contract A contract allows a complex task to be broken 
down into well defined stages with expected completion dates and a framework within which 
progress can be monitored and assessed.

In Higher Education these self same benefits are equally relevant to learning via project work, 
and especially so in the context of acquiring mathematical modelling skills through mini-projects 
or casestudies. A contract to leam pinpoints the purpose and aims of a project A contract is a 
formal agreement encouraging responsibility within the student - the project is taken more 
seriously by the student A structured contract gives the student a clear step-by-step approach to 
achieving a goal and stages breakdown a complex projectinto more easily managed tasks with fixed 
deadlines to meet and with clearly defined deliverables at each stage.

Negotiation of the details of the learning contract allows the student greater participation. If the 
student is allowed to determine, to some extent, the content that is needed to fulfil the learning 
aims of a project, then the student will be better motivated. The student should be given some say 
in the chosen vehicle or framework: for learning, especially if a particular interest of a student is 
suitable around which to build a contract

Having student input into the drawing up of a contract, in choosing a system to model, in deciding 
on a set of tasks to undertake (where choices are available), and in negotiating weightings for the 
tasks for assessment purposes, can imbue the student with a strong sense of ownership of the

Innovations in mathematics teaching SEDA Paper 87



work to be undertaken. Student ownership should be intrinsic in the use of learning contracts; 
it is a powerful motivational force encouraging work of value and quality.

Description

Learning contracts are not new and have been used for several years on business studies courses. 
Their use in the teaching of mathematics, however, is less widespread. At Sheffield Hallam 
University learning contracts are used in the teaching of formal methods on the School of 
Engineering Information Technology’s Masters programme inEngineering Information Technology 
(4). Formal methods are mathematically-based methods for developing software and concern 
the use of discrete mathematics and first-orderpredicate logic in the modelling of user requirements 
for software systems. Formalmethods arenow taught on a growing number of mathematics degrees 
in the UK, and an introduction to the use of discrete mathematics in software development can be 
found in several recent texts on the subject (5,6,7,8).

After a period of conventional lecture, tutorial and laboratory work on formal methods, the MSc 
students at Sheffield Hallam are in a position to undertake a substantial mini-project or casestudy, 
either individually or in groups (this largely depends on class size) and are introduced to the idea 
of using a learning contract as a vehicle for undertaking and being assessed in a case study.

The lecturer, acting as contractee, negotiates a learning contract with each group or individual 
using a contract proforma. The proforma has a section for the casestudy title, the aims of the learning 
contract, a work plan and schedule for casestudy stages and tasks, a flexibility weighting (see later), 
special requirements and signatures of contractee and contractor/s. Although suggestions 
of suitable systems to model are given, the contractors are encouraged to suggest systems 
that they might be interested in modelling. They may be familiar, for example, with a particular 
system - part-time students are often working in a technical capacity and are usually keen to 
apply formal methods to their field. Examples of systems suggested by contractors and used 
successfully as the problem domain of learning contracts are:

• An Automated Teller Machine;

• An Electronic Components Thermal Evaluation System;

• An Intelligent Multi-storey Car Park;

• A Unix Style Process Scheduler,

• A Motorist’s Route Planner,

• A British Railway’s Rail Failure Database;

• A Warehouse Stock Control System.
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The stages of the work plan are then agreed between contractee and contractor. The first two stages 
are invariably the same: the first being the writing of a requirements document for the system 
chosen, typically consisting of an informal description of the system and the data structures (and 
operations to be performed on or by the system and will often contain diagrammatical representation 
such as flow charts and data flow diagrams; the second being the production of a documented 
abstract formal specification (mathematical model) of the functionality of the system. The contractor 
is then more or less free to pick and choose from various tasks that can be performed once an 
abstract formal specification has been formulated. These are to:

• refine the abstract specification to a more concrete specification (in fact, there is scope 
for two or even more stages of refinement);

• construct proofs of consistency within the formal specification;

• animate the specification (aform ofrapid prototyping where the formal, mathematical 
structure of the specification remains intact), using a suitable AI language (PROLOG, 
CRYSTAL and KAPPA PC are examples);

• implement the formal specification in a target language such as C.

Typically the contractor is encouraged to select one or two of these additional tasks and, if two 
(or more) are chosen, it may be suggested to the contractor that only a part of the formal 
specification need be taken forward. If an animation or implementation is to be produced, then 
the contractor will be required to demonstrate it to the contractee as part of the assessment i

A mark foreach stage is agreed upon along with the flexibility weighting. The flexibility weighting 
(typically 10-15%) is used by the contractor, in agreement with the contractee, to adjust the 
assessment weightings of the stages once the contract has been fulfilled. This adjustment may be 
acceptable if unforeseen problems or impracticalities arise at some stage, or if the contractor has 
been over ambitious (although ambition is not discouraged).

The final stage of the contract will always be to produce and submit a well documented report 
for assessment. A schedule (a due date for the completion of each stage of the contract) is also agreed 
between contractor and contractee. Special requirements, suchas access to a particular programming 
language or computer workstation, are noted in the contract.

The aims of the contract can now be written into the contract in terms of the tasks to be undertaken, 
although the aims are inherently the same in each contract. Typically, the aims might be:

“To gain experience of formal specification and the techniques required to progress from 
a set of informal system requirements through an abstractformalspecification to an animation 
of the specification ”

Because of the use of a flexibility weighting the individual stages are assessed only after the 
casestudy report is handed in but adherence to the schedule can be taken into account The stages 
are assessed with consideration given to the completeness of each stage and the contractor’s ability 
to demonstrate that learning has taken place.
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A workshop regime is used throughout the contract period, the contractee typically spending 
half an hour per week with each contractor. During this time the contractor plays two additional 
roles:

• that of the contractor of the system being developed, in discussing system 
requirements, constraints and boundaries;

• that of a mathematics consultant in formal specification, refinement and proof.

Evaluation

Learning contracts have, on the whole, proved to be very successful. The contractors work very 
hard to conform to the work plan and schedule that they have agreed. The quality of the woric and 
the reports produced is consistently high and the quantity of work completed can be surprisingly 
large.

High flyers, given such a free hand in problem formulation, can produce outstanding pieces 
of work. It has been possible, to some extent, to tailor contracts to ability levels with, for example, 
less mathematically experienced students working on less complex or ambitious systems. The 
size and complexity of the system developed has then had some bearing on assessment.

Feedback from students has been universally positive. There have been comments like:

. "It makes you feel you are doing something worthwhile and important”,
“/  like being in control'” and
4"Without a schedule to work to I would never have got this much done.,t

The students, in general, have worked seriously and enthusiastically and have made full and 
energetic use of their consultation periods in workshops. Several have produced systems that they 
feel will be useful or even have commercial possibilities! Many develop skills and an interest 
in the field to such an extent that they wish to pursue the subject further, either academically in 
projects or even research, or in terms of a career.

The main problem, from the contractor’s point of view, has been undertaking an over ambitious 
contract, but this has, on the whole, been circumvented by accepting that a stage (or two) of the 
contract be only partially completed (a refinement of part of the abstract specification, for 
example) and by the introduction of a flexibility weighting. From the contractee’s point of 
view, supervising what appears to be a large number of student projects requires a deal of effort 
and concentration. The contractee will have to become familiar, almost instantly, with a variety 
of systems that students wish to model. During workshops the contractee may feel rather like 
achess master playing many games simultaneously! Withmostclassesitisbetterthatstudents work 
in groups - only if the class is very small (say, less than ten students) should individual contracts 
be attempted. Even with seven or eight contracts it has been found that, without a second 
“consultant” on hand, four hours per week is barely enough time to see each group.

Innovations in mathematics teaching ,  , SEDA Paper 87



As we have stated, learning contracts are not new. Since their use on mathematics and 
modelling courses has been limited, it was felt worthwhile to describe here the success at Sheffield 
in employing contracts as a means of learning mathematical concepts and techniques and of 
acquiring wider, transferable skills. Whilst the application of mathematical modelling to software 
engineering has been emphasised, it should be noted that learning contracts could equally well 
be applied to any modelling application or area.
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A systematic method of arriving at the state schema of a Z specification is presented. 
The OPERATOR method, as it is known, is based on many years' experience of 
teaching Z and has been designed to ease students through the problems they face 
identifying system state variables and modelling them in Z. The method draws on 
well-proven ideas of structured methods but is essentially free standing. The method, 
in its simplest form, has been tested on students and we report on our experience of 
using the method in the classroom. We discuss the good points and limitations of the 
method and show how the method may be enhanced by means of an accompanying 
diagramming notation and how it may be extended to address system complexify. 
Future related research areas are identified.

Introduction

ougk most university computing courses now include a study of the Z specification 
age, the teaching of Z is still not without its problems. Students not only find difficulties 

’ tg to grips with the notation and underpinning mathematics, but experience enormous 
■■lems when they first come to use the notation to construct a system specification from 

requirements. Students find it hard coping with abstraction and identifying the particular 
Lbles that make up the system state. The act of getting started seems to be the problem 
once through this bottleneck (Norcliffe, 1993), and having produced the state schema, 

-ents find it much easier to specify the associated operation and error-handling schemas, 
usually go on to complete the specification with few further problems. They may not 
sdiately specify the operations correctly, but at least seem more comfortable with this part 

* -e process - probably because it is more mechanical and there is less need of abstraction.

_jl the specific aim of easing students through this abstraction bottleneck, a simple method 
been developed at Sheffield Hallam University to enable students to create the system 

~e schema in a systematic way. The OPERATOR method, as it is known, was developed 
z“ntly by the authors and is based on many years’ experience of teaching Z. The method 
~“vs on well-proven ideas of structured methods (Hares, 1990; Yourdon, 1989), but does 

require a frill-blown structured approach to be carried out first. The method is essentially 
standing and is therefore different to the formal and structured methods integration 

roaches developed recently (Semmens & Allen, 1991; Randell, 1991; Polacketal, 1993). 
e method, in its simplest form has been tried out on second year degree students at 
effield, and is presently the subject of ongoing research.
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*s paper we describe in detail how the OPERATOR method works. Its use in developing 
schemas is illustrated in the next two sections where a simple security system and 
‘ngsyriemare considered. In Section 4 we comment briefly on our experience o f using 

method with our second year students and list what we feel are the good points of the 
od and its limitations. We also look at ways in which the limitations might be removed 

in Section 5 we show how the OPERATOR approach can be enhanced by using ample 
sms In Section 6 we consider ways o f addressing system complexity and show how the 
od, and its graphical front end, can be extended to tackle the specification of complex 

ems. Section 7 is a conclusion.

The OPERATOR method: a simple example

see how the OPERATOR method works we use it to produce the state schema needed in 
specification of a simple security system Assume the system we are to specify has the 
owing user requirements.

The system is to monitor the whereabouts of staff in an organisation. The 
organisation is located in its own building and, as staff check themselves in and 
out of the building, the system notes whether they are in or out as appropriate.
The system can be queried at any time to see who is in or out, and must cope 
with staff joining and leaving the organistion.

e word OPERATOR is an acronym with the letters standing for Objects, Properties, 
tides, Relationships, Assemble, Trim, Other and Repeat. Step 1 of the method therefore 
gins by identifying the objects that make up the system In our example obvious candidates 
r objects are the staff who work in the building. Whilst it is not imperative that all objects 
identified at this stage - indeed, the later identification of objects is an integral part of the 

ethod - it is worth noting that there are no other obvious objects making up the system that 
d concern us. It is worth noting, too, that we need not be overly strict about what 

nstitutes an object other than that objects should be nouns and have some concrete 
’stance (Sully, 1993).

ep 2 o f the method requires us to identify the properties o f these objects. At this stage it is 
>ortant to note that we are looking only for simple has/have properties. Other relationships 
; established during step 4 of the method. From the requirements o f our system it is clear 
t staff have whereabouts, and it is this property that the system must monitor. Staff in the 

rganisation have no other properties o f significance and thus we can proceed to step 3 and 
entify the entities making up the system

ie entities o f the OPERATOR method are the nouns identified in steps 1 and 2. The entities 
e thus the staff and their whereabouts. As part of this third step we must also describe the 
tides in terms of the Z notation. Baric types are therefore needed and we parachute in the 
pe set STAFFJD and introduce the enumerated type INjOUT containing the elements in 
d out. The system entities staff and whereabouts are thus declared as follows:

staff : RSTAFF_ID
whereabouts : PIN_OUT
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stem entities staff and whereabouts are sets of STAFF'JD and IN_OUT values 
ively, thus explaining the use o f the powerset symbol in the declarations. The variables 

and whereabouts are possible state variables; additional state variables are identified via 
of the method, where relationships between system entities are established.

tionships between entities are identified in a systematic way using the concept of the 
/entity matrix shown below. At this stage the aim is to identify binary relations only, 

e complicated relationships are introduced via the data invariant of the state schema once 
te variables have been identified.

staff whereabouts
staff location of

whereabouts located -

ch cell of the matrix are put names o f relevant binary relations between the pairs of 
*es involved. The assumption is that the entity in the row of the matrix is the domain of 
elation, and the entity in the column is the range. Where system entities are not sets but 
e elements, they should be regarded as singleton sets if binary relations involving them are 
ed. In practice this seldom happens. Thus, locationjrf is a binary relation between staff 
their whereabouts and, since at any time staff have unique locations, then the binary 
tion is actually a partial function with the following declaration:

location_of STAFF ID -*IN  OUT

binary relation located is not a function as several staff may be in or out of the building at 
onetime. Its declaration is this:

located IN OUT** STAFF ID

should note that the remaining cells o f the matrix are empty because no relevant relations 
; betwen the entities concerned.

1 5 of the method is to assemble the list o f candidate state variables. This list contains the 
em entities together with the binary relations identified. The assembled list of variables 

d their declarations is thus as follows:

staff 
whereabouts 

location o f 
located

P STAFF J D  
PINjOUT
STAFF J D  -** INJDUT 
IN OUT**STAFF ID

is more than likely that this list is longer than it need be and, so, in step 6 of the method we
* n it down. The trimming is achieved systematically by getting rid of redundant 
ormation. We can usefully note that staff is the same as dom location_of. Thus, if we

* h we need not include staff in the state schema provided we include the partial function 
ationjof. Similarly, we need not include the set whereabouts because this is the same as 
location_of Finally, we need not include located because this is just the inverse of 

ation of
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ry, then, all the information we might need is contained withm the location_of function. 
rer, it may be sensible to include staff in the abstract specification even though the 
ation is redundant, so that a direct record of the users o f the building is ready to hand 

edfication purposes. The level o f redudant information is really a matter of taste, 
y it should not be great, but at the same time it is important to ensure that specifications 
idable and easily understood (Gravell, 1991; Spivey, 1992). The trimmed list of state 

bles is thus:

staff : P STAFF J D
location_of : STAFF_ID INjOUT

remaining 2 steps of the method require us to check whether there are other objects o f 
, and to repeat the process with them included. Fortunately there are no other objects 

Lerefore no need to repeat the process. Repeating the process is in principle not difficult, 
should be taken to check for additional relationships between new and existing entities 
g the repeat step 4.

culmination o f the OPERATOR method is thus the listing of state variables given above, 
state variables and the properties which they possess can now be set down in the system 

e schema:

  System ___________________

staff : P STAFF J D
location_pf : STAFF J D  -f» INJDUT

staff = dom location_of

e OPERATOR method will not determine the data invariant However, having identified 
state variables, the data invariant can be determined from knowledge about the system and 
Z constructs used to model the system variables.

om hereon, the rest o f the system specification can be established. This will include 
ecifying state changing operations such as checking in and checking out of the building by 

 ̂adding new staff members and removing staff from the system when, for example, they 
re the organisation. Querying operations, which do not change the state, can similarly be 

ecified, and might include sudi operations as querying the system to see who is in or out o f 
e building.
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notker simple example

emonstrate the applicability o f the OPERATOR method we consider, albeit briefly this 
, another example - that o f a simple banking system. The requirements of the system, we 
le, are the following.

The balances and overdraft limits of accounts at a bank are to be monitored by 
the system. Account holders can make deposits and withdrawals and, if they 
have sufficient funds, can change their overdraft limits. As well as furnishing 
information on balances and overdraft limits, the system should cope with 
opening and dosing accounts.

lication o f the OPERATOR method, with brief annotations, is as follows.

jects: accounts, holders

perties: accounts have balances
accounts have od limits

tities: holders 
accounts 
balances 
od limits

P HOLDER J D
P a c c j o
PZ
PZ

e we should note that the type set Z, representing the integers, is being used to model the 
nces and overdraft limits (in pence) of individual accounts. Other types used have their 
ious meanings

elationships: holders accounts balances od limits
holders - account o f - -

accounts holder o f - balance o f od limit o f
balances - - - -
od limits - - - -

semble: holders PHOLDERJD
accounts PAC C JO
balances PZ
odjim its PZ

account_of HOLDERJD ACCJIO
holder_of ACCJIO  <-> HOLDERJD

balance_of ACCJIO  -4* Z
o d l i m i t o f AC J O - 4»Z

ote that the concept of joint accounts is being modelled by declaring holder_of to be a binary 
elation and not a partial function. By declaring account_of to be a partial fimctio n, the 
ssumption is that holders can only hold one account.
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holders 
account_of 
balance_of 
od jim it_o f

PHOLDERJD  
HOLDERJD  -+» ACCJIO  
A C C JO  -+> Z 
AC NO -+► Z

iming the list we have noted that accounts is dom balance_of that balances is ran
'.ejof that odjim its is ran od l im ito f ,  and that holder_of is the inverse of the function
nt_of

r: There are no other objects o f note,

eat: This step is unnecessary.

state schema, with its appropriate data invariant is as follows: 

  Bank _________________________________

holders : PHOLDERJD 
account_of : HOLDERJD  -+»A C C JO  
balance_of : A C C JO  -+» Z 
qdJim it_of : A C C J O -+»Z

holders — dom account_of 
ran account_of — dom balance_of 
dom balance_of — dom o d jim itjo f 
Vjc : dom balance_of •
{balance_of (x) > odJim it_of (x) 
a  odJim it_of (x) < O)K

I____________________________________________________  -

te that the data invariant is reflecting the operating assumptions of a normal bank - namely 
t all accounts have balances and overdraft limits, that overdraft limits should be not 

eded, and that overdrafts represent negative amount of cash. Once again, to complete the 
ification, operations that change the state o f the system, and those which only query the 
e, would now be specified.

Using the method: its good points and its limitations

e method was first tested on second year Computing Mathematics degree students at 
effield Hallam University. Students had already been exposed to discrete mathematics and 

e Z notation, and were familiar with reading Z specifications. They had, for example, 
died the video-based Z Readers course produced at Sheffield (Cooper et al, 1992) and 
ew how specifications were structured. They had not, however, had any experience o f 
‘ting specifications and the OPERATOR method was the first systematic approach they had 
ed to develop Z specifications.

^  f
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*ng in small groups students had to specify a ample library system. An extract from the 
user requirements document is as follows:

In order to monitor who the users of the library are, which copies of books they 
have on loan, and which copies are available for borrowing, a simple computer- 
based system is to be developed. Any copy of a book that has been borrowed 
will have a return date stamped inside it and this will be noted by the system.
The system must also log the acquisition of new copies of books and note their 
removal, and should enable new users to join the library and existing users to 
leave.

marks for the complete (non-robust) specification were 50, of which 10 were available for 
of the OPERATOR method to determine the list o f state variables and their declarations, 
average mark for use o f the OPERATOR method was 7.41 with a standard deviation of 
. The marks ranged from 4 to 9 and there were 17 groups of students. Most succeeded 
lag the method well and produced a variety of consistent specifications. Most lists of 
variables were variations on the following:

users 
copies 
books 

borrower_of 
bookjyf 

sta tu sj)f 
duedate_of

P USERJD 
PCOPYJD 
PBOOK
COPY J D  -*  USERJD 
COPY J D  -f> BOOK 
COPY J D  -+* STATUS 
COPY ID-*DATE

eral groups had been harsher with their trimming than others and had removed copies and 
ks. Others had introduced the concept o f library cards and additional information about 
ks such as their titles and authors. A  common omission was the status_of function which 
*cates whether a book is available for borrowing or not. Since its inclusion in the 
ification is not essential, the omission was not penalised.

summary students found the method easy to understand and simple to use. The method had 
l demonstrated using the examples considered in Sectons 2 and 3, and students were able 

appfy the ideas readily to develop the simple library system. Many of the specifications 
ed out similar as a result o f applying the method, although there had bear minimal copying 

ideas by groups. Whether this high level o f reproducibility is a good feature o f the method 
debatable. The approach certainly steers the specifier towards the use of functions and 

tions when perhaps simpler structures might have bear used. The security system, for 
mple, is easily developed in terms o f just sets (Norcliffe & Slater, 1991; Cooper et al,

92). Students commented that they found the method enabled them to construct 
educations in a systematic way. In general they found this helpful and were able to have 
sible discussions about the system based around the approach being adopted.

though the comments of the students were positive in the main, the method does have its 
itations. The approach, though systematic, is still very abstract It is interesting to note 

at some students were drawing informal diagrams to help them appfy the method. Given 
at . the success of structured methods such as SSADM, Jackson, and Yourdon seem to hinge 
the use of accompanying diagrams, the authors deemed it necessary that jhe OPERTOR
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d should also have a diagramming notation. In the next section we therefore show 
* ly how the method can be enhanced through the use of diagrams.

11 as being abstract, the approach as outlined so far does not really address system 
lexity. In discussions the students commented that they felt the method could soon 
e unworkable if  the number o f entities became large. Drawing up a large entity/entity 
would be difficult, for example, and ensuring that the data invariant o f a large state 
a was correct would also not be easy. In Section 6 we therefore show how the 
ATOR method, and its diagramming notation, can be extended to address system 

lexity and to embrace structural considerations such as partitioning a system into several 
stems.

nhancing the method: a graphical front end

graphical notation described in this section has been developed to accompany the method 
o facilitate the O, P and E stages. Its use is therefore designed to help identify the objects 

entities that make up the system being specified. The notation is as follows:

le system at the top level is represented by an appropriate descriptor written inside a 
ectangular box as shown:

System

convention is that the first letter o f the discriptor is an upper case letter. If we were 
eloping a banking system we may well expect to see Bank written inside the box nstead of
em.

Objects and other system entities, related by the has/have property, are also represented by 
names written inside rectangular boxes:

Staff

convention with system entities (objects are also entities) is that their names are written in 
er case throughout

Each of the boxes representing an entity has the set, to which the entity belongs, written 
alongside in Z, eg:

P STAFF J D

e convention here is that types and other sets used are written in upper case letters 
oughout, and are not contained inside boxes.

The hierarchical relationships between the above are represented by arrows of appropriate
kinds:

 ► links the system at the top level to objects o f which it is comprised.
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— >  lin k s objects to entities, and entities to their associated entities as appropriate.
The arrow characterises the has/have property.

 lin k s entities (including those identified as objects) to the sets in Z to which
they belong.

ow how the notation works, let us draw the diagrams that represent the security,
* ig and library systems considered earlier. Figure 1 shows the simple security system.

System

1

VSTAFF ID whereabouts

A
PIN OUT

Figure 1 - Graphical representation 
of the simple security system

e diagram tells us that the system state at the highest level is called System. The objects in 
system are staffwho have whereabouts. The system entities are therefore staff and 
reabouts, and these are possible state variables. The variable staff is a member of the 

nstruted type set PSTAFFID, and whereabouts belong to PINjDUT.

■ ire 2 shows the banking system and Figure 3 gives one interpretation of the simple library 
;em.
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| Bank 1

holders

jk:

V HOLDER ID

k '

accounts

V

VACC NO balances

k y

od limits

PZ PZ

Figure 2: Graphical representation 
of the banking system

Library

users

ER ID
k '

P COPY ID

PBOOK PSTATUS

copies

books dateslocation

VDATE

Figure 3: Graphical representation 
of the library system

pefiilly the diagrams speak for themselves. It should be noted that different diagrams may 
11 lead to the same Z specification. In Figure 2, for example, it is assumed that holders and 
ounts are both objects. There is nothing wrong with a diagram that regards just holders as 

jects and accounts as associated entities - in the sense that account holders have bank 
junts. Since holders, accounts, balances and odjim its emerge as the system entities 
er way round, the odds are that the resulting Z specifications o f the state will be the same, 

e prime purpose of the diagramming notation is to assist the specifier to identify system 
tifies, and this we feel it does. The strength of the notation is that it is graphical and 
erarchical, and readily enables a picture of the system state to be created showing explicitly 
e entities that are part o f it.
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ddressing complexity

s a method can be used to develop large systems, and therefore cope with complexity, it 
ty no method at alL In this section we indicate briefly how the method and the 

*ated graphical notation can be extended to cope with the specification of complex 
is. The ideas in this section are relatively new and are the subject of ongoing rsearch. 

y issues have yet to be resolved and the applicability and effectiveness of what is being 
ested have yet to be tested and evaluated.

address complexity by partitioning a system into appropriate subsystems and applying the 
LATOR method to each subsystem in a "divide and conquer" fashion. To do this the 

amming notation requires a new kind of rectangular box and a new kind of arrow. The 
kind of box is one containing a subsystem name. Thus, in the case of the library system, 

were felt that a partitioning of the library into three subsystems, namely Users, Copies and 
?, was needed, then a typical subsystem box would be the following:

Users

new arrow that is needed is the following one:

 >

ch links a system to its subsystems.

see how the ideas can be applied, let us revisit the library and think of it not as a monolithic 
em, with no real structure, but comprising the three subsystems proposed above. This 

of the library is illustrated diagrammatically in Figure 4, where the extended subsystem 
tionisused.

users

PUSER ID PCOPY ID

Library

CopiesUsers

copies

Y
books

t«i

PBOOK

1 Loans

borrowers

V
locations I PUSER ID

V
PSTATUS

bcopies

dates

"A
PCOPY ID

PDATE

Figure 4: Partitioned view of 
the library system

-  r
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PERATOR method can now be used to develop substate schemas to specify the states 
Users, Copies and Loam  subsystems. The state schema of the library is then the 
l which includes these three substate schemas. Application of the OPERATOR 

d, as described earlier, leads to the following Users, Copies and Loam  substate 
is. Their derivation is straightforward and they are presented without explanation. In 
ms subsystem note that new variables borrowers and bcopies (borrowed copies) have 

introduced.

  Users__________ ____________________________________

users : P USERJD

 C opies________________

copies : P COPYJD
books : PBOOK
book_of : COPYJD -*  BOOK
status_of: COPYID -*  STATUS

copies — dom book_of
dom book_of = dom status_of 
books = ran bookjof

 Loam  ____________________

borrowers : P USERJD  
bdopies : PCOFYJD  
borrowerof: COPYJD -*  USERJD 
duedate_of : COPYJD-*DATE

borrowers — ran borrower_of 
bcopies — dom borrower_of 
dom borrower_of — dom duedate_of

ese three schemas can now be included into one Library schema to create the state schema 
the library system The data invariant serves to relate all the variables involved defining, in 
icular, the status of copies of books that have been borrowed, and those which should be 

ailable for borrowing:
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 Library

Users
Copies
Loans

borrowers c  users 
bcopies c: copies
Vc : bcopies • status_of(c) — borrowed
Vc : copies • c g bcopies =>status_of(c) = available

ntrast, and for comparison, the state schema of the monolithic unpartitioned library 
m, again developed using the OPERATOR method, is as follows:

_______ Library ____________________________________________

users : PUSERJD  
copies : P COPYJD  
books : PBOOK
borrower_of: COPYJD  -+> USERJD 
book_of : COPYJD  -*> BOOK 
status_of: C O P Y J D S T A T U S  
duedate_of : C O P Y J D D A T E

rap borrower_of c
dom borrower_of ci copies
dom book_of — copies
ran book_of -  books
dom book_of — dom status_of
dom duedate_of — dom borrower_of
V c: dom duedate_of • status_of(c) = borrowed
V c: dom book_of • (c £ domduedate j ) f  =>status_pj{c) = available)

fore leaving this section, it is worth pointing out that simple diagrams, akin to data flow 
grams, can be drawn to help guide the construction of system operation schemas. Below 

gure 5 we sketch out a possible representation of the BorrowCopy operation in the 
titioned library system, whereby a user borrows a copy of a book

gure 5:

e diagram indicates the inputs to the BorrowCopy operation along with their associated 
es. It shows that state variables in Copies and Loans will be changed (if the operation is

-  r
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ssfhl) and that the information held in Users and Copies will be needed to check whether 
the operation will succeed.

onclusions

paper we have presented a method of arriving at the state schema of a Z specification in 
ematic way. The method, in its simplest form, was tested on students who used it in the 

lopment of a simple library system. Students found the method helpful, but felt that the 
od would soon become difficult to use with increasing system complexity. In the paper 
ve therefore shown how the method may be extended to address system complexity and 

it may be enhanced by means of an accompanying diagramming notation.

its graphical front end, and its system partitioning capability, we feel that the 
ATOR method has potentially much to offer the Z user. The method is easily 
stood and relatively easy to use. The diagramming notation encourages the specifier to 
igate key structural issues at an early state and brings in formal data modelling ideas in a 
1 way. Once the developer is happy that structural issues have been addressed, the R, A, 
and R stages of the method can be used to furnish the state schema in a systematic and 

*ent way.

e have said, the OPERATOR method is the subject of ongoing research. The approach 
rently being refined and extended to include the specification of system operations along 

* les outlined above in Section 6. The potential for embedding the method in a simple use- 
dly CASE tool is also being investigated.
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**** FUNCTION: xparajype

MakeFunction( xparatype, [],
{
ResetValue( Global:Type);
PostInputForm( "Enter name of type : ", Global:Type, name);
If ( Inslance?( GIobal:Type) Or Class?( Global:Type))
Then PostMessage( "This name has already been used.")
Else If Member?( GlobaliTypesGiven, Global:Type)

Then PostMessage( Global:Type # " is a given type.")
Else {

Makelnstance( GlobaliType, ParaTypes);
AppendToList( Global:TypesPara, GlobaliType);
PostMessage( GlobaliType #" has been parachuted into the spec.");
}; 

>);

**** FUNCTION: xdel_type 
*************************************/

MakeFunction( xdel_type, [],
{
If ( LengthList( Global:TypesPara) =  0 And LengthList( Global:TypesFree)

=  0 And LengthList( GlobaliTypesSchema )
. = 0 )

Then PostMessage( "There are no user defined types.")
Else {

GlobaliType = PostMenu( "Select type to delete", GlobaliTypesPara, 
GlobaliTypesFree, GlobaliTypesSchema,
"* CANCEL *");

If Not( GlobaliType #= "* CANCEL *")
Then If Member?( GlobaliTypesUsed, GlobaliType)

Then PostMessage( GlobaliType #" has been used in the specification.") 
Else {

If Member?( GlobaliTypesPara, GlobaliType)
Then {

Deletelnstance( GlobaliType);
RemoveFromList( GlobaliTypesPara,

GlobaliType);
PostMessage( GlobaliType #" has been deleted.");
};

>; 
>;

>);

**** FUNCTION: xcreate_state

MakeFunction( xcreate_state, [],
{
If Null?( GlobaliState)

Then {
PostInputForm( "Enter name of state schema:", GlobaliState, 

name);
If ( Class?( GlobaliState) Or Instance?( GlobaliState))

Then {

ys~



PostMessage( " The name " # GlobaliState # " has already been used."); 
ResetValue( GlobaliState);
>

Else {
MakeClass( GlobaliState, StateSchema);
PostMessage( GlobaliState #" state schema box has been created.");
};

>
Else PostMessage( "You already have a state schema.");

>);

**** FUNCTIONi xdel_state
* * * 4 : 4 :4 : 4 =  4= 4= 4= 4= 4= 4:4:4:4=  4:4:4= 4 c * * * * * * * * * * * * * * * * * /

MakeFunction( xdel_state, [],
{
If Null?( GlobaliState)
Then PostMessage( "There is no state schema")
Else If ( LengthList( GlobaliStateVars) > 0 )

Then PostMessage( "CANNOT DELETE STATE - There is a state variable") 
Else If ( Not( Null?( SelectList( GlobaliOps, op, 

opiIncState) ) )
Or Not( Null?( SelectList( GlobaliErrs, 

err, emlncState) ) )
Or Not( Null?( Globalilnit) ) )

Then PostMessage( "CANNOT DELETE STATE - 
There is a schema which includes the state" )

Else {
Global: YesNo = PostMenu( "Delete ” # GlobaliState 

# " ?", YES,
NO);

If ( Global: YesNo #= YES)
Then {

PostMessage( GlobaliState #" deleted");
DeleteClass( GlobaliState);
ResetValue( GlobaliState);
};

>;
>);

/************************************* 
**** FUNCTION: xcreate_op 
*************************************/ 

MakeFunction( xcreate_op, [],
{
xcreate_schema( O );
>);

j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

**** FUNCTION: xdel_op
4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4c 4:4= 4:4= * 4 :4 :4 :4 =  4 = 4 = : > : * * * * * /

MakeFunction( xdel_op, [],
{
If ( LengthList( GlobaliOps) =  0 )
Then PostMessage( "There are no operation schemas")
Else {

GlobaliVamame = PostMenu( "Select operation schema to delete", 
GlobaliOps, "* CANCEL *" );

&  ' [



If Not( GlobalrVamame #= "* CANCEL *")
Then {

Global: YesNo = PostMenu( ’’Delete ” # GlobalrVamame 
YES, NO);

If ( GlobalrYesNo #= YES)
Then {

PostMessage( GlobalrVamame # " deleted”);
DeleteClass( GlobalrVamame);
RemoveFromList( GlobalrOps, GlobalrVamame);
DeleteFunction( GlobalrVamame);
>;

};
};

>);

**** FUNCTION: xcreateerr 
*************************************/

MakeFunction( xcreate err, [],
{
xcreate_schema( E );
>);

**** FUNCTION: xdel_err

MakeFunction( xdel_err, [],
{
If ( LengthList( GlobalrErrs) =  0 )

Then PostMessage( ”There are no error schemas” )
Else {

GlobalrVamame = PostMenu( "Select error schema to delete",
GlobalrErrs, "* CANCEL *" );

If Not( GlobalrVamame #= "* CANCEL *”)
Then {

GlobalrYesNo = PostMenu( "Delete" # GlobalrVamame 
#"?”, YES, NO);

If ( GlobalrYesNo #= YES)
Then {

PostMessage( GlobalrVamame #" deleted");
DeleteClass( GlobalrVamame);
RemoveFromList( GlobalrErrs, GlobalrVamame);
DeleteFunction( GlobalrVamame);
>;

}; 
}; 

});
/*************************************
**** FUNCTION: xcreate rop

MakeFunction( xcreate rop, [],
{
ResetValue( GlobalrVamame);
PostInputForm( "Create Robust Op”, GlobalrVamame, "Enter name of robust op schema"); 
If ( Class?( GlobalrVamame) Or Instance?( GlobalrVamame))
Then PostMessage( "ERROR:" # GlobalrVamame #" has already been used")
Else {

>  ̂r
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SetValue( GlobalrROpsNum, GlobalrROpsNum + +1);
AppendToList( GlobalrROps, Global:Vamame);
MakeClass( GlobalrVamame, ROpSchemas);
Let [ROp GetNthElem( GlobalrROpsButs, GlobalrROpsNum )]

{
SetValue( ROp:Title, GlobalrVamame);
SetValue( ROprActior., GlobalrVamame);
Resetlmage( ROp);
ShowImage( ROp);
MakeFunction( GlobalrVamame, [ ],

{
If NULL 
Then TRUE
Else zmessage( "schema is not robust");

});
PostMessage( "Select Function from KTOOLS window, select edit then double click on " 

# GlobalrVamame);
ShowWindow( KTOOLS);
};

>;
});

**** FUNCTION; xdel_rop
♦ i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

MakeFunction( xdel_rop, [],
{.
If ( LengthList( GlobalrROps) =  0 )

Then PostMessage( "There are no robust operation schemas" )
Else {

GlobalrVamame = PostMenu( "Select robust operation schema to delete", 
GlobalrROps, "* CANCEL *");

If Not( GlobalrVamame #= "* CANCEL *" )
Then {

GlobalrYesNo = PostMenu( "Delete" # GlobalrVamame 
#"?", YES, NO);

If ( GlobalrYesNo #= YES)
Then {

DeleteClass( GlobalrVamame);
If ( GetElemPos( GlobalrROps, GlobalrVamame)

!= GlobalrROpsNum)
Then {

Let [from GetElemPos( GlobalrROps,
GlobalrVamame)]

[to GlobalrROpsNum]
{
For x From from To to 

Do {
Let [a GetNthElem( GlobalrROpsButs, 

x)]
[b GetNthElem( GlobalrROpsButs,

x + + l )J
{
SetValue( arTitle, 

brTitle);
SetValue( ar Action, 

br Action);
Resellmage( a );
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Resetlmage( b );
};

>;
};

>;
Hidelmage( GetNthElem( Global:ROpsButs, 

GlobalrROpsNum));
SetValue( GlobalrROpsNum,

GlobalrROpsNum -1 );
PostMessage( GlobalrVamame #" deleted"); 
RemoveFromList( GlobalrROps, GlobalrVamame); 
DeleteFunction( GlobalrVamame);
>; 

>;
};

>);
j  % $  $  £  £  4: % ]|c £  £  $  $  £  £  $  £  $  g  $  £  *  £  % $  £  % $  $  £  £  $  $  £  jfc +

**** FUNCTION: xcreate_schema 
*************************************/

MakeFunction( xcreate_schema, [x],
{
ResetValue( GlobalrVamame);
If (x # = 0 )
Then PostInputForm( "Create Op Schema", GlobalrVamame, "Enter op schema name") 
Else PostInputForm(" Create Error Schema", GlobalrVamame,

"Enter error schema name");
If ( Class?( GlobalrVamame) Or Instance?( GlobalrVamame))
Then PostMessage( GlobalrVamame #" has already been used")
Else {

lf (x # = 0 )
Then {

MakeClass( GlobalrVamame, OpSchemas);
AppendToList( GlobalrOps, GlobalrVamame);
>

Else {
MakeClass( GlobalrVamame, ErrSchemas);
AppendToList( GlobalrErrs, GlobalrVamame);
>;

Let [schema GlobalrVamame]
{
If ( PostMenu( schema #" includes" # GlobalrState 

#"?", YES, NO) #= YES)
Then SetValue( schemarlncState, TRUE)
Else SetValue( schemarlncState, FALSE);

If ( schemarlncState #= TRUE)
Then{

If ( PostMenu( schema #" changes state ?",
YES, NO) #= YES)

Then SetValue( schemarChngState, TRUE)
Else SetValue( schemarChngState, FALSE);

>;
If (x # = 0 )
Then {

If ( PostMenu( "Any inputs to declare for"
# schema#"?", YES, NO)

#= YES)
Then PostMultipleSelection(

-  (
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"Select input/s for " # schema, 
schema:Inputs, Global:Inputs);

If ( PostMenu( "Any ouputs to declare for "
# schema#"?", YES, NO)

#= YES )
Then PostMultipleSelection(

"Select ouput/s for " # schema, 
schema:Outputs, GlobaliOulputs);

};
If ( x#=E  )
Then xschema00( schema)
Else {

If ( LengthList( schema:Inputs)
—  0 And LengthList( schema:Outputs )
=  0 )

Then xschema00( schema)
Else If ( LengthList( schemailnputs)

== 1 And LengthList( schema: Outputs)
=  0 )

Then xschemalO( schema)
Else If ( LengthList( schemailnputs)

=  2 And LengthList( schemaiOutputs )
=  0 )

Then xschema20( schema )
Else If ( LengthList( schemailnputs)

=  3 And LengthList( schemaiOutputs ) 
=  0 )

Then xschema30( schema)
Else If ( LengthList( schemailnputs)

1 And
LengthList( schemaiOutputs)

1)
Then xschemal 1( schema)
Else xschema00( schema);

};
PostMessage( "Now choose Function and Edit from 

the Kappa Tools window and select"
# schema #" to enter 

schema predicate");
ShowWindow( KTOOLS);
>; 

>;

**** FUNCTION: xschemaOO 
*************************************/ 

MakeFunction( xschemaOO, [schema],
{
MakeFunction( schema, [ ],

{
If NULL 

Then {
zmessage(" "); 
zend( );
TRUE;
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}
Else { 

zend( );
FALSE;
>;

}); 
});

/************************************* 
**** FUNCTION: xschemalO
a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

MakeFunction( xschemalO, [schema],
{
MakeFunction( schema, [ ],

{
zinput( GetNthElem( schemailnputs, 1 ));
If NULL 
Then {

zmessage(" "); 
zend( );
TRUE;
>

Else { 
zend( );
FALSE;
>;

•});
>);

/a * * :* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

**** FUNCTION: xschema20 
*************************************/ 

MakeFunction( xschema20, [schema],
{
MakeFunction( schema, [ ],

{
zinput( GetNthElem( schemailnputs, 1 )); 
zinput( GetNthElem( schemailnputs, 2 ));
If NULL 

Then {
zmessage(" "); 
zend( );
TRUE;
>

Else { 
zend( );
FALSE;
>;

});
>);

**** FUNCTION: xschema30 
*************************************/ 

MakeFunction( xschema30, [schema],
{
MakeFunction( schema, [ ],

{

n



zinput( GetNthElem( schemailnputs, 1)); 
zinput( GetNtliElem( schemailnputs, 2 )); 
zinput( GetNthElem( schemailnputs, 3 )); 
If NULL 
Then {

zmessage(" "); 
zend( );
TRUE;
>

Else { 
zend( );
FALSE;
};

>); 
>);

/************************************* 
**** FUNCTION: xschemall 
*************************************/ 

MakeFunction( xschemall, [schema],
{
MakeFunction( schema, [ ],

{
zinput( GetNthElem( schemailnputs, 1));
If NULL 
Then {

zoutput( GetNthElem( schemaiOutputs, 1)); 
zmessage(" "); 
zend( );
TRUE;
}

Else { 
zend( );
FALSE;
>;

});
>);

/*************************************
**** FUNCTION: xcreatejdi 
*************************************/

MakeFunction( xcreatejdi, [],
{
If Function?( DICheck )
Then PostError( "ERROR data invariant already created")
Else {

MakeFunction( DICheck, [ ],
{
If NULL
Then zmessage( "data invariants ok")
Else zmessage( "data invariant error"); 

zend( );
>);

PostMessage( "Click on Function in KTOOLS window, select edit and double-click on 
DICheck. Then enter state schema predicate");

ShowImage( Button7);
SetValue( GlobaliDI, TRUE);
ShowWindow( KTOOLS);
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};
>);

/*************************************
**** FUNCTION: xdel_di 
*************************************/

MakeFunction( xdel_di, Q,
{
If Not( Global:DI)
Then PostMessage( "There is no data invariant")
Else {

GlobalrYesNo = PostMenu( "Delete data invariant ?", YES,
NO);

If ( GlobalrYesNo #= YES)
Then {

DeleteFunction( DICheck);
Hidelmage( Button7);
SetValue( GlobalrDI, FALSE );
PostMessage( "Data invariant deleted");
>; 

>;
>);

/*************************************
**** FUNCTION: xcreate_init

MakeFunction( xcreate_init, [],
{
If Not( Null?( Global:Init))
Then PostMessage( "An initial state already exists")
Else {

PostInputForm( "Create Initial State", Globalrlnit, "Enter initial state schema name"); 
If ( Class?( Globalrlnit) Or Instance?( Globalrlnit))
Then {

PostMessage( Globalrlnit #" has already been used");
ResetValue( Globalrlnit);
>

Else {
MakeClass( Globalrlnit, InitSchema);
SetValue( Button6:Title, Globalrlnit);
SetValue( Button6r Action, Globalrlnit);
Resetlraage( Button6);
ShowImage( Button6);
MakeFunction( Globalrlnit, [ ],

{
zmessage( "state initialised"); 
zend( );
});

PostMessage( "Select Function from KTOOLS window and then select"
# Globalrlnit #" to edit. Then enter init schema predicate"); 

ShowWindow( KTOOLS);
>;

}; 
});

^4= 4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 :4 =  4 = * * * * * * * ’| : * * * * * * * * * * * * * * *

**** FUNCTION: xdel_init4 * * * 4 4 * * * 4 * * * * * * * * * * * * * * * * * * * * * * * * * * */
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MakeFunction( xdel_init, [],
{
If Null?( Globalrlnit)

Then PostMessage( "There is no initial state")
Else {

GlobalrYesNo = PostMenu( "Delete" # Globalrlnit #" ?", 
YES, NO);

If ( GlobalrYesNo #= YES)
Then {

DeleteClass( Globalrlnit);
DeleteFunction( Globalrlnit);
Reset Value( Globalrlnit);
Hidelmage( Button6);
PostMessage( Globalrlnit #" deleted");
>;

};
>);

**** FUNCTION; xsave 
*************************************/

MakeFunction( xsave, [],
{
PostInputForm( "Save As", GlobalrFileName, "Enter File Name ( with no extension.)" ); 
PostBusy( ON, "Saving Specification. Please Wait.");
OpenWriteFile( GlobalrFileName # .KAL);
If Not( Null?( GlobalrState))
Then WriteClass( GlobalrState);

WriteLine( "SetValue ( GlobalrState,", GlobalrState,");");
For temp From 1 To GlobalrROpsNum 

Do {
WriteLine( );
WriteLine( "SetValue (", GetNthElem( GlobalrROpsButs, 

temp), "rTitle,",
GetValue( GetNthElem( GlobalrROpsButs, temp),

T itle),");");
Writel ine( );
WriteLine( "SetValue (", GetNthElem( GlobalrROpsButs, 

temp),":Action,",
GetValue( GetNthElem( GlobalrROpsButs, temp),

Action),");");
WriteLine( );
WriteLine( "Resetlmage (", GetNthElem( GlobalrROpsButs, 

temp),");");
WriteLine( );
WriteLine( "Showlmage (", GetNthElem( GlobalrROpsButs, 

temp),");");
WriteLine( );
};

WriteLine( "SetValue ( GlobalrROpsNum,", GlobalrROpsNum, ");");
WriteLine( ); 
xsave_schema( ROps); 
xsave_schema( Errs); 
xsave_schema( Ops); 
xsave_var( StateVars); 
xsave_var( Inputs ); 
xsave_var( Outputs);

- xsave_var( Locals);
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If Not( Null?( Globalrlnit))
Then xsave_init( );

If GlobalrDI 
Then xsave_di( ); 

xsave_type( TypesPara); 
xsave_type( TypesFree ); 
xsave_type( TypejSchema);
EnumList( GlobalrTypesUsed, temp, WriteLine( "AppendToList ( GlobalrTypesUsed, ”, 

temp,”);"))
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/*************************************
**** FUNCTION: xparatype 
*************************************/

MakeFunction( xpara_type, [],
{
ResetValue( GlobaliType);
PostInputForm( "Enter name of type: ", GlobaliType, name);
If ( Instance?( GlobaliType) Or Class?( GlobaliType ) )
Then PostMessage( "This name has already been used.")
Else If Member?( GlobaliTypesGiven, GlobaliType)

Then PostMessage( GlobaliType #" is a given type.")
Else {

Makelnstance( GlobaliType, ParaTypes);
AppendToList( GlobaliTypesPara, GlobaliType);
PostMessage( GlobaliType #" has been parachuted into the spec.");
>;

});

**** FUNCTION: xdel_type

MakeFunction( xdel_type, [],
{
If ( LengthList( GlobaliTypesPara) =  0 And LengthList( GlobaliTypesFree)

== 0 And LengthList( GlobaliTypesSchema)
• = 0 )

Then PostMessage( "There are no user defined types.")
Else {

GlobaliType = PostMenu( "Select type to delete", GlobaliTypesPara, 
GlobaliTypesFree, GlobaliTypesSchema,
"* CANCEL *");

If Not( GlobaliType #= "* CANCEL *" )
Then If Member?( GlobaliTypesUsed, GlobaliType)

Then PostMessage( GlobaliType # " has been used in the specification.") 
Else {

If Member?( GlobaliTypesPara, GlobaliType)
Then{

Deletelnstance( GlobaliType);
RemoveFromList( GlobaliTypesPara,

GlobaliType);
PostMessage( GlobaliType # " has been deleted.");
>;

};
};

>);
/*************************************
**** FUNCTION: xcreate_state
j*************************************/

MakeFunction( xcreate_state, [],
{
If NuU?( GlobaliState)

Then {
PostInputForm( "Enter name of state schema:", GlobaliState, 

name );
If ( Class?( GlobaliState) Or Instance?( GlobaliState ) )

Then {
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PostMessage(" The name" # GlobaliState # " has already been used."); 
ResetValue( GlobalrState);
>

Else {
MakeClass( GlobalrState, StateSchema);
PostMessage( GlobalrState #" state schema box has been created.");
>;

}
Else PostMessage( "You already have a state schema."):

});

**** FUNCTIONr xdel_state 
*************************************/

MakeFunction( xdel_state, [],
{
If Null?( GlobalrState)
Then PostMessage( "There is no state schema")
Else If ( LengthList( GlobalrStateVars) > 0 )

Then PostMessage( "CANNOT DELETE STATE - There is a state variable") 
Else If ( Not( Null?( SelectList( GlobalrOps, op, 

oprlncState) ) )
Or Not( Null?( SelectList( GlobalrErrs, 

err, errrlncState) ) )
Or Not( NuU?( Globalrlnit) ) )

Then PostMessage( "CANNOT DELETE STATE - 
There is a schema which includes the state")

Else {
GlobalrYesNo = PostMenu( "Delete " # GlobalrState 

# " ?", YES.
NO);

If ( GlobalrYesNo #= YES)
Then{

PostMessage( GlobalrState #" deleted");
DeleteClass( GlobalrState);
ResetValue( GlobalrState);
>; 

>;
});

/*************************************
**** FUNCTIONr xcreate_op

MakeFunction( xcreate_op, [],
{
xcreate_schema( O );
>);

**** FUNCTIONr xdel_op

MakeFunction( xdel_op, [],
{
If ( LengthList( GlobalrOps) =  0 )
Then PostMessage( "There are no operation schemas")
Else {

GlobalrVamame = PostMenu( "Select operation schema to delete",
GlobalrOps, "* CANCEL *" );



If Not( GlobalrVamame #= "* CANCEL *")
Then {

GlobalrYesNo = PostMenu( "Delete " # GlobalrVamame 
#"?", YES, NO);

If ( GlobalrYesNo #= YES )
Then {

PostMessage( GlobalrVamame #" deleted");
DeleteClass( GlobalrVamame);
RemoveFromList( GlobalrOps, GlobalrVamame);
DeleteFunction( GlobalrVamame);
};

};
>; 

>);
/*************************************
**** FUNCTION: xcreateerr 
*************************************/

MakeFunction( xcreate_err, [],
{
xcreate_schema( E );
>);

**** FUNCTION: xdel_err

MakeFunction( xdeljerr, [],
{
If (LengthList( GlobalrErrs ) =  0 )

Then PostMessage( "There are no error schemas")
Else {

GlobalrVamame = PostMenu( "Select error schema to delete",
GlobalrErrs, "* CANCEL *");

If Not( GlobalrVamame #= "* CANCEL *")
Then {

Global: YesNo = PostMenu( "Delete " # GlobalrVamame 
#" ?", YES, NO);

If ( GlobalrYesNo #= YES )
Then {

PostMessage( GlobalrVamame # " deleted");
DeleteClass( GlobalrVamame);
RemoveFromList( GlobalrErrs, GlobalrVamame);
DeleteFunction( GlobalrVamame);
};

>; 
>; 

>);

**** FUNCTION: xcreate_rop

MakeFunction( xcreate_rop, [],
{
ResetValue( GlobalrVamame);
PostInputForm( "Create Robust Op", GlobalrVamame, "Enter name of robust op schema"); 
If ( Class?( GlobalrVamame ) Or Instance?( GlobalrVamame))
Then PostMessage( "ERROR: " # GlobalrVamame # " has already been used" )
Else {
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SetValue( GlobalrROpsNum, GlobalrROpsNum + +1);
AppendToList( GlobalrROps, GlobalrVamame);
MakeClass( GlobalrVamame, ROpSchemas);
Let [ROp GetNthElem( GlobalrROpsButs, GlobalrROpsNum )]

{
SetValue( ROprTitle, GlobalrVamame);
SetValue( ROpr Action, GlobalrVamame);
Resetlmage( ROp);
ShowImage( ROp);
MakeFunction( GlobalrVamame, [ ],

{
If NULL 

Then TRUE
Else zmessage( "schema is not robust");

>);
PostMessage( "Select Function from KTOOLS window, select edit then double click on" 

# GlobalrVamame);
ShowWindow( KTOOLS);
>; 

>;
});

**** FUNCTION: xdel_rop

MakeFunction( xdel_rop, [],
{•
If ( LengthList( GlobalrROps) =  0 )

Then PostMessage( "There are no robust operation schemas")
Else {

GlobalrVamame=PostMenu( "Select robust operation schema to delete", 
GlobalrROps, "* CANCEL *");

If Not( GlobalrVamame #= "* CANCEL *")
Then {

GlobalrYesNo = PostMenu( "Delete" # GlobalrVamame 
#"?", YES, NO);

If ( GlobalrYesNo #= YES)
Then {

DeleteClass( GlobalrVamame);
If ( GetElemPos( GlobalrROps, GlobalrVamame)

!= GlobalrROpsNum)
Then {

Let [from GetElemPos( GlobalrROps,
GlobalrVamame)]

[to GlobalrROpsNum]
{
For x From from To to 

Do {
Let [a GetNtliElem( GlobalrROpsButs, 

x)]
[b GetNthElem( GlobalrROpsButs, 

x + +1)]
{
SetValue( arTitle, 

brTitle);
SetValue( ar Action, 

br Action);
Resetlmage( a );
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Resetlmage( b );
>;

}; 
}; 

};
Hidelmage( GetNthElem( Global:ROpsButs, 

Global:ROpsNum));
SetValue( GlobalrROpsNum,

GlobalrROpsNum -1 );
PostMessage( GlobalrVamame #" deleted"); 
RemoveFromList( GlobalrROps, GlobalrVamame); 
DeleteFunction( GlobalrVamame);
>;

>;
});

**** FUNCTION: xcreate_schema 
*************************************/

MakeFunction( xcreate_schema, [x],
{
ResetValue( GlobalrVamame); 
lf (x # = 0 )
Then PostInputForm( "Create Op Schema", GlobalrVamame, "Enter op schema name") 
Else PostInputForm(" Create Error Schema", GlobalrVamame,

"Enter error schema name");
If ( Class?( GlobalrVamame) Or Instance?( GlobalrVamame))
Then PostMessage( GlobalrVamame #" has already been used")
Else {

If( x # = 0 )
Then {

MakeClass( GlobalrVamame, OpSchemas);
AppendToList( GlobalrOps, GlobalrVamame);
}

Else {
MakeClass( GlobalrVamame, ErrSchemas);
AppendToList( GlobalrEns, GlobalrVamame);
>;

Let [schema GlobalrVamame]
{
If ( PostMenu( schema #" includes " # GlobalrState 

# " ?", YES, NO ) #= YES )
Then SetValue( schemarlncState, TRUE)
Else SetValue( schemarlncState, FALSE);

If ( schemarlncState #= TRUE)
Then {

If ( PostMenu( schema # " changes state ?".
YES, NO ) #= YES)

Then SetValue( schemarChngState, TRUE)
Else SetValue( schemarChngState, FALSE);

>;
lf (x # = 0 )
Then {

If ( PostMenu( "Any inputs to declare for"
# schema#" ?", YES,NO)

#= YES)
Then PostMultipleSelection(

 ̂ ^  f
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"Select input/s for " # schema, 
schemailnputs, Globalilnputs);

If ( PostMenu( "Any ouputs to declare for "
# schema#"?", YES, NO)

#= YES )
Then PostMultipleSelection(

"Select ouput/s for " # schema, 
schema:Outputs, GlobaliOutputs);

};
If(x # = E )
Then xschema00( schema)
Else {

If ( LengthList( schemailnputs)
=  0 And LengthList( schema: Outputs)
=  0 )

Then xschema00( schema)
Else If ( LengthList( schemailnputs)

== 1 And LengthList( schemaiOutputs)
=  0 )

Then xschemalO( schema)
Else If ( LengthList( schemailnputs)

=  2 And LengthList( schemaiOutputs)
=  0 )

Then xschema20( schema)
Else If ( LengthList( schemailnputs)

=  3 And LengthList( schemaiOutputs ) 
=  0 )

Then xschema30( schema)
Else If ( LengthList( schemailnputs)

1 And
LengthList( schemaiOutputs) 

1 )
Then xschemal 1( schema)
Else xschema00( schema);

>;
PostMessage( "Now choose Function and Edit from 

the Kappa Tools window and select"
# schema #" to enter 

schema predicate");
ShowWindow( KTOOLS);
>; 

>;

/************************************* 
**** FUNCTIONi xschemaOO

MakeFunction( xschemaOO, [schema],
{
MakeFunction( schema, [ ],

{
If NULL 
Then {

zmessage(" "); 
zend( );
TRUE;
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>
Else { 

zend( );
FALSE;
};

});
>);

/************************************* 
**** FUNCTION: xschemalO 
*************************************/ 

MakeFunction( xschemalO, [schema],
{
MakeFunction( schema, [ ],

{
zinput( GetNthElem( schemailnputs, 1 ));
If NULL
Then {

zmessage(M M); 
zend( );
TRUE;
>

Else { 
zend( );
FALSE;
>;

■});
});

**** FUNCTION: xschema20
♦ at**********************:*:*********:*:**/

MakeFunction( xschema20, [schema],
{
MakeFunction( schema, [ ],

{
zinput( GetNthElem( schemailnputs, 1 )); 
zinput( GetNthElem( schemailnputs, 2 ));
If NULL
Then {

zmessage(" "); 
zend( );
TRUE;
>

Else { 
zend( );
FALSE;
>; 

>);
});

/************************************* 
**** FUNCTION: xschema30 
*************************************/ 

MakeFunction( xschema30, [schema],
{
MakeFunction( schema, [ ],

{
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zinput( GetNthElem( schemailnputs, 1 )); 
ziiiput( GetNthElem( schemailnputs, 2 )); 
zinput( GetNthElem( schemailnputs, 3 )); 
If NULL 
Then {

zmessage(" "); 
zend( );
TRUE;
>

Else { 
zend( );
FALSE;
};

});
>);

/************************************* 
**** FUNCTIONi xschemall

MakeFunction( xschemall, [schema],
{
MakeFunction( schema, [ ],

{
zinput( GetNthElem( schemailnputs, 1 ));
If NULL 
Then {

zoutput( GetNthElem( schemaiOutputs, 1 )); 
zmessage(" M); 
zend( );
TRUE;
}

Else { 
zend( );
FALSE;
>;

>); 
>);

/*************************************
**** FUNCTION: xcreatejdi 
*************************************/

MakeFunction( xcreate_di, [j,
{
If Function?( DICheck)
Then PostError( "ERROR data invariant already created")
Else {

MakeFunction( DICheck, [ ],
{
If NULL
Then zmessage( "data invariants ok")
Else zmessage( "data invariant error"); 

zend( );
>);

PostMessage( "Click on Function in KTOOLS window, select edit and double click on 
DICheck. Then enter state schema predicate" );

ShowImage( Button7);
SetValue( GlobaliDI, TRUE);
ShowWindow( KTOOLS);
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};
>);

/*************************************
**** FUNCTION: xdel_di 
*************************************/ 

MakeFunction( xdel_di, [],
{
If Not( Global:DI)
Then PostMessage( "There is no data invariant*')
Else {

GlobalrYesNo = PostMenu( "Delete data invariant ?", YES, 
NO);

If ( GlobalrYesNo #= YES)
Then {

DeleteFunction( DICheck);
Hidelmage( Button7);
SetValue( GlobalrDI, FALSE);
PostMessage( "Data invariant deleted" );
>;

}; 
});

**** FUNCTION: xcreate_init 
*************************************/

MakeFunction( xcreate_init, [],
{
If Not( Null?( Globalrlnit))
Then PostMessage( "An initial state already exists")
Else {

PostInputForm( "Create Initial State", Globalrlnit, "Enter initial state schema name"); 
If ( Class?( Globalrlnit) Or Instance?( Globalrlnit) )
Then {

PostMessage( Globalrlnit #" has already been used");
ResetValue( Globalrlnit);
>

Else {
MakeClass( Globalrlnit, InitSchema);
SetValue( Button6:Title, Globalrlnit);
SetValue( Button6:Action, Globalrlnit);
Resetlmage( ButtonG);
ShowImage( Button6 );
MakeFunction( Globalrlnit, [ ],

{
zmessage( "state initialised"); 
zend( );
});

PostMessage( "Select Function from KTOOLS window and then select"
# Globalrlnit #" to edit. Then enter init schema predicate"); 

ShowWindow( KTOOLS);
>; 

>;
>);

/♦at***********************************
**** FUNCTION: xdel_init



MakeFunction( xdel_init, [],
{
If Null?( Globalrlnit)

Then PostMessage( "There is no initial state" )
Else {

GlobalrYesNo = PostMenu( "Delete " # Globalrlnit # " ?M, 
YES, NO);

If ( Global: YesNo #= YES)
Then {

DeleteClass( Globalrlnit);
DeleteFunction( Globalrlnit);
ResetValue( Globalrlnit);
Hidelmage( Button6);
PostMessage( Globalrlnit #" deleted" );
>;

};
>);

**** FUNCTION: xsave

MakeFunction( xsave, [],
{
PostInputForm( "Save As", GlobalrFileName, "Enter File Name ( with no extension.)1' ); 
PostBusy( ON, "Saving Specification. Please Wait");
OpenWriteFile( GlobalrFileName # .KAL);
If Not( Null?( GlobalrState) )
Then WriteClass( GlobalrState);

WriteLine( "SetValue ( GlobalrState,", GlobalrState,");");
For temp From 1 To GlobalrROpsNum 

Do {
WriteLine( );
WriteLine( "SetValue (", GetNthElem( GlobalrROpsButs, 

temp), "rTitle,",
GetValue( GetNthElem( GlobalrROpsButs, temp),

T itle),");");
WriteLine( );
WriteLine( "SetValue ( ", GetNthElem( GlobalrROpsButs, 

temp), "rAction,",
GetValue( GetNthElem( GlobalrROpsButs, temp),

A ction),");");
WriteLine( );
WriteLine( Resetlmage (", GetNthElem( GlobalrROpsButs, 

tem p),");");
WriteLine( );
WriteLine( "Showlmage (", GetNthElem( GlobalrROpsButs, 

tem p),");");
WriteLine( );
>;

WriteLine( "SetValue ( GlobalrROpsNum,", GlobalrROpsNum,");");
WriteLine( ); 
xsave_schema( ROps); 
xsave_schema( Errs ); 
xsave_schema( Ops); 
xsave_var( StateVars); 
xsave_var( Inputs); 
xsave_var( Outputs); 
xsave_var( Locals);
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If Not( Null?( Global:Init) )
Then xsave_init( );

If GlobalrDI 
Then xsave_di( ); 

xsave_type( TypesPara); 
xsave_type( TypesFree); 
xsave_type( TypesSchema );
EnumList( GlobaliTypesUsed, temp, WriteLine( "AppendToList ( Global:TypesUsed, ", 

temp,");"))



/*************************************
**** FUNCTION: xequatelO 
*************************************/

MakeFunction( xequatelO, [Tupl Tup2],
{
If ( Tup2:sort != 10)
Then PostError( "zequate - Illegal argument")
Else If Not( Tupl:Atype #= Tup2:Atype Or

( Member?( GlobaliNumerics, TupliAtype) And 
Member?( GlobaliNumerics, Tup2:Atype ) ) )

Then PostError( "zequate - Type missmatch")
Else {

If Global:CheckConstrs 
Then If xnumvioln?( Tupl, Tup2)

Then PostError( FormatValue( "zequate - This assignment would cause a numeric 
constraint violation on %s.", Tupl) );

SetValue( Tupl: Aval, Tup2:Aval);
>;

>);

/*************************************
**** FUNCTION: xequatell 
*************************************/

MakeFunction( xequatell, [Tupl Tup2],
{
If (Tup2:sort != 11)
Then PostError( "zequate - Illegal Argument.")
Else If Not( ( Tupl:Atype #= Tup2:Atype Or

( Member?( GlobaliNumerics, TupliAtype ) And 
Member?( GlobaliNumerics, Tup2:Atype) ) )  And 

( TupliBtype #= Tup2:Btype Or 
( Member?( GlobaliNumerics, TupliBtype) And 
Member?( GlobaliNumerics, Tup2:Btype) ) )  )

Then PostError( "zequate - type missmatch")
Else {

If GlobaliCheckConstrs 
Then If xnumvioln?( Tupl, Tup2)

Then PostError( FormatValue( "zequate - This assignment would cause a numeric 
constraint violation on %s.", Tupl));

SetValue( Tupl: Aval, Tup2:Aval);
SetValue( TupliBval, Tup2:Bval);
};

>);

**** FUNCTION: xequatel2 
*************************************/

MakeFunction( xequatel2, [Tupl Tup2],
{
If ( ( Tuplisort =  12 And Tup2:sort != 12) Or 

( Tuplisort =  13 And Tup2:sort != 13 ) Or 
( Tuplisort =  14 And Tup2:sort != 14))

Then PostError( "zequate - Illegal argument.")
Else If Not( ( TupliAtype #= Tup2:Atype Or

( Member?( GlobaliNumerics, TupliAtype ) And 
Member?( GlobaliNumerics, Tup2:Atype ) ) )  And 

( TupliBtype #= Tup2:Btype Or
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( Member?( GlobaliNumerics, TupliBtype ) And 
Member?( GlobaliNumerics, Tup2iBtype ) ) )  And 

( TupliCtype #= Tup2:Ctype Or 
( Member?( GlobaliNumerics, TupliCtype ) And 
Member?( GlobaliNumerics, Tup2iCtype) ) ) )

Then PostError( "zequate - type missmatch")
Else {

If GlobaliCheckConstrs
Then If xnumvioln?( Tupl, Tup2 )

Then PostError( FormatValue( "zequate - This assignment would cause a numeric 
constraint violation on %s.M, Tupl));

SetValue( Tupl: Aval, Tup2:Aval);
SetValue( TupliBval, Tup2:Bval);
SetValue( TupliCval, Tup2:Cval);
}; 

});

**** FUNCTION: xequate21

MakeFunction( xequate21, [Setl Set2],
{
If( Set2:sort != 21)
Then PostError( "zequate - Illegal argument.")
Else If Not( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )

Then PostError( "zequate - type missmatch")
Else {

If GlobaliCheckConstrs 
Then If xnumvioln?( Setl, Set2)

Then PostError( FormatValue( "zequate - This assignment would cause a numeric 
constraint violation on %s.M, S etl));

SetValue( SetliAelems, Set2:Aelems);
>;

>);

/*************************************
**** FUNCTION: xequate22

MakeFunction( xequate22, [Setl Set2],
{
If ( Set2:sort != 22 And Set2:sort != 41 And Set2:sort != 71)

Then PostError( "zequate - Illegal argument.")
Else If Not( ( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype ) And 
Member?( GlobaliNumerics, Set2:Alype) ) )  And 

( SetliBtype #= Set2:Btype Or 
( Member?( GlobaliNumerics, SetliBtype) And 
Member?( GlobaliNumerics, Set2:Btype) )  ) )

Then PostError( "zequate - type missmatch")
Else {

If GlobaliCheckConstrs 
Then {

Ifxconstrvioln?( Setlisort, Set2 )
Then PostError( "zequate - This assignment would cause a constraint violation on " 

# Setl #" of sort" # Setlisort#.);
If xnumvioln?( Setl, Set2)



Then PostError( FormatValue( "zequate - This assignment would cause a numeric 
constraint violation on %s.", S etl));

};
SetValue( SetliAelems, Set2:Aelems);
SetValue( Setl:Belems, Set2:Belems);
>;

});

**** FUNCTION: xequate23 
*************************************/

MakeFunction( xequate23, [Setl Set2],
{
If ( (  Setl .sort —  23 And Set2:sort != 23 ) Or 

( ( Setlisort =  24 Or Setl:sort — 12) And 
( Set2:sort != 24 And Set2:sort != 42 And Set2:sort != 7 2 )) Or 

( ( Setl:sort =  25 Or Setlisort =  82) And 
( Set2:sort != 25 And Set2:sort != 8 2 )))

Then PostError( "zequate - Illegal argument." )
Else If Not( ( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )  And 

( SetliBtype #= Set2:Btype Or 
( Member?( GlobaliNumerics, SetliBtype) And 
Member?( GlobaliNumerics, Set2:Btype) ) )  And 

( SetliCtype #= Set2:Ctype Or 
( Member?( GlobaliNumerics, SetliCtype) And 

Member?( GlobaliNumerics, Set2:Ctype) ) ) )
. Then PostError( "zequate - type missmatch")

Else {
If GlobaliCheckConstrs 

Then {
If xconstrvioln?( Setlisort, Set2)

Then PostError( "zequate - This assignment would cause a constraint violation on" 
# Setl #" of sort "# Setlisort # .);

If xnumvioln?( Setl, Set2)
Then PostError( FormatValue( "zequate - This assignment would cause a numeric 

constraint violation on %s.", S etl));
>;

SetValue( SetliAelems, Set2:Aelems);
SetValue( SetliBelems, Set2:Belems );
SetValue( SetliCelems, Set2:Celems);
};

>);

**** FUNCTION: xequate41 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

MakeFunction( xequate41, [Setl Set2],
{
If ( ( Setlisort =  41) And

( Set2:sort != 22 And Set2:sort != 41 And Set2:sort 1= 7 1 ))  
Then PostError( "zequate - Illegal argument")
Else If Not( ( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )  And 

( SetliBtype #= Set2:Btype Or 
( Member?( GlobaliNumerics, SetliBtype) And



Member?( GlobaliNumerics, Set2:Btype) ) ) )
Then PostError( "zequate - type missmatch" )
Else {

If GlobaliCheckConstrs 
Then {

If xconstrvioln?( Setlisort, Set2)
Then PostError( "zequate - This assignment would cause a constraint violation on " 

# Setl #" of sort" # Setlisort # .);
If xnumvioln?( Setl, Set2)
Then PostError( FormatValue( "zequate - This assignment would cause a numeric 

constraint violation on %s.", S etl));
};

ResetValue( SetliAelems);
ResetValue( SetliBelems);
For count From 1 To LengthList( Set2: Aelems)

Do {
AppendToList( SetliAelems, count);
AppendToList( SetliBelems,

GetNthElem( Set2iBelems,
GetElemPos( Set2:Aelems, count)));

};
>;

});

■ **** FUNCTION: xequate42

MakeFunction( xequate42, [Setl Set2],
{
If ( ( Setlisort =  42 ) And

( Set2:sort != 24 And Set2:sort != 42 And Set2:sort != 7 2 ))
ThenPostError( "zequate - Illegal argument.")
Else If Not( ( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2iAtype) ) )  And 

( SetliBtype #= Set2:Btype Or 
( Member?( GlobaliNumerics, SetliBtype) And 

Member?( GlobaliNumerics, Set2:Btype) ) )  And 
( SetliCtype #= Set2:Ctype Or 
( Member?( GlobaliNumerics, SetliCtype) And 
Member?( GlobaliNumerics, Set2iCtype) ) ) )

Then PostError( "zequate - type missmatch")
Else {

If GlobaliCheckConstrs 
Then {

If xconstrvioln?( Setlisort, Set2)
Then PostError( "zequate - This assignment would cause a constraint violation on " 

# Setl #" of sort" # Setlisort # .);
If xnumvioln?( Setl, Set2)

Then PostError( FormatValue( "zequate - This assignment would cause a numeric 
constraint violation on %s.", Setl));

>;
ResetValue( SetliAelems);
ResetValue( SetliBelems);
ResetValue( Setl iCelems);
For count From 1 To LengthList( Set2i Aelems)
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Do {
AppendToList( Setl: Aelems, count);
AppendToList( SetliBelems,

GetNthElem( Set2:Belems,
GetEIemPos( Set2:Aelems, count)));  

AppendToList( SetliCelems,
GetNthElem( Set2:Celems,

GetElemPos( Set2:Aelems, count)));
};

>;
});

*̂************************************
**** FUNCTION: xintersect21

MakeFunction( xintersect21, [Setl Set2],
<

If ( Set2:sort != 21)
Then PostError(" zintersect - Illegal argument.")
Else If Not( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )

Then PostError( "zintersect - type missmatch")
Else {

GlobaliTempNum += 1;
Let [t Temp # GlobaliTempNum]

{
xmake_temp( 21, t, S etl);
EnumList( SetliAelems, x, If Member?( Set2:Aelems, x ) 

Then AppendToList( t: Aelems, x ));
t;
};

};
>);

**** FUNCTION: xintersect22
it************************************/

MakeFunction( xintersect22, [Setl Set2],
{
If ( Set2:sort != 22 And Set2:sort != 41 And Set2:sort !=

71)
Then PostError( "zintersect - Illegal argument.")
Else If Not( ( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )  And 

( SetliBtype #= Set2iBtype Or 
( Member?( GlobaliNumerics, SetliBtype) And 
Member?( GlobaliNumerics, Set2:Btype) ) ) )  

Then PostError( "zintersect - type missmatch")
Else {

GlobaliTempNum+= 1;
Let [tl Temp # GlobaliTempNum]

{
xmake_temp( 22, tl, S etl);
GlobaliTempNum += 1;
Let [t2 Temp # GlobaliTempNum]

{



xmake_temp( 11, t2, S etl);
For count From 1 To LengthList( Set2:Aelems)

Do {
SetValue( t2:Aval, GetNthElem( Set2:Aelems, 

count));
SetValue( t2:Bval, GetNthElem( Set2:Belems, 

count));
If zelement?( t2, Setl)
Then {

AppendToList( tl: Aelems, 
t2:Aval);

AppendToList( tlrBelems, 
t2:Bval);

>;
}; 

};
tl;
};

>;
});

**** FUNCTION: xintersect23

MakeFunction( xintersect23, [Setl Set2],
{'
If ( ( Setl:sort =  23 And Set2:sort != 23 ) Or

( ( Setl:sort =  24 Or Setl:sort =  42 Or Setl:sort =  12)  And 
( Set2:sort != 24 And Set2:sort != 42 And Set2:sort != 7 2 )) Or 

( ( Setl:sort =  25 Or Setl:sort =  81) And 
( Set2:sort != 25 And Set2:sort != 8 1 )))

Then PostError( ’’zintersect - Illegal argument." )
Else If Not( ( Setl:Atype #= Set2:Atype Or

( Member?( Global:Numerics, Setl: Atype) And 
Member?( Global:Numerics, Set2:Atype) ) )  And 

( Setl:Btype #= Set2:Btype Or 
( Member?( Global:Numerics, Setl:Btype) And 
Member?( Global:Numerics, Set2:Btype) ) )  And 

( Setl:Ctype #= Set2:Ctype Or 
( Member?( Global.Numerics, Setl:Ctype) And 

Member?( Global:Numerics, Set2:Ctype) ) ) )
Then PostError( "zintersect - type missmatch")
Else {

Global:TempNum += 1;
Let [tl Temp # Global:TempNum]

{
xmake_temp( 23, tl, S etl);
If ( Setl:sort =  24 Or Setl:sort == 42 

Or Setl:sort =  72)
Then tl:sort = 24;

If ( Setl:sort =  25 Or Setl:sort =  82)
Then tl:sort = 25;

Global:TempNum += 1;
Let [t2 Temp # Global:TempNum]

{
xmake_temp( 12, t2, Setl );
If ( Setl:sort =  24 Or Setl:sort =>



42 Or Setlisort =  12)
Then t2:sort = 13;

If ( Setlisort =  25 Or Setlisort =
81)

Then t2:sort = 14;
For count From 1 To LengthList( Set2i Aelems)

Do {
SetValue( t2:Aval, GetNthElem( Set2:Aelems, 

count));
SetValue( t2iBval, GetNthElem( Set2iBelems, 

count));
SetValue( t2:Cval, GetNthElem( Set2iCelems, 

count));
If zelement?( t2, S etl)

Then {
AppendToList( tli Aelems, 

t2:Aval);
AppendToList( tliBelems, 

t2iBval);
AppendToList( tliCelems, 

t2:Cval);
>; 

>; 
>;

ti;
};

>;
});

**** FUNCTION: xmakell

MakeFunction( xmakell, [varl var2],
{
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
MakeClass( temp, Temp);
MakeSlot( tempisort);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER); 
SetValue( tempisort, 11);
MakeSlot( tempiAtype );
MakeSlot( tempiAval);
If Member?( GlobaliNumerics, varl: Atype)
Then {

SetSlotOption( temp: Aval, VALUETYPE, NUMBER); 
SetValue( tempiAtype, Z );
>

Else SetValue( tempiAtype, varl: Atype);
SetValue( tempiAval, varliAval);
MakeSlot( tempiBtype);
MakeSlot( tempiBval);
If Member?( GlobaliNumerics, var2: Atype)
Then{

SetSlotOption( tempiBval, VALUE_TYPE, NUMBER); 
SetValue( tempiBtype, Z );
>
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Else SetValue( tempiBtype, var2:Atype); 
SetValue( tempiBval, var2iAval); 
temp;
}; 

});

**** FUNCTION: xmakel2 
*************************************/

MakeFunction( xmakel2, [varl var2 var3],
{
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
MakeClass( temp, Temp);
MakeSlot( tempisort);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER); 
SetValue( tempisort, 12);
MakeSlot( tempiAtype);
MakeSlot( tempiAval);
If Member?( GlobaliNumerics, varl: Atype)

Then {
SetSlotOption( tempiAval, VALUE_TYPE, NUMBER); 
SetValue( tempiAtype, Z );
>

Else SetValue( tempiAtype, varl: Atype);
' SetValue( tempiAval, varl:Aval);
MakeSlot( tempiBtype);
MakeSlot( tempiBval);
If Membei?( GlobaliNumerics, varliBtype)

Then {
SetSlotOption( tempiBval, VALUE_TYPE, NUMBER); 
SetValue( tempiBtype, Z );
>

Else SetValue( tempiBtype, varliBtype);
SetValue( tempiBval, var2:Aval);
MakeSlot( tempiCtype);
MakeSlot( tempiCval);
If Member?( GlobaliNumerics, varliCtype)

Then {
SetSlotOption( tempiCval, VALUETYPE, NUMBER); 
SetValue( tempiCtype, Z );
>

Else SetValue( tempiCtype, varliCtype);
SetValue( tempiCval, var3:Aval); 
temp;
}; 

});

**** FUNCTION: xmakel3 
*************************************/ 

MakeFunction( xmakel3, [varl var2],
{
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
MakeClass( temp, Temp);
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MakeSlot( tempisort);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER ); 
SetValue( tempisort, 13);
MakeSlot( tempiAtype);
MakeSlot( tempiAval);
If Member?( GlobaliNumerics, varliAtype )

Then {
SetSlotOption( tempiAval, VALUE_TYPE, NUMBER); 
SetValue( tempiAtype, Z );
}

Else SetValue( tempiAtype, varliAtype);
SetValue( tempiAval, varl i Aval);
MakeSlot( tempiBtype);
MakeSlot( tempiBval);
If Member?( GlobaliNumerics, var2: Atype)

Then {
SetSlotOption( tempiBval, VALUETYPE, NUMBER); 
SetValue( tempiBtype, Z );
}

Else SetValue( tempiBtype, var2:Atype);
SetValue( tempiBval, var2i Aval);
MakeSlot( tempiCtype);
MakeSlot( tempiCval);
If Member?( GlobaliNumerics, var2iBtype)

Then {
SetSlotOption( tempiCval, VALUE_TYPE, NUMBER); 
SetValue( tempiCtype, Z );
}

Else SetValue( tempiCtype, var2iBtype);
SetValue( tempiCval, var2:Bval); 
temp;
>;

>);

**** FUNCTION: xmakel4
I************************************/

MakeFunction( xmakel4, [varl var2],
{
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
MakeClass( temp, Temp);
MakeSlot( tempisort);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER); 
SetValue( tempisort, 13);
MakeSlot( tempiAtype);
MakeSlot( tempiAval);
If Member?( GlobaliNumerics, varliAtype )

Then{
SetSlotOption( tempiAval, VALUE_TYPE, NUMBER); 
SetValue( tempiAtype, Z );
}

Else SetValue( tempiAtype, varl: Atype);
SetValue( tempiAval, varl: Aval);
MakeSlot( tempiBtype);
MakeSlot( tempiBval);
If Member?( GlobaliNumerics, varl iBtype)



Then {
SetSlotOption( tempiBval, VALUE_TYPE, NUMBER); 
SetValue( tempiBtype, Z );
>

Else SetValue( tempiBtype, varliBtype);
SetValue( tempiBval, varliBval);
MakeSlot( tempiCtype);
MakeSlot( tempiCval);
If Member?( GlobaliNumerics, var2: Atype)
Then {

SetSIotOption( tempiCval, VALUETYPE, NUMBER); 
SetValue( tempiCtype, Z );
}

Else SetValue( tempiCtype, var2:Atype);
SetValue( tempiCval, var2iAval); 
temp;
>; 

>);

/*************************************
**** FUNCTION: xmake211
it*:*****:*******:**:******:*********:***:***/

MakeFunction(xmake211, [elem],
{
GlobaliTempNum+= 1;
Let [temp Temp # GlobaliTempNum]
' {

xmake_temp( 21, temp, elem);
AppendToList( tempiAelems, elemiAval); 
temp;
>; 

>);

**** FUNCTION: xmake221 
*************************************/ 

MakeFunction( xmake221, [elem],
{
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 22, temp, elem);
AppendToList( tempiAelems, elem: Aval);
AppendToList( tempiBelems, elemiBval); 
temp;
}; 

});
I*:#***********************************
**** FUNCTION: xmake231 
*****************************♦***♦*♦*/ 

MakeFunction( xmake231, [elem],
{
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 23, temp, elem);
If ( elemisort =  13 )
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Then SetValue( tempisort, 24)
Else If ( elemisort =  14)

Then SetValue( tempisort, 25);
AppendToList( tempiAelems, elemiAval);
AppendToList( tempiBelems, elemiBval);
AppendToList( tempiCelems, elemiCval); 
temp;
>; 

>);
/*************************************
**** FUNCTIONi xsetcompOla 
*************************************/

MakeFunction( xsetcompOla, [dum set vail rel val2],
{
If (setisort !=21)
Then PostError( “ERROR zset_comp_01: illegal argument," # set);

If Not( setiAtype #= dumiAtype Or
( Member?( GlobaliNumerics, set: Atype) And 
Member?( GlobaliNumerics, dumiAtype) ) )

Then PostError( “ERROR zset comp O l: type missmatch, dum/set");
If ( vail: sort =  71)

Then xsetcomp01al( dum, set, vail, rel, val2)
Else PostError( “zset_comp_01: NOT YET AVAILABLE");

});
./*************************************
**** FUNCTION: xsetcompOlal

MakeFunction( xsetcompOlal, [dum set vail rel vaI2],
{
If Not( Member?( GlobaliNumerics, valliBtype))

Then PostError( "ERROR zset_comp_01: " # vail #" does not have numeric output"); 
If znot_subset?( set, zdom( v a il))
Then PostError( "ERROR zset_comp_01: " # vail #" not defined for all values o f"

# dum);
If ( Not( dum #= val2 ) And val2:sort =  10)
Then xsetcomp01ala( set, vail, rel, val2)
Else PostError( "zset_comp_01: NOT YET AVAILABLE or illegal argument/s");

>);

**** FUNCTION: xsetcompOlala

MakeFunction( xsetcompOlala, [set vail rel val2],
{
If Not( Member?( GlobaliNumerics, val2:Atype))

Then PostError( "ERROR zset_comp_01:" # val2 #" is not numeric");
If Null?( val2:Aval)
Then PostError( "ERROR zset_comp_01:" # val2 #" does not have a value"); 

If(rel#= < )
Then xsetcomp01alal( set, vail, val2)
Else PostError( "zset_comp_01: NOT YET AVAILABLE");

>); ' -

**** FUNCTION: xsetcompOlalal



MakeFunction(xsetcomp01alal, [set vail val2],
{
GlobaliTempNum += 1;
Let [t Temp # GlobaliTempNum]

{
MakeClass( t, Temp);
MakeSlot( tisort);
SetSlotOption( tisort, VALUE_TYPE, NUMBER);
SetValue( tisort, 21);
MakeSlot( tiAtype);
SetValue( tiAtype, setiAtype);
MakeSlot( tiAelems);
SetSlotOption( tiAelems, MULTIPLE );
If Member?( GlobaliNumerics, tiAtype)

Then SetSlotOption( tiAelem, VALUE_TYPE, NUMBER);
EnumList( setl Aelems, x, If ( GetNthElem( valliBelems,

GetElemPos( valliAelems, 
x ) )  < val2:Aval)

Then AppendToList( tiAelems, 
x ) ) ;

t;
}; 

});
/it:************************************
**** FUNCTIONi xsubtract21

. it:************************************/
MakeFunction( xsubtract21, [setl set2],

{ .

If(set2;sort != 21)
Then PostError( "zsubtract - Illegal argument" )
Else If Not( setliAtype #= set2:Atype Or

( Member?( GlobaliNumerics, setl I Atype) And 
Member?( GlobaliNumerics, set2:Atype) ) )

Then PostError(" zsubtract - Type missmatch.")
Else {

GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 21, temp, se tl);
EnumList( setl i Aelems, x, If Not( Member?( set2i Aelems, x ))  

Then AppendToList( tempiAelems, x ));
temp;
>;

};
>);

**** FUNCTION: xsubtract22

MakeFunction( xsubtmct22, [Setl Set2].
{
If ( Set2:sort != 22 And Set2:sort != 41 And Set2:sort !=

71)
Then PostError( "zsubtract - Illegal argument.")
Else If Not( ( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )  And
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( SetliBtype #= Set2:Btype Or 
( Member?( GlobaliNumerics, SetliBtype) And 
Member?( GlobaliNumerics, Set2:Btype ) ) ) )

Then PostError( "zsubtract - type missmatch" )
Else {

GlobaliTempNum += 1;
Let [tl Temp # GlobaliTempNum]

{
xmake_temp( 22, tl, S etl);
GlobaliTempNum += 1;
Let [t2 Temp # GlobaliTempNum]

{
xmake_temp( 11, t2, S etl);
For count From 1 To LengthList( SetliAelems)

Do {
SetValue( t2:Aval, GetNthElem( SetliAelems, 

count));
SetValue( t2:Bval, GetNthElem( SetliBelems, 

count));
If Not( zelement?( t2, Set2))
Then {

AppendToList( tl: Aelems, 
t2:Aval);

AppendToList( tliBelems, 
t2:Bval);

};
>; 

>;
ti;
>; 

>;
>);

**** FUNCTION: xsubtract23

MakeFunction( xsubtract23, [Setl Set2],
{
If ( ( Setlisort =  23 And Set2:sort != 23 ) Or

( ( Setlisort =  24 Or Setlisort =  42 Or Setlisort =  12) And 
( Set2:sort != 24 And Set2:sort != 42 And Set2:sort != 72))  Or 

( (  Setlisort =  25 Or Setlisort =  81) And 
( Set2:sort != 25 And Set2:sort != 81 ) ) )

Then PostError( "zsubtract - Illegal argument")
Else If Not( ( SetliAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )  And 

( SetliBtype #= Set2:Btype Or 
( Member?( GlobaliNumerics, SetliBtype) And 

Member?( GlobaliNumerics, Set2:Btype) ) )  And 
( SetliCtype #= Set2:Ctype Or 
( Member?( GlobaliNumerics, SetliCtype) And 
Member?( GlobaliNumerics, Set2:Ctype) ) ) )

Then PostError( "zsubtract - type missmatch")
Else {

GlobaliTempNum += 1;
Let [tl Temp # GlobaliTempNum]
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{
xmake_temp( 23, tl, S etl);
If ( Setlisort =  24 Or Setlisort =  42 

Or Setlisort =  72 )
Then tlisort = 24;

If ( Setlisort =  25 Or Setlisort =  82)
Then tlisort = 25;

GlobaliTempNum += 1;
Let [t2 Temp # GlobaliTempNum]

{
xmake_temp( 12, t2, Setl);
If ( Setlisort =  24 Or Setlisort =

42 Or Setlisort —  12)
Then t2isort = 13;

If ( Setlisort =  25 Or Setlisort =
8 1 )

Then t2:sort = 14;
For count From 1 To LengthList( SetliAelems)

Do {
SetValue( t2:Aval, GetNthElem( SetliAelems, 

count));
SetValue( t2:Bval, GetNthElem( SetliBelems, 

count));
SetValue( t2iCval, GetNthElem( SetliCelems, 

count));
If Not( zelement?( t2, Set2))

Then {
AppendToList( tl i Aelems, 

t2iAval);
AppendToList( tliBelems, 

t2:Bval);
AppendToList( tliCelems, 

t2iCval);
};

>; 
>;

ti;
>; 

>;
>);

/*************************************
**** FUNCTION: xunion21 
*************************************/ 

MakeFunction( xunion21, [Setl Set2],
{
If ( Set2:sort != 21)
Then PostError( " zunion - Illegal argument.")
Else If Not( Setl lAtype #= Set2:Atype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )  

Then PostError( "zunion - type missmatch")
Else {

GlobaliTempNum+= 1;
Let [t Temp # GlobaliTempNum]

{
xmake_temp( 21, t, S etl);
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AppendToList( t:Aelems, SetliAelems);
EnumList( Set2:Aelems, x, If Not( Member?( tiAelems, x ))  

Then AppendToList( tiAelems, x ));
t;
};

>;
>);

**** FUNCTIONi xunion22
♦ it**********************:*************/

MakeFunction( xunion22, [Setl Set2],
{
If ( Set2:sort != 22 And Set2:sort != 41 And Set2:sort !=

71)
Then PostError("zsubtract - Illegal argument.")
Else If Not( ( SetliAtype #= Set2iAtype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )  And 

( SetliBtype #= Set2iBtype Or 
( Member?( GlobaliNumerics, SetliBtype) And 

Member?( GlobaliNumerics, Set2iBtype) ) ) )
Then PostError( "zsubtract - type missmatch")
Else {

GlobaliTempNum += 1;
Let [tl Temp # GlobaliTempNum]

{
xmake_temp( 22, tl, S etl);
SetValue( tliAelems, SetliAelems);
SetValue( tl iBelems, Setl iBelems);
GlobaliTempNum += 1;
Let [t2 Temp # GlobaliTempNum]

{
xmake_temp( 11, t2, S etl);
For count From 1 To LengthList( Set2iAelems)

Do {
SetValue( t2:Aval, GetNthElem( Set2iAelems, 

count));
SetValue( t2:Bval, GetNthElem( Set2 iBelems, 

count));
If Not( zelement?( t2, t l ))

Then {
AppendToList( tl: Aelems, 

t2:Aval);
AppendToList( t' iBelems, 

t2:Bval);
>;

>;
};

ti;
>; 

>;
});

**** FUNCTION: xunion23 
*************************************/
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MakeFunction( xunion23, [Setl Set2],
{
If ( ( Setlisort =  23 And Set2:sort != 23 ) Or

( ( Setlisort =  24 Or Setlisort =  42 Or Setlisort =  72 ) And 
( Set2:sort != 24 And Set2:sort != 42 And Set2:sort != 72))  Or 

( ( Setlisort =  25 Or Setlisort —  81) And 
( Set2:sort != 25 And Set2:sort != 8 1 ) ) )

Then PostError( "zunion - Illegal argument." )
Else If Not( ( SetliAtype #= Set2iAtype Or

( Member?( GlobaliNumerics, SetliAtype) And 
Member?( GlobaliNumerics, Set2:Atype) ) )  And 

( SetliBtype #= Set2:Btype Or 
( Member?( GlobaliNumerics, SetliBtype ) And 
Member?( GlobaliNumerics, Set2:Btype) ) )  And 

( Setl iCtype #= Set2iCtype Or 
( Member?( GlobaliNumerics, SetliCtype) And 

Member?( GlobaliNumerics, Set2 iCtype) ) ) )
Then PostError( "zunion - type missmatch" )
Else {

GlobaliTempNum += 1;
Let [tl Temp # GlobaliTempNum]

{
xmake_temp( 23, tl, S etl);
If ( Setlisort =  24 Or Setlisort =  42 

Or Setlisort —  12)
Then tlisort = 24;

If ( Setlisort =  25 Or Setlisort =  82)
Then tlisort = 25;

SetValue( tl: Aelems, SetliAelems );
SetValue( tl iBelems, SetliBelems);
SetValue( tliCelems, SetliCelems);
GlobaliTempNum += 1;
Let [t2 Temp # GlobaliTempNum]

{
xmake_temp( 12, t2, S etl);
If ( Setlisort =  24 Or Setlisort =

42 Or Setlisort — 12)
Then t2:sort = 13;

If ( Setlisort == 25 Or Setlisort =
81)

Then t2:sort = 14;
For count From 1 To LengthList( Set2: Aelems)

Do {
SetValue( t2:Aval, GetNthElem( Set2:Aelems, 

count));
SetValue( t2:Bval, GetNthElem( Set2:Belems, 

count));
SetValue( t2:Cval, GetNthElem( Set2:Celems, 

count));
If Not( zelement?( t2, t l ) )
Then {

AppendToList( tl: Aelems, 
t2:Aval);

AppendToList( tl iBelems, 
t2:Bval);

AppendToList( tliCelems, 
t2:Cval);



};
};

>;
ti;
};

>; 
>);

/*************************************
**** FUNCTION: zcard

MakeFunclion( zcard, [set],
{
If Member?( Global: VarTupCodes, set:sort)

Then PostError( "zcard- Illegal argument.")
Else LengthList( set:Ae!ems);

});
/*************************************
**** FUNCTION: zequate 
*********************** **************/ 

MakeFunction( zequate, [Iteml Item2],
{
If Not( Class?( Iteml))
Then PostError( "Error: " # Iteml #" not recognised") 
Else If Not( Slot?( Iteml, sort) )

Then PostError( "Error: illegal argument," # Item l); 
If Not( Class?( Item2))
Then PostError( "Error: " # Item2 #" not recognised") 
Else If Not( Slot?( Item2, sort) )

Then PostError( "Error: illegal argument," # Item2); 
If ( Iteml:sort =  10)
Then xequatelO( Iteml, Itern2)
Else If ( Iteml:sort =  11)

Then xequatell( Iteml, Item2)
Else If ( Iteml:sort =  12 Or Iteml:sort == 13 Or 

Iteml :sort =  14)
Then xequatel2( Iteml, Item2)
Else If ( Iteml:sort =  21)

Then xequate21( Iteml, Item2)
Else If ( Iteml:sort =  22 Or Iteml.sort 

=  71)
Then xequate22( Iteml, Item2)
Else If ( Iteml:sort =  23 Or 

Iteml :sort =
24 Or Iteml :sort 
=  25 Or Iteml :sort 
—  72 Or Iteml.sort 
=  81)

Then xequate23( Iteml,
Item2)

Else If ( Iteml:sort 
=  41)

Then xequate41( Iteml,
Item2)

Else If ( Iteml :sort

4 2 )
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Then xequate42( Iteml,
Item2)

Else PostError( "zequate - Not yet available.");
});

j * * * * * * * * * ♦ * * ♦ ♦ ♦ * * * ♦ * * * * * * * * *♦ ♦ ♦ ♦ * * * **
**** FUNCTION: zintersect

MakeFunction( zintersect, [setl set2],
{
xvalid_var( se tl); 
xvalid_var( set2);
If Member?( Global: VarTupCodes, setl:sort)

Then PostError( "Error zintersect: " # setl # " is not a set");
If Member?( Global: VarTupCodes, set2:sort)

Then PostError( "Error zintersect:" # set2 # " is not a set");
If ( setl: sort =  21)
Then xintersect21( setl, set2)
Else If ( setl:sort =  22 Or setl:sort =  41 Or setl:sort 

=  71)
Then xintersect22( setl, set2)
Else If ( setl'.sort =  23 Or setl:sort == 24 Or setl:sort 

=  25 Or setl :sort == 42 Or setT.sort 
—  72 Or setl:sort =  81)

Then xintersect23( setl, set2)
Else PostError( "zintersect - Not yet available.");

>■);

**** FUNCTION: zmakeemply

MakeFunction( zmake emply, [Set],
{
If Member?( Global: VarTupCodes, Set:sort)

Then PostError( "ERROR zmake_empty - illegal argument")
Else {

If ( Set:sort =  21)
Then {

ClearList( Set:Aelems);
Set;
>

Else If ( Set:sort =  22 Or Setrsort =  41 Or Set:sort 
=  71)

Then {
ClearList( Set:Aelems);
ClearList( Set:Belems);
Set;
}

Else If ( Setsort =  24 Or Set:sort =  25 
Or Set:sort =  42 Or Set:sort 
=  72 Or Set:sort =  81)

Then {
ClearList( Set:Aelems);
ClearList( Set:Belems);
ClearList( Set:Celems);
Set;
}

Else PostError( "zmake_empty - Not yet available");
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>;
});

/*************************************
**** FUNCTION: zmakejmap
ft************************************/

MakeFunction( zmakemap, [varl var2],
{
xvalid_var( varl); 
xvalid_var( var2 );
If ( varl: sort =  10 And var2:sort =  10)
Then xmakell( varl, var2)
Else If ( varl:sort =  10 And var2:sort = 1 1 )

Then xmakel3( varl, var2)
Else If ( varl:sort = 1 1  And var2:sort =  10)

Then xmakel4( varl, var2)
Else PostError( "zmake_map - Not yet available");

>);

**** FUNCTION: zmake_setl

MakeFunction( zmake setl, [elem],
{
If ( elem:sort =  10)
Then xmake211( elem)
Else If ( elem:sort = 1 1 )

Then xmake221( elem)
Else If ( elem:sort =  12 Or elem:sort =  13 Or elem:sort 

=  14)
Then xmake231( elem)
Else PostError( "zmake_setl - Not yet available");

});

**** FUNCTION: zmaketriple

MakeFunction( zmake_triple, [varl var2 var3],
{
xvalid_var( varl); 
xvalid_var( var2 ); 
xvalid_var( var3);
If ( varl: sort =  10 And var2:sort =  10 And var3:sort =

10)
Then xmakel2( varl, var2, var3 )
Else PostError( "zmake map - Not yet available");

});

**** FUNCTION: zminus

MakeFunction( zminus, [numl num2],
{
If ( numl:sort != 10 Or num2:sort != 10)

Then PostError( "ERROR zminus: bad argument")
Else If Not( Member?( Global:Numerics, numl:Atype) And 

Member?( Global:Numerics, num2:Atype))
Then PostError( "ERROR zminus: type missmatch")

>
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Else If ( Not( Number?( numl: Aval) )  Or Not( Number?( num2:Aval) ) )  
Then PostError( "ERROR zminus: non numeric argument" )
Else {

Global:TempNum += 1;
Let [temp Temp # Global:TempNum]

{
MakeClass( temp, Temp ),
MakeSlot( tempisort, 10);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER); 
MakeSlot( temp:Atype, Z );
MakeSlot( temp:Aval, numl:Aval - 

num2:Aval);
SetSlotOption( tempiAval, VALUE_TYPE,

NUMBER);
temp;
>;

};
>);

**** FUNCTION: zmod

MakeFunction( zmod, [numl num2],
{
If ( riumlisort != 10 Or num2:sort != 10 )
Then PostError( "ERROR zminus: bad argument")
Else If Not( Member?( GlobaliNumerics, numlrAtype) And 

Member?( GlobaliNumerics, num2:Atype))
Then PostError( "ERROR zminus: type missmatch")
Else If ( Not( Number?( numlrAval) )  Or Not( Number?( num2:Aval) ) )  

Then PostError( "ERROR zminus: non numeric argument")
Else {

GlobaliTempNum += 1;
Let [temp Temp # Global:TempNum]

{
MakeClass( temp, Temp);
MakeSlot( tempisort, 10);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER); 
MakeSlot( tempiAtype, Z );
MakeSlot( tempiAval, numliAval - 

num2:Aval 
* Floor( numl: Aval 

/
num2:Aval));

SetSlotOption( tempiAval, VALUE_TYPE,
NUMBER);

temp;
};

>;
>);

**** FUNCTION: zmult

MakeFunction( zmult, [numl num2],
{
If ( numlisort != 10 Or num2:sort != 10 )

Then PostError( "ERROR zminus: bad argument")



Else If Not( Member?( GlobaliNumerics, numliAtype ) And 
Member?( GlobaliNumerics, num2:Atype))

Then PostError( "ERROR zminus i type missmatch")
Else If ( Not( Number?( numliAval) )  Or Not( Number?( num2iAval) ) )  

Then PostError( "ERROR zminus : non numeric argument")
Else {

GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
MakeClass( temp, Temp);
MakeSlot( tempisort, 10);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER ); 
MakeSlot( tempi Atype, Z );
MakeSIot( tempiAval, numl iAval * 

num2iAval);
SetSlotOption( tempiAval, VALUE_TYPE,

NUMBER);
temp;
>;

};
>);

/*************************************
**** FUNCTION: zneg 
*************************************/

MakeFunction( zneg, [var],
{'
If ( varisort != 10)

Then PostError( "ERROR zneg: bad argument")
Else {

If Not( Number?( var: Aval))
Then PostError( "ERROR zneg: argument must be numeric")
Else {

GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
MakeClass( temp, Temp);
MakeSlot( tempisort, 10);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER);
MakeSlot( tempiAtype, Z );
MakeSlot( tempiAval, Negative( variAval));
SetSlotOption( tempiAval, VALUE_TYPE, NUMBER); 
temp;
>; 

>;
}; 

});
/*************************************
**** FUNCTION: znojchange
ft************************************/

MakeFunction( zno change, [Var],
{>);

/*************************************
**** FUNCTION: zplus
♦a*:***********************************/

MakeFunction( zplus, [numl num2],
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{
If ( numl:sort != 10 Or num2:sort != 10 )

Then PostError( "ERROR zplus : bad argument" )
Else If Not( Member?( GlobaliNumerics, numliAtype) And 

Member?( GlobaliNumerics, num2:Atype))
Then PostError( "ERROR zplus i type missmatch")
Else If ( Not( Number?( numliAval) )  Or Not( Number?( num2:Aval) ) )  

Then PostError( "ERROR zplus I non numeric argument" )
Else {

GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
MakeClass( temp, Temp);
MakeSlot( tempisort, 10);
SetSlotOption( tempisort, VALUE_TYPE, NUMBER );
MakeSlot( tempiAtype, Z );
MakeSlot( tempiAval, numl i Aval + 

num2;Aval);
SetSlotOption( tempiAval, VALUE_TYPE,

NUMBER);
temp;
};

>;
>);

/*************************************
• **** FUNCTION: zset_comp_01
ft************************************/

MakeFunction( zset_comp_01, [dum set vail rel val2],
{
If Not( Member?( GlobaliLocals, dum ) )
Then PostError( "ERROR zset_comp_01: " # dum #" is not local\dummy var" ); 

If ( Not( IsAKindOf?( set, Temp))  And Not( IsAKindOf?( set,
GlobaliState))

And Not( Is AKindOf?( set, Locals ) )  And Not( Is AKindOf?( set,
Inputs) ) )

Then PostError( "ERROR zset_comp_01: illegal argument, set");
If Not( Member?( GlobaliMathRels, rel) )

Then PostError( "ERROR zsetcompOl: " # rel #" is not logical relation");
If ( Not( Member?( GlobaliLocals, vail) )  And Not( IsAKindOf?( vail,

zeros))
And Not( Member?( GlobaliStateVars, vail))
And Not( Member?( Globalilnputs, vail) ) )

Then PostError( "ERROR zset_comp_01: illegal argument, vail");
If ( Not( Member?( GlobaliLocals, val2) )  And Not( IsAKindOf?( val2,

zeros))
And Not( Member?( GlobaliStateVars, val2))
And Not( Member?( Globalilnputs, val2) ) )

Then PostError( "ERROR zset_comp_01: illegal argument, val2");
If ( dumisort =  10)

Then xsetcomp01a( dum, set, vail, rel, val2)
Else PostError( "zsetcompOl: NOT YET AVAIL ABE" );

});
/*************************************
**** FUNCTION: zsubtract 
*************************************/

MakeFunction( zsubtract, [setl set2],
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{
xvalid_var( setl); 
xvalid_var( set2);
If Member?( Global: VarTupCodes, setl:sort)

Then PostError( "Error zsubtract:" # setl # " is not a set"); 
If Member?( Global: VarTupCodes, set2:sort)
Then PostError( "Error zsubtract:" # set2 #" is not a set"); 

If ( setl:sort =  21)
Then xsubtract21( setl, set2)
Else If ( setl:sort =  22 Or setl:sort =  41 Or setl:sort 

=  71)
Then xsubtract22( setl, set2 )
Else If ( setl: sort =  23 Or setl: sort =  24 Or setl'.sort 

=  25 Or setT.sort =  42 Or setl:sort 
=  72 Or setT.sort =  81)

Then xsubtract23( setl, set2)
Else PostError( "zsubtract - Not yet available.");

>);

**** FUNCTION: zunion
* ** * * * 4c * * * * % ** *** *** * * *** *** *** *** ***/

MakeFunction( zunion, [setl set2],
{
xvalid_var( setl); 
xvalid_var( set2);
If Member?( Global: VarTupCodes, setl:sort)

Then PostError( "Error zunion:" # setl # " is not a set"); 
If Member?( Global: VarTupCodes, set2:sort)

Then PostError( "Error zunion:" # set2 #" is not a set"); 
If ( setT.sort =  21)

Then xunion21( setl, set2)
Else If ( setl:sort =  22 Or setl:sort =  41 Or setl:sort 

=  71)
Then xuniori22( setl, set2)
Else If ( setl:sort =  23 Or setl:sort =  24 Or setl:sort 

=  25 Or setl:sort =  42 Or setl:sort 
=  72 Or setl:sort =  81)

Then xunion23( setl, set2 )
Else PostError( "zunion - Not yet available.");

>);



**** FUNCTION: xconcat41 
*************************************/

MakcFunction( xconcat41, [Seql Seq2],
{
If ( Seql:sort != 41 And xconstrvioln?( 41, Seql ) )

Then PostError( "zconcat Seql # ” is not a sequence.” )
Else If Not ( Seq2:sort =  41

Or ( Member?( GlobalrNumerics, Seq2:Atype)
And Min( Seq2:Aelems) >= 1
And ( Seq2:sort =  22 Or Seq2:sort =  7 1 ) ) )

Then PostError( "zconcat - Illegal argument.”)
Else If ( Seq2:sort != 41 And xconstivioln?( 41, Seq2))

Then PostError( "zconcat - ” # Seq2 # ” is not a sequence.” )
Else If Not ( ( SeqliBtype #= Seq2:Btype) Or

( Member?( GlobaliNumerics, SeqliBtype) And 
Member?( GlobaliNumerics, Seq2:Btype) ) )

Then PostError( "zconcat - Type missmatch.")
Else {

GlobaliTempNum += 1;
Let [ temp Temp # GlobaliTempNum ]

{
xmake_temp( 22, temp, Seql);
SetValue( tempisort, 41);
For count From 1 To LengthList( SeqliAelems ) Do {

Let [ pos GetElemPos( Seql lAelems, count) ]
{
AppendToList( tempiAelems, count);
AppendToList( tempiBelems, GetNthElem( SeqliBelems, pos)); 
>;

};
Let [ start LengthList( SeqliAelems) ]

{
For count From 1 To LengthList( Seq2:Aelems) Do {

Let [ pos GetElemPos( Seq2: Aelems, count) ]
{
AppendToList( tempiAelems, count + start); 
AppendToList( tempiBelems, GetNthElem( Seq2:Belems,

pos));
>; 

>; 
>;

temp;
>;

};

/*************************************
**** FUNCTION: xcreate_fimc 
*************************************/

MakeFunction( xcreate fiinc, [varname x],
{
GlobaliVarstruct = PostMenu( "Select variable structure”, GlobaliVarFns, 

”* CANCEL*”);
If Not( GlobaliVarstruct #= ”* CANCEL *”)

Then {
If ( GlobaliVarstruct #= "A —|—> B”)
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Then xcreate71( vamame, x )
Else If ( GlobalrVarstruct #= "A - |- >  BxC")

Then xcreate72( vamame, x )
Else If ( Global: Varstmct #= "AxB —J—> C” )

Then xcreate81( vamame, x )
Else {

PostMessage( "NOT YET IMPLEMENTED"); 
xremove_var( vamame, x );
>;

>
Else {

xremove_var( vamame, x );
PostMessage( vamame # " deleted.");
};

>);

/*************************************
**** FUNCTION: xcreate_set 
*************************************/

MakeFunction( xcreatejset, [vamame x],
{
Global: Varstract = PostMenu( "Select variable structure", Global: VarSets, 

"* CANCEL *");
If Not( Global: Varstract #= "* CANCEL *")

Then {
If ( GlobalrVarstruct #= FA)

Then xcreate21( vamame, x )
Else If ( Global: Varstract #= "F ( AxB)")

Then xcreate22( vamame, x )
Else If ( GlobalrVarstruct #= "F ( AxBxC)")

Then xcreate23( vamame, x )
Else If ( GlobalrVarstruct #= "F ( Ax( BxC))")

Then xcreate24( vamame, x )
Else If ( GlobalrVarstruct #=

"F (( AxB )xC)")
Then xcreate25( vamame, 

x )
Else {

xremove_var( vamame, 
x);

PostMessage( vamame 
#
" deleted.");

>
Else {

xremove_var( vamame, x );
PostMessage( vamame # " deleted.");
};

>);

**** FUNCTION: xcreatejvar

MakeFunction( xcreate_var, [x],
{
If ( x #= S And Null?( GlobalrState ) )

Then PostMessage( "You have not created a state schema box.")

m



Else {
ResetValue( GlobaliVamame );
PostInputForm( "Enter variable nameGlobaliVamame,

Name);
If ( Class?( GlobaliVamame) Or Instance?( GlobaliVamame))  

Then PostMessage( GlobaliVamame # M has already been used.") 
Else {

GlobaliSort = PostMenu( "What sort of variable ?",
Tuple, Set, Bag, Sequence,
Function,"* CANCEL*" );

If Not( GlobaliSort #= "* CANCEL *" )
Then {

I f (x#=L)
Then {

MakeClass( GlobaliVamame, Locals); 
AppendToList( GlobaliLocals, GlobaliVamame);
};

If ( x#= S )
Then {

MakeClass( GlobaliVamame, GlobaliState); 
AppendToList( GlobaliStateVars,

GlobaliVamame);
>;

I f (x#=I )
Then {

MakeClass( GlobaliVamame, Inputs); 
AppendToList( Globalilnputs, GlobaliVamame);
};

l f ( x # = 0 )
Then {

MakeClass( GlobaliVamame, Outputs); 
AppendToList( GlobaliOutputs, GlobaliVamame);
};

If ( GlobaliSort #= Set)
Then xcreate_set( GlobaliVamame, x );

If ( GlobaliSort #= Tuple )
Then xcreate_tuple( GlobaliVamame, 

x);
If ( GlobaliSort #= Function)
Then xcreate_func( GlobaliVamame, x );

If ( GlobaliSort #= Sequence)
Then xcreate_seq( GlobaliVamame, x );

If ( GlobaliSort #= Bag)
Then xcreate_bag( GlobaliVamame, x );

>; 
>; 

>;
>);

**** FUNCTION: xextract41 
*************************************/

MakeFunction( xextract41, [Set Seq],
{
If ( Seqisort != 41 And xconstrvioln?( 41, Seq ) )

Then PostError( "zextract - " # Seq # " is not a sequence." )
Else If Not ( Setisort == 21 And Member?( GlobaliNumerics, SetiAtype))  

Then PostError( "zextract - Illegal argument." )
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Else {
GlobaliTempNum += 1;
Let [ temp Temp # GlobaliTempNum ]

{
xmake_temp( 22, temp, Seq);
SetValue( tempisort, 41);
zequate( temp, zsquash( zdom_res( Set, Seq)));
temp;
>; 

>;
>);

**** FUNCTION: xfilter41 
*************************************/

MakeFunction( xfilter41, [Seq Set],
{
If ( Seqisort != 41 And xconstrvioln?( 41, Seq))

Then PostError( "zfilter - " # Seq #" is not a sequence.")
Else If Not ( Setisort — 21 And

( SetiAtype #= SeqiBtype Or 
( Member?( GlobaliNumerics, SetiAtype) And 
( Member?( GlobaliNumerics, SeqiBtype) ) ) ) )

Then PostError( "zfilter - Illegal argument.")
Else {

GlobaliTempNum += 1;
Let [ temp Temp # GlobaliTempNum ]

{
xmake_temp( 22, temp, Seq);
SetValue( tempisort, 41);
zequate( temp, zsquash( zran_res( Seq, Set)));
temp;
>; 

>;
});

/*************************************
**** FUNCTION: xfront41

MakeFunction( xfront41, [Seq],
{
If ( Seqisort != 41 And xconstrvioln?( 41, Seq))
Then PostError( "zfront - " # Seq # " is not a sequence."); 

GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 22, temp, Seq);
SetValue( tempisort, 41);
For count From 1 To ( LengthList( Seq: Aelems)

-1 )
Do {

Let [pos GetElemPos( SeqiAelems, count)]
{
AppendToList( tempiAelems, count);
AppendToList( tempiBelems, GetNthElem( SeqiBelems, 

pos));
>; 

>;
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temp;
};

>);

**** FUNCTION: xhead41
I***********:******:********************/

MakeFunction( xhead41, [Seq],
{
If ( Seq:sort != 41 And xconstrvioln?( 41, Seq))

Then PostError( "zhead - " # Seq # " is not a sequence." ); 
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 10, temp, Seq);
If ( Member?( GlobaliNumerics, SeqiBtype))

Then {
SetValue( tempiAtype, Z );
SetSlotOption( tempiAval, VALUE_TYPE, NUMBER);
>

Else {
SetValue( tempiAtype, SeqiBtype);
SetSlotOption( tempiAval, VALUE_TYPE, TEXT);
>;

SetValue( tempiAval, GetNthElem( SeqiBelems,
GetEIemPos ( SeqiAelems, 1))) ;

temp;
};

>);  .

**** FUNCTION: xlast41
I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

MakeFunction( xlast41, [Seq],
{
If ( Seqisort != 41 And xconstrvioln?( 41, Seq))

Then PostError( "zlast - " # Seq # " is not a sequence."); 
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 10, temp, Seq);
If ( Member?( GlobaliNumerics, SeqiBtype))

Then {
SetValue( tempiAtype, Z );
SetSlotOption( tempiAval, VALUETYPE, NUMBER);
>

Else {
SetValue( tempiAtype, SeqiBtype);
SetSlotOption( tempiAval, VALUETYPE, TEXT);
};

SetValue( tempiAval, GetNthElem( SeqiBelems,
GetEIemPos ( SeqiAelems, LengthList ( SeqiAelems))));

temp;
>; 

>);

**** FUNCTION: xtail41

//*f



*  *  *  *  *  * *  *  *  *  *  *  *  *  *  *  *  ♦  *  *  ♦  *  * *  *  *  *  *  *  *  *  *  *  *  *  * /

MakeFunction( xtail41, [Seq],
{
If ( Seqisort != 41 And xconstrvioln?( 41, Seq))
Then PostError( "ztail - ” # Seq # " is not a sequence." );

GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 22, temp, Seq);
SetValue( tempisort, 41);
For count From 2 To LengthList( SeqiAelems)

Do {
Let [pos GetElemPos( SeqiAelems, count)]

{
AppendToList( tempiAelems, count - 1);
AppendToList( tempiBelems, GetNthElem( SeqiBelems, 

pos));
}; 

};
temp;
>;

>);

/*************************************
**** FUNCTION: xload_spec

MakeFunction( xload_spec, [],
{
ResetValue( GlobaliFileName);
PostInputForm( "Load File", GlobaliFileName, "Enter File Name ( with no extension.)"); 
PostBusy( ON, "Loading Specification. Please Wait.");
InterpretFile( GlobaliFileName # .KAL );
PostBusy( OFF);
PostMessage( "The specification" # GlobaliFileName # ".KAL has been loaded.");
});

/*************************************
**** FUNCTION: xmake_fimc71 
*************************************/

MakeFunction( xmake_func71, [func],
{
MakeFunction( func, [ x ],

{
If ( xisort != 10 Or Not( xiAtype #= funciAtype))
Then PostError( firnc # " type missmatch")
Else If Not( Member?( func.Aelems, xiAval))

Then PostError( x # " not in domain of" # firnc)
Else {

GlobaliTempNum +=1;
Let [t Temp # GlobaliTempNum]

{
xmake_temp( 10, t, func);
SetValue( tiAtype, fimciBtype);
If Member?( GlobaliNumerics, tiAtype)

Then SetSlotOption( tiAval, VALUETYPE,
NUMBER)

Else SetSlotOption( tiAval, VALUE_TYPE,
TEXT);
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t:Aval = GetNthElem( funciBelems, 
GetElemPos( funciAelems, 

x:Aval));
t;
}; 

};
});

>);

/*************************************
**** FUNCTION: xrev41
♦it:***********************************/

MakeFunction( xrcv41, [Seq],
{
If ( Seqisort != 41 And xconstrvioln?( 41, Seq))

Then PostError( "zrev - ” # Seq # ” is not a sequence.” ); 
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 22, temp, Seq);
SetValue( tempisort, 41);
For count From 0 To ( LengthList( SeqiAelems) - 1) Do {

Let [pos GetElemPos( SeqiAelems,
LengthList( SeqiAelems ) - count) ]

{
AppendToList( tempiAelems, count + 1);
AppendToList( tempiBelems, GetNthElem( SeqiBelems, pos)); 
};

>;
temp;
};

>);

/*************************************
**** FUNCTION: xshow var

MakeFunction( xshow_var, [],
{
Let [x PostMenu( "Select type of variable to display.", State,

Input, Output, Local, "* CANCEL *" )]
{
If ( x #= State)

Then xshow_state_var( )
Else If ( x #= Input)

Then xshow_input_var( )
Else If ( x #= Output)

Then xshow_output_var( )
Else If ( x #= Local)

Then xshow_local_var( );
}; 

});

**** FUNCTION: xsquash41

MakeFunction( xsquash41, [Seq],
{
If ( xconstrvioln?( 71, Seq))



Then PostError( "zsquash - " # Seq # " can not be squashed." ); 
GlobaliTempNum += 1;
Let [temp Temp # GlobaliTempNum]

{
xmake_temp( 22, temp, Seq);
SetValue( tempisort, 41);
For count From 1 To Max( SeqiAelems) Do {

If Member?( SeqiAelems, count)
Then {

AppendToList( tempiAelems, LengthList( tempiAelems) + 1); 
AppendToList( tempiBelems, GetNthElem( SeqiBelems, 

GetElemPos( SeqiAelems, count)));
};

>;
temp;
>;

>);

**** FUNCTION: zconcat 
*************************************/

MakeFunction( zconcat, [Seql Seq2],
{
xvalid_var( Seql); 
xvalid_var( Seq2 );
If Not( Member?( Global:VarSeqCodes, Seqlisort)

Or ( Member?( GlobaliNumerics, Seql: Atype)
And Min( SeqliAelems) >= 1 
And ( Seqlisort =  22 Or Seqlisort =  24 

Or Seqlisort —  71 Or Seqlisort == 72 ) ) )
Then PostError( "zconcat - Illegal argument" )
Else If ( Seqlisort =  22 Or Seqlisort =  41 Or Seqlisort === 71) 

Then xconcat41( Seql, Seq2)
Else If ( Seqlisort =  24 Or Seqlisort =  42 Or Seqlisort =  12) 

Then xconcat42( Seql, Seq2)
Else PostError( "zconcat - Not yet available.");

>);

**** FUNCTION: zfilter 
*************************************/

MakeFunction( zfilter, [Seq Set],
{
xvalid_var( Set); 
xvalid_var( Seq);
If Not( Member?( Global: VarSeqCodes, Seqisort)

Or ( Member?( GlobaliNumerics, SeqiAtype)
And Min( SeqiAelems) >= 1 
And ( Seqisort =  22 Or Seqisort —  24 

Or Seqisort =  71 Or Seqisort =  7 2 ) ) )
Then PostError( "zfilter - Illegal argument")
Else If ( Seqisort =  22 Or Seqisort =  41 Or Seqisort =  71) 

Then xfilter41( Seq, Set)
Else If ( Seqisort =  24 Or Seqisort =  42 Or Seqisort =  12) 

Then xfilter42( Seq, Set)
Else PostError( "zfilter - Not yet available.");

>);
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*̂************************************
**** FUNCTION: zfront 
***************************1**********/

MakeFunction( zfront, [Seq],
{
xvalid_var( Seq);
If Not( Member?( Global:VarSeqCodes, Seq:sort)

Or ( Member?( Global:Numerics, Seq:Atype)
And Min( Seq:Aelems ) >= I And ( Seq.sort

22
Or
Seq:sort

24
Or
Seq.sort

71
Or
Seq.sort

7 2 ) ) )
Then PostError( "zfront - Illegal argument" )
Else If ( Seq:sort =  22 Or Seq:sort =  41 Or Seq.sort =  

71)
Then xfront41( Seq)
Else If ( Seq:sort =  24 Or Seq:sort =  42 Or Seq:sort 

=  72)
Then xfront42( Seq )
Else PostError( "zfront - Not yet available.");
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