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Abstract David Robert Anderson

This thesis reports investigations into laser-induced emission spectrometry for 
rapid elemental analysis. An integrated laser and spectrometer system is 
configured, comprising a Q-switched Nd:YAG laser and an optical multichannel 
analyser, which enables the discreet monitoring of the laser-induced plasma 
produced by each laser shot. Novel applications are devised including the 
survey analysis of polymeric materials and the depth profiling of coated steels.

A survey analysis of polymeric materials for twelve elements (Al, Ba, Ca, Cu, 
Fe, Mg, Pb, P, Sb, Sn, Ti and Zn) is reported. Results showed that element 
emission responses are dependent upon operating conditions, selective 
volatilisation of antimony can occur, and ablation characteristics, such as the 
rate of material removal and plasma lifetime, are very different compared to 
metals. With optimised operating conditions of low laser energy and sample 
positioned at the laser focal point, the limit of detection for antimony is 0.09 % 
mass/mass with precision of 1.8 (% relative standard deviation) using a carbon 
signal from the polymer as internal standard. Rapid discrimination between 
samples of poly (vinyl chloride) is demonstrated with a measurement time 
of 1 s.

Data for the depth profiling of a range of coated steels using laser-induced 
plasma emission spectrometry are reported in detail for the first time. Coatings 
of zinc/nickel, tin, titanium nitride and chromium are examined. Depth profile 
signatures and crater shape are greatly influenced by operating conditions. 
Improved depth resolution and signatures are obtained using high laser energy 
and defocused laser radiation. Correlations are established between coating 
thickness and output parameters of the technique. Linear calibrations against 
coating thickness are achieved with good precision for replicate measurements 
(4 % relative standard deviation). Results showed that the technique can 
differentiate between tin coated samples with a difference in coating thickness 
of 0.02 pm, and can detect an ultra-thin chromium coating of 0.020 pm 
thickness. This performance and measurement times of 50 s indicate the rapid 
depth profile capability of the technique.

The novel application of an artificial intelligence technique (artificial neural 
networks) to laser-induced plasma emission spectra is reported for the first 
time. Studies showed that artificial neural networks can rapidly discriminate 
between the emission spectra of different materials with a success rate of 
100 %, to provide a new means of rapid data processing.

© David R. Anderson
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1.1 Introduction

Atomic emission spectrometry has been used in analytical chemistry for over 

one hundred years. The history of the technique spans several centuries from 

early observations by Agricola in the 16th century, through to studies by 

Bunsen and Kirchoff in the 19th century, to commercial instruments developed 

over the last 70years. Modern instrument systems, such as inductively coupled 

plasma emission spectrometers, are now used world-wide for the rapid and 

quantitative analysis of many elements.1

Atomic emission instruments consist of three main components: an excitation 

source, a spectrometer and a detector, (Figure 1). The function of the source is 

to vaporise sample material (depending on the phase of the sample), and to 

atomise sample components and electronically excite the atoms to produce 

atomic emission radiation. Ionisation may also occur resulting in ionic 

emissions. These emissions are in the ultra-violet and visible regions of the 

electromagnetic spectrum and are characteristic in wavelength for each 

element. Many different sources have been developed over the years including 

electrical arcs and sparks, glow discharges, laser-induced plasmas, inductively 

coupled plasmas, etc.2

emission source

t
sample

emitted
radiation

detectorspectrometer

dispersion of emitted 
radiation using either: 
prism or grating

c1fgint1.cdr

detection with either:
- photographic plate
- photomultiplier tube
- photodiode array

Figure 1 The three main components of an atomic emission spectrometer

2



The spectrometer disperses the emitted radiation into component wavelengths 

using either a prism or a diffraction grating to produce a spectrum. 

Spectrometers can analyse either several wavelengths simultaneously or a 

single wavelength at a time. The detector records the emission signal of an 

individual emission wavelength from the spectrum. Detectors are either single

channel and detect a single element response, such as a photomultiplier tube, 

or are multichannel and can detect several elements simultaneously, such as 

photographic plates, several photomultiplier tubes and photodiode arrays.

Over the last seventy years, each area of instrumentation has received 

considerable development. A list of typical instrumentation is given in Table 1.

Emission Source Instrument and Manufacturer

arc

spark

glow discharge 

ICP

laser-induced plasma

large quartz spectrograph, Hilger and Watts 

Analoy, Arun Technology 

Quantovac, Applied Research Laboratories, 

Polyvac, Hilger and Watts 

Leco Instruments 

Applied Research Laboratories 

Thermo Jarrell Ash, Spectro Analytical 

Varian, Perkin Elmer 

Laser Microprobe: Carl Zeis 

JEOL 

Jarrell Ash

Note: not all instruments are now available commercially

Table 1 List of atomic emission sources and instruments



In the 1930s, commercial arc emission instruments, such as the Hilger and 

Watts large quartz spectrograph, became available. The instrument used an arc 

discharge between a counter electrode and a solid, conducting sample.

Material was removed from the sample by the arc through melting, boiling and 

vaporisation processes. The high temperature of the arc caused atomisation 

and ionisation and produced atomic/ionic emissions. Radiation from the arc was 

dispersed in the spectrograph by a prism and a photographic plate recorded the 

resulting emission spectrum. This sensitive technique allowed the simultaneous 

detection and semi-quantitative analysis of many elements. The interpretation 

of the photographic plate is very time-consuming and tedious.

Direct reading spectrometers were developed in the 1950s to meet the demand 

of the steel industry for a rapid, quantitative analytical technique. A typical 

instrument was a 'Quantometer' from the company, Applied Research 

Laboratories.3 It used a spark discharge for excitation and a polychromator 

fitted with several photomultiplier tube detectors to measure the light intensity at 

pre-selected wavelengths. A grating was used in the spectrometer for the 

dispersion of light. The advance was possible by improvements in the quality of 

gratings and photomultiplier tubes. The instrument enabled quantitative, 

multielement analysis to be achieved in approximately 2 to 3 minutes, much 

less than by the spectrograph, which took about 1 hour. Such direct reading 

spectrometers are still commercially available and are widely used for the 

analysis of metals and alloys.

Glow discharge sources such as the Grimm-type lamp have been used for the 

bulk chemical analysis of solid, conducting materials2, and more recently, for 

the depth profiling of conducting coatings on substrates.4 In the Grimm lamp, a 

flat sample forms the cathode close to an annular anode in a low pressure 

argon atmosphere. A high voltage (500-1000 V) between the cathode and
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anode produces a glow discharge of high radiant intensity, and sample material 

is removed through a sputtering process by the bombardment of argon ions. 

Instruments are available from companies such as Leco Instruments.

Arc, spark and glow discharge sources have been successfully used with solid, 

conducting materials but have had limited success with the analysis of liquids or 

non-conducting materials. In the 1960s and 1970s, inductively coupled plasma 

(ICP) sources were developed to analyse liquid solutions and became widely 

used for this application.1 Solutions are generally introduced via a nebuliser 

which produces an aerosol that is dried, atomised and excited by the plasma. 

The plasma is sustained by radio-frequency energy from an induction coil. The 

ICP technique has rapid, simultaneous multielement analysis capabilities. For 

example, a Thermo Jarrell Ash ICAP9000 can analyse a sample solution for up 

to 64 elements in under 1 minute. Many systems are available from companies 

such as Applied Research Laboratories, Spectro Analytical, etc.

The laser was first used as a source for atomic spectrometry in 1962 by Brech 

and Cross5 soon after the invention of the laser by Maiman in I960.6 In this 

technique (laser-induced plasma emission spectrometry, LIPS), laser light from 

a high energy laser is focused onto the sample surface to produce a laser- 

induced plasma. Sample material is vaporised into the plasma and 

characteristic atomic/ionic emissions result. Spectrochemical measurement of 

the laser-induced plasma enables simultaneous, multi-element analysis of the 

sample. Rapid, in situ micro- and bulk analysis of samples can be achieved, 

and the technique has a remote sensing capability. The technique has been the 

subject of development for over thirty years,7 starting with the laser microprobe 

with photographic detection used by Brech and Cross5 to current state of the art 

optical multi-channel analysers that incorporate computer-controlled photodiode
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array detection systems. Some authors refer to the technique as laser induced 

breakdown spectrometry (LIBS) and refer to the plasma as the 'laser spark1.8

laser light

focus lens

atomic
ionic

emission laser-induced
plasma

sample

Figure 2 Schematic of laser-induced plasma emission spectrometry

There are, however, some disadvantages associated with the laser-induced 

plasma technique. Emission spectra are complex and time-dependent because 

of the high temperature and the transient nature of the plasma, and the plasma 

is formed with each laser shot and decays away completely between shots. A 

sophisticated detector system is required to make rapid, time-resolved 

measurement in order to extract useful analytical data from the laser-induced 

plasma.7 Time resolution is important because it enables analyte emission 

signals to be separated in time from the intense background continuum and 

provides considerably improved analytical performance .

Laser ablation has also been used as a source for elemental mass 

spectrometry (laser microprobe mass analysis, LAMMA), and has been coupled
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to other techniques such as inductively coupled plasma emission and mass 

spectrometry's.7 Here the laser is used only to remove sample material and 

analysis is achieved with a more powerful excitation source and detector 

system. Several reviews are published 7-9-10 and laser ablation systems with 

inductively coupled plasma mass spectrometers are available, e.g. Fisons VG 

Elemental, Perkin Elmer Sciex, etc. The main advantage of such coupled 

techniques is improved sensitivity compared to laser-induced plasma emission 

spectrometry.

There remains, however, considerable interest in laser-induced plasma 

emission spectrometry because there is a growing need by industry for 

elemental analysis of materials that is more rapid than currently available. 

Applications include the monitoring of element compositions in production and 

process situations so that material composition can be more closely controlled, 

the rapid sorting of materials, and the rapid, in situ environmental analysis of 

hazardous materials. Laser-induced plasma emission spectrometry can be 

used to address these requirements because of the remote sensing, rapid and 

in situ, simultaneous multielement analysis capabilities. The major 

disadvantage of laser-induced plasma emission spectrometry is relatively poor 

sensitivity, which may not present a problem because these industrial 

applications do not generally require high sensitivity. The work forming the 

basis of this thesis investigates laser-induced plasma emission spectrometry in 

order to devise novel applications that will further the understanding and 

knowledge of the technique.
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1.2 Theory of atomic emission spectroscopy

Atomic emission spectra originate from electronic transitions of excited atoms 

and ions.11-12 An atom consists of a central nucleus of protons and neutrons, 

surrounded by electrons arranged in discrete energy levels (orbitals). At low 

temperatures, such as room temperature, all the electrons are essentially in 

ground state configurations and are un-excited. Outer valence electrons can be 

excited to higher orbitals by the high temperature of an atomic emission source 

such as a chemical flame, inductively coupled plasma (ICP), or laser-induced 

plasma. The excited atom has a very short lifetime (10-8 s) and the excited 

electron then decays to the ground state, releasing the extra energy as a 

photon of radiation. The energy of this emitted photon (Eem) is governed by the 

difference in energy levels between the ground state (Egs) and excited state

(E ex)-

(1)

(2) and

where h = Plank's constant (6.624 x 10-34 Js) 

v = frequency of radiation

(3)

the frequency can be converted to wavelength (X) from:

(4) c = v X

where c = velocity of light in vacuum (2.9979 x 108 ms4)

from (3) 

(5)

v = c / X

h (C / X)  — Eex - Egg

X he / (Eex - Egg)

As these energy levels are discrete and unique to each element, the emitted 

photon is characteristic in wavelength of that element and the resultant 

emission line is narrow and well defined. Depending on the temperature of the



emission source, atoms can be ionised, either singly, doubly, etc., and these 

ions may also undergo electronic excitation to produce further emission lines.

The probability of a particular electronic transition is given by the Boltzmann 

Distribution Law:

Nj gj ( Ep
(6 ) T j-  = —  expNo go kTy

where Nj = number of atoms in an excited state 

N0 = number of atoms in the ground state 

gj = statistical weight of the excited state 

g0 = statistical weight of the ground state 

Ej = energy difference between excited state and ground state 

k = Boltzmann constant (1.38 x 10-23 J K_1)

T = temperature (K)

The emission intensity is proportional to the number of excited species.

From (6), the number of excited species and therefore the intensity of emitted 

radiation is strongly affected by the temperature of the emission source; 

increasing the temperature increases the intensity of emission lines.

The wavelengths of emission lines are not generally calculated as there are 

many possible electronic transitions for each element, the number of transitions 

increasing with atomic number and valancy. For example, in the wavelength 

range 200 - 800 nm there are more than 200,000 emission lines2 of neutral 

atoms and single ions. Emission wavelengths are given in published tables, 

such as the M. I. T. Wavelength Tables,13 in which emission lines were 

obtained from the arc, spark or discharge tube emission spectra of pure 

elements, and the spectral atlas for an ICP emission source by Fassel et al.14
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Other types of emission from the source include molecular (or band), and 

continuous spectra. Band spectra are produced by molecular emission from, for 

example diatomic molecules, e.g. N2, CN. Band spectra appear as unresolved 

broad lines with a low resolution spectrometer, and as a series of fine lines with 

a high resolution spectrometer. Continuous spectra are not atom or molecule 

specific and are produced by free electrons in the emission source. These emit 

continuous, i.e. not wavelength specific, radiation due to Bremsstrahlung and 

recombination processes. Black body radiation also contributes to the 

continuum and the intensity increases with temperature.

From the discussions above, the intensity and complexity of emission spectra 

increase with temperature. Spectra from a laser-induced plasma which has a 

relatively high temperature (-15 - 30,000 K) will therefore be much more 

complex and intense than spectra from a lower temperature source, such as a 

chemical flame (-2000 K) or an inductively coupled plasma source (-6000 K). 

Spectra will contain intense emissions from atom, and single and multiply 

charged ionic species, together with intense molecular and continuum signals. 

The spectra may be additionally complex because the laser-induced plasma is 

transient, and plasma characteristics, such as temperature and size, change 

rapidly during the plasma lifetime.

1.3 Theory of laser - material interaction processes

The laser-induced plasma results from a complex series of processes, with 

many occurring simultaneously. Much has been written about the processes 

and the many factors that affect them.7-15-18 A simplified view is presented here 

and a schematic shown in Figure 3.
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When a high power, Q-Switched laser pulse is focused onto the surface of a 

solid material, the surface in the vicinity of the laser spot is heated very rapidly 

and several processes occur within a very short period of time, on the ns time 

scale. The irradiance (power per unit area) is typically 109 to 1012 W cm-2. 

Initially, some of the laser light may be reflected depending on the reflectivity 

and nature of the surface, but this decreases rapidly as the temperature rises. 

The laser energy is thermally absorbed by the material which causes material 

to be vaporised. In the case of a conducting material, the conduction band 

electrons absorb laser photons and the energy is converted to heat through 

collisions. Heat may be lost from the surface by thermal conduction. Part of the 

absorbed energy is used to overcome the latent heats of fusion and 

evaporation to produce phase changes. Vaporisation and heating continues to 

produce a partially ionised gas above the surface of the material. Other 

processes also produce electrons and ions. These include multi-photon 

absorption, where an atom absorbs several photons to gain sufficient energy to 

cause ionisation, and thermionic emission (desorption) of ions and thermal 

electrons.

When the electron density of the gas above the sample surface is sufficiently 

high, heating by inverse Bremsstrahlung processes takes place. Here, 

electrons gain energy by absorbing photons, and transfer energy to the plasma 

through collisions with other species in the plasma. The temperature and 

electron density continues to rise and the plasma expands. An avalanche effect 

takes place causing rapid heating because the heating rate increases with 

electron density; as the number of electrons increases, the amount of heating 

through inverse Bremsstrahlung increases which causes more ionisation and 

further heating. A rapid expansion of the plasma due to energetic particles 

occurs with a supersonic velocity (2 x 10 7 cm s_1), typically at the peak of the 

laser pulse. The plume develops towards the laser beam. Heating of the

11



sample continues by the laser and plasma, and material leaves the surface as 

vapour, droplets, or superheated streams of material. The temperature of the 

plasma is of the order 104 to 105 K. As the plasma is very hot and dense, the 

plasma contains a very high density of energy. This means that the plasma 

continues to be luminous and expand for a long time after the end of the laser 

pulse. Depending on many factors, such as the incident laser energy and the 

density of the ambient gas, the post-pulse lifetime of the plasma may be from 

300 ns to 40 ps,16to 100 ps.19 The plasma cools during this time due to 

expansion and material entering the plasma.

Studies have been made photographically, with streak cameras, and 

spectroscopically to support this sequence of events.15-16-20-21 Spectroscopic 

monitoring16 of the ablation of steel in air at 0.05 Torr shows that emission from 

the plasma initially consists of an intense background continuum due to 

Bremsstrahlung processes and black body radiation. This continues to increase 

until about 150 ns after the start of the laser pulse. After this, the plasma 

intensity decreases and emission lines from elements in the sample become 

apparent. The emission lines can be measured by a suitable spectrometer to 

gain qualitative and quantitative analytical information about the sample. The 

emission lines decrease in intensity as the plasma decays to zero over a period 

of time (100 ns to 100 ps, depending on operating parameters). Improvement in 

analytical performance can be achieved when analyte emission signals are 

resolved in time from the intense background continuum.

12
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Figure 3 Schematic showing the processes involved in laser-induced plasma 

spectrometry



1.4 Instrumentation for laser-induced emission spectrometry

The laser was first used as a source for atomic emission spectrometry in 1962 

by Brech and Cross5 who used a laser microprobe. A pulsed ruby laser was 

focused onto the surface of a sample using a microscope objective lens 

through which the operator could view the sample for alignment and 

observation. The laser/laser-induced plasma removed material from the 

sample, and the laser-induced plasma was supplemented by a conventional 

electrical spark from a pair of electrodes positioned directly above the sample. 

This extra excitation is termed cross excitation. Light from the discharge was 

focused onto the entrance slit of a spectrograph and the dispersed spectrum 

recorded photographically.

Laser microprobes with cross excitation were for many years the main 

instruments used in laser-induced emission spectrometry, and commercial 

instruments were produced in the USA (e.g. Jarrell Ash Mark III), Japan (e.g. 

JEOL JLM 200), and in the former-East Germany (e.g. Carl Zeis VEB LMA 10). 

The instruments, developments and applications are described by several 

authors, notably Moenke-Blankenburg et al7 , Cremers et al8 , and Piepmeier et 

al.17 A schematic is shown in Figure 4.

Cross excitation improved certain aspects of analytical performance, such as 

sensitivity, and minimised the effect of the strong background continuum from 

the laser-induced plasma. The disadvantages of cross-excitation were 

recognised by many authors,7-8 and Van Deijck22 concluded that the technique 

was not sufficiently reproducible to become fully quantitative. Subsequent 

studies have concentrated on using the laser-induced plasma as the sole 

energy source in order to simplify the instrumentation and remove the 

disadvantages of cross-excitation. Advantages include simpler methodology, 

because no auxiliary equipment is needed as the laser vaporises and excites

14



the sample. Also it is possible to make non-invasive measurements as the laser 

plasma can be produced remotely. Many studies have investigated and used 

procedures such as internal standardisation, spatial and time resolution to 

improve analytical performance. Time resolved measurement and modern 

optical multichannel analysers (OMAs) have compensated for the lack of cross 

excitation and have brought improved performance. The instrumentation used 

has generally been modified laser microprobe analysers, or laboratory 

assembled equipment.

prism A
laser beam 
< ---------

c1fglmpr.cdr

microscope

cross excitation electrodes

vapour

sample

Figure 4 Schematic of a commercial laser microprobe showing the electrodes 

for cross excitation.23
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1.4.1 Laser types

The types of laser used in laser-induced plasma emission spectrometry are 

listed in Table 2 together with output wavelengths. The main difference is the 

type of active medium used to produce the laser light, and the phase of the 

medium, either solid or gas.

Laser Phase of 

active medium

Wavelength (nm)

Ruby solid 694

Nd:Glass solid 1064

Nd:YAG solid 1064

Nd:YAG

(Frequency Doubled) solid 532

Nd:YAG

(Frequency Quadrupled) solid 266

n2 gas 337.1

C02 gas 10600

Excimer XeCI gas 308

ArF gas 193, 248

Table 2 Types of laser used in laser-induced plasma emission spectrometry

The ruby laser found widespread use in the laser microprobe analysers and in 

early laser induced breakdown spectrometry work, but has generally been 

superseded by the Nd:YAG laser, (neodymium yttrium aluminium garnet). This 

laser has been used in most studies since 1980. The advantages of the 

Nd:YAG are that it is robust and fairly compact, can operate at higher repetition 

rates than the ruby (15 Hz Vs 4 Hz), and has better repeatability of shot to shot 

output. The infrared laser output (1064 nm) of the Nd:YAG is absorbed by most
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materials making it suitable to ablate a wide range of materials. It is generally 

used in the Q-Switched mode, in which all the energy of the laser pulse is 

released within a very short time period, typically a peak width of 10 ns. This is 

achieved by using either an electro-optically operated Q-Switched laser, or an 

acousto-optically Q-switched laser.24 The electro-optically switched is generally 

used because of the relatively high energy output, 0.5 J pulse-1 at 10 Hz. The 

acousto-optically Q-switched can generate 0.012 J pulse-1 up to a repetition 

rate of 5000 Hz.

A disadvantage of the Nd:YAG is that high energies are required to cause 

ionisation and plasma formation. Also the smallest spot size that can be 

achieved by focusing this wavelength is about 100 pm in diameter (the 

calculations are given in Chapter 2, section 2.2). To obtain higher degrees of 

ionisation and a smaller spot size, it is necessary to use a shorter laser 

wavelength. This can be achieved by using a laser with an ultra violet (UV) 

wavelength, such as a a frequency doubled or quadrupled Nd:YAG laser 

(Niemax et al25), a N2 laser (Kagawa et al26-27), or an excimer laser (Chau et 

al28, Hoffman 29 Lorentzen et al,30 Petit et al,31 Sneddon et al 32,33,34 ancj 

Weimer et al35). The UV wavelengths of these lasers are sufficiently short to 

cause the photoelectric effect by single or double -photon processes and so the 

plasma can be generated easily with relatively low threshold energy, 

(Kagawa26). Further advantages of the N2 laser include high repetition rates, 

which may improve precision, and short pulse duration (~ 5 ns), which may 

minimise selective vaporisation effects.

In the following sections, the laser type and wavelength are not generally 

recorded if a Nd:YAG laser with an output wavelength of 1064 nm has been 

used. The laser and wavelength are specified if they are different from these.
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1.4.2 Detection systems

Different detection systems have been used in laser-induced plasma emission 

spectrometry and are summarised in Table 3.

Detector Year of introduction to 

LIPS

photographic plate 1962

photomultiplier tube 1969

silicon intensified target vidicon 1981

intensified photodiode array 1981

charge coupled device 1990

Table 3 Detectors used in laser-induced plasma emission spectrometry

The photographic plate was generally used in laser-induced emission 

spectrometry as a detection device for over 25 years because of its unique 

advantages, (Cremers and Radziemski,8 1986). These are, (a) the plate can 

store permanently the position and intensity of spectral lines, (b) it has a good 

sensitivity for many elements, (c) it is fairly cheap and easy to operate. This 

versatility enables not only simultaneous recording of much of the periodic table 

but also recording of all available lines for each available element. This 

technique, however, has several disadvantages: the chemical process and the 

reading of the plate are both time consuming, the latter necessitating the skill of 

an experienced chemist; it is only semi-quantitative because of inherent errors 

in the technique, variation in the plate emulsion, chemical processing of the 

plate and difficulties in reading the plate. The lack of direct access to the 

analytical data led to the introduction of photoelectric detection systems in 1969 

by Beatrice and Glick.36 Here a polychromator with two photomultiplier tubes
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was attached to a Czerny-Turner spectrograph to facilitate the simultaneous 

measurement of an analytical line and the adjacent background, enabling 

simultaneous background correction. A system described by Marich et al37 

(1974) contained a six tube vacuum polychromator, in which six elements could 

be determined simultaneously. In a study with a three channel spectrograph, 

Moenke-Blankenburg38 found that it was possible to reduce the limits of 

detection by an order of magnitude, the precision of the determination of 

concentration was about 5% (RSD), a factor of two better than the photographic 

method, and the speed of analysis was very much faster. However the normal 

disadvantage of a direct reading spectrometer remained, namely only pre

selected elements could be determined and so photographic plates continued 

in general use for simultaneous analysis. Other elements could only be 

measured sequentially by adjustment of the channels to other wavelengths, or 

by using a scan facility.

In order to combine the speed of the direct reader with the versatility of the 

photographic plate, instrumentation has been developed which use an 

optoelectronic image device as a multi-channel detector. Initially a silicon- 

intensified target vidicon (SIT) was used,7 but this was superseded by a 

photodiode array device when these became available. Talmi et al39 (1981) 

compared both systems and found detection limits for both to be in the range 

2-500 ppm.

The silicon-intensified target vidicon tube comprises an image intensifier and a 

target crystal containing 500 silicon photodiodes, 10 mm high x 25 pm. Each 

photodiode is storage device. Incident photons neutralise part of this charge, 

the extent being proportional to the number of photons. Each photodiode is 

recharged by an electron beam and so the size of the recharging current is 

proportional to the light intensity between two scans. This signal is passed to a
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computer for processing to yield a wavelength spectrum of, for example, 30 nm. 

In terms of performance, the silicon-intensified target vidicon has similar 

sensitivity to a photomultiplier tube, but suffers from inferior signal/noise ratio.8

A typical photodiode array contains a linear array of 1024 detector elements 

(diodes, pixels),. 2.5 mm high x 25 pm, covering a length of 25.4 mm, i.e. 40 

diodes per mm. Each diode, or pixel, stores charge which is again partly 

neutralised by incident photons. The array is scanned by individual switches 

attached to each pixel opening in turn and recharging the pixel. These switches 

are field effect transistors and are part of the integrated circuit containing the 

array. It is scanned typically every 30 ms, so the integration time is 30 ms, and 

the data processed by computer to yield wavelength spectra. Depending on the 

grating utilised in the spectrometer, medium and high dispersions can provide 

spectral regions of 70 and 17 nm respectively (Talmi39). By choosing a suitable 

region, multi-element analysis can be achieved, and by scanning the grating to 

other wavelengths, a wide range of elements can be detected. A development 

has been the addition of an image intensifier located in front of the photodiode 

array (Radziemski,40 Figure 5). A microchannel plate image intensifier amplifies 

the incident light with a gain in the order of 25,000 giving improved sensitivity 

and allowing shorter integration times to be used.
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Figure 5 Typical apparatus for laser-induced plasma analysis of a material.
The detector is an intensified photodiode array (time-gated). The image of the 
laser-plasma is focused onto the entrance slit of the spectrometer with a simple 
lens, (from reference40)

More recently other measuring devices, such as the charge coupled device 

(CCD) and the charge injection device (CID) detectors have been developed 41 

and utilised in commercial inductively coupled plasma emission spectrometers. 

The charge coupled device detector is available as a linear array or as a two 

dimensional array of measuring elements, typically 512 x 512, and benefits 

from improved sensitivity and readout noise. The two dimensional array facility 

was used in an optical imaging spectrometer by lida42 (1990) to spectrally map 

laser-induced plasmas, (discussed in section 1.5.4).
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A time resolved measurement capability is advantageous when monitoring the 

laser-induced plasma in order to separate analyte emission signals from the 

intense background continuum and improve analytical performance. Various 

methods were used to achieve this with photographic detection, such as streak 

photography of the spectrally resolved emission line (Cremers et al8), or a 

system of rotating mirrors synchronised with the laser Q-Switch to sweep the 

plasma image across a spectrograph entrance slit (Piepmeier et al,43 1 969). 

With photomultiplier tube detection, electronic systems were devised to gate 

and integrate the signal (Marich et al 44 1971; Allemand 45 1972; Schroeder46 

1971). However, this photomultiplier tube technique had the disadvantage of 

measuring only one element at a time, with no possibility to make simultaneous 

background measurement unless a second photomultiplier tube channel was 

fitted. Image-intensified photodiode arrays can be used (Radziemski,40 1981) 

by switching the intensifier on and off to control the exact time period that is 

observed. This is termed 'gating'. The device has the ability to make 

simultaneous, multi-element and background measurements, and is thus a 

most powerful and convenient method to capture time resolved spectra. Studies 

of laser-induced plasma emission spectrometry since 1981 have either used 

intensified photodiode arrays, or, to a lesser extent, time-gated photomultiplier 

tubes.

A recent development (1993) in charge coupled detection (CCD) device 

technology is a 'masked' CCD, (EG&G OMA 4 )47 which enables time resolved 

measurement with a CCD. Here, only a single row of the 512 rows available is 

exposed to radiation, the remaining 511 are masked. After exposure, the 

charges on the exposed row are shifted down to the next row, which is behind 

the mask, and exposure of the first row is repeated. After each exposure, the 

charges are shifted down the array and are stored until readout at the end of 

the experiment. Time resolution is limited compared to an intensified
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photodiode array, however, the minimum delay and integration times are 3 ps 

for the 'masked' CCD compared to 20- 100 ns for the intensified photodiode 

array.

The general method of transferring radiation from the laser-induced plasma to 

the spectrometer system has been to use a straight optical path with a simple 

lens to focus the image of the plasma onto the entrance slit (Figure 5). Some 

studies have used an optical mask to shield part of the plasma in order to make 

spatial measurements. More recently, an optical fibre has been used to capture 

and transfer the emitted light to the spectrometer (Figure 6), by researchers 

such as Campos et al48 (1992), Cremers et al49 (1987), Grant et al50 (1991), 

Kuzuya et al51 (1992), and Lorenzen et al52 (1992). This has the advantage that 

spectrometer and plasma do not have to be precisely aligned, and remote 

sensing is more easily achieved. These studies have generally achieved 

analytical performance that is comparable to that obtained with a straight optical 

path, despite the losses in light intensity due to fibre optic light transmission. 

Some studies48-51-52 have used a lens arrangement to focus emitted radiation 

onto the entrance of the fibre optic in order to increase the light intensities.
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Figure 6 Schematic showing part of the apparatus used by Grant et al50 to 
measure laser-induced emission spectra of iron ore. The diagram shows the 
arrangement used to collect radiation from the plasma with a fibre optic. The 
end of the fibre optic was positioned 15 mm from the plasma and the 
acceptance angle was 35°.
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1.5 Review of analytical applications

The technique of laser-induced plasma emission spectrometry has been used 

to determine over 60 elements in a very wide range of samples in the solid, 

liquid and gas phases. The following sections discuss applications of the 

technique to the three phases.

1.5.1 Solid phase

A comprehensive review of applications with cross excitation is provided by 

Moenke-Blankenburg7 (1989), and with direct spectral analysis, i.e. no cross 

excitation, by Cremers8 (1986) up to 1986. Solid samples include minerals, 

meteorites, metals, alloys, semiconductors, glasses, ceramics, paintings, 

medical and biological specimens. Absolute detection limits are at the ng level, 

and relative detection limits about 10'3 mass percent, an order of magnitude 

worse than direct current arc optical emission spectrometry. This section 

reviews applications that use direct analysis of the laser-induced plasma.

Runge et al53-54 (1964) demonstrated the quantitative analysis of Ni and Cr in 

solid and molten iron using a Q-Switched ruby laser. Similar results were 

obtained for both samples, with linear calibration graphs using chromium/iron 

and nickel/iron ratios. Scott and Strasheim20 (1970) compared three modes of 

laser output for spectrochemical analysis. The two forms of Q-Switched firing 

generated the highest temperatures, and produced line shifts towards the red in 

the emission spectrum. They concluded that the analytical capability could be 

increased by monitoring a selected region of the plasma, and that time 

resolution was only useful with the Q-Switched laser pulse. Felske et al55

(1972) analysed steel samples using a device that moved the sample between 

laser shots so that fresh material was ablated each time. Improved precision
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was obtained (relative standard deviation, RSD, 1%), but the sensitivity was an 

order of magnitude poorer than with cross excitation.

Baldwin56 (1970) studied the Q-Switched laser sampling of copper-zinc alloys 

and found that material was removed as vapour and liquid metal. Results 

suggested there were different volatilisation rates for copper and zinc, which 

explained the error that occurred when copper was used as an internal 

standard in this matrix. Allemand45 (1972) found that the size of crater 

produced by Q-switched laser ablation depended strongly on the type of 

material ablated, and better reproducibility was obtained from metals that had 

been polished. The usefulness of time and spatial resolution was 

demonstrated.

Rare earth elements were detected in a sodium chloride matrix by Ishizuka57

(1973) at concentrations down to approximately 5 ppm with calibrations linear 

over an order of magnitude. A Q-switched ruby laser with single pulse was 

used. Furuta et al58 (1993) studied the ablation of sodium chloride and 

observed that atomic emission lines were broadened in air and some were self

reversed, but self-reversal did not occur if the sample was ablated in a 

vacuum. The line broadening was due to resonance and Stark effect.

In a series of papers, Marich, Treytl et al37- 59,60,61,62,63 (1970-1975) described a 

range of applications and studies. The effects of matrix (bovine albumin and 

human serum) upon silver and magnesium emissions were investigated.59 It 

was observed that the presence of increasing concentrations of matrix 

decreased the amount of sample vaporised, and that these effects were mainly 

physical rather than chemical. Attempts were made to intensify the laser 

absorption by adding methyl blue, but no increase in silver emission was found 

and at higher concentrations the silver emission decreased. Time resolved
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measurements were made of magnesium in aluminium foil and calcium in 

photographic film.60 Using a gate width of 5 ps, the delay time for maximum 

signal to background ratio (S/B) was found to increase with laser energy and 

was different for each sample. In a study into the effects of atmosphere,63 it 

was observed that S/B ratios did not vary systematically with laser energy and 

atmosphere, but larger values were obtained in vacuum with the lower energy 

used (1.2 mJ). It was concluded that, in certain samples, the selection of an 

appropriate atmosphere may improve S/B, but in general, there was no need to 

change the atmosphere from air. Optimal time parameters and detection limits 

were determined for a series of elements in an organic matrix (Li, Mg, Ca, Fe, 

Cu, Zn, Hg, Pb).50 The time delay varied from 4 to 16 ps, and the integration 

time from 2 to 15 ps, and detection limits were obtained of the order 10-13 to 

10-15 g. An improved instrumental system was described37 and used to analyse 

human tissue. Further work61 investigated the time differentiated analysis of 

selected regions of the laser-induced plasma. Twofold increases in response 

relative to on-axis viewing were obtained for gelatin and liver samples by using 

spatial differentiation. The optimal lateral displacement from the centre of the 

plasma varied with element, 0.5-0.75 mm. The optimal vertical distance was 

about 1 mm above the focal plane. Marich concluded that to optimise analytical 

sensitivity, advantage could be made of the heterogeneous nature of the laser 

induced plasma.

Using an intensified photodiode array, Cremers et al64 (1986) evaluated a 

range of factors affecting the analysis of steels. These included, the lens to 

sample distance, the laser energy, and the imaging lens position. The 

maximum S/B ratios for each element were with the sample positioned at, or 

close to, the laser focal point. It was observed that as the laser pulse energy 

was increased, the intensities of ion emission lines increased relative to atomic 

lines, and it was concluded that the choice of iron line for use as internal
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standard should be made carefully. In a further study65 (1985) laser-induced 

plasma emission spectrometry was compared with laser ablation - inductively 

coupled plasma - emission spectrometry for the rapid analysis of solid and 

molten steels. The ICP method appeared to have superior analytical 

performance, and the authors thought that this might be easier to incorporate 

into a steel plant environment.

Using a fibre optic for collection and transmission of emitted light, Cremers66

(1987) analysed solder and steel alloys with RSDs in the range 4-28 %. The 

fibre optic was positioned between 0.5 m and 2.4 m from the sample and a 500 

mm focal length lens was used to focus the laser light. Radziemski et al67-68 

(1986) analysed beryllium-copper alloys and considered the technique useful 

for the rapid sorting of these alloys.

The spectral emission of atoms and ions from the laser ablation of super

conducting materials for the deposition of thin films was studied by various 

authors. Yoo et al69 (1989), Geyer et al70 (1989), Weimer et al35 (1990), and 

Hoffman29 (1990) studied species emitted from YBa2Cu30 7_x, while Deshmukh 

et al59 (1988) investigated Bi2CaSrCu209 . The emission data was used to 

monitor in-situ the deposition of these materials and provide information about 

possible chemical reactions taking place in the plasma.

The spectroscopy of the plasma was used by Chita et al72 (1990) to monitor the 

performance of the laser welding of aluminium sheet, and showed that 

improved performance was obtained with nitrogen as the shield gas compared 

to Ar and He. Pramanick et al monitored73 (1991) emission spectra during the 

growth of thin films (Ti, TiN and TiSi2) with pulsed laser evaporation. Emission 

spectra were dominated by atomic and ionic titanium emissions (Ti I, Ti II), but 

signals for atomic and ionic silicon and ionic nitrogen were also observed.
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Grant et al74 (1991) quantitatively measured various elements (Ca, Si, Mg, Al 

and Ti) in iron ore, and obtained precision in the range 2-25 % (RSD) with 

detection limits of the order of 0.01 % m/m. A schematic of the instrumental set

up is depicted in Figure 3. Campos et al48 (1992) determined the carbon 

content of steel with a precision of 1.6 % and detection limit of 

65 pg/g using a. nitrogen buffer gas. Carbon was measured at 193.09 nm with a 

1 metre monochromator. In a conference abstract, Petit et al31 (1992) reported 

the use of a XeCI excimer laser to measure magnesium in aluminium alloy 

samples. Precision was 2 % (RSD) when the aluminium of the matrix was used 

as internal standard.

Sneddon et al32-33-34-75,76 (1991-92) have made a series of studies using an ArF 

excimer laser (193 nm). Using metallic targets (Zn, Cu, Ni, and Fe metals), they 

found that the radiation emission intensity from the plasma increased with laser 

energy, and that this relationship could be quantified.75 Spatial measurements 

of the plasma produced by an ArF excimer laser were made with copper and 

lead targets.76 They found that the plasma differed in size with the target used, 

and different observation positions were needed for both. It was attributed to 

the differences in thermal conductivity and boiling points of the two materials. 

Studies of the effect of atmosphere32 with the ablation of copper showed that 

the size of the plasma was affected by the type of gas and pressure used for 

ablation. They concluded that maximum S/B ratio for copper was obtained with 

argon at reduced pressure and with helium at atmospheric pressure. Space and 

time resolved studies34 showed the plasma to have a Gaussian distribution of 

atoms and ions. The lifetime of the plasma was estimated to be 100 ps. Using 

spatial resolution of the plasma, Sneddon et al33 reported the quantitative 

measurement of chromium in steel with an estimated limit of detection of

0.002 % m/m.
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Niemax et al77 (1992) calculated the spatial electron density in an argon plasma 

from time-resolved measurement studies. The density was derived from the 

shift of spectral lines and from Stark broadening. They concluded that the argon 

plasma had a larger volume than the vapour cloud from the ablated material. 

Esmiller et al78 (1992) determined the temperature and electronic density of a 

plasma induced on aluminium, graphite and silicon carbide targets. Majidi and 

Xu79 (1993) studied the use of the laser-induced plasma as a continuum 

source. They concluded that the continuum emissions generated in the first 

150 ns of the plasma lifetime should be used for optimum results.

A series of applications have focused on environmental analysis. Cremers and 

Radziemski80 (1985) determined beryllium dust collected on an air filter as part 

of a health and safety programme. The filter was rotated so that the laser- 

induced plasma (dimensions 0.1 mm x 4-8 mm) could sample a large area. 

Enhanced beryllium signal was obtained with increased rate of rotation, up to a 

maximum of 4.8 rpm, above which the signal levelled off. The limit of detection 

varied with the particle size, typically 0.45 ng cnrr'J for 0.5 to 5 pm diameter, 

with RSD for replicate analysis of 4%. Hardjoutomo et al81 (1992) reported the 

use of a compact TEA C02 laser for field-based analysis of geological samples, 

(TEA, transverse excitation atmospheric).82 Using helium gas at atmospheric 

pressure, semi-quantitative analysis was undertaken using glass reference 

materials as calibration standards. Minimum detectable concentrations were 

estimated to be 60 and 500 pg/g for zinc and fluorine respectively. Wisburn et 

al83-84 (1992,1993) evaluated the detection of heavy metals in environmental 

samples such as soils. They compared the use of two lasers, (Nd:YAG, 1064 

nm) and an excimer (XeCI, 308 nm) and found that the use of the UV 

wavelength was more efficient resulting in lower detection limits for lead in 

sand, 2 pg/g (308 nm) and 15 pg/g (1064 nm), respectively. They concluded 

that detection limits were acceptable, and with the minimal sample preparation
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required, the technique could be used as a fast screening sensor for 

environmental analysis. Cremers et al85 (1992) reported the development of a 

'Portable Laser Spark Surface Mass Analyser'. The instrument measures light 

emitted from the laser-induced plasma to detect elements, and has been 

applied to environmental analyses in the field, such as lead in paint, chromium 

in soil, lead and arsenic in industrial plant exhaust.

Laser-induced plasma emission spectrometry has been used for on-line 

process monitoring applications. Several workers have developed applications 

for the analysis of molten steel in order to monitor steel production. These 

include, Runge et al54 (1966), Cremers et al65 (1985), Jowitt86 (1985),

Lorentzen et al52 (1992), and Kim87 (1992). The technique appears to be well 

suited to this application even in this harsh environment. Jowitt86 obtained 

linear calibrations for chromium and manganese in liquid steel. Kim87 discussed 

the feasibility of making quantitative measurement with a single laser shot. The 

monitoring of elements (S, Si, Zn) in rubber slab production for tyre 

manufacture was reported by Lorenzen and Carlhoff52 (1992). A schematic 

diagram is shown in Figure 7 of the arrangement used to deliver laser light to 

the sample and transmit emitted radiation to the measuring spectrometer.

In the nuclear industry, the technique has been applied to the on-line 

monitoring of uranium concentration in liquid88-89 (1987, 1992) (described 

below, 1.4.2) Adrain et al90 (1978) studied silicon emission responses from the 

ablation of mild steel in order to measure in situ the concentration of silicon in 

the steel of nuclear reactor vessels. More recently, fundamental studies have 

investigated the remote laser-sampling and analysis of radioactive materials 

(Shuttleworth 1994).91 In the energy industry, studies have applied the 

technique to the on-line monitoring of elements in coal-gas flows,92-93-94 

(1989, 1991, 1993), (described below, 1.4.3).
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Figure 7 Schematic representation of the system developed by Lorenzen et 
al95 of Krupp, Germany, to monitor the elemental composition of rubber for tyre 
manufacture. The authors refer to the technique as 'remote laser microanalysis' 
(RELMA).

The application of laser-induced plasma emission spectrometry (LIPS) to 

the depth profiling of materials and coatings has been limited. Talmi et al39 

(1981) used a laser microprobe (ruby laser and vidicon detector) to obtain 

a quasi-depth profile of an electrical capacitor by sampling to different depths 

of the material. This was achieved by changing the size of the laser spot 

through variation of operating parameters. In discussing surface contamination, 

Cremers49 (1987) reported the ablation of aluminium metal coated with a paint 

film by using the first few laser shots to remove the paint layer. In the same 

paper, Cremers reported the removal of surface grease from a metallic 

surface prior to analysis, and the analysis of galvanised steel having removed 

the zinc coating with the first laser shots. Lorenzen et al52 (1992)
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showed a variation in the thickness of a titanium nitride coating across the 

surface of a metallic sample. Kim87 (1992) reported the variation of calcium 

concentration with depth for a sample of steel.

1.5.2 Liquid phase

Only a few applications of laser-induced plasma emission spectrometry have 

been made with liquid samples. Cremers et al97 (1984) fired the laser through a 

window in the side of a teflon cell to generate a submerged spark in the liquid. 

The laser was focused by a pair of 5 cm focal length lenses and the light 

produced was transferred through a second window to a monochromator with 

photomultiplier tube detection. Limits of detection were of the order 1 mg I"1 in 

water with RSD values of 4-8% for various elements (Li, Na, K, Rb, Cs. Be, Mg, 

Ca, B and Al). In the case of lithium, calibration was linear over four orders of 

magnitude. The effect of sample flow was found to have no effect upon 

analytical performance. Species were also detected in organic solvents 

(methanol, ethanol, acetone).

Two studies have examined the determination of uranium in nitric acid solution 

for use in the nuclear reprocessing industry. Cremers et al88 (1987) compared 

the focus of the laser at the surface and into the bulk of the liquid. The surface 

measurement was found to be more sensitive because it produced a higher 

plasma temperature, necessary for uranium excitation (U II 409.0 nm). The 

detection limit was 0.1 g M. Mauchien et al89 (1993) used a nitrogen laser (337 

nm) to measure uranium in nitric acid solution in an on-line application of laser- 

induced spectrofluorometry. The more sensitive technique used by Mauchien et 

al enabled lower detection limits to be achieved, between 5 pg M and 1 mg M.

The analysis of dry aerosols produced by a nebuliser and desolvator was 

studied by Radziemski et al98 (1988) for the determination of cadmium, lead
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and zinc. The aerosol was presented to the focal point of the laser and 

detection limits estimated to be of the 0.2 ng g-1. Crouch et a l"  (1988) used an 

isolated droplet generator as a sample introduction system. The generator 

produced droplets at a rate of 1,000 to 50,000 s_1 with volumes in the nl range. 

A flow injection manifold (sample volume 70 ml to 1.5 ml) was used to introduce 

sample solution and laser light from a Nd:YAG laser (1064 nm) was focused 

into the stream of droplets. Calibration curves linear over three orders of 

magnitude were obtained with detection limits in the low mg/l (Na, Li, In, Al, Ga, 

Mg, K and Sr). Winefordner et al100 (1992) used a concentric glass nebuliser to 

produce an aerosol that was ablated by an Ar-F excimer laser (193 nm). They 

obtained detection limits similar to those obtained by Crouch and co-workers.

In a geochemical application of laser-induced plasma emission spectrometry , 

Mermet et al101 (1991) investigated the analysis of calcium, magnesium, 

sodium and potassium in individual fluid inclusions. The analysis of the fluid 

inside an inclusion can provide information about the history of the parent rock, 

such as the minerals that the rock was formed from originally. Good analytical 

data were obtained for synthetic fluid inclusions suggesting that the method 

should be further explored.

1.5.3 Gas phase

Radziemski and Loree102 (1981) studied the real-time analysis of gas samples. 

With the addition of time-resolved detection103 (1981), the authors reported 

significant improvements in analytical performance. The limit of detection was 

improved from 690 to 15 ppm (m/m) and from 120 to 60 ppm (m/m) for 

phosphorus and chlorine respectively. Radziemski et al104-105 (1983, 1983) 

detected beryllium in air, and chlorine and fluorine in air106 (1983). Detection 

limits were 0.5 ng g_1 (m/m), 8 and 38 ppm (m/m), respectively. Eden et al107
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(1991) measured the trace concentrations of polyatomic species (B2H6, PH3 

and AsH3) in helium with detection limits of about 1 ppm.

Radziemski et al92-93 (1989, 1991) monitored in-situ the composition of coal 

particles in a flowing gas stream. The semi-quantitative analysis enabled four 

coals to be analysed for silicon, aluminium, iron, titanium, calcium and 

magnesium. Radziemski et al108 (1985) measured the variation of temperature 

and electron density with time for a plasma induced in air with a C02 laser. The 

results implied that there was thermodynamic equilibrium between the oxygen 

species monitored. Singh et al94 (1993) successfully used a Nd:YAG laser at 

532 nm to measure relative concentrations of calcium, aluminium, barium, 

manganese, magnesium, iron strontium and titanium in the combustion 

environment of a coal-fired power station.

1.5.4 Studies to improve analytical performance

Several researchers have made studies into the parameters affecting 

performance, such as laser energy, distance of sample from laser focal point, 

presentation of sample (same spot or fresh area for ablation), number of 

cumulative laser shots, type of gas atmosphere and pressure at point of 

ablation, sample matrix, etc. Additionally, work has been directed into 

techniques which might improve aspects of performance, such as precision, a 

major limitation in semi- and full quantitative laser ablation. Much of this centres 

on using some form of internal standard to reduce errors and increase 

repeatability, e.g., ratio the line intensities of analyte and matrix elements, 

measure the crater volume produced by each ablation and normalise this with 

the emission data to standards, measure and use the primary plasma intensity 

as with the crater volume method. Studies have generally used time-resolved 

measurement to improve analytical performance. Other investigations include
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spatial resolution where only a specific part of the plasma is spectrally 

analysed, the remainder being masked.

Buffer gas type and pressure 

Buffer gas type and pressure have been investigated by several groups: 

Niemax et al,109-110 lida et al,111-42 Kuzuya et al,112 Piepmeier et al,113 

Marich et al,37 Sneddon et al 32>34 Gases studied include air, argon, neon and 

helium at different pressures for a range of sample types. General conclusions 

were that reduced pressures of argon gave improved analytical performance, 

and helium may be better than air at atmospheric pressure. The studies are 

reviewed below.

Niemax109 (1989) measured silicon, chromium and iron emission as a function 

of argon gas pressure and time delay (time between start of laser pulse and 

start of measurement). A 30-fold increase in line intensity for silicon (288.2 nm) 

was obtained when the pressure was reduced from 1000 mbar to 140 mbar. 

When the gas pressure was reduced further, the signal intensity decreased.

The main reason for this maximum appeared to be that this pressure is an 

optimum in the atomisation process, despite the fact that the size and 

temperature of the plasma change with argon pressure. The argon pressure 

determined the mean free path of the particles, which penetrate the hot argon 

plasma, and thus the atomisation, excitation and ionisation processes. The 

background intensity was also measured and was found to have a similar 

temporal behaviour but decreased faster, thus the S/B ratio increased with time. 

The maximum S/B ratios at pressures of 5, 140 mbar were at time delay 4-6, 8- 

12 ps respectively. In another study, Niemax et al110 (1992) found that argon 

was the best buffer gas at reduced pressure (300 mbar), and suggested that for 

atmospheric pressure, neon should be used.
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Piepmeier and Olsten113 (1971) observed that the emission spectra, crater size, 

and amount of material vaporised were affected by the gas pressure. At 

760 Torr, the crater diameter and amount of material vaporised remained fairly 

constant when the laser energy was increased, but with reduced pressure,

(1 Torr), both parameters increased with laser energy. The results appeared to 

be caused by absorption of a large fraction of the laser energy by the 

atmospheric plasma at higher pressure, reducing the amount of laser energy 

available at the sample surface to ablate material. In an earlier study, 

Piepmeier115 (1969) made time and spatially resolved measurements of 

aluminium in air. These suggested the rapid formation of an atmospheric 

plasma initially containing little sample material. The resulting intense 

background spectra lasted only a few tenths of a ps and could be time-resolved 

from the analyte emission lines that last for many ps. It was also noted that a 

large fraction of the laser energy was absorbed by the plume, and that the hot 

plume continued to cause sample vaporisation after the laser pulse had 

finished.

lida111 (1989) studied the emission characteristics of the laser induced plasma 

in argon at reduced pressures using time- and spatially- resolved emission 

profiles. In comparison to atmospheric pressure ablation, the emission period 

was lengthened to over 100 ps and the plasma extended to a few tens of 

millimetres above the sample surface at reduced pressure. The emission 

intensities of atomic lines were observed to increase several fold in argon 

relative to air at the same pressure. It was suggested that the chemical 

inertness and thermal characteristics of the argon plasma, and the decrease in 

absorption of the laser pulse by the plasma plume, accounted for these results. 

In another paper, lida42 (1991), made simultaneous, spatial mapping 

measurements of the laser induced plasma with a novel optical imaging 

spectrometer. This instrument focused the spectrally-resolved image of the
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plasma onto a charge coupled device detector to produce an emission intensity 

contour map. Measurements were made for the ablation of aluminium metal,

(Al (I) 396 nm, background 400 nm), in different gases (air, Ar and He) at a 

range of pressures (10, 100, 760 Torr). Contour maps were prepared of the 

aluminium 396 nm signal with the background subtracted, and of the 

background. It was observed that the most intense aluminium emission in argon 

and air was at the reduced pressure of 100 Torr. At this pressure the 

background emission was very small relative to that detected at 760 Torr. The 

helium atmosphere produced strong aluminium emission with little background 

at 760 Torr, and both signals decreased with a reduction of pressure. The 

explanation proposed was that the plasmas developed in argon or air were 

more absorptive of the laser light than those in He. This is because argon, 

nitrogen and oxygen are more easily ionised than helium and this produces 

more electrons at the beginning of plasma formation. This results in more 

energy absorption from the laser through electron-dependent processes such 

as electron-neutral and electron-ion inverse Bremsstrahlung. In addition the 

pressure of the ambient gas relates directly to the plasma density, so that an 

increase in pressure results in an increase in absorption coefficient. This 

absorption of laser energy by the plasma induces higher plasma temperatures 

and greater background continuum emission, and a corresponding decrease in 

laser energy reaching the sample and so less material is vaporised, lida 

concluded that argon at reduced pressure would be the most suitable for 

emission analysis, and for atmospheric measurements, helium gas could be 

used, but air at atmospheric pressure was not a good atmosphere.

The effect of argon buffer gas pressure on the copper and aluminium alloys 

was studied by Kuzuya and Mikami112 (1992). It was found that self-absorption 

was reduced with a reduced-pressure argon atmosphere, but increased 

emission intensity was obtained with higher pressures due to the confining
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effects of the plasma. Overall, it was concluded that a reduced argon pressure 

would be most useful.

Kuzuya et al116 (1993) found that the emission characteristics of the laser- 

induced plasma were strongly influenced by the ablation atmosphere and laser 

energy. Increases in laser energy and gas pressure resulted in high emission 

intensities for the ablation of a nickel alloy. At atmospheric pressures, however, 

higher laser energy did not produce higher intensities, and the highest 

intensities were achieved at reduced pressure of argon with high laser energy. 

Sneddon et al32-34 (1992) ablated copper using an ArF laser (193 nm) and 

concluded that improved signal/background ratio was obtained at reduced 

pressures with argon, and at atmospheric pressure with helium.

Effect of laser wavelength 

Niemax et al25 (1992) studied the effects of laser wavelength upon ablation. 

Two wavelengths from a Nd:YAG laser, 266 nm (fourth harmonic) and 1064 nm 

(fundamental wavelength) were compared, and it was observed that, although 

the UV radiation ablated more sample mass with the same pulse power, 

element emission intensities were much lower because the plasma was more 

constricted. It was concluded that laser ablation with UV laser radiation required 

an additional atomisation step such as ICP-AES. Lorenzen et al52 (1992) used 

a wavelength of 248 nm (excimer KrF) in preference to 1064 nm (Nd:YAG) for 

the analysis of rubber materials because it did not produce thermal side-effects 

on the sample surface. Mermet et al117 (1993) obtained results for UV ablation 

(nitrogen 337 nm) in air at atmospheric pressure which were only slightly 

degraded compared to reduced pressure ablation. They suggested that these 

conditions were suitable for analytical applications. Mermet et al118 (1994) 

compared infrared (Nd:YAG, 1064 nm) and ultraviolet (excimer XeCI 308 nm, 

ArF 193 nm) laser ablation with copper metal, and found that UV ablation
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removes more material per laser shot and produced a simple, more 

reproducible plasma than IR ablation. They concluded that UV ablation was to 

be preferred with coupled techniques (LA-ICP-MS) as analytical performance 

(reproducibility, matrix effects, sensitivity) was significantly improved over IR 

ablation.

Use of internal standard 

Niemax109 (1989) obtained precision of typically 6 % RSD when calibration 

curves were obtained for silicon and chromium using five or ten measurements 

of thirty laser shots each, but was improved to 2.4% when an appropriate iron 

line was used as internal standard. Detection limits were 30 pg/g and 200 pg/g 

for chromium and silicon respectively. It was noted that there was negligible 

loss in precision when 10 laser shots were used instead of 30. The standard 

deviation was partly caused by micro-inhomogeneities in the sample. In a 

further study of internal standardisation, Niemax et al114 (1989) observed that 

the zinc and copper emissions showed different temporal behaviour, the zinc 

line reached a maximum intensity at 2 ps, copper at 5 ps. Fractional 

evaporation from the ablated droplets occurred because zinc and copper have 

very different vapour pressures. Niemax concluded that if the same criteria 

were adopted as for iron/chromium above, i.e. similar wavelength and excitation 

energy, taking the ratio of zinc to copper would not improve analytical 

performance. Niemax et al99 (1989) calculated the temperature of the plasma 

as a function of time for a series of binary iron-chromium alloys by measuring 

simultaneously the relative line intensities of four iron lines (299.04, 300.96, 

301.15, 302.65 nm). It was observed that the temperature decreased very 

rapidly initially (3-6 ps), but was much slower at later times (9-12 ps). It was 

assumed that at early times, the sample plume was not completely mixed with 

the argon plasma and as mixing took place the temperature decreased. At later 

times the mixing was almost complete and so the temperature decreased

40



slowly. The temperature obtained for the different samples varied considerably, 

the temperature decreased with increasing chromium content. It was shown by 

measuring crater volume that, as the chromium content increased more 

material was ablated, and a lower plasma temperature was recorded. It was 

concluded that this strong matrix dependence implies that calibration should be 

made with standards of composition as close as possible to the samples, and, 

reference lines for ratioing should have a similar temperature behaviour to the 

analytical line, (i.e. comparable excitation energies).

Effect of magnetic field 

The effect of a pulsed magnetic field on the laser-induced plasma was studied 

by Goldberg and Mason119-120 (1991) with aluminium metal samples. Two to 

five-fold enhancements of the emission intensity were obtained with the 

magnetically compressed plasma, but it was not considered a significant 

analytical advantage with the low magnetic coupling achieved in the studies.

Other studies

Kuzuka121 (1987) developed a calculation procedure to correct for self

absorption of spectral lines. It was found that calibration curves for copper in 

aluminium alloy became unity after correction for self-absorption. Yeung et al122

(1988) monitored the acoustic signal associated with plume generation as an 

internal standard. It was shown that the acoustic signal could be used to 

normalise fluctuations in emission intensity over three orders of magnitude, and 

it was thought that the technique could be used where experiment conditions 

vary significantly such as depth profiling. Radziemski et al123 (1989) modelled 

the emission spectra formed on a carbon surface to obtain the behaviour of the 

intensity profiles of the carbon atom (247.8 nm) and carbon ion (251.1 nm) lines 

and the carbon atom Stark shifts. Kagawa et al124 (1993) used a tube 

(dimensions 7 x 7 x 20 mm) in front of the sample to confine the laser-induced

41



plasma. The C02 laser was fired down the tube at the sample and the 

confinement caused element intensities to increase. The authors concluded 

that sensitivity may be improved for certain elements and this may be useful for 

elements such as the halogens.

1.6 Conclusions

From the discussion of laser-material interactions, it can be seen that several 

complex processes are involved in laser-induced plasmas. This complexity is a 

major cause of the relatively poor analytical performance (precision and 

sensitivity) of the spectrometric technique compared to more conventional 

approaches such as inductively coupled plasma spectrometry. Additional 

sources of error centre on the relatively small amounts of material sampled by 

the laser leading to problems if samples are not sufficiently homogenous. Other 

laser ablation techniques, such as laser ablation inductively coupled plasma 

emission and mass spectrometry's, also suffer from poor precision for these 

reasons. The laser-induced plasma emission technique retains many 

advantages, such as rapid, in situ and simultaneous multi-element capabilities, 

such that many groups continue to research the method and develop new 

applications.

Improved performance, i.e. sensitivity and precision, can be achieved for 

different applications by optimising operating parameters, such as laser energy, 

sample position relative to the laser focus, and by using methods such as time- 

resolved measurement, etc. Some studies have utilised different buffer gases of 

various pressures at the ablation site to improve performance. Many studies 

have used correction methods, such as internal standardisation, to improve 

precision, but these need to be applied with care. For example, different rates 

of volatilisation were reported for copper and zinc from a copper/zinc alloy by 

Baldwin et al56 and Niemax et al,109 resulting in worse performance if one
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element was used as internal standard for the other. Although improved 

performance can be achieved with the use of buffer gases such as argon at 

partial pressures, industrial applications such as process monitoring have 

utilised atmospheric pressures because high sensitivity is not necessarily 

required and it may not be feasible to achieve partial pressures.

Instrumentation for laser-induced plasma emission spectrometry generally 

consists of a Q-switched Nd:YAG laser and an optical multi-channel analyser 

fitted with an intensified photodiode array detector. The Q-switched Nd:YAG 

laser is rugged, relatively compact and low cost compared to other lasers. The 

fundamental wavelength of 1064 nm from the Nd:YAG is normally used 

because this wavelength is readily absorbed by almost all materials to produce 

laser ablation and a laser-induced plasma for analytical measurement. More 

recently, the use of ultraviolet laser wavelengths has been examined. A fibre 

optic is generally used to collect and transfer radiation from the laser-induced 

plasma to the spectrometer because it facilitates easy alignment and capture of 

radiation and allows remote location of the spectrometer if required. For 

detection, an optical multi-channel analyser fitted with an intensified photodiode 

array detector is generally used because it enables simultaneous, multi-element 

analysis with time-resolved measurement.

Industrial applications such as process monitoring have been developed that 

have exploited the advantages of laser-induced emission spectrometry. For 

example, the rapid, remote sensing capabilities have enabled the in situ 

monitoring of steel and rubber production. The speed of analysis has been 

utilised in recent environmental analysis applications, such as the detection of 

heavy metals in soils, to provide a rapid, survey analysis capability. Laser- 

induced plasma emission spectrometry has been widely applied to the analysis 

of metals, but few applications to the analysis of polymeric, ceramic, or organic

43



materials, liquids, or coatings on substrates have been reported. There has also 

been little development of methods to rapidly process laser-induced emission 

data towards real-time data analysis. Artificial intelligence techniques have not 

been applied to the pattern recognition of laser-induced emission spectra.

There is considerable potential for research in these areas for the development 

of new applications, which will further the understanding of the laser-induced 

emission technique.

1.7 Aims and objectives of this work

The aim of this research is to further the understanding of laser-induced plasma 

emission spectrometry through the study of new applications. The objectives 

are to configure an integrated laser-induced plasma emission spectrometer 

system using the most appropriate instrumentation. This includes a Q-switched 

Nd.YAG laser with an infrared laser wavelength that is readily absorbed by 

most materials, fibre optic for collection and transmission of the emitted 

radiation, and an optical multichannel analyser with an intensified photodiode 

array detector to provide a time-resolved, simultaneous multi-element analysis 

capability. The performance of the optical multichannel analyser will be first 

evaluated with a stable emission source (an inductively coupled plasma 

emission source), and then with the laser-induced plasma emission source. 

Studies will investigate basic aspects of laser-induced plasma emission 

spectrometry to provide information about laser-induced plasma characteristics. 

Novel applications will be devised to provide insight into the processes of laser- 

induced emission spectrometry. The areas to be studied are the rapid survey 

analysis of polymeric materials, and the depth profile measurement of coatings 

on substrates. The influence of key operating parameters upon emission 

characteristics and performance will be examined for both types of materials.

The polymer studies will exploit the capabilities of the technique towards bulk
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analysis of non-conducting materials, and may enable samples to be rapidly 

identified by their elemental composition. The depth profile investigations will 

utilise the in situ, micro-analysis capabilities of the technique, and may provide 

a new method for the rapid measurement of coating thickness. In addition, a 

new, rapid data processing technique will be devised to exploit the real-time 

analysis capabilities of laser-induced plasma emission spectrometry. In this 

study, the rapid pattern recognition capabilities of artificial neural networks, a 

form of artificial intelligence, will be applied to laser-induced emission spectra.
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2.1 Introduction

This chapter describes the instrumentation and methods used to study laser- 

induced plasma emission spectrometry (LIPS). An integrated LIPS system was 

configured in which an optical multi-channel analyser (OMA) was used to 

monitor light emitted from the laser-induced plasma produced by a Q-switched 

Nd:YAG laser. The method of integrating the operation of the laser and OMA is 

described together with details of the system components. In addition, 

inductively coupled plasma (ICP) instrumentation is described.

2.2 Laser-induced plasma emission spectrometry 

Laser

A Spectra Physics Quanta Ray DCR II Nd:YAG laser was used in these studies. 

It is a pulsed, solid state laser with an output of 1064 nm, a repetition rate of 

10 Hz (10 pulses s 1), and can be Q-switched. Key components include a 

neodymium doped yttrium aluminium garnet (Nd:YAG) excitation medium, a 

xenon flash lamp, a Q-switch and a resonant cavity, (Figure 1).1,2,3

output coupler
mirror flashlamp

high reflector 
mirror

Q-switch

F7

laser light A Nd:YAG crystal 

<------
resonant cavity

Figure 1 Schematic diagram of the Nd:YAG laser
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The principle of laser action (light amplification by stimulated emission of 

radiation) is depicted in Figure 2 and is as follows.
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Figure 2 Diagram of the 4-level energy transition scheme for the Nd:YAG laser

The active medium (Nd 3+ ions in a host aluminium garnet crystal) is optically

pumped by the pulsed flash lamp causing electrons to gain energy and move to

high energy levels. The excited electrons quickly decay to the upper lasing

transition level (F3/2), which is metastable, where they can remain for a

relatively long period of time (~230 ps). The most probable transition is to the

l11/2 state, from where electrons quickly decay to the ground state. Thus, a

population inversion is easily built up at the F3/2 level. This energy is released

through stimulated emission to produce laser light at 1064 nm. In stimulated

emission, a photon of specific wavelength, i.e. 1064 nm, impinges on an

excited electron (at F3/2) resulting in 2 photons of the same energy travelling in

the same direction and in phase. The first photons are produced by random,

spontaneous emission. The mirrors at either end of the optical cavity only

reflect light that is travelling along the axis of the cavity, perpendicular to the

mirrors, and stimulated emission in other directions passes out of the cavity.

Light passes back and forth within this resonant cavity causing further
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stimulated emission. It is released by the output coupler as a pulse of laser light 

lasting ~200 ps, the duration of the flash lamp illumination. The output coupler 

in this diffraction coupled resonator (DCR) laser is a small, high reflector 

mounted on a clear substrate on the optical axis of the resonant cavity. Light 

escapes from the resonator by diffraction around this dot.

Laser energy can be released in two modes, long pulse (normal) and Q- 

switched. In the long pulse mode, the energy is released as above, to produce 

a train of laser pulses lasting about 200 ps. In the Q-switched mode, the Q- 

switch acts as a high speed shutter. It is closed initially to prevent lasing action 

causing the build up of a large population inversion at the upper lasing 

transition level (F3/2). When the maximum population inversion is achieved, 

(-220 ps after the start of the flash lamp), the Q-switch is opened and the 

energy is released as a single giant pulse. The pulse width is less than 10 ns, 

and the peak optical power is of the order of megawatts. This Q-switched mode 

is used in LIPS as the high peak power, when focused to a small spot size, will 

produce a high power density sufficient to induce a plasma at the surface of a 

sample.

Q-switching means changing the Q (quality factor) of the cavity resonator.

When the Q factor is high, the cavity stores the energy well (Q-switch closed, 

large population inversion builds up), and when the Q factor is low, the cavity 

emits laser light rapidly (Q-switch open). The Q-switch in this laser is an electro

optic device consisting of a Pockels cell, quarter-wave plate and a polariser, 

(Figure 3). When a high voltage is applied to the Pockels cell crystal, the 

polarisation characteristics of the cell are changed which determines whether 

light is returned to the cavity and the cavity can resonate or not. When the Q- 

switch is closed, no voltage is applied and so the Pockels cell does not affect 

the polarisation of light passing through it. Light entering the Q-switch is
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vertically polarised by the polariser and then circular polarised by the quarter- 

plate polariser. When the light returns from the reflector, it is converted to 

horizontal polarised light by the quarter-plate polariser. This light is reflected out 

of the cavity by the polariser as it will only transmit vertically polarised light and 

so lasing does not occur. When the Q-switch is opened, a fast high-voltage 

pulse is applied to the Pockels cell which cancels the polarisation of the 

quarter-plate and so the vertically polarised light is transmitted by the polariser 

and lasing will occur. In the long pulse mode, the Q-switch is open throughout 

the flash lamp illumination and so laser light is released as a train of pulses 

lasting the duration of the flash lamp.

high
reflector

polariserquater-w ave Pockels
plate cell

Figure 3 Diagram of the laser Q-switch

Laser radiation has several unique properties. It is monochromatic, 

unidirectional, intense, and coherent (same phase and polarisation). A laser 

beam has low divergence so that the beam diameter, 6.4 mm here, is 

maintained over relatively large distances. These properties enable laser light 

to be focused to a small spot size with very high irradiance, typically 1011 W cm2 

in Q-switched mode, such that a plasma will be induced at the laser focal point. 

Emission from the laser-induced plasma is monitored in this study with an 

optical multichannel analyser, described in the next section.
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Irradiance is defined as power per unit area, and is calculated from the laser 

energy per pulse and the area of the laser spot.4-5 Below are the calculations to 

obtain values for irradiance produced by two laser energies (laser flash lamp 

energies 70 and 40 J) with the focus lens that is used in these studies (focal 

length 500 mm).

a. calculation of laser power

(1) power = energy / unit time (watt = joule second'1)

Laser power is ideally measured directly from the laser with a power meter, but 

it is calculated here from the laser manufacturer's specification because no 

power meter was available.

- from laser manufacturer's specification:

70 J laser flash lamp energy = 275 mJ laser energy 

laser pulse width = 8-9 ns, assume = 10 ns 

therefore, laser power = 275 mJ per 10 ns 

as power (watt) = J s_1, laser power per s = 27.5 x 106 W

b. calculation of the area of the laser spot from the focal spot diameter 

for a Gaussian beam, the focal spot diameter (d) is given by:

(2) d (nm) = n X B

where: X  = wavelength of laser radiation

F = focal length of focus lens 

D = diameter of laser beam

for these studies: X  = 1.064 pm

F = 500 mm 

D = 6.4 mm
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focal spot diameter (d) = 105.8 pm

= 1.058 x 10'2 cm

(3) area of laser focal spot (cm-2)

.*. area of laser focal spot =

c. Calculation of irradiance

(4) irradiance = power / unit area (watt crrr2)

irradiance for laser flash lamp energy 70 J = power / unit area (watt cnr2)

27.5 x lO 6 
0.8791 x l0 “4

irradiance for laser flash lamp energy 70 J = 3.1 x 1011 W cm-2

irradiance for laser flash lamp energy 40 J = 7.8 x 1010 W cm-2

calculation of irradiance for laser flash lamp energy of 40 J:

the estimated laser energy for this laser flash lamp energy is 70 mJ, from:

- assuming laser flash lamp energy is proportional to laser energy

- lasing threshold is at laser flash lamp energy 30 J = 0 laser energy 

and laser flash lamp energy 70 J = 275 mJ laser energy

.-. laser flash lamp energy 40 J = 7.0 mJ laser energy

laser power = 6.87 x 106 watt

7i d2
4

0.8791 x 10-4 cm-2
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From (2), it can be seen that the laser spot size is governed by the focal length 

of the focus lens, the diameter of the laser beam, and the wavelength of the 

laser. From (4), irradiance is increased by reducing the size of the laser spot. 

To decrease the size of the laser spot size and thereby increase the irradiance, 

the laser wavelength or the focal length of the focus lens can be decreased. 

Calculated values are shown in Table 1 of the laser spot diameter produced by 

a shorter laser wavelength (266 nm), and a shorter focal length focus lens 

(100 mm), than the laser wavelength and focus lens used in these studies 

(1064 nm, 500 mm, respectively).

Laser Wavelength (nm) Focal Length of Focus Calculated Laser Spot

Lens (mm) Diameter (pm)

1064* 500* 105.8

1064 100 21.16

266 100 5.29

* laser wavelength and focus lens used in these studies

Table 1 Calculated laser spot diameters for different laser wavelengths 
and focus lenses

The depth of focus (DOF) for a Gaussian beam is given by:

(5) DOF =
v 7i y

where F = focal length of focus lens (500 mm) 

D = diameter of laser beam (6.4 mm) 

DOF for 500 mm focal length lens = 16.5 mm

This indicates that when a focus lens of focal length 500 mm is used, the 

sample should be placed more than 16.5 mm from the laser focal point for the

sample to be ablated with defocused laser radiation.
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Optical multichannel analyser

An optical multichannel analyser (OMA) is a versatile spectrometer system that 

can be configured to measure light for a wide variety of experiments. The OMA 

used here (EG&G OMA III) was purpose-configured to measure ultra violet (UV) 

to visible radiation on the sub-jis time scale, suitable for use in laser-induced 

plasma emission spectrometry (LIPS). It is depicted in Figure 4 and consists of 

an intensified photodiode array detector mounted onto the exit port of a 

compact spectrometer, and several electronic units to control the operation of 

the spectrometer, detector and data acquisition. The components are 

summarised in Table 2 and are described below.6

IBM-type
PC

printer plotter

14621461

Detector Interface 1303

1304Spectrometer
Controller Gate Unit

Light Source

Fibre Optic

Spectrometer 1235

Intensifier

Detector
domashce.doc

Figure 4 Schematic diagram of the optical multichannel analyser (OMA) system
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EG&G 

Model Number

Description

1455B-700HQ Detector: gateable, intensified, silicon photodiode array, 

photosensitive material (multi-alkali on quartz) with blue enhanced 

response, 1024 pixels, >700 active pixels, 

pixel dimensions 25 pm x 2.5 mm (width x height)

1235 Spectrometer: Czerny-Tuner mount, focal length 0.275 m, 

aperture ratio f/3.8, entrance slit 25 pm x 18 mm,

3 grating turret fitted with two gratings

1 2 3 5 /8 6 Grating 1: ruled grating 1200 groove/mm, blaze 250 nm, 

spectral window -5 0  nm, dispersion 0.07 nm/pixel

1 2 3 5 /7 2 Grating 2: holographic grating 2400 groove/mm, blaze 250-500 nm, 

spectral window -2 5  nm, dispersion 0.03 nm/pixel, 

effective resolution 0.20 nm

1461 Detector interface unit: electronics and microprocessor to control 

detector; contains electronic cards 1462, 1303

1462 Detector interface card (in 1461)

1303 Gate pulse interface card (in 1461)

1304 Gate pulse amplifier: controls gate width, gate delay

M1235 /52 Fibre optic cable: length 2 m, bundle of 19 x 200 pm UV grade fused 

silica, acceptance angle 25°

SMA input (diameter 1.2 mm)

Viglen Vig SX-20 IBM-compatible personal computer running OMA2000 software

OMA2000 Software package to control detector interface (1461)

Table 2 Components of the optical multi-channel analyser, EG&G OMA III 

Spectrometer

Radiation is collected and transmitted from the light source by the fibre optic 

cable to the spectrometer. The light is dispersed spectrally by the grating and 

detected by the intensified photodiode array. The spectrometer has a crossed 

path Czerny Turner optical layout, Figure 5. It is equipped with a choice of two

gratings of different dispersions mounted on a turret. The chosen grating is
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positioned by a microprocessor-controlled stepper motor with worm-gear drive. 

This rotates the turret until the desired wavelength region covers the detector. 

Selection of grating and spectral region are made through the spectrometer 

control unit or the OMA2000 software.

light path

focusing mirror
entrance slit

entrance turning 
mirror

grating

turret

exit turning 
mirrorspectrom.cdr

exit port
collimating mirror

Figure 5 Diagram of the spectrometer of the optical multichannel analyser

Intensified photodiode array detector

This comprises a microchannel plate (MCP) image intensifier coupled via fibre 

optics to a linear, silicon photodiode array, Figure 6. The photodiode array 

(EG&G Reticon) consists of 1024 photodiodes mounted on a single integrated 

circuit. This also contains electronic circuits to read each photodiode. Each 

photodiode, or detector element (pixel) is a photo-sensitive area of dimensions 

25 pm length by 2.5 mm width. Thus the array is 25.6 mm long by 2.5 mm wide. 

It is mounted on a Peltier-effect cooler to reduce the array temperature to a 

fixed level of 5 °C in order to reduce the ‘dark current’, signal resulting from 

heat rather than light. The intensified detector is purged with dry nitrogen at 5

cubic feet per hour to prevent condensation and damage.
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microchannel 

plate intensifer
peltier-effect

cooler
photocathode on 
silica w indow

phosphor

light

FRONT
A 

-1 kV

-200 V +5
dintpda.doc

fibre optic coupled 

photodiode array

Figure 6 Schematic diagram of the intensified photodiode array detector

At the front of the intensifier is a photocathode (Pk) that emits electrons when 

struck by photons. These electrons are accelerated by a Pk to MCP voltage 

and most enter the MCP after crossing the small distance between the Pk and 

MCP. The MCP consists of a bundle of fine glass tubes which have partially 

conducting walls. The electrons are accelerated by the potential difference of 

-700 V between the ends of the microchannels which causes them to collide 

with the microchannel walls. The microchannels act as electron multipliers and 

each collision causes more electrons to be liberated. The electrons leaving the 

MCP are accelerated towards a phosphor screen by a 5 kV potential difference 

between the MCP and the phosphor. This causes photons to be emitted from 

the phosphor which are transferred by fibre optics to the photodiode array for 

detection.
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The intensifier can be rapidly switched on and off, i.e. gated, because the close 

proximity of the photocathode and the entrance of the MCP requires only a 

small change in voltage to prevent electrons entering the MCP. It amplifies the 

signal reaching the detector with a gain of up to 25000. This enables the 

detector to be used with very short integration times, down to 100 ns with this 

system. The intensifier is 18 mm in diameter enabling more than 700 pixels to 

be active, (-730).

The photodiodes are reverse-biased so that they are, in effect, charged 

capacitors. When light strikes a photodiode, electrons are freed that discharge 

the capacitance. The charge is dissipated at a rate proportional to the intensity 

of the light flux. This process takes place until the pixel is read by the 

measuring circuits which connect each photodiode in turn to the detector’s 

amplifier. This signal is measured for each pixel and these data comprise a 

spectrum. As each pixel is read in turn and the time per pixel is 28 ps, the cycle 

time for each scan of the array is 30 ms which includes overhead time for any 

processor decisions or triggers to be made. Thus the integration time is 30 ms. 

As described above, the intensifier can be rapidly switched on and off to enable 

gating of the light signal. This enables the detector to be used in two ways. (1)

In the free running mode, the intensifier is always on and the array is read every 

30 ms with a fixed integration time of 30 ms. This is suitable for the OMA to be 

used with a light source such as an ICP or a discharge lamp. (2) In the gated 

mode the intensifier acts as a high speed shutter, being turned on and off very 

rapidly, to enable measurement at a precise time for a variable integration 

period. Here the timing sequence is: intensifier off and array is read to clear 

each pixel; after required delay, intensifier switched on for pre-set time to 

integrate light signal; at the end of the integration time, the intensifier is 

switched off; the array is read and the process can then be repeated. The time 

delay and the integration time can be varied separately, from a minimum of
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100 ns to several seconds. This gating and the increase in gain provided by the 

intensifier are exploited in LIPS to undertake time-resolved measurements.

A disadvantage of a photodiode array fitted with an image intensifier is that the 

spectral resolution of the spectrometer is degraded by the intensifier. This is 

because the fibres of the fibre optic, which couple the output of the intensifier to 

the photodiode array, are a different size to the individual photodiode pixels. 

The widths are 10 and 25 pm, respectively. Each fibre does not exactly 

illuminate a single pixel, which means that a dispersed spectral line is spread to 

a larger area of the array than if an intensifier was not fitted. The effective 

resolutions at full width half maximum (FWHM) are 2 and 3 pixels for non

intensified and intensified detectors, respectively, as quoted by the 

manufacturer when a 25 pm wide line is focused onto the detector.6

Detector interface

The detector interface (EG&G 1461) contains electronics, a microprocessor and 

electronic cards (EG&G 1462 and 1303) to control detector operation and data 

acquisition. The 1462 detector interface card controls the scanning of the array 

detector and the acquisition of data. The 1303 with the 1304 gate pulse 

amplifier control the operation of the intensifier. Operation of the 1461 unit is 

directed by the OMA2000 program running on an IBM-type personal computer 

(PC). Data acquisition is described in the next section.

Laser - optical multi-channel analyser system 

Overview

A schematic diagram of the integrated laser and OMA system is shown in 

Figure 7, and details are given in Table 3. Laser light is delivered to the sample 

by a mirror. A lens is used to focus the light from a beam diameter of 6.4 mm 

down to about 100 pm on the sample surface positioned at the laser focal point.
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A laser-induced plasma is formed at the surface of the sample and radiation is 

captured and transmitted to the OMA by the fibre optic cable for time resolved 

detection. Sample can be manipulated in three dimensions relative to the laser 

spot using the XYZ stage. The fibre optic is positioned independently using a 

second XYZ stage, 12 mm from the laser point and 1 mm above the sample 

surface, as shown in Figure 7. Below are descriptions of the laser table / 

sample ablation cabinet and the synchronisation of the operation of the laser 

and OMA.

Reflecting mirror 45° high purity silica,

25.4 mm diameter

(Newport 10 QM 20 HM-15)

Focus lens 500 mm focal length

bi-convex, high purity fused silica

25.4 mm diameter

(Newport SBX 040 AR.18)

Ablation gas air at atmospheric pressure

Fibre optic observation position

From laser point 12 mm

Above sample surface 1 mm

Table 3 Details of optics and parameters used for laser- induced plasma 
emission spectrometry
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Figure 7 Schematic of the laser - optical multi-channel analyser system used 
for laser- induced plasma emission spectrometry
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Laser table and sample ablation cabinet

A steel table of welded construction was specially modified to house the laser 

and sample ablation chamber, (Figure 8). The large sample chamber was 0.54 

x 0.82 x 1.0 m (width x depth x height). It was purpose-designed and built to be 

light-tight and accommodate a variety of laser optics and sample sizes. A steel 

box with an internal baffle was provided on the side of the cabinet to facilitate 

easy input of the fibre optic cable, gas pipes and wires for electric illumination. 

The inside of the steel cabinet was painted matte black to minimise any 

reflections of laser light and was illuminated by an electric lamp. Extraction was 

provided so that any fumes produced from sample ablation were removed to 

outside of the building. The large, hinged door enabled easy access to the 

inside of the cabinet and all four sides of the door wrapped around the cabinet 

opening to provide a light-tight seal. The laser table had legs with adjustable 

feet so that the table could be levelled. The laser head was bolted onto a high 

steel shelf so that laser light entered near the top of the chamber enabling a 

long focal length lens to be used. The power supply was located on the floor 

underneath the laser table. Laser light entered the chamber through a steel 

tunnel. With the chamber door closed, the design and construction of the 

chamber prevented the escape of laser radiation permitting Class 1 laser 

operation. Laser safety is described in section 2.4.

A versatile mounting system for the optical components was built inside the 

sample chamber. This consisted of a vertical, stainless steel mounting bar 

(0.96 m high x 38 mm diameter) bolted to the base of the chamber. The laser 

optics, mirror and focus lens, and a mounting for the fibre optic cable were
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Figure 8 Diagram of the laser table and sample ablation cabinet. The end view 
shows the overlap of door and cabinet to provide a light seal
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independently attached to this. Each item could be moved up or down, or 

rotated about the bar and clamped in any desired position. The laser mirror and 

focus lens were mounted separately on modified steering units (LBS-1, Photon 

Control, Cambridge) attached to clamps. The fibre optic mounting consisted of 

a holder for the fibre end attached via a bracket to a micro-adjustable XYZ 

stage which had 10 mm travel in each direction. This was attached to the 

mounting bar via a plate and clamp. The threaded end cap (SMA fitting) of the 

fibre screwed onto the hollow holder which was clamped against the XYZ 

bracket by the nut to provide a secure mounting for the fibre optic, (Figure 9). A 

quartz window, attached with blutak onto a plastic sleeve, protected the end of 

the fibre from any ablation product. All engineering work was undertaken by 

the Engineering Workshops, School of Engineering, Sheffield Hallam 

University.

bracket mounted on X Y Z

plastic sleeve

fibre optic cable

threaded hollow holder
blutak

fibre optic end cap

quartz w indow

nut

Figure 9 Schematic diagram of the fibre optic holder arrangement
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Synchronisation of the laser and OMA operation

The operation of both laser and OMA systems was studied so that the firing of 

the laser would be synchronised with the scanning of the photodiode array. It is 

necessary to co-ordinate several events in order to have a working system. The 

photodiode array needs to be scanned at the same frequency as, and in phase 

with, the flashing of the laser flash lamp. The two frequencies are normally 33 

and 10 Hz, respectively. In addition, the laser Q-switch needs to be opened a 

set time after the start of the laser flash lamp illumination in order to fire the 

laser, and has to be synchronised with the gating of the detector.

Following experiments and discussions with the respective manufacturers of 

the laser and OMA, a master control unit was designed and was specially built 

by EG&G, (EG&G 1310). This consists of a master pulse generator with 

electronic trigger outputs to the photodiode array and laser flash lamp, and a 

variable control for operation of the laser Q-switch. The master pulse generator 

replaced the timing units of the laser and OMA, and the OMA detector interface 

(1461) was modified to enable timing to be controlled by this external source.

The OMA and Nd:YAG laser were configured with the master control unit to 

produce an integrated laser-induced plasma emission spectrometry system. 

Operation of the laser and the OMA is synchronised electronically at 10 Hz 

using the master control unit. This frequency of operation was selected 

because it is an optimum repetition rate for operation of the Spectra Physics 

laser. The unit controls the timings of the laser flash lamp and Q-switched laser 

firing, and the detector gating and scanning of the detector array. The number 

of detector scans / laser shots is controlled by the OMA-2000 program.
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The timing sequence for a typical experiment is depicted in Figure 10 and is as 

follows. At the start of the experiment, a trigger pulse from the master control 

unit causes the photodiode array to be scanned in order to clear each pixel. A 

trigger from the OMA to the master control unit tells it to fire the laser, i.e. open 

the Q-switch, during the next flash of the flash lamp. A trigger pulse to the laser, 

50 ms later, starts the flash lamp illumination. After the Q-switch delay, a trigger 

pulse to the laser opens the Q-switch to cause the laser to fire. At the same 

time, a trigger pulse to the OMA starts the delay / integration sequence. The 

delay and integration times are pre-set in the OMA-2000 program. The next 

pulse, 50 ms later, causes the photodiode array to be scanned, i.e. read. This 

50 ms cycle time enabled the photodiode array to be read between separate 

firings of the laser and allowed each individual laser-induced plasma to be 

monitored. The sequence of laser firing / detector integration / detector read is 

100 ms and is repeated at 10 Hz. The number of repeats is set within the OMA- 

2000 program.
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Figure 10 Schematic of the laser - optical multichannel analyser timing 
sequence
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Data acquisition

Data acquisition was controlled by proprietary software (EG&G OMA2000) 

running on an IBM-compatible personal computer. The detector interface 

(EG&G 1461) allows versatile data acquisition and storage through the use of 

memories. An individual scan of the array, i.e. a spectrum, can be stored 

separately in a memory, or multiple spectra can be accumulated into several 

memories. For example, 1 spectrum in 20 memories gives a total of 20 spectra; 

5 spectra in each of 40 memories provides 200 spectra in total. These values 

can be tailored to a specific experiment. A maximum of 250 memories can be 

used. Other parameters such as sending and receiving trigger pulses, 

subtraction of blank spectra, are set by writing a simple OMA Data Acquisition 

Design (DAD) routine.

In addition, there are different modes of data acquisition. In the Live mode, 

spectra are displayed after every scan of the array with no automatic saving of 

data. In the Accumulation mode, a pre-set number of scans are made which are 

stored in the 1461 unit until the end of the experiment when data are 

transmitted to the PC.

The OMA was used with the time-gating capability in two ways to address the 

problem of complex, time-dependent emission from the laser-induced plasma.

(1) The OMA was used in an incremental program mode which allowed the 

spectra to be time-resolved to produce an emission-wavelength-time profile of 

emission from the plasma. Study of the transient signal responses within these 

profiles enabled suitable values for delay and integration times to be chosen.

(2) A fixed time mode (FT) was used with these timing values such that the start 

of the integration time was delayed by a set time, the delay time, to enable 

rejection of the initial intense background signal, and the integration period 

captured the analyte emission signal response.
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In the OMA incremental mode, each scan of the array was stored in a separate 

memory, and the integration window (100 ns) was stepped sequentially through 

the lifetime of the plasma by the increment time (100 ns). Each scan was taken 

from a separate laser-induced plasma. This yielded an emission-wavelength

time profile for ablation of a sample.

For the OMA fixed time programs (FT), fixed delay and integration times were 

set, e.g. delay time 500 ns, integration time 1 ps. Scans were either stored in 

individual memories or accumulated into a single memory. Both of the OMA 

programs were used with a blank spectrum subtraction method. The laser flash 

lamp and the OMA detector were both operated at 10 Hz. The laser was fired 

during alternate flashes of the flash lamp only, i.e. 5 Hz, and the OMA recorded 

a blank spectrum during the flash lamp cycles when the laser did not fire. Each 

blank spectrum was automatically subtracted from the previous emission 

spectrum to yield a net signal from the plasma. In this way, the run time for 5 

laser shots was 1 s.

After a LIPS experiment, spectra could be viewed on screen using the 

OMA2000 software, printed either as overlays or in a variable 3D view, and 

stored on disk for later use. The data produced by both OMA programs was 

manipulated as needed using separate computer routines. Individual pixels 

from the 3D plots were selected and plotted against memory number (time), to 

give an emission - memory number (time) response. These were then extracted 

into a spreadsheet program (Microsoft Excel) to facilitate graph plotting and 

statistical calculations to be made, such as signal/noise signal/background 

ratios, precision, etc.
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Procedure

Samples were generally analysed as received with no sample preparation. The 

sample was mounted on the XYZ manipulator and a fresh area of material 

positioned at the laser spot. The manipulator was moved in height (Z) until the 

sample was at the laser focal point, 500 mm from the focusing lens. The 

sample chamber door was closed. The spectrometer was set-up with the 

chosen grating, i.e. grating 2, to monitor the required spectral region, e.g. 307- 

332 nm. The number of detector scans / laser shots and OMA memories was 

selected, e.g. 2 scans / laser shots in each of 10 OMA memories resulting in 20 

scans / laser shots in total. A blank subtraction program was used so that the 

experiment run time for 20 laser shots was 4 s with the laser firing at 5 Hz. The 

laser flash lamp energy was set on the laser remote control unit to a suitable 

value, e.g. 40 J, and the acquisition was started. The laser fired under control of 

the OMA software and the master control unit, and the resulting spectra were 

stored on the computer for later manipulation and printing as required.

2.3 Inductively coupled plasma emission spectrometry 

Introduction

Inductively coupled plasma - atomic emission spectrometry (ICP-AES) is a 

versatile chemical analysis technique, able to determine elements over a wide 

range of concentrations, from trace through minor to major levels, and is well 

established in laboratories world-wide.7 An ICP instrument consists of a sample 

introduction system, an inductively coupled plasma emission source and a 

spectrometer to analyse the light emitted by the plasma. Sample is introduced 

as a liquid and a nebulizer is used to produce an aerosol that is swept into the 

plasma by a flow of argon carrier gas. The ICP source (Figure 11) comprises a 

torch of concentric quartz tubes and a water-cooled copper induction coil which 

surrounds the top of the torch.
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Figure 11 Diagram of the ICP source

The high temperature argon plasma (6 -10,000 K) is sustained by inductively- 

coupled radio-frequency energy from the induction coil. The coolant and plasma 

argon gas flows are introduced tangentially and the plasma is initiated by a 

tesla coil which provides a seed of electrons. Sample aerosol is introduced 

through the sample injection tube and the analyte is confined to a central axial 

channel within the ICP discharge. Drying, atomisation and/or ionisation, and 

excitation of the analyte takes place. Light is emitted that is characteristic in 

wavelength of the analyte elements. In a conventional ICP spectrometer, the
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emitted light is dispersed by a diffraction grating and wavelengths of interest are 

detected by photo multiplier tubes (PMT). The technique benefits from several 

advantages, such as, simultaneous multi-element analysis capability, wide 

dynamic range, and relative freedom from inter-element interference effects.

In this study, light from the ICP is collected and transmitted by fibre optic to an 

optical multichannel analyser (OMA) that utilises an intensified photodiode array 

for detection. This enables simultaneous spectral monitoring over a window 

approximately 25 nm wide, and offers the possibility of simultaneous multi

element analysis. Different wavelength regions can be selected by scanning the 

grating of the spectrograph to the region of interest. A feature of the OMA is the 

ability to store a spectrum electronically in memory. This can be used to 

simultaneously remove the background signal of a previously recorded blank, 

from the spectrum of a sample as it is measured.

Instrumentation

Details of the instruments and operating parameters used are given in Table 4. 

The sample introduction system for normal ICP - AES is depicted Figure 12a in 

which sample is continuously pumped to the nebulizer to achieve a steady state 

emission signal. The sample introduction manifold for flow injection (Figure 12b) 

incorporates an injection valve to inject sample into the carrier stream, distilled 

water. This transports the sample to the ICP where transient signal responses 

are obtained.
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ICP Instrument Thermo Jarrell Ash ICAP 9000

Forward Power 1.1 kW

Gas Flows Plasma 0 litre minute

Coolant 15 litre minute

Nebulizer 0.4 litre minute

Carrier / Sample Flow Rate 2 ml minute-1

Observation Position 15 mm above load coil

15 mm from load coil

Detection System EG&G OMA III

Spectrometer

grating (holographic) 2400 g/mm, blaze 250-550 nm

dispersion 0.027 nm/pixel

view band 25 nm

Detector

Intensifier (0-1000 units) 500

Mode Free-running

Exposure Time 30 ms

Table 4 Details of instrumentation for ICP-AES studies
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(a) conventional, direct nebulization, (b) flow injection
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Procedure
Normal - direct nebulisation

The fibre optic was positioned as described in Table 4 and the plasma lit and

allowed to stabilise for 30 minutes. The centre wavelength of the OMA was set.

Sample solution was introduced into the ICP and measurements made after the

solution had been in the plasma for 30 seconds. The recorded spectra were

stored on the computer and printed. Emission-time plots were obtained for

chosen pixels (wavelengths), and these data points were transferred to another

program for numerical calculations such as signal/background and precision.

Flow injection

The instrumentation and procedure is the same as above but a flow injection 

valve was used to introduce sample into the ICP (Figure 12). Sample was 

loaded into the loop (250 pi) of the valve, and injected into the ICP by bringing 

the loop on-line. OMA measurement was started when the sample reached the 

nebuliser.

Reagents

Solutions were prepared fresh from commercial stock solutions (BDH 

Spectrosol Solutions, Merck Ltd., Lutterworth, Leicestershire, UK).
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2.4 Additional instrumentation

To examine the craters produced in samples by laser ablation, two techniques 

were used, scanning electron microscopy (SEM) and Talysurf surface analysis. 

The SEM used was a Phillips XL40. The sample was irradiated by a beam of 

electrons in a vacuum, and the collected backscattered electrons, or secondary 

electrons, were used to produce a magnified image of the sample surface. 

Photographs were recorded of the sample surface at different magnifications.

The Talysurf instrument was a Rank Taylor Hobson Form Talysurf 120L. A 

diamond-tipped stylus traversed the sample surface and the vertical 

movements of the stylus were magnified by a laser interferometric transducer 

mechanism to reveal surface texture information. The radius of the stylus tip 

was 2 pm and the vertical resolution was 0.020 pm. A typical profile was 

recorded using 164 scans in a 1.63 mm square to produce a magnified, three 

dimensional view of surface features. The data were stored and manipulated on 

an IBM-compatible personal computer using proprietary software. The software 

enabled the three dimensional profile to be viewed from different angles and 

individual scans, such as the profile through the centre of a laser crater, to be 

viewed separately. The profiles were recorded photographically direct from the 

computer screen.
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2.5 Laser Safety 
Warning

A Class IV high power laser has been used in this work. This classification 

means that the output power is above 500 mW and it is a safety and fire 

hazard. It is a pulsed Nd:YAG laser with an output wavelength of 1064 nm and 

this infrared wavelength is invisible to the human eye and is therefore 

extremely hazardous. Infrared radiation passes easily through the cornea of 

the eye which focuses the laser light on the retina, where it can cause 

instantaneous permanent damage. Diffuse and specular reflections can cause 

severe eye and skin damage. The laser light must not be viewed directly and 

precautions should be taken to prevent accidental exposure to both direct and 

reflected beams. In addition, the laser head and power supply both contain 

lethal high voltage components which are accessed if the respective covers are 

removed.

Precautions

The laser is used in a laser-designated area where only authorised personnel 

are allowed and a strict code of practice is followed. Access to the laser room 

and laser is by key which are only issued to authorised laser users. A warning 

sign is illuminated outside the room during laser operation. The room is blacked 

out to prevent the escape of laser light, and bright illumination is provided to 

reduce the pupil size of the eye. For all experimental work, the laser is used 

with the sample chamber door closed and laser light is confined to the steel 

sample cabinet. For alignment work, the laser is used in the long pulse mode 

only, with the laser energy as low as possible, i.e. at the laser threshold. Eye 

protection must be worn (laser goggles for 1064 nm radiation) and watches, 

jewellery, etc. that may reflect the laser light must be removed. Laser light is 

located with an infrared laser card. For further information about laser safety 

precautions and the hazards of laser radiation, a manual such as that of Sliney 

and Wolbarsht8 should be consulted.
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Chapter 3

Studies Of Laser-Induced Plasma Emission Spectrometry
With An 

Optical Multichannel Analyser
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3.1 Introduction

The aim of this work was to evaluate the performance of the optical 

multichannel analyser and to investigate laser-induced plasma emission 

spectrometry. The operation of the optical multichannel analyser (OMA) was 

first tested and evaluated with an inductively coupled plasma (ICP) emission 

source because the laser-induced plasma is transient and emission spectra are 

complex. An ICP emission source was chosen because it is a well 

characterised, stable emission source and is relatively easy to monitor. In 

addition, emission spectra for different elements can be easily obtained over a 

range of element concentrations. The basic analytical performance of the 

optical multichannel analyser (OMA) was examined, and parameters studied 

include spectral resolution, wavelength accuracy (ability to position the grating 

to a set wavelength), and analytical performance (effect of integration time, 

precision, sensitivity, limit of detection and dynamic range). In addition, special 

advantages of the OMA spectrometer were demonstrated compared to a 

conventional atomic emission spectrometer as used in ICP instrumentation, 

such as concurrent background subtraction, and simultaneous spectrum 

measurement during a transient event.

Following the ICP work, the optical multichannel analyser (OMA) was used with 

a Q-switched Nd:YAG laser in laser-induced plasma emission spectrometry. 

Here, the optical multichannel analyser was used to monitor the laser-induced 

plasma produced by focused radiation from a Nd:YAG laser. The purpose was 

to evaluate the performance of the integrated laser and OMA instrument system 

and to study laser-induced plasma emission spectrometry in order to obtain 

basic analytical performance data. The influence of operating parameters such 

as laser energy upon laser-induced plasma emission characteristics was 

examined for the ablation of copper metal. The lifetime of the plasma was
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established for different laser energies. Performance data were obtained for the 

determination of copper in aluminium alloys.

3.2 Experimental

For the inductively coupled plasma (ICP) emission studies, the optical 

multichannel analyser (OMA) was used with the ICP emission source of a 

Thermo Jarrell Ash instrument, as described in Chapter 2 (section 2.3). The 

photodiode detector of the OMA was operated in the free-running mode with an 

integration time of 30 ms. A variable number of photodiode array scans were 

accumulated into an OMA memory, the number depending on the experiment. 

Solutions were prepared fresh from commercial stock solutions (BDH 

Spectrosol Solutions, Merck Ltd., Lutterworth, UK).

For laser-induced plasma emission spectrometry studies, the OMA was used in 

an integrated laser-induced plasma emission spectrometer system. The system 

consisted of a Q-switched Nd:YAG laser, an OMA and a master control unit, 

and is described with details of operation in Chapter 2 (section 2.2). The blank- 

spectrum subtraction method was utilised with the laser fired at 5 Hz. Different 

modes of OMA operation were used. The incremental mode was used with 

various time settings to study the transient signal responses from the laser- 

induced plasma. Time settings were: delay time of 0 ns, integration time of 

100 ns (or 1 ps), and increment time of 100 ns (or 1 ps). Fixed time (FT) 

programs were also used, FTa, FTb, and FTc, with delay times of 700 ns and 

integration times of 1 ps. Method FTa consisted of firing 30 laser shots at the 

same spot, each shot being stored individually, i.e. 1 laser shot in each of 30 

OMA memories (30 laser shots total). Method FTb accumulated 10 laser shots 

into each of 30 memories, all at the same sample site (300 shots total), and 

method FTc repeated FTb seven times at fresh site each time (2100 shots 

total). The run times for FTa, FTb and FTc were 6, 60 and 420 s, respectively,
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with a further 25 s required for sample manipulation for method FTc. Laser 

energy (laser flash lamp energy, LFLE) was varied for some experiments.

The materials examined were copper metal (BDH Analar, Merck Ltd., 

Lutterworth, UK), pure aluminium metal (BAS BCS198e, Bureau of Analysed 

Standards, Newham Hall, Newby, Cleveland, UK), and a range of aluminium 

alloy standards (BAS SS502, SS503, SS506, Bureau of Analysed Standards) 

containing various amounts of copper (0.001 to 0.40 % m/m Cu).

3.3 Results and Discussion

3.3.1 Inductively coupled plasma emission spectrometry

Emission spectra for the 307 - 332 nm spectral region recorded with the OMA 

are shown in Figure 1 for distilled water and a copper solution (10 mg M). This 

region was monitored because it encompasses two strong emission lines for 

copper (324.754 and 327.396 nm). An increase in intensity can be seen for the 

background spectrum due to the continuum emission from the ICP source. The 

two regions of low intensity at either side of the spectra correspond to the pixel 

regions which are not intensified. Of the 1024 pixels of the photodiode array, 

the central 720 pixels are intensified. The effective resolution of the OMA 

spectrometer was calculated to be 0.20 nm at full width half height from the 

spectrum for copper solution depicted in Figure 1.
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Figure 1 Overlay of spectra for copper solution (10 mg M) and distilled water 
from ICP emission spectrometry recorded with the OMA. The integration time 
for each spectrum was 6 s (20 scans of the photodiode array into each OMA 
memory).

The effect of integration time upon performance was examined. Spectra were 

recorded for distilled water and a solution of copper (10 mg M) using a range of 

integration times from 0.3 to 30 s. To change the integration time, the number 

of scans of the photodiode array accumulated into an OMA memory was varied. 

Ten OMA memories were used for each experiment. The emission intensity for 

copper 324.7 nm was measured for each memory and the data are shown, 

together with the integration times, in Table 1. Precision (% relative standard 

deviation, % RSD) did not vary significantly with integration time for either the 

distilled water or the copper solution. The signal/noise ratio increased with 

integration time as would be expected. The signal/background ratio, 

approximately 6.3, was very similar for each integration time. The values for 

precision are similar to those of the Jarrell Ash ICP spectrometer and those
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reported in the literature for the ICP technique.1 Data indicate, therefore, that 

the OMA spectrometer is capable of achieving good levels of precision.

Total integration time (s) 0.3 3 6 15 30

No. of photodiode array 

scans per OMA memory
1 10 20 50 100

Integration time of each 

OMA memory (s)
0.03 0.3 0.6 1.5 3.0

Mean signal distilled water 459.6 4601 9200 23010 45701

(counts) 1 0 m g l'1 Cu 2895 29064 57724 143500 288100

% RSD distilled water 0.68 0.37 0.18 0.17 0.28

10 mg I'1 Cu 0.40 0.54 0.54 0.37 0.50

S/N ratio 1 0 m g l - 1 Cu 4244 78551 318919 829480 1018021

S = Cu 324.7 nm N = % RSD of Cu 324.7 nm measured with distilled water

Table 1 Effect of integration time upon analytical performance for the OMA 
monitoring an ICP emission source

The wavelength accuracy was tested by measuring the emission intensity of 

copper 324.7 nm after the grating had been driven from centre wavelength 

700 nm to 320 nm. This was repeated ten times. Each measurement had an 

integration time of 6 s (20 photodiode array scans into 1 OMA memory). The 

spectra were examined and the copper 324.7 nm emission line was found to be 

at the same pixel number on the photodiode array each time (pixel 684). The 

precision was slightly worse, 0.9 % RSD, compared to the same measurements 

when the grating was fixed at centre wavelength 320 nm, 0.5 % RSD. The data 

indicate that the grating drive mechanism is reproducible in operation to within
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1 pixel (± 0.024 nm), which is the manufacturer's spectrometer specification. It 

is recommended, however, that the pixel positions of analyte emission lines 

should be confirmed for each spectrum following movement of the grating.

Analytical performance data are shown in Table 2 for copper, cadmium and 

lead. Copper signals were recorded with the 307 - 332 nm spectral region as 

above, and the spectral region 216 - 242 was used to monitor cadmium and 

lead signal responses.

element Cu I Cd I Pb II

emission wavelength (nm) 324.754 228.802 220.353

limit of detection (mg I-1) 

(3ct, distilled water)
0.017 0.011 0.135

signal /  background 

(10 mg l“1)
6.45 2.67 1.06

% RSD 0.57 0.43 0.51

I neutral atom emission line II singly ionised atom emission line

n = 10 for statistical calculations

Table 2 Analytical data for the OMA monitoring the ICP emission source. The 
integration time was 6 s (20 scans of the photodiode array into each OMA 
memory).

The emission lines for copper and cadmium are relatively sensitive compared to 

lead, and therefore have lower limits of detection than lead. The % RSDs are 

similar to those obtained by the spectrometer of the Jarrell Ash ICP instrument 

(0.6 % RSD for similar integration times), but limits of detection and signal 

/background ratios are poorer; the limit of detection for copper was 0.005 mg M 

and the signal/background ratio was 51 (10 mg M). The performance of the 

OMA might be improved by varying the fibre optic observation position.
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Results obtained here are similar to those reported by Furuta at al 2 (1980) who 

utilised a silicon intensified target image detector.

The dynamic range of the OMA photodiode array detector was studied by 

aspirating solutions that had a wide range of concentrations (Cu, Cd and Pb,

0.1 to 100 mg h1). A typical calibration graph of emission intensity versus 

concentration of cadmium is shown in Figure 2. Linear plots were obtained over 

3 to 4 orders of magnitude, indicating that the photodiode array detector has 

the potential to exploit the wide dynamic range of the ICP source. Dynamic 

range is limited compared to that of a photomultiplier tube because of the image 

intensifier fitted to this photodiode array. This could be shown with further study 

using solutions that cover a wider range of concentration than used here.
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Figure 2 Plot of log emission intensity versus log concentration of cadmium for 
the OMA monitoring the ICP emission source. The integration time was 6 s 
(20 scans of the photodiode array into each OMA memory).
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The background subtraction capability of the OMA photodiode array detector is 

depicted in Figure 3 with spectra for copper solution (10 mg M) with, and 

without, the background signal. For the subtracted spectrum, a spectrum of 

distilled water was recorded first and this was simultaneously subtracted from 

the copper solution spectrum when it was recorded. The spectrum resulting 

from the background subtraction technique is clearly much simpler. With further 

work, this subtraction technique could be used to simplify complex spectra from 

sample solutions containing a strong matrix, such as digested steels, serum 

samples, etc. A spectrum for a matrix blank solution would be recorded first, 

and this used to correct the spectrum for the sample solution.

60000 Cu 324.7 nm

Cu 327.4 nm

30000 Cu solution (10 mg/l) with 
background spectrum

background 
325.8 nm

Cu solution (10 mg/l) with 
background spectrum subtracted

0

Wavelength 307 - 332 nm

Figure 3 Overlay of spectra for copper solution (10 mg M) with background 
spectrum (upper spectrum) and with the background spectrum subtracted 
(lower spectrum). The spectra were recorded with the OMA monitoring the 
ICP emission source, and the integration time for each spectrum was 
6 s (20 scans of the photodiode array into each OMA memory).
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The OMA was used to monitor transient signals of the ICP source resulting 

from the introduction of sample solutions by a flow injection technique. Instead 

of continuous nebulization of sample solution to achieve a steady state, as 

used above, small, discrete sample volumes are introduced into the ICP source 

using an injection valve. An emission-wavelength-time response for the 

introduction of a copper solution (10 mg I-1) is depicted in Figure 4a. The 

sample volume was 250 pi and the flow rate was 1 ml minute-1. Transient 

emission responses for copper are observed. The spectral background is 

monitored simultaneously, together with other emission lines within this spectral 

region 307 - 332 nm. Spectra for a repeat injection with background subtraction 

are shown in Figure 4b. Here, spectra were first recorded for a blank injection of 

distilled water, and these were subtracted from the spectra for the subsequent 

injection of copper solution. The responses in Figure 4b are clearer and simpler 

than those of Figure 4a without background subtraction. The technique could 

be advantageous in more complex flow injection applications, such as samples 

with organic matrices, e.g. oils, blood serums and organic solvents that cause 

signal depression in the ICP source, because any background shifts can be 

simultaneously monitored with the analyte signals and such shifts can be easily 

corrected.

The technique of using an OMA spectrometer with photodiode array detection 

to monitor transient signals from an ICP source is advantageous over a 

conventional ICP spectrometer because the conventional spectrometer uses 

photomultiplier tube detectors for single element wavelength detection. 

Simultaneous background measurement is not normally possible. This 

photodiode array detection technique could also be very useful to record 

signals when other sample introduction devices are used, such as laser 

ablation, electro-thermal atomisation, hydride generation.
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Figure 4 Emission-wavelength-time responses for the introduction of copper 

solution (10 mg M) into the ICP source with flow injection: (a) with the 

background signal present, (b) with the background signal subtracted.
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3.3.2 Laser-induced plasma emission spectrometry 

Studies of the laser-induced plasma

Previous work established the performance of the optical multichannel analyser 

with a well characterised and stable emission source, an inductively coupled 

plasma emission source (section 3.3.1). Here, the optical multichannel analyser 

is used to monitor a transient laser-induced plasma produced by the focused 

radiation from a Q-switched Nd:YAG laser. A sample of copper metal was 

ablated at the laser focal point with laser flash lamp energy (LFLE) 40 J, 

(irradiance ~8 x 1010 W cnrr2). The OMA incremental mode was used to enable 

spectra to be time-resolved so that the transient signals from the plasma could 

be studied. There were 30 OMA memories with 1 laser shot in each memory. 

The increment time after each memory was 100 ns and so the total time was 

2.9 ps. Copper metal was examined because copper has a relatively simple 

emission spectrum and is available in relatively high purity at low cost.

An emission-wavelength-time response for the ablation of copper metal is 

depicted in Figure 5, spectral overlays are shown in Figure 6, and an emission

time response for selected wavelengths is depicted in Figure 7. The figures 

show that initially the emission spectrum is dominated by a very intense 

background continuum from the plasma, and only a broad continuum is visible 

near the two copper emission lines (Cu 324.754 and 327.396 nm). This 

indicates that the plasma temperature is very high, of the order 1.5 to 3.0 x 

104 K.3'4 At time 300 ns, broad copper emission lines are evident 

superimposed on the intense background continuum. These lines are shifted to 

the red by about 0.07 nm (Figure 6b). The background has reduced 

considerably by time 400 ns because plasma temperature has decreased, 

caused by sample material entering the plasma.
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Figure 5 Emission-wavelength-time response for the ablation of f

copper metal with laser flash lamp energy 40 J using the OMA incremental
program (increment time 100 ns, integration time 100 ns).
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Figure 6 Emission spectra for the ablation of copper metal with laser flash lamp 
energy 40 J using the OMA incremental method (integration time 100 ns, 
increment time 100 ns). The spectra are for the times shown and the 
wavelength regions are: (a) 307 - 332 nm, (b) 312.6 - 326.5 nm, a magnified 
portion of (a).
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After time 400 ns, the background intensity continues to decrease and line 

widths become narrower as the plasma temperature decreases. The amount of 

emission line shift to the red also reduces with time as the plasma temperature 

decreases. By time 900 ns, the lines have ceased to be red shifted, the 

background response is minimal and element emission responses are 

dominant.

The emission-time response (Figure 7) shows the rapid decrease in 

background intensity after time 300 ns. Element emission signals are clearly 

seen after time 400 ns. They continue to be observed as they decrease slowly 

until the plasma has extinguished at about 35 ps. The plasma lifetime 

(examined below) is relatively long-lived compared to the laser pulse width 

(10 ns).

800 y

Cu 327.4

Background 325.8

Cu 324.7

<i5 400

0
2.521.510 0.5

Time (us)

Figure 7 Emission-time response for the ablation of copper metal with laser
flash lamp energy 40 J using the OMA incremental method (integration time
100 ns, increment time 100 ns, total 2.9 ps).
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Useful analytical data can be obtained by resolving the analyte emission signals 

in time from the initial, intense background continuum. This can be achieved 

using an OMA fixed time program with suitable time settings. A delay time of 

700 ns would minimise background contributions as the background has 

reduced considerably by then, and an integration time of about 1 ps is 

appropriate to measure analyte emission responses.

The peak broadening and line shifts at early times are due to pressure 

broadening effects, and suggest very high plasma temperatures, pressures and 

electron densities. Scott and Strasheim5 have previously reported red line shifts 

(-0.16 nm) and line broadening for the ablation of aluminium which they 

attributed to pressure effects. Niemax and Sdorra,3 and Kim6 have also 

reported line broadening due to pressure broadening effects (Stark 

broadening). Pressure broadening (Stark broadening) is due to perturbation of 

the emitting species by charged particles in the laser-induced plasma.7

The experiment was repeated with the maximum laser energy available (LFLE 

70 J, irradiance -3.1 x 1011 W cnr2). An emission-wavelength-time response is 

shown in Figure 8, spectra overlays in Figure 9, and an emission-time response 

in Figure 10. Compared to ablation with LFLE 40 J (Figures 5 and 6), emission 

signals are greater (-7000 vs. -800) and line shifts are larger (-0.12 vs.

0.07 nm) suggesting that the laser-induced plasma is more intense and has a 

higher initial temperature, (1.5 to 3.0 x 104 K). The plasma also has a longer 

lifetime compared to LFLE 40 J ablation, (-80 ps vs. -35 ps). The temperature 

of the plasma for the ablation of different materials with different laser energies 

could be estimated from spectrometric measurement at selected times of the 

plasma lifetime. Niemax3 measured the relative intensities of four copper lines 

to obtain temperature measurements for the ablation of copper, but this would 

require a more detailed study of other spectral regions than is reported here.
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It can be seen from the comparison of ablation with LFLE 40 and 70 J that the 

copper signals are more intense for the higher laser energy. However, signal 

/background ratios (Cu 324.7/background 325.8 nm) were higher for LFLE 40 J 

than for 70 J as the background intensities were greater for the higher laser 

energy. For example, signal/background ratios for LFLE 40 and 70 J were 19.1 

and 8.3 at time 1 ps, and 31.3 and 18.8 at time 2 ps, respectively, 

suggesting that high laser energy may not be required to obtain the most 

sensitive analyte emission responses.

The different time behaviours of the copper and background signals for ablation 

with LFLE 40 and 70 J suggest that a longer detector delay time may be 

required for LFLE 70 J in order to minimise the effect of the background signal 

and optimise analytical performance, e.g. 1.5 ps instead of 700 ns.
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Figure 8 Emission-wavelength-time response for the ablation of copper
metal with laser flash lamp energy 70 J using the OMA incremental program
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Figure 9 Emission spectra for the ablation of copper metal with laser flash lamp 
energy 70 J using the OMA incremental method (integration time 100 ns, 
increment time 100 ns). The spectra are for the times shown and the 
wavelength regions are: (a) 307 - 332 nm, (b) 312.6 - 326.5 nm, a magnified 
portion of (a).
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Figure 10 Emission-time response for the ablation of copper metal with laser 
flash lamp energy 70 J using the OMA incremental method (integration time 
100 ns, increment time 100 ns, total 2.9 ps).

The plasma lifetime for ablation with different laser energies (LFLE 40 and 70 J) 

was estimated using an OMA incremental program. The time settings used 

were increment time of 1 ps and integration time of 1 ps with 100 memories to 

enable a total measurement time of 99 ps. Emission-wavelength-time 

responses are depicted in Figures 11 and 12 for ablation with LFLE 40 and 

70 J, respectively.
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Figure 11 Emission-wavelength-time response for the ablation of copper metal
with laser flash lamp energy 40J using the incremental program (increment time
1 ps, integration time 1 ps) to estimate the lifetime of the plasma.
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Figure 12 Emission-wavelength-time response for the ablation of copper metal 
with LFLE 70J using the incremental program (increment time 1 ps, integration 
time 1 ps) to estimate the lifetime of the plasma.
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These show that element emission responses for both copper lines became 

indistinguishable from the background at about 37 and 80 ps for LFLE 40 and 

70 J, respectively, indicating that the plasma had extinguished by these times. 

Emission intensities for both copper lines were less than 5 counts. Examination 

of the spectra for both ablations at time 99 ps confirms that there are no 

element emission responses (Figure 13).
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Figure 13 Spectra at time 99 ps for the ablation of copper metal recorded with 
the OMA incremental program (increment time 1 ps, integration time 1 ps) using 
laser flash lamp energy: (a) 40 J, (b) 70 J.
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The lifetime of the plasma produced by ablation with LFLE 55 J was -44 ps, a 

value between those for LFLE 40 and 70 J, i.e. increased laser energy 

lengthens the plasma lifetime. Kim5 reported plasma lifetimes ranging from 

300 ns to 40 ps depending on operating parameters such as laser energy and 

ablation gas and pressure. Sneddon et al8 reported plasma lifetimes of 

100 ps for the ablation of copper, zinc, iron and nickel targets with an excimer 

laser (ArF 193 nm). The published values are comparable to those obtained 

here. It is noted that with the laser firing at 5 Hz, as in these experiments, the 

time interval between laser shots is 200 ms. The plasma is therefore 

extinguished for approximately 199.9 ms prior to the next laser shot, (plasma 

lifetime -0.1 ms).

Analytical performance

The effect of operating parameters upon analytical performance was examined 

for the ablation of copper metal. An OMA fixed time program (FTa), consisting 

of 30 memories with 1 laser shot in each memory, was used (delay time 700 ns, 

integration time 1 ps) with LFLE 40 J. The observation position for the end of 

the fibre optic was varied and it was found that increased signal/background 

(S/B) and signal/noise (S/N) ratios were obtained with the fibre positioned 1-2 

mm above the sample surface and in direct line with the laser spot. The sample 

was placed at different positions relative to the laser focal point and increased 

S/B and S/N were obtained with the sample positioned at the laser focal point. 

The effect of repetitive laser firing at a sample site upon performance was 

considered using three fixed time programs, FTa (1 laser shot in each of 30 

memories, 30 shots total), FTb (10 laser shots in each of 30 memories, 300 

total), and FTc (method FTb was repeated 7 times at a fresh site each time to 

give 2100 shots in total). Data for each method are given in Table 3.
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These data indicate that precision (relative standard deviation, RSD) and S/N 

ratio improve with the number of laser shots used for measurement. The S/B 

ratio was reduced, however, with a larger number of laser shots. Emission-time 

profiles showed that this was because the background signal increased with 

time, i.e. with the number of laser shots. This effect might be minimised by 

increasing the delay time. The results suggest that precision is improved by 

accumulating a large number of laser shots, e.g. from 17.1 (30 shots) to 3.8 

(2100 shots), (% RSD, Cu 324.7 nm). Precision was further improved to 0.6 

(% RSD) when a ratio of the two copper lines was taken, suggesting that the 

use of an appropriate internal standard is beneficial. The precision data are 

comparable to those reported by other workers, for example, Cremers and 

Romero9 obtained % RSD values between 0.4 and 14 for various elements in 

steel using iron signals from the steel matrix as internal standard. Niemax et 

al10 achieved precision of 6 % RSD for silicon and chromium in steel, which 

was improved to 2.4 when an iron signal was used as internal standard.
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Method n mem

shots

/mem

total

shots Cu 324.7

% RSD 

Cu 327.4 Cu 324.7 

/Cu 327.4

S/B S/N

FTa 30 30 1 30 17.1 18.6 1.7 17.7 183

FTb 30 30 10 300 10.2 12.2 2.7 11.7 2424

FTc 7 210 10 2100 3.8 3.5 0.6 11.9 18613

shots = number of laser shots n = number for statistical calculation

mem = number of OMA memories used S = Signal (Cu 324.7 nm)

B = Background (325.8 nm) N = RSD of Background response

Table 3 Data for copper metal from laser-induced plasma emission 
spectrometry. Different OMA fixed time programs were used.

In order to quantify the effect that time resolved measurement has upon 

performance, copper metal was ablated with an OMA fixed time program using 

different delay times. With time resolution, the delay time was 700 ns, and with 

no time resolution, the time delay was 0 ns. An OMA program (FTa) was used 

to record 30 laser shots, each into a separate memory. The integration time 

was 1 ps for both, and the laser flash lamp energy was 40 J. A typical spectrum 

from each experiment is shown in Figure 14. The spectrum recorded with time 

resolution (delay time of 700 ns) has minimal spectral background and sharp, 

intense emission peaks for the two copper lines. Conversely, the spectrum 

recorded with no time resolution (delay time 0 ns) has an intense spectral 

background and broader copper emission lines. Although the copper lines are 

as intense as those recorded with time resolution, the signal/background ratio 

was considerably worse because of the intense background signal. The
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signal/background ratios (Cu 324.7 / background 325.8) were 15.4 and 2.5 for 

time resolved measurement and no time resolution, respectively. This clearly 

shows the increase in sensitivity that is achieved by the use of time resolved 

detection in laser-induced plasma emission spectrometry.

1000 -  Cu 324.7 nm

Cu 327.4 nm

500

delay time 0 ns

delay time 700 ns

0

Wavelength 307 - 332 nm

Figure 14 Spectra for the ablation of copper metal with laser flash lamp energy 
40 J and an OMA fixed time program (FTa), 1 laser shot into each memory. The 
upper spectrum was recorded with no time resolution (delay time 0 ns), and the 
lower spectrum recorded with time resolution (time delay 700 ns). The 
integration time for both spectra was 1 ps.

These copper spectra can be compared to that obtained for copper solution 

from the inductively coupled plasma (ICP) emission source (Figure 1). The 

emission lines of the ICP source spectrum are considerably narrower and the 

baseline is simpler compared to the laser-induced plasma spectra. The 

differences are due to the higher temperatures and more complex interaction 

processes of the laser-induced plasma. In addition, the laser-induced plasma is 

in air and these gases may contribute to the spectra, whereas the ICP emission
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source is an argon plasma, which has a relatively simple emission spectrum, 

and the emitting species are effectively shielded from air.

To study the quantitative analysis capability of the technique, a range of 

aluminium alloy standards was examined for copper content, (Table 4). The 

samples were ablated with LFLE 70 J and data acquired with a fixed time OMA 

program, FTb (10 laser shots in each of 30 memories at same site, 300 shots 

total). The spectral region 307 - 332 nm was monitored. A spectrum for the 

ablation of BAS SS 502 is shown in Figure 15 in which emission lines for 

aluminium and copper are clearly seen.

Standard Cu Concentration (% m/m)

pure Al BCS198e 0.00

BAS SS 506 0.03

BAS SS 503 0.11

BAS SS 502 0.40

Table 4 Copper content of aluminium metal and a range of aluminium alloys

The two aluminium emission lines are not fully resolved and there is a small 

background shift seen across the spectrum, (Figure 15). The use of a longer 

time delay might reduce the background intensity and enable the aluminium 

lines to be resolved.

Calibrations for copper 324.7 nm and copper 324.7 ratioed to aluminium

309.2 nm were both linear, although the ratioed values provided a better fit 

when the value for the blank was omitted, (Figure 16). The line equations and 

correlation coefficients were: y = 12049x + 5353, 0.9632 (Cu 324.7), and 

y = 122x + 53.3, 0.9989 (Cu 324.7 / Al 309.2), respectively.
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Figure 15 Emission spectrum for aluminium alloy containing copper 0.40 % 
m/m (BAS SS 502). Sample was ablated with laser flash lamp energy 70 J and 
data were acquired with fixed time OMA program FTb, (delay time 700 ns, 
integration time 1 ps).
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Figure 16 Calibration plot for copper in aluminium alloy. Samples were ablated 
with LFLE 70 J and data were acquired with OMA fixed time program FTb. The 
samples are listed in Table 4. The values for the copper/aluminium plot were 
multiplied by 200 in order to obtain both graphs on the same scale.
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The limit of detection for copper was estimated to be 0.010 % m/m based on 3a 

(measurement of pure aluminium standard). The calibration shows that 

emission signals are representative of the samples ablated and that 

quantification is possible when suitable standard reference materials are 

available. Precision of 5.3 % RSD was obtained for copper 324.7 nm (n=30), 

and this was improved to 3.0 % when the copper was ratioed to the aluminium

309.2 nm emission signal. The values are better than those obtained by Scott 

and Strasheim (1970),5 who obtained values of between 5-8 % RSD for copper 

in aluminium alloy, and comparable to those reported by Niemax et al (1989)10 

for the determination of chromium and silicon in steel. Niemax10 achieved 

better limits of detection than here, 0.003 % m/m (3a), by using an argon buffer 

gas at reduced pressure. The performance achieved here, however, is 

appropriate for process monitoring and industrial applications such as the rapid 

sorting of alloy types.

3.4 Conclusions and Recommendations for Further Work

An optical multichannel analyser with a photodiode array detector has been 

successfully used to monitor an ICP emission source. Analytical performance 

was comparable to a conventional ICP spectrometer although sensitivity was 

lower. Sensitivity could probably be improved by optimising the fibre optic 

observation position relative to the ICP discharge. Spectral resolution was 

about an order of magnitude lower than that of a conventional ICP 

spectrometer because of the compact size of the OMA spectrometer and the 

intensifier. The wavelength accuracy of the optical multichannel analyser 

spectrometer was found to be reproducible in positioning the grating to a 

selected wavelength region.
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The integrated laser and OMA system was found to operate satisfactorily, and it 

was possible for the spectrometer to discreetly monitor the laser-induced 

plasma from each laser shot. The versatility of the OMA data acquisition modes 

indicates that the system is appropriate to investigate new applications. Study 

of the laser ablation of copper metal showed that sensitivity was considerably 

improved when time resolved measurement of the laser-induced plasma was 

used. For the ablation of copper metal, the signal/background ratio (Cu 324.7 

/background 325.8) was 6.2 times larger for measurement with time resolution 

than measurement without. Increasing the laser energy was found to increase 

the intensity of the initial background continuum and increase the lifetime of the 

laser-induced plasma. Analytical performance was established for the ablation 

of copper metal and copper in aluminium alloy. It was found that a larger 

number of laser shots (2100 vs. 30) improved precision (17.1 vs. 3.8 % relative 

standard deviation, RSD). Performance was comparable to other published 

studies.5-9-10 The limit of detection for copper in aluminium alloy was 0.010 % 

m/m. The use of an internal standard for the determination of copper in 

aluminium alloy also improved the performance (5.3 vs. 3.0 % RSD), and 

provided a calibration graph of improved linearity.

Comparing the performance of the OMA with the ICP emission source and the 

laser-induced plasma source, precision and sensitivity (signal/background ratio) 

were better with the ICP source, as expected. Values for precision were 0.5 % 

RSD for the ICP source (10 mg M Cu solution, Cu 324.7 nm) and 3.5 % RSD 

for the laser-induced plasma (pure copper metal, Cu 324.7 nm). The 

signal/background ratio was 6.3 for the OMA monitoring the ICP source (10 

mg I-1 Cu 324.7 nm / distilled water 324.7 nm), compared to 11.9 for the OMA 

with the laser-induced plasma source (pure copper metal, Cu 324.7 nm / 

background 325.8 nm). The signal for the ICP was only for a dilute solution 

whereas the signal for the laser-induced plasma source was for pure metal.
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These results show that the OMA can achieve good levels of precision with a 

relatively precise emission source, and that the relatively poor precision 

obtained with the laser-induced plasma emission source can probably be 

attributed to complex laser ablation processes.
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Chapter 4

Survey Analysis of Polymeric Materials
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4.1 Introduction

Polymeric materials generally contain a wide variety of additives which are used 

to give specific properties to the material.1 These include, pigments for colour 

(e.g. white Ti02), fillers (e.g. CaC03), stabilisers (e.g. Zn, Pb, Ba), flame- 

retarding agents (e.g. Sb, P), smoke suppressants (e.g. Zn), etc. These 

inorganic components vary in concentration from trace (jig/g) to minor (%) 

levels. Samples can be in different forms such as granular, extruded shape, or 

sheet of different thicknesses (mm to several cm).

Analytical techniques currently in use for such analyses include solution-based 

atomic spectrometric methods2-3 which require time-consuming dissolution of 

sample and X-ray fluorescence spectrometry. For example, Belarra et al2 

digested samples of poly (vinyl chloride) (PVC) by heating sample material 

(0.1 g) first in concentrated sulphuric acid, and then in hydrogen peroxide 

solution. Concentrated ammonia solution and EDTA solution were added to 

the cooled solution to dissolve the precipitate. Calcium, aluminium and 

antimony were determined by atomic absorption spectrometry. Precision varied 

from to 6.9 to 1.1 % RSD and recoveries were within the range 93 to 103 % 

m/m. Sample preparation took about 1 hour. DiPasquale et al3 determined 

sulphur in polymeric materials by inductively coupled plasma emission 

spectrometry following sample dissolution, and obtained RSD values of less 

than 2 %.

Energy dispersive X-ray fluorescence spectrometry was used by Warren et al4 

to measure calcium, silicon and strontium in nylon samples, and calcium, 

titanium lead, barium and cadmium in PVC materials. Analysis time was much 

faster than the techniques above that required sample dissolution, 100 s vs. 

about 1 hour. Limits of detection were of the order 1 % m/m, and precision
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varied from 0.5 to 10 % RSD depending on element and sample type. Samples 

were placed in a 30 mm diameter cup for analysis, either as nylon granules, 

or by cutting PVC sheet to size. Sample homogeneity was found to influence 

analytical performance because X-ray fluorescence signals originated from 

different depths of the sample depending on the element measured. For 

example, the critical depth (depth beyond which no significant radiation 

emerges) for silicon was 0.05 mm compared to 17.1 mm for strontium. The 

authors concluded that performance was suitable for off-line monitoring of the 

composition of polymeric materials in the plastics industry.

An alternative technique is direct spectrochemical analysis by laser ablation, 

either by direct spectral measurement of the laser-induced plasma (laser- 

induced plasma emission spectrometry), or by coupling to an another analytical 

technique. For example, laser ablation with inductively coupled plasma (ICP) - 

atomic emission spectrometry has been used for the survey analysis of liquid 

paints and polymeric materials in sheet form.5 In situ micro-sampling and rapid 

elemental monitoring capabilities were demonstrated for a range of elements 

including aluminium, chromium, lead and titanium. Measurement times were 

typically 30 s. Laser ablation with ICP - mass spectrometry was applied to the 

determination of trace elements (Al, Si, P, Co, Zn, Sb) in plastic materials by 

Marshall et al.6 Higher sensitivity than X-ray fluorescence spectrometry was 

demonstrated with limits of detection at the pg g_1 level, but precision was 

significantly worse, ~10 % RSD. Quantitative analysis was limited in most of the 

above studies because of the absence of suitable standards and certified 

reference materials.

This study has examined the application of laser-induced plasma emission 

spectrometry to the rapid survey analysis of poly (vinyl chloride) (PVC) 

samples. Potential advantages of the technique include in situ measurement of
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analyte and rapid measurement times. The small area sampled by the laser 

may enable samples to be tested for homogeneity of inorganic additives, and 

bulk analysis may be possible by ablating several sites of the sample material. 

The twelve elements selected to be monitored, (Al, Ba, Ca, Cu, Fe, Mg, Pb, P, 

Sb, Sn, Ti, Zn) are used in various chemical forms in polymeric materials. The 

effects of key operating parameters, (laser energy and sample position relative 

to the laser focal point) upon analytical performance (signal/background ratio) 

are characterised for antimony and calcium, and performance data for the 

determination of antimony, zinc and calcium in PVC samples are obtained. Part 

of this study has been published.7

4.2 Experimental

The laser-induced plasma emission spectrometry system was used as 

described in Chapter 2, with the blank-spectrum subtraction method and the 

laser fired at 5 Hz. The incremental mode of optical multichannel analyser 

(OMA) operation was used with time settings of zero delay time, increment time 

of 100 ns and an integration time of 100 ns. Two fixed time (FT) programs were 

also used, FT1 and FT2, with a 500 ns delay time, and a 1 ps integration time. 

Method FT1 consisted of firing 30 laser shots at the same spot, the emission 

spectrum from each shot being stored individually, i.e. 1 laser shot in each of 30 

OMA memories (30 shots total). Method FT2 accumulated 5 laser shots into 

one memory at one sample site, and repeated this 7 times in total, with a fresh 

site each time, i.e. 5 laser shots in each of 7 memories (35 laser shots total). 

The run times for FT1 and FT2 were 6 s and 7 s respectively, with a further 25 s 

required for sample manipulation for FT2. Laser energy (laser flash lamp 

energy, LFLE) and sample position relative to the laser focal point (F-) were 

varied for some experiments
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Three spectral windows, 237 - 262, 267 - 292 and 307 - 332 nm of centre 

wavelengths 250, 280 and 320 nm, respectively, were used to detect the 

elements selected (Al, Ba, Ca, Cu, Fe, Mg, Pb, P, Sb, Sn, Ti, Zn). The 

emission lines monitored are given in Table 1. In addition, two barium lines 

were utilised (230.423 nm and 233.527 nm) at centre wavelength 230 nm. 

Emission lines were identified for each spectral region from the ablation of pure 

materials (Table 2). Wavelength values for element emission lines were taken 

from standard tables.8

Materials

Samples of PVC were prepared by FMC Process Additives (UK) Ltd. The 

samples were supplied in sheet form and were identified as A to K. The 

elemental compositions as supplied by the manufacturer are listed in Table 3. 

Sample X was industrial grade PVC (Darvic), obtained locally. All samples were 

analysed as received with no sample preparation.
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237 - 262 nm

Wavelength Range 

267 - 292 nm

(nm)

307 - 332 nm

240.549 Cu 279.553 Mg II 308.215 Al I

241.949 Sn 280.199 Pb I 308.802 Ti II

247.857 C.l 280.270 Mg II 309.271 A ll

250.200 Zn II 283.306 Pb I 315.887 Ca II

250.911 Cll 283.999 Snl 317.502 Sn I

251.203 Cll 285.213 Mg I 317.933 Ca II

251.743 Ti II 286.333 Snl 322.579 Fe II

252.560 Ti II 286.426 Pb 322.775 Fe II

252.852 Sb I 287.792 Sb I 323.252 Sb I

253.401 PI 323.452 Ti II

253.565 PI 323.612 Ti II

254.480 Cu II 323.904 Till

255.328 PI 324.199 Ti II

255.493 PI 324.754 Cu I

255.796 Zn II 326.233 Sn I

256.253 Fe II 326.751 Sb I

259.806 Sb I 327.396 Cu I

259.881 Cu II 328.233 Zn I

261.418 Pb 328.321 Sn II

330.259 Zn I

Table 1 List of element emission lines for each spectral region monitored 

in this study
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Material Details

Al aluminium metal, BCS198e, Bureau of Analysed 

Standards, Newham Hall, Newby, Cleveland, UK

Ba barium chloride powder, pressed in die into pellet, 

Proanalysis, May and Baker, Rhone-Poulenc, 

Manchester, UK

C Spectroscopic grade solid carbon, Spectrochem, 

Spectro Supplies Ltd, Hornsea, UK

Ca calcium carbonate powder, pressed in die into pellet, 

BDH Analar, Merck Ltd, Lutterworth, Leicestershire, 

UK

Cu copper metal foil, BDH Analar

Fe iron metal rod, Specpure, Johnson Matthey, Royston, 

Hertfordshire, UK

Mg magnesium metal turnings, pressed in die into pellet, 

BDH Analar

Pb lead metal sheet, BDH Analar

P sodium phosphate powder, pressed in die into pellet, 

Proanalysis, May and Baker, Rhone-Poulenc

Sb antimony metal rod, Specpure, Johnson Matthey

Sn tin metal rod, Specpure, Johnson Matthey

Ti titanium metal, IMI Titanium Ltd, Witton, Birmingham, 

UK

Zn zinc metal, BCS194d, Bureau of Analysed Standards

Table 2 List of materials used to identify element emission wavelengths
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4.3 Results and Discussion

4.3.1 Preliminary studies

An emission-wavelength-time response, recorded with the optical multichannel 

analyser incremental program, is depicted in Figure 1 for the ablation of sample 

A (4.9 % m/m Sb, 2.6 % m/m P). The sample was ablated with laser flash lamp 

energy (LFLE) 40 J with the sample positioned at the laser focal point (F0), 

(irradiance ~ 8 x 1010 W cnr2). The wavelength region monitored was 237 - 262 

nm. The response shows the intense background continuum at early times, and 

the emergence of atom/ion emission at later times. Carbon ion emissions 

(C ion 250.9, 251.2 nm) were evident initially, and carbon atom (C atom

247.9 nm) later. The intense background signal and carbon ion emissions 

reflect the high temperatures of the plasma at early times, but as the plasma 

expanded and cooled, the background signal decayed rapidly and atomic 

emission lines for antimony and phosphorus became prominent. An emission

time response for selected wavelengths (Figure 2a) shows that carbon, 

antimony and phosphorus responses were indistinguishable from the 

background until 400 ns. After this, emission signals for carbon, antimony and 

phosphorus remained above background until about 1.5 ps. These 

observations enabled suitable detector settings to be obtained for time-resolved 

measurement of analyte signal with the OMA fixed time mode. As the 

background signal had reduced significantly by 500 ns, selection of a time delay 

of 500 ns minimised background contributions. An integration time of 1 ps was 

appropriate for monitoring analyte emission.

An emission-time response for this experiment repeated with maximum laser 

energy (LFLE 70 J, irradiance ~ 3 x 1011 W cm-2) is depicted in Figure 2b. 

Element emission responses for carbon, antimony and phosphorus remained 

above the baseline until about 3 ps, indicating that the micro-plasma was longer 

lived than that produced by ablation with LFLE 40 J.
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Figure 2 Emission-time profile for ablation of sample A using the incremental 

program, (increment time 100 ns, integration time 100 ns) at sample position F0 

with laser flash lamp energy: (a) 40 J, and (b) 70 J.
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Results obtained with the 307 - 332 nm spectral region for the ablation of 

sample B with LFLE 40 and 70 J suggested that the timing values selected 

above were appropriate.

There are differences between the laser ablation of polymer and metal, in 

particular, in the rate of material removal and the emission characteristics of the 

laser-induced plasma. Laser ablation of PVC samples results in a crater 

approximately 1 mm in diameter and 50 pm deep (10 laser shots at the same 

site with LFLE 40 J). A Talysurf surface analysis of a crater is shown in 

Figure 3. The base of the crater is relatively flat and the crater walls steep. A 

darkened region, about 2 mm in width, is observed around each crater. The 

rate of material removal is estimated to be 5 pg/laser shot, which is significantly 

higher than that obtained for the ablation of metal under very similar conditions, 

(0.45 pg/laser shot, Zn/Ni coating on steel, Chapter 5).

(The calculation for the rate of material removal is given in Appendix 1.)

Figure 3 Three dimensional Talysurf surface analysis of crater in PVC 
(sample X). The x and y-axis correspond to distance across the sample 
surface, both 1.63 mm total. The z-axis is the vertical height, with total height 
92.8 pm. The crater was produced by 10 laser shots with LFLE 40 J.
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Comparing the emission-time responses for the ablation of PVC (Figure 2a) 

and pure copper metal (Chapter 3, Figures 7 and 11) shows that the plasma 

lifetime for ablation of copper metal (~35 ps) is much longer than for the 

polymer (~2.5 ps). Ablation conditions and measurement times were similar for 

both experiments. Initial intensities for the matrix elements, carbon from the 

polymer and copper from the metal, are similar (~ 800 counts).

The differences between ablation of polymer and metal are probably because 

of the difference in material properties. For ablation of metal, the free electrons 

of the conducting material are able to couple with the energy of the laser pulse 

through inverse-Bremsstrahlung processes, to produce a plasma of higher 

energy, electron density and temperature. This relatively energetic plasma will 

therefore have a longer lifetime. The plasma may shield the metal from part of 

the laser pulse, thereby reducing direct laser-material interaction, and reducing 

the amount of material removed per laser shot.

For ablation of polymer, the insulating nature of the material means that there is 

less coupling with the laser pulse, and therefore a less energetic plasma is 

induced which has a shorter lifetime. The rate of material removal is higher for 

the polymer because of the lower temperature needed to volatilise and 

decompose polymeric material compared to metal. The plasma is cooled 

as the relatively large amount of ablated polymer material enters the plasma, 

further reducing the plasma lifetime. The result is that the rate of material 

removal is higher and the plasma lifetime is shorter for the ablation of polymeric 

material compared to the ablation of metal.

137



4.3.2 Characterisation of operating conditions

The objective was to study the effects of operating conditions (laser energy and 

sample position relative to the laser focal point) upon analytical performance, 

and thereby obtain the conditions required for maximum sensitivity of key 

elements (Sb and Ca). Sample B (6.8 % m/m Ca, 2.8% m/m Sb) was ablated 

using fixed time method FT1 (30 laser shots at same site, delay time 500 ns, 

integration time 1 ps) with different laser energies (LFLE 40, 55 and 70 J) and 

at different sample positions (F-20, F-5, F0, F+5 and F-20). A fresh sample site 

was used for each experiment. The signal/background ratio was calculated for 

antimony 323.3 and calcium 317.9 nm for each experiment, where the 

background wavelength was 312.9 nm. The signal/background values are 

plotted in Figure 4. Maximum values of the ratio for calcium and antimony were 

obtained at F0 with LFLE 40 J. Although the analyte emission intensities were 

more intense with the higher laser energies, the background intensites were 

also more intense, resulting in maximum signal/background values at low laser 

energy, LFLE 40J. These conditions were adopted for subsequent studies.

Sample positions of F-5 and F-20 also produced similar results for antimony 

with this laser energy. Initial studies, as reported,7 suggested that sample 

position F-0.5 gave improved performance, but the more detailed study here 

found no significant differences between F-0.5 and F0. The timing values (delay 

and integration) used for this experiment were selected for LFLE 40 J ablation. 

Sensitivity increased a little when the integration time for LFLE 70 J was 

increased from 1 to 2 ps to take advantage of the longer plasma lifetime (Figure 

2b). However, the increase was small and LFLE 40 J at sample position F0 still 

produced maximum sensitivity.

138



(a)

signal /  background ratio for Sb 323.3 nm

2.5 j

o
ro
m
w

FOF-5 F+5F-20 F+20

 40 J

 55 J

 70 J

jl4sum1.c1.xls

Sample position relative to laser focal point (mm)

(b)

signal /  background ratio for Ca 317.9 nm

45 -

O  vll “  
03
m 25 f  co
CO 2 0  -

10 -

F0 F+5 F+20F-5F-20

■ 40 J

 55 J

 70 J

jl4sum1.c2.xls

Sample position relative to laser focal point (mm)

Figure 4 Plot of signal/background ratios obtained for ablation of sample B with 

different laser energies and sample positions relative to laser focal point;

(a) Sb 323.3, and (b) Ca 317.9 nm. The background wavelength was 312.9 nm.
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In the case of transparent polymeric samples, no emission signals were 

obtained when material was ablated at FO with LFLE 40 J. Faint tunnelling 

through the material and ablation of the metal support underneath the sample 

were observed, suggesting that a plasma was not induced on the surface of the 

polymer, and the laser light was transmitted through the plastic to the metal.

The tunnelling was due to the self-focusing of the laser beam within the 

material, which trapped the light and prevented it from spreading, to produce a 

waveguide.9 This was not evident in the opaque samples because the laser 

light was absorbed leading to ablation and production of the laser-induced 

plasma. When the transparent sample was moved away from the laser focus 

position, e.g. F+5, emission signals and laser damage on the sample surface 

were obtained. The plasma was induced in the air above the sample surface, 

and the plasma was responsible for volatilising sample material and creating 

the crater. As the PVC samples in this study were opaque, the conditions 

identified above (LFLE 40 J and FO) were adopted.

A further consideration was the effect of repetitive laser firing upon 

performance, i.e. the number of laser shots at a given site. Emission-time 

responses for the ablation of sample A with fixed time methods FT 1 (30 shots 

at same site) and FT2 (5 shots at each of 7 sites) are depicted in Figure 5. With 

method FT1, the antimony responses were not similar throughout the 

experiment, although the carbon, phosphorus and background responses were 

reasonably constant. The intensity of both antimony signals increased initially, 

then decreased until about memory number 8, after which a relatively constant 

signal was observed. In contrast, all emission responses were fairly constant 

with method FT2. Preliminary calibrations indicated that the emission response 

for antimony was not linear with concentration with method FT1 although the 

response for calcium was linear. Method FT2, however, produced linear 

responses for calcium and antimony. A probable explanation is that the
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antimony in the vicinity of the laser spot was selectively volatilised during the 

first few laser shots, possibly through formation of volatile antimony chloride, 

leading to a depletion of antimony for the remaining shots. The effect was not 

due to higher concentration levels of antimony at the surface as similar 

emission responses were obtained from the ablation of material beneath the 

sample surface. The effect was also observed for the antimony emission lines 

in the 307 - 332 nm wavelength region. Reasonably constant signals for 

carbon, phosphorus and calcium were obtained by FT1, suggesting that these 

elements were not selectively volatilised and it was still possible to make 

representative measurements after firing 30 laser shots at the same site.

Method FT2 was selected for subsequent use because the effects of antimony 

volatilisation were minimised, and FT2 provided improved analytical 

performance compared to method FT1. Data are shown in Table 4. Precision 

(% relative standard deviation, % RSD) improved from 13.6, 16.0 and 11.0 

(FT1) to 6.9, 7.1 and 7.3 (FT2) for carbon, antimony and phosphorus, 

respectively, and the signal/noise ratios for antimony and phosphorus increased 

from 20.6 and 16.2 to 746 and 250, respectively.

Method FT1 Method FT2

Number of shots per site 30 5

% RSD C 247.8 nm 13.6 6.9

% RSD Sb 252.9 nm 16.0 7.1

% RSD P 253.4 nm 11.0 7.3

S/N (Sb 4.9% m/m) 20.6 746

S/N (P 2.6% m/m) 16.2 250

n for statistical calculation 30 7

Table 4 Comparison of data from fixed time methods FT 1 and FT2 for the 
ablation of sample A
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4.3.3 Analytical performance

Full quantitative measurement of inorganic additives in polymeric materials is 

considered to be difficult because of the absence of suitable certified reference 

materials necessary to prepare calibration graphs. Quantitative measurements 

in this work were based on using characterised samples as calibration 

standards. The operating conditions used were as identified above, LFLE 40 J, 

sample position F0 and method FT2 (5 laser shots at each of 7 fresh sample 

sites). An emission-wavelength-memory number response (Figure 6) for 

ablation of sample A clearly indicates good repeatability for successive laser 

firings. The emission-time response for this experiment is shown in Figure 5b. 

Results suggest that the sample is relatively homogenous, and indicate that the 

technique can be used for bulk analysis to check for sample heterogeneity.

Performance data are given in Table 5. Typical values for precision (% relative 

standard deviation, % RSD) were 7.3, 5.6 and 3.2 for antimony 252.9, calcium

317.9 and zinc 330.3 nm, respectively. Precision improved from 7.3 to 1.8 for 

antimony 252.9 when the carbon signal (C atom 247.86 nm) from the polymer 

matrix was used as an internal standard. This internal standard can only be 

used for element emission signals that are within a spectral region that contains 

a carbon emission signal, e.g. 237 - 262 nm.
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Element Wavelength

(nm)

Limit of Detection 

(% m/m)

% RSD

Ca 317.9 0.04 5.6

Zn 330.3 0.07 3.2

Sb 252.9 0.09 7.3

Sb / C * Sb 252.9 — 1.8

C 247.9

Table 5 Analytical performance data for Sb, Ca and Zn in PVC samples. 
Operating conditions were LFLE 40 J, sample position F0 with 5 laser shots in 
each of 7 memories, fresh sample site each memory (method FT2).

C I 247.9

Sb 252.9 Sb 259.8

Wavelength 237 - 262 nm
Memory 
Number 
(0 to 6)

Cf/y6.cdr-f4S5a

Figure 6 Emission-wavelength-memory number response for the ablation of 
sample A at sample position F0 with LFLE 40 J and 5 laser shots in each of 7 
memories, fresh sample site each memory (method FT2).
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Linear calibration graphs, shown in Figures 7 and 8, were generated for calcium 

317.9, zinc 330.3 and antimony 252.9 nm for up to 10 % m/m of each element. 

The line for calcium was a straight line, (y = 320.2x + 29.7, correlation 

coefficient 0.9985) and the lines for antimony and zinc were curves. The line for 

antimony was improved (Figure 8b), i.e. was less curved, when the ratio of 

antimony to carbon 247.9 nm was plotted, indicating that the use of an internal 

standard can provide better performance. The curvature of the antimony and 

zinc lines suggests that there was some enhancing effect for the responses of 

zinc and antimony at higher concentrations. The ablation efficiency was 

possibly higher when these elements were present in the polymer at greater 

concentrations, leading to increased mass removal per laser shot and 

enhanced analyte emission responses. This effect was partly corrected for for 

antimony by using the carbon signal from the polymer matrix as internal 

standard.

Limits of detection based on 3cr (measurement of blank PVC sample) were 

estimated at 0.09, 0.04 and 0.07 % m/m for antimony 252.9, calcium 317.9 and 

zinc 330.3 nm, respectively. The limits of detection are similar to values 

obtained for elements in steel (Ni, Cr, Si and Mn) by Cremers et al 9 using LIPS.
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4.3.4 Survey analysis

To demonstrate the rapid analysis capability of laser-induced plasma emission 

spectrometry, the range of PVC samples listed in Table 3 was examined. The 

composition values quoted were supplied by the manufacturer. Spectra from 

four samples (A, B, D and E) are shown in Figure 9 for three spectral regions. 

Samples A and B are clearly seen to contain antimony, as the emission lines for 

antimony are identified within all three spectral windows for both samples. The 

greater emission intensity for A compared to B indicates the higher 

concentration present in A (Sb: A, 4.9 % m/m; B, 2.8 % m/m). Tin and 

phosphorus are present in sample A (P 2.6 % m/m, Sn 0.05 % m/m). Calcium 

emission lines are evident in samples B and D, the greater emission intensity of 

B indicating the higher concentration present (Ca: B, 6.8 % m/m; D,

0.4 % m/m). Emission lines of magnesium lines were observed for all four 

samples. Barium was detected in sample B (Ba: 0.1 % m/m), the barium 

emission lines (230.423 nm and 233.527 nm) are not shown in Figure 8. Lead 

(3.0 % m/m) is present in sample D, and aluminium, phosphorus, tin and zinc 

are evident in E. Iron and copper were not detected in the samples tested here.

The technique can rapidly differentiate between samples by the inorganic 

content without the need for time-consuming sample dissolution with associated 

possible loss of volatile elements. Each spectrum was acquired in 1 s and so it 

took about 3 s to examine each sample (excluding sample manipulation time).

In comparison, similar testing by energy dispersive X-ray fluorescence took 

100 s, and required a minimum sample size of 30 mm diameter and ~17 mm 

thickness. Testing by laser-induced plasma emission spectrometry was 

possible on small samples only ~5 mm in diameter and 2 mm thick. The small 

sample site enables sample material to examined for localised homogeneity. 

The results indicate that laser-induced plasma emission spectrometry can be 

used for rapid survey analysis of polymeric materials.

148



B

D

3000 2000 80 0

Sb
Sb

Sb Sb
Sb

12000 Ca3000 2500

Ca

c
3
O
U

SbSb
Sb Sb Sb

3000 2000

Ca

C/3 Pb

Pb Ca

Pb
Pb

G  3000

E ©

B

200Q

P P

Mg Sn

800

Zn

ZnSnSn

0

237.0 - 262.0 267.0 - 292.0 

Wavelength (nm)

307.0 - 332.0

Figure 9 Laser-induced plasma emission spectra from samples A, B, D and E. 
Spectra were recorded with fixed time method FT2 and emission wavelengths 
are given in Table 1.

149



4.4 Conclusions and Recommendations for Further Work

The laser ablation of polymeric materials was found to be different from that of 

metals. The lifetime of the plasma was shorter and rate of material removal was 

higher for the ablation of polymer, and were attributed to differences in the 

properties in the two types of material. Samples of poly (vinyl chloride) were 

successfully monitored for a range of twelve elements (Al, Ba, Ca, Cu, Fe, Mg, 

Pb, P, Sb, Sn, Ti and Zn). The study examined the effects of operating 

conditions (laser energy and sample position relative to the focal point) upon 

analytical performance (signal/background ratio), and obtained improved 

performance at relatively low laser energy (laser flash lamp energy 40 J) with 

the sample positioned at the laser focal point. Selective volatilisation of 

antimony was found to interfere with the determination of this element when a 

relatively large number of laser shots (30) was directed at the same sample 

site. The effect was minimised by using a smaller number of laser shots (5) at 7 

fresh sample sites. This method also provided improved analytical performance 

in terms of precision and sensitivity.

Full quantitative measurement was limited by the availability of characterised 

samples. Limits of detection and precision were obtained for key elements 

(Ca 0.04, Zn 0.07, Sb 0.09 % m/m) and linear calibration graphs were achieved 

for these elements to 10 % m/m. Precision (% relative standard deviation) 

improved from 7.3 to 1.8 for antimony when the carbon signal from the polymer 

matrix was used as an internal standard. The speed of analysis, compactness 

of instrumentation and simplicity of operation suggest that the technique has 

the potential for compositional monitoring of polymeric materials in industrial 

processes, such as manufacture and recycling. Compared to energy dispersive 

X-ray fluorescence, the technique is considerably faster (1 vs. 100 s), requires 

a smaller sample size, and is more sensitive (limit of detection 0.09 vs. 

estimated 1 % m/m).
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Calibration and performance data for all twelve elements could be obtained with 

further work if suitable characterised standards could be obtained. The range of 

elements could be extended to include other elements of interest to the polymer 

industry, bromine, chlorine, silicon, cadmium, sulphur and bismuth. The use of 

carbon as an internal standard could be applied to other elements if other 

carbon lines could be used, or if a larger wavelength region could be monitored 

around a suitable carbon emission line. Further work could utilise a lower 

resolution spectrometer grating to achieve this, and examine, for each element, 

the effects of using an internal standard upon performance. Possible spectral 

interferences would need to be considered if a lower resolution spectrometer 

was to be used. Further studies could investigate the effects of other operating 

parameters, such as type and pressure of buffer gas. Improved performance 

might be realised with a reduced pressure of argon buffer gas, as reported by 

Niemax et al10 for the determination of silicon and chromium in steel.
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5.1 Introduction

In the previous chapters, studies have investigated laser-induced plasma 

emission spectrometry for the bulk chemical analysis of metal alloys and 

polymeric materials. The technique also has a micro-analysis capability which 

was used to test the homogeneity of inorganic additives in samples of polymeric 

materials. This chapter applies the micro-analysis capabilty to the depth profile 

measurement of coatings deposited on steel substrates. Coatings are widely 

used in industry to give enhanced properties to materials. For example, metallic 

coatings such as zinc, nickel and chromium are applied to steel to provide 

resistance to corrosion for products ranging from car bodies to oil rig 

structures.1 Improved resistance to wear in abrasive environments, such as drill 

bits and scissors, can be achieved with the use of hard coatings such as 

titanium nitride, and zirconium nitride.2 In the jewellery and electronics 

industries, gold coatings are used for cosmetic or electrical purposes.

The quality of these coatings can be investigated by a number of techniques 

depending on the information required. Techniques such as Auger and X-ray 

photoelectron spectroscopy have been utilised to study surface chemistry on 

the atomic scale, and can be used to probe into the coating by removing 

material through ion bombardment to yield depth profile data.3 Thicker coatings 

can be measured mechanically with ball cratering methods, and analytically 

using X-ray spectrometry and Rutherford backscattering techniques. Glow 

discharge optical emission spectrometry (GD-OES)4 and glow discharge mass 

spectrometry (GD-MS)5,6 have been used to measure coatings over the 

thickness range 0.01 pm to over 50 pm. The quantitative aspects of GD-OES 

have been reported by Bengtson7 and both techniques are now widely 

accepted. Measurement times are about 15 minutes with depth resolution 

typically around 100 nm and crater diameter o f-10 mm. An improved 

measurement technique would be more rapid (seconds vs. minutes) and
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examine smaller areas to provide higher spatial resolution. The base of the 

crater produced by the depth profile should be as flat as possible so that good 

depth resolution is achieved.

This study considers the feasibility of utilising laser-induced plasma emission 

spectrometry (LIPS) for the depth profiling of coatings. Possible advantages 

when compared to glow discharge techniques include small crater size, ~1 mm 

diameter, and rapid analysis time, ~40 s. The application of LIPS to depth 

profiling has been limited and is discussed in Chapter 1. In this study, a pulsed 

Nd:YAG laser is fired repetitively at the same site to erode the coating and then 

ablate the substrate. The laser-induced plasma from each laser shot is 

discreetly monitored by a gated photodiode array spectrometer system to yield 

an emission-wavelength-time signature, i.e. depth profile.

The aim of the investigation is to evaluate the capability of laser-induced 

plasma emission spectrometry to depth profile metallic coatings over a range of 

coating thickness, i.e. to measure the coating thickness, and to provide 

information about the distribution with depth of the components of the coating. 

The influence of key operating conditions on signatures is characterised for 

zinc/nickel coatings in order to obtain suitable operating conditions. Depth 

profile performance is established for zinc/nickel and tin coatings over a coating 

thickness range of 0.38 to 7.2 pm. The technique is also applied to a titanium 

nitride coating and the detection of an ultra-thin chromium coating (20 nm). 

Detailed depth profile studies with laser-induced plasma emission spectrometry 

are reported here for the first time and part of this work has been submitted for 

publication.8
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5.2 Experimental

The laser-induced plasma emission spectrometry system was used as 

described in Chapter 2 with the blank-spectrum subtraction method and the 

laser fired at 5 Hz. A fixed time OMA program was utilised with time settings of 

time delay 1.5 ps and integration time 1 ps. Two main operating parameters 

were varied to obtain optimum conditions for depth profile measurement: the 

laser energy, by changing the laser flash lamp energy (LFLE); and the sample 

position relative to the laser focal point, which affected the amount of laser 

defocusing and consequently the laser irradiance. This was achieved by 

positioning the sample at different distances from the laser focal point, 

expressed as F±x, where x was the distance in mm from the laser focal point, 

and the - or + sign indicated either towards, or away from, the laser source.

Materials

A series of samples with different coatings over a range of coating thickness 

was examined in the study, (Table 1). Samples of low alloy steel with different 

coatings were prepared at British Steel Technical, Swinden Laboratories, 

Rotherham, UK. The zinc/nickel coating contained 13% m/m nickel and was 

deposited by a hot-dip process. The thickness of each tin coating, 

electrolytically deposited, was calculated from the coating weight (Appendix 1). 

A low alloy steel reference standard was used as an uncoated blank (BAS 

SS401, Bureau of Analysed Standards, Newby Hall, UK). A sample of stainless 

steel (AISI-340) with a coating of titanium nitride deposited by physical vapour 

deposition (PVD) was prepared by G. Williams (Materials Research Institute, 

Sheffield Hallam University). Sample Zn-A was hot-dipped galvanised steel 

(coating: Zn metal with minor levels of Al and Pb), supplied by A. Bengtson 

(Swedish Institute for Metals Research, Stockholm, Sweden). Samples were 

rinsed in acetone and air dried prior to use.

156



Sample

Reference

Coating Coating Thickness 

(pm)

Coating Weight 

(gm‘2)

P1 Zn/Ni 2.7 -

P2 Zn/Ni 2.7 -

P4 Zn/Ni 2.7 -

P5 Zn/Ni 5.0 -

P6 Zn/Ni 7.2 -

Sn1/1 Sn 1.48 10.8

Sn3/1 Sn 0.82 6.0

Sn1/2 Sn 0.58 4.2

Sn4/1 Sn 0.49 3.6

Sn4/2 Sn 0.47 3.4

Sn3/2 Sn 0.44 3.2

Sn5/1 Sn 0.38 2.8

Cr-1 Cr 0.020 -

TiN-1 TiN 2.0 -

Zn-A Zn 8.0 -

Note: the coating thickness of the tin samples was calculated from the coating weight 

(the calculation is given in Appendix 1)

Table 1 Details of the coated samples used in the depth profile studies.
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5.3 Results and Discussion

5.3.1 Preliminary studies

The feasibility of depth profile measurement using laser-induced plasma 

emission spectrometry was examined in preliminary studies with zinc/nickel 

coatings. Three spectral regions were identified that encompassed strong 

emission lines for zinc and nickel and iron: 237 - 262, 287 - 312, and 307 - 332 

nm. Initial studies with sample P2 (zinc/nickel coating thickness 2.7 pm) 

showed that an experiment consisting of 200 laser shots with maximum laser 

energy (laser flash lamp energy, LFLE 70 J) was sufficient to ablate through the 

coating and obtain strong element emission responses from the iron of the steel 

base. This was achieved by accumulating 5 laser shots/scans of the detector 

array into 1 memory of the optical multichannel analyser (OMA); 40 memories 

were used to record 200 laser shots. With the laser firing at 5 Hz, the 

experiment run time was 40 s. The sample was ablated at the laser focal point 

(sample position F0) with laser flash lamp energy (LFLE) 70 J.

Spectra for the ablation of sample P2 at the three spectral regions are depicted 

in Figures 1a, 1b, and 1c. Each figure depicts a spectrum from memory 0 (laser 

shots 1-5) and from memory 39 (laser shots 196-200). Useful information about 

the coating and ablation process can be gained from examination of these 

spectra. For each spectral region, zinc and nickel lines were evident for the first 

spectrum (laser shots 1 - 5) and there were no responses for iron. The absence 

of iron indicated that the surface of the coating did not contain iron, either as a 

contaminant of the zinc/nickel alloy, or from diffusion of iron from the substrate, 

and that the laser had not penetrated through the coating into the steel 

substrate in the first 5 laser shots.
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Figure 1 Overlay of spectra for the ablation of Zn/Ni coating on steel (sample 
P2, coating thickness 2.7 pm) with LFLE 70 J at sample position F0. Emission 
wavelengths (nm). Memory 0: laser shots 1-5. Memory 39: laser shots 196-200. 
Spectral regions are: (a) 237-262, (b) 287-312, (c) 307-332 nm.
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The last spectrum (laser shots 196-200) for each spectral region contained 

strong emission lines for iron, which showed that ablation of the substrate had 

been achieved. This spectrum for the spectral region 307 - 332 nm contained 

minimal responses for zinc and nickel, which indicated that the coating had 

been removed. This was not particularly clear for the last spectrum within 

spectral regions 237 - 262 and 287 - 312 nm (Figures 1, 2) because of spectral 

interference problems discussed below.

The spectral region 237 - 262 nm (Figure 1a) showed an intense increase in 

background signal between ablation of the zinc/nickel coating (memory 0) and 

the steel substrate (memory 39). This was because of the large number of iron 

emission lines present in this region, which caused an increase in the spectral 

baseline. This region was not selected as the zinc and nickel emission lines 

were effectively swamped by the iron signals when ablation of the substrate 

commenced. The spectral region 287 - 312 nm (Figure 1b) was not selected 

because the zinc emission lines suffered from spectral interference from iron 

emission lines.

The spectral region 307- 332 nm (Figure 1c) was therefore selected for use in 

the study of all the zinc/nickel and zinc coated samples because emission lines 

for nickel, zinc and iron were relatively free from interference either from the 

background or from other emission lines. Aluminium was also monitored in this 

wavelength region for sample Zn-A. Emission wavelengths with the 

corresponding detector pixel position are listed in Table 2. The last spectrum 

within this region had a higher background level because the spectrum was 

predominantly iron from the ablation of the steel compared to memory 0 which 

was mainly zinc that has a lower background spectrum. To observe the 

behaviour of the background during the profile measurement, two wavelengths
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(312.3 and 320.3 nm) close to nickel and iron lines were selected and 

monitored, (Table 2, Figure 3).

An emission-wavelength-time response for the ablation of sample P2 is 

depicted in Figure 2. Nickel and zinc emissions were observed during the 

removal of the coating until memory 9, after which these emission intensities 

decreased and signal responses for iron commenced. An emission-time 

response (depth profile) was constructed by plotting specific emission and 

background wavelengths against memory number (time), (Figure 3a). The zinc 

emission signals were very intense and the zinc values were therefore divided 

by 10 in order to obtain a response with all the signal responses on the same 

scale. The responses depicted in Figures 2 and 3a show that the zinc emission 

signal was reasonably constant until memory 9, (50 laser shots), after which it 

decreased sharply. The emission intensity for nickel increased during the 

removal of the coating which suggested that the nickel content of the coating 

was not uniform with depth. The iron signal increased after about memory 6 

and became reasonably constant after about memory 15. This suggested that 

about 30 laser shots were required to ablate through the coating. The region in 

which the iron increased and the zinc and nickel decreased (memory 9 to 18) 

corresponds to an interface region between the coating and the substrate. The 

background intensity also increased within the interface region and is discussed 

in the next section.
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Wavelength (nm) Element Pixel Number

309.271 Al I 185 m

310.155, 310.188 Ni I, I 212

312.3 Ni Background 280 m

313.411 Ni I 315 m

320.342 Fe Background 539 m

321.321* 321.404* Fe II, I 572

322.638* 322.672* Fe II, I 619 m

328.233 Zn I 794

330.259 Zn I 856 m

* unresolved emission lines m = monitored for emission-time response

Table 2 List of main element emission lines used in the study of Zn/Ni and Zn 

coatings. The spectral region was 307-332 nm, (centre wavelength 320 nm).
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Emission Intensity (counts)
Figure 2 Emission-wavelength-time response for the ablation of Zn/Ni coating 
on steel (sample P2, coating thickness 2.7pm) with LFLE 70J at sample 
position FO. Experiment run time 40 s.
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Figure 3 Emission-time response for the ablation of Zn/Ni coating on steel 
(sample P2, coating thickness 2.7 pm) at sample position F0 with LFLE:
(a) 70 J; (b) 40 J.
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5.3.2 Basic characterisation studies

In order to provide insight into ablation processes and to obtain optimum 

operating conditions for depth profile measurement, key operating parameters 

(laser energy and sample position relative to laser focal point) were varied 

systematically. The effect of laser energy upon depth profile characteristics is 

seen for zinc/nickel coatings in the comparison of Figures 3a and 3b. These 

depict emission-time responses for the ablation of sample P2 with LFLE 70 and 

40 J, respectively, at the laser focal point (F0). Signal characteristics varied with 

laser energy: the emission intensities of the iron, nickel and zinc increased with 

laser energy, from -2500 to -6000 counts for zinc and nickel (40 to 70 J), and 

~2000 to ~9000 counts for iron; the gradient of the profile lines during the 

transition period also increased with energy. These features may be explained 

by examination of the craters which resulted from these ablations, and by 

consideration of the effect of laser energy upon laser - material interaction 

processes.

Talysurf surface analyses of these craters, each produced by 200 laser shots, 

are depicted in Figures 4 and 5. Figure 4 shows a three dimensional view and 

Figure 5 shows a profile through the centre of each crater. Electron micro

graphs from examination of each crater with scanning electron microscopy 

(SEM) are shown in Figures 6. The crater produced by ablation with LFLE 40 J 

contained a central 'volcano' feature which consisted of walls ~10 pm higher 

than the unablated surface with a hole inside that was deeper than the base of 

the crater. The hole and crater were ~100 pm and -1.3 mm in diameter, 

respectively, and the crater was -4.0 pm deep. By contrast, the crater produced 

by ablation with LFLE 70 J appeared to be larger in diameter (-1.4 mm) and 

deeper (-7.4 pm ). The crater bottom was considerably flatter with no central 

volcano 'feature'. Both craters were surrounded by walls higher than the surface 

of the sample.
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It is proposed that the differences between the craters, and therefore the 

emission-time signatures, were caused by different sampling processes. For 

ablation with LFLE of 40 J (irradiance ~ 8 x 1010 W cm'2, Appendix 1), two 

processes occurred: plasma-sampling, where the plasma induced by each laser 

pulse vaporised solid material from the surface leading to the production of the 

crater; and laser-sampling, where direct laser-material interaction produced the 

hole feature within the crater. The hole diameter was approximately the same 

as the calculated laser spot diameter, ~100 pm, which suggested that the hole 

was formed by laser-material interaction. The crater, -1.3 mm in diameter, 

probably approximated to the size sampled by the laser-induced plasma. The 

laser-induced plasma was optically thin and allowed significant laser radiation 

to reach the sample surface. Direct heating by the laser took place at the 

sample surface9 which caused rapid heating and phase changes that produced 

ejection of material leading to the formation of the deep hole. Electron micro

graphs of this crater (Figure 6a, b) appear to show the presence of a large 

number of bubbles at the surface in the vicinity of this hole, suggesting that gas 

was evolved from a molten state and that sub-surface heating had taken place. 

Some of the ablated material was removed into the plasma where excitation 

and atomic / ionic emission took place, the remainder was deposited at the top 

of the hole to produce the 'volcano' walls. As the hole was deeper than the 

crater, sampling in effect took place at 2 different depths at the same time. The 

hole penetrated the substrate before complete removal of the coating was 

achieved within the crater, which caused iron signals to be observed from the 

steel during the removal of the coating and a very indistinct interface region to 

be obtained, (Figure 3b).
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( a )

(b)

Figure 4 Three dimensional Talysurf analysis of craters in Zn/Ni coating on 
steel. The x and y-axes correspond to distance across the sample surface, both 
1.63 mm total. The z-axis is the vertical height, with total heights: (a) 38.4 pm 
(b) 80.2 pm. The craters were produced by 200 laser shots with LFLE: (a) 40 J, 
(b) 70 J.
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(a) Height 

(nm)

2.5 to 25.0

(b) Height 

(nm)

5.0 to 45.0

Figure 5 Single Talysurf profiles through centre of craters in Zn/Ni coating on 
steel. The y-axis corresponds to vertical height and the x-axis is the horizontal 
distance across the sample surface. The craters were produced by 200 laser 
shots with LFLE: (a) 40 J, (b) 70 J.

In the case of ablation with LFLE of 70 J (irradiance ~ 3 x 1011 W cm-2), it is 

proposed that there was little or no direct laser interaction, and that the main 

process of material removal was by volatilisation by the laser-induced plasma. 

An electron micro-graph (Figure 6c) shows a generally flat, featureless crater. 

Here, a plasma of greater density, intensity and temperature was induced by 

each laser pulse which absorbed the incoming laser pulse preventing significant 

laser light from reaching the sample surface. The plasma shielded the sample 

from the laser pulse. The high temperature plasma vaporised material from the 

sample surface to produce a relatively flat-based crater.

Distance (mm) 0.00 to 1.75

Distance (mm) 0.00 to 1.75
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Figure 6 Scanning electron micro-graphs of craters in Zn/Ni coating on steel 
produced by 200 laser shots: (a) & (b) LFLE 40 J, (a) central volcano feature 
within crater, x128 magnification; (b) hole within volcano, x514; (c) crater 
produced by LFLE 70 J, x128.
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As material removal took place at only one level for each laser shot compared 

to two levels for the 40 J ablation above, removal of the coating was completed 

before ablation of the interface and substrate started. Thus a depth profile was 

obtained (Figure 3a) that showed a sharp interface region and relatively level 

plots corresponding to coating and substrate removal.

The diameter of the crater was probably governed by the size of the laser- 

induced plasma. A larger plasma was produced by the higher energy ablation 

(LFLE 70J) compared to that of LFLE 40 J ablation, which sampled a larger 

area of material and resulted in a crater of larger diameter. The emission 

intensities for LFLE 70 J ablation were more intense than for the LFLE 40 J 

ablation through a combination of reasons (Figure 3). The higher energy of the 

laser pulse (LFLE 70J) induced a hotter, larger, more intense plasma that 

produced more intense atomic and ionic emissions; the plasma sampled a 

larger area of material resulting in more material bieing removed per shot 

(larger crater); and the higher temperature enabled more material to be 

removed per laser shot (deeper crater). The rate of material removal was

0.18 and 0.45 jig/laser shot for ablation with LFLE 40 and 70 J, respectively, 

estimated from the size of the craters measured by the Talysurf analysis, 

(calculation given in Appendix 1).

The background intensity varied during the depth profile, particularly in the 

vicinity of the iron emissions, (321.4 and 322.6 nm), depicted in Figure 3. The 

background response 320.3 nm was relatively constant during the ablation of 

the coating, increased in the interface region, and then remained reasonably 

constant for the ablation of the steel substrate. The other background response,

312.3 nm also varied in this manner but to a lesser extent. To correct the nickel 

and iron emissions for these changes, the respective background value was 

subtracted from the nickel and iron values for each memory number,
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i.e. iron 322.6 - background 320.3 nm (Fe-Bkg); nickel 310.2 - background

312.3 nm (Ni-Bkg). These background-corrected responses were used in 

subsequent studies.

The effects of sample position and laser energy were next examined. Several 

complex interdependent processes were affected by changing these operating 

conditions. The characteristics of the laser-induced plasma changed with laser 

energy, i.e. increased LFLE increased the energy density, size, temperature, 

and intensity of the plasma, and by positioning the sample away from the laser 

focal point, the laser spot was defocused which increased the laser spot size 

and decreased the energy density. Emission-time responses for the ablation of 

sample P2 with LFLE 40, 55, 70 J at different sample positions are shown in 

Figure 7 (F-20, F0, F+20), Figure 8 (F+10, F+20, F+30) and Figure 9 (F-50, 

F+50). From Figure 7, two general observations can be made for sample 

positions F-20, F0 and F+20: (1) the gradient of the profile lines in the interface 

region generally increased with laser energy, indicating that laser energy had a 

greater effect than sample position upon material removal and the 

corresponding emission-time signature, and (2) emission intensities for each 

sample position increased with laser energy. The energy of the plasma 

increased with laser energy which increased the rate of material removal and 

the element emission intensities. In the case of ablation with LFLE 55 and 70 J, 

line gradients also increased as the sample was positioned further from the 

laser, i.e. F-20 through F0 to F+20. The signatures for LFLE 40 J were less 

affected by the change in sample position. This suggested that sample position 

had more influence on the main material removal process for ablation with 

LFLE 55 and 70 J (plasma-material interaction) than for ablation with LFLE 40 J 

(laser-material interaction).
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Depth resolution (Ad)6,10 was calculated as the difference in depths at 84% 

and 16% of the maximum zinc signal (Figure 10a). The time-axis was converted 

to depth by equating the known coating thickness to D1/4, where D1A was the 

distance along the x-axis from the origin to half of the maximum zinc signal 

(Figure 10b). For ablation with LFLE 70 J at different sample positions, Ad was

1.5 pm (F-20), 1.8 pm (F0), 1.6 pm (F+10), 1.1 pm (F+20) 1.9 pm (F+30), and

1.5 pm (F+20) for LFLE 55 J. These data and comparison of the emission-time 

signatures for these sample positions (Figures 7 and 8) suggested that the 

plasma sampling process was modified such that sharper gradients and 

improved Ad were achieved at sample position F0 with LFLE 70 J. This 

consisted of the longest 'level' signals for zinc and iron as the coating was being 

removed, and the steepest gradients in the interface region. This sample 

position with LFLE 70 J was probably an 'optimum' distance from the laser focal 

point such that plasma characteristics were 'optimised' for controlled 

vaporisation across the sampling site. At F+10 with LFLE 70 J, the energy 

density was higher and the plasma positioned closer to the surface such that 

sampling was more aggressive and less even, indicated by faster penetration 

into the coating (Fe increase after 25 laser shots) and shallower gradients. At 

F+30 with LFLE 70 J, the plasma was probably induced further from the surface 

with a lower energy density leading to less even-sampling. Talysurf analysis of 

the crater produced by 200 laser shots at F+20 showed that the crater base 

was flatter than that produced by ablation at F0 with LFLE 70 J. The rate of 

material removal was estimated at 0.38 pg/laser shot compared to 0.45 

pg/laser shot for LFLE 70 J at F0. (The calculation used to obtain the rate of 

material removal is given in Appendix 1).

Ablation at sample positions of F-50 and F+50 showed that large defocusing 

either towards or away from the laser degraded depth profile performance 

significantly, (Figure 9). In the case of ablation with LFLE 40 J, line gradients
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increased with distance from the laser focal point, i.e. F+10 to F+30, (Figure 8). 

As the sample was positioned further from the focal point, a more intense 

plasma was induced near the focal point which absorbed more of the laser 

radiation and decreased the amount of laser sampling.

For all the emission-time responses (Figures 7-9), the zinc and nickel lines 

decreased at the same rate, indicating that zinc and nickel were removed at a 

similar rate and selective volatilisation of zinc had not occurred. If boiling of the 

sample at the laser spot had been a major process of material removal, it might 

have been expected that zinc would be removed preferentially as it has a much 

lower boiling point compared to nickel, (Zn 907 vs. Ni 2732 °C).

In summary, experiments have demonstrated that profile performance and 

depth resolution were influenced by key operating parameters. Optimal depth 

profile data were obtained using the operating parameters of sample positioned 

20 mm from the laser focal point (away from the laser source, F+20), with 

maximum available laser energy (laser flash lamp energy 70 J).
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(a) Depth Resolution (Ad)

84% Zn maximum
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Figure 10 Emission-time responses of Zn 330.3 nm for the depth profile 
measurement of zinc/nickel coating on steel showing the calculation of: 
(a) depth resolution (Ad), (b) D1/4, and (c) Dx.

177



5.3.3 Depth profile performance and applications

This section examines depth profile performance and the application to a range 

of different coatings on steel, zinc/nickel, zinc, tin, titanium nitride and an ultra- 

thin chromium coating.

Zinc/nickel coatings

To demonstrate depth profile performance, laser-induced plasma emission 

spectrometry measurements were performed on zinc/nickel-coated steels with 

a range of coating thickness. Samples P4, P5 and P6 with coating thickness

2.7, 5.0, and 7.2 pm, respectively, were each ablated in triplicate. Operating 

parameters were as above except the total number of laser shots utilised was 

250 instead of 200 (5 laser shots in each of 50 OMA memories) in order to 

remove the thicker coatings. Typical emission-time responses are depicted in 

Figure 11 for each sample. These showed that the number of laser shots 

needed to remove the coating increased with coating thickness; the number of 

laser shots needed before the zinc signal decreased were 35, 60, and 90 for

2.7, 5.0, and 7.2 pm, respectively. The zinc and iron signals remained relatively 

constant during the removal of the coating for each sample, and the nickel 

response appeared to increase a little.

A correlation between output parameters for laser-induced plasma emission 

spectrometry and coating thickness has not been previously reported. Possible 

output parameters include D1A (distance along the x-axis from the origin to half 

of the maximum zinc signal), Dx (the distance along the x-axis from the origin to 

where the Zn and Fe lines cross), and zinc-area or nickel-area (the area under 

a coating element profile line, Zn or Ni). The calculation of D1A and Dx is 

depicted in Figure 10 b and 10c, respectively.
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Figure 11 Emission-time responses for the ablation of samples P4, P5 and P6 
at sample position F+20 with laser flash lamp energy 70 J. Experiment run time 
50 s. Coating thicknesses were: (a) P4 2.7 pm; (b) P5 5.0 pm; (c) P6 7.2 pm.
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Linear plots of DYz, Dx and zinc-area against coating thickness were obtained, 

but the nickel-area plot was curved. The curvature was probably caused by 

spectral interference from iron on the nickel emission line, which had less effect 

as the coating thickness increased. The line equations and correlation 

coefficients were, respectively: (DV2) y = 8.66x + 13.28, 0.99986;

(Dx) y = 8.22x + 9.64c, 0.99942; (zinc-area) y = 128854x + 203881, 0.99999. 

These results suggest that the LIPS output parameters D1/4, Dx and Zn-area are 

proportional to coating thickness. This indicates that the rate of penetration into 

the coating is constant with depth, i.e. the rate of material removal is constant 

with depth, suggesting that each laser shot removes the same amount of 

material. The linear relationship between these output parameters to coating 

thickness indicates that laser-induced plasma emission spectrometry can 

provide a measurement of coating thickness.

The repeatability of the coating measurement was calculated by ablating 

sample P6 (7.2 pm) at eight different locations. Good precision (RSD) for the 

zinc-area and nickel-area measurements were obtained, 4.0 and 3.7 % 

respectively, suggesting that there was uniform coating thickness across the 

area of material tested. This indicates that the technique can rapidly undertake 

a coating thickness survey of coated samples.

To investigate the capability of the laser-induced plasma emission spectrometry 

technique to provide spatial-depth information, two samples of zinc/nickel 

coated steels (samples P1 and P2, both 2.7 pm thick) and a sample with a zinc 

coating (Zn-A) were examined. Both zinc/nickel-coated samples were ablated 

eight times and typical emission-time responses are depicted in Figure 12.
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Figure 12 Emission-time responses for the ablation at sample position F+20 

with LFLE 70 J of two samples of Zn/Ni coating on steel (2.7 pm):

(a) P1, (b)P2.

The technique revealed differences within these coatings, although the samples 

were suposedly very similar.11 In the case of P1, a larger number of laser shots 

were required for the zinc and iron signals to reach minimum and maximum 

levels, respectively, from the interface region to removal of the substrate. This 

may indicate that the interface region for sample P1 was larger, suggesting that 

the surface finish of the steel substrate was rougher which allowed the coating 

deeper into the surface of the steel. There was a significant difference in the
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profiles for nickel during the removal of the coating. For sample P1, the nickel 

signal initially increased to -7500 counts, then decreased to ~5500 and 

became level until memory number 8 before decreasing in the interface region. 

For sample P2, the nickel signal increased steadily through the coating from 

-3000 to -5000 counts. These observations suggest that for sample P1, the 

concentration of nickel was decreasing through the coating, i.e. nickel was 

richer near the surface, and for sample P2 the nickel concentration increased 

slightly through the coating. These results suggest that depth profile 

measurement using LIPS may be appropriate in the quality control of zinc/nickel 

coatings on steel.

An emission-time response for the ablation of zinc on steel (sample Zn-A, 8 pm) 

at sample position F+20 with 400 laser shots of LFLE 70 J is shown in Figure 

16a. This depicts emission responses for zinc, aluminium and iron; the 

emission wavelengths are listed in Table 2. The coating did not contain nickel 

so the response for nickel is not shown. The emission-time response showed 

an increase in the response for aluminium within the coating, with a maximum 

at memory number 5 corresponding to 60 laser shots. This indicated that a 

region of the coating, not at the surface, contained a significant amount of 

aluminium. This was confirmed by analysis of the sample using glow discharge 

optical emission spectrometry (GD-OES), undertaken by the sample supplier. 

Figure 16b depicts the GD-OES emission-time profile with total time 800 s. The 

aluminium layer appeared to be present at the interface region between the 

zinc coating and steel substrate. Although the LIPS profile was not optimal, the 

aluminium layer was clearly shown and the profile was much quicker to 

measure by LIPS than by GD-OES, 80 vs. 800 s.
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Figure 13 Emission-time response fo the depth profile of sample Zn-A (8 pm 
Zn on steel): (a) using LIPS at sample position F+20 with laser flash lamp 
energy 70 J, 400 laser shots total, experiment run time 80 s; (b) using glow 
discharge - optical emission spectrometry, experiment run time 800 s

The emission-time characteristics from the ablation of this coating were 

different from the zinc/nickel coatings discussed above. The zinc and iron 

signatures did not exhibit a relatively constant signal response or sharp line 

gradients corresponding to coating removal and interface region, respectively. 

Also, considerably more laser shots were required to remove the zinc coating
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compared to a sample of zinc/nickel coating, ~150 vs. ~400, respectively, 

although the zinc coating was only -10% thicker than sample P6 above (7.2 vs. 

8.0 pm). These results suggested that the process of ablation for a zinc coating 

was different from a zinc/nickel coating. The rate of material removal for the 

zinc coating was estimated to be 0.19 pg/laser shot, lower than for zinc/nickel 

(0.45 jug/laser shot), both ablated under similar operating conditions. It is 

proposed that this was caused by a matrix effect. During the laser pulse and at 

the start of the plasma lifetime, a larger amount of zinc was vaporised than for 

the zinc/nickel coating, because of the lower vaporisation temperature of zinc 

compared to the zinc/nickel alloy. This extra material quickly cooled the plasma 

as it entered, resulting in less material being removed during the remainder of 

the plasma lifetime. Further studies including measurement of plasma 

temperatures are required to investigate this effect and obtain operating 

parameters suitable for optimised profile measurement of zinc coatings.

Tin coatings

Two spectra for the ablation of sample Sn1/1 are depicted in Figure 14. The 

coating thickness of the sample was 1.48 pm, calculated from the tin coating 

weight 10.8 gm'2, (the calculation is given in Appendix 1). The sample was 

ablated using 1 laser shot / OMA memory and 60 shots total with the preferred 

operating conditions described above. The spectral region utilised was 287- 

SI 2 nm and the main emission wavelengths are listed in Table 3.
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Figure 14 Spectra for the ablation of Sn coating on steel (sample Sn1/1, 
coating weight 10.8 gnrf2) with LFLE 70 J at sample position F+20. Emission 
wavelengths (nm).

Wavelength (nm) Element Pixel Number

298.357 Fe I 480 m

299.621 Fe Background 520 m

300.914 Sn I 560

303.412 Sn I 640 m

304.391 Sn Background 671 m

m = monitored for emission-time response

Table 3 List of main element emission lines used in the study of tin coatings, 
(spectral region 287 - 312 nm, centre wavelength 300 nm)

The spectrum for laser shot 1 showed intense tin emissions from the coating 

and small responses for iron, suggesting that the coating may contain iron or 

that the steel substrate was penetrated with the first laser shot. Intense iron 

signals from the ablation of the steel were observed for laser shot 60 together
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with a small response for tin suggesting that removal of the tin was not 

complete with 60 laser shots. It was found that 100 laser shots were sufficient 

to remove the tin (50 OMA memories, 2 laser shots/OMA memory). A shift in 

the spectral background, between the first and last shot, was caused by the 

change in matrix from tin to iron as ablation of the steel substrate took place. 

The background spectrum from iron was more intense than from tin, and so the 

intensity of the background increased. Values for the intensity of the 

background at 299.6 and 304.4 nm close to iron 298.4 and tin 303.4 nm lines, 

respectively, were subtracted from the element emissions to correct for this 

shift.

The samples with a tin coating (Table 1) and an uncoated steel blank (BAS 

SS401) were analysed in duplicate to study the relationship of coating weight 

with signal output. The repeatability of the technique was studied by ablating 

samples Sn1/1 and Sn3/2 (10.8 and 1.44 gnr2) eight times. Emission-time 

responses (tin, Fe and tin/Fe ratio) for the ablation of samples Sn1/1, 3/1 and 

5/1 are shown in Figure 15. Both the number of laser shots needed to remove 

the tin coating and the initial tin emission intensity increased with coating 

weight. The number of laser shots required to reach a relatively constant iron 

signal also increased, and the iron intensity corresponding to ablation of the 

substrate was ~5000 counts in each case. A sharp transition in the tin and iron 

signals was not observed, unlike the zinc and iron signals of the zinc on steel, 

because there is no sharp interface between the tin and steel substrate. In the 

manufacturing process,11 a tin-iron alloy approximately 0.1 pm deep was 

produced at the tin-steel interface by heating of the material above the melting 

point of tin (230°C). During the ablation process, signal responses from the tin 

coating were observed followed by tin and iron from the interfacial tin-iron, and 

finally iron from the steel substrate. Coating weights have been quoted for tin 

coatings in the study as this better describes the total quantity of tin in the tin



and tin/iron layers. The rate of material removal was estimated from Talysurf 

analysis to be 0.32 pg/laser shot.

(a)
6000

0

(b)
6000 T

(c)

Co'coCO
E

LU

12000

0 =*H
500 20 3010 40

Memory Number 0 to 49 (2 laser shots / memory, 100 shots total)

Sn303.4 Fe398.4 Sn/Fe*1000

Figure 15 Emission-time response for the ablation of Sn on steel. The 
experiment run time was 20 s using 100 laser shots. The Sn/Fe was x1000 to 
obtain the responses on the same scale. Samples were of different coating 
weight (a) Sn5/1, 2.8 gm'2, (b) Sn3/1, 6.0 gm'2, (c) Sn1/1, 10.8 gm'2.
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The area under the tin profile line (tin-area), which combined the tin intensity 

measurement with the number of shots needed to remove the coating, was 

calculated as a measure of the tin coating weight. A linear calibration graph was 

obtained for the plot of tin-area against coating weight (Figure 16). This 

indicated that the output parameter, tin-area, was proportional to the amount of 

tin deposited onto steel, and that LIPS could be used to measure coating 

weights of tin on steel. Precision (% RSD) for the repeat measurements of 

samples Sn1/1 and Sn3/2 was calculated for tin-area to be 3.5 and 6.6 %, 

respectively. The result for sample Sn1/1 indicated that coating depth 

measurements using LIPS can be achieved with good precision, and that the 

tin coating was uniformly distributed across the steel. The poorer precision 

obtained for Sn3/2 may be caused by the lower coating thickness, or it may 

indicate that the tin was less-evenly distributed across the sample surface. By 

comparison, Ka'ntor et al12 obtained an RSD value of 9.4 % for the replicate 

measurements of gold coatings using a single shot laser ablation - flame atomic 

absorption spectrometry technique.

In summary, the linearity of the calibrations and precision achieved with the tin- 

area and zinc-area values suggest that these are suitable methods to measure 

tin coating weight/zinc/nickel coating thickness in depth profile measurements 

by LIPS. This performance coupled with the respective analysis times of 20 and 

50 s indicates that laser-induced plasma emission spectrometry can provide 

rapid depth profile data for tin and zinc/nickel coatings over the thickness range 

0.3 to 7.2 pm.
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Figure 16 Plot of area under Sn profile line (Sn-area) against Sn coating weight 

for the ablation of different samples of Sn coating on steel.

Titanium nitride coating

The ablation of a titanium nitride coating (coating thickness 2 pm) is shown in 

Figure 17, which depicts spectra for laser shot number 1 and 100. The spectral 

region 287-312 nm was selected because it contained titanium and iron 

emission lines that were relatively free from spectral interference. The first laser 

shot (1) showed intense emission responses for titanium from the coating and 

no responses for iron and chromium from the stainless steel substrate. This 

suggested that the coating did not contain iron or chromium and the first laser 

shot did not penetrate the coating. The last laser shot (100) showed strong 

emission responses for iron and chromium form the substrate and minimal 

responses for titanium, indicating that ablation of the substrate had taken place 

and removal of the coating was virtually complete. An emission-time response
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is shown in Figure 18 using the emission wavelengths listed in Table 4. To 

correct for the observed shifts in background, the emission intensity values for 

chromium, iron and titanium were corrected by subtraction of the intensity value 

from the corresponding background wavelength, e.g. chromium 288.9 - 

Background 289.3 nm (Cr-Bkg).

3000
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Ti 307.2

to
c
3
O

J
5 1500 
c

Ti 310.4

Fe 298.4
laser shot 1co

‘co
CO

E
I II

Cr 288.9
Ti Bkg 308.4

Cr Bkg 289.3 laser shot 100Fe Bkg 299.7

Wavelength 287 - 312 nm

Figure 17 Overlay of spectra for the ablation of titanium nitride coating on steel 

(sample TiN-1, coating thickness 2jim) at sample position F0 with LFLE 40 J. 

Spectral region 267-312 nm, emission wavelengths (nm).
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Figure 18 Emission-time response for the ablation of titanium nitride on steel 

(sample TiN-1, coating thickness 2 pm) at sample position F+20 and 

LFLE 70 J.

Wavelength (nm) Element Pixel Number

288.929 Cr II 202 m

289.302 Cr Background 212 m

298.357 Fe I 479 m

299.747 Fe Background 520 m

307.211* 307.297* Ti II, II 762 m

308.373 Ti Background 795 m

308.718 Ti II 809

* unresolved emission lines m = monitored for emission-time response

Table 4 List of main element emission lines used in the study of titanium nitride 

coatings. Spectral region 287-312 nm, centre wavelength 300 nm.
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The emission-time signatures were different from those of the zinc/nickel 

coating discussed above. There were no sharp line gradients for titanium, 

chromium or iron corresponding to an interface region. The titanium signal 

showed a gradual decrease through the profile while the chromium and iron 

signals increased quite steeply until about memory number 5, then increased 

gradually for the remainder of the profile. The rate of material removal was 

estimated to be 0.17 pg/laser shot from Talysurf analysis of the resultant crater. 

The differences in the emission-time signatures were probably caused by 

matrix effects, as with the zinc coating above, which may influence the ablation 

process in a number of ways and require further study. Different physical 

properties of the coating elements may have affected plasma characteristics 

which in turn influenced the relative rate of material removal and depth profile 

performance. The high affinity of titanium for oxygen may have caused the 

formation of titanium dioxide during the ablation process which interfered with 

the material removal process. Ablation in an oxygen-free buffer gas is likely to 

reduce this possible interference. Further investigation of the effects of 

operating conditions with this coating may enable improved emission-time 

signatures and depth profile calibrations to be achieved.

Ultra-thin chromium coating

The above studies have shown that useful depth profile data can be obtained 

for coatings with thickness ranging from 0.4 to 8 pm. This section examines the 

feasibility of utilising LIPS to obtain information about an ultra-thin coating of 

chromium on steel. Spectra for the ablation of chromium on steel (coating 

thickness 20 nm) using operating conditions of LFLE 40 J and sample position 

F0 are depicted in Figure 19. The spectral region utilised was 267-292 nm 

because iron and chromium emission signals could be monitored with minimal 

spectral interference. The experiment run time was 2 s with 10 laser shots.
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Figure 19 Spectra for the ablation of Cr on steel (coating thickness 20 nm) with 

LFLE 70 J at sample position F+20.

The spectrum for laser shot 1 showed intense emissions for chromium and 

strong responses for iron, while the spectrum for laser shot 2 showed similar 

responses for iron but only small signals for chromium. This indicated that the 

chromium coating was detected with the first laser shot. In Figure 20, an 

emission-time response of iron 276.6, chromium 283.6, Background 278.6 nm 

and the chromium/iron ratio shows the chromium signal to decrease sharply 

from laser shot 1 to 2 and then increase a little. The chromium/iron ratio was 

initially very large when the chromium was removed, but was constant after 

memory number 1 as the substrate was ablated. The iron response increased 

after memory number 1 for the remainder of the profile; also there was a small 

increase in the background intensity during the profile. These observations 

suggested that the first laser shot removed the chromium coating and a 

substantial amount of steel substrate. Laser shot 2 and the following laser shots 

ablated substrate only. The amount of chromium detected with the first laser 

shot was estimated to be 0.22 pg, (calculation in Appendix 1).
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These results indicate that LIPS can be applied to the rapid detection of ultra- 

thin coatings, but more work is required to develop a measurement capability. 

Further study may enable the amount of substrate removed by the first laser 

shots to be significantly reduced in order that coating only is ablated with the 

first laser shot. Towards this aim, it may be advantageous to use the laser 

solely as a sampling tool so that laser operating parameters are optimised for 

minimal mass removal and are not compromised by the requirements of in situ 

emission spectrometry. This could be achieved by removing ablated material to 

a separate analytical measurement system such as an inductively coupled 

plasma mass spectrometer. However, measurement times would be greatly 

increased to allow for discreet transport and detection of material ablated by 

each laser shot.

900

Fe 276.6
___
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Cr 283.6

Cr/Fe

Bkg 278.6
0

94 80 1 2 3 5 6 7
Memory Number (1 laser shot / memory)

Figure 20 Emission-time response for the ablation of Cr on steel (coating

thickness 20 nm) with LFLE 40 J at sample position F0.
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5.4 Conclusions and Recommendations for Further Work

This study has shown that rapid depth profiling of coatings can be achieved 

with laser-induced plasma emission spectrometry. Emission-time signatures for 

the ablation of zinc/nickel coatings on steel were greatly influenced by 

operating parameters such as laser energy and sample position relative to the 

laser focal point. Improved performance was realised with high laser energy 

(laser flash lamp energy 70J) and the sample positioned 20 mm from the focus 

position, away from the laser source. The use of these operating conditions 

enabled linear calibration against coating thickness for zinc/nickel and tin 

coatings to be achieved with good precision (3.5 % RSD). Advantages include 

rapid measurement time (50 s for zinc/nickel, 7.2 pm) and small area of 

damage (~1 mm diameter) compared to glow discharge techniques (15 

minutes, 10 mm diamter crater). A simple measurement strategy was utilised 

which involved ablation in air at atmospheric pressure. A limitation of the 

technique is absolute depth resolution (Ad) compared to glow discharge 

methods, 1.1 vs. 0.1 pm, although differences in depth of 0.02 pm for tin 

coatings were distinguished by the technique. This performance combined with 

an in situ measurement capability indicates that the technique may be valuable 

in industrial situations where rapid coating measurements are required.

Different emission-time signatures and rates of material removal were obtained 

for the ablation of different coatings, which indicated that the composition of the 

coating influenced plasma characteristics through complex matrix effects. This 

suggested that the processes involved in depth profiling with LIPS were 

complex and that different operating conditions may be required for each 

coating type. Studies with additional techniques e.g. high speed photography, 

imaging spectroscopy 13,14 would provide more information regarding plasma 

characteristics which may further understanding of the material removal 

processes and matrix effects.
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Further work could apply the technique to the study of coatings of greater 

thickness such as 50 or 100 pm. Measurement times could be reduced by 

removing the coating at a higher rate, either by ablation at a higher repetition 

rate, or by using a shorter focal length focus lens that would produce a smaller 

laser spot with associated higher irradiance. In both cases, more energy per 

unit area and time would be delivered to the sample surface causing additional 

heating in the vicinity of the laser spot. Further work would address the effects 

of these changes and study other parameters which may influence profile 

performance. For example, sample cooling, e.g. cryogenic, could be required to 

dissipate the additional heat input, and the use of a buffer gas such as argon, 

helium, might improve analytical performance. For example, in an argon 

atmosphere, a denser plasma would be induced that may reduce laser-material 

interaction and promote more even sampling.
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Chapter 6

The Discrimination Of Laser-Induced 
Plasma Emission Spectra 

Using Artificial Neural Networks
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6.1 Introduction

Laser-induced plasma emission spectrometry has been used in several 

demanding applications such as the monitoring of steel and rubber productions, 

etc. because of its unique advantages, non-invasive, in situ, rapid elemental 

analysis. One disadvantage of the technique, however, is complex emission 

spectra. Emission spectra are complex because of the high temperatures of the 

laser-induced plasma. Intensified photodiode arrays allow time-resolved 

measurement, which enables analyte emission signals to be separated in time 

from the initial, intense background continuum. This reduces the problem 

somewhat, but plasma temperatures are still relatively high, resulting in 

complex emission spectra for many elements. In addition, many elements 

produce spectra with complicated baselines that contain background shifts. 

These spectral problems cause spectral interferences in the identification and 

measurement of emission lines.

The photodiode array generally requires wavelength calibration for each 

spectral region monitored. This can be achieved by locating known emission 

lines on the array from a discharge lamp or from the ablation of pure metals.

The identification of unknown spectra requires each emission line to identified 

as a wavelength value (nm) and this value compared to wavelength tables.1 

This is achieved manually, which is usually very time consuming, or 

alternatively, a specially-written computer software routine is employed. For 

example, Chau et a l2 recently reported such a package that combined 

wavelength calibration with a database for identification of elements for 

unknown spectra. Langsam et a l3 developed a computer program which 

matches spectra against standard wavelengths from tables.
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In this study, a novel alternative approach is devised which is based on the 

application of artificial neural networks (ANNs) to laser-induced plasma 

emission spectra. Artificial neural networks are a form of artificial intelligence 

(Al). An important feature of ANNs is the ability to learn by example. 

Conventional computer programs use techniques such as logic-tree routines to 

process data. In the case of identifying an element from emission lines within a 

spectrum, this requires the prior knowledge of the position and identification of 

emission wavelengths for the elements of interest. In this study, each spectrum 

is presented to the ANN and the network selects appropriate features and 

learns to recognise these patterns. The network can then identify one of these 

spectra when a spectrum is presented again.

An ANN is a greatly simplified computer model of the human brain and can be 

trained to recognise different signals or patterns.4 When the ANN has been 

successfully trained, it can very rapidly identify unknown signals corresponding 

to the trained patterns. Artificial neural networks are particularly effective when 

signals are noisy and conventional statistical methods such as discriminant 

analysis are not suitable. They have been used in several pattern recognition 

applications which produce complex signals, such as spectrum analysis of 

electro-encapholograph data (EEG)5 in order to identify patients with brain 

disorders. Other applications include radar signal processing,6 optical character 

recognition,7 and speech recognition and synthesis.7 In the field of chemical 

engineering, ANNs have been applied to problems such as predicting flow rates 

in stirred tank reactors.8 In analytical chemistry, ANNs have been used to 

successfully differentiate spectra for different polymeric materials produced by 

laser ablation ion mobility spectrometry (LA-IMS).9 Artificial neural networks 

were applied to the calibration of iron/nickel/chromium samples in X-ray 

fluorescence spectrometry10 and to the processing of signals from ion-selective 

electrodes.11 Meyer et al12 applied ANNs to the interpretation of infrared
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spectra from a low resolution spectrometer. The trained ANNs were able to 

recognise the functional groups of 50 compounds with a success rate of 76.2 

%. A tutorial review has been presented by Bos et al.13 Hieftje and Glick14 

applied ANNs to glow discharge optical emission spectrometry in order to 

classify a range of metal alloys. Emission wavelengths were selected manually 

for 7 elements representative of the different alloy types, and the intensity 

values of these wavelengths were presented to the ANN.

The aim of this study is to assess the application of ANNs to the identification of 

emission spectra (patterns) from LIPS in order to differentiate materials. 

Emission spectra for 7 elements (Cu, Sn, Ti, Zn, Sb, Al and Ca) covering a 

25 nm wavelength region have been directly applied to ANNs following a 

computerised feature extraction procedure. These elements were selected so 

that the ANNs would examine a range of spectral characteristics. For example, 

within the spectral region 307 - 332 nm, the spectrum for copper is relatively 

simple with just 2 emission lines, the spectrum for antimony contains 9 

emission lines, and the spectrum for titanium is very complex with more than 20 

lines and several background shifts. This ANN approach has several potential 

advantages: element emission wavelengths are not identified or assigned, 

wavelength calibration of the array is not required, and spectral interferences 

may not be problem. Although only 7 elements were included in the study, the 

technique may be applicable to any number of elements. The feature extraction 

procedure and ANNs are described, and results for the training and test modes 

of operation are presented. Aspects of this work are being prepared for 

publication.
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6.2 Artificial neural networks

6.2.1 Historical

The biological origins of neural networks stem from research and theories of 

processes of the brain in the 1890s by James, and in the 1940s by McCulloch 

and Pitts.4 Rosenblatt in 1958 modelled a neural network structure, called a 

perceptron, on a computer using these biological ideas, and hence the term, 

artificial neural network. In 1960, Widrow and Hoff simulated ANNs on a 

computer and developed a hardware device, an adaline (adaptive linear), that 

consisted of a single neuron with several inputs. However, in 1969, research in 

this field effectively stopped with the publication of a book by Minsky and 

Papert entitled Perceptrons.15 They showed that ANNs available then had very 

limited capabilities. The ANNs were simple structures of only two layers, input 

and output, and the neurons had only on or off values. It was not until 1986 that 

major interest was revived with the publication of Parallel Distributed 

Processing, edited by McClelland and Rumelhart.16 They presented multi-level 

perceptrons (input, hidden, output layers) and the derivation of the error back- 

propagation learning rule for this structure. These were combined with other 

works, the sigmoid transfer function (Grossberg, 1973), and continuously- 

valued neurons (Hopfield, 1984), to provide powerful ANNs that have the 

capability to solve complex problems. Since then, these ANNs have been used 

in many diverse applications.

6.2.2 Theory

The type of ANN used in this work is a multi-layer perceptron and consists of 

three layers of neurons: input, one or more hidden layers and an output layer. A 

simple network is shown in Figure 1. A neuron (neurode, node or unit) is a 

simulated device that receives and sends signals. Each neuron is connected to 

every neuron of the adjacent layer(s). Each connection has an associated 

connecting weight that controls the amount of influence that the input has upon
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a neuron. Data flows from the input through the hidden layer to the output, i.e. a 

feedforward network.

OUTPUT

connecting weights w(

connecting weights Wjj

node

INPUT

Ouput layer k

Hidden layer j

Input layer i

Figure 1 Structure of a back-propagation ANN

When a hidden layer neuron receives signals from the input neurons, it sums 

the signals, transforms the sum, and sends the result to the neurons in the next 

layer. The output layer repeats this process and displays the result of the test, 

i.e. output values that correspond to the input pattern.

The ANNs are used in two modes, training and test (use). Supervised, back- 

propagation networks are used here, which means that the training phase is 

supervised, i.e. the network is presented with the patterns and the desired 

output values. The input patterns and the resulting output values are compared 

with the desired output values. The connecting weights are adapted via an error 

back-propagation method to cause the output values to be changed so that
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they become closer in value to the desired outputs. This learning process is 

repeated until the ANN can correctly discriminate between the categories. In 

the test mode, unknown patterns are presented for the ANN to recognise.

This process is very rapid due to the parallel structure of the network. The 

unknown patterns must be of the same types as the training classes.

In the training and test modes, feedforward calculations are used by the hidden 

and output neurons to process the input data and produce the output response 

of the network, (Figure 2). The first calculation (combining function) combines 

the inputs by multiplying each input by its associated weight. The net input is 

the sum of these results.

x n

v / n

combining
function

transfer
function >• Output f (i)

w 2
x2

w 1

x 1

Figure 2 Diagram of a neuron in a neural network

The second calculation (transfer function) transforms this net input (i) with a 

non-linear sigmoid function, shown in Figure 3.

output = /  (i) =
1

1 + exp [-( i +  0  j ) / 0  o ]

where 0j is the threshold value (or bias) which shifts the transfer function along 

the horizontal axis, and 0O is a constant which determines the slope of the 

sigmoid.
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1.0

f  (*) 
Output

high value of 0,

0.5

low value of 0,

Input i

Figure 3 Sigmoid transfer function

During the training mode, these calculations are combined with additional 

calculations that represent the learning of the network. The output values 

obtained are compared to the desired values and the difference is defined by 

an error function, E. The aim of the learning process is to reduce the error E as 

quickly as possible. This is achieved using the error back-propagation rule 

(generalised delta rule) that propagates the error back through the network in 

order to adjust the connecting weights. This is described in detail 

elsewhere.7,16,17 The change in weight value (AWjj) is calculated as:

AWjj = p E /  (i) + a AWjj (previous) 

where a is the momentum factor and is used to overcome a problem called 

‘local energy minima’ and p is the learning rate which affects the speed of 

learning. Both have values of between 0 and 1. This learning process is 

repeated many times until training is complete, i.e. the network can successfully 

identify the input patterns.
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6.3 Feature extraction

Feature extraction is a procedure used to identify the most discriminating 

variables of a pattern and thereby reduce the number of input data points. 

Ideally, all of the data from a spectrum would be presented to the ANN, i.e. the 

values from all 1024 pixels of the photodiode array. However, this would require 

an unacceptably large computer memory and a very long processing time. A 

more appropriate method is to extract features from the spectrum that will 

adequately describe the spectrum.

There are several possible methods to achieve the feature extraction. In the 

study of the discrimination of polymeric materials by laser ablation-ion mobility 

spectrometry,7 a moving average window was used that averaged the values of 

each group of three pixels. This procedure performed well because the ion 

mobility spectrometry signatures were relatively simple broad peaks. In this 

study, a new feature extraction procedure, peak intensity-wavelength 

identification (PIWI), was devised because the spectra are more complex and 

contain more information than the ion mobility spectrometry signatures. The 

peak intensity-wavelength identification procedure is depicted in Figure 4.
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100 ignored 
pixels

124 ignored 
pixels

800 pixels (data points)
20 regions, 

each of 40 pixelspeak intensity 
and wavelength position 

(2 features)

Figure 4 Schematic of the feature extraction procedure, peak intensity - 

wavelength identification (PIWI)

Each spectrum consisted of 1024 pixels (data points), of which the central -730 

were intensified. The procedure ignores the first 100 and last 124 because 

these pixels are not intensified and their values are always 0. A region of 800 

pixels remained which approximated to the intensified pixels. This even number 

of pixels was divided into smaller regions, i.e. 20 regions each of 40 pixels. For 

each region the intensity value of the highest point and the corresponding pixel 

position (wavelength) were identified, i.e. 2 features per region. The procedure 

resulted in 40 features and these were presented to the ANN.

Two advantages of the PIWI procedure are that main features of each 

spectrum are extracted, i.e. the pixel position (wavelength) and intensity of 

major peaks, and it is relatively easy to change the size of the regions so that
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feature resolution could be increased for later studies, if necessary, e.g. 40 to 

20 pixels.

6.3 Experimental

The laser and spectrometer system used are described in Chapter 2. The 

background subtraction routine was utilised with the laser firing at 5 Hz and with 

laser flash lamp energy 40 J. A fixed time OMA program was used with time 

settings of time delay of 700 ns and integration time of 1 ps. The spectral region 

307-332 nm was monitored by the photodiode array using grating 2 (2400 

grooves/mm). The seven materials listed in Table 1 were each ablated with 20 

laser shots at the same site, (experiment run time 4 s). A pellet was made of 

the calcium carbonate powder by pressing in a die to a pressure of 10 tons per 

square inch.

Material Details

Cu copper metal foil, BDH Analar, Merck Ltd., Lutterworth, 

Leicestershire, UK

Sn tin metal rod, Specpure, Johnson Matthey, Royston, 

Hertfordshire, UK

Ti titanium metal, IMI Titanium Ltd, Witton, Birmingham 

UK

Zn zinc metal, BCS194d, Bureau of Analysed Standards, 

Newham Hall, Newby, Cleveland, UK

Sb antimony metal rod, Specpure, Johnson Matthey

Al aluminium metal, BCS198e, Bureau of Analysed 

Standards

Ca calcium carbonate powder, BDH Analar

Table 1 Details of the materials used in the study
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6.3.1 Data manipulation

The ablation of the samples resulted in a data file for each sample which 

contained 20 spectra. Each data file was divided in 2 files to provide training 

and test data, i.e. a training file and a test file, each containing 10 spectra. 

These files were converted into ASCII format and were subjected to the feature 

extraction routine (PIWI) using a purpose-written program.18 The maximum 

intensity of each spectrum was normalised to 1.0 relative to the most intense 

spectrum of the entire group.

The data files from this step were taken into a spreadsheet program (Microsoft 

Excel) and each material was assigned a binary code that could be used by the 

ANN (Table 2). All the training files were merged in a spreadsheet to produce a 

single training file, and all the test files were merged to give a single test file. 

The layout of each file is shown in Table 3. The order of the training file was 

more mixed so that possible bias in the training of the network was minimised.

Material Code

1 Cu 0 0 0 0

2 Sn 0 0 0  1

3 Ti 00 10

4 Zn 00 11

5 Sb 0 10 0

6 Al 0 10 1

7 Ca 0 1 1 0

Table 2 Output codes for each material
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TRAINING TEST

material 1 spectrum 1 material 1 spectrum 1

2 1 1 2

3 1 1 3

4 1 1 4

5 1 1 5

6 1 1 6

7 1 1 7

material 1 spectrum 2 1 8

2 2 1 9

3 2 1 10

4 2 material 2 spectrum 1

5 2 2 2

6 2 2 3

7 2 2 4

material 1 spectrum 3 2 5

2 3 2 6

3 3 2 7

4 3 2 8

5 3 2 9

6 3 2 10

7 3 material 3 spectrum 1

etc. etc. etc. etc.

Table 3 Layout of training and test data files
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6.3.2 Artificial neural networks

The program used was a commercially available package (NeuralWare 

Pittsburg, USA) and was run on an IBM-compatible personal computer (Viglen 

486 DX2 66 MHz, Alperton, Middlesex). The program allowed different network 

structures to be constructed, containing up to a maximum of 100 neurons. The 

ANNs used always had 40 input and 4 output neurons. This enabled 

differentiation of up to 16 materials (classes). The values of the output neurons 

were always between 0 and 1.

The error back-propagation method of learning was used and values of a,p,0o 

were 0.6, 0.9 and 1, respectively. The patterns in the training file were used to 

train the ANN. The training was stopped after 100,000 iterations, and the ANN 

was then used in the test mode and tested with the training and test files.

6.4 Results and Discussion

A typical spectrum for the ablation of each material is depicted in Figure 4 and 

principal emission lines are listed in Table 4. The spectrum for titanium is very 

complex with many emission lines and several shifts in background. The other 

spectra are less complex but antimony and tin also contain several emission 

lines. Emission lines for titanium, copper, antimony, tin and zinc are similar in 

wavelength and there are several spectral overlaps. The 7 spectra are overlaid 

in Figure 5 which illustrates the potential complexity of the problem and 

closeness of many emission lines. The large variation in emission intensities 

between laser shots, shown for calcium in Figures 7 and 8, might also present 

problems in the discrimination process. The precision was estimated to be -18 

% relative standard deviation (% RSD) for both Ca emission lines. The ablation 

of other materials resulted in precision of typically -9  % RSD (copper). The 

pixel positions for the emission lines did not vary and were the same for each 

laser shot.
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Element Wavelength (nm)

Al I 308.2 i 5

Al I 309.271

Ca II 315.887

Ca II 317.933

Cu I 324.754

Cu I 327.396

Sb I 323.252

Sb I 326.751

Sn I 317.502

Sn I 326.233

Sn II 328.321

Ti II II * 323.612, 323.904 *

Zn I 328.233

Zn I 330.259

* unresolved emission lines

Table 4 Principal emission wavelengths of the elements studied
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Figure 5 Emission spectra for the ablation of the seven materials. 

(Principal emission lines are listed in Table 4)
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Figure 7 Emission intensity-wavelength-time response for the ablation of
calcium carbonate. Each spectrum was produced by a single laser shot at the
same sample site.
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Figure 8 Emission-time response for the ablation of calcium carbonate

The performance of ANNs with either one or two hidden layers and with 

different number of nodes in the hidden layer(s) was investigated. Artificial 

neural networks with these different structures were trained with the training file 

and then tested. Results indicated that for best performance, i.e. least error, the 

network should have one hidden layer containing 10 neurons. With this 

structure and after 100,000 iterations, it was possible to discriminate all 

materials with an accuracy of 100% both in the training and test phases.

Typical results for the test mode are shown in Table 5. Performance can be 

assessed by comparing the output values with the desired values for each 

material, and by considering the variation of the output code for each material 

(standard deviation). In each case, the output 0.0 values approximate to 0.0 

and the output 1.0 values are very close to 1.0. The highest 0.0 value was

0.0207 and the lowest 1.0 value was 0.9924. This shows that the ANN was 

100% successful in discriminating between the materials. The low standard
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deviation values that were obtained indicate that the ANN could achieve these 

results with good precision.

Material Output Values

Cu desired
mean
SD

0.0000000
0.0001904
0.0000106

0.0000000
0.0007901
0.0002525

0.0000000
0.0002828
0.0000471

0.0000000
0.0096572
0.0039918

Sn desired
mean
SD

0.0000000
0.0004666
0.0000048

0.0000000
0.0000000
0.0000000

0.0000000
0.0010627
0.0001611

1.0000000
0.9957102
0.0001133

Ti desired
mean
SD

0.0000000
0.0003818
0.0000053

0.0000000
0.0206684
0.0101062

1.0000000
0.9955831
0.0016062

0.0000000
0.0072032
0.0014532

Zn desired
mean
SD

0.0000000
0.0023046
0.0000343

0.0000000
0.0000000
0.0000000

1.0000000
0.9970476
0.0001284

1.0000000
0.9985614
0.0000148

Sb desired
mean
SD

0.0000000
0.0002671
0.0000023

1.0000000
0.9923860
0.0009371

0.0000000
0.0010346
0.0001042

0.0000000
0.0000000
0.0000000

Al desired
mean
SD

0.0000000
0.0004447
0.0000095

1.0000000
0.9940660
0.0014241

0.0000000
0.0032040
0.0009869

1.0000000
0.9981207
0.0010057

Ca desired
mean
SD

0.0000000
0.0007854
0.0000108

1.0000000
0.9758306
0.0184683

1.0000000
0.9999750
0.0000117

0.0000000
0.0011966
0.0001456

SD = standard deviation, n = 10

Table 5 Typical output response from the artificial neural network for the test 

data
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ANNs with more neurons in the hidden layer or with two hidden layers were 

also found to be successful. It is beneficial, however, to use the successful 

structure with the smaller number of neurons in the hidden layer. If the structure 

is over-complex training might not be successful. Using a smaller number of 

neurons in the hidden layer allows more neurons to be used in the other layers, 

if required. When fewer than 10 neurons were used in the hidden layer, either 

successful training was not achieved or performance was not satisfactory (0.0 

values not approximating to 0.0, 1.0 values not close to 1.0).

These results indicate that ANNs can be successfully used to discriminate the 

complex spectra from laser-induced plasma emission spectrometry. This was 

achieved without the wavelength-calibration of the photodiode array detector, or 

the identification and assignment of element emission wavelengths. The 

emission spectra from 7 materials have been discriminated here, and the 

network can be further trained in the present form to identify a larger number of 

materials. By increasing the number of output neurones to 5 or 6 then the 

number of materials in the database could be increased up to 32 or 64, 

respectively. This qualitative measurement may be useful in the sorting of 

metals, alloys or plastics containing inorganic additives, provided the ANNs are 

trained on the spectrum for each material. As the discrimination process is very 

fast, it should be possible to achieve on-line measurements with identification of 

the spectrum from each laser shot.

A limitation to the technique is that the ANNs used in this study can only 

recognise the types of signals that they have been trained with. So, for 

example, if a sample contained a mixture of titanium and Al, then the ANNs 

would need to be trained to recognise this mixture. Also there is limited 

capability towards quantitative measurements. The use of other types of ANN, 

such as Kohonen networks, could resolve these problems. Kohonen networks
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are self-organised and enable training without supervision, i.e. unsupervised 

networks; the input patterns are presented only, and the network organises, or 

trains, itself. An advantage of this type of ANN is that there are many more 

output neurons, e.g. 100, which enable a greater level of description of the 

input patterns to be achieved, and this may be more suitable to quantitative 

applications.

6.5 Conclusions and Recommendations For Further Work

Artificial neural networks (ANNs) have been successfully used for pattern 

recognition of spectra generated by laser-induced plasma emission 

spectrometry. The technique was applied to 7 materials and it was possible to 

identify all training and test spectra with an accuracy of 100%. This success 

rate and the rapid discrimination time indicates that the technique combined 

with laser-induced plasma emission spectrometry may be useful in on-line 

industrial situations where, for example, rapid sorting of materials is required.

With further work, the technique could be applied to a wider spectral region, 

e.g. 100 or 200 nm, that encompasses emission lines for more elements. The 

wider spectral region could be achieved here by using a lower resolution grating 

in the spectrometer. The lower resolution would probably lead to many spectral 

interferences that would interfere with element identification by conventional 

techniques of wavelength identification. With the ANN technique, spectral 

interferences would probably not present a problem because the feature 

extraction program and the ANNs examine the whole wavelength region and 

not just pre-determined emission lines. The data base could be expanded with 

further work to include other metals, alloys or plastics containing inorganic 

additives, and investigate the use of other types of artificial neural networks in 

quantitative analysis.
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7.0 Conclusions and Future Work

An optical multichannel analyser and a Q-switched Nd:YAG have been 

successfully configured in an integrated laser-induced plasma emission 

spectrometry system. The operations of the laser and optical multichannel 

analyser were synchronised so that the optical multichannel analyser was able 

to monitor discreetly the laser-induced plasma from each laser shot. Studies of 

the ablation of copper metal showed that characteristics of the laser-induced 

plasma were influenced by the operating conditions. Relatively high laser 

energy produced a plasma that was more intense and longer-lived than that 

produced by lower energy. Time resolved measurement enabled large 

improvements in sensitivity to be realised, and precision was improved from 

17.1 to 3.8 % relative standard deviation (RSD) by accumulating a relatively 

large number of laser shots (2100 vs. 30). For the determination of copper in 

aluminium alloy, the limit of detection was 0.010 % m/m and precision was 3.0 

% RSD using an aluminium signal from the alloy matrix was used as internal 

standard, both comparable to other published data.

The optical multichannel analyser was used separately to monitor an inductively 

coupled plasma (ICP) emission source. Precision with this more stable source 

was 0.5 % RSD, indicating that the optical multichannel analyser is capable of 

achieving good precision. The optical multichannel analyser enabled several 

emission lines and the spectral background to be monitored simultaneously 

during a transient signal event produced by sample introduction with flow 

injection.

Studies showed that the ablation of polymeric materials is different from metals. 

The rate of material removal was higher for the polymer but the plasma had a 

shorter lifetime. Operating conditions of relatively low laser energy and focused 

laser radiation were found to provide improved analytical performance for
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antimony, calcium and zinc in poly (vinyl chloride) samples. Selective 

volatilisation of antimony occurred and the effect was minimised by firing only a 

small number of laser shots at a sample site. Linear calibration graphs were 

obtained with limits of detection of 0.09, 0.04 and 0.07 % m/m for antimony, 

calcium and zinc, respectively, indicating bulk analysis capabilities. Precision 

was improved from 7.3 to 1.8 for antimony when a carbon signal from the 

polymer matrix was used as an internal standard. A range of poly (vinyl 

chloride) samples was successfully monitored for twelve elements (Al, Ba, Ca, 

Cu, Fe, Mg, Pb, P, Sb, Sn, Ti, Zn), without the need for time-consuming sample 

digestion, demonstrating a rapid survey analysis capability. Sensitivity and 

speed of measurement were higher than another direct technique, energy 

dispersive X-ray fluorescence.

The micro-analysis capability of laser-induced plasma emission spectrometry 

was successfully applied to the depth profile measurement of coatings on steel 

substrates. A series of coatings was studied, zinc/nickel alloy, tin and titanium 

nitride, on steel substrates over a range of coating thickness up to 8.0 pm. 

Depth profile performance and the shape of the resultant crater were greatly 

influenced by operating conditions, and it was found that defocused laser light 

and maximum laser energy provided improved performance and depth 

resolution. New output parameters were devised, and studies showed a linear 

relationship between the area under the zinc profile line and coating thickness. 

Good precision for replicate measurements was obtained with rapid 

measurement times of 50 s. The performance indicates that laser-induced 

plasma emission spectrometry can be used for the rapid depth profile 

measurement of coatings. In addition, the technique was also able to detect a 

layer of aluminium within a zinc coating, and the technique detected an ultra- 

thin chromium coating (20 nm). The technique has significant advantages 

compared to conventional glow discharge-optical emission spectrometry, such
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as speed (50 vs. 700 s), smaller size of crater (~1 mm vs. ~10 mm) and non- 

invasive measurement capabilities, suggesting the technique may be 

appropriate for industrial application.

A novel technique for the processing of laser-induced plasma emission spectra 

was developed. Artificial neural networks, a form of artificial intelligence, were 

applied to the emission spectra of 7 materials. The artificial neural networks 

were successfully trained and could rapidly differentiate between the spectra 

with a 100 % success rate. There was, however, limited capability towards 

quantitative measurements, which might be resolved by the use of other types 

of artificial neural networks, such as Kohonen networks.

Future work could address a number of issues. A more integrated and versatile 

laser-induced emission spectrometry system would provide computer control of 

the laser energy, sample manipulation and fibre optic observation position. 

These are set manually in this work, which is time-consuming and may lead to 

loss of precision in the case of laser energy. The positioning of the sample and 

fibre optic could be achieved by mounting each separately on computer- 

controlled motorised XYZ stages. Automated sample manipulation would 

enable the sample to be quickly positioned at different distances from the laser 

focal point and the fibre to be rapidly aligned to the laser spot. It would enable 

versatile laser sampling of material, such as allowing a fresh area of sample to 

be ablated by each laser shot, or a large area of sample to be examined by 

ablating in a grid pattern. The computer program of the optical multichannel 

analyser could be modified to provide integrated control of these parameters. 

The provision of a miniature video camera to monitor the sample position would 

provide precise ablation of different regions of the sample.
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With further work, the effect of operating parameters, such as a buffer gas or 

the focal length of the focus lens, upon the ablation of polymeric materials and 

coated substrates could be investigated. Buffer gases that could be studied are 

argon, helium, neon and nitrogen, and may lead to improvements in analytical 

performance for the analysis of polymeric materials, and to improvements in 

depth profile performance for coated samples. Investigation of the use of partial 

gas pressures could provide further improvements. The depth profile studies 

could be extended to the measurement of thicker coatings such as 100 pm, the 

quantification of coating elements, and to the measurement of other coatings 

such as metallic multi-layers and coating systems with an insulating 

component, e.g. paints containing metals, titanium nitride on glass or plastic 

substrates.

Artificial neural networks could be applied to the studies described in this thesis, 

such as to emission spectra recorded with the optical multichannel analyser 

from an ICP emission source, to provide enhanced performance in terms of 

speed of data processing. This might be useful in laboratory-based applications 

of material quality control, or in on-line applications of ICP emission 

spectrometry. In metallurgical applications of laser-induced plasma emission 

spectrometry, artificial neural networks could be applied to the spectra of 

different alloys in order that alloys could be rapidly sorted by type. For example, 

aluminium alloys could be sorted by copper content. This could be extended to 

other alloying elements. In the polymeric materials study, artificial neural 

networks could be trained to recognise the spectra from polymeric materials 

containing additives at different concentrations. When trained, the technique 

could then rapidly differentiate between polymer samples by the additive 

content of each sample. The rapid data processing capability of artificial neural 

networks could then exploit the full potential speed of laser-induced plasma 

emission spectrometry in an on-line implementation of survey analysis. The
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laser-induced plasma emission spectrometry system used in these studies has 

a capability of up to ten laser shots (and associated emission spectra) per 

second. With appropriate sample manipulation, this could provide a powerful 

sorting tool for inorganic additives in polymeric materials.

Recent studies1, have used laser ablation-ion mobility spectrometry (LA-IMS) 

and artificial neural networks to rapidly differentiate between different types of 

polymeric materials, for example, between poly (vinyl chloride) and 

polyethylene. The combination of LA-IMS with simultaneous laser-induced 

emission spectrochemical measurement would provide a powerful technique to 

identify polymer type and the inorganic additives present. Artificial neural 

networks could be used to rapidly process the data from this combined 

technique.
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Appendix 1

Calculations used in the thesis.

1. Calculation of the rate of material removal from the size of the laser crater

- crater dimensions were taken from Talysurf surface measurements of laser- 

produced craters 

calculation of crater volume

assume crater is cylindrical in shape 

volume of cylinder = n  r2 h

where r = radius of crater 

h = depth of crater 

mass removed per crater

density of material (p) = mass / volume 

mass = p volume 

volume of material removed = n r2 h

mass removed = p n  r2 h (mg mm-2 mm2 mm)

mass removed = p n  r2 h (mg)

For poly (vinyl chloride):

crater produced by 10 laser shots 

radius of crater = 0.5 mm

depth of crater = 50 pm = 0.05 mm

p poly (vinyl chloride) = 1.4 mg mrrr3

mass removed (10 laser shots) = 1.4 n  0.52 0.05 mg

rate of mass removal = 5.5 pg per laser shot

For zinc/nickel coating on steel:

crater produced by 200 laser shots

radius of crater = 0.7 mm

depth of crater = 7.4 pm = 0.0074 mm



p zinc 7.14 mg mm-3

p nickel 8.90 mg mm-3

p iron 7.86 mg mnr3

p average = 7.97 mg mnr3

mass removed (200 laser shots) = 7.97 n  0.72 0.0074 

rate of mass removal = 0.45 pg per laser shot

The mass removed per laser shot was calculated for other materials using the 

densities below. Density values were taken from CRC Handbook of Chemistry 

and Physics, 60th Edition, except that for poly (vinyl chloride), which was from 

the Goodfellows Catalogue (1992).

2. Calculation of tin coating thickness from the tin coating weight 

- values of coating weight for each sample were provided by the supplier of the 

samples (British Steel Technical, Swinden Laboratories, Rotherham, UK) 

density of material (p) = mass / volume 

.-. volume = mass / p 

volume = length x width x height 

where height = coating thickness (T)

.*. length x width x T = mass / p 

.-. T = (mass / p) / (length x width)

mass = 10.8 g rrr2 = 10.8 x 10*4 g crrr2 

p = 7.28 g cm-3 

let length and width = 1 cm 

/. T= (10.8/7.28)7(1 x 1)

p tin

p chromium 

p titanium

7.28 mg mm-3 

7.20 mg mm-3 

4.50 mg mm-3

in



= 1.479 x 10-4 cm 

coating thickness = 1.479 pm

3. Calculation of the mass of chromium coating removed with the first laser shot 

coating thickness of chromium = 0.020 pm (= 20 x 10-6 mm) 

assume crater is cylindrical in shape 

volume of cylinder = n  r2 h

where radius of crater (r) = 0.7 mm

h = height = coating thickness = 20 x 10-6 mm

density of material (p) = mass / volume 

where p chromium = 7.20 mg mm*3 

.-. p = mass / (7i r2 h)

.-. mass = p 7i r2 h

= 7.2x10-6 7i 0.72 20x 10-6 

= 221.67 x 10-6 mg 

= 0.22 pg

.*. mass detected with first laser shot = 0.22 pg

iv



Appendix 2

A copy of the published paper associated with the work of this thesis is below:
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Rapid Survey Analysis of Polymeric Materials by Laser-induced 
Plasma Emission Spectrometry*
David R. Anderson and Cameron W. McLeod
Division o f Chemistry, School o f Science, Sheffield Hallam University, Sheffield, UKS11WB  

Trevor A. Smith
Arun Technology Limited, Unit 16, Southwater Industrial Estate, Station Road, Southwater, Horsham, 
Sussex, UKRH13 7UD

Laser-induced plasma emission spectrometry has been applied to the analysis of poly(vinyl chloride) mate
rials. Methodologies used to optimize the monitoring of the time-dependent emission from the laser-induced 
plasma are discussed, and the effects of key parameters, such as laser energy, sample position and repetitive 
firing at given sites, were examined. Basic performance data are reported for Ca [limit of detection 0.016% 
m/m and 4.8% relative standard deviation (RSD)] and Sb (limit of detection 0.04% m/m and 4.8% RSD) and 
the potential use for rapid survey analysis is demonstrated.
Keywords: Laser-induced plasma emission spectrometry; gated diode array detection; laser ablation; 
polymer analysis

Polymeric materials generally contain a wide variety of addi
tives which are used to give specific properties to the material.1 
These include, pigments for colour (e.g., white T i0 2), fillers 
(e.g., CaC03), stabilizers (e.g., Zn, Pb and Ba), flame-retarding 
agents (e.g., Sb, P) and smoke suppressants (e.g., Zn), among 
others. These inorganic components vary in concentration 
from trace (pg g-1 ) to minor (%) levels. Analytical techniques 
currently in use for such analyses include solution-based atomic 
spectrometric methods2,3 and X-ray fluorescence spec
trometry.4 An alternative approach is direct spectrochemical 
analysis by laser ablation (LA), either by direct spectral 
measurement of the laser-induced plasma, or by coupling to 
another analytical technique. For example, LA with inductively 
coupled plasma (ICP) atomic emission spectrometry has been 
used for survey analysis of paints and polymers,5 while ICP  
mass spectrometry has been applied to polymeric and refrac
tory materials.6

Direct spectrochemical measurement of the plasma, laser- 
induced plasma emission spectrometry (LIPS), enables rapid, 
in situ analysis,7,8 and is particularly suited to process measure
ment.9 The emission signals from the laser-induced plasma are 
complex and vary greatly with time. Time-resolved measure
ment is usually essential for the separation of the analyte 
emission response from the intense plasma background.10 Basic 
characterization of the laser-induced plasma and systematic 
studies concerning the effect of key parameters, such as the 
wavelength of the laser light and the type and pressure of the 
buffer gas, have been reported.11-16 Niemax et al.,16 concluded 
that a wavelength of 1064 nm was more suitable than 266 nm 
for analysis of glass and steel matrices. Other workers1*-15 
found that a reduced pressure of Ar gas, typically 133.32 x 103 
Pa, offered improved analytical performance. For process 
monitoring situations, where it may not be feasible to achieve 
partial pressures, atmospheric pressure has been used. Cremers 
and Archuleta9 reported the in situ measurement of molten 
steel for five elements (Ni, Cr, Si, Mn and Cu) using a laser 
wavelength of 1064 nm by LIPS and LA-ICP and concluded 
that at least semiquantitative analysis was feasible. Lorenzen 
et al.17 described the in situ monitoring of S, Si and Zn in 
rubber production using an excimer laser operating at 248 nm, 
and discussed the choice of laser wavelength for this 
application.

The present study examines the application of LIPS to the

* Presented in part at the 1993 European Winter Conference on 
Plasma Spectrochemistry, Granada, Spain. January 10-15, 1993.

rapid survey analysis of poly(vinyl chloride) (PVC) samples, 
and provides information about the emission characteristics of 
the laser-induced plasma, in particular the emission-time pro
files of analyte and background emission. Basic performance 
data for the determination of Sb, Ca and P in PVC samples 
are presented.

Experimental
Instrumentation
A schematic diagram of the LIPS system is shown in Fig. 1, 
and details of the instrumentation and operating parameters 
are given in Table 1. The system consisted of a Q-switched 
Nd:YAG laser with output wavelength of 1064 nm, an optical 
multi-channel analyser (OMA) that comprised a spectrometer, 
an intensified photodiode array (PDA) detector, a com
puterized control system and a master pulse generator. 
Operation of the laser and the O M A was synchronized elec
tronically using the master pulse generator. This controlled 
the timings of the laser flash lamp and Q-switched laser firing, 
and the detector gating and scanning of the detector array. 
Both the laser flash lamp and the O M A detector were operated 
at 10 Hz. The laser was fired during alternate flashes of the 
flash lamp, i.e., at 5 Hz, and the O M A  recorded a blank 
spectrum during the flash lamp cycles when the laser did not 
fire. Each blank spectrum was automatically subtracted from

MirrorLaser
1064 nm

Focus lens
Pulse

generator

XYZ
Mic oplasma 

Sample
OMA

Fibre optic

Fig. 1 Schematic diagram of laser and spectrometer system
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Table 1 Instrumentation and parameters used in this study

Laser 
Wavelength 
Repetition rate 
Laser flash lamp energy 
Pulse-width 
Reflecting mirror 
Focus lens

Ablation gas

Sample position 
(relative to laser focal point) 

OMA 
Spectrometer 
Grating
Spectral window 
Effective resolution 
Detector
Light collection and transfer

Fibre optic observation position 
From laser focal point 12 mm
Above sample surface 1 mm

Pulse generator EG&G 1310

Spectra Physics DCR II 
1064 nm 
10 Hz 
40 J 
10 ns
45° (Newport 10 QM 20 HM-15) 
500 mm focal length 
(Newport SBX 040 AR.18)
Air at room temperature and 
pressure
—0.5 mm (0.5 mm towards lens)

EG&G OMA III 
0.28 m Czerny-Tumer 
2400 g mm-1 
25 nm 
0.20 nm
Intensified photodiode array 
Fibre optic, bundle of 

19 x 200 [im 
UV-grade fused silica

Table 2 List of element emission lines for each spectral window 
monitored in this study

Wavelength range/nm

237--262 267--292 307--332

240.549 Cu 279.553 Mg II 308.215 A ll
241.949 Sn 280.199 Pb I 308.802 T ill
247.857 C l 280.270 Mg II 309.271 A ll
250.200 Zn II 283.306 Pb I 315.887 C a ll
250.911 CII 283.999 SnI 317.502 SnI
251.203 CII 285.213 Mg I 317.933 Ca II
251.743 T ill 286.333 Sn I 322.579 F e ll
252.560 T ill 286.426 Pb 322.775 F e ll
252.852 Sb I 287.792 Sb I 323.252 Sb I
253.401 P I — — 323.452 Ti II
253.565 P I — — 323.612 T ill
254.480 Cu II — — 323.904 Ti II
255.328 P I — — 324.199 Ti II
255.493 P I — — 324.754 Cu I
255.796 Zn II — — 326.233 SnI
256.253 F e ll — — 326.751 Sb I
259.806 Sb I — — 327.396 Cu I
259.881 Cu II — — 328.233 Zn I
261.418 Pb — — 328.321 Sn II

330.259 Zn I

the previous emission spectrum to yield a net signal from the 
plasma. The run time for 5 laser shots was 1 s.

Laser light was delivered to the sample by a mirror, and a 
lens was used to focus the light onto the sample surface. The 
laser-induced plasma was formed at the surface of the sample, 
and radiation was transmitted to the O M A by a fibre optic 
cable. The light was dispersed by the grating of the spec
trometer and detected by an intensified photodiode array. The 
detector was time-gated to allow precise control of the inte
gration time.

Various spectral regions could be monitored by setting the 
grating to the required centre wavelength. This was controlled 
by the grating-drive mechanism which rotated the grating until 
the required wavelength window covered the detector elements. 
Three spectral windows 237-262, 267-292 and 307-332 nm of 
centre wavelengths 250, 280 and 320 nm, respectively, were 
used to detect the elements selected (Al, Ba, Ca, Cu, Fe, Mg, 
Pb, P, Sb, Sn, Ti and Zn). The emission lines monitored are 
given in Table 2. In addition, two barium lines were utilized 
(230.423 and 233.527 nm) at centre wavelength 230 nm.

Data Acquisition

The OMA hardware and software allowed versatile collection, 
storage and manipulation of data. For example, individual 
scans of the photodiode array, representing separate laser 
shots, could either be stored in separate memories or accumu
lated into a single memory. The time-gating capability of the 
OM A was used in two ways to address the problem of complex, 
time-dependent emission from the laser-induced plasma. Two 
data acquisition modes of OM A operation are described below, 
incremental mode and fixed time mode (FT). An incremental 
program was used for preliminary studies in which each scan 
of the array was stored in a separate memory, and the 
integration window (100 ns) was stepped sequentially through 
the lifetime of the plasma by the increment time (100 ns). This 
enabled the spectra to be time-resolved to produce an emission- 
wavelength-time (E -W -T) profile of emission from the plasma. 
Examination of the transient signal responses within these 
profiles enabled suitable values for delay and integration times 
to be selected for use in an FT program.

The FT data acquisition mode exploited the separation, in 
time, of the analyte response from the background signal and 
allowed greater measurement sensitivity to be realized. Here,

the start of integration was delayed by a set time, the delay 
time, to enable rejection of the initial intense background 
signal, and the integration period captured the analyte emission 
signal response; typical parameters were delay time 500 ns, 
and integration time 1 ps.

Two FT programs, FT1 and FT2, were used to acquire the 
laser generated spectra. Method FT1 consisted of firing 30 
laser shots at the same spot, each shot being stored individually, 
i.e., 1 scan in 30 memories (30 scans total). Method FT2 
accumulated five laser shots into one memory at one sample 
site, and this was repeated seven times in total with a fresh 
site each time, i.e., 5 scans in 7 memories (35 scans total). The 
run times for FT1 and FT2 were 6 and 7 s, respectively, with 
a further 25 s required for sample translation for FT2.

Materials

Poly(vinyl chloride) samples (A -F) were supplied in sheet form 
by FM C Process Additives (UK). Sample X was industrial 
grade PVC (Darvic), obtained locally.

Procedure

Samples were analysed as received with no sample preparation. 
The sample was mounted on an X Y Z  manipulator and a fresh 
area of material postioned at the laser spot. The manipulator 
was moved in height (Z) until the sample was at the laser focal 
point, 500 mm from the focusing lens, and then moved 0.5 mm 
towards the lens. With the laser operating at a suitable flash 
lamp energy, e.g., 40 J, the acquisition was started. The laser 
fired under control of the O M A  software and the master pulse 
generator, and the resulting scans were stored on the computer 
and printed. Separate routines were used off-line to perform 
individual pixel analyses to give emission-time profiles and 
statistical information.

Results and Discussion 

Preliminary Studies

Previous studies18 of LIPS with metallurgical samples found 
that emission signal responses and analytical performance were 
greatly influenced by the complex, interdependent relationship 
of several parameters, e.g., laser energy, sample position relative 
to laser focal point, position of the fibre optic and O M A
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Fig. 2 Talysurf stylus-profile of a crater in PVC (sample X) produced 
by ten laser shots, laser flash lamp energy 40 J. The profile was 
recorded by 164 scans in a 1.63 mm square grid

>

C
Q)
C

Co'w(A
Ew

307 319 332
Wavelength/nm

Fig. 3 LIPS spectra for ablation of: A, Ti metal; and B, PVC sample 
X (laser flash lamp energy 40 J). OMA parameters: delay time, 900 ns; 
integration time, 100 ns

detector settings. For example, ablation with a relatively high 
laser energy (flash lamp energy 70 J, irradiance 
« 3 .1 x l0 u W cm-2) produced a more intense, longer-lived 
plasma that required a different fibre optic viewing position 
and OM A settings for optimal performance compared with 
ablation with a lower energy (flash lamp energy 40 J, 
« 8 .0 x l0 loW cm-2). For this preliminary study with poly
meric materials, initial selection of laser lamp energy was made 
by examining the amount of laser-damage .to the sample and 
the variation in emission intensity produced by different values 
of laser energy. For optimum LIPS performance, it may be 
necessary to characterize the experimental parameters listed 
above for the ablation of polymeric materials and also consider 
the effects of polymer properties such as transparency and 
colour upon ablation.

A relatively low laser energy (flash lamp energy 40 J) was 
chosen, which inflicted minimal laser damage to the sample 
but produced suitable emission responses. The laser appeared 
to couple well with coloured, opaque samples. A Talysurf 
stylus-profile of the crater produced in PVC (sample X) by ten 
laser shots is depicted in Fig. 2. It shows the round crater to 
be approximately 1 mm in diameter and 50 pm deep. A dark

ened region, about 2 mm in diameter, was observed around 
each crater.

The LA of an opaque polymer was compared with the 
ablation of metal using conditions previously established for 
metal samples. Fig. 3 depicts spectra from the ablations of 
sample X and Ti metal, taken from the respective E -W -T  
profiles. The spectra are very similar and most emission lines 
can be identified as Ti, indicating the presence of Ti in the 
polymer, probably as the pigment titanium dioxide. The spec
trum for the polymer is more intense than that for the metal, 
probably due to a combination of factors such as, greater 
coupling of the laser and plasma with the polymer, and the 
lower temperatures needed for volatilization and decompo
sition of the polymer compared with the metal.

In the case of transparent polymeric samples, no emission 
signals were obtained when material was ablated with the 
operating parameters specified under Experimental. Faint tun
nelling through the material and ablation of the metal support 
underneath the sample were observed. This would suggest that 
a plasma was not induced on the surface of the polymer, and 
that the laser light was transmitted through the plastic to the 
metal. The tunnelling was due to the self-focusing of the laser

incSc
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Fig. 4 Emission-wavelength (237-262 nm)-time (0-900 ns) profile for ablation of sample A using the Incremental program, (increment time, 
100 ns; integration time, 100 ns): A, carbon I 247.9 nm; and B, carbon II 250.9 and 251.2 nm; C, antimony 252.9; and D, phosphorus 253.4 
and 253.5 nm
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Fig. 5 Emission-time profile for ablation of sample A with the 
Incremental program, (increment time, 100 ns; integration time, 
100 ns): A, carbon I 247.9; B, antimony 252.9; C, phosphorus 253.4; 
and D, background 245.0 nm

beam within the material, which trapped the light and pre
vented it from spreading, to produce a waveguide.19 This was 
not evident in the opaque samples because the laser light was 
absorbed, leading to ablation and production of the laser- 
induced plasma. When the transparent sample was moved 
away from the laser focus position, i.e., 3 mm away from the 
lens (+  3 mm), emission signals and laser damage on the sample 
surface were observed. The plasma was induced in the air 
above the sample surface, and the plasma was responsible for 
volatilizing sample material and creating the crater. Results 
indicated that it was feasible to gain elemental composition 
data from transparent polymer material. These conditions were 
not adopted for opaque samples because greater damage was 
inflicted upon these materials without any significant improve
ment in performance.

An E -W -T  profile recorded with the OM A incremental 
program from the ablation of sample A (Fig. 4) shows the 
intense background continuum at early times, and the emerg

600 - (a )

500

400

300

2  200 
C

8 100 >-o-i
> j ~~1C___~ I i ~ i r i ~ — — r r

2 4 6 8 10 12 14 16 18 20 22 24 26 28
U!
C 0

2500
(fa)

E 2000

1500

-o--o- - o --o -1000

500

643 5210
Memory No.

Fig. 6 Emission-time profile for ablation of sample A with FT 
program (delay time, 500 ns; integration time, 1 ps): (a) FT1, 30 shots 
at same spot; and (b) FT2, 5 shots in each memory, 7 memories, fresh 
site each memory: A, carbon I 247.9; B, antimony 252.9; C, antimony 
259.8; D, phosphorus 253.4; and E, background 245.0 nm

ence of atom/ion emission at later times. Carbon ion emissions 
(250.9, 251.2 nm) were evident initially, and carbon atom 
emissions (247.9 nm) later. The intense background signal and 
carbon ion emissions reflect the high temperatures of the 
plasma at early times, but as the plasma expanded and cooled, 
the background signal decayed rapidly and atomic emission 
lines for Sb and P became prominent. An E -T  profile for 
selected wavelengths (Fig. 5) shows the responses of C, Sb anu 
P to be indistinguishable from the background up to 400 ns. 
After this, emission signals for these three elements remain 
above background up to about 1.5 ps. These observations 
enable suitable detector settings to be obtained for the FT  
data acquisition mode; the background signal is reduced 
significantly, by 500 ns, so selection of a time delay of 500 ns 
would minimize background contributions and a signal inte
gration of 1 ps would be appropriate for monitoring analyte 
emission.

Analytical Performance
Full quantitative measurement of inorganic additives in poly
meric materials is considered to be difficult because of the 
absence of suitable certified reference materials (CRMs) neces
sary to prepare calibration graphs. Quantitative measurements 
in this work are based on using characterized samples as 
calibration standards. To obtain analytical performance data, 
OM A FT programs were devised using the system operating 
parameters established above. Initial studies used two FT  
programs, FT1 and FT2, to examine the effect of repetitive 
firing of the laser on signal response and to test for sample 
homogeneity, prior to making performance measurements. 
Results from the ablation of sample A by both methods are 
shown in Fig. 6 (laser flash lamp energy 40 J, delay time 500 ns, 
integration time 1 ps). With FT1, the Sb emission responses 
were not similar throughout the experiment, although the C 
and P emission signals were reasonably constant. Both Sb 
lines increased in intensity at first, and then decreased until
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Fig. 7 Emission-wavelength (237-262 nm)-memory number profile 
for ablation of sample A with FT2, with delay time, 500 ns; integration 
time, 1 (is, 5 shots in each memory, 7 memories, fresh site each memory: 
A, carbon I 247.9; B, antimony 252.9; and C, antimony 259.8 nm

Table 3 Comparison of data from fixed time methods FT1 and FT2 
for the ablation of sample A

Parameter Method FT1 Method FT2

No. of shots per site 30 5
RSD C 247.8 nm 10.6 4.8
RSD Sb 252.8 nm 29.7 4.8
RSD P 253.4 nm 6.9 7.0
S/N (Sb 4.9%) 13.4 97
S/N (P 2.6%) 4.5 33
Value of n for statistical calculation 30 7
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about memory number 9, after which a relatively constant 
signal response was observed. Emission responses for all 
elements were fairly constant with FT2 [Fig. 6(h)].

The emission response for Sb was not linear with concen
tration for method FT1, but FT2 did produce a linear response. 
It would appear that the Sb in the vicinity of the laser spot 
was selectively volatilized during the first few laser shots, 
possibly through formation of volatile antimony chloride, 
leading to a depletion of Sb for the remaining shots. The effect 
was not due to higher concentration levels of Sb at the surface 
as similar E -T  profiles were obtained from the ablation of 
material beneath the sample surface. Use of a small number 
of laser shots, i.e., five on several sites with method FT2, 
enabled a linear calibration to be produced. Reasonably con
stant signals for C, Ca and P were obtained by FT1, suggesting 
that these elements were not selectively volatilized and it was 
still possible to make representative measurements after firing 
30 laser shots at the same site.

The emission responses for C and Sb were more reproducible

with method FT2 compared with FT1. An emission-wave- 
length-memory number profile (Fig. 7) for ablation with FT2 
clearly indicates good repeatability for successive laser firings, 
and results suggest that the sample is relatively homogeneous. 
Precision [relative standard deviation (RSD)] improved from 
10.6 and 29.7 (FT1) to 4.8 and 4.8 (FT2) for C and Sb, 
respectively, but there was no significant change for phos
phorus, RSD 6.9 (Table 3). Using the C signal (247.86 nm) as 
an internal standard, RSD was further improved to 2.3 and 
3.4 for Sb and P, respectively. This approach is only applicable 
for element emission signals that are within the spectral region 
237-262 nm that contains a C emission signal. The signaknoise 
ratio for C, Sb and P was considerably improved using FT2, 
due to the accumulation of five laser shots into each O M A  
memory compared with one shot with FT1.

Using method FT2, linear calibration graphs were generated 
for Sb (to 4.9% m/m) and Ca (to 6.8% m/m) emissions (Sb
252.8 and 258.8 nm; Ca 315.9 and 317.9 nm) with three data 
points for each element. The correlation coefficients were
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Fig. 8 Laser-induced plasma emission spectra from samples A, B, D and E (from top to bottom). Spectra were recorded with fixed time method 
FT2, delay time 500 ns, integration time 1 ps, 5 shots in each memory, 7 memories, fresh site each memory. Emission wavelengths are given in Table 2
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0.9936 and 0.9999 for Sb 259.8 nm and Ca 317.9 nm, respect
ively. Limits of detection based on 3a (measurement of blank 
PVC sample) were estimated at 0.04 and 0.016% m/m for Sb
252.8 nm and Ca 317.9 nm, respectively. The data are similar 
to values obtained for elements in steel (Ni, Cr, Si and Mn) 
by Cremers and Archuleta9 using LIPS.

Survey Analysis
To demonstrate the rapid analysis capability, a range of PVC 
samples was examined. (The composition values quoted were 
supplied by the manufacturer.) Spectra from four samples are 
shown in Fig. 8 for three spectral regions. Samples A and B 
are clearly seen to contain Sb a« the emission lines for Sb are 
identified within all three spectral windows for both samples. 
The greater emission intensity for A compared with B indicates 
the higher concentration present in A (Sb: A, 4.9% m/m; B, 
2.8% m/m). Tin and P are present in sample A (P 2.6% m/m, 
Sn 0.05% m/m). Calcium emission lines are evident in samples 
B and D, the greater emission intensity of B indicating the 
higher concentration present (Ca: B, 6.8% m/m; D, 0.4% m/m). 
Emission lines of magnesium were observed for all four 
samples. Barium was detected in samples B (Ba: 0.1% m/m), 
the Ba emission lines (230.423 and 233.527 nm) are not shown 
in Fig. 8. Lead (3.0% m/m) is present in sample D, and Al, P, 
Sn and Zn are evident in E. Samples C and X (not shown) 
contain Sn and Zn, and Ti and Mg, respectively. These results 
show that the technique can be used for the rapid analysis 
of samples of PVC for a range of elements, without the need 
for time-consuming sample dissolution and possible loss of 
volatile elements.

Conclusions
Laser-induced plasma emission spectrometry has been applied 
to the rapid survey analysis of polymeric materials. This study 
monitored a range of twelve elements (Al, Ba, Ca, Cu, Fe, Mg, 
Pb, P, Sb, Sn, Ti and Zn), and provided analytical data for 
key elements (Sb and Ca). Quantitative measurement was 
limited by the availability of characterized samples. To address 
this problem, it is proposed to prepare a series of samples, 
covering a wide range of concentration levels for selected 
elements, which will enable additional calibrations and further 
quantitative measurements to be made.

The speed of analysis, compactness of instrumentation and 
simplicity of operation suggest that the technique has the

potential for compositional monitoring of polymeric materials 
in industrial processes, such as manufacture and recycling.
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