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Abstract

There is considerable interest in the role of aggregated protein in the underlying 

pathology of human neurodegenerative conditions including Alzheimer’s disease 

(AD), light chain amyloidosis, spongiform encephalopathies, Huntingdon’s disease, 

Parkinson’s disease, etc. AD is a progressive neurodegenerative condition 

responsible for dementia in the elderly. An early onset, familial genetic basis 

(FAD) for the disease has been established in kindreds, where mutations in the 

amyloid precursor protein (APP) and the presenilin proteins (PS) cause cerebral 

deposition and aggregation of the p-amyloid (Ap) peptide responsible for the 

clinical and pathological features of the disease.

In order to investigate the cell biology of presenilinl and the effect of AD- 

causing mutations on intracellular dynamics, constructs of enhanced green 

fluorescent protein fused to wild type or mutant N-terminal fragment and full-length 

PS1 were prepared. Immunocytochemical analysis reveals that the fusion proteins 

display four distinct phenotypes: ER, Golgi, vesicular and ‘blob-like aggregates’. 

Furthermore, removal of the EGFP moiety had no effect on the phenotype. The 

‘blob-like aggregates’, are high copy number, ubiquitinated structures that originate 

from the nuclear/ER interface, and are not dependent on microtubules for their 

formation nor are they contained by the intermediate filament vimentin, indicating 

that they are neither aggresomes nor inclusion bodies.

Moderate to high levels of the fusion protein disrupt the endoplasmic 

reticulum and Golgi compartments, suggesting that the normal trafficking of 

materials within the cell may be disturbed. Additionally, the N-terminal construct 

sensitises cells to staurosporine-induced apoptosis. TEM images from cells 

expressing the fusion protein reveals numerous phagosomes and mutilaminar 

bodies that fit the profile seen for the blob-like aggregates in terms of dimension, 

number and general morphology. These data suggest that the blob-like 

aggregates might be novel membrane-bound structures. These fusion proteins 

provide a convenient means for studying the consequences of protein aggregation 

on the ubiquitin-proteasome system (UPS), apoptosis and phagocytosis within the 

cell.
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Chapter 1

1.0 Relevance of Alzheimer’s disease

For the majority of individuals living in the West, the advent of modern medicine, 

particularly the development of antibiotics in the previous century, has effectively 

extended the average life expectancy. Mortality commonly associated with 

microbial infection has now been supplanted by maladies arising as a 

consequence of the normal ageing process. As the population ages the health 

cost associated with increased longevity threatens to undermine Western health 

care systems. Of increasing concern is the rise in the number of cases of 

dementia, particularly Alzheimer’s disease (AD) now thought to affect 15 million 

individuals world-wide. Beside the emotional burden placed on patients, their 

families and carers, society will have to reckon with the long-term economic costs 

of a population affected by AD. The annual economic costs of AD to the USA alone 

were estimated at US$ 80-100 billion (National Institute on Aging). Thus efforts to 

find an effective therapy to this most debilitating disease are crucial if a future 

social healthcare crisis is to be avoided.

1.1 Introduction to Alzheimer’s Disease

In 1906 at a scientific meeting in Munich a Bavarian psychiatrist, Alois Alzheimer 

(1864-1915) described the neuropathology of a 51-year-old Frankfurt woman 

referred to as Auguste D, who had died following a period of progressive dementia. 

Using recently developed silver staining techniques, Alzheimer described a host of 

pathological abnormalities including amyloid plaques and neurofibrillarly tangles, 

now considered the major hallmarks of the disease. AD is the commonest form of 

dementia accounting for 50-70% of typical late onset cases, and is characterised 

by progressive loss of memory and orientation. It is an age-related condition 

affecting approximately 11% of the population over 65 years of age and 50% over 

85 years of age (Hof et al, 1995). Globally, AD is thought to affect 1 in 20 people. 

Though the aetiology of the disease process is currently unknown, AD can 

manifest itself in two ways. Firstly, a familial basis for AD (FAD) has been



established whereby specific gene mutations cause the early onset of the disease. 

Secondly, whereas FAD accounts for less than 1% of all AD cases, the majority of 

patients who exhibit AD characteristics do so sporadically. This late-onset AD 

(LOAD) is likely due to genetic as well as epigenetic (environmental) factors. In 

general terms, AD can be thought of as a multifactorial syndrome resulting from 

impaired processing of proteins, oxidative stress and inflammation events rather 

than as a disease attributable to a single cause (Selkoe, 1999). Much of the earlier 

research in AD consisted of anatomical investigations of the brain coupled with 

improved silver staining protocols. The development of biochemical and 

immunological techniques since the 1970s have provided a wealth of data on AD 

pathology, that when taken together with current molecular and genetic 

technologies has brought the prospect of an effective therapeutic treatment ever 

closer. A simplified schema outlining the history of AD research from its initial 

descriptions back in 1906 to the present day is shown in figure 1.0.

1.2 Pathophysiological features of AD

(i) Neurological and transmitter alterations

In the early stages of the disease, neurodegeneration occurs primarily within 

cholinergic regions such as the hippocampus, entorhinal cortex and amygdala, 

suggesting early-stage AD to be a corticolimbic neurodegenerative disorder 

(Pearson and Powell, 1989; Schneider et al, 1999). Even in mild cases of AD 

there is already a 50% loss of neurons in the entorhinal cortex, a neural bridge that 

connects the hippocampus with the neocortex.

Initially, an AD patients motor, sensory, and linguistic abilities are preserved, 

however eventually the disease evolves into a global impairment affecting multiple 

cognitive domains, leading to dementia and ultimately death. Behaviourally, 

affected individuals are no longer able to perform learned perceptuo-motor tasks 

such as dressing, washing, eating etc, and invariably patients show impaired social 

skills and are given over to bouts of jealously, and in some instances, violent rage. 

In advanced stages of the disease affected individuals show significant memory

5



2001 onwards

Decade  
of familial 
AD

2000
Tau mutations 1998

Presenilin mutations 1995
A PP mutations 1991

-  1990

1970

Elucidation of sporadic AD  
etiology?
Prevention and therapy of 
sporadic and familial AD?

Molecular and cellular 
biological and reverse genetic 
studies

Pathological chronology 
Pathobiochemistry 
Transmitter studies

Clinical and pathological 
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Figure 1.0. Simplified time line of AD research from first discovery in 1906 
to present day. Modified from Saido, (2003).

loss, aphasia (loss of language), apraxia (impairment of purposeful movement) and 

agnosia (inability to recognise objects) (Strange, 1992).

Many of these behavioural changes can be explained by the loss of various 

neurotransmitters and their associated markers. These include losses of 

noradrenergic neurones in the locus ceruleus (structures associated with an 

individual’s level of attention and vigilance) and decreases in the serotonergic 

system responsible for overall cortical activity. Most striking is the loss of markers 

from cholinergic neurons in the basal forebrain and ventral striatum (Perry et al, 

1973).
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The loss of cortical choline acetyl transferase (CAT) and decline in acetylcholine 

synthesis in biopsy specimens has been found to correlate strongly with cognitive 

impairment (Felician and Sandson, 1999; Vickers et al, 2000; Law et al, 2001). In 

terms of therapeutics, the selected loss in cholinergic neurotransmission as a 

consequence of AD has been addressed through the use of drugs that either 

sustain the action of acetylcholine within the synaptic cleft or mimic its action at 

cholinergic receptors. Overall though, cholinergic enhancement provides at best 

only mild symptomatic relief for patients with AD, thus current research into new 

therapies is focused on non-cholinergic aspects of AD metabolism.

(ii) Micro-histopathological features of AD

As well as gross anatomical changes in the AD brain such as gyral atrophy typified 

by sulci widening, ventricular dilation and frontal, parietal and temporal lobe 

shrinkage, post mortem microscopic examination reveals the presence of two 

distinct micro-pathological lesions. The first of these lesions, originally noted by 

Alzheimer himself, consist of interneuronal, aggregated fibrils referred to as 

neurofibrillarly tangles (NFTs). The second type of lesion consists of aggregated 

P-amyloid (Ap) peptides that form extracellular inclusions referred to as senile 

plaques.

(iii) NFTs contain aggregates of hyperphosphorylated tau

In AD brains tau deposits occur as abnormally phosphorylated intracellular threads 

within neurites (dendrites and axonal terminals that have degenerated), or as NFTs 

composed of pairs of ~10 nm filaments wound into paired helical filaments (PHF) 

located within the neuronal cell body (figure 1.1). The normally soluble tau present 

in tangles resists the actions of most detergents such as SDS or guanidine 

hydrochrolride but can be partially solubilized by boiling in SDS. In fact, long after 

neurons have undergone apoptosis NFTs remains as so-called ‘tombstone’ 

markers (Selkoe et al, 1982). Tau is one of several microtubule-associated proteins 

(MAPs) that function to stabilise microtubules responsible for maintaining cell 

polarity, intracellular transport and the development of cellular processes.
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Figure 1.1. p-Amyloid plaque ‘A’ present within amygdala of a 69 year old AD 
male (plaque diameter ~75(liM). Pyramidal neurons show neurofibrillary tangles 
(darkly staining bodies). Arrowheads indicate dystrophic neurites containing PHF. 
Specimen shows Bielchowsky silver staining (Selkoe, 1991).

The spatial-temporal development of AD and the attendant clinical manifestations 

of the disease correlate well with tau pathology and synaptic loss. Tau deposits 

spread from the transentorhinal region to the hippocampus and the neocortex in a 

series of observable stages, six in all, the first two being pre-clinical (Braak and 

Braak, 1991). The majority of AD cases are sporadic, i.e. there is no underlying, 

overt genetic cause, and thus tau PHFs have been proposed as the best correlate 

for clinical progression/pathological indicator of AD. Tau proteins undergo  

phosphorylation at multiple sites as a means of regulating its microtubule binding 

properties. Learning and memory formation requires that neurons and their 

synapses be labile so as to allow new memories to be hard wired into new or pre­

existing neural networks. This requires flexibility of the underlying cytoskeletal 

architecture, thus de novo microtubule assembly and stabilisation requires the 

presence of proteins such as tau and other MAPs at axonal locations and synaptic 

junctions (Arendt, 2001).
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Tau has multiple phoshorylation sites accessible to a variety of different kinases 

such as glycogen synthase kinase-3 (GSK-3), MAP kinase, cyclin dependent 

kinase 5, microtubule affinity-regulating kinase (MARK), etc (Mandelkow and 

Mandelkow, 1998). It is the combined actions of kinases and phosphatases that 

are responsible for the constant remodelling of the cell interior, for example during 

mitosis. In the AD brain tau undergoes aberrant phosphorylation at sites only seen 

during foetal development. Following hyperphosphorylation the ability to bind to 

microtubules is lost leaving tau free to associate with sulphated  

glycosaminoglycans or nucleic acids, leading to the formation of PHF within 

neurons (Goedert, 1996; Hasegawa et al, 1997), which consequently disturb 

axonal transport, ultimately affecting neurite outgrowth. Destabilization may 

decrease axoplasmic flow, so generating dystrophic neurites that contribute to 

synaptic loss.

Several questions concerning the formation of tangles remains unanswered, 

in particular the nature of the trigger and the identity of the kinase responsible for 

the hyperphosphorylation of tau. Whist PHF can be generated in vitro, attempts at 

generating them in cell models has so far failed. Moreover, over expression of 

human tau isoforms in transgenic mice has not resulted in an AD-like pathology 

(Mandelkow and Mandelkow, 1998). Ultimately NFTs within neurites of the AD 

brain may be seen to be the pathological consequence of Ap amyloidosis rather 

than as a first cause.

(iv) Amyloid peptide deposits in the AD brain

The second pathological lesion found in the AD brain is the presence of 

extracellular plaques that fall broadly into two morphologically distinct types, so 

called neuritic and diffuse plaques. Following purification and sequencing in the 

1980s plaques were found to contain aggregated fibrils of Ap peptide (Glenner and 

Wong, 1984; Masters et al, 1985). Under normal metabolic conditions Ap is 

proteolytically derived from its amyloid precursor protein (APP) by the sequential 

action of two secretases, referred to as P- and y-secretase, to yield a 4 kDa peptide 

composed of 39-43 amino acids (Kang et al, 1987). In the case of y-secretase,

cleavage is mediated either directly by a group of transmembrane proteins referred
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to as the presenilins (PS1 and PS2), or else the presenilins are a crucial cofactor 

intimately involved in the y-cleavage of APP (Selkoe, 1999).

(v) Neuritic plaques

Neuritic plaques are spheroid structures 10 to 120 jum diameter found in large 

numbers in the limbic and association cortices that vary in the degree of 

compaction of the amyloid core (Dickson, 1997). Analysis of the core reveals Ap 

fibrils (7-10 nm) intermixed with non-fibrillar forms, surrounded by activated 

microglia, fibrillary astrocytes and dystrophic neurites from many neurotransmitter 

classes, both within the amyloid deposit and imm ediately surrounding it. 

Ultrastructural analysis of the neurites reveals the presence of PHF as well as 

abnormally enlarged lysosomes and numerous mitochondria (Selkoe, 1996). 

Activated microglial cells expressing CD45 markers are often found within and 

adjacent to the central core of the plaque whereas astrocytes tend to form a ring 

around the plaque body (Selkoe, 2001).

The time scale in which these changes take place is currently unknown but 

likely involves many months or years. The deposition of Ap appears to be the 

earliest morphological change in the formation of neuritic plaques (Mann and Esiri, 

1989). The C-terminus of Ap affects the solubility of the peptide such that the Ap4o 

variety is extremely soluble compared to Ap42, which readily forms highly insoluble 

fibrils in vitro (Jarret et al, 1993). In fact the latter isoform makes up the bulk of AP 

within neuritic plaques along with Ap40 even though it is produced in very small 

amounts. Overall Ap40 makes up 90% of secreted amyloid, whilst Ap42 is produced 

in fractional amounts, however, co-incubation of Ap42/43 with Ap40 readily forms 

aggregates suggesting that the longer amyloid isoform may act a seeding agent in 

the formation of plaques (Tomita et al, 2001).
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(vi) Diffuse plaques

Diffuse plaques are composed of amorphous A(3 and are found throughout the 

brain particularly within the cerebral vasculature and without the surrounding 

neuritic degeneration. At the time the presence of the soluble nonfibrillary peptide 

and the absence of neurites had been interpreted as representing an early stage in 

the development of senile plaques (Bugiani et al, 1995). However, with the 

development of specific Ap antibodies it became clear that the Ap42 constituted the 

major component of diffuse plaques with no, or little Ap4o immunoreactivity in 

contrast to the heterogeneity of mixed neuritic plaques (Dickson, 1997; Selkoe, 

2001). This would suggest that specific alterations in Ap underlie the variations in 

Ap deposition, arguing against diffuse to neuritic plaque staging (Vickers et al, 

2001). However, evidence supporting a temporal staging of plaque development 

comes from observations that in normal aged, non-AD brains diffuse plaques are 

often found within the limbic and association cortices without any cognitive 

behavioural impairment. Additionally, immunohistochemical analysis of the 

teenage Down Syndrome (DS) brain in which APP is over expressed, reveal the 

presence of diffuse plaques composed solely of Ap42, yet NFT and neuritic 

degeneration is not observed until the third decade, when Ap40 deposits begin to 

associate with plaques, along with microgliosis, astrocytosis (Lemere, 1996).

The aggregation and deposition of Ap in both diffuse deposits and within 

amyloid cores is seen as the defining lesion of AD, yet in some kindreds there exist 

large plaques lacking the classical core of amyloid fibrils (Crook et al, 1998; 

Yanker, 1998). Those regions of the brain not associated with the clinical aspects 

of the disease, such as the thalamus and cerebellum, as well as the brains of equal 

aged matched individuals still show the presence of Ap, albeit in very diffuse 

deposits not associated with plaques or tangles.

Diagnosis during disease onset has proven problematic in the past, however 

the level of Ap42 may be informative as a diagnostic marker in some early onset AD  

families bearing missense mutations (De Jonghe et al, 1999a). Differences in the 

levels of insoluble Ap found in AD, normal and pathologic ageing brains suggest 

that pathologic ageing is a transition state between normal ageing and AD (Wang
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et al, 1999). Current attempts at diagnosing the early stages of AD in living brains 

has been attempted using advances in magnetic resonance imaging techniques 

(Fox and Rossor, 2000). Ultimately, it is the presence of plaques and tangles 

representing classical end-stage lesions that allow a definitive diagnosis of AD to 

be made post mortem.

1.3 Biology of the amyloid precursor protein

(i) Proteolytic processing of APP

APP is a glycosylated, single pass type I transmembrane protein (110-140 kDa) 

constitutively expressed in many different cell types and has many alternate 

transcripts produced from one gene, giving rise to many different APP isoforms 

(Selkoe, 1998). APP belongs to the APP-family, which contains the APP-like 

proteins 1 and 2 (APLP1 and APLP2). Three main APP species have been 

recognised: a 751 and a 770 amino acid protein commonly found in both neurons 

and non-neuronal cells; and a 695 amino acid protein found almost exclusively in 

neurons (Goldgaber et al, 1987; Kang et al, 1987). APP6 95 is expressed both 

intracellularly and at the cell surface, and can be converted at both these sites to 

different secreted forms (Kang et al, 1999). The metabolic fate of APP (half-life of 

~45-60 mins) is thought to be regulated by many factors including first messengers 

such as cholinergic agonists, and second messengers such as phospholipase-C 

and protein kinase-C, which appear to enhance a-secretase activity. This in part 

may be down to alteration in the phosphorylation status of the secretase or 

enhanced trafficking of Golgi-derived APP-containing vesicles to the cell surface 

(Selkoe, 1996).

Like many other proteins passing through the secretory pathway, APP  

undergoes post-translational modifications including N- and O-linked glycosylation, 

phosphorylation and sulphation. APP is co-translationally translocated into the 

endoplasmic reticulum (ER) via its signal peptide and then undergoes maturation 

as it passes through the Golgi (Cook et al, 1997; Hartmann et al, 1997). A 

hydrophobic stretch of amino acids situated at the carboxy terminal of APP helps 

anchor the molecule within the cell membrane compartment. Three main
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secretase enzymes responsible for the cleavage of APP have been identified; the 

a-, p- and y-secretases.

(ii) a-secretase pathway

The a-secretase has not been identified as any single proteinase, but two 

members of the ADAM (a disintegrin and metalloprotease) metalloprotease family, 

ADAM-10 or Kuzbanian and ADAM-17 are candidate a a-secretases. ADAM family 

proteases typically possess several domains including an endothelial growth 

factor-like domain, a transmembrane domain, a cytoplasmic domain and an 

autoinhibitory domain that must be removed for activity. Additionally, these 

proteases are characterised by the presence of a disintegrin domain able to bind 

integrins or other receptors and a metalloproteinase domain that contains a 

consensus active-site sequence for a zinc-dependent metalloprotease (Primkoff 

and Myles, 2000).

ADAM 10 activity releases a soluble form of Delta, a ligand for the cell 

surface receptor molecule Notch responsible for cell fate during development and 

neurogenesis. Cells carrying mutant forms of the KUZ  (ADAM10 gene) do not 

receive inhibitory signals from neighbouring cells leading to an excessive neuronal 

cell proliferation (Primkoff and Myles, 2000). The role of ADAM 10 a-secretase 

activity in basal and stimulated ectodomain shedding of APP has been 

demonstrated by studies investigating ADAM 10 overexpression in cells that lead 

to a severalfold increase of aAPPs and the p10 fragment that is further cleaved by 

the y-secretase to yield soluble p3 (Lammich et al, 1999).

ADAM 17 or tumor necrosis factor-a converting enzyme (TACE) is thought 

to be a membrane-anchored enzyme that shows poor sequence specificity when 

cutting single-pass proteins and is responsible for the release of a 17 kDa tumor 

necrosis factor (a-TNF) fragment involved in inflammation. In the cleavage of APP, 

the a-secretase cuts at a specific distance from the outer membrane surface 

(Sisodia et al, 1992). APP proteolysis occurs between lysine 687 and leucine 688 

(residues 16 &17 of AP) to release a large soluble ectodomain molecule reffered to 

as a-APP, whereas a-secretase activity in combination with y-secretase releases a
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p3 fragm ent containing part of the Ap sequence and a larger C-terminal 

membrane-bound fragment called C83 (figure 1.2). Thus the a-secretase pathway 

is non-amyloidogenic and from the perspective of AD, any shift towards increased 

a-secretase activity might conceivably have beneficial effects. In most cell cultures, 

10-30% of all APP undergoes a-cleavage thus alteration in TACE activity in the 

aged brain may contribute to amyloid formation. TACE is thought to be involved in 

regulated a-secretion since disruption of the TACE gene abolishes regulated a - 

cleavage in cultured cells, whereas APPS is unaffected in cells derived from 

knockout mice (Bauxbaum et al, 1998).

(iii) P-secretase pathway

A second enzyme termed p-secretase (beta-site APP-cleaving enzyme, BACE) is a 

type 1 transmembrane protein that exists as a preproenzyme of 501 amino acids 

that displays several features including a 21-residue signal peptide, a prosegment 

of about 39 residues, a catalytic unit with active site aspartyl residues at positions 

93 and 289, a 27-residue transmembrane region, and a 21-residue C-terminal 

domain (W alter et al, 2001). Studies examining the overexpression of BACE 

reveal the presence of the enzyme within the ER-interm ediate compartment 

(ERGIC), Golgi vesicles and lysosome/endosome compartment of neurons (Vassar 

et al, 1999). The majority of Ap appears to be generated within the trans Golgi 

network (TG N), presumably the same location as P- and y-secretase activity, 

whereas radioiodination experiments and cell surface biotinylation (Lammich et al, 

1999) show a-secretase cleavage of APP at the plasma membrane. BACE is 

highly expressed in brain and other tissues as demonstrated by the production of 

Ap.

Evidence for the role of BACE in APP processing comes from the use of 

antisense oligonucleotides that block BACE expression greatly diminishing the 

production of Ap, whereas, overexpression of BACE in a number of cell lines leads 

to enhances Ap production. Significantly, BACE knock-out mice show no adverse 

phenotype but have dramatically reduced levels of Ap demonstrating that
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elimination does not pose serious consequences for the animal, a factor of great 

importance in targeting BACE for inhibition in AD therapy (Walter et al, 2001).

BACE is a novel transmembrane aspartyl protease that initiates A(3 generation by 

cleaving APP after met 671, producing a ~12 kDa C-terminal fragment some 99 

amino acids in length (Vassar et al, 1999). The C-terminal is retained within the 

membrane whilst the N-terminal is the first amino acid (Asp) of the Ap peptide 

(figure 1.2). The released fragment is referred to as PAPP (Seubert et al, 1992). 

The C99 peptide serves as the substrate for the generation of Ap by the y- 

secretase and therefore constitutes the amyloidogenic pathway responsible for the 

accumulation of Ap. Uniquely APP appears to be the only protein substrate that is 

cleaved by BACE.

(iv) y-secretase pathway

The third protease involved in the proteolysis of APP termed y-secretase, acts on 

both APP transcripts within the hydrophobic transmembrane domain, y-secretase 

is equated as being presenilin, or at the least, intimately associated with y- 

secretase activity (Selkoe, 1999; Wolfe et al, 1999b). In the case of the a-APP C- 

terminal fragment, y-secretase generates a peptide fragment called p3, whilst its 

action on the pAPP C-terminal fragment generates Ap proper. Ap 40 is the 

predominant isoform produced during normal metabolism of pAPP (Haass et al, 

1992; Jarett and Lansbury, 1993) and is detected in the CSF and plasma of normal 

healthy individuals throughout life, y-secretase cleavage of APP at valine 711 

generates Ap4o or the toxic Ap42 species following cleavage at isoleucine 713  

(figure 1.2). A more detailed appraisal of y-secretase is discussed in the section 

dealing with the biology of presenilin in AD.

(v) APP trafficking and Ap generation within the cell compartment

The majority of aAPP is derived by the action a-secretase processing APP at the 

plasma membrane (Sisodia et al, 1992) or during secretory intracellular trafficking 

of the peptide, whereas BACE activity occurs during the late secretory trafficking of
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APP (Haass et al, 1993). The generation of the A(342 peptide appears to occur 

within the ERGIC, while the production of the A(340 is thought to occur more distally 

within the secretory pathway, predominantly within the TGN/endosomal-lysosomal 

systems (Golde et al 1992; Haass et al, 1994). Those APP peptides untouched by 

enzymic action at the plasma membrane are endocytosed by clathrin coated 

vesicles and trafficked to late endosomal compartments for recycling or lysosomal 

degradation (Walter et al, 2001).
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Figure 1.2. Secretase cleavage of APP splice forms. The largest form (770 amino acids) 
incorporates a Kunitz-type serine protease inhibitor domain of 56 amino acids at residue 289. The 
arrows indicate the site at which the peptide undergoes constitutive proteolytic cleavage by a-, P-, 
and y-secretase. This generates the soluble APP fractions aAPP and pAPP, and C-terminal 
fragments C83 and C99, which are retained by the membrane. The action of y-secretase generates 
p3 and Ap peptides from aAPP and PAPP, respectively. The C99 fragment may be processed by y- 
secretase at positions 711 or 713 to yield AP40 or Ap42.

Investigations into the subcellular compartments from which amyloid variants are 

generated and secreted, have demonstrated that A(340 and A(3x.4o (x being a NH2- 

terminal truncated 'ragged' form) are generated exclusively within the TGN where 

they are packaged into secretory vesicles (Cook et al, 1997; Hartmann et al, 1997;
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Greenfield et al, 1999). These peptides formed in the TGN consist of two pools, a 

soluble population extractable with detergents and a detergent-insoluble form 

(Greenfield et al, 1999). The majority of Ap is destined for secretion into the CSF 

and the blood plasma, however, Ap generated from APP whilst still within the 

ERGIC, may not be destined for secretion but may instead be retained and 

catabolised inside cells, where it could confer pathogenic properties distinct from 

those mediated by extracellular plaque formation (Cook et al, 1997).

Much of the data on the location of APP and Ap is complex and difficult to 

interpret. In particular there appears to be a discrepancy between the site at which 

Ap42 is generated and the ER/IC location of the P-and y-secretases needed to 

generate it, a finding referred to as the so-called spatial paradox (De Strooper et al, 

1997; Annaert et al, 1999). Brefeldin-A (BFA) treatment of NTera 2 cells prevents 

Ap secretion, in particular Ap4 o whereas BFA-treatment of cells has little effect on 

Ap42 secretion suggesting that the toxic species is generated in the ERGIC (Cook 

et al, 1997; Chen et al, 2000). Additionally, cleavage of p-APP by BACE takes 

place predominantly within acidic compartments i.e. within the TGN and 

endosomes (Haass et al, 1993). Similarly, pulse chase experiments show that the 

majority of the C83 and C99 fragments derived from APP are glycosylated, i.e. 

their cleavage by y-secretase must occur post-Golgi. Whether other intracellular 

sites beyond the ERGIC contribute to the generation of secreted AP42 remains to 

be determined. Biochemical and immunocytochemical experiments have detected 

PAPP in the ER and post-Golgi secretory vesicles; Ap42  in the ER; and Ap in 

glycolipid membranes (Selkoe, 1999), indicating that Ap can be generated and/or 

accumulate at various points along the secretory pathway.

Other studies indicate that intracellular Ap42 also forms insoluble aggregates 

within lysosomes that resist degradation. The addition of AP4 2  to cultured cells 

likewise, leads to the accumulation of newly synthesized Ap, particularly the 

ragged forms, indicating that intracellular Ap may derive from a 'solid phase', 

cellular pathway. This pathway, which preferentially generates ragged AP4 2 , 

contrasts to the pathway that primarily produces secreted Ap (Yang et al, 1999). 

Other findings imply that the progressive shift of AP40/AP4 2 , from soluble to 

insoluble pools, plays a mechanistic role in the onset and/or progression of AD
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(Wang et al, 1999). Although the majority of studies indicate that the secretion of 

AP42 into the extracellular space is the likely route by which it forms insoluble fibrils, 

other studies suggest that a portion may enter through the blood brain barrier, via a 

receptor-mediated transport system similar to the uptake of insulin (Poduslo et al, 

1999). Furthermore, the majority of peripheral as well as centrally located cells 

such as astrocytes, microglia, endothelial and smooth muscle cells all produce 

APP and generate Ap in variable amounts, possibly contributing to the secreted 

pool of Ap from within the brain or via the blood brain barrier (Selkoe, 2001).

Previous studies indicate that APP is rapidly transported anterogradely 

within neurons along axons out to axon terminals where they are present within 

vesicles (Koo et al, 1990). Similarly, retrograde transport of APP from the 

terminals back to the cell body has also been observed. Here, some APP may be 

translocated to the somatodendritic surface or may recycle via the endosome 

system, possibly generating Ap in the presence of p- and y-secretase (Yamazaki et 

al, 1995). More recently, APP has been demonstrated to bind to Kinesin-1, a 

microtubule motor protein, where it functions as a kinesin- 1  receptor and assists in 

the transport of vesicles containing BACE and PS1 along the axons of peripheral 

neurones (Kamal et al, 2001). Analysis of the compartment in which these proteins 

reside shows APP is cleaved by y-secretase, generating Ap and an APP-C- 

terminal fragment (CTF) and liberates kinesin-1 from the membrane. The 

significance for AD is that cleavage of APP due to axonal damage or blockage 

could lead to AP deposition. If substantial, this may interfere with other transport 

processes or neurotrophic signalling, leading to possible neuronal death.

Damage to neurones in AD as evidenced by dystrophic neurites indicate 

axonal reaction to trauma. In preclinical AD these changes are typified by 

abnormal phosphorylation and accumulation of neurofilaments. Morphologically 

such regions are identical to distal and proximal segments of physically damaged 

axons. A simple view of the disease process states that Ap accumulated within the 

extracellular space inflicts physical and mechanical stress onto nearby axons 

through constriction, triggering a neurological reaction to injury. Over a number of 

years the maturation of plaques only serve to exacerbates matters (Vickers et al, 

2000).
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(vi) Function of APP

Little is known about the precise physiological role played by APP, though it 

appears to be closely involved in synaptic plasticity and the morphoregulation of 

neurite outgrowth. Functions proposed for pAPP include a role as a mediator of 

cell-cell and cell-substrate interactions, and as a trophic or neuroprotective 

molecule (Arendt, 2001). Localisation studies show that APP is heavily involved in 

synaptic formation and cell adhesion where it co-localises at the cell surface of 

neurons with cell-cell adhesion molecules such as P-1 integrin. In mammals, 

transmembrane APP is associated with elongating axons, whereas secreted APP  

is implicated in synaptogenesis. The expression of APP appears to be 

developmentally regulated and is released during long-term potentiation (LTP) 

where it increases memory retention in rats. Removal of APP either in transgenic 

knockouts or following anti-APP antibody treatment results in decreased LTP and 

impaired cognitive perform ance (Arendt, 2001). The alternate proteolytic 

processing of APP suggests that it may have several functions apart from 

development, since APP knockout mice show neither early mortality nor significant 

morbidity in vivo. Possibly the APP-like proteins lacking the Ap sequence function 

in a similar fashion to APP (Selkoe, 1999).

The PAPP molecule is known to bring about mitosis in cultured cells by 

stimulating a mitogen-activated protein kinase. The Kunitz serine protease inhibitor 

sequence within the longer APP isoforms inhibits a serine protease called Factor 

X Ia  of the coagulation cascade in human platelets (Smith et al, 1990). 

Additionally, during conditions normally associated with neuronal injury such as 

inflammation, ischemia, excitotoxicity etc, KPI-APP expression in astrocytes is 

stimulated whereas expression of the shorter 695 isoform, which lacks the 

inhibitory domain, is decreased (Robinson and Bishop, 2002).

More recently, a cytoplasmic fragment of P-APP, the APP intracellular domain 

(AICD), has been implicated in signal transduction and is generated in an 

analogous fashion to Notch cleavage following the action of p- and y-secretase 

activity. The AICD is thought to form a transcriptionally active complex along with 

other known proteins such as Fe65 and Tip60 a histone acetyltransferase (Cao
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and Sudhof, 2001) and is potentially important in the pathogenesis of AD since due 

to aberrant processing of APP may severely curtail the decrease levels of AICD.

1.4 Ap associated toxicity in AD

(i) P-Amyloid structure and toxicity

A central question concerning the role of Ap in AD is the extent to which this 

peptide is toxic in vivo. Chemically, the additional of the two hydrophobic residues 

on the Ap42 peptide are responsible for its aggregation into insoluble fibrils. The 

secondary structure of Ap42 as predicted by the Chou-Fasman algorithm shows two 

a-helices and one p-sheet (figure 1.3). The N-terminal a-helix is able to adopt an 

alternate P-sheet configuration that markedly increases aggregation in solution 

(Saido, 2003). The adoption of the P-sheet conformation following a nucleation- 

mediated process has also been demonstrated following the release of Ap into the 

cytoplasm (Jarrett and Lansbury, 1993). More recently, using sensitive 

immunoprecipitation and SDS PAGE analysis, Ap oligomers from conditioned 

media, in the absence of monomers and amyloid fibrils, disrupted synaptic 

plasticity and inhibited LTP in vivo at physiological concentrations found inside the 

human brain (Walsh et al, 2002). Additionally, pre-treatment of the complete 

media with insulin degrading enzyme (IDE), which degrades monomeric but not 

oligomeric Ap, had no affect on LTP indicating that the synaptotoxicity is 

associated specifically with oligomeric form of Ap.

Long before Ap42 containing plaques (diffuse) form, structural changes in the 

synapse as well as electrophysiological alterations have been observed in mutant 

APP transgenic mice (Hsia et al, 1999). Moreover, cultured cortical and 

hippocampal neurons treated with high concentrations of neurotoxic fibrillar Ap 

(Loo et al, 1993) exhibit changes characteristic of apoptosis, including nuclear 

chromatin condensation, plasma membrane blebbing, and internucleosomal DNA  

fragmentation. Though these and other data showing toxic effects of synthetic Ap 

in neuronal cultures, the role of Ap42 oligomers in initiating cellular dysfunction in 

AD remains unproven (Selkoe, 2001). Moreover, data from experiments in which

20



fibrillar Ap is injected directly into the brain of rodents and monkeys are 

inconclusive, since Ap can be neuroprotective in the brains of young animals but 

toxic to older brains (Robinson and Bishop, 2002). In general the concentration of 

Ap used in toxicity studies is often much greater than physiological concentrations.
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Another difficulty with Ap concerns its acute toxicity. AD pathology typically 

develops over several decades whereas the biochemical action of Ap can be 

measured rapidly, in the case of LTP, effects can be seen within 1 hour of adding
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Ap to hippocampal neurons. Though in this case, it has been pointed out that Ap 

may contribute to mild cognitive impairment in early AD via a novel mechanism 

independent of neuronal death (Klein et al, 2001). Additionally, whereas aged 

human neurons may be unduly susceptible to the effects of Ap because of years of 

various insults, neurons used for in vitro studies are obtained from embryonic or 

postnatal animals, thus making a direct comparison of Ap toxicity between the two 

cell populations difficult to interpret (Vickers et al, 2000).

(ii) Oxidative stress and AD

Ap toxicity may be mediated via binding to the RAGE receptor (receptor for 

advanced glycation end products) a member of the immunoglobulin superfamily of 

cell surface receptors (Yan et al, 1996). This receptor is highly expressed by 

cortical neurons, especially in the hippocampus and cerebellum during rat brain 

development, and in a variety of other cell types, including endothelial cells and 

phagocytes. RAGE activation is believed to trigger cellular oxidative reactions and 

has been shown to mediate the interaction of Ap with glial cells, leading to the first 

steps in the inflammatory cascade as seen by glial cell activation, cytokine 

production, chemotaxis, and haptotaxis. However, antioxidants appear not to 

protect neurons from Ap in toxicity assays, nor is their any evidence showing 

oxidative damage of genomic DNA specific to AD or DS (Vickers et al, 2000).

Oxidative stress is believed to be a critical factor in normal aging brain and 

in other neurodegenerative diseases besides AD, such as Parkinson's disease and 

amyotrophic lateral sclerosis (ALS). Comparisons of AD brains with age matched 

controls show an increase in oxidative damage, whilst plaques and tangles display 

immunoreactivity to antioxidant enzymes (Pappolla et al, 1992). The presence of 

reactive oxygen species (ROS) within the brain results in lipid peroxidation of the 

cell membranes impairing the function of various membrane proteins involved in 

ion homeostasis, such as N-methyl-D-aspartate receptor channels or ion-motive 

adenosine triphosphatases. Consequently, the increased intracellular calcium and 

ROS levels leads to protein, DNA, and lipid damage that may be the trigger for 

apoptosis. Additionally, the exposure of PC12 cells to AP25 -35 and AP1 .4 0 has been
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shown to induce a concentration-dependent accumulation of ROS that impair 

energy metabolism, so leading to a reduction in ATP levels that compromise 

cellular viability (Pereira et al, 1999). Other studies suggest that Ap exerts its toxic 

effect via the activation and inhibition of several transcription factors (Santiard- 

Baron et al, 1999). Exposure of Ntera 2 cells, for example, to AP25 -35  induces the 

expression of several genes including the 'growth arrest and DNA damage- 

inducible gene' (gadd45) implicated in the DNA excision/repair process, whereas 

Ap represses, amongst others, a gene encoding a 'hinge protein' subunit of the 

mitochondrial cytochrome-c reductase enzyme. The up-regulation of gadd45 in 

response to DNA strand breaks in cells exposed to Ap may therefore be a critical 

event in AD pathology. Additionally, increased intracellular calcium may also alter 

calcium-dependent enzyme activity such as the implication of protein kinase-C in 

amyloid protein metabolism and the phosphorylation of tau. The apoptotic pattern 

of cellular death seen in oxidative stress is similar to that produced by Ap exposure 

(Felician and Sandson, 1999).

(iii) Inflammatory Reactions and AD

The inflammatory and immune aspect of AD is becoming increasingly important for 

researchers. A typical hallmark associated with inflammation in AD is the presence 

of reactive microglia densely embedded within the senile plaques (Selkoe, 2001). 

Increased cytokines levels are seen in the serum, plaques and neurons of patients 

with AD compared with aged-matched controls. Furthermore, the anti-inflammatory 

cytokine-transforming growth factor betal (T G F -p i) is able to promote or 

accelerates the deposition of Ap (Wyss-Coray et al, 1997). Classical complement 

pathway fragments are also found in the brains of AD patients, and Ap may directly 

activate the classical complement pathway in an antibody-independent manner 

perhaps by interacting with some aspect of the immune system.

Whether these markers are a consequence of the disease or a cause remains to 

be seen. Brain specimens from elderly patients with arthritis treated with non­

steroidal anti-inflammatory drugs have similar numbers of senile plaques, as do 

control brains. However, less microglial activation is seen in the arthritis patients'
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brains, suggesting that anti-inflammatory agents may delay or prevent clinical 

symptoms of AD by limiting the associated inflammation (Felician and Sandson, 

1999).

As well as the increase in RAGE expression in neurons, vasculature, and microglia 

in affected regions of AD brains in response to Ap (Yan et al, 1996), AP fibrils also 

bind to an unrelated ‘class A scavenger receptor’ expressed by large numbers of 

microglial associated with senile plaques (El Khoury et al, 1996). This receptor as 

well as RAGE may therefore represent novel pharmacological targets for reducing 

the inflammatory and oxidative reactions associated with AD.

1.5 Theories proposed to account for AD

(i) The amyloid cascade hypothesis

A controversial issue in the pathogenesis of AD is the relationship between amyloid 

deposition and NFT formation. A substantial body of evidence supports the idea 

that the aggregation of insoluble Ap fibrils is behind the pathology of AD. The 

fibrillar form of Ap has also shown to alter the phosphorylation status of the tau 

protein. It appears that aggregated but not monomeric Ap peptides in vitro can 

induce toxicity on cells by presumably related processes such as oxidative stress, 

disruption of calcium homeostasis and cytoskeletal reorganisation. However, It 

remains to be demonstrated whether the absence of pAPP function in AD patients, 

even those harbouring PAPP missense mutations is responsible for the effects 

observed in the disease state (De Jonghe et al, 1998). The opposite may in fact be 

true that APP mutations work by a gain-of-function i.e. increased Ap production. 

The identification of several point mutations within the APP gene in some patients 

with early-onset FAD and the development of transgenic mice exhibiting cognitive 

changes and neuritic plaques also incriminate Ap in AD. Additional evidence 

comes from data supporting the role of presenilins in Ap metabolism as well as 

findings of abnormal production of Ap protein in mutant PS1 FAD kindreds (Selkoe, 

1996).

The above data and others have been formulated as the ‘amyloid cascade
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hypothesis’, which places the aberrant processing of APP and the subsequent 

deposition of Ap as central events in AD pathology (Hardy and Selkoe, 2002). A 

hypothetical scheme to explain the temporal unfolding of dementia in FAD begins 

with FAD mutations that lead to Ap isoform accumulation that then triggers 

inflammatory responses in glial and astrocytes. Downstream consequences 

involve perturbed homeostasis, oxidative injury, and PHF formation. Eventually 

these pathologies result in cortical then global dysfunction best characterised as 

dementia (Selkoe, 2001). Figures 1.4 outline the main features of the amyloid 

cascade hypothesis.

(ii) Amyloidosis and Taupathy

The amyloid hypothesis is not uniformly accepted especially since dementia 

severity correlates better with the number of neocortical NFTs than with neuritic 

plaques. The normal function of tau is to stabilise neuronal microtubules. Apos3 

may protect tau against hyperphosphorylation by bindings to those sites on tau 

involved in the assembly of PHFs (Felician and Sandson, 1999). The 

hyperphosphorylation of tau disrupts the Golgi apparatus by destabilization of the 

microtubular system, leading to abnormal protein processing and increased Ap 

production (Terry, 1996).

Another difficulty with the amyloid hypothesis is the lack of evidence 

showing nerve cell body degeneration in the vicinity immediately surrounding the 

plaque. In fact cortical nerve cell bodies have been demonstrated within the 

plaque core. Similarly, nerve cell degeneration has not been demonstrated in 

transgenic mice that develop Ap plaques, nor do Ap deposits that occur throughout 

the AD brain, such as in the cerebellum, show signs of surrounding degeneration 

(Vickers et al, 2000).

(iii) Competing hypotheses in AD

The evidence provided by studies examining Ap used for justifying the amyloid 

hypothesis has similarly been re-interpreted to support the notion of Ap as a
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bioflocculant. W hereas the amyloid hypothesis implicates Ap as the neurotoxic 

substrate in AD, the bioflocculant hypothesis concludes the opposite; that Ap is 

neuroprotective (Robinson and Bishop, 2002). In this proposal Ap generated from 

APP functions by binding neurotoxic solutes, such as metal ions, which could 

otherwise mediate cell damage.

According to the bioflocculant hypothesis, plaque formation is a 

consequence of Ap binding toxic agents resulting in the precipitation of the Ap 

complex within the extracellular space (ECS). The precipitate either affects 

neurons directly or physically displaces neurites or impairs the traffic of metabolites 

in the extracellular space. Ordinarily, macrophages stimulated by a local 

inflammatory response clear the AP-toxin complex. In AD the bioflocculant 

hypothesis explains this event as a neuroprotective response that is compromised 

when Ap clearance is outstripped by deposition and the capacity of macrophages 

to phagocytose these deposits is exceeded. This hypothesis maintains that 

increases in Ap deposition in LOAD are particularly damaging within the ECS. The 

trigger for this is believed to be previous trauma such as stroke/ischaemia, head 

injuries, etc. Data investigating the effect these traumas have on narrowing the 

ECS following inflammatory reactions, shows that the passage of large 

macromolecules through the ECS are hampered, leading to their deposition with 

bound Ap (Robinson and Bishop, 2002).

An obvious difficulty with this hypothesis is the role Ap plays in FAD. Both 

plaques and Ap aggregates are thought to occur in FAD brains over a period of 

decades. If Ap acts as a bioflocculant it is reasonable to assume that there would 

be sufficient time for the clearance of Ap-toxic complexes, barring a precipitous 

event occurring over a short space of time. Moreover, it is difficult to reconcile Ap 

as a neuroprotective agent when clearly individuals with APP or PS mutations 

develop AD. If anything it would be expected that such individuals would be 

protected from developing AD by the misprocessing of APP. The role of Ap as a 

bioflocculant is outlined in figure 1.5.
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Yet another hypothesis characterises AD as a developmental disease that 

recapitulates early developm ent resulting in morphoregulatory dysfunction 

associated primarily with the synapse (Arendt, 2001). The main thrust of this 

argument states that in AD it is the ability of the brain to modify it own structural 

organization and functioning, as an adaptive response to functional demands that 

is impaired, as opposed to the brain reacting to some unspecified, age-related  

disorder. Much of the evidence presented in favour of this hypothesis includes data 

from studies demonstrating aberrant neuroplasticity at the synapse. In this
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hypothesis AD is an unavoidable consequence of the ageing process. Cumulative 

damage over a lifetime caused by ‘wear and tear’ in the brain is exacerbated in 

vulnerable regions, such as the hippocampus whose role in memory demands 

significant neuroplastic remodeling. The vulnerability of these regions in 

combination with the individual’s polymorphic genotype, as well as other epigenetic 

pressures is postulated to be the cause of AD. Ap accumulation in this context has 

been shown to disrupt cell adhesion mechanisms in vivo leading to impaired 

synaptogeneisis, reduction in LTP, cytoskeletal changes, disturbances in axonal 

transport, impaired neurotransmitter release, etc (Arendt, 2001). Figure 1. 6 

illustrates the main features of this hypothesis.

1.6 Genetics of AD

Many epidemiological studies investigating AD show a clear association between 

dementia and age. The prevalence rates for dementia and AD double 

approximately every 5 years from rates of 2% -3%  (65 to 74 years) in the case of 

dementia, to over 30% in subjects 85 years and over. The prevalence of AD, 

initially 1% -2%  in 65 to 74 year olds increases to 25-50% in subjects aged 85 

years or older. This relationship with age is seen even in studies reporting different 

prevalence rates (Hendrie, 1999).

To date five genetic loci have been identified with respect to AD. These 

include three fully penetrant, autosomal dominant mutations in genes for PS1, 

PS2, and APP as well as two at-risk common-population-polymorphisms (CPP) 

associated with LOAD, such as the ApoE4 and a-macroglobulin-2 (A2M-2) 

polymorphisms. Differences in the onset of the disease range from the early 

thirties in Down’s Syndrome patients (DS), the mid-thirties to fifties in early onset 

FAD and individuals greater than 50 years of age in LOAD. Table 1.0 summarises 

some of the main genetic factors associated with AD and the phenotypic 

consequences of the gene defect.
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Figure 1.6. AD as a disorder of brain self-organisation and dysmorphoregulation. This hypothesis 
proposes AD as a synaptic disorder associated with aberrant sprouting at both the pre- and post- 
synaptic junction. The spatial and temporal progression of AD recapitulates earlier developm ent 
proceses and involves morphoregulatory molecules including adhesion, cytoskeletal synaptic 
proteins, etc. The reactivation of old developmental programmes are considered incompatible 
with a mature, differentiated cellular background (Arendt, 2001).

(i) APP mutations and FAD

The first AD causing gene to be identified was the APP gene on chromosome 21 

(Goate et al, 1991), bearing 'missense' mutations that account for less than 0.1%  

of all AD cases. To date, nine APP missense mutations associated with FAD are 

clustered around secretase cleavage sites either flanking or within the Ap

30



sequence of APP. In all cases each mutation increase Ap production, though by 

slightly different mechanisms. One such mutation at position E693Q of the Ap 

sequence within APP results in Ap deposition within the cerebral vasculature, 

leading to the diseased state in some cases, and cerebral haemorrhage and 

angiopathy in others (Levy et al, 1990). The adjacent mutation at position A692G, 

again within the AP sequence of APP, is associated with plaque and tangle 

formation and results in dementia and severe microvascular P-amyloidosis with 

occasional cerebral haemorrhages (Hendriks et al, 1992).

Table 1.0. Genetic factors predisposing to Alzheimer’s disease (modified after Hardy, 

1997)

Genotype Biochemical result Phenotype

Down’s Syndrome more APP production more A fW  Ap40

APP 670/671 (Swedish) potentiation of P-secretase moreAp42/ Ap40

APP692 (Flemish) inhibition of site of a-secretase more Ap42

APP716 (Florida) alteration of site of y-secretase cut more Ap42

APP717 (London) alteration of site of y-secretase cut more Ap42

PS1/PS2 mutations subtle alteration of APP processing more Ap42

ApoE4 unclear increase plaque 
density and vascular 
deposits.

a-macroglobulin-2 unclear increase Ap deposits

Families harbouring APP mutations have onsets before 65 years, often in their 50s. 

In DS the situation is quite different. Though the pathology parallels that of AD 

(neuritic plaques and NFT), here trisomy caused by non-disjunction of the 21st 

chromosome leads to an extra APP gene. The gene dosage effect results in over 

expression of APP and therefore the build up of Ap40 and Ap42 peptides from birth 

(Takuda et al, 1997). Diffuse plaques containing Ap42 have been detected in the 

brain of DS patients as young as 12 years old, but neuritic plaques containing Ap40 

are not detected until the third decade (Lemere et al., 1996). Dementia onset in
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DS appears to be influenced by the ApoE  allele and occurs between 40 and 70 

years of age.

The observation that the majority of APP mutations increase AP42 production 

has led to the conclusion that Ap precipitates AD. However, APP has several 

functions in the developing and adult brain quite distinct from Ap generation, such 

as neuroprotection, synaptogenesis, and memory formation and consolidation. 

This has led to the notion that APP dysfunction as a result of mutations in AD 

brains may produce more APP to correct the deficit and as a by-product excess Ap 

is produced which then aggregates (Robinson and Bishop, 2002).

(ii) Presenilin mutations and FAD

Three loci have been associated with early onset aetiology; the APP gene on 

chromosome 21 (Goate et al, 1991); the PS1 gene on chromosome 14 

(Sherrington et al, 1995); and the PS2 gene on chromosome 1 (Levy-Lahad et al, 

1995; Rogaev et al, 1995). The most common cause of FAD are mutations found 

within the presenilin genes, which account for 40 percent of all early onset FAD 

cases and roughly one to two percent of all AD case (Tanzi et al, 1998). How 

these mutations cause the form of AD with the earliest age of onset is as yet 

unknown. To date ~130 mutations in PS1 alone are have been reported and are 

the primary cause of AD with onset below the age of 55 (table 1.1). Studies 

utilising cell cultures and transgenic mice have shown that these mutations alter 

APP processing so favouring the production of the highly amyloidogenic AP42  

species, as opposed to Ap4o (Younkin et al, 1994; Selkoe, 1999). Mutations in PS2 

have been described in two families that exhibit a more variable onset ranging 

between 40 and 80 years (Rogaev et al, 1995) as compared to the PS1 mutations, 

which vary between 25 to 55 years.

All presenilin mutations are missense mutations, with the exception of a 

splice acceptor site mutation, that results in the deletion of exon 9 (A-exon 9). 

Under physiological conditions PS are cleaved into NH2 -terminal (NTF) and 

COOH-terminal fragments (CTF). The PS1 A-exon 9 transcript lack a series of
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charged residues present on the loop domain leading to an increase in uncleaved 

holoprotein.

Table 1.1.  Examples of missense mutations found in human PS1 and the approximate 
age of onset in FAD patients (Czech et al, 2000).

Codon Mutation Age of onset (years)

82 Val_Leu 55

96 Tyr_His 37

115 Glu_Asp 48

139 Met_Thr 49

143 lle_Thr 35

146 Met_Val 38

163 His_Arg 50

171 Leu_Pro 40

231 Ala_Thr 52

233 Met_Thr 35

235 Leu_Pro 32

246 Ala_Glu 55

263 Cys_Arg 47

267 Pro_Ser 35

280 Glu_Ala 47

280 Glu_Gly 42

286 Leu_Val 50

384 Gly_Ala 35

392 Leu_Val 25-40

410 Cys_Tyr 48

A second splice mutation arises from the deletion of a guanine residue from a 

splice donor site leading to the production of three unique transcripts (De Jonghe 

et al, 1999b). The majority of mutations are primarily localised to highly conserved 

transmembrane domains and the large hydrophilic loop domain and are found in 

both PS1 and PS2 (figure 1.7). The sensitivity of the protein to mutations suggests 

that a specific topology is required to bring about the normal physiological 

processing of APP.
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(iii) Apolipoprotein E polymorphisms and AD

A gene encoding Apolipoprotein E (ApoE), a serum lipoprotein involved in 

tryglyceride and cholesterol metabolism during neurodevelopment as well as after 

neural injury, has been linked to late-onset familial and sporadic AD. ApoE is 

produced by hepatocytes and is found within the general circulation, whereas 

astrocytes are thought to contribute to ApoE within cerebrospinal fluid (CSF). 

Three common isoforms are encoded by alleles e2, s3, and s4 on chromosome 19 

(Mahley, 1988: Roses, 1994). Each isoform show differences in amino acids at 

two positions thus: s4 112Arg/158 Arg; e3 112Cys/158Arg; s2 112cys/158cyS.

Earlier research demonstrated an association between the s4 allele of 

APOE and AD (Strittmatter et al, 1993), that is both age and gender related. This 

association has been reported for the most common forms of LOAD, both sporadic 

and familial (Felician et al, 1999). Statistically, individuals homozygous for s4 have 

a 15% greater risk of developing the disease before the age of 70 than 

heterozygous individuals (Blacker et al, 1997). Case-control studies indicate that 

the e4 allele association and AD may account for 30% -40%  or more of all cases of 

AD (Lorenzo et al, 1994). Several studies have suggested that the s2 allele may, in 

some cases have a protective effect.

One difficulty with ApoE as a risk factor is that many s4 carriers never 

develop AD. Furthermore, many patients with AD do not possess the s4 allele, 

therefore its presence cannot be used for the diagnosis of AD. Instead possession 

of the s4 allele predisposes an individual towards developing the disease. 

Reported frequencies of e4 vary widely among populations, ranging from 5% or 

less in the Amish community of North America to over 40% in some aboriginal 

populations in Australia, though it is not clear yet what effect these population- 

frequency variations have on the association between s4 and AD. What is clear is 

that the number and density of cerebral and cerebrovascular Ap deposits is 

statistically higher in AD cases bearing the Apo s4 phenotype. The Apo s4 alleles 

may differentially affect the generation, secretion or clearance of Ap from the 

extracellular fluid (Rebeck et al, 1995). The e4 allele may enhance aggregation of 

Ap or alternatively, it may lack a biological function performed by the other alleles,
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such as supporting neurite outgrowth or stabilising tau protein on microtubules 

(Strittmatter et al, 1993).

Apo s4 is produced centrally by astrocytes though neurones may contain it either 

because they internalise it or express it. Apo e4 can be internalised via certain 

receptors, including the low-density lipoprotein receptor (LDL) for the LDL receptor- 

related protein (LRP) (Rebeck et al, 1995). In this instance Apo e4 may influence 

(3APP processing or Ap secretion or re-uptake either via a receptor-mediated  

mechanism or a receptor-independent mechanism such as a direct interaction with 

a-secretase at the cell surface or with an extracellular protease that normally 

degrades Ap (Biere et al, 1995). Investigation into Apo s4 effects on p A P P  

processing in neural and non-neural cell lines do not show increased processing of 

PAPP in contrast to findings in AD linked to APP and PS1 mutations (Biere et al,

1995).

Biochemical experiments have shown that ApoE can bind to tau and MAP2, 

particularly the e2 and e3, whereas the s4 isoform performs poorly in comparison 

(Strittmatter et al, 1994). This has led to the suggestion that the former isoforms 

are therefore neuroprotective by reducing the ability of tau to bind to microtubules, 

become hyperphophorylated, and form PHF (St George-Hyslop, 2000). ApoE also 

appears to be involved in synaptic plasticity during regeneration and repair and that 

the s4 allele is less efficient in this role. Mice deficient in ApoE exhibit a loss in 

MAP2 immunoreactivity in dendrites and synaptophysin in nerve terminals (Arendt, 

2001).

(iv) a-macroglobulin polymorphism and AD

Another AD risk locus has been identified on chromosome 12 and involves 

polymorphic variants of a-2 macroglobulin (A2M) (Blacker et al, 1998). A2M plays 

an important role in the brain during development and following neuronal injury by 

regulating the activity of several proteases. Immunoanalysis reveals that A2M  

binds the neurotoxic A(342 peptide with high affinity and antibodies to A2M stain 

senile plaques in AD brains. In case control studies a CPP at amino acid position 

1000 (V/l) of A 2 M  was found to be associated with AD as well as increased Ap

35



deposition (Liao et al, 1998). Moreover, database searches have revealed that one 

polymorphic variant of the A2M  gene had five fewer bases than the standard 

version, and that this variant is carried by 30% of the population (Tanzi, 1999). In 

terms of risk, individuals harbouring a single polymorphism (A2M-2) are three times 

more likely to develop AD compared to the standard polymorphism. In comparison 

a single copy of A2M-2 has the same risk as a homozygous Apo s4 carriers, 

suggesting that A2M-2  may be an even more powerful LOAD risk factor than Apo 

e4.

A2M functions by inhibiting all classes of proteases by a steric trapping 

mechanism following a conformational change. A2M first binds a serine protease 

then A(3 to form a complex that then binds to the LRP receptor, which it shares with 

Apo E and APP. Thus A2M potentially impacts both APP and Apo E metabolism in 

the brain via a single biochemical cascade (St George Hyslop, 2000). Data suggest 

that a serine protease-A2M complex can degrade A(3 and that trypsin-activated 

A2M can efficiently degrade Ap, preventing fibril formation of the peptide in 

cultured human cortical neurons thus reducing toxicity (Zhang et al, 1996). Tanzi 

(1999) has been proposed that the ability of A2M-2 to clear Ap is reduced leading 

to the extracellular accumulation of Ap, leading to plaque formation. Apo E may 

hasten the disease process by competing with A2M-2 for LRP and Ap.

(v) AD risk locus on chromosome 10

Most AD cases have ages of onset above 65 years and exhibit no clear pattern of 

inheritance. The APO E4 allele is the only known genetic risk factor for LOAD. 

However, 50% of LOAD patients do not carry an APO E4 allele suggesting 

additional risk factors. For instance using genetic linkage analysis a susceptibility 

locus has been mapped to a region on chromosome 10 in families with LOAD 

(Myers et al, 2000). Furthermore, plasma Ap has been used as a quantitative trait 

for identifying novel LOAD loci. In this study evidence links a region of 

chromosome 10 to high levels of the Ap42 peptide in LOAD families (Ertekin-Taner 

et al, 2000). Moreover, recent data suggest an important role for the insulin- 

degrading enzyme (IDE) in the degradation and clearance of soluble Ap secreted
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by neurones and glial cells. Using linkage analysis an additional putative LOAD 

associated loci has been mapped to the long arm of chromosome 10q, within 195 

kilobases of the IDE  gene (Bertram et al, 2000).

Other forms of LOAD have been linked to chromosome 12 and to possible 

mutations on maternally transmitted mitochondrial cytochrome-C oxidase genes 

(Felician et al, 1999), and a gene encoding for the major histocompatibility 

complex, located on chromosome 6. More recently a CPP has been found in the 

interleukin-1 (IL-1) genes IL-1A and IL-1B. Homozygosity for both IL-1 alleles 

confers a tenfold risk of AD (Chapman et al, 2001). Doubtlessly more at-risk loci 

associated with AD will emerge as research continues. Known genetic loci linked 

with AD are summarized in table 1.2.

Table 1.2. Genetic loci associated with AD. Data collated from information available 
at www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104300

Gene product Chromosome locus OMIM entry number
APP 21 q21 104760

PS1 14q24.3 104311

PS2 1q31-q32 600759

ApoE 19q13.2 107741

A2M-2 12p13.3-p12.3 103950

Transcription factor CP2 
(TCFP2) 12p11.23-q13.12 189889

Unknown-maps close to insulin 
degrading enzyme gene (IDE) 10q24 605526

Unknown 10p13 606187

Unknown-maps close to 
Cystatin C protease inhibitor 

gene
20p 607116

Originally thought to be 
cytochrome C oxidase. 

Possible mitochondrion-specific 
polypeptide involved in 

respiration

Mitochondrial DNA 502500
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1.7 Biology of Presenilins

(i) Presenilin structure and biochemistry

Central to the processing of APP is the role-played by the presenilin proteins, 

particularly in those families harbouring PS1 FAD mutations that lead to the early 

onset disease phenotype. PS proteins are widely expressed in most cell types both 

human and murine, embryonically and centrally (Kovacs et al, 1996; Lee et al

1996). High concentrations of PS are found within the hippocampal formation and 

entorhinal cortex, whereas low levels are detectable within white matter glial cells. 

In situ hybridisation studies have shown that the expression patterns of PS1 and 

PS2 in the brain are very similar, if not identical (Rogaev et al, 1995). Moreover, 

PS1 and PS2 share substantial amino acid and structural similarities with each 

other suggesting that they may be functionally related. PS1 and PS2 also exhibit 

strong homology with sel-12 found in the nematode Caenorhabditis elegans, and is 

involved in the intracellular trafficking and recycling of proteins (Levitan & 

Greenwald, 1995).

The PS genes code for transmembrane spanning proteins approximately 

-4 4  kDa in size and in its longest form is 467 (PS1) and 448 (PS2) amino acids 

long. Structurally the presenilins are putative eight helical transmembrane proteins 

(figure 1.5) located principally within the ER, Golgi apparatus, and nuclear 

membrane. In FAD PS1 mutations lie predominantly within the helical TM domains 

and the cytoplasmic loop suggesting that the disruption of the alignment of these 

domains is responsible for the disease state (Hardy and Crook, 2001). Once 

correctly folded, PS undergoes constitutive endoproteolysis. In PS1 

endoproteolysis occurs within the exon 9 region of the cytostolic loop between TM6 

(Thr 291) and TM7 (Ala 299) via autocatalytic aspartate residues at positions 257 

and 385 to generate a 17 - kDa CTF and a -2 8  kDa NTF, which are maintained in 

a 1:1 stoichiometry (Podlisney et al, 1997; Li & Greenwald, 1998; Wolfe et al, 

1999b). Uncleaved full-length presenilin (holoprotein) remains within the ER 

whereas the NTF and CTF traffic to the Golgi where they are re-incorporated as a 

heterodimer along with other factors, such as P-catenin into a functional complex 

(Yu et al, 1998; Zhang et al, 1998).

38



Restricted incorporation of the NTF and CTF along with other co-factors into a 

multimeric complex in the ER and Golgi apparatus may provide an explanation for 

the regulated accumulation of the NTF and CTF (Yu et al, 1998). PS1 within cells 

is quickly turned over (T1/2~60 min), in part to the two major fragments (Podlisny 

et al, 1997). Steady state levels of the PS fragments appear to be tightly regulated 

since transgene overexpression does not increase the overall level of fragments 

(Thinakaran et al, 1997). The AD-associated Aexon9 splice error mutation results 

in the accumulation of the uncleaved full-length protein. The pathological activity of 

PS1 Aexon9 is independent of its inability to undergo proteolytic processing, but is 

due instead to a point mutation (S290C) occurring at the aberrant exon 8/10 splice 

junction (Steiner et al, 1999).

Two hypotheses have been advanced to explain the role of PS1 in APP 

cleavage. Either PS1 regulates the transport of y-secretase to APP without any 

physical interaction with the latter (Thinakaren et al, 1998), or PS1 is the y- 

secretase/or is physically involved in the cleavage of APP, as indicated by 

PS1/APP co-immunoprecitpitation from whole cell lysates, ER and Golgi vesicles 

(Xia et al, 1997b; Selkoe, 1999; Chen et al, 2000). Strong support for the latter 

hypothesis comes from data showing residues 1 to 87 of PS2 to interact with the 

last 45 amino acids of APP. The close homology of PS1 and PS2 would indicate 

that they share similar determinants of binding to APP (Pradier et al, 1999). Other 

evidence supporting a direct involvement of presenilin in the cleavage of APP by y- 

secretase is seen in PS1 knockout mice and cell lines. Levels of the y-secretase 

C83 and C99 substrate increase substantially whilst Ap levels decreases. What 

little processing does occur is likely to be carried out by PS2 (De Strooper et al,

1998). The alternate hypothesis holds that PS1 plays a crucial role as a facilitator 

of y-secretase function by bringing together, through membrane trafficking, the 

various co-factors needed to bring about APP cleavage (Thinakaren et al, 1998).

More recently, evidence for PS1 as the putative y-secretase has been 

provided by studies utilizing peptidomimetic transition state analogs to inhibit y- 

secretase. These drugs contain the AP4 0 -4 5  region and their action results in a 

decrease in the levels of C83 and C99 (Wolfe et al, 1999a). Furthermore, selective 

mutation of the aspartate residues on TM6 and TM7 (figure 1.7) prevents the
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lumen

F ig u re  1 .7 . T o p o lo g ic a l re p re s e n ta tio n  o f PS1 sh ow in g  th e  e ig h t tra n s m e m b ra n e  
m o d e l. S h o w n  a re  tra n s m e m b ra n e  d o m a in s  7  and  10 , w h ich  a s s o c ia te  w ith  th e  
c y to p la s m ic  fa c e  o f th e  m e m b ra n e  (L i an d  G re e n w a ld , 1 9 9 8 ) .  A lte rn a t iv e ly ,  
tra n s m e m b ra n e  7  align w ith in  the lipid b ilayer. PS1 m utations a re  prim arily  localised  to 
the  tra n s m e m b ra n e  d om a in s  and  th e  la rg e  hydroph ilic  loop. T h e  a rro w  in d ica tes  th e  
site  a t w h ich  the  m o le c u le  is c le a v e d  into N - and C -te rm in a l fra g m e n ts . T h e  tw o  
evo lu tionary  co nserved  a s p arta te  res idues (D 2 5 7 /D 3 8 5 )  a re  thought to be au tocata ly tic  
(W o lfe  et al, 1 999 ).

endoproteolysis within the cytostolic loop of the holoprotein (Wolfe et al, 1999b) 

leading to its accumulation, as well as increasing the C83 and C99 APP fragments 

whilst markedly reducing AP40/AP42 levels (De strooper et al, 1998). Disruption to 

the aspartate residues (D385A) similarly prevents the maturation of PS1 into a 

complex containing p-catenin (Yu et al, 1998; Nishimura et al, 1999a). In other 

studies also using transition state analogues, y-secretase inhibitors were observed 

binding covalently to the aspartate residues in both PS fragments, but not the 

holoprotein, suggesting uncleaved PS to be novel aspartyl protease zymogen (Li et 

al, 2000).

(ii) Presenilin and development

The presenilins appear to function as unique aspartyl proteases that cleave a 

series of type 1 transmembrane proteins including APP, the APLP, Notch and Ire 

1, a ‘stress sensor’ involved in the unfolded protein response (Selkoe, 2001). In 

addition to their location within the ER/Golgi cell compartment, the PS are localised 

to the synapse and at cell-cell contact sites where they form adhesion complexes
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with cadherins, a family of cell surface single-pass transmembrane proteins 

(Arendt 2001). Additionally, PS1 forms complexes in vivo with the actin binding 

protein filament at the cell surface in lymphocytes. This binding protein is known to 

form bridges between cell surface receptors and the cytoskeleton and to mediate 

cell adhesion and cell motility (Schwarzman et al, 1999). Furthermore, the CTFs of 

PS1 accumulate along with PHF tau, suggesting a close relationship between PS1 

and the cytoskeletal abnormalities seen in AD brains (Tomidokoro, et al, 1999).

Another important function of PS is their role in developmental signalling in 

the Notch/Delta pathway (Levitan and Greenwald, 1995). Notch and Delta are 

single pass cell surface receptors located within the developing embryo that are 

regulated by presenilins. It has been proposed that signal transduction involves 

cleavage and transport of the Notch intracellular domain (NICD) to the nucleus. 

Here, the NICD interacts with a DNA-bound protein and activates transcription of a 

number of genes that regulate a number of cellular decisions during development 

and in the adult brain (Kopan, 2002). Experiments involving Drosophila and 

mammalian cells support this idea, indicating that cleavage occurs in or near the 

transmembrane domain. The absence of PS or null mutations generated within 

Drosophila presenilin prevents this signaling, suggesting that PS may process 

Notch in an analogous fashion to the processing of PAPP (Struhl & Greenwald, 

1999). The PS-notch interaction in development is exemplified in mice, Drosophila 

and C. elegans harbouring PS loss of function mutations that result in notch-like 

phenotypes.

Although FAD mutations of PS1 rescue PS1 knockout mice, mutation of the 

transmembrane aspartates destroys the ability of PS1 to rescue C.elegans carrying 

the sel-12 mutation, and therefore establishes the functional homology between 

PS1 and sel-12. The importance of presenilins in development is seen in 

experiments where targeted disruption of the PS1 gene in mice results in severe 

developmental abnormalities due to defects in somite differentiation and 

segmentation. PS1 knockout mice display impaired neurogenesis deformation of 

the axial skeleton and massive neuronal loss, which culminate in premature death 

shortly after birth (Shen et al, 1997). In vitro, the FAD M146V PS1 mutation 

prevents the differentiation of retinoic acid treated NTera 2 cells into neurons
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(Tokuhiro et al, 1998), as does antisense-oriented PS1 constructs transfected into 

stable Ntera 2 cells (Hong et al, 1999).

(iii) Apoptosis and presenilin in AD

The extent to which programmed cell death or apoptosis is involved in AD is 

unknown. If not causative, apoptosis is at least associated with the late stage of 

AD neuropathology (Alves da Costa et al, 2002). Involvement of both PS in 

apoptosis was first suggested from data showing increased sensitivity to different 

apoptotic stimuli, including Ap4 2 , in cells overexpressing PS2 and reduced 

sensitivity in the presence of anti-sense PS2 construct (Vito et al, 1996; Wolozin et 

al, 1998). The data on presenilins show PS2 to be pro-apoptotic, in particular the 

N-terminus bearing the N114I mutation. Mutant PS however, predispose the cells 

of individuals with FAD to apoptosis, suggesting that PS may be anti-apoptotic, 

since p53 and p21-induced-apotosis quickly switches off PS1 gene expression 

(Roperch et al, 1998; Alves da Costa et al, 2002).

By contrast, PS2 and mutant PS2N141I drastically increase p53 expression 

and transcriptional activity in various cell systems (Alves da Costa et al, 2002), 

whereas the C-terminal 103 amino acids of mouse PS2, referred to as ALG3, was 

able to rescue a T-cell hybridoma from Fas-induced apoptosis (Vito et al, 1997). 

One of the final steps taken before a cell is committed to die by apoptosis is the 

cleavage of PS by caspase-3. Recently it has been demonstrated that 

overexpression of CTF-PS2 increases caspase-3 activity and immunoreactivity in 

staurosporine (STS) treated cells, and PS knockout cells. The latter observation 

demonstrates that CTF-PS2 may function independently of the N-terminal, y- 

secretase-derived counterpart (Alves da Costa et al, 2003).

Using the yeast two-hybrid system to identify proteins interacting with PS1, 

the 'armadillo' protein p0071 has been demonstrated to bind specifically to the 

hydrophilic loop of presenilin-1 (Stahl et al, 1999), whilst Bcl-XL, an anti-apoptotic 

member of the Bcl-2 family, interacts with CTFs of both PS1 and PS2. The over 

expression of Bcl-2 in antisense-PS1 cell clones reduces cell death by apoptosis 

and allows the recovery of neuronal differentiation whereas, stable NTera 2 cells 

transfected with antisense-oriented PS1 constructs fail to differentiate. Conversely,
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antisense-oriented PS2 does not interfere with cell differentiation suggesting 

different roles for PS1 and PS2 (Hong et al, 1999). Both PS2 and its naturally 

occurring carboxyl-terminal products, PS2short and PS2Ccas, associate with Bcl- 

XL in vivo, whereas the caspase-3-generated amino-terminal PS2Ncas fragment 

does not (Passer et al, 1999). Moreover, the phosphorylation of serine residues 

adjacent to the caspase site in PS2, prevents cleavage and by doing so enhances 

its anti-apoptotic properties. Such alterations in the phosphorylation status of PS2 

may increase the susceptibility of neurons to apoptotic stimuli (Tomidokoro et al,

1999).

Precisely how PS cause apoptosis is unknown, though recently a 

proliferation-associated gene product (PAG) belonging to the thioredoxin 

peroxidase family has been described that appears to mediate apoptosis in 

sympathetic neurons by interacting with PS1. Overexpression of PAG alone 

sensitises cells to apoptosis following trophic factor withdrawal, however co­

injection of PAG with wild type but not mutant PS1 cDNA prevented apoptosis 

(Zhou et al, 2002). PS mutations found in FAD appear to sensitise neurons to 

apoptosis by disrupting calcium homeostasis. A pro-apoptotic calcium binding 

protein called calsenilin interacts with both presenilins in vitro by binding to the C- 

terminus ALG3 sequence (Buxbaum et al, 1998). Overexpression of calsenilin in 

neuroglioma cells somehow alters the processing of PS2, similar to that observed 

after caspase activation during apoptosis. Caspase-3 specifically cleaves PS2 

rendering it inoperable during apoptosis by generating an amino-terminal PS2Ncas 

fragment (Tanzi et al, 1998). Recently it has been shown that calsenilin-mediated 

apoptosis is reduced in PS1 knockout mouse fibroblasts and neuronal cells, 

whereas cells expressing FAD gain of function mutants increased calsenilin- 

induced apoptosis (Jo et al, 2003).

(iv) Presenilin complex formation

Presenilins do not undergo glycosilation sulphation, acylation or 

glycosaminoglycan addition (De Strooper et al, 1997), however, they do show 

phosphorylation on serine residues, though what physiological role this plays 

ordinarily or in the disease state is unknown. Curiously, the majority of newly
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synthesised presenilins are rapidly degraded and only small amounts of the 

holoprotein are detected in cells or transfected cells (Thinakaren et al, 1996; 

Podlisney et al, 1997). Processing of the presenilins is tightly regulated by 

competition for limiting factors that presumably are rate limiting in the maturation of 

PS into a functional complex. Over expression of transgene PS do not increase 

CTF or NTF but instead displace endogenous PS levels. Functional PS is thought 

to consist of several sub units that constitute a mature complex ~150 to ~2000 

kDa.

(v) Presenilin and p-catenin interactions

Proteins known to interact with the PS heterodimeric complex include members of 

the armadillo family such as neuron specific 8-catenin, and p-catenin. The latter 

protein plays a key role in the 'Wingless pathway1 (Wnt) in Drosophila and is 

responsible for the regulation of cell-cell adhesion between the cytoskeleton and 

adheren junctions (Czech et al, 2000). p-catenin is regulated by GSK-3p, which 

phosphorylates its N-terminal and by doing so targets the molecule for degradation 

via the ubiquitin-proteosome pathway. GSK-3P appears to associate with p-catenin 

via 'axin', which is suspected of negatively regulating the phosphorylation of p- 

catenin (Kang et al, 1999). Activation of the Wnt pathway inhibits GSK-3P activity 

resulting in an increase in cytoplasmic P-catenin, which is then free to bind to 

transcription factors, following transportation to the nucleus. The interaction of PS1 

with p-catenin is thought to modulate the Wnt pathway. Both wild type or mutant 

full length and CTFs have been shown to bind to P-catenin in transgenic mice and 

transfected cell lines.

Overexpression of PS1, but not mutant forms (AX9, M146IL), increase the 

association of GSK-3P and promotes the turnover of P-catenin. The association of 

p-catenin with PS1 occurs at the CTF of PS1, whilst GSK-3P interacts with the NTF 

of PS1 (Takashima et al, 1998; Kang et al, 1999). The finding that mutant PS1 

exert a dominant-negative activity on p-catenin turnover, perhaps by delaying 

phosphorylation by GSK-3p may underscore some aspect of the pathology of AD 

(Kang et al, 1999). Signalling errors due to faulty P-catenin/PS1 interaction might
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explain why PS1 knockout mice embryos fail to develop in utero. Additionally, PS1 

FAD mutations alter the trafficking of P-catenin arising from a dominant ‘gain of 

aberrant function’. Lithium induced Wnt activation in FAD human fibroblasts 

decreases the nuclear trafficking of P-catenin compared to wild type fibroblasts 

(Nishimura et al, 1999a). Besides regulating the distribution of p-catenin, GSK-3P 

is thought to be the kinase responsible for the hyperphosphorylation of tau. PS1 

binds directly both tau and GSK-3p and mutations in PS1 increase this interaction 

(Takashima et al, 1998). The ability of PS1 to bring tau and GSK-3P into close 

proximity suggests that PS1 may participate in the regulation of tau 

phosphorylation thereby contributing to tau aggregation and the development of 

PHF and NFTs (Czech et al, 2000).

(vi) Active y-secretase requires several components

Currently evidence suggests that PS1 is involved in transmitting extracellular 

signals to the cell interior via the intramemembrane cleavage of type 1 

transmembrane proteins. This ‘regulated intramembrane proteolysis’ (RIP) is a 

generic function of PS, which so far is responsible for the cleavage of nine known 

substrates including APP, Notch, LRP, ErbB4, E-cadherin, CD44, Ire la , APLP-1 

and Nectin-1a, all thought to be involved to some extent in regulating 

transcriptional activity (Kim et al, 2002; Medina and Dotti, 2003). All of these 

substrates share similar y-secretase consensus motifs and reside at or near the 

cell surface, where ectodomain shedding prior to y-secretase-like cleavage 

releases the intracellular domain (ICD).

According to recent studies core y-secretase activity requires three 

additional transmembrane proteins besides PS: Nicastrin (Net), APH-1 and PEN2. 

Together with PS these subunits constitute the active y-secretase complex known 

as a ‘secretosome’, which when expressed in yeast constitutes y-secretase activity 

(Marlow et al, 2003). Nicastrin, a 709 amino acid-long, type 1 transmembrane 

protein was the first member of the secretosome to be discovered (Yu et al, 2000). 

Nascent unglycosylated Net (~80 kD) undergoes glycosylation to form immature 

Net (iNCT ~110 kD) and mature Net (mNct ~150 kD) after entering the Golgi. The

45



latter Net species associates with active y-secretase and requires PS for its 

maturation. Removal of Net from C.elegans  generates an embryonic lethal 

phenotype similar to that when PS and Notch gene activity is reduced. 

Furthermore, Net binds to the y-secretase substrates C99 (aC TF) and C83 (|3CTF) 

derived from APP (Yu et al, 2000). Subsequent studies revealed the presence of 

Net in Drosophila and in MDCK cells where nicastrin and PS1 co-localise within the 

ER and Golgi (Yu et al, 2003).

Genetic screening of C.elegans  led to the detection of two novel genes, 

Aph-1 (anterior pharynx defective), known to interact with the notch signalling 

pathway, and pen-2  (presenilin enhancer) (Francis et al, 2002). Aph-1 has seven 

transmembrane domains and is found as two highly homologous forms in mammal 

cells (aph-1 a and aph-1 b), and both are functionally equivalent in C.elegans rescue 

experiments. Using small interfering RNA experiments in human cell lines leads to 

the accumulation of aC TF and PCTF, and a decrease in Ap as well as the inhibiting 

NICD production, thereby implicating itself directly in the function of the y-secretase 

complex (Lee et al, 2002). Pen-2 codes for a small protein of 101 amino acids that 

contains two predicted transmembrane domains. Human Pen-2 is an essential co­

factor in the y-secretase complex as demonstrated by data showing co- 

immunoprecipitation of Pen-2 with both the uncleaved PS holoprotein and Net 

(Steiner et al, 2002).

More recently Aph-1 has been shown to bind preferentially within the ER to 

iNct in the early stages of y-secretase assembly (Steiner et al, 2002), whereas 

cleaved PS and Pen-2 bind preferentially to the mNct species (La Voie et al, 2003). 

The formation of a stable intermediate complex of Aph-1 with iNct appears to be 

independent of PS, Pen-2 and PS endoproteolysis. The glycosylation status of the 

Aph-1-iNct complex and its additional glycosylation to the mature sub-complex 

appears to regulate its interaction with PS and Pen-2. Stabilisation of the PS 

holoprotein is thought to occur through interaction with the Aph-1-iNct complex to 

form a trimeric intermediate complex that then binds to Pen-2, allowing for PS 

endoproteolysis and the final glycosylation of Net (Takasugi et al, 2003; La Voie et 

al, 2003).
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1.8 Project rationale

The work undertaken herein aims to extend the previous research carried out by 

this laboratory, specifically the characterisation of PS1 within the cell compartment 

using fluorescent anti-PS1 antibody staining and immunoblotting techniques. To 

achieve these aims, a functional approach was adopted whereby a PS1-EGFP  

transgene was constructed for the purpose of confirming the previous antibody 

staining data, but also to investigate what effect introducing FAD mutations into the 

PS1 construct would have on the location PS1 within the cell. Additionally, a 

functional PS1-EGFP fusion protein would provide a convenient means for 

studying the biochemistry of APP and Ap generation (see chapter 3).
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Materials and Methods



Chapter 2 Materials and m ethods

2.0 Cell Culture

CHO, Cos-7, HEK 293, HeLa, NRK and PS1 mouse knock-out cells used within 

this project w ere cultured in DM EM  with G lutam ax and 4 .5  g/l glucose 

supplemented with 10% foetal calf serum and PenStrep (100 p/ml and 0.1 mg/ml) 

(Life Technologies). Cells were cultured at 37°C in the presence of 5% CO 2 . Cells 

were passaged 1:10 using trypsin (Life technologies) once cells had become sub­

confluent.

2.1 Cell fixation

Cells grown on 13 mm glass coverslips were fixed in -20°C  methanol for 10 

minutes, followed by three 5 minute washes in TBS. Alternatively, cells were fixed 

for 10 minutes in 3-4%  paraform aldehyde (A ldrich-S igm a), followed by 

neutralization with 1xTBS. Paraformaldehyde was prepared by heating a 4%  

solution for 20 min at 65°C. 2M NaOH was added drop wise to dissolve the 

resultant pellet. The final solution was kept in 1xPBS at 4°C for one week. Para 

formaldehyde treated cells were permeabilised with Triton X -100 (Sigma) for 5 

minutes at room temperature. Cell nuclei were stained for 5 minutes with 1pg/ml 

DAPI and affixed to slides with Fluoromount-G (Southern Biotechnology 

Associates, Inc, Al, USA). Images were captured using a JVC 3-CC D digital 

camera mounted on an Olympus BX80 microscope. Images were optimised (level 

equalization) using Corel Photo-Paint 8.

2.2 Antibody staining

A list of antibodies used for immunoanalysis is shown in table 2.0 below. 

Antibodies to PS1 (NT7, 1039, 923), Ubiquitin, anti-EGFP, the APP antibody AB10 

and GRASP65 were used for both immunofluorescence microscopy and Western 

blotting. All other antibodies were used solely for im m unofluorescence  

microscopy.
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Table 2. Antibodies used within present study

Primary Antibodies Source Antigen or Catalogue H-
(where relevant)

rabbit o A P P /A IW  (AB10)
mouse Colligin
mouse P-Catenin
mouse P-COP
rabbit A PP  (D E2)
mouse ER G IC 53
mouse GalNac-T2
rabbit Golgin 245
mouse Grasp65
rabbit EG FP
mouse LAMP1
mouse a-Mitochondria
rabbit Mannosidase II
mouse Membrin
mouse M TO C  (EG 3)
rabbit NT7 N-terminal PS1
rabbit PDI
mouse a20S  Proteasome
rabbit Y-Tubulin
rabbit Ubiquitin
mouse Vimentin
rabbit 923 N-terminal PS1
rabbit A PP  KPI (993)

rabbit A PP (1151)
rabbit D P23 0 X 2  domain of APP
rabbit CO PII

This laboratory 
Stressgen 
Sigma 
Sigma
This laboratory 
H.P. Hauri 
H. Clausen 
M. Feiszler 
M. Lowe 
Clontech 
Sigma
This laboratory 
This laboratory 
Stressgen 
This laboratory 
This laboratory 
T. Wileman 
Zymed  
Sigma 
Sigma 
Sigma
This laboratory 
This laboratory 
This laboratory

This laboratory 
This laboratory 
T. Wileman

DAEFRHDSGYEVHHQK 
SPA -470  
C -2206  
G 2206
DAEFRHDSGYEVHHQK
G I/93
UH4

8367-1
H4A3
unknown
PGTQNISEINLSPMEISTFRIQLR
V A M -P T046
unknown
MTELPAPLSYFQNAQMSEDNHLSNT

20973498
T -3559
U -5379
V -6630
FQ N A Q M S ED N H LS N TV R S Q N  
R EVC S E Q A E TG P C R A M IS R W Y FD  
PS1 2 9 8 -367  fused to C-term inus of 
maltose binding protein 
PVTIQ N W C K R  G R K Q C K TH PH  
SQ SLLK TTQ EPLA RD

Secondary antibodies Source Catalogue N~

rabbit Alexxa 594  
rabbit A lexxa 488  
mouse Alexxa 594  
mouse Alexxa 488  
rabbit Alkaline Phosphatase 
rabbit HRP

Molecular Probes 
Molecular Probes 
Molecular Probes 
Molecular Probes 
Cell Signaling 
Cell Signaling

A 11012
A 11008
A 11005
A11001
7054
7074

2.3 Reduction and alkylation of disulphide bonds

To facilitate antibody detection of APP, Cos-7 cells expressing the fusion protein 

were fixed and reduced for 3 hours at room temperature by 10 mM DTT in 0.5 mis 

of 0.1 M Tris HCI (pH 8) and 1 mM EDTA treatment. Following three 5 minute TBS 

washes, each well was alkylated for 1 hour in 25ptl 250mg/ml (0.06 fiM) sodium 

lodoacetate, and then washed twice for 5 minutes in TBS.
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2.4 Preparation of soluble and membrane bound cell fractions for SDS-PAGE  

analysis

Where cell fractions were required for Western analysis, either control, non­

transfected or Cos-7 cells transiently transfected (24 hours) with the fusion constructs 

were scraped using a Falcon cell scraper from 6 well plates (27 sq cm) and 

homogenised in 10 mM phenylmethylsulfonylfluoride (PMSF) (Sigma) and 1 ml ice- 

cold 10 mM Tris HCI pH 8. Samples were prepared in a Dounce homogeniser (1 ml 

capacity) following 30 strokes of the piston. Samples were centrifuged at 13,000 rpm 

for 30 minutes. The resultant supernatant was kept and constituted the soluble 

fraction. Pellets were washed in 10 mM Tris HCI pH 8 and centrifuged at 13,000 rpm 

for a further 30 minutes. The supernatant was discarded and resultant pellet 

constituted the membrane fraction. Samples were heated at 50°C for 10 minutes in 

the presence of equal volumes of 2 X DTT. Samples were stored at -20°C until time 

of use.

2.5 SDS PAGE/Urea Bicine gel preparation

Synthetic peptides corresponding to Ap1-40 and Ap1-42 were obtained from Sigma. 

Bicine and BisTris were obtained from Lancaster synthesis. Urea, SDS, APS, 

TEMED, Glycine and CAPS used for electrotransfer were purchased from Sigma 

chemicals. Bis-acrylamide was obtained from Biorad. Immobilon-P PVDF membrane 

was purchased from Millipore and Nitrocellulose membrane from Amersham Life 

Sciences. SDS-PAGE molecular weight standards 7 Blue and 1 Blue (Sigma) or 

Benchmark protein ladder (Invitrogen) were used to assess protein size. SDS-PAGE 

was carried out using the Bio-Rad Mini protean II Electrophoresis gel system. For 

separation of Presenilin fusion proteins, 10% Urea gels were used in an attempt to 

resolve higher molecular weight species.

2.6 Immunoprecipitation of conditioned media

Conditioned cell culture media was removed after 24 hours incubation and analysed 

by immunoprecipitation for Ap peptides. Immunoprecipitation was carried out using

50



either 50 mM TR IS .H C I pH 7.4, or radioimmunoprecipitation buffer (RIPA) (0.5%  

Nonidet P-40 (BDH), 0.25%  sodium deoxycholate, 0.05%  SDS, 150 mM NaCI, 50 mM 

HEPES, and 1 tablet of protease inhibitor mixture Complete Mini (Roche Molecular 

B io c h e m ic a ls ) per 2 ml of 5X RIPA, pH adjusted to 7 .4  with NaOH). For 

immunoprecipitation I.O ml of conditioned media was added to 250 pi anti-Ap AB10 

(mouse monoclonal supernatant), 50pl 50% slurry Anti-Mouse IgG (Sigma) and 

1 0 0 pil TR IS .H CI pH 7.4. Samples were rocked for 2 hours at room temperature. 

Where RIPA buffer was used 1.0 ml of conditioned media was added to 250 pi AB10 

plus 50 pi 50% Protein-A beads (Pierce, Rockford, III, USA). Samples were rotated 

overnight at 4°C. Samples were centrifuged briefly at 2000 rpm for 2 minutes, 

washed with TBS, and repeated for a second time. W here RIPA buffer was used, 

beads were washed four times in PB S/0.1% BSA and once in 10 mM Tris.HCI, pH 

7.4. To elute the beads incubated in Tris buffer, samples were aspirated followed by 

addition of 10OpI 1xDTT/urea and heating at 60°C  for 10 minutes. Samples 

incubated with RIPA buffer were eluted by heating the samples to 95°C for 5 minutes 

with 25 pi sample buffer.

2.7 Detection of P-amyloid peptides

The urea version of the Bicine/Tris SDS-PAGE system was used for the detection of 

the (3-Amyloid 40 and 42 peptides (Wiltfang, et al 1998). This gel system utilises 

three phases; a comb, stack and resolving gel components. The approximate 

dimensions are shown in figure 2.0 below. Cell pellets were resuspended in 25 ml of 

sample buffer (0.72 M bistris 0.32 M bicine, 2% SDS, 30%  (w/v) sucrose, 5% 2- 

mercaptoethanol, 0.008%  (w/v) bromophenol blue, heated to 95°C for 10 minutes and 

separated by bicine/Tris/urea S D S -P A G E . Table 2.1 below shows the buffer 

composition and stock solutions used for Bicine/Tris SDS-PAGE. Table 2.2 lists the 

final comb, stacking and resolving gel volumes needed for Bicine/Tris SDS-PAGE. 

For Coomassie staining, gels were fixed in 10% acetic acid and 50% methanol for 10 

minutes, followed by overnight staining with 0.05%  w/v CBB R-250 in 10% acetic 

acid. Gels were de-stained overnight with rocking in 2% acetic acid.
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Figure 2.0. Dimensions used for Bis-acrylamide gel (0.75 mm thickness)

Table 2.1 Composition and stock solutions used for Bicine gels

Composition

Resolving buffer 
Stacking buffer 
Comb buffer 
Cathode buffer 
Anode buffer

1.6 M Tris, 0.4 M H2S 0 4 
0.8 M BisTris, 0.2 M H2S 0 4.
0.72 M BisTris, 0.32 M Bicine.
0.2 M Bicine, 0.1 M NaOH, 0.25 M w/v SDS. 
0.2 M Tris, 0.05 M H2S 0 4.

Table 2.2. Final gel volumes

Comb Gel 
(9%T /5% C)

1.5 mis comb gel buffer
900 pi Acrylamide/Bis (30% T/ 5% C)
30 pi 10% w/v SDS
514 pi dH20
36pl APS (5%)
20pl TEMED

Stacking gel 
(6% V  5%C)

1.0 ml Stacking gel buffer
400 pi Acrylamide/Bis (30% T/ 5% C)
20 pi 10% w/v SDS
540 pi dH20
20 pi APS (5%)
20pl TEMED

Resolving Gel 
(10% T/5% C/ 
8M Urea)

2.5 mis resolving gel buffer 
3.34 mis Acrylamide/Bis 
4.8 g Urea 
100 pi 10% SDS.
40 pi APS (5%)
5 pi TEMED



2.8 SDS-PAGE running conditions

The SDS-PAGE urea gels were run at room temperature at 100 V  for 30 min followed 

by 150 V  for 1 hour. The Bicine/Tris SDS-PAGE urea gels were run at room 

temperature at 60 V  for 15 min followed by 100 V  for 1 hour. PVDF membranes were 

wetted in methanol prior to transfer in Towbin buffer (0.025 M Tris, 0.192 M Glycine, 

20% Methanol), whereas nitrocellulose membranes were transferred in CAPS buffer 

(10 mM CAPS, 10% methanol, pH 11.0). Both membranes were transferred at 200 

amps for 1 hour.

For immunostaining, Immobilon-P PVDF membranes were boiled for 3 minutes in 

PBS. Membranes were blocked in 2.5% nonfat dry milk in TBS-T for 1 hour (0.05%  

v/v Tween-20, 5% w/v nonfat dried milk). Following primary antibody incubation for 

90 minutes, membranes were washed three times for 10 minutes in TBS-T, followed 

by secondary incubation with alkaline phosphatase (AP) (1:1000) or horseradish 

peroxidase (HRP-linked) (1:2000) secondary antibody (Cell Signalling Technologies) 

for 45 minutes at room temperature.

Membranes were washed twice for 10 minutes in TBS-T, and then once for 5 minutes 

in TBS. AP membranes were developed in 4 mis AP-buffer (100mM TRIS.HCI, 

100mM NaCI, 5 mM MgChpH 9.5) containing 40pil bromo-chloro-indolyl phosphate 

(BCIP, 15mg/mlin DMSO/MeOH) and 40pil nitroblue tetrazolium (NBT, 30mg/ml in 

MeOH) (Sigma). Membranes exposed to HRP were developed using Biowest ECL 

detection kit according to the manufacturers instruction and imaged on an Epi Chemi 

II Darkroom (UVP Biolmaging Systems).

2.9 Polymeraisation chain reaction conditions

Following the optimization of reaction conditions, PCRs were performed using 1 unit 

of Taq polymerase (NE biolabs), 0.2 mM dNTPs (Bioline) and 2.0 mM Mg2+. 

Reactions were carried out on a Primus PCR machine (MWG-Biotech) programmed 

to heat the PCR mixtures to 95°C for 10 minutes, followed by 30 cycles of denaturing 

at 95°C for 1 minute, annealing at 65°C for 1 minute and extension at 72°C for 1 

minute. Finally, samples were heated to 72°C for 10 minutes.
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2.10 Restriction digestion and preparation of cDNAs

Double and single restriction digestion of pGEMT (Promega), pN2-EGFP (Clontech) 

and amplified cDNA was carried out with 0.1 units of enzyme/|Lig DNA at 37°C for 2 

hours. Ligation of inserts into linearised plasmid was carried out using T4 DNA  

ligase/ligation buffer (1.0 Weiss unit/pg DNA - NE biolabs) at 4°C overnight. DNA  

samples containing loading buffer were analysed by gel electrophoresis on a 1% TAE 

agarose gel stained with ethidium bromide. All cDNAs used for restriction digest and 

ligation reactions were purified using a Qiagen QIAquick Gel extraction kit according 

to the manufacturers instructions. The DNA band size was estimated by comparison 

with a 1 kb ladder (NE Biolabs) and by performing linear regression analysis. DNA  

concentration was measured using a Cecil CE9500 spectrophotometer.

2.11 Preparation of electrocompetent DH 5a E.coli

Electrocompetent bacteria were prepared by diluting 5-10mls of an overnight culture 

to 100 mis in LB broth in a sterile 250 ml flask. Cells were shaken at 37 °C for 2-3 

hours until the O D 6oo read 0.5. The culture was decanted into pre-cooled 50 ml 

Falcon tubes and left on ice for 30 minutes, followed by centrifugation at 4000 rpm for 

15 minutes at 4°C. The pellet was re-suspended in 50 ml of sterile water. This 

procedure was repeated a second time. The pellet was then re-suspended in 25 mis 

of sterile water, and centrifuged at 4000 rpm for 15 minutes at 4°C. This procedure 

was repeated a second time. The pellet was re-suspended in 4 mis 10% glycerol and 

centrifuged at 8000 rpm for 15 minutes at 4°C. The final pellet was re-suspended in 

0.4 ml 10% glycerol and divided into 40pl aliquots. Cells were stored at -70°C until 

needed.

2.12 Transformation of DFI5a E.coli

Electrocompetent D H 5a E.coli (40pil) were prepared and transformed using the 

Invitrogen electroporator II, according to the Invitrogen Electroporator II Instruction 

Manual. Briefly, 1 -5pil volumes of 1 mg/ml pGEM -T or pEGFP containing PS1 cDNAs
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were incubated along with the electrocompetent bacteria and electroporated using the 

following input values: Input voltage 1500 volts; capacitance V  max 1800; load 

resistance 15 amps. Transformants were incubated for 1 hour with shaking in the 

presence of 1ml Luria-Bertani broth (LB) containing 0.1 mM MgCI and 0.4 mg/ml 

glucose. 150pil of the suspension was plated-out onto LB agar containing an 

appropriate selection antibiotic -  100 jLtg/ml ampicillin or 30 (Lig/ml kanamycin (Gibco). 

pGEM-T containing cDNAs were plated-out in the presence of 80 pg/ml 5-bromo-4- 

chloro-3-indolyl-beta-D-galactopyranoside (X-gal) and 0.5 mM Isopropyl-beta-D- 

thiogalactopyranoside (IP TG ). Plates w ere incubated at 37°C  overnight. 

Transform ant colonies were picked and cultured overnight with shaking in 

LB/antibiotic broth at 37°C. Plasmid preparations were prepared by the alkaline-lysis 

method (Sambrook et al, 1989).

2.13 Transfection of Mammalian Cells

Cells used for immunomicroscopy were grown on 13 mm coverslips and transfected 

at 50-80% confluency. Cells were transfected with pEGFP or pEGFP containing PS1 

cDNAs, in the ratio 0.7-0.8 pg DNA/ 1.75 pi Lipofectamine or 0.8 pg DNA/ 2.0 pi 

Lipofectamine-2000, per well of a 24 well plate, as per the manufacturers instructions 

(Gibco). For larger transfections in 6 well plates (27 cm2) materials were scaled-up 

10 fold.

2.14 Transmission electron microscopy

Cos-7 cells expressing the NTM PS1-EG FP fusion protein were grown on 25 mm 

coverslips in a six well plate. Twenty four hours post transfection, cells were fixed in 

Karnovsky’s fixative (2% paraformaldehyde, 2.5%  glutaraldehyde in 0.1M phosphate 

buffer) for 3 hours at 4°C. Fixed specimens were then handed over to John Proctor 

at Sheffield University for further fixation and imaging by TEM. Cells were post-fixed 

in osmium tetroxide for 1 hour at room temp. Specimens were dehydrated by a 

series of 15 min graded ethanol washes (75, 95, and 100%) at room temp and dried 

over anhydrous copper sulphate for 15 min. Specimens were then placed in 

propylene oxide for two changes of 15 min duration.
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Specimens were infiltrated using a 50/50 mixture of propylene oxide/Araldite resin 

and left overnight at room temp. Specimens were left in full-strength Araldite resin for 

6-8 hours at room temp after which time they were embedded in fresh Araldite resin 

for 48 hours at 60°C. Ultrathin 70-90 nm sections were cut on a Reichert Ultracut E 

ultramicrotome and stained for 15 min with 3% uranyl acetate in 50% ethanol followed 

by Reynold’s lead citrate staining for 2 min.

Sections were examined using a Philips CM10 mono transmission electron 

microscope at an accelerating voltage of 80 Kv. Electron micrographs were recorded 

on Kodak 4489 electron microscope film.
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Chapter 3 Characterisation of PS1-CTF and PS1-NTF fragments in Cos-7 cells by 
immunocytochemistry

3.1 Introduction

Functional PS1 is thought to result from the endoproteolysis of the immature 

holoprotein within the ER compartment to yield stable NH2- and COOH-terminal 

fragments (NTF and CTF, respectively), (Thinakaren et al, 1996; Yu et al, 1998), which 

are subsequently transported to the Golgi (Zhang et al, 1998), where they re-associate 

(Thinakaran et al, 1998; Capell et al, 1998) within a functional complex containing 

other proteins such as P-catenin, nicastrin, etc. Whether PS1 NTFs and CTFs have 

different functions either separately, or within a functional complex, and where within 

the cell compartment these fragments have their biological effect is currently unclear. 

However, in addition to the PS1 localisation to the ER, ERGIC and Golgi (Cook et al, 

1996; Kovacs et al, 1996), PS1 has been reported at the cell surface of T-cells 

(Schwarzman et al, 1999), NT2N and DAMI cells (Dewji & Singer, 1997), and the cell­

cell contacts in Cos-7 cells (Takashima et al, 1996).

To investigate the biology of PS1 fragments, rabbit polyclonal antisera raised 

against the C-terminus loop domain (296-367) and N-terminus of human PS1 (10-24) 

designated 1039 and 923 respectively, were used to stain endogenously expressed 

wild-type PS1 in Cos-7 cells and imaged by immunofluorescence microscopy.

3.2 Criteria for assessing reporter molecule localisation within the cell compartment

Where antibodies/proteins are said to co-localise within the same compartment, this 

should be taken to mean that the merged yellow image is more or less identical to the 

two separate images shown in the red and green figures. A more strict definition of co­

localisation would be when two separate reporters, say antibodies recognizing different 

epitopes on the same molecule appear merged. A good example would be an anti- 

EGFP antibody staining EGFP (see figure 4.7). Where staining is said to be co­

incident, co-ditributed or overlapping, this means that although the merged image 

appears to show co-localisation, this is only coincidental since in the separate 

channels the reporter molecules occupy very different compartments. A good example 

of overlapping staining is shown in figure 3.2 d below.
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3.3 1039 antibody staining of PS1 in Cos-7 cells

Endogenous staining of PS1 in Cos-7 cells with the C-terminal PS1 antibody 1039, 

results in a predominantly reticular staining pattern throughout the cell and around the 

nucleus (figure 3.1, upper panel and figure 3.2, panel a). The distribution observed for 

the 1039 antibody is consistent with the reticular network characteristic for the ER. A 

comparison of 1039 staining with endogenous staining of the ER specific marker 

Colligin (Hsp 47) show the same general morphological features (figure 3.2, panel a 

and d).

3.4 923 antibody staining of PS1 in Cos-7 cells

Whereas staining with the anti-C-terminus PS1 antibody 1039 is ER-like, antibody 

staining of Cos-7 cells with the anti-N-terminal PS1 antibody 923 is predominantly 

perinuclear with some tubulo-vesicular staining (figure 3.1, lower panel and figure 3.2, 

panel b). Similarly, staining of Cos-7 cells with the trans Golgi marker antibody Golgin 

245 is distinctly peri-nuclear and not unlike that of 923 staining pattern (figure 3.2, 

panel c). Similarly, double staining of Cos-7 cells with the ER marker Colligin and the 

923 antibody reveals that the N-terminus PS1 fragment does not localise with Colligin 

(figure 3.2, lower panels). Challenge with the peptide immunogen used to generate 

923 completely or significantly reduces 923 antibody staining (D.Parkinson 

unpublished observations).

3.5 923 staining of Brefeldin-A treated Cos-7 cells is largely vesicular and co- 

localises with ERGIC53

To further characterise the cell compartments in which endogenous PS1 resides, Cos-

7 cells were treated with the fungal metabolite Brefeldin-A (BFA) which reversibly

blocks protein transport from the ER to the Golgi apparatus by preventing membrane

recruitment of COPI proteins, resulting in distinct morphological changes, including

collapse of the Golgi stacks (Klausner, 1992). Pharmacologically, BFA prevents the

retrograde transport of proteins normally resident in the Golgi into the ER, though in

the case of the trans Golgi network (TGN), BFA causes it to reassemble into extensive

tubular processes without redistributing into the ER (Wood et al, 1991). Antibody

staining of BFA-treated Cos-7 cells should reveal if any of the PS1 fragments resides

within the cis, medial, trans Golgi, or the TGN. BFA treatment of Cos-7 cells resulted in

differential staining patterns for the 923 and 1039 PS1 antibodies (figure 3.3). Both

Colligin and 1039 antibody staining is largely unaffected by BFA treatment since both
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PS1 antibodies stain separate compartments in Cos-7 cells

T h e  C T P S 1  antibody 1 0 3 9  d isplays a reticular staining pattern

T h e  N TP S 1 antibody 9 2 3  displays a perinuc lear staining pattern

F igure  3 .1 . E n d o g en o u s  staining of PS1 in C o s -7  cells. M e th an o l tre a te d  C o s -7  cells  
affixed  to coverslips w e re  sta ined  with the PS1 C -te rm in a l an tibody 1 0 3 9  (u p p e r p an e l) 
and the PS1 N -term inal antibody 9 2 3  (low er panel). D A P I stain in blue. Bar, 2 0  pm .
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maintain a uniform reticular distribution pattern throughout the cell cytoplasm and 

around the nucleus (figure 3.3, panels a and c, respectively), as was the case for the 

control, non-BFA treated cells shown in figure 3.2, panels a and d. Following BFA 

treatment of Cos-7 cells the distinct perinuclear-staining pattern displayed by Golgin- 

245 (figure 3.1) is lost and instead redistributes to the ER forming a reticular pattern 

(figure 3.3, panel a). Interestingly, 923 antibody staining of BFA treated cells shifts 

from a Golgi-like distribution pattern to one that is predominantly vesicular, possibly 

indicative of the ER-intermediate compartment (ERGIC) (fig 3.2, upper middle panel). 

To investigate this possibility, BFA treated Cos-7 cells were double stained with the 

923 antibody and the ERGIC specific marker antibody ERGIC53. Figure 3.4 shows 

that the 923 staining strongly co-localises with the ERGIC53 marker, initially within the 

Golgi compartment (top row) and then within the ERGIC following BFA treatment 

(bottom row). In conclusion, the above results show that immunostaining of 

endogenous PS1 in Cos-7 cells displays differential localization of the CTF and NTF 

PS1 fragments. Furthermore, upon BFA treatment of Cos-7 cells endogenous 

PS1NTF 923 staining locates to the ERGIC unlike that of the CTFPS1, which returns 

to the ER.

3.6 Western blot analysis of endogenous PS1 expressed in Cos-7 cells

Cos-7 cells were lysed in DTT/Urea to give whole cell lysate and analysed by SDS 

PAGE and immunoblotting with 1039 and 923 antibodies (figure 3.5). The anti- 

CTFPS1 antibody stains immunoreactive bands at approximately 22 kD (lane 2) 

consistent with previous reports, whereas the 923 anti-NTFPS1 antibody unexpectedly 

shows very poor staining (lane 4). The 1039 doublet suggests alternate CTFPS1 

transcripts, whereas the higher band at -6 0  kD may represent the uncleaved 

holoprotein (Dewji and Singer, 1997). In addition to this band, 1039 stains a double 

immunoreactive band at -9 0  kD that may represent PS1 dimerisation and/or 

aggregation. Caution is advised in interpreting PS1 immunoblot data since crude 

preparation for a range of different tissues and cells leads to proteolytic events that 

result in PS1 artifacts (Dewji et al, 1997).

The absence of 923 immunoblot staining of PS1 may be explained by

proposing that the antibody only recognises specific epitope conformers, such that

denaturation and linearisation of the protein, as a prerequisite to immunoblotting,

effectively abolishes 923 antibody recognition of PS1. Indirect evidence for this is

provided by the immunocytochemistry results where the 923 antibody recognizes the
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putative PS1 epitope. Alternatively, cleavage of the N-terminus amino acid sequence 

of PS1 to which the 923 antibody was directed against could likewise explain its failure 

to immunoblot. However, it has been demonstrated by peptide competition studies that 

923 staining is significantly reduced. Furthermore, the 923 antibody failed to 

immunoprecipitate PS1 from Cos-7 cells, arguing against an N-terminus cleavage 

event (D. Parkinson - unpublished observations). Similarly, the immediate addition of 

DTT directly to cultured Cos-7 cells during the preparation of whole cell lysate is 

sufficient to prevent major proteolytic activity and as such is unlikely to account for the 

absence of 923 immunoblot staining of PS1. In any event, had proteolysis of the 

whole cell lysate occurred, it might be expected that immunoblotting of the sample 

would show protein laddering, however 1039 staining (figure 3.5) suggests that this 

was not the case.

3.7 The 923 antibody does not recognize the PS1 N-terminus

To validate the 923 antibody data a PS1 N-terminus EGFP chimera was constructed 

(chapter 4), and a second antibody, NT7, that recognizes the N-terminus of PS1 was 

utilised since this both western blots and immunostains transgene and endogenous 

PS1 (see chapter 5.5 and figures 5.8 lower panels, and figures 7.1 and 7.2a). 

Subsequently data from these investigations (chapters 4 and 5) show that the 923 

antibody does not recognize either endogenous or transgene PS1 (see chapter 4.9 

and figure 4.10). Consequently the data showing a difference in the PS1 CTF and NTF 

distributions, as measured by 923 and 1039 antibody staining, is only valid for the 

PS1-CTF but not for the 923 antibody, which appears to recognize an unknown 

epitope distinct from PS1.

3.8 Chapter summary

In summary, the above results are consistent with the PS1 holoprotein undergoing 

proteolysis as part of the maturation process that gives rise to functional PS1. 

However, the novel observation that the two PS1 fragments appear to reside in 

separate compartments suggest, if correct, that C- and N -terminal PS1 fragments may 

function separately to that of the mature PS1 complex and/or that the two fragments 

may be degraded by separate pathways. Later analysis of the 923 antibody data 

suggests that it does not in fact recognize N-terminal PS1.
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b.

Calibration Curve

2.00 n

1.90
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°  1.20

1.10
1.00

5 15 25 35
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Linear regression analysis of immunoreactive bands

Molecular weights for PS1 fragments (kDa):

Holoprotein -5 5  kDa
C-terminal PS1 -1 4 -2 9  kDa
N-terminal PS1 -3 0  kDa

Figure 3.5. a. 923 and 1039 antibody staining of Cos-7 whole cell lysate. (Lane 
2) Immunoblotting of CTPS1 by 1039 detected bands at approximately 88 kD, 
60 kD and 22 kD. (Lane 4) The NTPS1 antibody 293 failed to immunoblot 
endogenous PS1. Samples analysed by 10% Urea SDS PAGE. b. The size of 
the immunoreactive bands was calculated using linear regression.
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Chapter 4 Construction of NTPS1-EGFP plasmid and expression in transfected 

cells

4.1 Introduction

The observation that the NTFPS1 923 antibody does not react in Western blot 

analysis raises doubts about the identity and utility of this antibody in characterising 

the biology of PS1 for this project. In order to clarify this issue and effectively 

extend the previous findings that PS1-NTF and PS1-CTFs reside within different 

cellular compartments, and that upon BFA treatment these fragments follow 

different retrograde pathways, a course of action was taken to construct a 

PS1NTF-EGFP (Enhanced Green Fluorescent Protein) fusion protein. This 

scheme has the advantage over immunostaining in that living cells transfected with 

the fusion construct can be imaged without relying on antibody detection as the 

primary reporter molecule.

The expression of fusion proteins tagged with EGFP is routinely used to 

study the function and localisation of proteins in a wide variety of cells. EGFP is an 

optimised variant of the GFP expressed by the jellyfish Aequorea Victoria (Chalfie 

et al, 1994;Cubitt et al, 1995), that allows detection by fluorescence microscopy of 

living or fixed cells, or by Western blot analysis with EGFP antibodies. Within the 

jellyfish, light is produced when energy is transferred from the Ca2+-activated 

photoprotein, aequorin to GFP. When expressed in cells and illuminated by either 

UV or blue light (absorbance at 395 nm), GFP generates a bright green 

fluorescence emission at 509 nm independent of co-factors or substrates. The 

GFP chromophore consists of a cyclic tripeptide derived from Ser-Tyr-Gly in the 

primary protein sequence and is only fluorescent when embedded within the 

complete GFP protein. Nascent GFP is not fluorescent and requires that the 

chromophore undergo cyliclisation and oxidation in the presence of oxygen. Thus 

cells expressing the protein will only fluoresce within an aerobic environment.

GFP fusion proteins have been shown to maintain their fluorescence in living cells 

as well as retaining the normal biological function of the fusion partner. Such 

tagged proteins provided increased sensitivity and resolution when compared to 

conventional antibody staining techniques (Wang & Hazelrigg, 1994). The use of

66



the fluorescent tag does not require fixation or permeabilisation steps thus making 

this reporter system suitable for kinetic studies concerned with protein localisation 

and trafficking.

To construct the N TPS1-EG FP plasmid involved the use of molecular 

biology techniques such as PCR and the sub-cloning of the NTPS1 cDNA into the 

target vector. Briefly, suitable primers incorporating restriction sites were designed 

to anneal with the N-terminus region of PS1 cDNA during PCR. The amplified 

product was double digested and ligated into the target EGFP vector. The steps 

taken in the construction of the NTPS1-EGFP fusion plasmid are summarised in 

figure 4.0. By subcloning the PS1 NTF cDNA into the EGFP vector upstream from 

the EGFP tag, translation of the mRNA and the subsequent protein synthesis 

should generate a fusion protein consisting of the first half of human PS1 with the 

EGFP moiety attached at the C-terminus.

4.2 Amplification of N-terminal PS1 cDNA by PCR

The primer design incorporated both an Xho I and an EcoR1 restriction site to help 

facilitate subcloning of the cDNAs into the target vectors. Using appropriate 

primers the N-terminal region transmembrane domains 1-6 (codon 1 - codon 282) 

were amplified by PCR from the pCIneo plasmid containing full-length human PS1. 

To facilitate subsequent sub-cloning steps, forward and reverse primers were 

designed to incorporate Xho I and an EcoR1 restriction sites, respectively. Table

4.0 below shows the primer sequences used to generate truncated and full-length 

wild type and FAD PS1 constructs (see later).

4.3 Optimisation of conditions for PCR

An initial approach taken towards PCR is to first optimise the reaction conditions 

that yield sufficient cDNA of the required size whilst minimising the generation of 

non-specific bands. To this end PCR was carried out in the presence of five 

varying magnesium concentrations and three annealing temperatures. Figure 4.1 

shows the effect of magnesium concentration on the yield of PCR product. As
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a.

1 2 3 4 5 6 7 8

3000 -
2000 
1500 -

1000 - 838 bp

Lanes 1 2 3 4 5 6 7 8
1Kb

Ladder
No DNA No Mg 2.0 mM 2.5 mM 3.0 mM 3.5 mM 4.0 mM

b.

Log 1 kb
ladder
fragments

y = -0.4125x + 4.6639

2.6
1.4 1.9 3.90.9 2.4 2.9 3.4

Distance moved by fragments (cm)

Figure 4.1. Amplification of N-terminal PS1 fragment by PCR. a. Incubation of 1pl 
pCIneoPSI (1 mg/ml) with Taq polymerase in the presence of varying MgCI2 
concentrations (mM) (annealing temperature 55°C). 1.5% TAE agarose gel
stained with ethidium bromide, b. Log plot of 1kb ladder fragments. Estimate of 
PCR product size (bp) using linear regression analysis.
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expected, the absence of pCIneoPSI (lane 2) and Mg (lane 3) within the reaction 

mixture did not generate any PCR product.

Table 4.0. Primer sequences used to amplify by PCR truncated (NTPS1) and full 
length (FLPS1) PS1 mutant and wild-type cDNAs from pCLneoPSI

NTPS1 conserved 
construct
Forward. Code: 0-05 
Reverse. Code: 0-06

5’- G A A TTTTG G G A A TC C TC C TTTG A G C TTC C G G G T-3’ 
5 ’-GAGCGAAAAAAATT C A A G C G TTT C ATTT C T-3

FLPS1 conserved construct

Forward 712-748. Code: 0-10  
Reverse 1404-1427. Code: 0-12

5 ’TTA G TG C C C TC A TG G C C C TG G TG TTTA TC A A G TA C C T 3 ’ 
5 ’GAG CG AATTCG A ATA AA ATTG A TG G AA TG CTA A  3’

NTPS1/FLPS1 FAD (L235P)

Forward 712-748. Code: 0-11

Reverse 712-748. Code: 0-09

L->P
5 ’ TT AGT GCC CTC A TG  G CC C CG  G TG  T TT  ATC AAG  
TAC CT 3 ’

L->P
5 ’AG GTA C TT GAT AAA CAC C G G  G G C CAT GAG GGC  
ACT AA 3 ’

Varying the magnesium concentration had no obvious effect on the amount of PCR  

product generated even under reaction conditions using annealing temperatures of 

45°C, 50°C (data not shown) and 55°C. In view of these results, future PCR  

experiments were carried out in the presence of 2.0 mM Mg and an annealing 

temperature of 55°C. The lower bands shown in figure 4.1 represent unused 

excess primer.

By plotting the Log of the 1 kb ladder fragments against the distance traveled 

by the marker DNA allows the size of the PCR product to be estimated. Using the 

equation for the line of best fit an observed value of 838 bp is obtained, close to the 

predicted size of the PCR product of 846 bp (Figure 4.1).

4.4 Subcloning of N-terminal PS1 cDNA into N2-pEGFP

The amplified PCR fragments were excised from the agarose gel and recovered 

using a Qiagen gel extraction kit. Following EcoR1/Xho1 restriction enzyme, 

double digestion of the NTFPS1 PCR product and the pEGFP vector, several 

attempts were made at ligating the insert into the target vector, however none of
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these attempts was successful. It was therefore decided to adopt an alternate 

strategy using a TA cloning kit (Promega) whereby the insert was first sub-cloned 

into the pG EM -T vector. The Taq polymerase (Biolines) used for the PCR  

generates single 3 ’-5 ’ adenine overhangs in the PCR product. The linearised 

pG EM -T vector incorporates single 3 ’-5 ’ thymidine overhangs designed to 

complement that of the PCR product and so facilitate the ligation of PCR products 

into pGEM -T vector. Following ligation of the insert into the vector, DH 5a E.coli 

was transformed and plated-out on LB agar containing IPTG and X-Gal. The  

following day putative recombinant white colonies were picked and grown 

overnight in LB broth containing ampicillin. DNA samples were prepared from the 

overnight cultures and double digested to screen for the insert. Lanes 5 and 12 

(figure 4.2 a) show inserts of the expected size (-8 0 0  bp) and linearised plasmid at 

-3 0 0 0  bp. A scaled-up double digestion was then carried out to provide sufficient 

DNA for subcloning into the EGFP vector. Double digested EGFP and the insert 

were ligated together and the resulting mixture used to transform D H 5a E.coli. 

Selected colonies were incubated in LB overnight and minipreped the following 

day. Double digestion of the putative pN TPS1-EG FP samples generated insert 

close to the expected size (figure 4.2 b, lane 7).

4.5 Restriction digestion analysis of putative N-terminal PS1 cDNA

To confirm that the identity of the insert was that of N TFPS 1, a series of diagnostic 

restriction enzyme assays were carried out with the restriction enzymes BspH 1, 

Sty 1 and Xho 1. Digestion of the construct with these enzymes revealed a unique 

banding pattern distinct from pEGFP digestion alone (figure 4.3). Linear regression 

analysis was used to compare the actual band sizes obtained experimentally with 

those predicted from a restriction map of the plasmid containing the insert (table 

4.1).

Finally, sequence confirmation of the pNTPS1-EGFP cDNA was carried out 

by Lark Technologies. The sequence obtained matched that of the wild type N- 

terminus fragment, however an error appears to have been introduced at position 

49, N-terminus from the start methionine of the wild type PS1 cDNA. Because of

71



Colony screening for pNTPSI

Figure 4.2. Restriction digest of cDNA recovered from transformed DH5a E.coli. 

Individual clones were double digested with EcoR1/Xho1 (0.1 units/pg DNA). a. pGEM- 

T restriction digestion shows putative inserts of the correct size (~800 bp) in lanes 5 

and 12. b. Following double digestion of the NTPS1-GEM-T plasmid, the recovered 

insert was ligated into double digested pEGFP. DH5a E.coli was transformed, cultured 

overnight and plasmid DNA prepared for restriction digestion. Restriction digestion of 

the putative NTPS1-EGFP in lane 7 yields an insert of the expected size. Lane 1 

shows a 1 kb ladder. Samples were analysed on a 1% TAE agarose gel stained with 

ethidium bromide. Insert sizes estimated using linear regression analysis.

72



the copying error at this position translation of the open reading frame would 

generate an arginine residue instead of the amino acid glycine. However, 

according to the Presenilin Mutation Directory at www.alzforum.org there is no 

known FAD PS1 mutation located at this position, nevertheless, this does not rule 

out the possibility of a pathogenic effect associated with this mutation. Though not 

ideal, it was decided as a matter of economy and convenience to continue with the 

next stage of the project, that of transfecting the construct into Cos-7 cells.

4.6 Cos-7 cells transfected with pNTPS1-EGFP display several phenotypes

Cos-7 cells grown to varying densities on glass coverslips were transfected with 

differing cDNA concentrations to Lipofectamine ratios to achieve the best 

transfection rate. Cells were transfected with either the fusion construct or pEGFP  

alone as a control. Cells were left for 24 hours post transfection before being 

prepared for fluorescent microscopy. The number of transfectants was assessed 

by counting the total number of cells viewed under the microscope using the x 400- 

objective and comparing them with those expressing the fusion protein. This 

procedure was repeated three times per slide. The x and y stage adjusters on the 

microscope were moved blindly to obtain a random sample for counting. Given that 

the EGFP fluorescence faded rapidly following exposure to the light source no 

transfected cell could be mistakenly counted a second time. In general transfection 

rates ranged from 5% to 10%, depending on the cell type and the construct being 

transfected (see later).

Four distribution phenotypes w ere consistently observed following 

transfection of the N-terminal fusion construct into Cos-7 cells: reticular, 

perinuclear, vesicular and circumnuclear ‘blob-like’ aggregates (figure 4.4). These 

phenotypes contrast sharply with those observed in Cos-7 cells expressing EGFP, 

which displays a diffuse, cytoplasmic distribution (figure 4 .4  b). Taken as an 

average of several transfection experiments, the proportion of cells displaying a 

particular phenotype remained roughly constant: 28%  of transfected Cos-7 cells 

displayed an reticular-like phenotype, 13% displayed a peri-nuclear like phenotype, 

27% displayed a vesicular phenotype and 30% displayed blob-like aggregates. On 

the whole, cells expressing the fusion protein displayed a mixture of phenotypes
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within the sam e cell, e.g. an ER-like reticular distribution of the fusion protein 

typically might have vesicles and blobs dispersed throughout the cell (figure 4.5). 

Expression levels of the fusion protein varied significantly between low levels that 

could be discerned under the microscope but were too weak to be recorded by the 

CCD camera, to runaway levels of expression that appear as a single fluorescent 

mass that obscured any obvious phenotype.

4.7 Western blot analysis of N TPS1-EG FP fusion protein locates to the cell

membrane

The presenilins are multipass membrane proteins with several transmembrane 

domains (Thinakaren et al, 1996; Tomita et al, 1997). The N-terminal region, the 

loop domain between TM 6 and 7 and the C-terminus region are all orientated 

towards the cell cytoplasm (Li and Greenwald, 1996; Doan et al, 1996; De Strooper 

et al, 1997). It would be expected that a crude preparation of Cos-7 cells 

expressing the fusion protein would, when divided into soluble and insoluble 

fractions, immunoblot for the membrane fraction only. However, the observation 

that some transfected cells display an aggregate-like phenotype, possibly as an 

artefact of overexpression of the fusion protein, suggests a soluble cytoplasmic 

component. To address this question soluble and membrane fractions taken from 

control, non-transfected cells, pEGFP transfected cells, and cells transfected with 

the N TPS1-EG FP construct, were immunoblotted with the anti-EGFP antibody 

(figure 4.6).

As expected immunoreactive bands were absent from non-transfected Cos- 

7 control samples (lanes 1 and 2). Cells transfected with pEG FP show an 

immunoreactive band at -2 9  kD within the cell soluble fraction corresponding to the 

EGFP protein (lane 3). Western analysis of transfected Cos-7 cells expressing the 

fusion protein show immunoblotting of the membrane fraction at -61  kD and -1 2 0  

kD. Whilst the smaller band was expected corresponding to the sum of the 

individual sizes of both the EGFP moiety and the N-terminus of PS1, the band at 

-1 2 0  kD was not expected and may therefore represent dimerisation or 

aggregation of the fusion protein (lane 6). In an attempt to resolve the larger 

protein species into one band, the experiment was repeated a second time with the
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Restriction digest of pNTPS1-EGFP

1 2 3 4 5 6 7 8

a.

2500 bp

Lanes 1 2 3 4 5 6 7 8
1kb pEGFP pEGFP PNTPS1- pEGFP pNTPSI- pEGFP pNTPSI-

Ladder EGFP EGFP EGFP
Enzyme Sty1 Sty1 BspH1 BspH 1 Xho1 Xhol

b.
Calibration curve

y = -0.3228x+4.0118
S3

3.6-
<
ZQ
cno_j

2.6
0.1 1.1 2.1 3.1 4.1

Distance (cm)

Figure 4.3. a. Restriction digest of pNTPS1-EGFP recovered from transformed DH5a E.coli. 
1% TAE agarose gel stained with ethidium bromide. NB the bands at ~2500 bp (*) represents 
incomplete digestion of the plasmid, b. Log plot of 1kb ladder fragments. PCR product size (bp) 
was estimated by linear regression. Plasmid samples digested with BspH 1, Sty 1 and Xho1 
(0.1 units/pig DNA).

Table 4.1 Predicted versus observed fragment sizes generated following restriction enzyme 
digestion of plasmid DNA.

Fraqment sizes (bo) obtained following BsdH1. Xho1 and Sty 1 restriction diqest of dNTPS1-EGFP
dEGFP DNTPS1-EGFP dEGFP DNTPS1-EGFP

Bs dH1 Stt 1 BsdH1 Sty I Xho1 Xho1
Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed

2966 3000 1809 1832 1941 2110 1809 1832 4737 4886 5610 5586
1776 1887 1499 1499 1839 1887 1499 1499

610 592 1776 610 620
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addition of urea to the gel; however, the result was identical to that shown in figure 

4.6. That the addition of urea made no difference to the band at 120 kD may be 

more indicative of insoluble fusion protein aggregates rather than dimerisation of 

the protein. The Coomassie stain in figure 4.6 b shows approximately equal 

loading of protein samples into each of the gel lanes.

Since the phenotypes exhibited by transfected cells are distinct from that of 

EGFP, and that no immunoreactive bands corresponding to EG FP alone was 

found within the soluble fraction of cells, it can concluded that the EGFP moiety is 

not cleaved from the C-terminus of PS1NTF and that the fusion protein resides 

within the membranous compartment of the cell. Similarly, the anti-EGFP antibody 

co-localises with the fusion protein for all phenotypes displayed by transfected 

Cos-7 cells (figure 4.7).

4.8 The NTPS1 fusion protein localises to the ER and Golgi compartments

To investigate the identity of the membranous compartment in which the fusion 

protein resided, several antibodies specific to cell marker proteins were used for 

immunolocalisation experiments. The NTPS1 fusion protein localises to varying 

degrees with markers for the ER (Colligin and PDI), the medial Golgi (Mannosidase 

II), the trans Golgi (GalNac) and the Trans Golgi Network (Golgin 245) (figure 4.8 

& 4.9). Colligin, a 47 kDa stress protein that resides within the ER is thought to 

participate in intracellular processing, folding, assem bly and secretion of 

procollagens (Nagata & Yamada, 1986). Similarly, PDI is thought to interact with 

nascent proteins during their folding and assembly within the ER as part of the ER 

quality control mechanism (Bottomly et al, 2001). Colligin and PDI display a 

reticular distribution in both transfected and non-transfected cells and show partial 

overlap with the fusion protein. Flowever, where the fusion protein displays a 

perinuclear and vesicular distribution there is no localisation with these ER markers 

(figure 4.8, merged panel). Unexpectedly, PDI staining is increased in some cells 

expressing high levels of the fusion protein compared to neighbouring non- 

transfected cells (Figure 4,8, bottom row).

Antibody staining by markers to the Golgi apparatus is distinctly peri-nuclear 

in both transfected and non-transfected cells. Mannosidase II and Golgin 245
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Cos-7 cells expressing the fusion protein show immunoreactivity within the
membrane fraction only

a. 1 2 3 4  5 6 7  b.  1 2 3 4 5 6 7

: ’ F  " T ' - M .......
kD ■ ■■ }«-v ■ '.a''.* . • L r - ’

-» „„ „•
120 -

— 116 kD ■ I  :

“ 84
Tfy/, ■

i

61 -
- 4 8

■ i

■ (.-$*

f

29 - —26
-

Lanes:

1. Control non transfected - soluble fraction
2. Control non transfected membrane fraction
3. pEGFP transfection - soluble fraction
4. pEGFP transfection - membrane fraction
5. pNTPSI-EGFP transfection - soluble fraction
6. pNTPS1-EGFP transfection - membrane fraction
7. 7 Blue marker

Predicted molecular weights

N-terminal PS 1 fragment 35 kD
EGFP 27 kD
NTPS1-EGFP 62 kD

Figure 4.6. Western analysis of Cos-7 cells expressing the fusion protein, a. Cell soluble and 
membrane bound fractions prepared from control and transfected Cos-7 cells (pEGFP or 
pNTPSI-EGFP) stained with the anti-EGFP antibody. Using linear regression analysis EGFP 
alone resolves as a band at ~29 kD (lane 4). Two bands represent the membrane-bound fusion 
protein in lane 7 at 61 kD and 120 kD. The higher molecular weight species may represent 
dimerisation of the fusion protein. Samples analysed by 10% SDS Urea PAGE. b. 
Corresponding comassie stain shows approximately equal sample loading per lane.
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antibody staining show significant overlap with the perinuclear phenotype of the 

fusion protein. W hereas the majority of untransfected cells stained for GalNac  

display a Golgi stack phenotype, staining in transfected cells is both reduced and in 

patches, scattered throughout the cell showing only partial overlap with the fusion 

protein (middle row figure 4.9). Interestingly, neither the vesicular phenotype nor 

the blob-like phenotype co-localise with the above cell compartment markers, 

possibly indicating that these two structures have similar origins.

4.9 The NTPS1 fusion protein does not co-localise with 923 staining and returns 

to the ER following BFA treatment in Cos-7 cells

Confident that the NTPS1-EG FP fusion protein had been successfully generated, 

the earlier experiment in which 923 antibody staining of endogenous PS1 was 

shown to be predominantly vesicular following BFA treatment (figure 3.3), was 

repeated, this time with Cos-7 cells expressing the fusion protein. From the top 

row in figure 4.10, the fusion protein shows a reticular and aggregated blob 

phenotype, whereas 923 antibody staining displays an Ergic/Golgi-like phenotype. 

Close examination reveals very little overlap between the fusion protein and the 

923 antibody. Following BFA treatment, cells expressing the fusion protein were 

stained with antibodies to Colligin (figure 4.10, bottom row) and Ergic53 (figure

4.11). In the case of Colligin staining there was little change in the phenotype 

before and after BFA treatment (figure 4.11, bottom row). Similarly, following BFA 

treatment, the fusion protein locates to the ER, whilst Ergic53 staining remains 

largely vesicular (figure 4.11, bottom row).

Although raised against the N-terminus of PS1 (amino acids 10-24), staining 

with the 923 antibody of transfected cells failed to show co-localisation with the 

fusion protein. Similarly, when the BFA experiment was repeated and the cells 

were stained with the 923 antibody, there was very little co-localisation between it 

and the fusion protein (figure 4.10, upper panels). Additionally, PS1 transgene 

expression has been reported to displace endogenous PS1 expression. In the 

case of 923 staining, this appears to be unaffected by expression of the fusion 

protein, raising doubts as to the ability of the 923 antibody to recognise PS1. As 

expected the 1039 antibody does not co-localise with N-terminal fusion protein nor
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does the latter displace endogenous C-terminal PS1 staining, which is similar in 

both transfected and non-transfected neighbouring cells, suggesting that full-length 

exogenous PS1 but not exogenous N-terminal fusion protein alone, is required to 

displace endogenous levels of the holoprotein (figure 4.12).

4.10 Chapter summary

In summary, the distinctive phenotypes displayed by the fusion protein within the 

cell compartment of transfected Cos-7 cells and its immunoreactivity within the 

membrane-only fraction, would indicate correct folding of the NTPS1 fusion protein 

and its maturation from the ER/IC to the Golgi, consistent with previously published 

reports (Yu et al, 1998; Capell et al, 1998). The distribution of the fusion protein 

within the cell compartment shows some overlap with markers to the ER and Golgi. 

In the case of PDI staining, this is increased in some cells expressing relatively 

high amounts of the fusion protein compared to non-transfected cells. Conversely, 

GalNac staining is reduced in some cells expressing the fusion protein. The 

absence of co-localisation of the fusion protein with the putative PS1NTF 923  

antibody, and the discrepancy between their phenotypes following BFA treatment, 

indicates that the 923 antibody does not recognise either transgene NTPS1-EGFP  

nor endogenous P S 1.
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Chapter 5 Construction of mutant PS1 cDNA and expression in cells

5.1 Introduction

The observation that the 923 antibody did not recognise the fusion protein as 

expressed in transfected Cos-7 cells raised doubts as to whether or not this was 

infact an anti-PS1 antibody. The simplest conclusion to be drawn at this stage was 

that the 923 antibody recognised some other protein other than PS1. Consequently 

any further investigation with the 923 antibody in the characterisation of the fusion 

protein was abandoned. Instead it was decided to exam ine more closely the 

phenotypes displayed by the fusion protein and any biological effect they might 

have within the cell. To address the issue as to whether the phenotypes observed 

for the fusion protein were specific to this NTPS1 construct, a full-length wild type 

fusion protein (FLCPS1) was constructed and compared in Cos-7 cells with the 

phenotypes exhibited by the presence of the NTPS1 fusion protein. Additionally, 

full-length (FLM P S 1) and an N-terminal PS1 (N T M P S 1) fusion constructs 

harbouring a known FAD mutation were generated for the purpose of investigating 

what effect, if any, these mutations have on the trafficking of the fusion protein 

within the cell and any associated affects these mutation might have on the 

cleavage of APP.

5.2 The phenotypes exhibited by the fusion protein are not an artefact of the cell 

fixation process

Methanol fixation of cells in preparation for microscopic examination was chosen 

because of the lower toxicity associated with its handling and its ease of use. 

However, issues arose as to whether the phenotypes observed were in fact 

artefacts generated as a consequence of the fixation process. To address this 

concern, Cos-7 cells expressing the fusion protein were treated with an alternate 

fixative, paraformaldhyde. Transfected Cos-7 cells expressing the fusion protein 

were fixed separately in methanol or paraform aldehyde and exam ined for 

differences in the phenotypic distribution of the fusion protein. Figure 5.0 shows 

that there are no marked differences between the two fixation methods since each 

treatment results in the same ER/Golgi, vesicular/blob phenotypes. Similarly, live
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cells affixed to coverslips were imaged. In this instance a diffuse-ER and blob 

phenotype could be discerned within the same cell not dissimilar to that observed 

in fixed cells (data not shown), though it could be argued that the removal of the 

cells from a constant CCVtemperature environment to the microscope, regardless 

of how rapid the transfer was, may have contributed to the phenotypes observed. 

Had the phenotypes been an artefact of the fixation procedure, it is reasonable to 

expect that all transfected cells would similarly be affected and therefore exhibit the 

same phenotypes, as opposed to the actual ones observed. Since the phenotypes 

are independent of the fixation method, methanol was used throughout the 

remainder of the project given its ease of use and reduced toxicity compared to 

paraformaldehyde.

5.3 The phenotypes displayed by the fusion protein are found within other cell 

types

As a corollary to the above experiment, the construct was transfected into several 

additional mammalian cells with a view to establishing whether the fusion protein 

phenotypes were unique to Cos-7 cells. The fusion construct was therefore 

transfected into HEK 293, CHO, Hela, NRK and mouse P S T /_ knockout cells. The 

images shown in figure 5.1 shows no difference between the phenotypes displayed 

by Human HeLa/HEK 293 cells and rodent NRK cells and those displayed by 

monkey Cos-7 cells (figure 5.1). To rule out the possibility that the observed 

phenotypes were not the result of the transgene protein interacting with 

endogenous PS1, mouse P S T 7' cells were transfected with the fusion construct. 

As with the other transfected mammalian cells there was no difference in the 

phenotypes expressed by this cell line (figure 5.1, bottom panel). To ascertain 

whether the EGFP moiety and the fusion protein remained intact when expressed 

by other cells, the cells were stained with the anti-EGFP antibody (HEK 293 cells, 

middle panel). No diffuse staining, indicative of soluble, cleaved EG FP was 

observed, instead both the ER and blob phenotypes co-localised strongly with the 

antibody.

Since there are no discernable differences in the phenotypes displayed by Cos-7 

cells and those displayed by other transfected mammalian cell types, including
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PS1 knockout cells, it is reasonable to assume that the above results reflect a 

general cellular response to the presence of the fusion protein.

5.4 Construction of wild type and FAD mutant PS1 plasmids

In all reported cases of FAD there is an increase in the production of the 

amyloidogenic Ap42 species by proteolytic processing of APP (Scheuner et al, 

1996). To examine what affect FAD mutations had on the generation of Ap a 

course of action was taken to generate both wild type and mutant full-length PS1 

fusion proteins and a mutant N-terminal PS1 protein. Additionally, the introduction 

of a FAD mutation into the construct will be of use for examining the passage of the 

fusion protein through the cell compartment.

(i) Alteration of PS1 cDNA base sequences by site directed mutagenesis

A novel approach used to alter the amino acid sequence of a protein involves the 

use of site directed mutagenesis (SDM ). Here, selected bases within a DNA  

molecule can be altered and the effects on protein function studied (Deng, 1992). 

At the molecular level mutations may be in the form of insertion, point or deletion 

mutations. In site-directed mutagenesis mutations are directed specifically to a 

target region of a protein. This achieved by introducing a mutation inot a cloned 

segment of DNA corresponding to this region.

A general feature of SDM is that the oligonucleotide encoding the desired 

mutation is annealed to one strand of the DNA of interest and serves as a primer 

for initiation of DNA synthesis. This way the mutagenic oligonucleotide is 

incorporated into the newly synthesized strand. M utagenic oligonucleotides 

incorporate at least one base change but can be designed to generate multiple 

substitutions, insertions or deletions. The synthetic oligonucleotide is 

complementary to the target template except for a region of mismatch near the 

center. This mismatched region contains the desired mutation. Following 

hybridization, the oligonucleotide is extended with DNA polymerase to create a 

double-stranded structure. The nick is then sealed with DNA ligase and the duplex 

structure is transformed into a suitable host cell.
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If no selection method is employed, the theoretical yield of mutants using this 

procedure is 50%  (due to the semi-conservative mode of DNA replication). In 

practice, however, the mutant yield in the absence of selection may be much lower, 

often only a few percent or less. This is assumed to be due to such factors as 

incomplete in vitro polymerization, primer displacement by the DNA polymerase 

used in the fill-in reaction and in vivo host-directed mismatch repair mechanisms 

that favour repair of the unmethylated newly synthesized DNA strand. Off the shelf 

kits like the ‘GeneEditor in vitro Site-Directed Mutagenesis System’ uses antibiotic 

resistance to select only for plasmid derived from the mutant strand, resulting in a 

greatly increased frequency of mutations. According to the manufacturer’s claims, 

80-90% recovery is possible.

(ii) Site directed mutagenesis by PCR

Originally the PS1 FAD mutation was to be introduced using a site directed 

mutagenesis kit, however, given the success of the previous PCR it was decided to 

explore the possibility that the desired mutation could be introduced into PS1 using 

mutant primers in a PCR involving two stages. The first stage used two mutant 

primer pairs to generate the complete, but fragmented product in two separate 

PCR reactions. The second stage exploited the complementary overlap region of 

the fragmented products in a third PCR reaction. In this reaction polymerase 

effectively fills-in the gaps using flanking (conserved) primers to generate the 

complete molecule incorporating the FAD mutation (figure 5.2). In terms of 

economy, it was estimated that this two-stage method of introducing a mutation is 

both quicker, involving fewer steps and less expensive when compared to the SDM  

kit method.

A general rule when attempting PCR is to limit the size of the read 

performed by the polymerase since the longer the DNA sequence to be copied the 

greater the likelihood that an error will be introduced. Bearing this in mind the 

simplest approach to introducing a mutation into the transgene was to design 

mutant primers that only generate a portion of the target cDNA during the PCR  

(table 4.0). For reasons of practicality the L235P mutation (AD onset 32 years) 

located within TM 5 of PS1 (Campion et al, 1997) was chosen since PCR of the
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PS1 cDNA would generate PCR products of approximately 700 bp, half the size of 

the full-length molecule. Figure 5.3 shows the amino acid sequence of PS1 and 

the location of the L235P FAD mutation within TM 5 of the molecule. By selectively 

amplifying the cDNA in two stages, the reaction products can then be incubated 

together in a final PCR to generate PS1 containing the FAD mutation.

To generate the full length PS1 mutant for example, required two separate 

PCR reactions, the first with the primer pair 0-05/0-09, and the second reaction 

with the primer pair 0-11/0-12 (table 4.0). In stage 2 the resultant PCR products 

were separated on an agarose gel, excised and purified. Equal molar quantities of 

the two PCR products were incubated together along with dNTPs/M g, Taq 

polymerase and the necessary flanking primers in a third PCR reaction (figure 5.2).

(iii) Optimisation of PCR conditions

The PCR conditions were optimised as before to give the best product yield with 

the least non-specific binding (NSB) component (figure 5.4), however after several 

attempts it became clear that the NSB could be reduced, but not entirely eliminated 

altogether. The results from this PCR show bright bands of the expected size of 

approximately 700 bp and 150 bp. The assumption was made that these were the 

required PS1 cDNAs and were therefore excised from the gel and purified for the 

second PCR (figure 5.5 a).

To generate the full-length mutant PS1 molecule, the PCR products from 

lanes 5 and 6 (figure 5.4) were mixed in equal molar amounts. Similarly, to 

generate the mutant NTMPS1 molecule the products from lanes 5 and 7 were 

incubated together. Further optimisation of the reaction conditions yielded both 

NTMPS1 and FLMPS1 products of the correct size (figure 5.5 b, lanes 2 to 5, and 

lanes 6 to 9, respectively). From figure 5.5 it is clear that the reactions did not 

precede to completeness and that the yield of NTMPS1 DNA was greater than that 

for FLMPS1. However, the results were encouraging enough that the experiment 

was scaled-up and the resultant products were separated on an agarose gel, 

excised and purified for restriction enzyme analysis.
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Site directed mutagenesis of PS1 cDNA by two step PCR using 
primers incorporating FAD mutation L235P

Step 1
Full length PS1 (-1 4 0 0  bp)

0-05
...

0-10/0-11

J  Jj
^ \ ------- \

0-08/0-09 0-06 0 - 1 2

w

NTM-PS1

FL-PS1
w

Step 2
—

m u

-  1

M u tan t F L M P S 1  L235p

C o m p le m e n ta ry  re g io n s  o v e r la p  a llo w in g  d o u b le  s tra n d  
fo rm ation . P o ly m e ra s e  fills in gaps b e tw e e n  flank ing  p rim ers  
(b lue).

F igure  5 .2 . S c h e m a tic  rep resen ta tion  o f the P C R  used to g en e ra te  PS1 c D N A s . S te p  1: To  
g e n e ra te  the  fu ll-length  PS1 m u tan t m o lecu le  requ ired  tw o P C R  reactions, the  first w ith  the  
p rim er p a ir 0 -0 5 /0 -0 9 , and the second  reaction  with the  p rim er pair 0 -1 1 /0 -1 2 . S te p 2 : T h e  
resu ltant reaction  products a re  then  m ixed to g e th e r to g e n e ra te  the fu ll-length  construct in a 
third P C R  using the flanking  prim ers 0 -0 5  and  0 -1 2 . T h e  a d v a n ta g e  to th is s c h e m e  is th a t  
the  tw o in te rm ed ia te  P C R  products o verlap  at co m p le m e n ta ry  s e q u e n c e s  to form  a d ou b le  
stranded  region with flanking  single s tranded  arm s, w h ich  the  p o lym erase  fills-in during the  
final P C R . T h e  red b ar re p re s e n ts  the  s ite  a t w h ich  th e  m u ta te d  p rim ers  (h ig h lig h te d )  
introduce the F A D  L 2 3 5 P  m utant.
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a. 1 2 3 4 5 6 7 b.

1 5 0 0 -

1000-

wHf iHflr 700 bp

Calibration curve

-0.3789X + 4.153

<
zo
a
o_i

2.6

0.7 1.7 2.7 3.7

D istance (cm)

Lanes 1 2 3 4 5 6 7
1Kb

ladder
Primer
pairs

05/012 05/08 010 /012 05 /09 011 /012 011 /06

Approximate  
size of PCR  
product (bp)

1400 700 690 700 690 150

Figure 5.4 Amplification by PCR of pCLneoPSI. a. Mutated and conserved primers 
(table 4.0) were used to generate truncated PS1 cDNAs by PCR. 1.5% TAE agarose gel 
stained with ethidium bromide, b. Log plot of 1kb ladder fragments. Estimate of PCR 
product size (bp) using linear regression analysis.

a. 1 2 3 4  b. 1 2 3 4 5 6 7 8 9

1400 (FLCPS1)

800 (NTMPS1) 
700

Truncated PS1 1kb 40 45 55 60 40 45 55 60
(annealing temp °C)

Figure 5.5. Analysis of PCR product, (a) The PCR products shown in figure 5.4 were 
excised and recovered (lanes 2 to 4) to eliminate the NSB component, (b) The increased 
PCR cycle time from 2 min to 10 mins generated FLMPS1 (lanes 2 to 5) and NTMPS1 DNAs 
(lanes 6 to 9) approximating in size to those for FLMPS1 (1447 bp) and NTMPS1 (856 bp). 
Different annealing temperatures did not improve the yield of the PS1 cDNAs. Each lane 
shows 1pl of product taken from a total reaction volume of 25 pi. Samples analysed on a 
1.5% TAE agarose gel stained with ethidium bromide.
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(iv) Restriction analysis of PCR products

To confirm that the identity of NTMPS1 and FLMPS1 a series of diagnostic 

restriction digestion assays were performed (Figure 5.6). The fragments generated 

by restriction digestion are close in size to the values calculated from a restriction 

map of PS1 (table 5.0). The mutant PS1 cDNAs were subcloned, firstly into the 

pGEM -T vector as before then secondly into the pEGFP vector. Once subcloning 

of the cDNAs was completed the putative FLM /N TM P S 1-E G FP  vectors were 

analysed by a second series of restriction digestion reactions (Figure 5.7). The 

resultant fragment were close in size with the predicted values calculated from a 

restriction map of pEGFP (table 5.1). Finally, the DNA sequences of the new 

constructs were confirmed for that of the wild type and mutant full-length PS1 and 

N-terminal PS1 molecules (Lark Technologies).

5.5 Expression of NTM PS1-EGFP by Cos-7 cells

Transfection of the NTMPS1 construct into Cos-7 and FIEK 293 resulted in 

phenotypes identical to those displayed by the NTPS1 fusion protein i.e. ER, Golgi- 

like, vesicular and blob-like aggregates. Transfection rates for both truncated 

constructs were comparable as was the percentage of cells displaying the various 

phenotypes. This is most readily seen by comparing figures 4.5 with those images 

in figure 5.8 showing anti-EGFP staining of the NTMPS1 fusion protein (top row). 

Similarly, Colligin and Golgin antibody staining localises with the NTMPS1 fusion 

protein reticular and perinuclear phenotypes (data not shown).

The earlier attempt at characterising the NTF with the 923 antibody failed to 

show co-localisation with the fusion protein. The availability of a second putative 

anti-N-terminal PS1 rabbit polyclonal antibody (NT7) produced by this laboratory, 

which both Western blots and recognises PS1 in fixed cells, was used to stain for 

both endogenous PS1 and exogenous NTM PS1. NT7 staining of endogenous 

PS1 displays an ER-reticular and Golgi-like perinuclear pattern consistant with the 

reported distribution of PS1. Challenge with the peptide immunogen used in the 

production of NT7 in a competition assay significantly reduces staining to a 

diffused speckled pattern (figure 5.8, bottom row). Unlike the putative anti N-
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terminus PS1 antibody 923, NT7 readily stains both NTPS1 fusion proteins 

showing a high degree of co-localisation (figure 5.8, middle row).

5.6 Expression of Full length PS1-EGFP and Full length mutant PS1-EGFP by 

Cos-7 cells

Interestingly, there were significant differences in the transfection rates between 

full-length PS1 and the truncated PS1 constructs. Cells expressing the full-length 

fusion proteins consistently display transfection rates <1%, compared to the 5-10%  

transfection rate found for both N-terminal PS1 plasmids. In addition, the overall 

fluorescence of the full-length fusion protein was much fainter compared to the 

truncated proteins. Although visible under the microscope, cells expressing the 

full-length fusion proteins were barely detectable by the CCD camera. To capture 

these images by camera required a maximum gain typically +18 and a shutter 

setting >40 frames. This compares starkly with the NTPS1-EG FP images, which 

typically required a gain of +0 and a shutter <10 frames. This presented difficulties 

when capturing ‘clean’ images due to the high noise to signal ratio, however this 

was minimised by utilising the ‘dust and scratch’ facility found in Adobe Photoshop 

without significantly altering the information content of the image. W here visible, 

phenotypes displayed by the full-length fusion proteins were chiefly reticular and 

blob-like/vesicular (figure 5.9), yet no clear perinuclear distribution was observed. 

The absence to date of a Golgi-like phenotype for the full-length fusion proteins 

may be of significance for the distribution of the CTF, however caution is required 

in ruling out a perinuclear phenotype given the consistently low transfection rates 

associated with these constructs.

5.7 Endoproteolysis of the full-length fusion protein generates separate pools of 

NTF and CTF in a proportion of cells expressing the transgene

To characterise the location of the full-length fusion protein within the cellular 

compartment, cells were stained with the anti-NTFPS1 antibody NT7 and the anti- 

CTFPS1 antibody 1039 and imaged for fluorescence. Unlike the NTPS1 fusion 

protein, which does not stain for the anti-PS1 C-terminal antibody 1039 (figure
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4.12), full length PS1, as expected, co-localises with the 1039 antibody i.e. the PS1 

C-terminus fused to the EGFP moiety shows co-localisation with 1039 staining 

(figure 5.10). Of more immediate interest is the staining pattern observed for the 

NT7 antibody in transfected cells expressing the full-length fusion proteins, since it 

appears that there are two separate CTF and NTF pools; one for the NTF as 

detected with the NT7 antibody, and one pool for the CTF-EG FP protein, indicating 

that the full-length transgene product undergoes endoproteolysis to generate both 

fragments. In figure 5.11 (upper row) NT7 stains the blob-like aggregates (as does 

1039), however, in a proportion of cells exhibiting this phenotype, NT7 staining is 

distinct from the green fluorescence generated by the C-terminus EGFP moiety, of 

which the latter shows a predominantly reticular pattern of distribution (figure 5.11, 

lower row).

Close examination of the middle panel of the bottom row shows that the 

lower of the two transfected cells is weakly fluorescent. In comparison NT7  

staining shown in the adjacent panel is considerably stronger, indicating possible 

differences in the lifespan between NTF and CTF-EG FP molecules. Similarly, the 

earlier 923 antibody staining showed a distinct phenotype from that of the PS1CTF  

1039 antibody, however, in this instance the NT7 phenotype is clearly blob-like and 

not perinuclear, unlike the 923 phenotype.

5.8 BFA treatment of Cos-7 cells expressing the full-length fusion protein

Previously it was shown that following BFA treatment of transfected cells, the 

NTPS1 fusion protein returned to the ER as opposed to the ER G IC -like  

compartment seen for BFA treated cells stained with the 923 antibody (figures 3.4). 

In light of the above finding that the full-length protein forms two separate pools in 

some cells expressing the protein, it was necessary to investigate whether this held 

true following BFA treatment i.e. do the PS1 fragments derived from the full-length 

fusion protein return to different cellular compartments in the presence of BFA? To 

answer this question, cells were treated with BFA as indicated previously (figure

5.9 row d). No vesicular/ERGIC-like staining was observed; rather the fusion 

protein remained distinctly ER-like, as per the earlier experim ent when cells 

expressing the NTPS1 fusion protein were treated with BFA (see figure 4.10). This
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1 2 3 4 5 6 7

Calibration curve

-0.3712x + 4.5655

NTMPS1 F _MPS1
Lanes 1 2 3 4 5 6 7

1 kb Hae II Sty I Taq I Hae II Sty I Taq I

Figure 5.6. Restriction digestion of putative FLMPS1 and NTMPS1 cDNAs. To confirm 

that the identity of NTMPS1 and FLMPS1 a series of diagnostic restriction digestion 

assays were performed. The fragments generated by restriction digestion are close in size 

to the values calculated from a restriction map of PS1 (table 5.0 below). Recovered 

samples digested with Hae II, Sty I and Taq I (0.1 units/pg DNA). 1.5% TAE agarose gel 

stained with ethidium bromide. The size of the cDNAs were estimated by linear regression 

analysis.

Table 5.0. Fragment sizes of PCR products following single site restriction digest (bp)

Restriction site Full length PS1/
Full length mutated PS1

N-terminal PS1

Predicted Observed Predicted Observed

Hae II 258, 1153 225, 1235 258, 598 217, 539
Sty I 155, 1256 164, 1440 155, 701 161, 835
Taq I 683, 728 597, 708 173, 683 196, 607
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bp
6000

3000

2000

Lanes 1 2/8 3/9 4/10 5 6 7 11 12

1 kb 
Ladder

pEGFP pEGFP-
FLMPS1

pEGFP-
NTMPS1

pEGFP-
NTMPS1

pEGFP-
NTMPS1

1 kb 
Ladder

pEGFP-
FLMPS1

pEGFP-
FLMPS1

Restriction
enzyme

Xho I Xho I Xho I Hae II Sty I Hae II Sty 1

Figure 5.7 Single restriction digest of pEGFP, and putative pEGFP-containing FLMPS1 
and NTMPS1 plasmids. Plasmids digested with Hae II, Sty I and Xho I (0.1 unit/0.1 
mg/ml) for 1 hour at 37°C. Samples analysed on a 1.5% TAE agarose gel stained with 
ethidium bromide.

Table 5.1 Comparison of fragment sizes (bp) generated by Hae II, Sty I and Xho I single 
restriction digestion of putative pEGFP-NTMPS1 and pEGFP-FLMPS1. Calculated values 
obtained from a restriction map of pEGFP.

pEGFP- NTMPS1 pEGFP-FLMPS1

Hae II St)
t 1

Hae II Sty 1

Calculated Observed Calculated Observed Calculated Observed Calculated Observed

2014 2138 1809 1869 2423 2475 1809 1907

1675 1724 1499 1487 1675 1771 1499 1527

896 820 770 655 896 861 1334 1300

728 686 610 504 728 663 610 531

Fragment sizes (bp) following Xho I restriction digest

pEGFP pEGFP- MTMPS1 pEGFP- FLMPS1
Calculated Observed Calculated Observed Calculated Observed

4737 4895 5610 5576 6200 6267

1869
1487
1300
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result shows that transfected cells expressing the fusion protein do not display 

differences in N- or C-terminal PS1 distribution following BFA treatment. Taken 

together these data suggest that the two separate PS1 pools form following 

cleavage of the full-length molecule within the ER, and that these pools have 

different turnover rates.

5.9 Western analysis of Cos-7 cells expressing FLPS1-EGFP, FLM PS1-EGFP

and NTM PS1-EG FP fusion proteins

Cos-7 cells were transfected with pEGFP and the full-length and N-terminus PS1 

constructs. Twenty-four hours post transfection cells were separated into soluble 

and membrane fractions and analysed by SDS PAGE. From figure 5.12, non­

transfected control cell fractions did not stain with the anti-EGFP antibody (lanes 2 

and 3), nor the membrane fraction prepared from cells transfected with pEGFP  

(lane 5). Anti-EGFP antibody staining of the soluble fraction (lane 4) resolves a 

single immunoreactive band of approximately 26 kDa, close to that predicted for 

EGFP (27 kDa). The absence from lanes 6-11 of a single band corresponding to 

EGFP would indicate that the EGFP moiety remains attached to the fusion 

constructs and does not undergo cleavage. As with the earlier Western blot for 

NTPS1-EGFP (figure 4.6), immunoreactive bands are absent from soluble fractions 

prepared from cells expressing the three new fusion proteins. In lane 11 the 

N T M P S 1-E G F P  m em brane fraction shows several bands, two of which 

approximate to 57 kDa and 127 kDa, very close in size to those bands seen for the 

NTPS1 fusion protein (figure 4.6) which correspond to the sum of the individual 

sizes of both the EGFP moiety and the N-terminus of PS1 (62 kDa). As before, the 

band at -1 2 7  kD may represent aggregation of the fusion protein (figure 5.12, lane 

11).

The blotting profiles obtained for both full-length fusion proteins are 

identical. Immunoreactive bands corresponding to the sum of the individual sizes 

of both the EG FP moiety (27 kDa) and full-length PS1 (55 kDa) resolve at 

approximately 83 kDa, very close to the predicted size of the full-length PS1 fusion 

protein (lanes 7 and 9). The strongly staining nature of these bands suggests that 

the fusion holoprotein is the predominant species. From figure 5.11 the C-terminus
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PS1-EG FP moiety remains distinct from NT7 antibody staining in a proportion of 

cells expressing the full-length fusion constructs. Close examination of figure 5.12, 

lanes 7 and 9 at -4 7  kDa reveal faint bands approximate in size to those expected 

if the full-length fusion proteins undergo endoproteolysis to yield C-terminus PS1- 

EGFP. Smaller bands for all three constructs at -3 0  kDa or less may represent 

proteolytic fragments generated as the result of physiological specific cleavage 

events e.g. caspase activity, or could be artefacts produced due to the manner in 

which the tissue was prepared (Dewji et al, 1997).

As with the N-terminal fusion proteins, the full-length proteins show 

additional higher molecular weight bands, in this case at approximately 132 and 

155 kDa, again possibly representing aggregation of the fusion proteins. Whereas 

consistently low transfection rates were observed for the full-length constructs, 

membrane fractions blot with a comparable intensity to that of NTMPS1 (compare 

lanes 7 & 9 with lane 11) adding weight to the notion that the holoprotein or CTF 

has a more rapid turnover.

5.10 Chapter summary

In summary, PCR was used to construct mutant PS1 cDNA by a two-stage 

process. The phenotypes displayed by the fusion proteins in a variety of cells are 

identical as is their immunoblotting profiles when comparing like with like, and the 

various phenotypes displayed are not a product of the fixation process. In all four 

constructs EG FP immunoreactivity occurs within the membrane-only fraction 

indicating correct folding of the fusion proteins consistent with their maturation from 

the ER to the Golgi, though the presence of the full-length fusion protein within the 

Golgi compartment is yet to be established. One of the stated intentions within this 

chapter was to assess what effect the L235P FAD mutation would have on the 

trafficking of the fusion proteins. The introduction of the mutation within the fusion 

protein and its expression by several mammalian cell lines appears to have no 

effect on its distribution as evidenced by the identical phenotypes for all four 

constructs, ie FLPS1-EG FP vs FLM PS1-EGFP, and NTPS1-EG FP vs NTM PS1- 

EGFP. Additionally, the difference in C-and N-terminal PS1 fragment distribution 

indicates that the full-length molecules undergo endoproteolysis, and that CTF-
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EGFP turnover exceeds that of the NTF, which appears to aggregate more readily 

as seen for NTPS1-EGFP and NTPS1 derived from the full-length fusion proteins. 

The fluorophore intensity and transfection rate of NTPS1-EGFP exceeds that 

observed for the full-length molecules suggesting a greater stability for this 

fragment.
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Full-length PS1-EGFP displays reticular, vesicular and blob-like aggregate phenotypes

FLMPS1-EGFP FLPS1-EGFP FLPS1-EGFP

Anti-EGFP staining FLMPS1-EGFP Merge

Anti-EGFP staining FLPS1-EGFP Merge

Anti-EGFP. BFA treatment FLPS1-EGFP Merge
Figure 5 .9 . P h en o typ es  d isp layed  by fu ll-length  proteins, (a ) C o s -7  cells exp ress in g  th e  F LP S 1  or 
F L M P S 1  fusion proteins show  no d iffe ren ce  in distribution w hen  co m p ared  w ith e a c h  o th er or with  
N T P S 1 , with the  exception  of the peri-nu c lear phenotype, w hich to date , has not b een  observed  for 
the  fu ll-length  m o lecu les , (b) and (c) T h e  a n ti-E G F P  an tibody stains all p h e n o ty p e s  exh ib ited  by 
th e  fusion proteins. T h e  distinct staining pattern  d isp layed  by the  a n ti-E G F P  antibody ind icates  that 
th e  E G F P  m o iety  is not c leaved  from  the  fusion  pro te in , (d) B F A  tre a tm e n t o f tra n s fe c te d  cells  
results in a re ticu lar distribution of th e  fusion as with the N T P S 1  m o lecu les  (c o m p a re  w ith  figures  
3 .4  & 4 .1 0 ). D A P I stain in blue. Bars, 20  p,m.
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Western analysis of NTMPS1, FLPS1, and FLMPS1 fusion proteins

1 2 3 4 5 6 7 8 9 10 11 12

155 — 3 k  ̂ ^
132 —

127 — * * * * * *  ;•
—  116 kD

**• «r

83 — ------ —  holoprotein

* - —  58

57
—  48 CTFPS1

30 — __ 36

26 —
—  26

LANES:
1 . 1 blue
2 . Control soluble fraction
3. Control membrane fraction
4. EGFP soluble
5. EGFP membrane
6 . FLPS1-EGFP soluble
7. FLPS1-EGFP membrane
8 . FLMPS1-EGFP soluble
9. FLMPS1-EGFP membrane

10. NTMPS1-EG FP soluble
1 1 . NTM PS1-EGFP membrane
1 2 . 7 blue

Predicted mol wt for fusion proteins (approx):

EGFP 27 kDa
C-terminal PS1 -EGFP 47 kDa
FLPS1-EGFP 82 kDa
NTPS1-EGFP 62 kDa

Figure 5.12 Cos-7 transfected with pEGFP and PS 1-EGFP fusion constructs 
were separated into soluble and membrane fractions. Samples analysed by 10%
SDS/urea PAGE gel stained with anti-EGFP antibody.
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Chapter 6  Biological properties of the fusion protein

6.0 Introduction

Having successfully generated the additional constructs the biological 

properties and functional relevance of the fusion proteins was investigated. 

Cells expressing the fusion protein were stained with antibodies to the cell 

compartment, anti-p-catenin and anti-APP. Additionally, functional aspects of 

the fusion protein were considered, in particular, their ability to cleave APP. 

Thus to measure Ap generation in stable APP770-CHO cells transfected with the 

fusion protein, a bicine SDS PAGE gel was prepared since this can discriminate 

between the Ap4o and AP42 peptides.

6.1 Reduction in antibody staining of the ER resident proteins Colligin

(Hsp47) and PDI

To investigate the identity of the compartment in which the fusion protein 

resided, several antibodies specific to cell marker proteins were used in 

immunolocalisation experiments. All three fusion proteins exhibited localisation 

to varying degrees with the ER markers Colligin and PDI (data not shown). 

Only the NTM PS1-EG FP fusion protein localised with the anti-Golgi antibodies 

Mannosidase II, GalNac and Golgin 245. The lack of a perinuclear phenotype 

in cells expressing the full-length proteins cannot be ruled-out since the 

transfection rate for these constructs was significantly less when compared to 

NTMPS1-EGFP.

Unexpectedly, in a proportion of cells expressing both full-length and 

truncated fusion proteins and in particular cells exhibiting the blob-like 

aggregates, markers for both the ER and Golgi compartments were either 

significantly reduced and/or dispersed to such a degree as to suggest that these 

compartments have fragmented. Colligin and PDI antibody staining was 

reduced in cells over-expressing both full length and truncated fusion proteins 

(figure 6.0). Antibody staining was either considerably weaker in transfected 

cells compared to neighbouring, non-transfected cells or else antibody staining 

exhibited a vesicular distribution pattern. Colligin staining was most affected 

compared to the loss in PDI staining, though both show vesicle-like structures
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scattered throughout the cytoplasm, possibly indicating fragmentation of the ER 

(rows a-c).

6.2 Reduction in antibody staining of Golgi-associated proteins Mannosidase 

II and GalNac.

As with the ER markers, there were visible differences in antibody staining of 

the medial Golgi protein Mannosidase II, and the trans Golgi protein GalNac in 

Cos-7 cells expressing both full-length and truncated PS1 fusion proteins (figure 

6.1). Both antibodies show reduced staining compared to neighbouring cells 

which typically display a peri-nuclear phenotype. Mannosidase II staining is 

barely detectable in cells exhibiting the blob-like phenotype or those cells where 

the fusion protein has occupied the majority of the cell cytoplasm. GalNac 

staining appears to localise with the juxta-nuclear blob-like aggregate. The  

fragmented appearance of the G alNac antibody staining contrasts to the 

classic, stack morphology displayed by non-transfected neighbouring cells. 

Additionally, some cells expressing moderate levels of the fusion protein also 

showed a reduction in G alNac staining compared to neighbouring non- 

transfected cells (see figure 4.9, middle row).

The alterations in the structure of the ER and Golgi compartments 

indicate that moderate to high levels of the fusion protein may disturb 

intracellular trafficking or exhibit toxicity in some cells.

6.3 p-Catenin does not associate with NTM PS1-EG FP in Cos-7 and HEK293 

cells

PS1 has been detected as a high molecular weight complex in vivo (Seegar et 

al, 1997; Capell et al, 1998), associated with several co-factors such as 

Nicastrin, APH, PEN2 and p-catenin. The latter has been implicated in cell-cell 

interaction and signalling in the Wnt pathway. PS1 interaction with p-catenin 

regulates levels of the protein by its association with GSK-3p that targets p- 

catenin for proteosomal destruction via its phosphorylation motif. PS1 FAD 

mutations alter the trafficking of p-catenin arising from a dominant ‘gain of 

aberrant function’. Lithium induced Wnt activation in FAD human fibroblasts
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decreases the nuclear trafficking of p-catenin compared to wild type fibroblasts 

(Nishimura et al, 1999a).

To investigate what effect the fusion protein had on p-catenin levels and 

whether both proteins formed a complex within the cell, Cos-7 and HEK293 

cells expressing the truncated fusion proteins were stained with an anti-p- 

catenin antibody and imaged by fluorescent microscopy (figure 6.2). p-catenin 

antibody staining is present at the cell membrane/cell-cell contacts and within 

the cytoplasmic of HEK293 and Cos-7 cells. Additionally, P-catenin staining is 

just discernable in the nuclei of both cell types regardless of whether the fusion 

protein is being expressed, and that this expression does not appear to 

influence the level of antibody staining. As shown in figure 6.2, P-catenin does 

not localise with the NTM PS1-EG FP fusion protein, nor does it seem that the 

fusion protein alters this phenotype compared to untransfected/low level 

expressers in adjacent cells. In this experiment there is no evidence that 

mutant NTM PS1-EG FP affects p-catenin trafficking. The lack of NTF-p-catenin 

interaction is consistent with previous studies showing that the CTFPS1 or full- 

length PS1 but not NTF, contain the p-catenin binding domain (Murayama et al, 

1998; Yu et al, 1998; Kang et al, 1999; Singh et al, 2001).

6.4 The fusion protein shows limited localisation with the anti-APP antibodies

874, 993 and DE2

One of the major pathological hallmarks of Alzheimer’s disease is the deposition 

of APP-derived p-amyloid within the senile plaque of AD brains. APP  

proteolysis is dependent on a-, p- and PS1 associated y-secretase activity to 

generate several proteolytic fragments. Three main APP species have been 

recognised: a 751 and a 770 amino acid protein commonly found in both 

neurons and non-neuronal cells, and a 695 amino acid protein found exclusively 

in neurons. Data from studies examining the proteolysis of APP reveal the 

presence of different peptide fragments at various points along the secretory 

pathway, i.e. ER, ERGIC, Golgi compartments, lysosomes/endosomes and the 

plasma membrane (many authors). However, a discrepancy exists between the 

ER location of the secretases responsible for the cleavage of APP, and the site 

of Ap generation. PS1, for instance, is localised to the ER/Golgi yet generation
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Colligin and PDI antibody staining is reduced in some cells over expressing
the fusion proteins

Colligin staining NTPS1-EGFP Merged image

Colligin staining NTPS1-EGFP Merged image

Colligin staining NTPS1-EGFP Merged image

PDI staining NTMPS1-EGFP Merged image

Figure 6 .0 . A lte red  E R  antibody staining. A  proportion of C o s -7  cells o ver-exp ress ing  both full lengt 
and truncated  fusion proteins show  reduced  Colligin (row s a -c ) and P D I an tibody stain ing  (row s d . 
f). A ntibody staining w as  e ither considerab ly  w e a k e r  in transfected  cells co m p ared  to neighbouring  
non-transfected  cells or e lse  the antibody staining w as  fragm ented . D A P I stain in blue. B ars 20|um.
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Golgi antibody staining is reduced in some cells over-expressing the fusion protein

M an n o s id ase  II staining N T P S 1 -E G F P  M erg e d  im age9
M an n o s id ase  II staining N T P S 1 -E G F P  M erg e d  im age

M an n os id ase  II staining F L P S 1 -E G F P  M erg e d  im age■ B D
G al N ac  staining N T M P S 1 -E G F P  M erg e d  im age

F ig u re  6 .1 . A lte red  G olgi an tibody s ta in ing. A  proportion  o f C o s -7  cells  o v e r-e x p re s s in g  both full 
length and trun cated  fusion proteins show  reduced  M a n n o s id a s e  II and  G a l N a c  an tib o d y  stain ing. 
A ntibody staining w as  reduced  in transfected  cells co m p ared  to neighbouring , n o n -tran s fec ted  cells. 
G a lN a c  stain ing  is fra g m e n te d  co m p ared  to neighbouring  cells, w hich typ ica lly  sh ow  rib b o n /s ta c k  
m orphology. D A P I stain in blue. Bars 20|um.
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of the toxic Ap4 2 peptide occurs within the ER/ERGIC, whilst the production of 

the Ap4o is thought to occur more distally within the secretory pathway (Selkoe, 

1999).

To investigate whether the fusion protein localises with APP within the 

cell compartment, transfected Cos-7 cells were stained with three polyclonal 

anti-APP antibodies referred to as 993, 874 and DE2. The 993 antibody 

recognises the 770 and 751 isomers of APP containing the KPI domain. 

Staining with the 993 antibody, which has been described previously, requires 

reduction and alkylation (Campbell et al, 1999). Staining with 993 reveals an 

unusual network of fibrils, which do not localise with any of the phenotypes 

displayed by the fusion protein (figure 6.3). The top row shows that the blob­

like aggregates are intimately associated with the nucleus. This circumnuclear 

phenotype appears to disrupt the 993 pattern of staining in the immediate 

vicinity of the nucleus (figure 6.3, all rows).

The 874 antibody recognises the C99 stub derived from the action of p- 

secretase on APP. 874 staining of Cos-7 cells display a reticular, peri-nuclear 

and vesicular phenotype. Staining of cells expressing the fusion protein 

appears to partially overlap with the peri-nuclear phenotype, but not with the 

numerous vesicles scattered about the cell (figure 6.4). However, closer 

examination of the peri-nuclear phenotype exhibited by the fusion protein 

suggests that localisation with the 874 antibody is coincident since this 

phenotype appears to be composed of much larger vesicles compared to those 

stained by the 874 antibody, which are considerably smaller in diameter (figure 

6.5, top row). This is seen more clearly by the vesicular phenotype, which does 

not localise with the 874 antibody (figure 6.4, middle row). The blob-like 

phenotype similarly does not localise with the 874 antibody and effectively 

excludes staining in the region occupied by the fusion protein (left panel, bottom 

row).

The DE2 antibody only recognises the ‘free-end’ C-terminus epitope of 

the P-secretase generated C99 stub and the a-secretase generated stub, thus 

uncleaved full-length APP is not recognised by the DE2 antibody. DE2 staining 

displays a largely reticular/ punctate and peri-nuclear phenotype (figure 6.5). 

Close inspection of the latter phenotype of neighbouring non-transfected cells 

reveals a cluster of vesicles reminiscent of the ERGIC. In cells expressing the 

fusion protein DE2 staining partially overlaps with the peri-nuclear and blob-like
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aggregate phenotype but not the reticular or vesicular phenotype (figure 6.5). 

As with the 874 antibody, DE2 staining of the peri-nuclear located fusion protein 

may be coincident. Similarly, staining of the blob-like aggregate may also be 

coincident since the antibody staining is arranged as small vesicles, whereas 

the fusion protein appears opaque (figure 6.5, bottom row).

6.5 Detection and separation of synthetic Ap40 and Ap42 by bicine SDS PAGE

The aim of this next study was to investigate what affect wild type and mutant 

fusion proteins had on the generation of Ap40 and Ap42 peptides in a stable 

CHO-APP770 expressing cell line transfected with the pN TM P S1-EG FP and 

pFL /FLM PS 1-EG FP cDNAs. To date, attempts by other researchers at 

resolving Ap4o and Ap42 by conventional reverse-phase liquid chromatography, 

capillary zone electrophoresis, acid-urea-PAGE or SDS PAGE has not been 

successful. Previously, separation has proven difficult because of solubility 

problems and interaction of Ap with the separation matrix. To measure the 

metabolic fate of A PP 770 a bicine SDS PAGE gel employed because of its ability 

to discriminate between the different Ap peptide species (Wiltfang et al, 1997).

To detect Ap production synthetic Ap40 and Ap42 was first used as a 

control to gauge the effectiveness of this gel system in discriminating between 

the two peptides. Various nanogram quantities of Ap40 and Ap42 were loaded 

onto the gel and immunoblotted using a polyclonal antibody AB10, that 

recognises both APP and Ap. In the first experiment 10 ng and 50 ng of 

synthetic Ap42 were separated on gel and analysed by AB10 (figure 6.6, a). 

Immunoreactivity was greatest with an antibody dilution of 1:3 (50 ng Ap42), and 

least reactive at 1:30 dilution (50 ng). 10 ng of the peptide did generate any 

immunoreactivity.

Next, using the 1:3 antibody dilution, 1ng to 50 ng Ap40 was analysed by

immunoblotting (figure 6.6, b). AB10 immunoreactivity detected Ap40 in the IQ-

50 ng range (lanes 4-6). Ap42 (lane 7) migrates at just over 4 kD, above Ap40,

demonstrating size separation of the two peptides. To establish the limit of

detection and test whether this system could resolve a mixture of the two

peptides, varying peptide amounts were loaded and immunoblotted using a

range of antibody dilutions (figure 6.6 c). AB10 was able to detect 5 ng of the

peptide mixture at 1:50, and 25 ng at 1:400. 50 ng of the peptide mixture

showed immunoreactivity with AB10 at 1:800. For comparison purposes, 50 ng
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of peptide mixture was detected using ECL. AB10 antibody immunoreactivity 

was seen in the 1:200 -1 :3200 dilution range for 50 ng Ap40 and Ap42 (fig. 6.6 d).

6.6 Immunoprecipitation of APP 770 from conditioned and complete media

To effectively measure the generation of Ap peptides in cell cultures expressing 

the fusion protein requires immunoprecipitation of the conditioned media into 

which the A p 4o and AP42 peptides are secreted. From the previous 

immunoblotting experim ents it was established that the best antibody 

dilution/peptide quantity that gave a consistently clear signal was 1:100/50ng. 

Stable CHO-APP 770 expressing cell lines were transfected with the p N T M P S I-  

EGFP and pFL/FLM PS1-EGFP cDNAs. Transfection of C H O -APP 770 cells was 

confirmed by fluorescent microscopy. Condition media was removed following a 

24 hour incubation period. As a control to test recovery, 50 ng of each peptide 

were added to a known volume of complete media. Immunoprecipitation of the 

samples was performed using the AB10 antibody at a 1:100 dilution (figure 6.7  

a). APP immunoreactivity was detected at —113 kD in complete media (lanes 2- 

4) and in conditioned media from transfected cells (lanes 6-8). Ap 

immunoreactivity was detected in lane 5 (control), w hereas recovered or 

secreted Ap4o/Ap42 peptides were not detected in any of the control lanes or 

transfected samples. That the synthetic Ap peptides were not recovered from 

complete media suggests that the AB10 antibody, whilst recognising the peptide 

by immunoblotting, cannot immunoprecipitate either Ap4o or Ap42 from solution.

The above result might be due to insufficient AB10 antibody at the 

immunoprecipitation stage. However, repeat experiments this time with higher 

concentrations of AB10 yielded the same result (data not shown). Given that 

the antibody recognises the same epitope in both APP and Ap, the relative 

abundance of both the peptides within the culture medium might lead to 

competition for the AB10 binding site. Thus, excessive amounts of APP  

compared to Ap might effectively out-compete Ap antibody binding thereby 

explaining the APP immunoreactivity only.

To test this hypothesis, a second antibody that recognises APP but not 

Ap, DP23/2, was used to twice-immunoprecipitate complete media containing
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993 antibody staining does not localise with the fusion protein

M erged  im age9 9 3  staining

9 9 3  staining
R eticu lar/peri­

nuc lear/ves icu lar
M erged  im age

R eticu lar/ves icu lar9 9 3  staining M erg ed  im ag e

F ig u re  6 .3 . A P P  9 9 3 -a n tib o d y  stain ing. C o s -7  cells  tran s fec ted  w ith  p N T P S 1 -E G F P  s ta in ed  w ith  
reduced  and a lky lated  « A P P  9 9 3  antibody. 9 9 3  recognises th e  7 7 0  and 751 K PI conta in ing  isom ers  
of A P P . T h e  fusion protein d isp lays a reticular, p e ri-n u c lea r and ves icu la r p h en o typ e  th a t d o es  not 
loca lise  with th e  9 9 3  an tibody. T h e  9 9 3  an tibody d isp lays  a fibril pattern  o f s ta in ing . N o tice  the  
overa ll lack o f ves icu la r 9 9 3  staining and d isruption around  the  im m e d ia te  v icin ity o f th e  nucleus. 
D A P I stain in blue. Bars, top and m iddle rows 2 0  pm , bottom  row 10 pm .
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874 antibody staining partially overlaps with the fusion protein

R eticu la r/p eri-n uc lear/ves icu la r M erg e d  im age8 7 4  staining

V es icu lar M erg ed  im age8 7 4  staining

M erg ed  im age8 7 4  staining

Figure 6 .4 . A P P  874 -a n tib o d y  staining of C o s -7  cells express ing  N T M P S 1 -E G F P . 8 7 4  stain ing  
d isp lay  a re ticu la r, p e ri-n u c le a r and v e s ic u la r p h e n o ty p e . In tra n s fe c te d  ce lls  8 7 4  s ta in in g  
partially overlap s  with the  p e ri-n u c lea r p hen o typ e  d isp layed  by the  fusion  protein  (top  row ) but 
not w ith  th e  v e s ic u la r p h e n o ty p e  (m id d le  row ). T h e  b lo b -like  p h e n o ty p e  lik e w is e  d o e s  not 
localise with 8 7 4  antibody staining and e ffective ly  exc lu d es  8 7 4  from  the reg ion  occup ied  by the  

blob (low er row). D A P I stain in blue. Bars, 20  ju.m.
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DE2 antibody staining partially overlaps with the fusion protein

M e rg e

D E 2  staining R eticu la r/p eri-n uc lear

D E 2  staining R eticu lar/peri­
nuc lear/ves icu lar

__________D E 2  staining__________________Blob-like ag g reg a tes________
F igure  6 .5 . D E 2  stain ing  of C o s -7  cells  exp ress in g  th e  N T M P S 1  fusion  pro te in . D E 2  partia lly  
o verlaps  with the  p eri-nu c lear and b lob-like ag g re g a te  phen o typ e  but not the  re ticu lar or v es icu la r  

phenotype. D A P I stain blue. Bars, 20  jim . 1 2 2

D E 2  staining R eticu lar/ves icu lar



50 ng each of the Ap peptides. To ensure sufficient recovery of APP, three 

different volumes of DP23/2 were used. The resulting supernatant was then 

immunoprecipitated for a third time with the AB10 antibody in order to recover 

the A(3 peptides (figure 6.8 b).

Samples were immunoblotted with DP23/2 (lanes 2-5) and AB10 (lanes 

7-9). Strong immunoreactivity was seen in lanes 2-4, but whether this smear 

represents APP is unclear. Presumably AB10 and D P 23/2 APP staining 

intensities should be approxim ately equal. APP staining in lanes 7-9  

representing the third immunoprecipitation is less intense compared to figure 

6 .7 a , indicating that som e A P P  had been rem oved by serial 

immunoprecipitation. As expected DP23/2 does not stain A p 40/A p 42 (lane 5), 

unlike the AB10 antibody (lane 10). No synthetic A(34o/Ap42 was detected by 

AB10 in those sam ples thrice imm unoprecipitated even though APP  

immunoreactivity had decreased.

In the current investigation Tris buffer and anti-mouse beads had been 

used to immunoprecipitate APP, whereas RIPA buffer and protein-A beads had 

been specified in the protocol developed by Wiltfang et al, who previously 

described immunoprecipitation of APP derived Ap (Klafki et al, 1996; Wiltfang et 

al, 1997). The current protocol was therefore modified to take account of the 

original conditions in which Ap was immunoprecipitated. In addition to the above 

protocol modifications, the complete media containing Ap peptides was reduced 

and alkylated since the DP23/2 antibody displays greater immunoreactivity for 

reduced/alkylated APP.

Following modifications to the immunoprecipitation protocol, complete 

media containing 50 ng Ap peptides was immunoprecipitated with protein- 

A /D P 2 3 /2  or IgG b eads/A B 10 in R IP A  or Tris buffer following  

reduction/alkylation. Samples were immunoblotted with the AB10 antibody. 

Overall, the modified protocol had little effect on the am ount of APP  

im m unoprecip itated. Sim ilarly, under the changed conditions Ap 

immunoreactivity was not detected (figure 6.8).

The earlie r encounter with the 923 antibody whilst useful for 

imm unofluorescence imaging defied attempts at W estern blotting and 

immunoprecipitation. Similarly the AB10 antibody whilst able to detect both 

APP and the Ap peptides would not immunoprecipitate Ap. In conclusion, the
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D etection  of synthetic  A p peptides by bicine S D S /P A G E

a. b.
AB10 antibody dilution AB10 (1:3)

1:1 1:3 1:10 1:30 1 2 3 4  5 6  7
M H H H I

/
— 4.0

! • . V  ' ■■ S> ' ... 

•

4 .0—
kD

jS jS |

10 50n g  10 50ng  10 50ng  10 50ng  1blue 1ng 5 10 2 5  5 0  50n g

Q uantiy  of peptide (ng)

1 :10  1 :25
A B 1 0  antibody dilution  

1:50 1:75 1:50
K

v \

2 5  50n g  2 5  50n g  2 5  50n g  50  2 5  10 5ng 5 0  2 5  10 5ng

1 :200  1 :400  1 :50  1 :100  1 :2 0 0  1 :4 0 0  1 :800

5 0  2 5  10 5ng 50  2 5  10 5ng 5 0  ng m ixture

Q uantity  o f peptide m ixture (ng)

d. AB10 antibody dilution 

1:200  1 :400  1 :800  1 :1 6 0 0  1 :3 2 0 0

5 0  ng peptide m ixture

F igure  6 .6 . D etection  and  sep ara tion  o f synthetic  A(340 and  A(342 p ep tid es  by b icine S D S /P A G E . a . 
D etection  of A p 40 (1 0  and 5 0 n g ) by im m unoblotting w ith A B 1 0  (1 :3 0 ). b. D e tec tion  o f A(3 p ep tid e  (1 -  

5 0  ng) by im m unoblo tting  w ith A B 1 0  (1 :3 ). c. R eso lu tion  o f vary ing  a m o u n ts  o f p e p tid e  m ix tu re  
im m unob lo tted  with A B 1 0  (1 :1 0  -1 :8 0 0 ). d. D e tec tio n  o f 50  ng p ep tid e  m ixture  by E C L . P e p tid e s  
reso lved  by S D S  10%  U re a  B icine gel. S a m p le s  im m unob lo tted  with p rim ary  an tib o d y  A B 1 0  and  
detected  by a lka line  p ho sp h atase  (a -c ) o r H R P  (E C L ) secondary  antibody (d).
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Im m unoblotting o f conditioned media detects secreted A P P 7 7 0  but not synthetic or
secreted A(3 peptides

a.

Lanes:

113

kD

4 —

-  APP

)>  igG
light/heavy 
chains

—  A p 4 o /A p 4 2

M a rk e r protein
C o m p le te  m ed ia  - no trea tm en t
C onditioned, com p le te  m ed ia
Control, com p le te  m ed ia  +  50n g  synthetic  A(34o/A(342

Control, 50ng  synthetic  A f W A ^
S u p e rn a ta n t from  C H O -A P P 770 transfected  with p N T M P S 1 -E G F P  
S u p e rn a ta n t from  C H O -A P P 770 transfected  with p F L P S 1 -E G F P  
S u p ern a tan t from  C H O -A P P 770 transfected  with p F L M P S 1 -E G F P  
1 b lue m arker

b.

A P P  -
- A P P

A P 4 2 /

A P 4 0

Lanes: 1 . M a rk e r protein 6 . M a rk e r protein
2 . 3 pi D P 2 3 /2 7. 3 pi D P 2 3 /2
3. 6  pi D P 2 3 /2 8 . 6  pi D P 2 3 /2
4. 12 pi D P 2 3 /2 9. 12pl D P 2 3 /2
5. 50  ng A P40/A P 42 1 0 . 5 0  ng A P40/A P 42

Figure 6 .7 . a. Im m unoprecip ita tion  o f A p 4o/Ap42 from  stab le  C H O /A P P  cell su p e rn a ta n t using  
a n ti-A P P  antibody A B 1 0 . S a m p le s  im m unoblo tted  w ith A B 1 0  (1 :1 0 0 ). T ran s fec tio n  o f C H O -  
A P P 770 cells w a s  confirm ed by fluorescen t m icroscopy, b. Im m unoblotting  o f co m p le te  m ed ia  
contain ing  5 0  ng A(3 peptides. S a m p le s  tw ice im m u noprec ip ita ted  w ith  D P 2 3 /2 , fo llo w ed  by 

a third im m unoprec ip ita tion  w ith A B 1 0 . T h re e  d iffe ren t D P 2 3 /2  vo lu m es  w e re  used  fo r the  
first tw o im m unoprec ip ita tions . S a m p le s  im m unob lo tted  w ith D P 2 3 /2  (1 :1 0 0 0 ) la n e s  2 -5  o r  
A B 1 0  (1 :1 0 0 ) lanes  7 -1 0 . N ote , as  exp ected  both D P 2 3 /2  and  A B 1 0  stain A P P 7 7 0 , w h e re a s  
D P 2 3 /2  does not recognise A p 4o/Ap42. S am p les  reso lved by S D S  10%  U rea  B icine gel.
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Ap immunoreactivity absent following modifications to immunoprecipitation protocol

a.

R edu ced /A lky la ted
B uffer

+
Tris

P ro te in -A  
+ - 

R IP A  Tris  R IP A

—  A P P

—  4 k D

D P  2 3 /2

R educed /A lky la ted
B uffer

+
Tris

IqG  beads  

Tris R IP A

- A P P

— 4  kD

AB10

Figure  6 .8 . C o m p le te  m ed ia  conta in ing  50  ng A |340/A(342 w a s  im m u n o p re c ip ita te d  u n d er  
vary ing  cond itions. S a m p le s  im m u n o p re c ip ta te d  by D P 2 3 /2  (a ) and  A B 1 0  (b ). S a m p le s  
resolved by S D S  10%  U rea  Bicine gel and im m unoblotted  with A B 10 .
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bicine SDS PAGE gel system is able to resolve an admixture of Ap4o and A(342 

peptides detectable in nanogram quantities by the anti-APP/Ap antibody AB10 

using AP or HRP secondary antibodies. The inability of the AB10 to 

immunoprecoipitate Ap from solution or conditioned media would suggest that 

this antibody is epitope conformation specific.

6.7 Selection of HEK293 cells stably expressing full length and truncated

PS1-EGFP

Several attempts at cloning a stable Cos-7 cell line expressing the truncated 

fusion protein failed. This lack of success was considered to be due technical 

difficulties, however in light of the earlier observation that ER and Golgi markers 

are severely reduced in transfected Cos-7 cells, it is feasible that cells may be 

unduly stressed by the presence of the fusion protein. As a consequence, over­

expression of the fusion protein may be associated with toxic events that trigger 

a variety of cellular responses, such as apoptosis, thereby reducing the 

chances of selection. The extent to which a cell is affected by stress varies 

depending on the cell type and the cellular response elicited by the stressor. For 

instance, HEK293 and Neuro2a cells have been characterised as ‘robust’ and 

less susceptible to ER stress compared to other cell types such as Cos-7 cells 

(Imaizumi et al, 2001). The selection procedure was therefore repeated with 

the more robust HEK 293 cell line on account of their availability and their ease 

of transfection as evidenced by earlier transfection experiments.

HEK293 cells were transfected with FLPS1-EG FP and N TM PS1-EG FP  

cDNAs as described previously. Transfectants were treated with G 418 and 

resistant colonies were trypsinised and diluted into a 96 well plate to yield 

individual clones. Confluent wells were split onto coverslips and analysed by 

fluorescent microscopy. Several stable cell lines expressing varying levels of 

the fusion proteins were obtained. The phenotypes displayed by the full length 

and truncated fusion proteins were typically reticular-like with dispersed  

circumnuclear, blob-like aggregates and vesicles (figure 6.9). Noticable was the 

absence of a phenotype typical of the Golgi apparatus in any of the cells 

imaged. Whilst the absence of a Golgi phenotype had been previously 

observed in cells transiently expressing the full-length proteins, the absence of 

this phenotype in NTM PS1-EG FP clones was unexpected. However, unlike
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Cos-7 cells, which have a flattened, fried-egg-like appearance and are therefore 

ideally suited for microscopy, HEK293 cells due to their rounded-up morphology 

are more difficult to image, therefore the presence of a Golgi phenotype cannot 

be entirely ruled out.

The overall fluorophore intensity of all the stable expressers was 

considerably weaker compared to transient transfected Cos-7 or HEK293 cells. 

On average a gain of +12/+18 was required to capture a given field of cells by 

the CCD camera. The fusion proteins in the N TM P S1-EG FP cells shown in 

figure 6.9 (top panel) have uniform fluorophore intensity, unlike some clones, 

which varied considerably such that neighbouring cells appear not to express 

the fusion protein (see figure 6.9, middle and lower panels). A simple 

explanation for the heterogeneity in protein levels is that these cells are in fact 

not clones, more than likely due to technical limitations. Less likely, levels of 

the fusion protein may vary significantly depending on the degree of cell-cycle 

synchronization amongst the cell population.

HEK293 cells stably expressing the fusion protein display the same 

phenotypes as encountered previously in transiently transfected cells, however 

the overall flourophore intensity of these proteins was considerably less 

compared to the transients suggesting that too high a level of the proteins may 

be toxic even to HEK293 cells.

6.8 Western analysis of stable HEK293 cells expressing the fusion proteins

Western analysis of the clonal cell lines expressing the fusion protein varied in 

their immunoreactivity. Immunoblotting with the anti-EGFP antibody of the 

N TM P S 1-E G FP  expressing cell lines (figure 6.10) shows immunoreactive 

bands at ~57 kD and ~122 kD close in size with those already seen in Cos-7 

cells transfected with the truncated PS1 construct (figure 4.6). The clones 1/27 

and 2/23 that produce the blob-like phenotype also show immunoreactive bands 

at ~150 kD (figure 6.10, lanes 11 and 13). These data suggests that HEK293  

cells can tolerate the presence of the blob phenotype since clearly these cells 

are able to divide. However, that these cells cannot be captured by the low 

gain-settings used to capture transient transfected Cos-7 cells, would indicate 

that there is a limit to the amount of fusion protein that can be tolerated by 

stable HEK293 cells.
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Immunoblotting of the FLPS1-EG FP expressing cell lines with the anti-EGFP  

antibody is considerably weaker in intensity compared to the HEK293 NTPS1- 

EGFP cell lines (figure 6.11, panel a, compare lane 2 with lanes 3-7). Anti- 

EGFP immunoreactive bands were present at -8 8 , 55, 48, 32, and 28 kD. 

Bands were close in size with those already seen in Cos-7 cells transiently 

transfected with the full-length PS1 construct (figure 5 .12) however, the 

immunoreactive band of -1 3 0  kD analysed from transients is absent indicating 

that over expression of the full length fusion protein may not tolerated by the 

cell. The immunoreactive bands at -8 8  kD is close to the calculated size 

predicted for the holoprotein plus EGFP ( -8 2  kD), and indicates that a fraction 

of the fusion protein does not undergo proteolysis. The fraction that does 

undergo proteolysis is represented by the immunoreactive band at -4 8  kD 

corresponding to CTFPS1-EG FP. The remaining bands at -2 8  and -3 2  kD 

may represent caspase cleavage of the full-length fusion protein known to occur 

under conditions of apoptosis.

Immunoblotting with the anti-CTPS1 antibody 1039 showed multiple 

immunoreactive bands in the size range -10 -150  kD (figure 6.11, panel b). The 

doublet at - 2 0  kD is typical of the 1039 antibody and corresponds to 

endogenous CTF. The addition of the EGFP moiety to the CTF increases the 

band size to -4 5  kD, close in size to the calculated value of 47 kD for CTFPS1- 

EGFP. No immunoreactive bands of this size are present in control cells and 

N TM PS1-EG FP HEK293 cells (lanes 1 and 2 respectively). Present in all 

samples is an immunoreactive band at -5 5  kD possibly corresponding to the 

holoprotein. This is unusual since levels of the holoprotein (uncleaved FLPS1) 

are normally very low or undetectable. Similarly, uncleaved FLPS1-EG FP is 

present at -9 0  kD close in size to the calculated value of 82 kD. As with 

CTFPS1-EGFP, the full-length fusion protein is absent from lanes 1 and 2.The  

immunoreactive bands shown in lane 2 were similar in intensity to the bands 

from the control in lane 1, suggesting that NTM PS1-EG FP does not displace 

endogenous CTF. The higher immunorective bands at -1 5 0  kD may represent 

the blob-like aggregates. The doublet bands at -1 2  kD may represent 

proteolytic fragments generated as the result of physiological specific cleavage 

events e.g. caspase activity (Kim et al, 1997; Kovacs et al, 1999; Van de Craen 

et al, 1999), since the lower of these bands are more reactive when compared 

to the control lane. Alternatively, Dewji, et al (1997) has reported that such
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HEK293 cells stably expressing the PS1 fusion proteins

N T M P S 1 -E G F P  
(c lone 2 /2 3 )  
expression  is largely  
uniform  in intensity  
b etw een  cells. C ells  
display a m ixture of 
phenotypes. Bar 

10|Lim.

N T M P S 1 -E G F P
(clone 1 /27 ). In 
this clonal cell 
line the fusion  
protein is 
reticular but the  
ves icu lar/ b lob­
like phenotype  
predom inates. 
B ar 5p.m.

F u l l - le n g th  P S 1 - E G F P  
(c lon e  1/10). F lourophore  
in tensity  d iffe red  b e tw e e n  
ce lls  such  th a t a lth o u g h  
v i s i b l e  t h r o u g h  t h e  
m i c r o s c o p e ,  c e l l s  
e x p re s s in g  low  le v e ls  of 
th e  fu s io n  p ro te in  co u ld  
not b e  c a p tu re d  by th e  
C C D  c a m e r a .  A  
m a x im u m  G a i n  o f + 1 8  
w a s  re q u ire d  to  c a p tu re  
this im age. B ar 10p m .

F igure 6 .9 . H E K 2 9 3  cells stably expressing  F L P S 1 -E G F P  or 
N T M P S 1 -E G F P  fusion proteins. D A P I stain in blue.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

122 -

— 116 kD 
— 84

— 58

Key to lanes:
1. 1 blue
2. Control soluble fraction
3. C ontrol m em b ran e  fraction
4. C lo ne  1 /1 0  N T P S 1 -E G F P  soluble
5. C lo ne  1 /1 0  N T P S 1 -E G F P  m em b ran e
6 . C lo ne  2 /4 7 N T P S 1  -E G F P  soluble
7. C lo ne  2 /4 7 N T P S 1 -E G F P  m em b ran e
8. C lo ne  1 /1 4 N T M P S 1 -E G F P  soluble
9. C lo ne  1 /1 4 N T M P S 1 -E G F P  m em brane
10. C lo ne  1 /2 7 N T M P S 1 -E G F P  soluble
11. C lo ne  1 /2 7 N T M P S 1 -E G F P  m em brane
12. C lo ne  2 /2 3 N T M P S 1 -E G F P  soluble
13. C lo ne  2 /2 3 N T M P S 1 -E G F P  m em b ran e
14. 7 blue

Predicted  mol w t for fusion constructs:

E G F P 2 7 kD a
H oloprotein 55 kD a
C -term ina l PS1 20 kD a
N -term ina l PS1 35 kD a
F L P S 1 -E G F P 82 kD a
N T P S 1 -E G F P 62 kD a

F igure  6 .1 0 . W e s te rn  an a lys is  o f H E K  2 9 3  cells s tab ly exp ress in g  N -te rm in a l P S 1 -  
E G F P  fusion  p ro te ins . M e m b ra n e s  im m u no b lo tted  w ith  the  a n ti-E G F P  an tibody. 
S o lu b le  and  m e m b ra n e  fractions  a n a ly s e d  by 10%  S D S  tr ic e n e /u re a  gel. A c tu a l 
va lu es  obta in ed  by lin ear regression  ana lys is . D isc rep an c ies  b e tw een  ac tu a l v a lu e s  
and calcu lated  values  differ due to the error associated  with a line o f best fit.
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a. 1 2 3 4 5 6 7 8

135_

55
48

32
28

150

90

45

22 —

12 — •

Key to lanes:

(PP
116 kD

A n ti-E G F P

116 kD

mm

C a s p a s e  c le a v a g e  
fragm ents

1.
2 .

3.
4.
5.
6 .

7.
8 .

A n ti-C T P S 1  103 9

Control m em b ran e  fraction  
C lo ne  1 /2 7 N T M P S 1 -E G F P  m em brane  
C lo ne  F A C  F L C -E G F P  m em b ran e  
C lo ne  1/10 F L C -E G F P  m em b ran e  
C lo ne  J /1 1 F L C -E G F P  m em b ran e  
C lo ne  K /9  F L C -E G F P  m em b ran e  
C lo ne  T /11  F L C -E G F P  m em b ran e  
7 blue m arker

Predicted mol wt for fusion constructs (approx):

E G F P
H oloprotein
C -term ina l PS1
N -term inal PS1
F L P S 1 -E G F P
C T P S 1 -E G F P
N T P S 1 -E G F P

2 7  kD a  
55  kD a  
2 0  kD a  
3 5  kD a  
82  kD a  
4 7  kD a  
62  kD a

F igure  6 .11  W e s te rn  a n a lyses  o f H E K  2 9 3  cells  s tab ly  exp ress in g  full length  P S 1 -E G F P  
fusion protein . S a m p le s  im m unob lo tted  w ith (a ) a n ti-E G F P  antibody and (b ) a n ti-C T P S 1  
an tib o d y  1 0 3 9 . B and s  c o rresp o n d in g  to c a s p a s e  fra g m e n ts  m a y  in d ic a te  a p o p to tic  
activity. M e m b ra n e  fractions ana lysed  by 10%  S D S  tr icen e /u rea  gel.  ̂o o



banding patterns are a common artifact due to the manner in which the cells are 

prepared for PS1 immunoanalysis, however, extensive laddering was not 

observed for samples blotted with the anti-EGFP antibody. Both the anti-EGFP  

and the anti-CTF PS1 1039 antibodies show membrane-only immunoreactive 

bands approximate in size with the calculated values of the NTF- and CTF- 

fusion proteins.

6.9 Mannosidase staining in control cells

The previous data from transfected Cos-7 cells and stable HEK293 cells 

expressing the fusion protein suggest that high levels of the fusion proteins may 

be toxic/have a pro-apoptotic effect. The latter is suggested by the caspase 

cleavage shown in figure 6.11, b. Previous research has implicated PS 

associated apoptosis in AD and suggests that the proteolytic fragments may 

have differential actions being pro or anti-apoptotic (Vito et al, 1996; Roperch et 

al, 1998; Wolozin et al, 1998; Alves da Costa et al, 2002). To investigate what 

effect if any, the truncated fusion protein had on apoptosis, Cos-7 cell 

morphology was assessed following STS treatment of transfected and non- 

transfected cells. STS is a wide spectrum kinase inhibitor that induces 

apoptosis by mediating a sustained increase in intracellular calcium ion 

concentration associated with mitochondrial disturbance and later to caspase 

activation (Kruman & Mattson, 1999).

The general features of apoptosis are characterised by changes to the 

cell morphology including nuclear fragmentation, chromatin condensation, cell 

body shrinkage, and membrane blebbing (Kerr et al, 1972). By assessing cell 

morphology and nuclear fragmentation as an end point of apoptosis, transfected 

and non-transfected Cos-7 cells were exposed to varying concentrations of STS  

over time. A series of control experiments were carried out to first gauge the 

effect STS would have on Cos-7 cells (figure 6.12). Golgi morphology was 

assessed as an indicator of cell structural integrity by examining mannosidase II 

staining. Mannosidase staining is control cells was classically peri-nuclear and 

tubular in appearance, whereas staining in STS treated cells is condensed and 

indistinct (indicated by arrows, lower panels). At higher STS concentrations cell 

body and nuclear shrinkage is widespread indicating that all cells have entered 

apoptosis.
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6.10 The NTM PS1-EG FP sensitizes Cos-7 cells to STS-induced apoptosis

Using the above criteria for assessing apoptosis the previous experiment was 

repeated this time with Cos-7 cells transfected with the N TM P S1-EG FP  

construct. The number of transfected cells showing apoptosis was expressed as 

a percentage of the total number of cells exposed to STS (figure 6.12 and table

6.0). Staurosporine-induced apoptosis was appreciably greater in transfected 

cells expressing NTM PS1-EG FP compared to control (no treatment) and non­

transfected STS-treated cells for all concentrations, with the maximum effect 

seen after 280 min (figure 6.13, 2pM STS). The number of apoptotic cells 

increased in a time dependent manner for both cell populations in response to 

treatment with 2pM STS, though the increase in transfected cells was greater at 

all time points compared to the non-transfected, STS-treated cells.

T a b le  6 .0 . D a ta  for s taurosporine trea tm en t of N T M P S 1 -E G F P  tran s fec ted  C o s -7  cells. 
T h e  n um ber o f tran s fec ted  cells show ing apoptosis  w a s  exp re s s e d  as a p e rc e n ta g e  of 
the  total n u m b er of cells exposed  to S T S . S e e  text for criteria used  to assess  apoptosis  
in S T S -tre a te d  cells.

Control non STS-treated, non-transfected Cos-7 cells

No. of cells No. apoptotic % apoptotic

347 29 8

0.5 uM STS

Exposure to 

STS (min) Total no. of cells No. apoptotic cells % apoptotic No. of transfectants No. apoptotic % apoptotic

70 min 233 35 15 47 28 60

140 min 248 37 15 46 29 63

280 min 241 42 17 74 48 65

1.0 uM STS

Total no. of cells No. apoptotic cells % apoptotic No. of transfectants No. apoptotic % apoptotic

70 min 629 77 12 61 36 59

140 min 681 75 11 71 41 58

280 min 402 58 14 75 48 64

2.0 uM STS

Total no. of cells No. apoptotic cells % apoptotic No. of transfectants No. apoptotic % apoptotic

70 min 302 73 24 70 35 50

140 min 389 117 30 65 40 61

280 min 172 73 42 44 33 75
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6.11 Staurosporine induced apoptosis in N TM P S1-EG FP expressing NRK

cells show increased Grasp65 cleavage compared to untransfected cells

Although the above experiment represented an n=1, the results suggest that the 

PS1 fusion protein sensitizes the cells to STS-induced apoptosis above that 

observed for STS-treated, non-transfected cells. One criticism, however, 

concerning the design of this experiment is that changes in cell morphology 

were measured as an end point of apoptosis. A more definitive experiment 

would be one in which the early events of apoptosis could be measured in cells 

transfected with the fusion protein. One such early event in the execution stage 

of apoptosis is the caspase-3 mediated cleavage of the cis-Golgi stacking 

protein G RASP65 (Golgi reassembly and stacking protein of 65 kD). During 

mitosis and apoptosis G R A SP65 cleavage results in the Golgi ribbon 

fragmenting into tubulo-vesicular membranes (Barr et al, 1997; Lane et al, 

2002).

To investigate what affect the fusion protein had on the early events of 

apoptosis in transfected cells was measured using a monoclonal anti-GRASP65 

antibody (gifted by M. Lowe). The GRASP65 antibody was used to assess 

GRASP65 staining in transfected and untransfected NRK cells following STS  

treatment. Cells affixed to coverslips were treated over 4 hours with 1 p,M STS  

at 37°C, and prepared for immunofluorescent microscopy. Figure 6.14 shows 

GRASP65 staining as a peri-nuclear ribbon in transfected and untransfected 

cells. Two transfected cells show a reduction in G RASP65 staining similar to 

the decrease seen for the other compartment markers. The bar chart in figure 

6.15 show the number of STS-treated transfected G RASP65-negative cells 

expressed as a percentage of the total number of non-transfected STS-treated  

cells. Figure 6.15 shows a dose-dependent relationship between staurosporine 

exposure and Grasp65 staining in both transfected and untransfected NRK  

cells. This loss in staining is more statistically significant in cells expressing the 

fusion protein compared to control cells treated with or without staurosporine 

(figure 6.15 and table 6.1). Though not statistically significant, apoptosis was 

nonetheless greater in control-transfected cells compared to non-transfected 

control cells indicating that the fusion protein may have a small pro-apoptotic 

effect.
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For W estern analysis, STS treated NRK whole cell lysate was 

immunoblotted with a G RASP65 polyclonal antibody (figure 6.16). Whilst 

Grasp65 cleavage is clearly evident in STS treated NRK cells processed for 

immunoflourescent microscopy (figure 6.14), G R A SP65 cleavage was not 

detected by imm unoblotting in S TS -treated  NRK cells. Instead an 

immunoreactive band was identified at ~66 kD corresponding to uncleaved full- 

length G RASP65. Lane et al, (2002) have previously shown that the anti- 

Grasp65 antibody stains immunoreactive bands at approximately 50, 45 and 40 

kD corresponding to caspase-3 cleavage fragments. Although G RASP65  

cleavage was not detected, the overall immunoreactivity was nevertheless 

weaker in control (no STS) transfected and STS-treated-transfected cells (figure 

6.16, lanes 5-8), compared to STS-treated non-transfected cells (lanes 2-4), 

consistent with the previous observation that the fusion protein reduces 

antibody staining to some cell compartment markers, in this case, cis-Golgi 

GRASP65 staining is affected.

The failure to demonstrate GRASP65 cleavage by immunoblotting may, 

in part, be due to different experimental techniques. In this experiment crude 

cell lysate was prepared from NRK cells exposed to 1 jum STS for 4 hours. The 

concentration of STS and the length of exposure were determined by the 

immunofluorescence microscopy data, which showed reduced G RASP65  

staining after 4 hours in the presence of 1 jiM STS. G RASP65 cleavage has 

previously been demonstrated in a cell-free system where apoptotic Hela cell 

lysate was prepared by treatment with cytochrome c, a potent apoptotic inducer 

(Lane et al, 2002). Here, apoptotic cytosol was incubated with purified rat liver 

Golgi membranes for various times at 37°C. Immunoblotting of these samples 

showed major proteolytic fragments one hour after incubation. In the current 

experimental set-up, G RASP65 would have been cleaved following STS  

treatment, however, the caspase-generated fragments would have been 

exposed to the action of several additional cellular proteases during apoptosis, 

hence full length membrane-bound GRASP65 was detected by immunoblotting, 

but not its proteolytic fragments.
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6.12 Chapter summary

In summary, co-localisation experiments with antibodies to APP and p-catenin 

show little or no co-localisation with the NTF fusion protein consistent with the 

notion that the full-length molecule, as an entity is necessary to bind with p- 

catenin and APP. In a sub set of cells expressing the fusion protein there was 

an appreciable reduction or absence of antibody staining directed at some 

markers for the ER and Golgi indicating fragmentation of these compartments. 

Furthermore, Western analysis of PS HEK293 clone cell lines indicates the 

presence PS caspase cleavage fragments suggesting toxicity or an apoptotic 

event associated with the fusion protein. Moreover, the truncated fusion protein 

significantly sensitises Cos-7 and NRK cells to apoptotic stimuli, in this case 

following STS treatment.
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The NTMPS1-EGFP fusion protein sensitizes Cos-7 cells to staurosporine-induced
apoptosis

0.5 UM STS

80
o
8  60 Q.O
Q.
CO 4 0
CO

20  -

0 -L

□ Non transfectants 

m Transfectants

□
control 70 min 140 min 280 min 

Time

70 j  

60 -o
o 50 -
Q_
o 40
CD
m 30 
8 20 

°  10 

0

1.0 MM STS

□ Non transfectants 

H Transfectants

El
control 70 min 140 min 280 min

Time

80 j
70 - 

■| 60 

f  50 
w 40 - 
I  30 -

5 20 
10
0

2.0 MM STS

□
□ Non transfectants 

m Transfectants

control 70min 140 min 280 min 

Time

F igure  6 .1 3 . S ta u ro s p o rin e  (S T S ) tre a tm e n t (0 .5  p M , 1 .0  p M , 2 .0  p M ) o f C o s -7  ce lls  
expressing  the truncated  fusion protein o v e r tim e. T h e  n um ber of d ysm o rp h ic  ce lls  show ing  
cell body sh rin kag e  and  n u c lea r fragm enta tio n  as an end point o f ap op to s is  w a s  g re a te r  in 
tra n s fe c te d  ce lls  co m p ared  to control n o n -tra n s fe c te d  cells. S e e  te x t fo r c rite ria  used  to  
assess  apoptosis.
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The fusion protein sensitises NRK cells to STS induced apoptosis

CDO)0
c

LO
CO
CL
C/3CDi_
o
w

90  i  

80

■■S 70

6 0  -j

50

4 0

=  30

20

10
Mmm

control

□  N on transfectan ts

N T M P S 1 -E G F P
transfectan ts

1 2 

Exposure to STS (hours)

F ig u re  6 .1 5 . Q u an tita tion  o f G ra s p 6 5  stain ing  o f p N T M P S 1 -E G F P  tra n s fe c te d  and  
u n tra n s fe c te d  N R K  ce lls  tre a te d  w ith  1 p M  s ta u ro s p o rin e  o v e r 4  h ou rs . B ars  

re p re s e n t th e  m ean  ±  S E M  (n = 3 -4  fo r each  tim e  point). U sing the s tu d en ts  t-tes t 
th ere  w a s  a s ignificant d iffe rence  in th e  n um ber o f apop to tic  S T S -tre a te d , transfec ted  
cells  c o m p ared  to S T S -tre a te d , n o n -tran s fec ted  cells . * P < 0 .0 5  and  * * P < 0 .0 0 6 5  vs. 
non-transfected , G R A S P 6 5  negative  cells within the s am e  tim e point.

T a b le  6 .1 . S u m m a ry  o f d a ta  fo r G ra s p 6 5  sta in ing  o f p N T M P S 1 -E G F P  tra n s fe c te d  
(tfx) N R K  cells  tre a te d  w ith  1p M  staurosporine . D a ta  rep resen ts  G ra s p 6 5  n eg a tiv e  

cells (% ).

Expt No.
Control 1 H our 2 Hours 4  H ours

N on T fx Tfx Non Tfx Tfx N on T fx T fx N on T fx T fx

1 10 13 2 2 51 2 6 51 3 6 78
2 23 2 7 3 5 43 2 5 58 21 6 7
3 8 30 14 6 3 - - 5 7 92
4 7 14 2 2 42 38 81 56 81

M e a n 12 .0 2 1 .0 2 3 .3 4 9 .8 2 9 .7 6 3 .3 4 2 .5 7 9 .5

S T D E V 7 .4 4 8 .7 6 8 .6 9 9 .71 7 .2 3 1 5 .7 0 1 7 .2 9 1 0 .2 8
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Grasp65 cleavage is not detected in staurosporine treated NRK cells expressing
the NTM PS1-EG FP fusion protein

a.
1 2 3 4 5  6 7 8 9

kD

66 _

-  84

58

kD

Lanes: 1. Control non transfected, no STS
2. 1|llM STS for 1 hour
3. 1pM STS for 2hour
4. 1|llM STS for 4hour
5. Control transfected no STS
6. Transfected 1pM STS for 1hour
7. Transfected 1 jllM STS for2hour
8. Transfected 1pM STS for 4hour
9. 7 blue marker

Figure 6.16. a. Polyclonal Grasp65 immunoblotting of whole cell lysate taken from NRK  
cells expressing the N TM P S 1-E G FP  fusion protein following treatm ent with 1pM 
staurosporine (STS) over 4 hours. Unusually, transfected cells (lanes 5-9) show less 
GRASP65 immunoreactivity compared to control, non-transfected cells (lanes 1-4). This 
is in keeping with the earlier observation that overexpression of the fusion protein 
reduces some ER and Golgi markers. 8% SDS PAGE gel. b. Corresponding coomasie 
gel showing approximate equal sample loading per lane.
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Chapter 7 Functional and morphological characteristics of the blob phenotype

7.0 Introduction

In the previous chapter it was demonstrated that transfected cells show altered 

antibody staining within the ER and Golgi compartments and increased 

susceptibility to apoptosis. In this section, concerns that the phenotypes 

exhibited by the fusion proteins were in fact a direct result of the EGFP moiety 

were addressed. Lastly, because of their unusual morphology the nature of the 

blob-like aggregates was further investigated by im m unofluorescent 

microscopy, immunoblotting, and electron microscopy.

7.1 Introduction of an in-frame STOP codon between PS1 and EGFP cDNA

Before investigating further the properties of the fusion proteins, the role of the 

EGFP moiety in generating the fusion protein phenotypes was first investigated. 

Although there is little evidence to suggest that the EG FP tag affected the 

distribution of the fusion protein, it was necessary to consider whether or not the 

phenotypes were an artefact induced by the EGFP moiety. Because of the 

similarity of the phenotypes generated by all four constructs, mutant and non­

mutant NTPS1 and CTPS1 proteins minus the EGFP moiety were constructed. 

To achieve this, an oligo-linker sequence containing a STOP codon (TGA) was 

ligated into the open reading frame between position 1427 for full-length PS1 

and position 827 of NTPS1, and the start of the EGFP cDNA sequence (figure

7.0). Transcription of these constructs should therefore terminate after the 

STOP codon thus generating full-length and truncated proteins devoid of the 

EGFP moiety. To aid in the selection of putative clones, a Pst1 restriction site 

not found within the existing constructs was introduced into the oligo-linker 

sequence. PS1 cDNAs from putative clones transformed by the PS1-STO P  

constructs were screened by restriction digestion analysis (data not shown). 

The purified plasmids were then used for the transfection of Cos-7 cells. To 

analyse PS1 expression in Cos-7 cells, the NTF antibody NT7 and the CTF  

antibody 1039 were used for immunofluorescence and immunoblotting.
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7.2 Removal of the EFGP moiety does not alter the phenotypes displayed by 

cells expressing truncated or full-length PS1

Cos-7 cells transfected with the pNTPS1-STO P, pN TM PS1-STO P, p FL P S I- 

STOP or pFLM PS1-STO P constructs displayed identical phenotypes to those 

exhibited by the fusion protein i.e. reticular, peri-nuclear, vesicular and blob-like 

aggregates (figure 7.1). Similarly, the transfection rates for the new constructs 

were approximately the same as those observed for the fusion proteins. The 

overall fluorescent intensity of the full-length constructs was less compared to 

those cells expressing the NT-STOP constructs. As was the case for the full- 

length PS1-EG FP fusion proteins, it was necessary to maximise the camera 

gain in order to capture images of the cells expressing full length-STOP-PS1. 

Moreover, staining of the full-length-STOP proteins with the anti-PS1 antibodies 

did not reveal an obvious peri-nuclear phenotype, consistent with that already 

observed in cells expressing the full-length fusion proteins. Endogenous 

staining with NT7, however, reveals a punctate and a peri-nuclear phenotype 

(figure 7.1, first panel).

As expected, cells expressing the PS1-STO P proteins did not exhibit 

EGFP fluorescence or stain with the anti-EGFP antibody (data not shown). 

Also, the anti-CTF antibody 1039 similarly failed to stain the N TFPS1-STO P  

fusion proteins (data not shown). Noticeably, cells expressing the full-length 

PS1 STOP constructs, whether stained with the NT7 or 1039 antibodies, all 

show similar phenotypes (figure 7.1). W hether this indicates that the two 

fragments form blobs separately or represent full-length (uncleaved) PS1 is 

unclear. Ideally, this issue could be resolved by double immunolabelling using 

an anti-mouse PS1CTF monoclonal antibody and the NT7 rabbit polyclonal 

antibody.

7.3 Western analysis of soluble and membrane fractions prepared from cells 

expressing full-length and truncated PS1-STOP proteins

Membrane and soluble fractions prepared from cells transfected with the four 

PS1-STO P constructs were immunoblotted with the NT7 and 1039 antibodies 

(figure 7 .2). As expected, the soluble cell fraction did not show any 

immunoreactivity to the NT7 antibody. Membrane fractions taken from cells
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transfected with the four PS1-STOP constructs show similar immunoreactivity 

profiles following NT7 staining (figure 7.2, a). Bands common to all four 

samples are shown at approximately 31, 33, 57, 73 and 83 kDa. The latter two 

bands may represent dimerised or aggregated protein. The bands at -5 7  kDa 

are close in size to the holoprotein, whilst all samples show a doublet at -3 2  

kDa, close in size to the NTF fragment. Significantly, the bands at -2 8  and 66 

kDa are absent from the FL-STOP samples. The higher weight bands suggest 

that the NTFs are more susceptible to aggregation compared to the full-length- 

derived NTF, possibly indicating that a disturbance in the 1:1 (CTF:NTF) 

stoichiometry results in aggregation of the NTF fragment. The smaller bands at 

-2 8  kDa could be the result of caspase cleavage of the NTF or due to the 

manner in which the cells were prepared for immunoanalysis (lanes 6 and 8). 

Overall, the immunoreactivity of the full-length samples in lanes 2 and 4 were 

generally weaker compared with the NT-STOP samples.

Membrane fractions taken from cells transfected with the four PS1-STOP  

constructs also show similar immunoreactivity profiles following 1039 staining 

(figure 7.2, b). Bands common to all four samples plus the control membrane 

fraction range in size from approximately 11 to 134 kDa. The bands at -2 0 /2 2  

kDa and -5 2  kDa are close in size to the CTF and holoprotein, respectively. 

Overall, immunoreactivity in cells expressing the transgene is higher when 

compared to endogenous levels of the protein (lane 1). This observation is in 

keeping with previous studies that show that over expression of transgene PS1 

results in a modest increase in steady state levels of PS1 (Thinakaran et al,

1996). As before, bands corresponding in size to the caspase fragments 

appear at approximately 11 and 13 kD in control as well as transfected cells, 

however, the immunoreactivity is significantly greater in fractions taken from 

transfected cells. This is data is consistent with the CTF undergoing alternative 

cleavage by caspase-3 (Kim et al, 1997; Podlisny et al, 1997; Kovacs et al, 

1999).

7.4 Analysis of the cell compartment in which the fusion protein resides

Transfection of the fusion protein constructs both full-length and truncated

consistently display the same overall phenotype in several different cell lines. In

particular, the blob-like aggregate phenotype appears to dominate, forming

numerous pleimorphic bodies varying in both size and number. Western
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Western analysis of PS1-STOP proteins

a.
4 5 6 7 8

kDa
- 9 0

- 7 3  
- 6 6  

  — 57

_ 3 3  
I 31 
— 28

NT7 antibody
staining

Lanes:
1. sol. fraction F L -S T O P
2. m em b. fraction F L -S T O P
3. sol. fraction F L M -S T O P
4. m em b. fraction F L M -S T O P
5. sol. fraction N T -S T O P
6 . m em b. fraction N T -S T O P
7. sol. fraction N T M -S T O P
8 . m em b. fraction N T M -S T O P

b.
2 3 4

— 134 kDa

— 95

— 52

_22
20

— 13 caspase 
— 11 fragments

1 0 3 9  antibody  
staining

Lanes:
1. C ontrol n on -transfected
2. F L -S T O P
3. F L M -S T O P
4. N T -S T O P
5. N T M -S T O P

Predicted mol w t for fusion proteins (approx):

PS1 holoprotein 55  kD a
N -term ina l PS1 fragm ent 35  kD a
C -te rm in a l PS1 fragm ent 2 0  kD a

F ig u re  7 .2 . W e s te rn  an a ly s is  o f fu ll-leng th  and tru n c a te d  P S 1 -S T O P  p ro te in s , a . N T 7  
im m u no sta in in g  o f so lub le  and m e m b ra n e  cell fractions , b. 1 0 3 9  im m u no sta in in g  o f cell 
m e m b ra n e  fra c tio n s . S a m p le s  a n a ly s e d  by 1 0 %  S D S /u re a  P A G E  g e l. B a n d  s iz e s  
estim ated  by linear regression.
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analysis of transfected cells demonstrates that these blobs are associated with 

the insoluble/membrane fraction. Given their general morphology, the blobs 

are either insoluble aggregates or membrane-sheathed structures derived 

from the cell compartment. An intuitive guess regarding their genesis might 

consider the fusion protein accumulating over time eventually resulting in 

‘swellings’ of the ER or Golgi, or some other membrane derived organelle. 

Alternatively, the blobs may be the result of vesicles undergoing successive 

fusion events with one another, assuming membrane kinetics allow for such a 

process. A parsimonious explanation is that the blobs are cytoplasmic 

aggregates.

In order to justify the next investigation and address the origins of the 

fusion protein blobs, it is helpful to first consider the fate of proteins trafficking 

through the cell. The dogma surrounding the passage of membrane proteins (in 

this instance PS1) through the cell compartment can be stated thus: (1) the 

protein is first co-translationally inserted within the ER membrane. (2) Correct 

folding is followed by selected packaging of PS1 into COP II coated transport 

vesicles at ER transitional elements (TE- ER exit sites) either central or 

peripheral. (3) Vesicles containing the cargo protein bud off from the TE. (4) 

Transport vesicles lose their COPII coats and vesicles fuse together to form 

vesicular tubular clusters (VTCs/ERGIC compartment) at the cis-Golgi interface. 

At peripheral TE, vesicles form sm aller VTCs that constitute transport 

complexes (TC) of tubulovesicles that are transported to the cis-Golgi via 

microtubules. (5) Finally, especially at VTCs but also from the distal TGN, 

COPI-coated vesicles are formed. COP-I vesicles return proteins by retrograde 

transport thereby concentrating proteins in the VTCs (Klumperman, 2000; 

Gorelick and Shugrue, 2001). Ultimately, functional PS1 is then trafficked to its 

final destination, be it the synapse/plasma membrane, endosome, etc.

If the blobs arise from fragmented ER or the Golgi apparatus or are in 

fact the result of fused vesicles, it is reasonable to assume that resident 

proteins from these compartments may still be present. To test this hypothesis 

and therefore better understand the identity of the blob-like aggregates, cells 

expressing the fusion protein were stained with a variety of antibodies to the 

ER, ERGIC and Golgi compartments.
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7.5 The blob phenotype does not co-localise with antibodies to the ER, Golgi 

or the ERGIC compartment.

Cos-7 and HEK293 cells expressing the N TM PS1-EG FP fusion protein were 

stained with Colligin, Mannosidase II (figure 7.3) and ERG IC53 (figure 7.4, top 

and middle rows) antibodies. No co-localisation with the blob phenotype was 

observed. From earlier experiments it was demonstrated that BFA treatment of 

cells expressing moderate levels of the fusion protein co-localise with the ER 

marker Colligin but not with the ERGIC53 marker. Assuming that the blobs 

were derivatives of the cis or trans Golgi complex, BFA treatment should result 

in either an ERGIC or ER phenotype for the fusion protein. To investigate this 

possibility HEK293 cells displaying the blob phenotype were treated with BFA 

and stained with the ERGIC53 antibody as demonstrated previously (figure 7.4, 

lower row). Treatment with BFA does not disperse the blob-like aggregates nor 

affect their size, morphology or cellular distribution. Following BFA treatment, 

moderate levels of the fusion protein redistribute to the ER, whereas ERGIC53  

staining is distinctly vesicular.

An additional test as to whether the blobs originated from VTCs following 

the fusion of transport vesicles was investigated by staining with the anti- 

membrin antibody. Membrin is a 27 kDa integral membrane protein that serves 

as a t-SNARE in ER-to-Golgi transport. T-SNAREs facilitate the fusion of ER  

derived membrane vesicles with their cognate v-SNARE partner (Lowe et al,

1997). Again, no co-localisation of the membrin antibody with the blob 

phenotype was observed (figure 7.5) indicating that the blob phenotype is not a 

post-ER/pre-Golgi derived structure.

7.6 Altered COP II antibody staining in Cos-7 cells exhibiting the blob 

phenotype

To examine whether the blobs associated with vesicles derived from the TE or 

distal Golgi compartment, cells were stained with antibodies markers for COP-II 

and COP-I coat proteins. p-Cop is the major component of the COP-I complex, 

which is critical for vesicular traffic between the ER and Golgi and useful as a 

marker for the VTCs found at the cis face of the Golgi stack, as well as the cis 

Golgi itself (Oprins et al, 1993). p -CO P antibody-staining exhibits a
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reticular/vesicular phenotype in both cell lines (figure 7.6). The difference in 

size between the p-COP vesicles and the fusion protein and the absence of any 

co-localisation shows that the blob phenotype neither associates with nor 

affects COP-I trafficking.

COP II staining of HEK293 cells exhibits a punctate and peri-nuclear 

phenotype. The CO P II antibody overlaps with the peri-nuclear phenotype 

displayed by the fusion protein (figure 7.7, top row), but not with the blob 

phenotype (middle and bottom row). The presence of the fusion protein 

appears not to affect COP II staining in HEK293 cells, however the blob 

phenotype either reduces or alters COP II staining from a peri-nuclear ribbon, to 

a fragmented or diffuse/cytoplasmic phenotype in Cos-7 cells (figure 7.8). 

Because of the rounded-up appearance of HEK293 cells making visual analysis 

difficult, altered COP II antibody staining cannot be ruled-out entirely.

7.7 The blob-like aggregates do not associate with the Lysosomal 

compartment.

Within the cell, the lysosomal and proteasomal systems are the two major 

intracellular pathways responsible for the degradation of damaged or unwanted 

proteins. Lysosomes are membrane-bound, acid hydrolase-containing vesicles 

derived from the TGN/endosome that deal primarily with extracellular proteins, 

such as plasma proteins that are endocytosed by the cell, or cell-surface 

membrane proteins used in receptor-mediated endocytosis. In trying to identify 

whether the blob-like aggregates were membrane-bound structures associated 

with the lysosome, Cos-7 cells expressing the NTM PS1-EG FP fusion protein 

were stained with the anti-lysosomal antibody LAMP-1 (lysosomal associated 

m em brane protein), which stains a 10.5 kDa m em brane protein in a 

characteristic ring pattern (Chen et al, 1985). LAMP-1 displays a discrete 

vesicular phenotype that does not co-localise with any of the phenotypes 

displayed by the fusion protein. Similarly, the blob phenotype remains distinct 

from LAMP-1 antibody staining (figure 7.9), which exhibits a distinctive ring-like 

vesicular phenotype (figure 7.9, insert).
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Cos-7 cells over-expressing NTM PS1 fusion protein show altered Anti-COP II
antibody staining

C O P II staining N T M P S 1 -E G F P  M e rg e

C O P II staining N T M P S 1 -E G F P  M e rg e

C O P II staining N T M P S 1 -E G F P  M e rg e

C O P II staining N T M P S 1 -E G F P  M e rg e

F ig u re  7 .8 .C O P  II s ta in ing  o f C o s -7  cells  exp re s s in g  m o d e ra te  le v e ls  o f th e  fu s io n  pro te in  
exh ib its  a p e r i-n u c le a r  p h e n o ty p e . C O P  II s ta in in g  d o e s  not lo c a lis e  w ith  th e  b lo b -lik e  
ag g re g a te s . In cells exp ress in g  high leve ls  o f th e  fusion protein th e  G o lg i ribb o n -like  stain ing  
pattern is ab sent or in a state  of fragm entation . D A P I stain in blue. Bars, 2 0  pm .
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The blob phenotype does not associate with the lysosome marker LAMP-1

LA M P1 staining N T M P S 1 -E G F P  M erg ed

LA M P1 staining N T M P S 1 -E G F P  M erg ed

LA M P1 staining N T M P S 1 -E G F P M erg e d

F igure 7 .9 . LA M P -1  staining o f C o s -7  express ing  th e  N T P S 1 -E G F P  
fus ion  pro te in . L A M P -1  d isp lays  a d is c re te  v e s ic u la r p h e n o ty p e  
(red) that d oes  not co -loca lise  with any  of the  phen o typ es  d isp layed  
by the  fusion protein  (g re e n ). T h e  L A M P -1  an tib o d y  reco g n ises  a 
lysosom al m e m b ra n e  protein that p roduces a d istinctive ring pattern  
quite s e p a ra te  from  the  blob p henotype (insert right). D A P I stain in 

blue. Bars, 2 0  pm .
Enlarged view
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7.8 Proteasome 20S antibody staining of the fusion protein

The second intracellular proteolytic pathway involves the proteasome, a 26S  

(200 kD) complex, which in mammalian cells contains a 20S (673 kD) multi 

domain catalytic protein responsible for the degradation of a wide variety of 

polyubiquitinated proteins, including PS (Kim et al, 1997; Steiner et al, 1998). 

Excess holoprotein and non-incorporated fragments are degraded by the 26S  

proteasom e. Using an interaction trap /tw o-hybrid  assay and by 

immunoprecipitation, a direct physical interaction between PS1 and the 20S  

catalytic core of the 26S proteasome has been established (Van Gassen et al, 

1999). To investigate whether the fusion protein similarly interacts with the 

proteasome, Cos-7 cells and P S T /_ (mouse) cells exhibiting the blob phenotype 

were stained with a monoclonal anti-20S antibody. The results however were 

ambiguous since the 20S antibody showed poor staining in both cell lines. The 

fluorescence intensity of the 20S antibody in these cells was equivalent to 

primary-only antibody incubation in the absence of the alexxa 594 secondary. In 

the case that the fixation method affected antibody binding, the experiment was 

repeated with cells fixed in paraformaldehyde, however only non-specific 

binding was observed (data not shown).

7.9 The blob-like aggregates show ubiquitination

Whilst the interaction of the fusion protein with the proteasome could not be 

demonstrated definitively, involvement with the ubiquitin-proteasome system 

(UPS) can be inferred by examining the ubiquitin status of the fusion protein. 

Cells were stained with the anti-ubiquitin antibody and prepared for 

immunofluorescent microscopy. The anti-ubiquitin antibody co-localises with 

the blob-like aggregate phenotype, but not the reticular phenotype in HEK293  

and Cos-7 cells expressing the fusion protein (figure 7.10, rows a and b). As a 

control, the extent of bleed-through by the fusion protein into the red channel 

was assessed. Bleed-through from the green channel was not detected in cells 

stained with the secondary antibody only, indicating that the fusion protein is 

infact ubiquitinated (figure 7.10, panel d). Additionally, HEK 293 cells were 

analysed by immunoblotting using the anti-EGFP and anti-Ubiquitin antibodies. 

Only those higher weight bands from the m em brane fraction show weak
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immunoreactivity to the anti-ubiquitin antibody (figure 7.10, panel d). These 

data show that only the blob-like aggregates are ubiquitinated and provide 

evidence that the higher weight immunoreactive bands seen in previous 

immunoblots may correspond to the blob-like phenotype.

The usage of the term ‘blob-like aggregate’ within the context of thesis 

was meant purely as a general description for this phenotype. However, recent 

work by Johnston et al (1998) have characterised the existence of a single, 

stable, juxtanuclear aggregate referred to as an aggresome. Aggresomes are a 

general response by the cell to protein over-expression and can be generated 

artificially by inhibiting the proteasome. Once the degradative capacity of the 

proteasome is exceeded, polyubiquitinated protein aggregate at the microtubule 

organising centre (MTOC), and is accompanied by the rearrangement of the 

intermediate filament protein (IF) vimentin, which forms a containiment cage 

around the aggregated protein core (Johnston et al, 1998). Previous reports 

show that PS2 is targeted for degradation by the proteasome (Kim et al, 1997) 

and that PS1 readily form aggresom es following proteasom e inhibition 

(Johnston et al, 1998). To evaluate whether the NTM PS1-EG FP fusion protein 

similarly forms aggresomes, cells expressing the fusion protein were treated 

with the proteasome inhibitors lactacystin and MG 132. Cells were then stained 

with several antibodies diagnostic for the presence of aggresomes.

7.10 The NTM PS-EG FP fusion protein accumulates as a distinct perinuclear 

structure following inhibition of the proteasome

To evaluate the effects of proteasome inhibition on Cos-7 cells, cells were  

treated for 12 hours with 25 j u M  M G132 or 10 jllM  lactacystin and stained with 

the anti-IF vimentin antibody (figure 7.11). Staining of untreated cells with the 

anti-vimentin antibody produces a fine thread-like pattern that ramifies 

throughout the cell (figure 7.11, panel a). This contrasts sharply with vimentin 

staining in cells treated with lactacystin and M G132. Here, cells display a 

characteristic collapsed halo phenotype that impinges on the nuclear membrane 

causing a significant deformation of the nucleus (figure 7.11, panels b and c). 

Next, cells expressing the fusion protein were stained for vimentin following 

proteasome inhibition and prepared for fluorescent microscopy (figures 7.12  

and 7.13). Three general observations were made, namely: (1) Vimentin forms
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a cage around the fusion protein in lactacystin and MG132-treated cells (figures 

7.12, rows c, d, and figure 7.13, rows b, c, d). (2) Vimentin antibody staining in 

the absence of proteasome inhibition does not form a cage around the fusion 

protein blobs in Cos-7 or HEK293 cells (figures 7.12, rows a, b, and 7.13, row

a). (3) The blob phenotype persists in cells treated with the proteasome 

inhibitors and forms a distinctive ring of blobs around the aggresome. This 

latter observation was more readily observable in HEK293 cells (figure 7.13, 

rows b, c, d).

7.11 Higher weight fusion protein aggregates show increased ubiquitin 
immunoreactivity in cells treated with proteasome inhibitors

Overall EGFP fluorescence was greater in cells treated with the proteasome 

inhibitors when compared to control cells. Similarly, western analysis of cells 

with the anti-EGFP and anti-ubiquitin antibodies show greater immunoreactivity 

in drug treated cells compared to control cells expressing the fusion protein 

(figure 7.14, panel a and b). As expected, EGFP immunoreactivity was absent 

from the cell soluble fraction in all the samples analysed (panel b, lanes 2-4). In 

the m em brane fractions prepared from drug treated  cells, EG FP  

immunoreactivity is greater in lactacystin treated cells when compared to 

MG132 treated cells, which in turn shows greater immunoreactivity compared to 

untreated control cell samples (panel b, lanes 6-8). Soluble fractions 

immunoblotted with the anti-ubiquitin antibody like w ise show greater 

immunoreactivity following proteasome inhibition compared to control cells 

expressing the fusion protein (panel a, lanes 2-4).

Interestingly, the membrane derived cell fraction show a decrease in 

ubiquitin immunoreactivity for the 56 kD species following drug treatment. 

Conversely, the higher weight bands at approximately 120 kD show increased 

immunoreactivity following lactacystin treatment, compared to immunoreactivity 

in MG132 treated cells, which in turn is greater than the band intensity seen in 

control cells (panel a, lanes 6-8). This higher ubiquitin-staining band 

demonstrates that only a fraction of the fusion protein corresponding to the 

aggregated protein at 120 kD is targeted for proteasome degradation. Similarly, 

immunofluorescent microscopic examination of cells expressing the fusion 

protein shows co-localisation with the anti-ubiquitin antibody following 

lactacystin or MG132 treatment in some but not all cells (figure 7.14, panel c).
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7.12 M G132 concentrations in the nanomolar range are sufficient to cause the

collapse of vimentin around the aggresome

Whilst the above data demonstrate a clear physiological response by the cell to 

the presence of the proteasom e inhibitors, a chief concern was the 

concentration of lactacystin and M G132 needed to obtain these results. For 

instance, M G132 is a potent, reversible proteasome inhibitor that has a Ki of 4 

nM (Calbiochem data sheet), yet under the current experimental conditions cells 

were treated with 25 jliM MG132, presumably well in excess of that needed to 

inhibit the proteasome. Although such high concentrations of proteasomal 

inhibitors have been used by other laboratories investigating aggresome  

formation (Johnston et al, 1998; Garcia-Mata et al, 1999), the possibility exists 

that any observations made may be the result of other, unrelated systems being 

affected by too high a drug dose. To address this issue, cells were treated with 

a series of M G 132 concentrations in the nanomolar range. To assess the 

degree of aggresome formation cells were stained for vimentin (figure 7.15). 

The number of cells displaying a peri-nuclear vimentin phenotype were then 

counted and expressed as a percentage of the total number of cells showing 

antibody staining (figure 7.16, a). Although the concentration series used here 

are not typical of a pharmacological range of concentrations, there is 

nonetheless a clear dose response affect (figure 7.16, b). Sub maximal 

concentrations of M G 132 (5 nm to 50 nM) were sufficient to collapse the 

vimentin cage around the aggresome. Subsequent experiments using M G132  

were therefore carried out with 50 nM to lessen any possible artefacts induced 

by too high a concentration.

7.13 M TOC staining is altered in Cos-7 cells expressing high levels of the 

fusion protein

Previous work has shown that the aggresome localises to the M TOC region of 

the cell in the immediate vicinity of the Golgi (Johnston et al, 1998) and is able 

to recruit mitochondria from the cell periphery to the region immediately  

surrounding the aggresome. To verify the presence of the aggresome in the 

present study, cells expressing the fusion protein were treated with 50 nm MG
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132 for 12 hours and stained with antibodies for the M TOC or mitochondria. 

Staining in untreated cells reveals co-localisation of the fusion protein with the 

MTOC antibody, but only in those cells expressing high levels of the fusion 

protein (7.17, row a). Furthermore, MTOC staining appears to be altered in 

these cells. M TOC staining in untransfected neighbouring cells is widespread 

and ramifies throughout the entire cell. In transfected cells M TOC staining is 

limited to a much smaller region of cell radiating out from the edge of the 

nuclear region. Following proteasome inhibition, MTOC antibody staining and 

the fusion protein form as a perinuclear body that displays partial co-localisation 

(figure 7.17, row b).

Cells stained with the mitochondria antibody show an even distribution 

throughout Cos-7 and HEK293 cells in untreated, transfected and untransfected 

cells (Figure 7.17 rows c and d), though in Cos-7 cells exhibiting the blob 

phenotype, the mitochondria are effectively excluded from the immediate region 

of the cell occupied by the blobs (row c). Similarly, row c also shows the 

exclusion of mitochondria from a perinuclear site in an untransfected cell that 

exhibits a deformed nucleus, typical of the aggresome. In this instance, 

aggresome formation is observed in the absence of proteasome inhibition. The 

addition of MG 132 however, causes a dramatic shift in the location of 

mitochondria from a scattered distribution throughout the cell, to a juxtanuclear 

position, where the fusion protein and the mitochondria partially overlap (figure 

7.17, row d). Overall, the presence of the fusion protein had no affect on the 

number of mitochondria in transfected or untransfected cells.

7.14 Formation of the blob-like phenotype does not require intact microtubules

Previous studies have shown that aggresome formation at the M TOC requires 

an intact cytoskeleton (Johnston et al, 1998) and that disruption of the 

microtubule dynein/dynactin transport complex inhibits aggresome formation 

(Garcia-Mata et al, 1999). To test whether the aggresomes generated from the 

fusion protein require an intact microtubule system for their formation, cells 

expressing the fusion protein were treated with MG132 alone or in combination 

with the microtubule disrupting agent nocodazole and stained for the 

centrosome (MTOC) marker y-tubulin or vimentin (figure 7.18). M G 132and
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The blob-like aggregates are ubiquitinated

Ubiquitin staining H E K  2 9 3  N T M P S 1 -E G F P M erged

Ubiquitin staining C o s -7  N T M P S 1 -E G F P M erg ed

S econ d ary  antibody only H E K  2 9 3  N T M P S 1 -E G F P N o b leed -th rough

F ig u re  7 .1 0 . U b iq u itin  a n tib o d y  s ta in in g  o f ce lls  

e x p re s s in g  th e  N T M P S 1 -E G F P  fus ion  p ro te in . T h e  

blob phen o typ e  stains fo r ubiquitin in (a ) H E K 2 9 3  and  

(b ) C o s -7  ce lls , (c) S e c o n d a ry  an tib o d y  s ta in in g  

show s th a t the  fusion protein d oes  not b leed -th ro u g h  

into th e  red c h an n e l (ga in  + 9 ). D A P I sta in  in b lue. 

Bars, 2 0  pirn, (d) W e s te rn  an a lys is  o f H E K  2 9 3  cells  

s ta ined  with a n ti-E G F P  and  an ti-U b iqu itin  an tibod ies . 

T h e  h igher w e ig h t bands from  th e  m e m b ra n e  fraction  

s h o w  w e a k  im m u n o re a c tiv ity  to  th e  a n ti-u b iq u itin  

a n tib o d y . S a m p le s  a n a ly s e d  by 7 .5 %  S D S  U re a  

P A G E .

ladder soluble membrane membrane
A nti-ub iqu itin  A n ti-E G FP
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The fusion protein forms aggresomes following proteasome inhibition in Cos-7 cellsMUS
■  ■

V im entin  staining  
(no lactacystin)

N T M P S 1 -E G F P M erg e

V im entin  staining  
(no treatm ent)

N T M P S 1 -E G F P M erg e

D
V im entin  staining  

(Lactacystin  trea tm en t)
N T M P S 1 -E G F P M e rg e

DC I   ̂ V

V im entin  staining  
(M G  13 2  treatm ent)

N T M P S 1 -E G F P M e rg e

F igure 7 .1 2 . V im entin  staining of C o s -7  cells trea ted  for 12 hours with the  p ro teo som al inhibitors  
M G 1 3 2  ( 2 5 j l iM )  and Lactacystin  (1 O jliM ). V im en tin  d o es  not form  a c a g e  a ro u nd  th e  b lobs in 

untrea ted  cells (row s a and b). Follow ing the  inhibition o f the  p ro teaso m e, th e  fusion  protein  
form s as a perin u c lear a g g reso m e surrounded by a v im entin  c ag e  (row s c and  d). D A P I stain  in 
blue. Bars, (a ) and (b) 2 0  ju m , (c) 5 ^m , (d) 10 | im .



The fusion protein forms aggresomes following proteasome inhibition in HEK293 cells

BB
V im entin  staining  

(no treatm ent)
N T M P S 1 -E G F P M e rg e

B
Vim entin  staining  

(M G  132 trea tm en t)
N T M P S 1 -E G F P M e rg en

V im entin  staining  
(M G  132  treatm ent)

N T M P S 1 -E G F P M e rg eB
V im entin  staining  

(Lactacystin  treatm ent)
N T M P S 1 -E G F P M e rg e

igure 7 .1 3 . V im e n tin  sta in ing  o f H E K 2 9 3  cells  tre a te d  fo r 12 hours w ith  th e  p ro te o s o m a l 
inhibitors M G 1 3 2  (25|uM ) and Lactacystin  (1 OjliM). V im en tin  d oes  not form  a c a g e  a ro u nd  th e  

blobs in untreated  cells (row  a). Follow ing the inhibition o f the p ro teaso m e, th e  fusion protein  
form s as a perin u c lear ag g reso m e (row s b-d), how ever, the  v im entin  c a g e  a p p e a rs  to e x c lu d e  
the  blobs, w hich a re  p resent as  a ring surrounding th e  ag g reso m e. D A P I stain in b lue. B ars, 
(a) 2 0  jim , (b) and (c) 2 .5  p,m, (d) 10 jim .
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Proteasome inhibition of NTMPS1-EGFP HEK 293 cells with MG132 occurs in the
nanomole rangejjflfl

V im entin N T M P S 1 -E G F PH
V im entin N T M P S 1 -E G F PHB
V im entin N T M P S 1 -E G F P

V im entin N T M P S 1 -E G F PH W
V im entin  N T M P S 1 -E G F P

5 nM  M erg e

*

9

10 nM  M erg e

I ■ £

25  nM  M e rg e

5 0  nM  M e rg e

10 0  nM  M e rg e

F igure  7 .1 5 . O vern ig h t (1 2 hr) tre a tm e n t o f N T M P S 1  H E K  2 9 3  cells  w ith  5 n M -2 5 0  nM  
M G 1 3 2 . C ells  stained for V im entin  (red). D A P I stain in blue. Bars, 2 0  ^im.
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V im entin N T M P S 1 -E G F P

N T M P S 1 -E G F PV im entin 2 0 0  nM  M e rg e

V im entin N T M P S 1 -E G F P 2 5 0  nM  M e rg e

F igure 7 .1 5  (continued)

a. b.

[M G 1 3 2 ] nM
N um ber of cells 
displaying peri­

nuclear 
V im entin  

staining (% )
5 2 9

10 61

2 5 60

50 78

100 81

150 93

2 0 0 100

2 5 0 100

Percentage cells treated for 12 hours 
with varying [MG132] displaying

perinulear Vimentin staining
100

= >

8» =
0) Q.

0 50 100 150 250200
MG132 cone (nM)

Figure  7 .1 6 . E ffect of varying  M G 1 3 2  co ncen tra tio n  
on the  d istribution o f v im entin  in H E K  2 9 3  N T M P S 1  

cells, (a ) T h e  n u m b e r o f cells in figu re  7 .2 5  d isp laying  a p e ri-n u c le a r v im entin  p h en o typ e  
w e re  counted  and exp ressed  as a p e rcen tag e  o f the  total num ber o f cells show ing  vim entin  
an tibody stain ing. (b) D a ta  from  (a ) g e n e ra te s  a d ose  resp o nse  curve  fo llow ing  M G 1 3 2  
trea tm en t of cells expressing  the fusion protein.
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MTOC staining is altered in cells over expressing the fusion protein

♦  -8#

Control M TO C stainin N TM PS1-EG FP Merge

M TO C staining. 50 nM M G 132 N TM PS1-EG FP Merc

Control mitochondria stainin Cos-7 N TM PS1-EG FP

Control mitochondria staining HEK293 N TM PS1-EG FP Men

Mitochondria staining. 50 nM MG132 HEK 293 N TM PS1-EG FP Merge

Figure 7.17. M TO C and Mitochondria antibody staining in H EK293 and Cos-7 cells, (a and b) M TO C  staining 
is altered in cells over expressing the fusion protein. Following M G 132 treatment, M TO C  staining partially 
overlaps with the fusion protein at a juxtanuclear location, (c and d) Mitochondria staining in untreated Cos-7  
and HEK 293 cells is distributed throughout the cell, (e) Treatm ent with M G 132 results in a juxtanuclear 
phenotype containing mitochondria and the fusion protein. DAPI stain in blue. Bars, 20 pm.
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Aggresomes formed by over expression of the fusion protein or proteasome inhibition
require an intact microtubule network

y-tubulin staining N TM PS1-E G FP Merge

y-tubulin staining. Nocodazole N TM PS1-EG FP Merge

Vimentin staining. M G 132_______________ N TM PS1-EG FP__________________________ Merge

Vimentin staining. Nocodazole N TM PS 1-E G FP  Merge
___________ and M G 132_____________________________________________________________________________________
Figure 7.18. Cos-7 cells w ere treated for 12 hrs with 50 nM M G 132 alone or in combination with the 
microtubule disrupting agent nocodazole (10pg/ml) and stained for the centrosome (M TO C ) m arker y-tubulin, 
or the IF vimentin. (a) y-tubulin staining co-localises with the fusion protein, which forms as a aggresom e in 
the absence of proteasome inhibition. Small blobs are seen to gather around the aggresom e (insert), (b) 
Nocodazole treatm ent does not affect y-tubulin staining, or the formation of fusion protein blobs, (c) A  
vimentin cage forms around a perinuclear aggresome in cells treated with M G 132. (d) Aggresom e formation 
is prevented in cells treated with both nocodazole and M G 132. Nocodazole treatm ent prevents both the 
collapse of vimentin into a cage surrounding the fusion protein and the characteristic distension of the 
nucleus. Notice that the fusion protein maintains a reticular and blob-like aggregate distribution throughout 
the cell, indicating that blobs do not require an intact microtubule system for their formation. DAPI stain in 
blue. Nocodazole and M G 132 were added to lipofectamine-treated cells 5 hours post transfection prior to the 
appearance of the fusion protein. Bars, (a) and (b) 10 pm, (c) and (d) 5 pm.
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nocodazole were added 5 hours post transfection to Lipofectamine-treated cells 

prior to the appearance of the fusion protein. Staining of cells for y-tubulin 

reveals a perinuclear phenotype that localises with fusion protein (row a), which 

appears as small blobs surrounding the aggresome (insert, row a). Moreover, 

high levels of the fusion protein results in the distension of nuclear envelope, 

indicating that fusion protein can spontaneously form aggresomes in the 

absence of proteasome inhibition (Johnston et al, 1998).

Importantly, unlike aggresomes, treatment of cells with nocodazole has 

no affect on the development of the blob-like aggregates, which maintain a 

scattered appearance throughout the cell indicating that intact microtubules are 

not required for their formation (row b). In cells treated with MG132, a vimentin 

cage forms around a perinuclear aggresome (row c). Conversely, aggresome 

formation is prevented in cells expressing the fusion protein following MG 132 

and nocodazole treatment, even after 12 hours incubation (figure 7.18, row d). 

In addition, vimentin staining exhibits a network of fibres, whereas the fusion 

protein maintains an ER and a blob-like aggregate distribution throughout the 

cell. Furthermore, distension of the nucleus, characteristic of the aggresome, is 

absent from drug treated cells.

7.15 The PS1 fusion protein phenotypes do not alter over time

Having established that the fusion protein forms aggresomes in response to its 

over expression and following proteasome inhibition, the identity of the blob 

phenotypes was further pursued. In particular, the cell compartment from which 

the blobs are derived and whether they are membrane-bounded structures or 

cytoplasmic aggregates remains unknown. The question arose as to whether 

the number of cells displaying the blob phenotype would increase over time. 

This would be a reasonable assumption to make if the phenotypes arose 

following maturation: ER/Golgi>Vesicles>Blobs.

To address this issue, the phenotypes of cells transfected with all four 

constructs were examined over a 6-hour period by fluorescent microscopy. 

Cells were transfected with lipofectamine and examined at 1-hour intervals over 

a 6-hour period. No EGFP fluorescence was detected over this time period. It 

was assumed that the absence of complete media was responsible for lack of 

expression of the fusion protein by the cells. This problem was overcome by
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the use of lipofectamine 2000, a transfection agent which complexes with the 

cDNA even in the presence of complete media. As expected the number of 

cells expressing the fusion protein increased over time. The first signs of 

fluorescence appeared after 3 hours as a reticular phenotype (figure 7.19 & 

7.20). By four hours post transfection, the first signs of the blob phenotype 

appear as circumnuclear ‘swellings’ intimately associate with the reticular- 

nuclear interface. Measurement of the blobs show that they range in size from 

-2 5 0  nm up to -3 .7 5  pm (long axis). The first signs of a peri-nuclear phenotype 

appear after 4 to 5 hours. By 6 hours cells exhibited the full range of 

phenotypes (figure 7.20, a-d).

In a follow-up experiment the time intervals following transfection were 

extended. Cells expressing the fusion protein were examined after 10, 24, 36 

and 58 hours. Overall there was no change in number of cells displaying the 

blob phenotype between each time point 10 hours after first transfection (data 

not shown).

7.16 TEM  examination of the cells expressing the fusion protein reveals

laminar structures and phagosomes

To examine the ultrastructure of the blobs, Cos-7 cells expressing the fusion 

protein were examined by transmission electron microscopy (TEM). Cells show 

a variety of structures such as mitochondria with visible cristae, lysosomes 

showing the tell-tale double unit membrane and phagosomes responsible for 

the degradation of certain cell components (Dunn, 1990), as well as the 

unexpected presence of unusual laminar bodies (figure 7.21). Structures 

resembling the blob phenotype in terms of their dimensions, distribution and 

numbers are seen in some, but not all cells. Approximately 1 in 3 cells display 

these structures, consistent with the transfection rate seen for control cells 

exhibiting fluorescence in samples fixed for conventional microscopy (data not 

shown).

Several regions throughout the cell show dark patches compared to the 

neighbouring regions, which on closer inspection are composed of compressed 

tubules (figure 7.21, A). Whole regions of the cytoplasm were occupied with 

multilaminar bodies, some of which consist of concentric, myelin-like whorls 

(figure 7.21, B & C). One of the multilaminar structures appears to be folding
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back on itself possibly indicating how they form. A magnified view reveals that a 

unit membrane delimits part of this structure. Additionally, some regions of the 

cell containing the laminar bodies appear to be loosely bounded by the ER. 

These bodies associate to varying degrees with the phagosomes, the contents 

of which vary in appearance (figure 7.21, D-G). Also, patches of the nuclear 

membrane in the region of the laminar body are discontinuous or absent 

altogether (D-G).

Interestingly, associated with the laminar bodies is the complete absence 

of any well-defined cytoplasmic structure (figure 7.21, H-K), suggesting that the 

contents have been engulfed by the phagosome and subsequently disposed off. 

The laminar bodies appear to occupy one side of the vacuole, whilst the lumen 

contains various remnants suggesting that the specimens exhibit various stages 

of clearance. The presence of mitochondria showing intact cristae indicates 

that the laminar bodies/vacuoles in these cells are not responsible for 

apoptosis, leastways; type 1 caspase-associated cell death (Clarke et al, 1990). 

Closer examination of the vacuoles reveals ragged margins in some places yet 

well-defined margins in others (figure 7.21, l-O). In these specimens the 

vacuole encloses the entirety of the laminar bodies, which appear continuous 

with one another, however both structures remain separate when viewed at a 

higher magnification (figure 7.21, O). Interestingly, where the blob-like 

aggregates/multilaminar bodies predominate, the ER is barely present whilst 

there is little suggestion of the Golgi compartment.

7.17 Chapter summary

To summarise, the presence of the EGFP moiety is not a contributing factor in 

the phenotypes displayed by cells expressing the fusion protein. The blob 

phenotype does not appear to be ER or Golgi fragments since antibody staining 

with cell compartment markers such as Colligin, Ergic53, membrin, etc, do not 

show co-localisation. Furthermore, altered antibody staining for CO PII and 

MTOC is seen in some cells expressing the fusion protein. Additionally, 

ubiquitin antibody staining is restricted to the blob phenotype. Proteosomal 

inhibition of cells expressing the fusion proteins generates juxtanuclear 

aggresomes in a microtubule dependent manner, resulting in the collapse of 

vimentin around the fusion protein. The blob phenotype appears to originate
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from the nuclear membrane/ER interface where formation is microtubule- 

independent. TEM reveals the presence of phagosomes and numerous, 

structured bodies that are composed of concentric myelin-like whorls associated 

with large vacuoles devoid of any kind of structure.
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Figure 7.21. Transmission electron microscopy of Cos-7 cells expressing the fusion protein. 
A. Cos-7 cells affixed to coverslips were transfected with pNTMPS1-EGFP. Fixed Specimens 
were scraped off and prepared for EM as described under Methods and Materials. Cells show 
a nucleus (n) and numerous mitochondria (m) present throughout the cytoplasm. Close 
examination reveals the presence of cristae within the mitochondria. Numerous vacuoles are 
scattered throughout the cell (v). A few autophagosomal structures (arrows) were seen at 
various phases of maturation. The inset (left) from the top right of the picture shows the 
expulsion of an autophagososome vacuole from the cell plasma membrane (pm). Noticeable 
was the presence of several darker regions (*), which on close examination are revealed to be 
composed of compressed tubules. Interestingly there is little sign of the ER or Golgi 
compartments. Bar, 2.5 jim, inset 1 îm.



Figure 7.21. B. Electron dense inclusions exhibit a laminar structure that appears to be 
bounded by the ER (outlined by arrowheads in B). C. An enlarged view shows that the 
multilaminar structures are composed of concentric layers resembling myelin whorls. An 
autophagosome vacuole (*) has engulfed some of the cytoplasmic contents of the cell. The 
red arrowhead shows one of the multilaminar structures folding back on itself. Close 
inspection reveals that a unit membrane delimits part of this structure. Bars, (B) 1 pm, (C) 250



Figure 7.21. D-G. The phagosomes engulf the laminar bodies along with other unidentified 
components of the cell. Abbreviations: (er) endoplasmic reticulum, (I) lysosome, (n) nucleus, 
(p) phagosome, (*) laminar bodies associated with the nuclear membrane. In places, the 
nuclear membrane appears discontinuous (arrows). Bars, (D, E, F) 250 nm, (G) 500 nm.
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Figure 7.21, H-K. The cytoplasmic region adjacent to the laminar bodies is devoid of 
any ordered structure suggesting that the phagosomes engulf the entire cytoplasmic 
contents (H) leaving behind a vacuole containing scattered fragments. (I) Enlarged 
view of (H) shows electron dense granular remnants surrounded by vacuole (*). (J, K) 
The presence of intact mitiochondria (m) showing cristae indicate that caspase 
associated apoptosis (type 1 cell death) is not linked to the laminar bodies/vacuoles. 
Bars, (H) 1 pm, (I) 250 nm, (J, K) 500 nm. 184



Figure 7.21, L-0. The margins of the vacuoles appear ragged in some places (L) but well 
defined in others (M). In the above cases, the vacuole encloses the laminar bodies, which 
appear continuous, one with the other (N), though both structures remain separate as shown 
by the higher magnification view (O). Abbreivations: (pm) plasma membrane. Bars, (L, M, N) 
500 nm, (O) 125 nm.

185



Chapter 8 Discussion

8.0 The putative PS1NTF 923 antibody staining is distinct from 1039

PS1CTF antibody staining

Initial investigations into the distribution of endogenous PS1 were carried out 

using the putative NTFPS1 antibody 923, and the CTFPS1 antibody 1039. The 

results shown in chapter 3 were consistent with the PS1 holoprotein undergoing 

proteolysis as part of the maturation process that gives rise to functional PS1. 

However, the novel observation that the two PS1 fragments appear to reside in 

separate compartments (figure 3.1) argued that the CTF and NTF may function 

separately to that of the mature PS1 complex and/or that the two fragments 

may be degraded by separate pathways. The current view holds that the PS1 

holoprotein undergoes endoproteolysis within the ER to yield CTF and NTFs, 

which then re-associate within the Golgi compartment, along with additional 

factors to form the functional PS1 complex associated with y-secretase activity 

(Kovacs, et al 1996). Moreover, the observation that the NTF displays a 

vesicular staining pattern following BFA treatment suggests that it may exit from 

the ER at a site different to that of the CTF.

Previous studies indicate that proteins exiting the ER pass via the ERGIC  

compartment en route to the Golgi or may pass directly to the Golgi within 

transport complexes originating from transitional ER sites (Scales et al, 1997). 

In this study 923 antibody staining co-localises very strongly with the Ergic53 

antibody and that this co-localisation is not affected by BFA treatment indicating 

that the putative NTF originates from this compartment prior to its transport to 

the Golgi. A second compartment that also remains distinct from the ER  

following BFA treatment are structures referred to as ‘Golgi remnants’ that 

appear to house Golgi-matrix proteins (Nakakmura et al, 1995; Seemann et al, 

2000). However, it is unlikely that the PS1NTF are Golgi remnants given the 

intimacy of the Ergic53 and 923 antibody co-localisation.

One interpretation of the above data is that following endoproteolysis of PS1, 

the NTF and CTF traffic as two separate pools to the Golgi and that this 

separation may underlie different functions. Why this should be is unclear, 

although it has been speculated that PS1 may function in the transport of APP
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in addition to its role as the putative y-secretase (Kaether et al, 2002). However, 

other researchers have failed to demonstrate any interaction between PS1 and 

APP (Thinakaran et al, 1998). In this regard, a simple test would be to 

investigate whether the 923 antibody would co-immunoprecipitate PS1NTF  

along with APP and whether or not they co-localised within the same cellular 

compartment. It is worth noting that BFA-treatment of NTera 2 cells prevents Ap 

secretion, in particular A(340 whereas BFA-treatment of cells has little effect on 

A(342 secretion suggesting that the toxic species is generated within the ERGIC  

compartment (Cook et al, 1997; Chen et al, 2000).

In light of the present data it is therefore possible that following 

endoproteolysis of the holoprotein, the PS1 fragments follow two separate  

routes from the ER before re-associating within the Golgi compartment and that 

within the ERGIC compartment the NTF associates with APP. However, given 

that the 1039 antibody does not stain for the ERGIC compartment (figures 3.1 

and 3.2), it is difficult to envisage APP cleavage taking place in the absence of 

the CTF given the necessity for both fragments within the functional y-secretase 

complex (Yu et al, 1998). Furthermore, the notion that PS1 undergoes 

endoproteolysis within the ER to generate NTF and CTF that then follow 

different routes to the Golgi, is in opposition to previous studies showing that 

PS1 fragments are maintained in a strict 1:1 stoichiometry and that the resultant 

heterodimer is not mixed but consists of a homogenously derived pool (Kovacs, 

et al 1996; Podlisny et al, 1997; Yu et al, 1998; Tomita et al, 1999).

8.1 Construction and expression of N-terminal truncated PS1-EG FP

Unfortunately, to test whether the 923 antibody co-localises with APP or indeed 

immunoprecipitates APP along with PS1, could not be investigated, since the 

923 antibody, unlike 1039, failed to W estern blot (figure 3.5, lane 4). 

Furthermore, repeated attempts at immunoprecipitating PS1 have been 

unsuccessful raising concerns about the utility of the 923 antibody in fully 

characterizing the biology of PS1. In order to clarify this issue and effectively 

extend the previous observations, an N TFP S 1-E G FP  fusion protein was  

constructed with the aim of substituting for the 923 antibody in vitro. The use of
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such a scheme scores over traditional antibody staining techniques in that 

fusion proteins have the advantage of not requiring fixation or permeabilisation 

steps thus making this reporter system suitable for kinetic studies concerned 

with protein localisation and trafficking within cells (Chalfie et al, 1994; Cubitt et 

al, 1995). Additionally, fusion proteins have been shown to maintain their 

fluorescence in living cells as well as retaining the normal biological function of 

the fusion partner. Such tagged proteins provide increased sensitivity and 

resolution when compared to antibody staining (Wang & Hazelrigg, 1994).

Expression of the PS1NTF fusion protein in Cos-7 cells generated four 

distinct phenotypes, two of which localised to varying degrees with antibodies to 

the ER and the Golgi compartments (figures 4.8 and 4.9). Unexpected was the 

presence of the blob-like aggregates and the much smaller vesicles within the 

cell, both of which do not co-localise with markers to the cell compartment, 

possibly indicating that these two structures have similar origins. Following 

Western blotting, a crude preparation of cells separated into soluble and 

membrane components should immunoblot for the membrane fraction only, 

given that PS are transmembrane proteins (Thinakaren et al, 1996; Tomita et al, 

1997). Indeed, immunoreactivities for the m em brane-only fraction were  

observed at ~61 kD corresponding to the sum of the individual sizes of both the 

EGFP moiety and the N-terminus of PS1 (figure 4.6, lane 6). As expected cells 

expressing EGFP showed immunoreactivity to the anti-EGFP antibody at ~29  

kD within the soluble fraction only (lane 2). The absence of EG FP  

immunoreactivity within the soluble fraction prepared from transfected cells 

suggests no cleavage of the EGFP moiety from the PS1NTF (lane 5). This 

conclusion is further supported by the co-localisation of the anti-EGFP antibody 

with the fusion protein for all phenotypes (figure 4.7). Together these data 

indicate correct folding of the PS1NTF fusion protein and its maturation from the 

ER/IC to the Golgi, consistent with previously published reports (Yu et al, 1998; 

Capell et al, 1998).

Having successfully generated the PS 1N TF-E G FP fusion protein, the 

earlier experiments investigating the novel distribution of the 923 antibody within 

the cell compartment was re-examined. Very little overlap between the fusion 

protein and the 923 antibody was observed (figure 4.10). Moreover, following 

BFA treatment the fusion protein displays a reticular phenotype distinct from
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Ergic53 antibody staining, which is chiefly vesicular (figure 4.11). In conclusion 

these data and those from the previous experiments argue against 923 being a 

bonafide anti-PS1 antibody able to recognise either endogenous or exogenous 

PS1. Consequently, further characterisation of PS1 with the 923 antibody was 

abandoned. As to the identity of the 923 antibody, confocal microscopy reveals 

that 923 staining co-localises intimately with the Ergic53 antibody with the 

suggestion that, in terms of appearance, the one folds over the other (D. 

Parkinson).

8.2 Immunoanalysis of the NTF fusion protein

The initial aim of this study was to investigate the novel distribution of PS 

fragments within the cell compartment as revealed by specific PS antisera. 

Certain limitations in the properties of the 923 antibody were addressed by 

recourse to the construction of a PS1NTF-EGFP chimera. The results from this 

investigation demonstrated that the 923 antibody staining was not specific for 

PS1, consequently the present line of enquiry was concluded. However, in the 

course of this investigation fluorescent microscopy of transfected cells 

expressing the fusion protein revealed the unexpected presence of unusual 

intracellular bodies, the blob-like aggregates.

Also unexpected was the higher weight immunoreactivite band at ~120  

kD initially thought to represent dimerisation of the fusion protein since this is 

approximately twice the size of the lower immunoreactive band (figure 4.6 lane

6). Furthermore, attempts at resolving this species into one band using a 

denaturing SD S-urea gel were unsuccessful indicating a urea-insensitive, 

insoluble aggregate rather than dimerisation of the protein. Whilst the lower 

immunoreactive band of the expected size may represent correctly folded and 

membrane-located PS1 protein, drawing the same conclusion for the higher 

band may be premature. Conceivably, over expression of the fusion protein 

produces aggregates within the cytoplasm that show up in the membrane  

fraction, though how the hydrophobic transmembrane fusion protein could 

achieve this is not clear. One clue however is provided by the circumnuclear 

blob-like aggregates. These structures may in fact be represented by the 

higher band immunoreactivities seen in figure 4.6. Therefore the simplest
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explanation to account for the existence of these aggregates is that they 

represent an artefact induced by the overexpression of the fusion protein. The 

difficulty with this interpretation is that all cells transiently expressing the fusion 

protein should contain aggregates since the same promoter drives expression 

of the transgene. Clearly they do not. Furthermore if the blobs were merely an 

amorphous mass of protein clumped together within the cytoplasm, then the 

difference in the size of the blobs should be reflected by a smear of protein 

following immunobloting, rather than the single distinct band observed.

8.3 Expression of mutant full-length and truncated PS1 fusion proteins

Initial concerns about the fusion protein phenotypes arising as an artifact 

induced by the fixation method proved to be unfounded since all four 

phenotypes occur in cells fixed with either methanol or paraformaldehyde. 

Moreover, these same phenotypes are present in other mammalian cell types 

indicating a general cellular response to the presence of the fusion protein.

For the purpose of examining the effect selected FAD mutations have on 

the biochemistry of APP and the distribution of both full-length and truncated 

PS1-EGFP, cDNAs were successfully generated in a two-stage process using 

PCR. The transfection rate and the overall fluorophore intensity for the 

N TM PS1-EG FP fusion protein was identical to that seen for NTPS1-EG FP, 

whereas the converse was true for the full-length proteins, which consistently 

demonstrate low transfection rates and weak fluorescence. The availability of 

the N-terminal PS1 specific antibody NT7 unexpectedly revealed the presence 

of two separate CTF and NTF pools in some cells, indicating that the full-length 

fusion protein undergoes endoproteolysis consistent with previous reports 

(figure 5 .11; Thinakaran et al, 1996). Additional evidence for the  

endoproteolysis of the full-length fusion protein is also provided by the Western 

immunoblot data (figure 5.12).

8.4 Endoproteolysis of the full-length PS1
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Under normal physiological conditions PS1 is constitutively cleaved and quickly 

turned over (T 1 /2 -6 0  min), in part to the two major fragments (Podlisny et al, 

1997) that form a 1:1 heterodimer thought to be the biologically active form of 

PS1 (Thinakaren et al, 1996; Mercken et al, 1996; Podlisny et al, 1997; 

Ratovitski et al, 1997; Steiner et al, 1998).At first glance, staining with the NT7 

antibody would support the earlier 923 antibody data showing two separate PS1 

fragment pools. However, in this instance the NTF pool was distinctly Golgi-like 

(figure 3 .1) w hereas NT7 staining is typically blob-like in appearance. 

Moreover, BFA treatment of cells expressing the full-length fusion protein 

display the same reticular phenotype seen in earlier experiments examining the 

effects of BFA on the distribution of the N TPS1-EG FP protein (figure 5.9 d). 

These data therefore indicate a disturbance in the stoichiometry between the 

two endoproteolytically-derived fragments. As a consequence, C-terminal PS1- 

EGFP levels may be more tightly regulated over and above that of the NTF. 

Alternatively, both fragments may be equally susceptible to degradation but that 

the NTF may be more prone to aggregation and thereby thwarts attempts by the 

cell to regulate its numbers. Either way, this data indicate that both PS1 

fragments are not regulated in the predicted 1:1 stoichiometry as previously 

reported (Thinakaren et al, 1996), leastways, under experimental conditions 

where Cos-7 cells express the full-length fusion protein. Previous reports 

indicate that steady state levels of the PS fragments are tightly regulated since 

transgene over expression does not increase the overall level of fragments 

within cells (Thinakaran et al, 1997).

The restricted incorporation of the PS1 fragments into a functional 

complex along with other cellular factors has been proposed as an explanation 

for their regulated accumulation (Yu et al, 1998), therefore excessive levels of 

the fusion protein both truncated and full-length, above that needed to complex 

with other unknown limiting factors may lead to the development of the blob-like 

phenotype. However, the tightly regulated accumulation of PS1 heterodimers 

as a means of regulating PS1 levels has been criticised as too simplistic. 

Additional influences appear to be at work in preventing aberrant accumulation 

of PS fragments and holoprotein such as proteosome, caspase, and leupeptin- 

sensitive cystein proteinase activities. Inhibition of the proteosome, for
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exam ple, leads to the accumulation of NTF, CTF and polyubiquitinated 

holoprotein (Kim et al, 1997; Steiner et al, 1998; Honda et al, 1999; Marambaud 

et al, 1998). Other activities known to affect the fate of PS1 include GSK-3p  

phosphorylation of C-terminal hydrophilic loop, which results in its degradation 

without affecting NTF levels (Kirschenbaum et al, 2001). Similarly, 

phosphorylation of the PS1 Ser397 residue is responsible for eliminating excess 

CTF prior to the appearance of a stable CTF in the long-lived heterodimer. 

Lithium chloride has been reported to have several biological effects including 

the specific inhibition of GSK-3(3 in the millimolar range. Lithium treatment of 

HEK293 cells transfected with wild type PS1 results in a selective 3-fold 

increase in the CTF, whereas NTF levels remain unaffected (Kirschenbaum et 

al, 2001). Other reports demonstrate that the NTF residues 250-298 interact 

with GSK-3P (Takashima et al, 1998: Khang et al, 1999) raising the possibility 

that in cells over expressing the full-length fusion protein, increased GSK-3P  

activity is responsible for the low numbers of transfectants observed.

Previous studies show that over expression of PS1 results in modest 

increases in the steady state levels (Thinakaren et al, 1996; Kim, et al, 1999) 

and that the holoprotein (wild type as well as PS1_exon9) is rapidly degraded if 

not incorporated within the mature PS1 complex (Ratovitski et al, 1997; Steiner 

et al, 1998). The low levels of the full-length fusion proteins certainly fit in with 

these observations; however, levels of the truncated proteins are by 

comparison, consistently high. Earlier it was demonstrated that 1039 antibody 

staining does not co-localise with cells expressing the NTPS1 fusion proteins 

suggesting that exogenous NTF do not form a heterodimeric complex with 

endogenous CTF. Similarly, recombinant NTF298 has been detected by short 

pulse labelling but not by steady state metabolic labelling (Citron et al, 1998), 

and that over expressed NTFs not incorporated into the complex are degraded 

by the proteosome (Steiner et al, 1998). The fluorescence and transfection rate 

of NTPS1-EGFP exceeds that observed for the full-length molecules suggesting 

a far greater stability. However, this observation conflicts with previous findings 

that demonstrate ectopically expressed NTFs from both PS1 and PS2 are not 

stabilised (Citron et al, 1998; Tomita et al, 1997; Steiner et al 1998), though 

whether this relates to stability within a complex or ‘naked’ NTF is unclear.
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Given that the PS fragments are tightly regulated following endoproteolysis, and 

that holoprotein levels are consistently low, it can be concluded that the 

absence of the N- and CTF pair within a heterodimer upsets the stoichiometric 

regulation of PS leading to high levels of the truncated fusion protein.

A further explanation for the prevalence of NTFPS1-EG FP above that of 

C T F P S 1-E G F P  in transfected cells may well lie with the number of 

transmembrane domains. The former has 6 TM domains compared to the 

latter, which has 2 TM domains and is presumably less hydrophobic. In this 

scenario, over expression of the transgene leads to the accumulation of the 

hydrophobic NTF since limiting co-factors such as Aph-1 and Nicastrin needed 

for PS endoproteolysis, only associate with the holoprotein (Takasugi et al, 

2003; La Voie et al, 2003). Stabilisation of the PS holoprotein is thought to 

occur through interaction with the Aph-1-Nicastrin complex to form a trimeric 

intermediate complex that then binds to Pen-2, allowing for PS endoproteolysis. 

Arguably excessive levels of ‘naked’ NTF are not recognised by these co­

factors, leading the way clear for the hydrophobic truncated fusion protein to 

form stable, long lived aggregates.

8.5 Expression and sub cellular distribution of EGFP-tagged presenilin in this 

and previous studies

Studies in transfected cells as well as tissues show a wide distribution for PS 

depending on the cell type. At the sub cellular level, presenilins co-localise with 

markers for the ER and Golgi apparatus (Cook et al, 1996; Kovacs et al, 1996; 

Takashima et al, 1996; Zhang et al, 1998) and have been identified in a host of 

other cell compartments including the ERGIC compartment (Culvenor et al,

1997), at the plasma membrane (Takashima et al, 1996; Dewji and Singer, 

1997; Kaether et al, 2002), in the nucleus and cytoplasm of the mouse embryo 

(Jeong et al, 2000), at interphase kinetochores and centrosomes (Li et al, 1997), 

within the inner membrane of rat mitochondria (Ankarcrona & Flultenby, 2002), 

and within growth cones of neurons (Singh et al, 2001).

In this study the PS fusion proteins have been identified within the ER and Golgi 

apparatus, though the full-length fusion is yet to be found in the latter 

compartment. Similarly antibody staining with 1039 and NT7 show endogenous
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and exogenous PS within the ER and Golgi compartments. Additionally, mutant 

and non-mutant fusion proteins exhibit vesicular and blob-like aggregate 

phenotypes and that FAD mutations do not affect the intracellular distribution of 

the fusion proteins. This finding is in keeping with previous studies that similarly 

show that FAD mutations do not affect the trafficking of PS, although Kim et al,

(2000) have found that four independent FAD-linked PS1 redistribute to the 

intermediate region of an lodixanol gradient corresponding to the ER.

The use of GFP or EGFP as a tag to visualize PS within the cell is not 

unique to this study, since other researchers have previously reported the 

cloning of PS1 fusion proteins or their close homologues (Levitan & Greenwald, 

1998; Singh et al, 2001; Kaether et al, 2002). In all these cases however, the 

position of the fluorescent tag within PS1 is not the same nor are the results. In 

one study the C.elegans  PS holmologue SEL-12 was tagged after TM 6 within 

the large intracellular loop (Levitan & G reenw ald, 1998). Assuming 

endoproteolysis of this fusion protein the GFP signal would be associated with 

the CTF of SEL-12. In functional studies this molecule was able to rescue a 

egg-laying defect of a sel- 12 reduction-of-function mutant. Additionally, this 

particular fusion protein locates to the ER/Golgi but not the plasma membrane 

consistent with a role for SEL-12 in the constitutive cleavage of Notch and the 

APP homologue LIN-12 (Levitan & Greenwald, 1998).

In another study investigating the role of PS in intercellular adhesion in 

human epithelial cells and mouse neurons, PS was tagged with GFP at the N- 

terminus region adjacent to TM1 using an ecdysone-inducible expression 

system (Singh et al, 2001). Localisation studies revealed the presence of this 

particular fusion protein within the cytoplasm and at cell-cell contacts of the 

plasma membrane where it complexes with P-catenin, but not within the ER or 

Golgi compartments. A truncated version of this molecule lacking the p-catenin 

binding region neither immunoprecipitates with P-catenin nor localises to the 

plasma membrane. Furthermore, L cells that do not form tight intercellular 

contacts, formed clusters of adhered cells after stable transfection with the full- 

length fusion construct (Singh et al, 2001). One obvious difficulty not addressed 

by the authors concerns the membrane localisation of their fusion protein. The 

accepted dogma for the insertion of a transmembrane protein asserts that the
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N-terminus of the protein is first inserted within the lipid bilayer of the ER. How 

the N-terminal, soluble EGFP moiety is incorporated along with PS1 is a 

mystery. The cytoplasmic distribution of the fusion protein argues that the 

protein is not integrated within the membrane. Furthermore, in this study 

Western analysis was carried out using whole cell lysate but not the soluble or 

membrane fractions.

Lastly, a PS1 fusion protein has been used to examine the trafficking of 

nicastrin in transfected HEK293 cells, where a biologically active PS1-nicastrin 

complex is targeted to the cell surface (Kaether et al, 2002). In this study EGFP  

cDNA was inserted in-frame within the PS1 cytoplasmic loop, adjacent to TM6, 

downstream from the endoproteolytic cleavage site, thus generating an N- 

terminally located EGFP-CTF. In HEK 293 cells the fusion protein localised to 

the ER, vesicular structures, the nuclear envelope and to the cell-cell borders. 

Functionally, cells expressing the fusion protein generated Ap at amounts 

comparable to those in cells expressing endogenous PS1. Additionally, this 

fusion protein promotes AP40/42 ratio of ~9:1 in keeping with other reports 

(Selkoe, 1999). The majority of PS in this study localises to the ER, however a 

minority was detected at the plasma membrane. Kaether et al (2002) maintain 

that this latter finding contributes towards resolving the spatial paradox that 

exists between the site at which Ap42 is generated and the ER/IC location of the 

P-and y-secretases (De Strooper et al, 1997; Annaert et al, 1999).

Discrepancies in the distribution of the various PS fusion proteins more 

than likely reflect the position at which the tag is located, the cell type in which 

the fusion protein is expressed, and the overall level of expression. Moreover, 

the presence of the GFP tag itself may partially influence the distribution of PS1 

in all the above studies making a direct comparison difficult. Interestingly none 

of these studies reported the appearance of blob aggregates, though Singh et al

(2001) discarded PS1 over-expressing cell lines in favour of mild or moderate 

expression in response to work by Johnston and colleagues who showed that 

high levels of PS1 are associated with intracellular “aggresomes” (Johnston et 

al, 1998). Furthermore, Singh et al (2001) argue that the presence of their 

fusion protein at the plasma membrane is a reflection of the normal distribution 

of PS1 in polarized cells and neurons, and that an initial ER/Golgi localisation is
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transient. Thus these authors conclude that the localisation of PS1 in early 

compartments in non-polarised cells such as HEK 293 or Cos-7 cells is due to 

the absence of late compartment trafficking signals.

8.6 Functional aspects of PS fusion proteins

In the preceeding section the functional consequences of PS1-EG FP chimeras 

from previous studies were discussed. In the present study the functional 

relationship between the fusion protein and both APP and p-catenin was 

investigated by antibody staining. Furthermore, to investigate the biochemical 

properties of the fusion proteins, both mutant and non-mutant, in generating Ap, 

a bicine gel capable of separating AP40 and AP42 was utilised.

Data from studies examining the proteolysis of APP reveal the presence 

of different peptide fragments at various points along the secretory pathway, i.e. 

ER, ERG IC , Golgi compartments, lysosomes/endosomes and the plasma 

membrane (many authors). However, a spatial paradox exists between the ER 

location of the secretases responsible for the cleavage of APP, and the site of 

Ap generation (De Strooper et al, 1997; Annaert et al, 1999). PS1, for instance, 

is localised to the ER/Golgi yet generation of the toxic Ap4 2 peptide occurs 

within the ER/ERGIC (Cook et al, 1997; Chen et al, 2000), whilst the production 

of the Ap4 o is thought to occur more distally within the secretory pathway 

(Selkoe, 1999).

APP proteolysis is dependent on a-, p- and PS1 associated y-secretase 

activity to generate several proteolytic fragments. To investigate the sub- 

cellular distribution of the APP and the NTPS1-EG FP fusion protein, cells were 

stained with APP antibodies specific to full length KPI-APP (993), the C99  

fragment (874), and both the C99 and C83 stubs but not full-length, uncleaved 

APP (DE2). Staining with DE2 and 874 antibodies in transfected Cos-7 cells 

resulted in a reticular and peri-nuclear phenotype and showed only partial 

localisation with the fusion protein (figures 6.4 and 6.5). 993-antibody staining 

exhibited a distinctive microtubule-like staining pattern, which does not localise 

with any of the phenotypes exhibited by the fusion protein (figure 6.3). Recently 

APP was identified as a possible membrane receptor for the kinesin light chain,
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a component of kinesin-1, a microtubule motor protein. Furthermore, a 

compartment has been identified containing kinesin-1 and APP, together with 

presenilin and P-secretase that are able to generate Ap (Kamal et al, 2001). 

993 antibody staining may therefore provide additional evidence for the 

structural relationship between kinesin-1, APP and microtubules.

In light of recent data showing the necessity of full-length PS1 to 

associate with co-factors such as nicastrin, Aph-1 and PEN-2 prior to mature y- 

secretase complex formation, it is not surprising that the truncated fusion 

protein did not localise with any of the APP antibodies. Previously, an APP  

binding domain has been mapped to the NTF of PS1, which interacts with the 

immature, N-glycosylated form of APP, consistent with the localisation of both 

immature APP and PS within the ER (Pradier et al, 1999). Full-length PS is 

therefore required to bind APP. For comparative purposes, the APP antibody 

experiment would be worth repeating in cells expressing both the mutated and 

non-mutated full-length fusions proteins.

Antibody staining of p-catenin in cells expressing the NTPS1 fusion 

proteins was restricted to the cytoplasm and the cell-cell contact (figure 6.2). No 

co-localisation of p-catenin with the truncated fusion proteins was observed, nor 

does it seem that the fusion protein alters this phenotype compared to 

untransfected/low level expression in adjacent cells. In addition, there is no 

evidence that mutant NTM PS1-EG FP affects p-catenin trafficking. However, 

lack of NTF-p-catenin interaction is consistent with previous studies showing 

that the CTFPS1 or full-length PS1 but not NTF, contain the p-catenin binding 

domain (Murayama et al, 1998; Yu et al, 1998; Kang et al, 1999; Singh et al,

2001). In this context it would be interesting to note what effect mutated and 

wild type full-length fusion proteins have on the p-catenin phenotype.

8.7 Detection of P-Amyloid

As a corollary to the section examining APP antibody staining, a bicine SDS  

PAGE gel capable of resolving Ap40 from Ap4 2 (Wiltfang et al, 1997) was 

prepared in anticipation that Ap levels would be assessed in transfected CHO  

cells stably expressing APP 770. However, although this gel system successfully
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discriminated between synthetic Ap peptides, and that AB10 immunoblotted 

both APP from conditioned media and synthetic Ap, the peptide could not be 

immunoprecipitated from conditioned media or complete media to which 

synthetic Ap had been added, though APP immunoprecipitated freely. 

Furthermore, serial immunoprecipitation and alterations to the protocol was 

unable to resolve matters. One of the pathological features of Ap42 is its 

increased aggregation potential compared to A p4o. Under the present 

experimental conditions it is conceivable that Ap42 may undergo a structural 

change (figure 1.3) therefore limiting the binding epitope and consequently 

AB10 immunoreactivity. However, if this were the case Ap40 immunoreactivity 

should have been detectable since this peptide is not prone to aggregation. 

The experimental conditions used herein closely matched those of Wiltfang et 

al, who originally developed this gel system, except for the antibody used at the 

immunoprecipitation stage (Wiltfang et al, 1997). An alternate method for the 

detection of Ap is by the enzyme-linked immunoabsorbant assay (ELISA) 

method (Suzuki et al, 1994), however due to time constraints this method was 

not pursued. In conclusion, AB10 whilst able to detect APP and synthetic Ap, is 

unable to immunoprecipitate the shorter peptides.

Had Ap been detected within the conditioned media from cells 

expressing the mutant full-length fusion protein and APP 770 , it is likely that there 

would have been an increase in Ap42 relative to Ap40 since ~100 PS1 mutations 

have been identified to date all of which apparently increase the production of 

A p42 (Selkoe, 1999). Expression of the NTPS1 fusion protein would not be 

expected to generate Ap in transfected cells since previous research has shown 

that NTF over expression does not increase Ap42 (Citron et al, 1998) nor is it 

able to rescue mutant sel-12 in C.elegans.

8.8 Alterations in the ER and Golgi compartments

The decrease or absence of antibody staining of some markers for the cell 

compartment as illustrated by figures 6.0 and 6.1 was unexpected and may 

partially reflect toxicity induced by the presence of the fusion protein. It is 

important to note that reduced antibody staining of the ER and Golgi marker
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proteins was not observed in control cells or cells expressing low levels of the 

fusion proteins, indicating that the fusion protein can be tolerated by the cell, 

leastways, at low concentrations. The decrease in Colligin staining was most 

obvious in cells expressing high levels of the fusion proteins where staining was 

either reduced completely (figure 6.0, row a) or fragmented into vesicle-like 

structures scattered about the cell (row b). In the latter case these vesicles do 

not localise with the blob-like aggregate phenotype. Colligin functions as a 

resident stress protein within the ER thought to participate in the intra cellular 

processing, folding, assembly and secretion of procollagens (Nagata & 

Yamada, 1986). Previously it has been demonstrated that Colligin expression is 

reduced in human fibroblasts under conditions of serum deprivation (Sauk et al, 

1990), and in chick embryo fibroblasts transformed by the Rous sarcoma virus 

(Nagata & Yamata, 1986). In these instances cells are unduly ‘stressed’ due to 

either trophic factor withdrawal or infection.

In the case of Cos-7 cells, stress induced by the accumulation of the 

fusion protein may trigger alterations in the ER so compromising ER integrity as 

measured by the decrease in Colligin levels. The accumulation of protein within 

the ER occurs in response to cellular stress events including trophic factor 

withdrawal, impaired calcium regulation, the inhibition of protein glycosylation, 

and the reduction of disulphide bonds. Such stresses initiate a series of events 

referred to as the unfolded protein response (UPR) (Imaizumi et al, 2001) 

characterised by increased transcription of genes encoding ER-resident 

chaperones such as GRP78/BiP, G RP94 and PDI. Impairment of the UPR is 

ultimately linked to apoptosis and therefore cell death.

Another cellular event that may account for the reduction in Golgi 

antibody staining occurs during cell division. Prior to mitosis cells undergo a 

series of morphological changes including controlled ER and Golgi 

fragmentation and vesicle formation so that organelles can be more evenly 

distributed when the cell divides. Vesicles derived from the Golgi associate with 

microtubules of the mitotic spindle ensuring an even distribution between the 

two daughter cells (Lucocuq and Warren, 1987; Warren, 1989; Shima et al,

1998). Golgi fragmentation has also been previously observed as a late step in 

apoptosis in odontoclasts treated with bisphosphonate (W atanabe et al, 2000). 

Other studies have shown that Cos-7 cells transfected with mutant growth
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hormone results in the accumulation of the hormone within the ER that 

ultimately leads to Golgi fragm entation (G raves et al, 2001). As a 

consequence, immunoreactivity for the Golgi markers p-COP, membrin and 58k 

is completely dispersed or absent altogether. Additionally, the UPR in this study 

was weakly induced as measured by a two-fold increase in GRP78/Bip mRNA 

(Graves et al, 2001).

Taken together, these data suggest that the fusion proteins perturb the 

cellular environment to the extent that some marker proteins to ER and Golgi 

are severely reduced or dispersed possibly indicating fragmentation of the cell 

compartment. The knock-on effects of these alterations may then be 

responsible for induction of the UPR, though a definitive test would be to 

examine any increase in the levels of Bip mRNA in cells expressing the fusion 

protein.

8.9 The N-terminal fusion protein sensitizes cells to apoptosis

From the preceding section it is clear that a number of potential factors could be 

cited to explain the reduced or absent immunoreactivity observed for the ER- 

Golgi markers in cells expressing the fusion protein. In keeping with other 

studies, immunoblot data indicate the presence PS caspase cleavage  

fragments suggesting an apoptotic event associated with the presence of fusion 

protein (figure 6.11 & 7.2; Kim et al, 1997; Podlisny et al, 1997; Kovacs et al,

1999). Moreover, in a follow-up experiment the truncated fusion protein was 

found to statistically (P<0.05) increase the sensitivity of cells to STS-induced 

apoptosis (figure 6.15). To gauge whether the truncated fusion protein was 

associated with apoptosis, changes in Cos-7 cell morphology were assessed as 

an end point of apoptosis. Specifically, changes in Golgi morphology were used 

as an indicator of cell structural integrity by examining mannosidase II antibody 

staining (figure 6.12). The number of apoptotic cells increased in a time 

dependent manner following STS treatment and that this increase was greater 

in transfected cells at all time points compared to the non-transfected, STS- 

treated cells (figure 6.13).

In the context of AD, PS1 mutations have been demonstrated to increase 

cellular susceptibility to apoptosis induced by trophic factor withdrawal and
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exposure to Ap (Zhang et al, 1996; Walsh et al, 2002). Further studies show 

that the presenilins are involved in the regulation of apoptosis, and that cells 

expressing PS1 or PS2 FAD mutations die faster than cells expressing wild- 

type presenilins (many authors). Chronic cellular stress culminates in apoptosis 

involving nuclear fragmentation, chromatin condensation and shrinkage of cell 

bodies, however, the images shown in figures 6.0 & 6.1 display intact, albeit, 

misshapen nuclei in some cells, with no clear sign of nuclear fragmentation. 

Additionally, not all cells exhibiting the blob-like phenotype show an equal 

reduction in ER and Golgi antibody staining, suggesting that transfectants may 

only be vulnerable to high levels of the fusion protein depending on the stage of 

the cell cycle. In this regard, Janicki et al, demonstrate that over expression of 

PS1 or PS2 FAD mutants potentiate cell cycle arrest in the G1 phase of the cell 

cycle in exponentially growing cultures compared to wild type presenilin (Janicki 

et al, 2000).

A more accurate determination of apoptosis was carried out by 

assessing the degree of cleavage of the Golgi stacking protein Grasp65 as an 

early event in apoptosis. Statistically significant differences were observed 

between the number of STS-treated, Grasp65 negative, transfected NRK cells 

expressing the fusion protein and the number of STS-treated control cells 

(figure 6 .15). Crucially, there was no statistically significant difference in 

apoptosis between control-transfected cells and non-transfected control cells 

indicating that apoptosis was not spontaneously induced due to over expression 

of the fusion protein (Guo et al, 1997; Kovacs et al, 1999). Whilst 

immunofluorescent microscopy of NRK cells clearly show Grasp65 cleavage 

(figure 6.14), immunoblotting (figure 6.16) failed to show the expected Grasp65 

cleavage fragments (Lane et al, 2002). In all probability this discrepancy is due 

to the different experimental approaches (see chapter 6.10).

The earlier observation that certain markers to the ER and Golgi 

compartments are affected in transfected cells appears to extend to Grasp65. 

Cells exhibiting the blob phenotype show reduced immunoreactivity or 

fragmentation of the Golgi (figure 6.14), and decreased immunoblotting of 

Grasp65 in transfected cells compared to non-transfected cells (figure 6.15). It 

may therefore follow that less substrate will result in more effective cleavage in 

response to a given apoptotic stimulus. How this effect is mediated within cells
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expressing the fusion protein is unknown, though the blobs may impede 

trafficking of proteins from the ER to the Golgi or they may physically disrupt 

cellular organelles, perhaps by arresting cell division once organelles have been 

disassembled prior to entering mitosis. If true, the cellular effect of the blob 

phenotype will be independent of PS1 and may therefore represent a more 

general phenomenon associated with the blob-like aggregates.

Whilst the above explanation that the blob phenotype may account for 

some of the G RASP65 data, it is does not explain the reduction in GRASP65  

antibody staining above that seen for control cells. For instance, from 77 non- 

STS-treated control NRK cells expressing the transgene, 88% exhibited the 

vesicular/blob phenotype. Only 7% of these cells were in fact, Grasp65  

negative. Had the blob phenotype alone been responsible for apoptosis a far 

greater number of cells should have been affected. However, as demonstrated 

by immunofluorescence and immunoblotting data, there was an overall 

reduction in G RASP65 staining within transfected cells compared to non- 

transfected cells. It should also be noted that HEK293 cells stably expressing 

the N-terminal and full-length PS1 fusion proteins both display the blob 

phenotype, suggesting that transgene product numbers are tightly regulated 

within the cell. If the blob phenotype occurrence is insufficient to account for all 

cases of apoptosis, then the NTFPS1 fusion protein must be implicated in 

apoptosis, either by directly affecting caspase activation/GRASP65 cleavage or 

indirectly by interacting with some other aspect of apoptosis.

The involvement of presenilins in apoptosis was first suggested by 

studies showing an increased sensitivity in cells to different apoptotic stimuli 

following PS2 over expression, and reduced sensitivity in the presence of an 

anti-sense PS2 construct (Vito et al, 1996; Wolozin et al, 1998). Additionally, 

the presence of apoptotic stimuli induces caspase cleavage of the presenilins 

proteins. The data on presenilins show PS2 to be pro-apoptotic, in particular 

the N-terminus bearing the N114I mutation, and PS1 to be anti-apoptotic. In 

both phenotypes presenilins have been linked to the tumor suppressor p53 

activity, which appears to delay apoptosis by down-regulating PS1 expression 

(Roperch et al, 1998). By contrast, PS2 and N141I-PS2 drastically increases 

p53 expression and transcriptional activity in various cell systems (Alves da 

Costa et al, 2002), whereas the C-terminal 103 amino acids of mouse PS2,
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referred to as ALG3, rescues a T-cell hybridoma from Fas-induced apoptosis 

(Vito et al, 1997). Recently it has been demonstrated that C TF-PS2 over 

expression increases caspase-3 activity and immunoreactivity in STS-treated 

cells, and PS"7' cells. The latter observation suggests that C TF-PS2 may 

function independently of the N-terminal, y-secretase-derived counterpart (Alves 

da Costa et al, 2003). The data presented herein suggest that the PS1 

truncated fusion protein is proapoptotic, though whether this is a direct effect of 

over expression, the presence of the blob-like aggregates or a PS1N TF- 

mediated effect is unclear. That the PS1NTF fusion protein does sensitise cells 

to apoptotic stimuli may be a novel affect since previous reports do not implicate 

PS1NTF, unlike PS2NTF. Given the absence of data showing a pro-apoptotic 

PS1NTF effect, it is tempting to associate over expression of the fusion protein 

as being responsible for apoptosis in the present study.

8.10 Identity of the blob-like aggregates

The presence of the fusion protein results in four clear phenotypes that are 

independent of the fixation method or the cell line in which they are expressed. 

Immunoblotting reveals the presence of high weight bands that may correspond 

to the blob-like aggregate phenotype. To address concerns that the EG FP  

moiety may contribute to the phenotypes displayed by the fusion protein, a stop- 

codon was inserted between the end of the PS1 cDNA and the beginning of the 

EGFP cDNA sequences. The results show that all four stop-constructs when 

expressed by the cell show near identical phenotypes to those seen in cells 

expressing the fusion proteins (figure 7.1). In conclusion, the presence of the 

EGFP tag has no effect on the phenotypes displayed by cells expressing the 

various fusion proteins. Western analysis of cells expressing the stop-PS1 

proteins show a similar immunoblot profile to endogenous staining of PS1 

control cells (figure 7.2 b), with the exception that alternative CTF cleavage  

typical of caspase activity is more prominent in cells transfected with PS1 

cDNAs (Kim et al, 1997; Kovacs et al, 1999). However, that the  

immunoreactivity is approximately equal for all constructs (figure 7.2b, lanes 2- 

5) and is not just limited to the full-length cDNAs, suggest that over expression 

of the transgene has a pro-apoptotic effect.
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To aid in the identification of the compartment associated with the blob 

phenotype cells expressing the truncated fusion protein were stained with an 

array of antibodies to the cell compartment. No clear co-localisation with this 

phenotype was observed following staining with Colligin, PDI, Ergic53, membrin 

SNARE, Golgin245, Mannosidase II, (3-COP and COPII antibodies. Assuming 

that the fusion protein is membrane-bound, these data suggest that the blobs 

accumulate within a unique subcompartment. In a previous study examining the 

localisation of PS, Kim et al, (2000) have reported the existence of a membrane 

pool containing PS fragments that similarly do not contain markers of the ER, 

Golgi, Ergic, CO PII vesicles, caveolar membranes, or endocytic vesicles. 

However, though electron microscopy shows the presence of PS1 

im m unoreactive com partm ents, these structures displayed a uniform  

morphology and were considerably smaller than the blob phenotypes found 

within the present study (Kim et al, 2000).

As with the earlier observations that the fusion protein affects the 

distribution of some markers specific to the cell compartment, so the fusion 

protein alters COP II staining from a peri-nuclear location to a fragmented or 

diffuse/cytoplasmic distribution (figure 7.8), implying that anterograde vesicular 

trafficking within the secretory pathway may be disturbed. The alteration in COP  

II staining from a peri-nuclear to a cytoplasmic phenotype has previously been 

reported during mitosis. Prior to cell division, protein transport is blocked at ER 

exit sites as COP II and its binding partner Sec13 shifts from the ER to the 

cytosol (Gorelick & Shugrue, 2001). Similarly, proteins exiting from th eE R  in 

COPII vesicles that cannot achieve their normal configuration accumulate 

blocking the ER exit sites (Raposo et al, 1995). Whether this observation holds 

true for the fusion protein or that altered COP II staining in Cos-7 cells is the 

result of mitotic events is unclear, though in the latter case PS1 over expression 

potentiates cell cycle arrest in the G1 phase of the cell cycle (Janicki et al,

2000).

An initial consideration in the genesis of the blob phenotype was that 

they arise as the result of the fusion protein-containing compartment undergoing 

successive rounds of fusion with each other to generate the blob phenotype. 

Ordinarily, transmembrane proteins are concentrated at ER exits sites by the 

presence of COPII. This is further assisted by the presence of di-acidic (DXE)
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concentration signals in the cargo protein (Nishimura et al, 1999). A search of 

the amino acid sequence of PS1 revealed the presence of 5 DXE signals 

suggesting that PS1 may be concentrated at ER exit sites. The presence of the 

coat proteins and transmembrane adapters/receptors of the COPII coat is also 

believed to prevent the fusion of cargo vesicles with each other and with other 

membrane compartments (Gorelick and Shugrue, 2001). This raises the 

possibility that the reduced COPII levels (figure 7.8) affects the insulation 

properties of the coat so allowing the cargo vesicles carrying the fusion protein 

to fuse together, thereby forming the blob phenotype.

8.11 The fusion protein, aggresomes and the ubiquitin-proteasome system

The lack of co-localisation with markers to the cell compartment prompted an 

investigation into what mechanism might be responsible for the removal of the 

blob-like aggregates. The two major pathways for the degradation of damaged 

or unwanted proteins are carried out by the lysosome and the proteasome. The 

lysosomes are membrane-bound, acid hydrolase-containing vesicles that deal 

primarily with extracellular proteins, that are endocytosed by the cell, or cell- 

surface membrane proteins used in receptor-mediated endocytosis. Antibody 

staining of lysosomes with LAMP-1 produces a distinctive halo (Chen et al, 

1985) quite separate from the blobs suggesting that the lysosomes are not 

responsible for the degradation of the fusion protein (figure 7.9).

The alternate proteolytic pathway involving the proteasome is known to 

operate in the removal of PS1 (Kim et al, 1997). Staining with a newly 

purchased antibody to the 20S subunit failed to resolve any detail within the 

cell, therefore an anti-ubiquitin antibody that recognises proteins tagged for 

proteasome destruction was used to stain cells displaying the blob phenotype 

(figure 7.10). Furthermore, immunoanalysis shows that only those higher 

weight bands from the membrane fraction show ubiquitin immunoreactivity 

(figure 7.10, panel d), suggesting that these bands correspond to the blob-like 

phenotype. The co-localisation of the ubiquitin antibody with the blob-like 

aggregates indirectly shows that the fusion protein may be targeted for 

proteasome destruction.
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Allied to the breakdown of proteins by the proteasome is the role-played 

by a novel structure responsible for the containment of excess misfolded 

protein. Within the present study the description of the blob phenotype as an 

aggregate was meant purely in the generic sense of the word, however, work 

carried out by Kopito and colleagues have characterised the existence of a 

single, stable, juxtanuclear aggregate referred to as an aggresome (Johnston et 

al, 1998). These structures are a general response by the cell to protein over 

expression and can be generated artificially by inhibiting the proteasome. Once 

the degradative capacity of the proteasome is exceeded, polyubiquitinated 

protein aggregate at the microtubule organising centre (M TO C ), and is 

accompanied by the rearrangement of the intermediate filament protein (IF) 

vimentin, which forms a containment cage around the aggregated protein core 

(Johnston et al, 1998).

In the present study, given their high number, the presence of numerous 

fusion protein blobs and their location within the cell militate against them being 

aggresomes, since the latter are found as single structures. Nevertheless, 

previous reports show that PS2 is targeted for degradation by the proteasome 

(Kim et al, 1997) and that PS1 readily form aggresomes following proteasome 

inhibition (Johnston et al, 1998). To evaluate whether the N TM P S1-EG FP  

fusion protein similarly forms aggresomes, cells expressing the fusion protein 

were treated with the proteasome inhibitors lactacystin or M G132. Aggresome 

formation was seen in both HEK293 and Cos-7 cells following proteasome 

inhibition and that these structures were contained by the IF vimentin (figures 

7.11, 7 .12 & 7 .13). Furthermore, proteasome inhibition increased the 

fluorophore signal in transfected cells and was accompanied by increased 

ubiquitin immunoreactivity of the high weight aggregates (figure 7 .14). 

Additional antibody staining diagnostic for the presence of aggresomes was 

also investigated. Antibodies to y-tubulin, mitochondria and MTOC co-localised 

with the fusion protein in drug treated cells (figure 7.17).

Although the fusion protein readily forms into an aggresome in response 

to proteasome inhibition, the blob phenotype persists as a distinctive ring 

around the aggresome that appears to lie outside the margins of the vimentin 

cage (figure 7.13). This latter observation suggests that while moderate levels 

of the fusion protein can be effectively contained within the aggresome, the
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blobs remain excluded, perhaps as a reflection of their structure or insolubility. 

The formation of the aggresomes are dependent on an intact microtubule 

network as seen following experiments with the microtubule-disruption agent 

nocodazole (Johnston et al, 1998) and by disruption of the dynactin-dynactin 

complex by over expression of p50/dynmatin (G arcia-M ata et al, 1999; 

Johnston et al, 2002). Nocodazole treatment of cells expressing the fusion 

protein whilst preventing aggresome formation had no effect on the blob 

phenotype (figure 7.18), which remains dispersed throughout the cell. However, 

the presence of the blob as a ring surrounding the aggresome indicates the 

requirement for intact microtubules for transport to this location, but not for their 

formation.

The lack of antibody staining of the blob phenotype provided no clear 

indication as to the cellular location/compartment from which the blobs 

originated. Although antibody staining data suggest otherwise, the assumption 

was made that blobs may nonetheless develop according to the scheme: 

ER/Golgi>Vesicles>Blobs. To address this issue cells were transfected with the 

truncated cDNA and imaged by fluorescent microscopy over a 6 hour period 

(figure 7.19). Initially, the fusion protein is limited to the ER after a 3 hour 

period, however, this quickly changes and by four hours post-transfection, the 

first signs of the blob phenotype appear as circumnuclear ‘swellings’ intimately 

associated with the reticular-nuclear interface. Measurement of the blobs show 

that they range in size from -2 5 0  nm up to -3 .7 5  pm (long axis). The first signs 

of a peri-nuclear phenotype appear after 4 to 5 hours, and by 6 hours cells 

exhibit the full range of phenotypes.

One possible explanation to account for the genesis of the blob 

phenotype may involve blobs arising firstly as ‘swellings’ at the reticular-nuclear 

interface. Secondly these ‘swellings’ attain a particular size after which time 

‘mature’ blobs may detach from the nuclear-reticular interface, and scatter as 

cytoplasmic inclusions (figure 7.20, a-d). Ideally this sequence of events could 

be verified by recourse to time-lapse fluorescence microscopy using live cells.

In a follow-up experiment, the time intervals post transfection were 

extended to 58 hours. However, there was no change in number of cells 

displaying the blob phenotype between each time point, 10 hours after first 

transfection (data not shown). The proposed sequence of events leading up to
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the formation of the blobs i.e. ER/Golgi>vesicles>blobs, does not seem to hold 

true since the phenotype and their numbers do not change over time. In 

summary, these data suggest that over expression of the transgene determines 

the appearance the blob phenotype. The blob phenotype may therefore reflect a 

controlled attempt by the cell to contain over expression of the fusion protein. In 

this view the blobs may even be seen as a protective mechanism insulating the 

cell form high levels of the fusion protein.

8.12 TEM analysis of Cos-7 cells expressing the fusion protein

The data from the preceding section suggest that the blobs arise from the 

nuclear membrane/ER interface, however, this data falls short of answering the 

question as to whether or not the blobs are cytoplasmic aggregates or 

membrane-bounded structures. Close inspection of figure 7.13 (row c, middle 

panel) as viewed on a high definition cathode-ray screen, reveals the presence 

of a margin that contrasts sharply with the interior of the blobs, suggesting a 

membrane-bound structure. This observation was followed-up by analysing the 

ultrastructure of transfected Cos-7 cells using TEM (figure 7.21, A-O).

TEM  revealed the presence of familiar organelles such as numerous 

mitochondria (A,J,K), lysosomes (A), vacuoles (A) as well as several 

unexpected features including unusual laminar bodies resembling myelin-like 

whorls (B -F ,L -0 ), electron dense regions scattered throughout the cell 

resembling compressed tubules (A), phagosomes (D,F,G), autolysosomes (C) 

and whole swaths of cytoplasm devoid of any discernable detail (Fl-M). The 

latter observation is clearly depicted in L-O, whilst image H shows dense 

granular remnants surrounded by a vacuole that may show an early event in the 

removal of the surrounding cytoplasmic contents. Close inspection of the 

lamininar bodies reveals the presence of concentric, electron-dense lines that 

appear to be enveloped by multiple layers (O). Many of these bodies have a 

empty inner core which ultimately becomes electron dense. Figures B and C 

show an unusual arrangement of the ER, which appears to surround the entire 

region occupied by the laminar bodies. Additionally, patches of the nuclear 

membrane in the region of the laminar body appear discontinuous or absent 

altogether (D-G). Interestingly, no clear ER or Golgi structures are visible, which
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may explain the earlier data showing a reduction in some cell compartment 

markers.

8.13 Autophagosomes and multilaminar bodies in transfected cells

In previous TEM  studies the aggresome presents as a fine network of closely 

packed filamentous material that surrounds the centriole (Johnston et al, 1998; 

G arcia-M ata et al, 1999). However, TEM  in the present study show no 

analogous structures to the aggresome. A prominent feature of transfected 

cells is the presence of autophagosomes and numerous other structures 

associated with them, such as lysosomes and myelin-like whorls (figure 7.21). 

Autophagy is an evolutionary conserved process present within plants, animals 

and fungi, and is the primary mechanism by which long-lived stable proteins are 

degraded and is the only mechanism by which entire organelles such as 

mitochondria and peroxisomes are recycled. Ultimately, autophagosomes by 

breaking down protein provide amino acids necessary during starvation (Dunn, 

1990). The autophagic response is a highly regulated event influenced by 

several factors including second messengers, purines, growth factors, and 

adrenergic agonists and kinase/phosphatase activities. One outstanding issue 

concerning autophagy is the mechanism by which cells sense the starvation 

signal. Recent studies in yeast suggest that a dedicated signal transduction 

mechanism may stimulate autophagy directly (Abeliovich et al, 2000)

Autophagy involves dynamic rearrangement of cellular membranes. The 

sequestering membrane is thought to derive from the ER to form an enwrapping 

vesicle capable of engulfing proteins, organelles and lipids. Initially bounded by 

a single membrane, the autophagosome fuses with a primary lysosome (also a 

single m em brane bound com partm ent) to form a double m em brane  

autophagolysosome (Dunn, 1990; Klionsky & Emr, 2000). The presence of 

autophagosomes and autophagolysosomes constitute autophagic vacuoles. 

The inner membrane disintegrates and the vacuole contents are digested and 

recycled to yield amino acids. Control has been partially resolved in yeast 

where autophagy is under the influence of apg  genes and mam m alian  

homologues to the apg proteins beclin and LC3 have been discovered (Larsen 

and Suiza, 2002). In yeast many genes have been discovered that appear
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necessary for autophagy. In some cases the mammalian homologues have 

been identified. The process of autophagy has five broadly defined phases with 

each phases being reflected by several genes: Induction- this involves several 

kinases such as Tor2, a rapamycin-sensitive protein kinase. Conjugation- this 

operates in a similar fashion to the mammalian ubquitination conjugation 

system. Apg7, for instance, codes for an E1 -like ubiquitin activating enzyme. 

Size regulation- Aut2  activity is up-regulated during starvation periods and is 

responsible for regulating the size of the autophagosome. Docking and fusion- 

Vam3 in yeast and Syntaxin7 in m ammals are exam ples of SN AR E  

components necessary for the trafficking of vacuoles during autophagy. As with 

cargo transport in mammalian cells, Rab GTPase activity is required to mediate 

docking and fusion events. Breakdown- several genes encode a series of 

degradative lipases and proteases and components responsible for acidifying 

the vacuolar to maintain optimum enzymic activity (Klionsky & Emr, 2000).

The presence of myelin-like whorls (figures 7.21 B-G, L-O) has been previously 

described in many organisms under a variety of conditions. In the 

macrophages of rabbit alveolar the number of myelin bodies within a single 

inclusion varies considerably; many small circular profiles or a single large, 

membrane whorl may occupy the entire inclusion (Nichols, 1976). Such 

heterogeneity may be explained by representing different stages of digestion. 

The presences of so much myelin suggest macrophages ingest large quantities 

of lipids (Nichols, 1976). Higgins et al, (2001) examining canine tumours of the 

CNS reported intense ubiquitin staining and autophagosomes containing 

membrane-bound granules with a dense core and outer halo, empty vesicles 

comprised of autophagic vacuoles and myelin-like whorls. These single 

membrane-bound intralysosomal structures are separated by large empty 

spaces, not unlike those shown on figure 7.21 (L-O). Similarly, the blob-like 

aggregates are also ubiquitinated and appear to have a dense core and an 

outer halo.

Membrane whorls can also be induced experimentally following drug 

treatment. Inhibiting sterol biosynthesis in the parasite Leishmania amazonensis 

induces the formation of inclusion vesicles identified as acidocalcisomes
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(Vannier-Santos et al, 1999). Here the ER cisternae form membrane whorls, 

which enclose large portions of the cytoplasm and some acidocalcisomes. 

Calcium within these structures may be involved in the stacking of parasite 

membranes, since it can promote a rapid interaction between multilamellar 

phosopholipid vesicles that resemble myelin whorls. The authors conclude that 

the enhanced membrane content of the autophagic vaculoles present indicate 

an altered phosopholipid turnover rate in response to sterol biosynthesis 

inhibition (Vannier-Santos et al, 1999). Just as the ER surrounds the 

acidocalcisomes, so perhaps the ER encloses the multilaminar bodies as 

suggested in figure 7.21 (B, C, H). In these images the elongated double unit 

membrane tubule extends to form a border around the autophagic body, but 

does not appear to encircle it completely.

Membrane whorls can also form following methamphetamine treatment 

of neuronal cultures as well as causing neurodegeneration, which typically 

results in the disappearance of neurites but not cell bodies due to autophagic 

activity (Larsen & Sulzer, 2002). Xue et al (1999) have also demonstrated the 

presence of membrane whorls associated with phagosome activity in normal, 

non-drug-treated sympathetic neurons.

In the present study TEM of Cos-7 cells expressing the fusion protein 

reveals the presence of numerous autophagic bodies in varying stages of 

maturity that are also associated with numerous laminar bodies showing 

similarly heterogeneity. Given these features, it seem likely that the NTFPS1- 

EGFP fusion protein is able to stimulate autophagy, though whether this is 

related to over expression or a NTFPS1 mediated effect is unknown. Because 

autophagy operates under condition of nutrient starvation, it is tempting to 

believe that some aspect of the fusion protein may some how mimic the 

starvation conditions within the cell that trigger autophagic response.

8.14 Consequence of fusion protein over expression

The absence of fusion protein blobs from cells expressing moderate levels of 

the fusion protein suggests that over expression of the transgene is the primary 

cause of the blob-like aggregates. It may be that a certain level of expression 

can be tolerated by the proteasome. Any increase above this level of 

expression or inhibition of the proteasome leads to the formation of aggresomes
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(Johnston et al, 1999). In the case of the PS1 fusion protein, the presence of a 

highly hydrophobic molecule without a stabilizing influence that assists in 

burying the exposed transmembrane domains i.e. the CTF partner or co-factors 

such as nicastrin, is more likely to aggregate and conceivably present problems 

for the cell in how to dispose of it, especially under conditions of over 

expression. The constant drive of the transgene, which inevitably increases 

levels of the protein, may overload the proteasome leading to aggresome 

formation. In all the transfected cells surveyed only a handful show the 

presence of aggresomes, however, Kopito (2000) warns that a Golgi-like 

phenotype can easily be mistaken for the presence of an aggresome.

The question arises as to the limiting factors behind aggresome  

formation. Are they limited to a particular size, perhaps dictated by levels of the 

fusion protein or IF available to contain them? In the present study the blob-like 

aggregates are clearly distinct from the aggresome in terms of structure, 

number and location. Moreover, following proteasome inhibition the blob-like 

aggregates circle around the aggresome, suggesting that they might be 

resistant to proteasomal degradation. If correct, then the proteasome is not 

solely responsible for the breakdown of presenilin aggregates within the cell. In 

this instance the role of the phagosome may be important. In this context, 

Gelman et al, (2002) used a cystic fibrosis transm em brane conductance 

regulator GFP fusion protein (CFTR-G FP), to investigate previous reports that 

proteasome inhibition is insufficient to account for all instances of CFTR  

degradation suggesting the action of an ATP-independent proteolytic pathway. 

However, inhibition of the autophagy had no m easurable effect on the 

breakdown of CFTR-G FP even after proteosomal inhibition indicating that the 

UPS degradation is the dominant pathway for the disposal of misfolded CFTR- 

GFP (Gelman et al, 2002). If this observation applies to all transmembrane  

proteins then presumably PS is similarly affected, however, the presence of 

phagosome activity in cells expressing the fusion protein argues that this 

assertion may not hold true, leastways, within the present study.
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8.15 Impairment of the ubiquitin proteasome system

One explanation for the presence of the blob-like aggregates may lie in 

considering the effects this phenotype has on the UPS. The degradation of 

proteins by the ER relies on the UPS, which relies on ATP hydrolysis for 

activation of ubiquitin and substrate unfolding. Any disturbance in this system is 

of crucial importance in the management of protein levels by the cell. The notion 

that the fusion protein may interfere with the UPS is not without its precedent. 

Recently the presence of a novel presenilin binding protein (PBP) expressed 

specifically in the brain has been documented, which in its soluble form, is 

reduced in AD brains compared to controls. Over expression of PBP or 

proteasome inhibition generates aggresome formation in Cos-7 cells and 

neurons (Nam ekata et al, 2002). From these observations and other reports, 

that proteasome activity is significantly suppressed in the hippocampus of AD 

patients, and that mutant ubiquitin in AD can suppress degradation by the 

proteasome, suggest that impaired proteasome function may be crucial in the 

pathogenesis of AD (Namekata et al, 2002). This conclusion is based on the 

association of PBP with NFTs in AD brain, where it modifies the activity of GSK- 

3(3, one of protein kinases that phosphorylate tau (Takashim a et al, 1998). 

Based on these observations the authors believe that PBP, which may regulate 

the activity of tau phosphorylation under normal conditions, may accelerate the 

formation of NFTs once it is sequestered into an aggresome due to impairment 

of the UPS.

Davies and Murphy, (2002) report the derangement of ER in rat neurons 

expressing mutant transgene found in Familial Neurohypophyseal Diabetes 

Insipidus (FNDI). Immunocytochemistry reveals the presence of mutant protein 

as aggregates within the ER, which are targeted for lyosomal degradation by 

autophagy. In trying to explain the loss of wild type vasopressin activity in cells 

expressing the defective FNDI allele, the authors propose that mutant protein 

accumulating within the ER by thiol retention is likely to be targeted to the UPS, 

whilst wild type vassopressin traffics normally through the secretory pathway. 

However, the build up of mutant protein within the ER traps normal protein 

within aggregates. Under these conditions the UPS is incapable of dealing with 

the aggregates therefore a rescue attempt is launched by the more general
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degradation system of autophagy. In the process the deranged ER is removed 

and along with it, normal vasopressin thus leading to the disease phenotype (Si- 

Hoe et al, 2000; Davies & Murphy, 2002). This may also hold true for the fusion 

proteins. As they accumulate so perhaps the UPS is similarly effected resulting 

in autophagy as a means of rescuing the ‘deranged’ ER, hence the decrease or 

absence of some markers for the ER.

Other data show an increased propensity of mutant rhodopsin to self­

associate into toxic high-weight aggregates that impart a robust gain of function 

directly linked to pathogenesis caused by impairment of the UPS (llling et al,

2002). Furthermore, expression of mutant CFTR and a CAG repeat-huntingtin 

fragment likewise caused the near complete inhibition of the UPS (Bence et al,

2001). Also, McNaught et al, (2002) show the presence of numerous discrete 

ubiquitin protein aggregates in the neurone bodies in Parkinson’s disease and 

‘dementia with Lewy bodies’ (DLB). These aggregates are transported to the 

MTOC where they are sequestered to form Lewy bodies in neurons. They 

propose that Lewy body formation in PD and DLB is an aggresome-related  

attempt at protecting neurons from increased levels of potentially toxic proteins. 

An inability to curb levels of these proteins through regulated degradation could 

potentially cause the failure of the UPS and aggresome culminating in the 

aggregation of proteins into Lewy bodies. Again, a compromised UPS may 

similarly lead to the formation of the blob phenotype. This latter observation 

then provokes the question as to the role of Lewy bodies. Are they 

neuroprotective structures induced to shield cells from potential toxicity 

imparted by rising protein levels in response to a compromised UPS? Could 

the blobs likewise be an adaptive response to excessive levels of the fusion 

protein?

Lastly, Harada et al, (2003) show inhibition of the proteasome in cultured 

cells induces the formation of autophagic vacuoles and lysosomes and 

ubiquitin-IF inclusions that disrupt the Golgi apparatus. Similarly, Golgi 

fragmentation has been reported in the neurons of patients with familial 

amyotrophic lateral sclerosis (FALS) and its animal model. The inhibition of the 

proteasome induces IF inclusion, accompanied by a loss in the IF network 

which has the knock-on effect on Golgi organisation, and presumably the 

passage of materials through the secretory pathway (Harada et al, 2003). From
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the above reports in is tempting to speculate that the blobs may indeed disrupt 

the UPS and that this impairment stimulates the alternate autophagic pathway 

responsible for the ER and Golgi alterations.

8.16 Formation of the blob-like aggregate phenotype

A possible scenario to account for the blob phenotype may be one in which 

moderates levels of the fusion protein are initially tolerated by the cell and 

degraded by the proteasome. However, increases in the level of the fusion 

protein may then saturate the proteasome leading to the formation of 

aggresomes. Once the capacity of the aggresome to sequester excessive 

levels of the fusion protein is reached, perhaps due to size constraints, 

membrane enwrapping of the ER begins at the nuclear/ER-interface (figure 

7.20), leading to the formation of the fusion protein blobs, which ultimately 

stimulate autophagy. One difficulty with this scenario is that it assumes that the 

blobs form once the proteasome-aggresome capacity has been exceeded. As 

mentioned earlier, very few cells appear to show the presence of aggresomes, 

however, it is possible that their presence may be mistaken for the Golgi 

apparatus (Kopito, 2000). Furthermore, in stable HEK293 cells expressing the 

blob phenotype there is no evidence of aggresome formation. In fact data 

suggest that the blobs are stable, long-lived structures whose presence may be 

tolerated by the cell (figure 6.9, middle panel), indicating that the cell must be 

able to deal with these blobs prior to entering mitosis.

A outstanding issue concerning the blobs is the mechanism underlying 

their formation. Could the fusion protein saturate the membranes of the nuclear 

/ER-interface until they eventually ‘pinch off’ as suggested by figure 7.20, or do 

the blobs form as insoluble protein aggregates giving the appearance of 

membrane-bound structures? Could the blobs be examples of inclusion bodies 

or aggregates? Kopito (2000) maintains the necessity to distinguish between 

aggregates (non-native protein oligomers) and inclusion bodies, which are 

microscopically distinct cellular regions into which aggregated proteins are 

sequestered. In FALS, which is characterised by the presence of inclusion 

bodies, cellular pathology is paralleled by the presence of mutant superoxide 

dismutase (SOD) aggregates long before such SOD inclusion bodies appear.
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This suggests that the toxicity associated with this disease is related to the non­

native configuration adopted by SOD and may hold true for other diseases 

(llling et al, 2002). The immunoblotting data in the present study are unhelpful 

in resolving aggregates from inclusion bodies since both outcomes can be 

represented by the membrane fraction. However, inclusion bodies are usually 

present in low copy numbers, often only one per cell, whereas the blobs number 

in the tens.

As the blobs arise from the nuclear/ER interface, it may be that the 

membrane system at these points becomes saturated as successive levels of 

the fusion protein build up. If unchecked, such high levels may eventually 

cause ER enwrapping, resulting in the formation of the multilaminar bodies, and 

in the process a substantial body of lipid membrane may be lost. Certainly this 

would explain the decrease in markers for both the ER and Golgi 

compartments. Presumably smooth ER sites overloaded with the fusion protein 

may effectively exclude other membrane resident proteins, since the decrease 

in ER antibody staining is seen only in cells expressing high levels of the fusion 

protein. The role of the phagosome may be crucial in this respect, since 

attempts at engulfing the laminar bodies may, in the process, consume healthy 

ER leaving behind the almost empty vacuole (figure 7.21 L-O). In fact this may 

explain the small amount of ER and the lack of a discernable Golgi 

compartment observed following TEM.

A similar mechanism to account for the loss of ER markers has been 

proposed by Si-Hoe et al, (2000). In this scheme misfolded vasopressin 

aggregates ‘derange’ the ER activating the lysosomal-linked autophagic 

pathway. During autophagocytosis deranged ER is removed and along with it, 

normal vasopressin, thus leading to the disease phenotype (Si-Hoe et al, 2000). 

Moreover, studies examining the affect of mutant growth hormone in Cos-7 cells 

have suggested that misfolded proteins might exert their toxicity by disturbing 

the ER-to-Golgi trafficking of secretory proteins (Graves et al, 2001).
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8.17 Blobs-insoluble aggregates, inclusion bodies or membrane-bound  

compartments?

One concern regarding transfection experim ents is that the transiently 

expressed membrane proteins tend to overload the secretary pathway, leading 

to aberrant trafficking and metabolism of the exogenous polypeptide and in 

many instances, endogenous membrane proteins. Moreover, it has been 

suggested that PS1 and PS2 are inherently ‘sticky’ proteins with a propensity to 

form aggregates (Kovacs et al, 1996; Kim et al, 1997; Thinakaran et al, 1997; 

Citron et al, 1997). This propensity to aggregate could easily explain the blobs 

as insoluble cytoplasmic aggregates and may well represent aggresome-related 

structures, albeit unusual ones in which a vimentin cage is absent (figure 7.12 a 

& b), though this does not rule out an alternative cage protein. To account for 

this scheme, the fusion protein must be removed from the membrane to 

facilitate aggregation within the cytoplasm. Kopito (2000) argues the case for 

CFTR, which may enter straight into the cytostolic pool, possibly due to failure 

of, or inefficient translocation. It is well established that the 26S proteasome is 

able to extract ER-transmembrane proteins from the lipid bilayer (Mayer et al,

1998). One such example is the processing of CFTR within the endoplasmic 

reticulum by the proteasome.

One other consideration regarding the blobs is that they are examples of 

inclusion bodies. Kopito (2000) proposes two models to explain inclusion body 

formation. In the first model protein monomers are directly deposited into a 

single inclusion body that grows steadily in size as more and more protein 

aggregate, whilst in the second model, proteins form into small aggregates at 

the cell periphery, possibly by a nucleation process, before being delivered to a 

far larger, nascent inclusion body. Certainly the nucleation aspect of the latter 

model is supported by the present study. Furthermore, a more precise model 

envisages the requirement of these aggregates to travel along microtubules 

towards the aggresome, a finding previously demonstrated by Garcia-Mata et 

al, (1999). A similar observation was made in the present study: In NTFPS1- 

EGFP expressing cells treated with both nocodazole and the proteasome  

inhibitor M G132, the blobs remained dispersed throughout the cell, however, 

MG132 treatment alone results in the blobs encircling the aggresome (figure
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7.13 c & d). This result shows that the blobs do not require an intact microtubule 

system for their formation; however, proteasome inhibition shows a requirement 

for microtubules to transport the blobs to the MTOC.

In proposing that the blobs are inclusion bodies and not membrane- 

bound, the fusion protein following ‘dislocation’ through the ER membrane, must 

be targeted directly for destruction by the proteasome or else aggregate (Kopito 

& Sitia, 2000). In both fates the fusion protein will be polyubiquitinated and 

indeed this is the case for blobs (figure 7.14). A remarkable feature regarding 

the EG FP moiety, besides its reporter activity, is its ability to maintain 

fluorescence after being dislocated though the ER membrane. After all, if the 

blobs are inclusion bodies, how can they fluoresce given that they would 

ordinarily be ‘unwound’ (linearised), ‘N-terminal’ first, before being introduced 

back into the cytoplasm where they would then, presumably, aggregate due to 

exposure of the hydrophobic TM stretches. The EGFP moiety requires folding in 

order to generate fluorescence, so is it conceivable that the fusion protein 

unfolds all except the EGFP moiety, which remains intact and functional, or that 

within the aqueous, reducing environment of the cytoplasm EGFP re-assumes 

its native conformation and the unfolded hydrophobic PS stretches aggregate? 

Are the blobs therefore composed of partially unfolded PS1 but intact EGFP?  

Furthermore, could polyubiquitinated EG FP adopt a native conformation 

following covalent modification by ubiquitin? A parsimonious explanation is that 

EGFP can tolerate such treatment and that this only goes to show how 

remarkably robust EGFP is, hence its utility in many cell-based assays.

8.18 Apoptosis and autophagy

W hether the fusion protein blobs are membrane-bound, multilaminar bodies 

resembling myelin-like whorls, or inclusion bodies formed from aggregates is 

currently unclear. The evidence suggests that the blobs may stimulate both 

autophagy and sensitise transfected cells to apoptosis. Autophagy figures 

prominently in apoptosis and is also responsible for degrading proteins involved 

in cellular remodeling found during metamorphosis, aging and differentiation. It 

has been suggested that autophagic (type 2) death is distinct from apoptotic 

(type 1) death (Clarke, 1990). Morphologically, apoptosis involves nuclear
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condensation, DNA fragmentation, organelle swelling, cytoplasmic vacuolization 

and nuclear envelope disruption, w hereas autophagy correlates with 

autophagosomes, autolysosomes, electron-dense membranous autophagic 

vacuoles, myelin whorls, multivesicular bodies, as well as engulfment of entire 

organelles. The latter observations are suggested by the TEM  data shown by 

figure 7.21, however, there is little sign of the morphological changes that 

accompany type 1 apoptosis. For instance, the TEM  data show intact 

mitochondria (figure 7.21, J, K).

Apoptosis in AD is well established and cleavage of PS1 and PS2 by 

caspase-3 generates anti-apoptotic CTF (Vito et al, 1997), however, 

Stadelmann et al, have noted that the frequency of DNA fragmentation is too 

high to account for the continuous neuronal loss in AD extending over many 

years. Staining for caspase-3 in AD brain revealed the presence of the 

activated enzym e within autophagic bodies, referred to as granules of 

Granulovacuolar Degeneration (GVD) (Stadelmann et al, 1999). The authors 

conclude that the containment of activated caspase-3 within GVD-autophagic 

vacuoles serves to counteract apoptosis within the AD brain. Similarly, 

Tolkovsky and colleagues have dem onstrated autophagy can precede  

apoptosis suggesting that it may have a protective role in programmed cell 

death (Xue et al, 1999). In section 8.9 the role of the fusion protein was 

discussed without mention as to whether this was type 1 or type 2 apoptosis. In 

light of the TEM data showing the absence of classical morphological changes 

typical of type 1 apoptosis, and the presence of numerous autophagic bodies, it 

is possible that type 2 apoptosis is responsible for the increased caspase 

activity seen in control and non-transfected cells (figure 6.11 & 7.2b). Within the 

present study, the fusion protein sensitizes cells to apoptosis following STS  

treatment, however, in the absence of proapoptotic stimuli, autophagic activity 

may be responsible for type 2 apoptosis. This does not mean that autophagic 

activity is not present under STS conditions. These data suggest that caspase 

cleavage of PS1 may be associated with type 2 apoptosis and autophagy.

To restate the earlier contention, proteasome action and aggresome  

formation may be insufficient to deal with excessive levels of the fusion protein 

leading to the activation of the alternate phagosomal pathway. A difficulty with
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this interpretation is the absence of LAMP1 co-localisation with the blob 

phenotype (figure 7.9), indicating that the lysosomal pathway is insufficient to 

explain the presence of the blobs. However, if the multilaminar bodies are 

composed of the fusion protein, then according to the TEM  data they may be 

resistant to lysosomal degradation since a consistent feature observed is the 

absence of any surrounding detail except for the presence of a residual laminar 

body eccentrically located within the autophagic vacuole. This is readily seen in 

figures 7.21 (J, K, N). Barring proteasome degradation of the blob-like 

aggregates and resistance to lysosomal degradation, how then are the laminar 

bodies dealt with? One clue may come from figure 7.21 A (inset), which shows 

the expulsion of an autophagic vaculole, and presumably with it the multilaminar 

bodies. This raises the possibility that the fusion protein may be detectable 

within the extracellular medium. In fact, one such study has recently 

dem onstrated such a phenomenon. Benussi et al, (2001 ) show by 

immunoblotting the presence of PS CTF and weak membrane NTF in the 

conditioned media taken from rat neurons and HEK293 cells. Furthermore, this 

release of PS fragments proposed as ‘membrane shedding’ increases under 

apoptotic conditions following STS treatment. Interestingly, caspase inhibition 

had no affect on the release of CTF, suggesting that the CTFPS1 pool destined 

for secretion maybe generated by a caspase-independent pathway (Benussi et 

al, 2001). This membrane shedding may therefore be related to the autophagic 

pathway.

In the case of HEK293 cells stably expressing the fusion proteins, the 

presence of the blobs appear to be tolerated by the cells. W hether the 

proteasome is responsible for their clearance or if they are ejected from the cell 

by phagocytic activity is unknown. The high number and overall dimensions and 

morphology argue against the blobs being aggresomes, Lewy bodies or Russell 

bodies (Kopito & Sitia, 2000), however this does not rule out the possibility that 

they are in some way related to these structures. Recently, Lelouard et al,

(2002) demonstrated the presence of high number, ubiquitinated protein 

aggregates transiently expressed in dendritic cells. Furthermore, these  

structures resemble the fusion protein blobs in terms of their gross morphology 

and biological properties, since they neither induce vimentin cage formation or
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localise with the M TO C, nor are they destabilised following nocodazole 

treatment. The presence of these structures, referred to as dendritic cell 

aggresome-like induced structures (DALIS) are transient and require continuous 

protein synthesis. The proteasome degradation of DALIS provides material for 

MHC class I presentation (Lelouard et al, 2002). Although both DALIS and the 

fusion protein blobs have clearly different origins, the fact that the proteasome 

can handle high copy numbers of DALIS may be mirrored to some extent in 

stable PS1 HEK293 cells exhibiting numerous blobs.

8.19 Summary of main findings

• The putative P S 1-N TF  923 antibody does not co-localise with 

endogenous or exogenous PS1

• PS1-EG FP fusion proteins generated four distinct phenotypes in different 

cell lines (ER, Golgi, vesicular and blob-like aggregates) that localise to 

varying degrees with antibodies to the cell compartment

• Immunoblotting of the fusion protein is within the membrane only fraction

• The removal of the EGFP moiety has no effect on the phenotype 

distribution

• Over expression of the fusion proteins alters or reduces antibody staining 

of some cell compartment markers

• The N-truncated fusion protein sensitises cells to STS-induced apoptosis

• Caspase cleavage of PS1 may be associated with type 2 apoptosis and 

autophagy in control and transfected cells

• The fusion protein blob-like phenotype co-localises strongly with ubiquitin

• The blob phenotype does not induce vimentin cage formation, or localise 

with the MTOC

• The fusion proteins forms aggresom es following inhibition of the 

proteasome

• In cells over expressing the full-length fusion proteins antibody staining 

suggest differential regulation of PS NTF and CTF fragments

• The blobs appear to originate from the nuclear-ER interface but do not 

stain for antibodies to the cell compartment
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• The blob phenotype is not destabilised with nocodazole indicating that 

they do not require microtubules for their formation

• TEM  reveals numerous phagosomes and mutilaminar bodies that fit the 

profile seen for the blob-like aggregates in terms of dimension, number 

and general morphology

Overall, the size and general morphology of the multilaminar bodies as revealed 

by TEM fit the profile seen for the blob-like aggregates in terms of dimension, 

number and general morphology. A definitive test for identifying the laminar 

bodies/vacuoles as the PS1 blobs could ideally be accomplished by 

immunogold antibody labelling of the EGFP moiety and by cell fractionation 

experiments aimed at isolating the blobs. The blobs may therefore be 

membrane-associated structures (multilaminar bodies) that rely on autophagy 

for their clearance once aggregation of the over-expressed fusion protein has 

taken place. Kopito (2000) proposes that the aggresome might function as a 

center for the capture of aggregated protein by the autophagic pathway. Whilst 

this may hold true under conditions where the proteasome is inhibited, in the 

present study there was little sign of aggresome formation. Furthermore, the 

TEM data do not indicate the presence of an aggresome within cells displaying 

phagosomes (figure 7.21, A). Data presented herein indicate that the blobs 

form independently of the aggresome and may impair the UPS. A hypothetical 

scheme to account for the above observation is outlined in figure 8 .0 .

Unlike aggresom es and inclusion bodies, which are single copy 

organelles, the numerous blobs may represent novel structures whose function 

it is to contain excessive protein levels, possibly in response to a comprised 

UPS, and that their presence stimulates autophagy and/or apoptosis. 

Alternatively, the blobs are not the multilaminar bodies as seen by TEM, but 

may instead be a means of safely containing too high a level of expression 

within the cell, and that they present the fusion protein as manageable packets 

to the proteasome for degradation. The alteration in the ER and Golgi 

compartments and the inducement of autophagy would then be considered 

unrelated phenomena, possibly generated by the over production of the fusion 

protein that may impact on the UPS.

8.20 Concluding remarks
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Increasingly important is the role played by aggregated proteins in the 

underlying pathology of a human degenerative conditions including Alzheimer’s 

disease, light chain amyloidosis, spongiform encephalopathies, Huntingdon’s 

disease, Parkinson’s disease, etc. Recent genetic and biochemical data 

indicate that impairment of the UPS in these very different disorders may 

contribute further to the pathogenic mechanism specific to these diseases.

Taken as a whole, much of the evidence presented within this study 

concerned the effect moderate to high levels of the PS1 fusion proteins had on 

the general morphology of the cell. Im m unofluorescence microscopy, 

immunoblotting and TEM  data show that the blob-like aggregates alter the 

appearance of the ER and Golgi compartment, which may effect the normal 

trafficking of materials within the cell. The fusion proteins therefore provide a 

convenient means for studying the consequence that high levels of protein have 

on the UPS-aggresome response, apoptosis and phagocytosis within the cell.
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phagosome

lysosome

Nucleus 1

residual body 
expelled

ER

Figure  8 .0 . S c h e m a tic  outline o f even ts  proposed  to acco un t fo r th e  p re s e n c e  o f 
th e  b lob p h e n o ty p e . 1. T h e  fus ion  p ro te in  is syn th e s is e d  a t th e  N u c le a r -E R  
in te rfa c e , w h e re  it a c c u m u la te s  as  m u ltila m in a r b od ies  (2 ), th a t im p a c t on th e  
a m o u n t o f lipid a v a ila b le  fo r norm al tra ffick ing , h e n c e  the  a lte ra tio n  in an tib o d y  
staining o f the E R  and G olgi. 3 . P h a g o s o m e s  s e q u e s te r the  b lobs a long  w ith  E R  
c o n te n ts . 4 . T h e  ly s o s o m e  fu s e s  w ith  th e  p h a g o s o m e  an d  d ig e s ts  co n ten ts , 
possibly leaving  behind residual body. 5 .T h e  und igested  residual body is exp e lled  
from  the cell.
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