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Abstract

A method was developed and evaluated in terms of its analytical performance for the 

determination o f Ti, V, Cr, Mn, Ni, Cu, Mo, Cd, Sn and Pb concentrations in three 

Libyan crude oil samples using ICP-MS. The samples were introduced to the plasma 

after the formation o f microemulsions in which Triton X-100 was used as the emulsifier 

and tetralin was the co-solvent with the addition o f nitric acid in order to enable 

calibration with aqueous standard. The validity o f the method was proven by three 

different traditional sample preparation protocols (dry ash, wet digestion and microwave 

digestion) and good agreement was obtained between the results using the proposed and 

comparative procedures. The accuracy was confirmed by analysing two different 

certified reference materials (Used Oil HU-1 from SCP science and Wear Metals in 

Lubricating Oils 1084a from NIST). The recoveries ranged from 100.1% to 119.9 % for 

all elements and 85.1 % for Cr in Used Oil HU-1 and from 84.8 % to 100.1 % for all 

elements and 79.1 % for Cr in 1084a NIST. The precision o f the method was < 5% for 

all elements, except for Cr which was 30.9 %. The limits o f detection based on 3 times 

standard deviation o f the blank (10 replicates), were ranging from 0.1 to 0.7 ng g' 1 for 

all elements and 4.8 ng g ' 1 for Cr. The limits o f quantification based on 10 times 

standard deviation o f the blank (10 replicates) ranged between 0.2 to 2.4 ng g' 1 and 16.1 

ng g' 1 for Cr. Satisfactory recoveries were obtained when 2 pg L ' 1 and 10 pg L’1 

multielement spikes were used to test the accuracy o f the developed method. The 

method has proven to be reliable, and can be used in routine analysis in laboratories 

where there is a high throughput o f the sample.
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Chapter 1

1. Introduction

1.1 Occurrences and Importance of Crude Oil and Fractions

Land, sea and air transportation depend almost entirely on products refined from 

crude oil. Refineries convert about three quarters o f the crude oil into transportation 

fuels. Other refined oil products are used to heat homes and buildings, generate 

electricity, and in the manufacture o f lubricants, waxes, plastics, synthetic rubber 

and asphalt.

The crude oil industry provides thousands o f jobs in exploration, production, 

transportation, refining, distribution and marketing. It also supports a variety o f 

technological research and development.

The origin o f crude oil has been the subject o f considerable debate, but it is now 

accepted that it is organic in origin and that the raw material was the bodies o f marine 

organisms together with water-deposited plant life. Oil was formed from the remains 

o f those organisms and plants that lived millions o f years ago in a marine 

environment. Over the years, the remains were covered by layers o f mud. Heat and 

pressure from these layers helped the remains turn into crude oil [1].
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1.2 Classification of Crude Oil

Crude oils in general are complex mixtures containing different hydrocarbons 

associated with very small amounts of nitrogenous substances and variable amounts 

o f organic sulphur compounds. These hydrocarbons may be paraffinic, olefinic, 

naphthenic and aromatic in character [1,2]. Crude oil ranges in consistency from 

water to tar like solids, and in colour from clear to black. An “average” crude oil 

contains about 83.9 % - 86.8  % carbon, 11 % - 14 % hydrogen, 0.06 % - 8.0 % sulfur, 

0.02 % - 1.7 % nitrogen, 0.08 % -1.82 % oxygen, 0.00 % - 0.14 % metals, and salts 

[1].

Relatively simple crude oil assays are used to classify crude oils as paraffinic, 

naphthenic, aromatic or mixed. One assay method (United States Bureau o f Mines) is 

based on distillation, and another method (UOP “k” factor) is based on specific 

gravity and boiling points [1]. Crude oils are also defined in terms o f API (American 

Petroleum Institute) gravity. The higher API gravity is, the lower the specific gravity 

and hence the lighter the crude. The heavier crude oil contains more sulphur which 

makes it more difficult and expensive to turn it into usable refined products. Crude 

oils that contain appreciable quantities o f hydrogen sulphide or other reactive sulphur 

compounds are called “sour”. Those with less sulphur are called “sweet”.

The viscosity o f crude oils varies greatly even with oils from the same district. It 

increases with rise o f specific gravity; the higher value for both being dependent 

mainly upon the presence o f heavier hydrocarbons, but no connection can be traced 

between viscosity and specific gravity, oils o f the same specific gravity varying 

widely in viscosity. Increase o f temperature causes a rapid decrease in the viscosity
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and a rise o f a few degrees will often cause a sluggish oil to flow freely. The pour 

point o f an oil is the lowest temperature at which it will pour or flow readily.

Density is one o f the principle physical properties in classifying crude oils and it is 

defined as the mass per unit volume. Crude oil density is temperature-dependant, 

decreasing as temperature rises. Generally, paraffinic hydrocarbons have low 

densities, naphthenic, and olefinic hydrocarbons intermediate densities, and aromatic 

hydrocarbons high densities. The densities o f crude oils generally lie in the range 0.79 

to 0.95 g/cm3 [1].

1.3 Chemical Composition of Oil

1.3.1 Hydrocarbons

Crude oil is a mixture o f hydrocarbon molecules, containing between 1 to 60 carbon 

atoms. The properties o f the hydrocarbons depend on the number and arrangement of 

the carbon and hydrogen atoms in the molecules. Hydrocarbons containing up to four 

carbon atoms are usually gases, those with 5 to 19 carbon atoms are usually liquids, 

and those with 20 or more are solids. The refining process uses chemicals, catalysts, 

heat, and pressure to separate and combine the basic types o f hydrocarbon molecules 

naturally found in crude oil into groups o f similar molecules. The refining process 

also rearranges their structures and bonding patterns into different hydrocarbon 

molecules and compounds. Therefore it is the type o f hydrocarbon (paraffinic, 

naphthenic, or aromatic) rather than its specific chemical compounds that is 

significant in the refining process.
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1.3.2 N onhydrocarbons

Crude oils contain considerable amount o f organic compounds with structures 

incorporating one or more atoms o f sulphur, nitrogen, or oxygen in addition to carbon 

and hydrogen; and some o f these are associated with metals such as vanadium and 

nickel. Crude oil may also contain relatively minor amounts o f suspended inorganic 

salts (mainly chlorides) and o f dissolved elemental sulphur and hydrogen sulphide.

1.3.2.1 Sulphur Com pounds

Sulphur may be present in crude oil as hydrogen sulphide (H2S), as compounds (e.g.

sulphides, mercaptans, disulphides, thiophenes, etc.) or as elemental sulphur. Each

crude oil has different amounts and types o f sulphur compounds, but as a rule the 

proportion, stability, and complexity o f the compounds are greater in heavier crude- 

oil fractions. Hydrogen sulphide is a primary contributor to corrosion in refinery 

processing units. Other corrosive substances are elemental sulphur and mercaptans. 

Petroleum products containing sulphur compounds produce undesirables such as 

sulphuric acid and sulphur dioxide.

1.3.2.2 Oxygen Com pounds

Oxygen compounds such as phenols, ketones, and carboxylic acids occur in crude 

oils in varying amounts. The total amount o f combined oxygen in crude oils is 

relatively low, ranging from traces to 2 % by weight [1]. Oxygen mainly exists in the 

form o f carboxylic acid in the low and medium boiling range distillate fractions. For 

this reason, and instead o f determining the total oxygen content, the determination of 

the acidity o f the fraction becomes most significant. Consequently, paraffinic crudes 

and their distillate fractions are low in acidity, where as asphaltic crudes like
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Romanian, Venezuelan, Californian contain considerable amounts o f acids ranging 

from 0.6 to 1.0 % by weight or higher [1].

1.3.2.3 Nitrogen Compounds

Organonitrogen compounds are present in traces in the lighter fraction o f crude oil; 

their concentration increases with increasing boiling point and reaches a maximum in 

asphaltic distillation residues. They are relatively stable towards heat and do not 

decompose under refinery conditions, so their presence causes problems. 

Metalloporphyrins are the most important organonitrogen compounds in crude oils. 

Nickel and vanadium porphyrins are commonly the most abundant in crude oil and 

used as geochemical biomarkers because they are fairly ubiquitous in nature. At the 

same time, they cause problems for they poison catalysts used in refinery processes. 

Nitrogen oxides are formed in process furnaces. The decomposition o f nitrogen 

compounds in catalytic cracking and hydrocracking processes forms ammonia and 

cyanides that can cause corrosion.

1.3.2.4 Salts

Crude oils often contain inorganic salts such as sodium, magnesium and calcium 

chloride in suspension or dissolved in entrained water (brine). These salts must be 

removed or neutralized before processing to prevent catalyst poisoning, equipment 

corrosion, and fouling. Salt corrosion is caused by the hydrolysis o f some metal 

chlorides to hydrogen chloride (HCI) and the subsequent formation o f  hydrochloric 

acid when the crude is heated. Hydrogen chloride may also combine with ammonia to 

form ammonium chloride (NH4CI), which causes fouling and corrosion.
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1.3.2.5 Carbon Dioxide

The decomposition o f  bicarbonates present in or added to crude oils, or from the 

steam used in the distillation process, produces carbon dioxide.

1.3.2.6 Trace Metals

Numerous trace elements have been detected in crude oils besides nitrogen, oxygen 

and sulphur. O f the many metals listed (arsenic, barium, calcium, chromium, copper, 

iron, lead, magnesium, manganese, nickel, silver, titanium, vanadium,... etc. ), nickel 

and vanadium are the most abundant. Their concentrations depend on the source of 

the crude oil and can range between < 1 pg g’1 to more than 1300 pg g"1.

They have been used as biomarkers to provide information on the depositional 

environment o f the source rocks, determine the type o f  organic source material, 

estimate sediment or oil maturity, or to correlate crude oils with other oils or potential 

source rocks [3]. The chemical identity o f these geological markers known as 

petroporphyrins, varies between sources depending upon the biological conditions 

inherent to each site. Vanadium / Nickel ratios do not change with the biodegradation 

or weathering o f an oil seep [4,5] therefore each oil contains unique petroporphyrins 

(fingerprint) which link the sample to its geographic origins. Consequently, oils from 

different origins can be easily distinguished. The stability o f these compounds 

enables matching oil spills to their sources even years after the spill occurred [6 ]. 

Nickel and vanadyl porphyrin concentrations vary depending on the source o f the 

crude oil. It is indicated that vanadyl porphyrins are commonly more abundant in 

heavy crude oils and the reverse is generally the case for light crude oils [7].
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Table 1 shows the variation in trace element concentrations even among oils from the 

same basin. West Canada basin was chosen to demonstrate the mean concentration of 

elements in one basin [3].

Table 1. The mean concentration o f some trace elements o f West Canada basin with

their ranges in ppm [3].

Element Mean concentration ppm Range ppm

S % 0.83 0.05-3.9

V 13.6 0.1-177

Ni 9.38 0.1-74.1

Fe 10.8 0.1-254

Co 0.054 0 .0 0 0 2 -2 .0

Cr 0.093 0.005-1.68

Mn 0.01 0.003-3.85

Zn 0.459 0.025-5.92

As 0.111 0.002-1.99

Sb 0.006 0.0001-0.035

Se 0.052 0.003-0.511

Hg 0.051 0.002-0.399

Na 3.62 0.01-64.7

Cl 39.3 0 .1-1010

Br 0.491 0.002-12.5

I 0.719 0.01-9.0
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1.4 Petroleum  Refining O perations

Petroleum refining begins with the distillation, or fractionation, of crude oils into 

separate hydrocarbon groups. The resultant products are directly related to the 

characteristics of the crude oil processed. Most distillation products are further 

converted into more usable products by changing the size and structure of the 

hydrocarbon molecules through cracking, reforming, and other conversion processes. 

These converted products are then subjected to various treatment and separation 

processes such as extraction, hydro treating, and sweetening to remove undesirable 

constituents (e.g. sulphur, hydrogen sulphide, ammonia) and improve product quality. 

Figure 1 shows the distillation units at the Azzawiya oil refinery.

Figure. 1 Distillation Units at the Azzawiya oil refinery [8]

1.4.1 Refining O perations. Petroleum refining processes can be separated into 

four basic areas:

1.4.1.1 Fractionation (distillation): Crude oil is separated in atmospheric and 

vacuum distillation towers into groups of hydrocarbon compounds of 

different boiling-point ranges called "fractions" (Figure 2).
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Figure. 2 Diagram showing the fractional distillation process and the refinery 

products at given temperatures [9].
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1.4.1.2 Conversion processes change the size and /or structure of 

hydrocarbon molecules. These processes include:

• Decomposition (dividing) by thermal and catalytic cracking 

to augment the yield o f gasoline.

• Unification (combining) through alkylation and 

polymerization such as the use o f polymerization o f olefins 

which is effective in the production o f iso-paraffins o f high 

knock-rating by which the gasoline is characterized.

• A lteration (rearranging) with isomerization and catalytic 

reforming that converting straight chains to branches such 

as converting butane or pentane to isobutane or isopentane.

1.4.1.3 T reatm ent. This process prepares the hydrocarbon stream for 

additional processing and to prepare finished product. It includes the 

removal or separation o f aromatics and naphthenes as well as 

impurities and undesirable contaminants such as H2O, salts and 

sulphur compounds.

1.4.1.4 Form ulating and Blending. In this process hydrocarbon fractions, 

additives, and other components are mixed and combined to produce 

finished products.

1.4.2 M ajo r Refinery Products

The major refinery products are liquified petroleum gas (LPG), gasoline, kerosene, 

diesel oil, petrochemicals and lubricants, fuel oil and residue.
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1.5 Elemental Determinations by Atomic Spectrometry •

Information on trace element concentrations in crude oil is very important for the 

geochemical characterization o f source rocks and basins and for corrective actions 

during oil production and refining (e.g. prevention o f scale formation and catalyst 

poisoning, corrosion and pollution control) [3,10,11].

Trace metals occur in crude oil partly as organometallic compounds from which the 

geoporphyrins o f V, Ni, Cu, and Zn have been identified [12-15]. Iron, Sr and Mn 

contamination could have entered the oil during migration or as pollutants during oil 

extraction. The elements Mo and Cr are o f biological origin [13].

There are three major types o f spectrometric methods for identifying the elements 

present in samples o f matter and determining their concentrations; optical 

spectrometry, mass spectrometry, and X-ray spectrometry [16].

Atomic spectrometric techniques have been used to determine trace elements, among 

which are flame atomic absorption spectrometry (FAAS), electrothermal atomization 

in graphite furnace (ETAAS), inductively coupled plasma-optical emission 

spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP- 

MS). FAAS is a well established and accessible technique, less prone to spectral 

interferences in comparison to ICP-OES and ICP-MS, however, the detection limit is 

still poor for a series o f elements for many applications in crude oil such as As, Sb, 

Se, Hg and Sn [11,17]. Electrothermal atomization in a graphite furnace (ETAAS) 

and Vapor generation techniques (VG) overcome the sensitivity limitations o f FAAS. 

Amorim et al. [18] reported that oil samples might be analyzed directly by ETAAS if  

low-temperature losses o f volatile compounds such as vanadium compounds are
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avoided.

The behaviour o f various organic solvents and analytes in ETAAS has been studied 

by Tserovesky and Arpadjan [19] who found that a high charring temperature is 

necessary to reduce the nonspecific absorbance. For the influence o f the complexing 

agent, they reported it is insignificant while the effect o f the nature o f the solvent is 

more pronounced for toluene and xylene in comparison with IBMK and BA.

A Perkin-Elmer HGA-700 graphite furnace was used, with tungsten impregnated 

graphite tube and using Pd as the chemical modifier in the organic medium. 

Analyzing crude oil directly using little or no sample preparation is most suitable for 

graphite furnace atomic absorption spectrometry although the organic sulphur content 

in heavy oils may influence the determination o f vanadium [2 0 ].

Compared to AAS, ICP-OES offers a wider linear dynamic range, and several 

elements can be determined simultaneously. This property is very important for the 

multielement analysis o f very small samples [16,18,21]. The high viscosity of 

petroleum and many o f its derivatives and the flammability o f the lighter fractions 

make it very difficult to analyse these samples directly by ICP-OES or ICP-MS 

[11,18,21,22]. As a result, the aspiration o f organic liquids into the plasma normally 

requires additional equipment or sample pretreatment in order to maintain plasma 

stability, reduce carbon build up and minimize background interferences. 

Electrothermal vaporization (ETV) [18], ultrasonic nebulization (USN) [23] or 

introduction o f oxygen to the plasma [2 1 ], have been used when introducing crude oil 

or its derivatives to the plasma in order to reduce molecular band emissions and 

prevent carbon build up.

12



Despite the spectral interferences and the high cost o f ICP-MS, it is considered to be 

an attractive technique for the determination o f trace element concentrations in 

several organic materials in the petroleum industry, because o f  its multielement 

capability and low detection limits. ICP-MS detection limits are in the sub parts per 

billion range [24] and its ability to measure isotopic ratio is o f particular importance 

[25,26].

Multiple calibration curves are often employed in multielemental techniques such as 

ICP-OES and ICP-MS to cover the wide range o f metal concentration in crude oils, 

from below ng g' 1 to hundreds o f pg g' 1 [11]. The standard addition method is 

recommended for the complex matrices in order to get reliable results [10,23] and the 

use o f internal standardization is essentially for instrumental drift correction and also 

to account for differences between blanks, calibration standards and samples.

1.6 Sample Pretreatment and Preparation

Sample preparation is the critical step o f any analytical protocol, and involves steps 

from simple dilution to partial or total digestion. Most methods based on atomic 

spectrometric techniques require sample pre-treatment in order to make them 

compatible with the employed instrumentation, and also allow easy and efficient 

calibration procedures to be used. A variety o f procedures have been used that are 

aimed at matrix simplification.
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Ashing o f the crude oil followed by dissolution o f the ash in mineral acids has been 

used [27]. An investigation o f some of the steps involved in the ashing procedures 

was studied by Karchmer and Gunn [28] who revealed that unless care is taken, this 

method may lead to low results due to the stratification o f the sample in the crucible, 

and the loss o f volatiles such as lead and zinc halides, vanadyl and chromyl 

compounds. Although this procedure is still largely employed in industry, it is time 

consuming and could be unsafe because o f the release o f toxic vapours due to the low 

flash point o f petroleum.

Alternatively, wet digestion o f the oil samples ensures that the organic matrix is 

mineralized and the total metal content is converted to simple water soluble species. 

Wet digestion procedures for oil samples can be performed in closed or open vessels, 

using thermal energy or microwave radiation [29-32]. In the closed vessels, risk of 

contamination from airborne particulates is reduced, but in both cases, problems arise 

due to trace contamination from used digestion vessels and from the relatively large 

volume o f mineralizing acids used (especially in the open vessel procedure). The risk 

o f explosion still remains when using microwave digestion in closed vessels. 

Extraction with acids is an applicable procedure but not with heavy petroleum 

products containing high levels o f asphaltenes, and for volatile gasoline that have 

very high vapour pressure [11,29], Acid extraction using ultrasound-assisted 

digestion in which crude oil was treated with concentrated nitric acid and heated at 85 

°C for 30 min has been proposed. The obtained mixture was placed in an ultrasonic 

bath for 15 min and then was aspirated directly into an ICP-OES instrument. 

Satisfactory recoveries were achieved for standard reference materials used to
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validate the method [21,33].

Dilution o f crude oil with organic solvents {e.g. MIBK, kerosene, xy lene, etc) [11,

27,32,34,35] is by far the most studied and used direct introduction technique for ICP 

instruments [11,36], because it reduces sample preparation time, decreases analyte 

losses and reduces sample contamination [20]. However, other difficulties arise from 

the wide range o f densities, viscosities, flammability and the increased care required 

for safe disposal. In addition, the increased solvent plasma load (SPL) is a critical 

problem that has been identified. The solvent load can cause instability and extinction 

o f the plasma. Furthermore, the background levels due to carbon build-up [11] are 

increased necessitating the introduction o f oxygen to the plasma to reduce molecular 

band emissions and prevent carbon build-up. Desolvation devices such as ultrasonic 

nebulizers (USN) [11,21,23] have been used to reduce the amount o f solvent 

introduced into the plasma.

A multi-element optimization o f the operating parameters for simultaneous ICP-OES 

with a charge injection device detector for the analysis o f samples dissolved in 

organic solvents was carried out by Chirinos et al. [37]. They found that the nebulizer 

pressure is the factor that must be carefully optimized when using a volatile organic 

solvent.

Emulsification o f the sample with surfactant agents and water forming oil-in-water 

emulsions is an alternative that offers the possibility o f  circumventing the problem 

identified above. This approach does not require the destruction o f  the organic matter 

or the use o f large amounts o f organic solvents. The use o f emulsions can reduce the
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organic content o f the sample solution down to 5% w/w. When the oil is evenly 

dispersed in the water phase, the sample behaves similarly to an aqueous solution.

1.7 Emulsion

An emulsion is a heterogeneous system o f two liquid phases, one o f which is 

dispersed as microdroplets throughout the other by mechanical agitation [38]. Since 

the resulting system has no or little stability, a surfactant is added to make the liquids 

more compatible and facilitates the emulsification and often promotes stabilization of 

the mixture [39].

Surfactants are usually organic compounds that are amphiphilic. That means; they 

contain both hydrophobic and hydrophilic groups. The head is the hydrophilic, water 

soluble part whilst the tail is the hydrophobic, water insoluble part . Since they are 

soluble in both organic solvents and water, they reduce the surface tension at the 

interface between the oil and water molecules and stabilize the emulsion.

The hydrophobic part o f the surfactant is a hydrocarbon chain in either aliphatic or 

aromatic form or a mixture o f both while the hydrophilic part is the part by which the 

surfactant is classified as anionic, cationic, nonionic or ampholytic which can behave 

as either anionic, cationic or nonionic [40 ]. An example o f a surfactant is sodium 

dodecylsulphate ( SDS):

CH3-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-S04'Na+

Hydrophobic Hydrophilic
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Nonionic surfactants are the most commonly used in oil-in-water microemulsions 

because they are compatible with the other types o f surfactant and their properties are 

little affected by pH.

The amphiphilic nature o f the nonionic surfactant is expressed in terms o f the balance 

between the hydrophilic and hydrophobic parts o f the molecule (hydrophile-lipophile 

balance (HLB) number) and can be used to characterize the affinity o f  surfactants for 

aqueous and organic phases. A high HLB number generally indicates good surfactant 

solubility in water, while a low HLB number indicates a lower aqueous solubility and 

higher relative affinity for the organic phase [40].

The water soluble part o f nonionic surfactants can be hydroxyl groups or 

polyoxyethylene chains. There are polyoxyethylated nonylphenols with a wide range 

o f oxyethylene chain lengths from 1.5 to 100. Surfactants with low oxyethylene chain 

lengths are water insoluble and are water-in-oil emulsifying agents, while longer 

oxyethylene chain lengths are water soluble and produce oil-in-water emulsions. 

Polyoxyethylated t-octylphenols are available as the Triton-X series which includes 

X-114 (E7-8), X-100 (E9-10) and X-102 (E12-13). Surfactants with hydrophile-lipophile 

balance (HLB) values between 8 and 18 tend to form oil-in-water emulsions [24,41]. 

Therefore Triton X-100 (HLB = 13.5) has been successfully employed in the 

formation o f emulsions in petroleum oils. Figure 3 shows surfactants surround water 

droplets and the polar-hydrophilic end is in the aqueous phase while the hydrophobic 

end is in the oil phase [42].
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Surfactant
polar end

hydrophobic end

particu lates

Figure. 3 Schematic for a water-in-oil emulsions. It shows a water droplet dispersed 

in oil with the hydrophilic end o f the surfactant in the aqueous phase while the 

hydrophobic end is in the oil phase [42].
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In the early eighties, Polo-Dies et a l  [43] proposed a method for the determination of 

lead in gasoline by FAAS using an emulsion. They recommended mixing 1ml of 

gasoline with 20 ml o f water and 5 drops o f emulsifier with HLB 13.5 and shaking 

vigorously to form an emulsion which was then introduced directly into the flame. 

The results showed the applicability o f the procedure and the sensitivity o f the 

absorption signals was about 15 times higher than those from aqueous solutions. De 

la Guardia and Sanches [44] reported a method for the determination o f manganese in 

gasoline by FAAS using an emulsion in which 10 ml o f the sample was mixed with a 

sufficient amount o f (1:1) B^.CCU solution. After evaporation o f the excess amount 

o f bromine, 4ml o f emulsogen and a small amount o f water were added with stirring 

until a clear solution was obtained. This method gave good results when compared 

with a colorimetric method. However, care had to be taken because the reaction was 

exothermic. V, Ni, Fe, Mg and Na determination was investigated by Platteau and 

Carrillo [45] using FAAS. Highly stable crude oil emulsions were prepared by mixing 

3g o f homogenized crude oil, 15 ml o f ethyl alcohol and 0.3g o f linear alkylbenzene 

sulfonic acid (10 wt%). The homogenized mixture then was subject to a dry ashing 

procedure (ignition, burning in muffle furnace at 550 ± 5°C, dissolving the ash with 

acids). The method was shown to be reliable and accurate but at the same time it was 

time consuming. In addition, changes in V and Na signals due to the ionization effect 

for V in a nitrous oxide-acetylene flame and for Na in the air-acetylene flame 

required the addition o f ionization suppressants. For Na, 2000 mg L' 1 K was added to 

the standards and samples, while Al was used to suppress the ionization effect for V.
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Aucelio and Curtius [17] determined the concentrations o f As, Se and Sb in gasoline 

and kerosene by ETAAS using two sample preparation procedures. The first 

procedure involved the formation o f a detergentless microemulsion by mixing an 

appropriate amount o f the sample with water and propan-l-ol; (10:25:65) v/v/v for 

gasoline and (10:15:75) v/v/v for kerosene and 1 ml o f concentrated nitric acid in a 10 

ml volumetric flask. In the second procedure, a surfactant microemulsion was 

prepared in which 10 % of the sample was mixed with lm L concentrated nitric acid 

and the mixture was sonicated for 5 min, then 4% v/v non-ionic surfactant (Triton X- 

100) was added. Mechanical agitation was used in both procedures. The preparation 

o f oil samples as surfactant microemulsions were found to be the most appropriate, 

although they were stable for only 10 min. However, direct correlation between 

analyte signals in the sample and in an aqueous standard were found to be 

satisfactory.

Silva et a l  [46] described a method for the determination o f lead and copper in 

kerosene by ETAAS. A three- component solution was prepared from kerosene, 

propan-l-ol and 0.2 % nitric acid (5:11:2 ml respectively). This three component 

solution provided adequate stability (24 h) which made it possible to determine both 

elements in the presence o f Pd as modifier. Burguera et a l  [47] developed a 

procedure to form an on-line emulsification o f lubricating oils to determine chromium 

by a flow injection system and ETAAS. The surfactant used for this study was 

sodium dodecylsulphate (SDS) with an HBL of 40.0 and hexane as co-solvent. It was 

considered that the addition o f any modifier would bring no further advantage. The 

results were precise and the recovery values were between 99.2 to 102.2%.
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Aucelio and Curtius [32] described the determination o f silver by ETAAS in used 

lubricating oils. In a 10 ml volumetric flask, 0.2 g o f the sample and 0.5 ml 

concentrated HNO3 were mixed and sonicated for 5 min. A volume o f 0.5 ml of 

xylene was added with 0.4 ml of Triton X-100. Water was added dropwise with 

continual agitation. In this study, a comparison was made o f the three methods; 

dilution with organic solvent, acid digestion and the formation o f emulsion. The latter 

was found to be the most effective, although it was stable for only 30 min. The same 

authors with Welz [48] applied the previous procedure to determine Sb and Sn in 

used lubricating oil by ETAAS with aqueous calibration. The accuracy and 

repeatability o f the method was verified by using two standard reference materials 

(SRM 1084a and SRM 1085a). Ru was used as a modifier for both elements and 

results showed good correlation between absorbance signals for spiked emulsions and 

aqueous standards.

A three component system (gasoline-ethanol-water) was prepared by Ozcan and 

Akman [49] to determine Cu, Co and Pb in gasoline by ETAAS using an aqueous 

standard addition method. 1 ml o f gasoline was mixed with 2.5 ml o f water and 0.5 

ml o f concentrated HNO3 followed by the addition o f standard solution then 

completion to 10 ml with 96% ethanol. It was reported that the addition o f nitric acid 

to the three component system is required in order to attain accurate determination of 

the analytes. Results were verified by microwave digestion using HN0 3 , where it was 

found that there was no significant difference between the two methods. Matos Reyes 

and Campos [50] developed a method for the determination o f Ni and Pb in diesel 

and gasoline samples stabilized as a microemulsion, using graphite furnace atomic
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absorption spectrometry. Long term sample stabilization was obtained by mixing 3.3 

ml o f the sample with 6.5 ml propan-l-ol and 0.1 ml o f 50 % v/v HNO3. A 

transparent microemulsion was attained which was stable for more than 15 days. 

Aqueous modifiers such as Pd and Mg showed good performance for Pb 

measurement.

The determination o f trace metals in lubricating oils using atomic spectrometric 

techniques has been reviewed by Aucelio et a l  [51] highlighting problems related to 

sample pretreatment and calibration, as well as strategies to overcome them. 

Aluminum was determined by Burguera et a l  [52] in lubricating oils emulsified in 

a sequential injection analysis system by ETAAS. 0.5 ml o f the sample was mixed 

with 1 ml o f sec-butanol solution and 1 ml o f the surfactant mixture then they were 

subjected to 5 sequences during which standard addition was used in order to study 

the matrix interference on the aluminum absorbance. No significant difference was 

found when compared with that obtained from a single calibration curve.

Inductively coupled plasma optical emission spectrometry has been used successfully 

for the determination o f trace elements in crude oil and its derivatives. ICP-OES was 

used by Souza et a l  [53] for the determination o f Ni, Mo, Cr, V, and Ti in used 

lubricating oil. 0.2 ml o f sample was acidified using 0.5 ml concentrated HNO3 then 

emulsified by adding 0.5 ml xylene as co-solvent and 0.6 ml Triton X-100 as 

surfactant. An inorganic standard was used for calibration and three different certified 

lubricating oils were analyzed. Although the emulsion was stable for only 40 min, 

good accuracy was achieved for Ni, Mo, V and Ti while for Cr the recovery was 

slightly worse, however such behaviour for Cr is not unusual in oil samples
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[53,55,56].

A procedure to prepare crude oil samples as detergentless microemulsions to 

determine Mo, Zn, Cd, Ti, Ni, V, Fe, Mn, Cr and Co by ICP-OES was demonstrated 

by Souza et al. [54]. The composition o f the microemulsions was 0.6 g o f crude oil 

(previously dissolved in 0.5 ml o f xylene) mixed with 0.4 ml o f concentrated nitric 

acid. Then propan-l-ol and water were added in an alternate way (1.1 ml o f propan-l- 

ol followed by 0.25 ml o f  water) until a final mass o f 10 g was attained. Oxygen was 

used in the nebulizer gas flow in order to minimize carbon building up and 

background. Standard reference material (SRM 1634c) was used to verify the 

accuracy o f the method and the recoveries were between 97.9% and 103.8%. Souza et 

al. [55] also compared two sample emulsification procedures (Triton X-100 emulsion 

and detergentless emulsions) for the determination o f Mo, Cr, V and Ti in diesel and 

fuel oil by ICP-OES. For detergentless emulsions, 2.5 g o f the sample was acidified 

with 0.5 ml o f concentrated nitric acid and mixed with 6  ml o f propan-l-ol. Water 

was used as a complement o f these compositions. For detergent emulsion, 1.5 g o f the 

sample previously dissolved in xylene was placed in a 10 ml volumetric flask with 

0.5 ml o f concentrated nitric acid. The mixture was placed in an ultrasonic path for 5 

min, then 0.3 ml o f Triton X-100 was added followed by water. The whole 

compositions were sonicated for 5 min after vigorous shaking for 2 min. In the two 

cases (Triton X-100 emulsion and detergentless emulsions), milky homogeneous 

emulsions were achieved which separated shortly into two phases that could be 

readily reconstituted after manual shaking. Good recoveries and better results were 

obtained for detergent emulsions with concentrated nitric acid, with limits of
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detection at the ng g' 1 level. Oxygen was used as auxiliary gas flow to minimize 

carbon buildup and plasma background.

Not only crude oil and its derivatives were studied using the emulsification procedure 

but vegetable oils, margarine and butter were investigated as well by Souza et al. 

[56]. ICP-OES was used for determination o f six elements (Cd, Co, Cr, Cu, Ni and 

Mn) in olive oil, soy oil, margarine and butter which were prepared using two 

procedures (detergent and detergentless emulsions). In order to prepare detergent 

emulsions in a 10 ml volumetric flask, 0.2 g o f the sample, 0.5 ml o f concentrated 

HNO3 with an amount between 0.1 and 2 g o f Triton X-100 were added. It was 

reported that the Triton X-100 emulsion for soy and olive oils gave very short 

stabilities (less than 3 min). While for margarine and butter, even when the samples 

were previously dissolved in 0.5 ml of xylene, Triton X-100 emulsions were not 

formed. The second procedure described by Souza involved the formation o f 

detergentless emulsions by weighing an amount between 0.1 and 1 g o f the sample 

into a 10 ml volumetric flask with 7 g o f propan-l-ol and 0.5 ml o f HNO3. Margarine 

and butter were dissolved in 0.5 ml o f xylene before any addition. After vigorous 

shaking the emulsions remained stable for a few hours. Good sensitivities with limits 

o f detection in the ng g' 1 range were achieved for the detergentless emulsions.

As some elements are found in the oil at very low concentration levels, inductively 

coupled plasma mass spectrometry could be a remarkable alternative, because o f its 

high sensitivity and simultaneous detection that can be carried out easily and rapidly. 

A new approach for introducing crude oil directly into ICP-MS by forming a 

microemulsion using tetralin and Triton X-100 was described by Lord [24]. About
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0.5 g o f crude oil with an equivalent amount o f tetralin were weighed in a tared 60-ml 

glass bottle and the contents were mixed until a homogeneous mixture was achieved. 

Then 1 g o f Triton X-100 was added and the mixture was mechanically agitated until 

reaching homogeneity. De-ionized water was added gradually with continual 

agitation until a final mass o f 50 g was attained. The author reported the formation of 

a very stable emulsion with no phase separation even after several months o f storage. 

Accuracy was verified by analyzing two standard reference materials (NBS 1634b 

and NBS 1085), and the results obtained were in good agreement with the certified 

values.

Al-Swaidan [10] provided a new automated technique for trace elements analysis by 

sequential injection analysis /  inductively coupled plasma-mass spectrometry using an 

emulsion o f crude oil. 0.5 g o f oil was mixed with 1.5 ml o f tetralin, 0.5 ml o f Triton 

X-100 and 5 ml o f 40 % nitric acid with graduate addition o f water until 50 ml of 

homogenized solution was obtained. The sequential injection system easily 

introduces the samples to the ICP-MS. This technique enabled good results for Pb 

and Ni, while low concentration for V was obtained due to its background.

Al-Swaidan [57] also studied the determination of vanadium and nickel in some 

Saudi Arabian crude oils and petroleum products (aviation turbine oil, gasoline and 

diesel fuel oil) by ICP-MS using the previous technique described by Lord [24] and 

the concentrations were measured using a standard addition method. Reasonable 

detection limits were obtained and the recoveries o f added metals were between 98 - 

103 %.
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This technique was successfully applied on light fractions o f crude oil as well. V, Co, 

Ni, As, Hg and Pb were determined in naphtha by ICP-MS using Triton X-100 to 

form an emulsion without the addition o f a co-solvent. Kumar and Gangadharan [22] 

mixed 2 ml o f  naphtha with 1ml o f 2.5 % solution o f Triton X-100 in a capped 5 ml 

container, with stirring with a magnetic stirrer for 20 min. Immediately after 

emulsification the solution was introduced into the ICP-MS. The recovery for Ni and 

Pb was close to the added value, for V was 60% and almost no recovery was attained 

for Hg and As when adding aqueous standard solutions to the emulsion. They 

recommended not to use an aqueous standard for calibration for analyzing emulsified 

naphtha. Saint’Pierre et al. [38] treated gasoline with concentrated HNO3 and Triton 

X-100 to form an emulsion to determine Cu, Mn, Ni, and Sn by electrothermal 

vaporization ETV ICP-MS. They used the procedure described by Aucelio and 

Curtius [17]. They reported that this emulsion was stable for only few minutes and 

they recommended pre-concentrating the emulsion by repeated pipetting and drying. 

Gasoline was emulsified using tetralin and Triton X-100 by Heilmann et al. [58] to 

determine sulphur by Isotope Dilution ICP-MS. They used the procedure described 

by Lord [24] and they reported that the use o f transparent microemulsions is a 

necessary precondition for precise and accurate sulphur analysis in gasoline and 

related fuel samples. A satisfactory accuracy was obtained by analyzing two different 

certified gas oil reference materials using the proposed procedure and comparing the 

recovery with those obtained by microwave assisted digestion.

Castillo et al. [59] described a simple method for a semiquantitative simultaneous 

determination o f various metals in olive oil using direct emulsion nebulization with



ICP-MS. Approximately 2 g of oil was mixed with 1.5 ml of Triton X-100 and 

stirred mechanically and the homogenized mixture had a final weight of 50 g. In 

order to get a stable emulsion, the addition of HNO3 was not recommended. Results 

from spike and recovery experiments at the level of 100 and 200 ng mL"1 were 93 -  

136 % for all elements (Ba, Cd, Co, Cr, Cu, Ge, Mn, Ni, TI, Pb, U and V) except for 

Zr which was found to range between 73.8 -  76.2 % . The detection limits were 

found to be suitable for very low concentrations of metals in olive oil.

1.8 Inductively Coupled Plasm a-M ass Spectrom etry (ICP-MS)

ICP-MS is a fast, precise and accurate multi-element analytical technique for the 

simultaneous determination of trace elements in liquid and solid samples. Nearly all 

the elements in the periodic table can be analyzed by ICP-MS. The analytical range 

extends from ppt (pg g"1) to ppm (pg g’1). ICP-MS consists of the following 

components:

sample introduction system, excitation source, ion transport system, mass separation 

device, detector and data processing (Figure 4).

Sample Introduction 
and Aerosol 
Generation

M ass discriminator 
and Detector

Ionization by 
Argon Plasma

Data Analysisn
Figure. 4 Schematic of the main components and processes of an ICP-MS [60]
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The samples are introduced into the plasma in the form of an aerosol by a nebulizer. 

There are a variety of nebulizers that can be used to produce such sample aerosols 

and the one used in this study was the Babington nebulizer. The nebulizer is 

connected to a spray chamber by which larger aerosol droplets are removed from the 

gas stream and the remaining smaller droplets are passed into the central channel of 

the argon plasma (Figure 5).

Sample solution

Ar carrier gas

Nebulizer 
(high solids type)

Small droplets to ICP

Aerosol

Sample drain

Large 
droplets 
to waste

Figure. 5 Schematic diagram of an ICP-MS spray chamber [61]
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The plasma is generated in a quartz torch, which consists of three concentric quartz 

tubes. The outer quartz tube introduces the auxiliary gas flow to the inner annular 

space. A flow of Ar gas carries the sample aerosol to the plasma through the central 

tube. The plasma is generated by applying a spark from a Tesla coil on the argon gas 

passing through the central tube of the quartz torch. The spark generates free 

electrons and ions which are coupled to the magnetic field formed as a result of the 

radio frequency current passing through the cooled copper coil placed around the 

torch (Figure 6 ). Temperatures in the plasma range from 6000 to 10,000 K. Once the 

aerosol droplets are introduced to the high temperature plasma, they are vaporized, 

atomized, then ionized [62].

rapid oscillation o f /  
electrons ->  HEAT (

Radio frequency v o lta g e  in d u ces  
oscillation o f Ar ions and 

- 1 0 , 0 0 0  K)

Plasma gas

Quartz "torch" m ade  
of concen tric  tub es

Auxiliary or 
coolan t gas

Carrier or 
injector or 
nebulizer gas

RF load coil

Sam p le a eroso l is carried 
through cen ter of plasm a ->  
dried, d issociated , atom ized, 
ionized - 6 5 0 0  K.

Figure. 6 ICP-MS plasma torch [61]
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The produced ions are transferred to the mass spectrometer by an ion transport system 

that consists of the interface region and the ion lens system that perform the 

separation of the ions from the photons and residual neutral material. The ions in the 

centre of the plasma are sampled into the quadrupole mass spectrometer through the 

interface region that consists of two successive Ni cones with 1mm diameter. The 

first extraction of the ions is through the orifice of the sample cone into the region 

between the two cones where the pressure is about 1-3 torr by rotary vacuum pump. 

Further extraction for the ion beam is through the orifice of the skimmer cone into the 

ion lens system in the front part of the mass spectrometer where the pressure is about 

(10° - 10'4 torr) by turbo molecular vacuum pump. The positively charged ion lens 

extracts the positive ions from a matrix of neutral species and focuses the ion beam 

into the mass spectrometer (Figure 7).

Skimr
cone

Figure. 7 Schematic of an ICP-MS sampling and skimmer cones with the extraction

lenses [61]
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The most commonly used mass separation device in ICP-MS is a quadrupole mass 

spectrometer which acts as a mass filter that separates ions according to their 

mass/charge ratio. The separated ions pass through the mass spectrometer to the 

detector to be measured. Ion signals are measured with an electron multiplier, which 

has its inside walls covered with a metal oxide. A negative voltage is applied to the 

multiplier to attract the positive ions. When the ions get in contact with the metal 

oxide wall they eject further electrons. These secondary electrons, which are 

accelerated down the tube by the potential gradient, hit another section o f the coating 

and more secondary electrons are emitted. This process is repeated many times, so 

that in the end one ion collision leads to about 108 electrons. The multiplier can be 

operated in the pulse count or in the analogue mode depending on the concentration 

o f the analytes being measured. In the pulse count mode the negative voltage applied 

is higher and more secondary electrons are produced. The electrons are detected as a 

single pulse. This mode is used for concentrations ranging from the detection limit up 

to 1 mg L '1. The analogue mode (one ion collision leads to about 104 electrons) is 

suitable for concentrations between 1 and 100 mg L’1. In this mode the multiplier 

does not become saturated. The ion intensity is converted to a pulse counting signal. 

The signal is measured as a current which is subsequently converted into counts per 

seconds (cps).
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1.8.1 Instrument Optimization and Tuning

The stability o f the signal intensity provided by ICP-MS instruments depends on the 

plasma operating conditions. Instrument optimization involves maximizing the 

signal-to-noise ratio (usually for the middle o f the mass range isotope such as 103Rh) 

by finding the optimal nebulizer gas flow rate, ion lens voltages and RF power. At the 

same time, care must be taken to minimize the production o f doubly charged ions 

(increases with decreasing nebulizer gas flow and also depends on the position of the 

plasma relative to the interface cones) and o f molecular ions such as oxides 

(decreases with decreasing nebulizer gas flow and also depends on the position of the 

plasma relative to the interface cones).

1.8.2 Interferences

A few interferences do occur in ICP-MS, but these are generally predictable and can 

often be corrected for or may be minimized by optimizing instrument operating 

conditions. Three types o f interferences can occur in ICP-MS measurements:

1.8.2.1 Isobaric Interferences

co co 9 f.A #
They occur for equal mass isotopes of different elements (e.g. Fe on Ni Ni on 

64Zn 48Ca on 48Ti) and these are best avoided by choosing alternative isotopes.

1.8.2.2 Molecular (or Polyatomic) Interferences

They occur due to the recombination of sample and matrix ions with Ar or other

matrix components (e.g. O, N, C l , .........etc) in the cooler region o f the plasma.

(e.g. 40A rl6O on 56Fe 47Ti160  on 63Cu 40Ar35Cl on 75As 40Ar2 o n 80Se)

They can be avoided using alternative analyte isotopes or by applying correction 

factors determined by analyzing interference solutions. They can also be reduced or
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eliminated by using more appropriate sample introduction systems such as ultrasonic 

nebulization (USN) and electrothermal vaporization (ETV) or optimizing instrument 

operating conditions.

1.8.2.3 Doubly- Charged Ion Interferences

They occur due to relatively rare doubly-charged matrix or sample ions with twice the 

mass o f the analyte and hence the same mass/charge ratio (e.g. 90Zr++ on 45Sc+). It can 

generally be minimized by optimizing instrument operating conditions.

The volatile compounds are enriched in the aerosol/vapor stream that enters the 

plasma, due to their higher vapor pressure. The presence o f those volatile organic 

compounds in a crude oil sample will cause signal enhancement thus increasing the 

polyatomic ion background [24]. The determination o f some elements such as V, Cr 

and Fe by ICP-MS is known to suffer from the polyatomic isobaric interferences on 

51V caused by 34S 16OH+, on 56Fe caused by 40Ar 160 + and on 52Cr caused by 

40A r12C+and 35C1160 + [63]. The deposited carbon on the cooler surfaces o f the sample 

skimmer cone and ion lenses o f ICP-MS, affects the transport efficiencies o f ions and 

also carbon-argon species cause polyatomic interferences, which affect the 

determination o f Mg, Cr and some other elements [23,64,65]. Table 2 depicts some 

important interferences in quadropole ICP-MS that are expected from organic crude 

oil matrices.
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Table 2. Interferences from organic crude oil that may occur in quadrupole ICP-MS. 

Isotopic abundances quoted in brackets [23]

Measured Isotope % Principle Interferences

“ Al (100) u C ‘4N ;“ C ,4NH

Mg (78.7);2<>Mg (11.17) “ C “ C ;UC 'JC

44Ca (2.06) “ C 160 l60

4/Ti (7.28) “ S,/0 ; 3(>A r“ C

“ Cr (83.79);“ Cr (9.55) 4UA r“ C;4UA r,4C

“ Fe (2.19) 4UA r,/0

0UNi (26.23); “ Ni (3.66) Jt,A r“ C “ C;J0A r,3C 13C;J5A r“ Cu C

6JC u(69.17);"C u (30.91) 4UA r^N a;“ S33S;“ S‘0O l/O;“ S 't,O2H

00Zn (27.81) 4UA r'3C '3C;33S33S;34S33S

1.8.3. M atrix  Effects

Clogging o f the orifices in either or both o f the interface cones may be a problem 

when samples with high total dissolved solid (TDS) contents or oil samples are 

analyzed. The problem may be overcome by sample dilution or using an 

alternative sample introduction system (e.g. Ultrasonic nebulizer with a 

desolvation unit).
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1.9 Reliable Measurements

1.9.1 Method Validation

Method Validation is the process o f proving that an analytical method is acceptable 

for its anticipated purpose and it has a direct impact on the quality o f the analytical 

data. In general, methods for regulatory submission most include studies on 

specificity, linearity, accuracy, precision, detection limit and quantification limit.

1.9.1.1 Specificity & selectivity

It is the ability o f the method to accurately measure the analyte response in the 

presence o f all potential sample components [6 6 ]. Therefore, in order to select a 

method for a particular analysis, we should take into consideration its ability to give 

accurate and precise results free of interferences and matrix effects especially in 

crude oil samples that contain high levels o f organic compounds. For example, when 

selecting a method to analyze crude oil samples, there are some important points that 

should be focused on, such as: the volatiles content o f the crude that may be lost 

during some steps in sample preparation techniques, the stability o f the analytes of 

interest in the specimen solution and choosing the right technique that is most suitable 

to measure the concentration o f the analytes in the sample accurately, precisely and 

with no interferences.

1.9.1.2 Accuracy or Bias

It is the closeness o f the measured value to the true value for the sample. Accuracy is 

usually determined in one of four ways. First, accuracy can be assessed by analyzing 

a CRM and comparing the obtained result to the certified value. The second approach 

is to compare test results from the new method with results from an existing accurate
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method. The third approach is a recovery study, which is performed by spiking 

analyte in blank matrices. The fourth approach is the standard addition technique, 

which can also be used to determine the recovery o f spiked analyte

1.9.1.3 Precision

Precision is the closeness o f the measured values to each other. An instrument 

precision study is performed by analyzing one sample solution 10 times to test the 

performance o f the instrument by SD or RSD.

1.9.1.4 Limit o f Detection (LOD)

It is the smallest concentration o f analyte which can meaningfully be detected. It is 

also defined as 3*SD° where SD°is the standard deviation o f the blank.

1.9.1.5 Limit of Quantification (LOQ)

It is the lowest amount o f analyte in a sample which can be quantitatively determined. 

It is also defined as 1 0 *S D o  where SD°is the standard deviation o f the blank.
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1.10 Characterisation o f Libyan Crude Oils

Giant oil fields were discovered in Libya from 1956 to 1961. Libya started exporting 

oil in 1961 and by 1966 it was the 7th largest oil-producing nation in the world. The 

extraordinary discoveries in the Sirt basin, where 19 o f 21 giant fields were located 

with recoverable reserves of 40 billion barrels o f oil (bbl) [67], attracted the 

international exploration companies all around the world to make further discoveries 

in Libya.

Aside from the Sirt basin, there are other onshore explorations, including areas in the 

Ghadames and Murzuq basins plus other explored areas such as Kufra (in the 

southeastern desert) and Crenaica-Botnan (near the Egyptian border) (Figure 8). 

Ghadames is Libya's second-most explored basin, and is linked geologically with oil 

and gas structures in Algeria and Tunisia. Murzuq has been a successful area for oil 

and gas exploration in recent years, with new fields including the El-Sharara and NC- 

174 (Elephant) fields [67].

There are also major discoveries in the Mediterranean at the north west o f Libya 

where the offshore oil fields El- Bouri and Al-Jurf are found.

In this study, three Libyan crude oils were selected from different basins to determine 

the trace elements using microemulsion as a sample introduction technique into the 

plasma, for ICP-MS analysis. The characterizations o f the selected oils are as follows:

a) El-Bouri oil field off Libya’s western coast is the largest producing oil field at 

around 110,000 bbl/d, in the Mediterranean sea. Italy’s Eni is the developer of 

the field, which was discovered in 1976 at a depth o f 8,700 feet. It is 

paraffinic with API gravity o f 26 and 1.8 % S content.
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b) El-Sharara oil field is in the Murzuq basin, in the desert south o f Tripoli, 

producing around 100,000 bbl/d o f light sweet oil. Repsol is the developer o f the 

field and it leads a European consortium, which consists o f  Austria’s OMV and 

Total o f France. The crude oil is paraffmic with API gravity o f 41.5 and a low S 

content o f 0 .6  %.

c) Amna crude oil was supplied by National oil Corporation. It is paraffmic with 

API gravity o f 36.7 and a low S content o f 0.17 %.

Table 3, shows the main characterizations o f El-Bouri, El-Sharara and Amna crude 

oils and Figure 8 shows the locations of main basins in Libya.

Table 3 Characteristics o f Libyan Crude Oils [68,69]

C rude Oil El- Bouri E l-Sharara Amna

Specific G ravity  a t 15.6/15.6 °C 0.8986 0.8179 0.8412

Density a t 15 °C 0.8981 0.8170 0.8374

A PI G ravity 26.0 41.5 36.7

Total Sulphur, w t% 1.8 0 .6 0.17

P our Point, °C + 6 <- 33 + 24

Type Paraffmic Paraffmic Paraffmic
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Figure. 8 The map of Libya with six sedimentary basins; Sirt, Ghadames, Murzuq, 

Kufra, Crenaica-Botnan and offshore Tripoli basin [70]
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1.11 The approach adopted in the present study

1. The microemulsion formation was optimized and factors affecting the stability of 

the microemulsion were studied.

2. Calibration curves were established using emulsified multielement aqueous 

standards.

3. In order to validate the method, two certified reference materials; HU-1, (Used 

Oil) and NIST 1084a, (Wear Metals in Lubricating Oil) were emulsified and the 

obtained results were compared to other results from three different preparation 

methods (dry ash, wet digestion and microwave digestion).

4. A spike recovery test was made by spiking a significant amount o f the standard 

solution to the emulsified samples which was then introduced to the plasma.

5. Analysis o f two reference materials (HU-1, (Used Oil) and NIST 1084a, (Wear 

Metals in Lubricating Oil)) prepared with the proposed method in order to confirm 

the accuracy o f the applied method.

6 . A calibration using simple aqueous multielement standards was carried out.

7. Three Libyan crude oil samples were emulsified using the proposed methodology 

and introduced into the plasma in order to measure the trace elements (Ti, V, Ni, Cu, 

Mo, Mn, Cd, Sn and Pb) using ICP-MS.

8 . A comparison was made between the results o f the crude oil samples obtained 

using the microemulsion procedure to those obtained using dry ash, wet digestion and 

microwave digestion.
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1.12 The Motivation

Demand from the petroleum industries for determination o f trace metals such as Ni, 

V, Hg, As, and Pb in crude oil and its derivatives makes it very necessary to find an 

alternative, simple, rapid, and accurate sample preparation technique for simultaneous 

determination o f trace metals. Those metals cause several problems in refinery 

processes because they poison catalysts and cause corrosion to the furnaces, and 

boilers, and consequently reduce the quality o f petroleum products.

Introducing the crude oils directly to the plasma with out pre-treatment, leads to a 

variety o f problems. However, wet digestion and dry ash procedures are time 

consuming and the sample may be exposed to contamination and there is the 

possibility o f the loss o f the analyte during the preparation steps. There is therefore, a 

need to develop an alternative sample preparation method. Emulsification o f the 

crude oil has been shown to be a successful alternative technique.

1.13 The Aims

To develop an accurate and fast method for trace element determination in crude 

oils and to apply the method in routine analysis.

To allow access to the high sensitivity o f ICP-MS for crude oil analysis without 

requiring acid decomposition o f the crude oil samples.

To eliminate any potential loss o f analyte elements due to volatilization or 

precipitation during the digestion procedures.

To reduce the time for sample preparation to a minimum.

To overcome the problem o f carbon build-up on the mass spectrometer interface 

To characterize selected Libyan crude oils quantitatively
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Chapter 2

2. Experimental

2.1 Instrum entation

The spectrometer used in this study was a Hewlett Packard 4500 quadrupole 

inductively coupled plasma mass spectrometer (model number HP 4500 G1820A, 

manufactured in Japan) equipped with a Babington nebulizer. Argon 99.95% was 

used as the plasma gas. A peristaltic pump was used to feed the nebulization system 

with sample and standard solutions. A CE precision Ultrasonic Bath from England 

was used for microemulsion preparation. A ST Hotplate and a microwave digestion 

unit from CEM Corp. (USA) were used for acid dissolution o f samples. The operating 

conditions are listed in Table 4.

Table 4 The operating conditions of HP Hewlett Packard 4500 ICP-MS

RF Power 1400 w S/C Temp 2 °C
RF Matching 1.92 v Integration Time 0.1 sec
Sample Depth 8 mm Sampling Period 0.31 sec
Carrier Gas 1.22 L/min Acquisition Time 22.83 sec
Blend Gas 0 L/min Number o f replicates 3
Peripump 0.1 rps Calibration Mode External Calibration
Nebulizer Babington Curve Fit Linear
Auxiliary Gas Flow 1 L/min Carrier Gas Pressure 80 psi
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2.2 Reagents

The water used in this study was ultra pure water obtained from an ELGA system, 

ultra ionic model, manufactured in UK. All glassware were soaked in 20% v/v nitric 

acid for several days and rinsed with hot nitric acid then with de-ionized water prior 

to use. Ti, V, Cr, Mn, Ni, Cu, Mo, Cd, Sn, and Pb standard solutions were prepared 

fresh from individual element stock standard solutions (1 0 0 0  pg ml*1) supplied by 

BDH Poole, England, and were used for calibration after specific serial dilution. 

Tetralin (1,2,3,4-tetrahydronaphthalene) supplied by Fluka AG was employed as the 

co-solvent. A non-ionic surfactant Triton X-100 98-100% (Isooctylphenoxy 

polyethoxy ethanol) supplied by BDH Poole, England was used as the emulsifying 

agent. Aristar grade nitric acid 69% Sp.g 1.42, sulphuric acid 95% Sp.g 1.84 and 

hydrogen peroxide 30% (supplied by BDH Poole, England) were used for this study. 

Analytical accuracy was evaluated by using certified reference material 1084a (wear 

metals in lubricating oils) supplied by NIST and HU-1 (used oil) supplied by SCP 

Science. Magnesium nitrate (supplied by BDH Poole, England) was used as an ashing 

aid in the dry ash procedure. Indium stock standard solution (1000 pg ml*1) (supplied 

by BDH Poole, England) was used as an internal standard. Three Libyan crude oil 

samples (EI-Bouri, El-Sharara and Amna) were supplied by the Libyan Petroleum 

Institute.
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2.3 Sample Preparation

2.3.1 Dry Ashing

A 0.5 g aliquot o f crude oil was weighed into a porcelain crucible and magnesium 

nitrate was added. The sample was burned and the residual carbon was then heated in 

a muffle furnace at 525 °C until a white ash was obtained. Then the inorganic residue 

is digested in dilute nitric acid. After filtration, the sample was made up to the 

volume (25 ml) with de-ionised water.

2.3.2 Wet Digestion

A 0.1 g aliquot o f homogenized oil sample was weighed into a 100 ml beaker and 3 

ml o f sulphuric acid was added. The mixture was heated gently to avoid charring for 

about 15 minutes. Then 5 ml o f nitric acid was added and the mixture boiled for 30 

minutes after which the mixture was put aside to cool. 3 ml o f hydrogen peroxide 

was added dropwise to the cold solution and the mixture boiled until a clear solution 

was obtained. The solution was filtered into a 100 ml flask and made up to the mark 

with de-ionised water [71].

2.3.3 Microwave Digestion

Amounts o f 0.1 g o f oil were placed in a Teflon bomb containing 2 ml o f 

concentrated nitric acid. Samples were subjected four times to the following 

digestion program: 5 min at 300 W, 1 min at 0 W and 5 min at 600 W. The Teflon 

bombs were allowed to cool down (25 min) before each o f the subsequent runs, and a 

new aliquot o f 2 ml o f concentrated H N 03 (second and third runs) and 1 ml H2O2 

(fourth run) was added to the vessel. The contents were then transferred to a 100 ml 

volumetric flask and diluted with de-ionised water [33].
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2.3.4 Microemulsion Preparation

Oil-in-water microemulsions were prepared, as follows, using a specific sequence in 

order to guarantee its homogeneity: 0.1 g o f a homogenous crude oil sample was 

weighed into a 100 ml clean and dry volumetric flask. An equivalent weight of 

Tetralin is added to the flask and the mixture was agitated mechanically using an 

ultrasonic bath for 7 min. 0.3 g o f Triton X-100 is added to the solution and the

o o
mixture was mechanically agitated for 20 min at a temperature o f 45 C to 55 C until 

a homogenous solution was obtained. 5 ml o f de-ionized water was added dropwise 

with continual agitation, then the solution was made up to the mark with 0.1 % HNO3 

after adding In as an internal standard to get a final concentration o f 20 ng ml' 1 in the 

blank, standard and sample solutions. It is noteworthy that the order in which the 

components were mixed together is critical for successful microemulsion formation.
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Chapter 3

3. Results and Discussion

One of the most important features o f an atomic spectrometric analysis is, the 

development o f an appropriate sample preparation procedure, which must be simple 

and able to convert the sample to a form compatible with the sample introduction 

system and atomizer. The other goal in choosing the sample preparation procedure is 

to minimize interferences on the analyte signal.

Crude oil and its derivatives are, in general, difficult to analyze because they have a 

high organic load and are viscous. Several procedures have been applied for this kind 

o f sample. One o f the most frequently used is emulsification o f the sample using 

surfactants (detergent emulsions). Emulsification has been successfully applied to oils 

because the procedure decreases the organic load and therefore reduces the 

interferences due to the viscosity o f the samples and the emulsified oil samples are 

compatible with sample introduction into the plasma.

3.1 O ptim ization of the M icroemulsion Form ation 

The optimization o f the ratio between oil and surfactant in order to form 

a microemulsion with good and long term stability was investigated. About 0.1% w/v 

sample was used in order to decrease the amount o f oil introduced to the plasma and 

to avoid problems associated with polyatomic interferences and the matrix effect. 

This amount o f oil was dissolved in an equivalent amount of tetralin, the co-solvent, 

prior to any further treatment. Tetralin was preferred to other organic solvents such as
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xylene, because an emulsion with a lower vapour pressure was produced. The 

presence o f volatile organic compounds can increase the level o f polyatomic ion 

background. Lord [24] studied the effect o f volatility by comparing the background 

spectra for microemulsions containing 1 % (w/w) either xylene or tetralin as co­

solvents individually. He found that the high vapour pressure o f crude oils caused 

enhancement o f the polyatomic ion background and the resultant volatile compounds 

were enriched in the aerosol (vapour pressure) that entered the plasma affecting its 

temperature distributions and the abundance o f analyte ions. He also found that the 

vapour pressure o f the xylene was about 16 times higher than when using tetralin.

In this study, Triton X-100 was chosen as the surfactant because it is readily available 

in most laboratories. In addition, Triton X-100 (non-ionic surfactant) compared to the 

other surfactants such as anionic ones (eg. sodium dodecylsulphate), does not 

introduce cations such as sodium which gives rise to high background radiation in the 

plasma. Besides, anionic surfactants require an alkaline pH in order to stabilise 

aqueous solutions [24].

It has been reported that the mean droplet size o f the emulsion depends on the 

surfactant type and concentration [72]. Therefore, the stability o f the formed 

microemulsion increases with surfactant concentration [73], although at low and high 

surfactant concentrations microemulsions were unstable. The instability at high 

concentration o f the surfactant could be due to the formation o f large droplets [74]. 

Thus, in the proposed methodology, the investigated amount o f  surfactant (Triton X- 

100) was varied between 0.1 - 0.4 % w/v. The resultant microemulsion was inspected 

visually in terms o f homogeneity, stability and appearance. The solution containing

47



0.1 % w/v surfactant was found to be unstable, quickly separating into the constituent 

phases. Microemulsions formed with 0.2 % w/v and 0.4 % w/v o f the surfactant 

showed better homogeneity but rapid separation into two phases was observed and 

visible oil droplets were clearly seen. It was found that the optimal value o f the 

surfactant was 0.3 % w/v.

The formed emulsion exhibited good homogeneity, with no noticeable oil droplets, 

and was stable for more than three months.

3.2 Factors Affecting Microemulsion Stability

In addition to the concentration o f the surfactant, which was found to be critical for 

stability o f the microemulsion, other factors were found to be important. These 

included sonication and temperature, acidity and dryness o f the glassware.

3.2.1 Sonication and Temperature

Sonication and temperature are essential for the formation o f a homogeneous 

transparent microemulsion with a small emulsion droplet size (EDS) that is stable for 

a long time. It has been demonstrated that the application o f ultrasound can result in 

the formation o f microemulsions with very small EDS. Sonication causes droplet 

deformation and disruption, and as a result EDS decreases [75]. Accordingly, many 

emulsion properties such as stability and colour depend on the EDS and size 

distributions. Lord [24] reported that the droplet size o f the prepared microemulsion 

which exhibited stability that lasted for several months was between 10 to 60 nm. The 

importance o f using temperature in forming good microemulsion has been described
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in the literature [75,76]. It was concluded that temperature reduces the emulsion 

viscosity and interfacial tension, facilitating droplet break-up.

In this study, both temperature along with sonication were found to strongly affect the 

stability o f the emulsions. The temperature required to form a good microemulsion 

was found to range between 45°C to 55°C. At these temperatures, the viscosity o f the 

oil decreases enabling good homogeneity with the co-solvent and the Triton X-100. 

In addition, the micoemulsion exhibits good stability, even after cooling, which 

ensures that reliable results are obtained for the measured elements.

In order to demonstrate the influence o f temperature and sonication on the 

homogeneity o f the microemulsion and confirm whether reliable results can be 

obtained using this sample preparation method, CRM HU-1 used oil was emulsified 

using the proposed procedure with and without heat and sonication. Results in Table 

5 show that those two factors can affect the accuracy o f the results. Results for nickel 

was 45.5 pg g ' 1 with heating and sonication and 37.4 pg g' 1 without. Cr, Mn and Pb 

results were also found to be higher at 12.7, 18, 20 pg g' 1 with sonication and heating, 

compared with 8.1, 15.1, 17.9 pg g' 1 respectively without sonication and heating. In 

contrast, the results o f Ti, V and Cd were not affected.
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Table 5. Used oil HU-1 trace elements concentration A) after forming a 

microemulsion with the use o f temperature and sonication and B) after forming a

microemulsion without the use o f temperature and sonication.

Elements
A

Used oil HU-1 
g g g ' 1

B
Used oil HU-1 

g g g ' 1

Certified values 
f tg g 1

Ti 10.7 ± 1.5 9.5 ± 0.3 9 ± 2
V 7.5 ± 0.6 6.7 ±0 .3 7 ±0 .5
Cr 12.7± 6.8 8.1 ± 6 .2 15 ± 2

Mn 18.0 ± 1 .4 15.1 ± 0 .4 18 ± 1

Ni 45.5 ± 3 .7 37.4 ± 1.3 45 ± 3
Cd 15.7 ± 1.5 14.0 ± 0 .2 15 ± 1
Pb 20.1 ± 1.9 17.9 ±0 .3 2 0  ± 1

3.2.2 Acidity (pH)

Acidification o f the emulsion with strong inorganic acids allows the use o f inorganic 

aqueous standards for calibration. It has been reported that the use o f  acidified 

emulsions enables a direct correlation between the signal o f the analyte in the oil and 

the signal o f analyte in aqueous standards [18]. Acidification o f the microemulsion 

was used to convert metallic solid particles as well as metallorganic or oxide analyte 

species into dissolved inorganic analyte species. Such conversion improves the 

stability o f the analytes in the sample, while minimizing the possibility o f 

precipitation or adsorption o f analyte species onto the sample container walls [51,55]. 

Poteau et al [77] investigated the influence o f pH values (2, 4, 6 , 8 , 11, 12) on the 

stability o f oil-in-water emulsions, and they reported that the emulsion is much more
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stable at either pH 2 or 12, with the latter preferred, because asphaltenes contain more 

acidic groups than basic groups. Figure 9 published by Poteau et al [77] shows a 

picture of 6 emulsions prepared at different pH values ranging from 2 to 12 and it can 

be seen that the emulsion is more stable at pH = 2 and pH = 12 . Thiem and Watson 

[78] investigated the extraction efficiencies of emulsions for 21 elements in oil and 

transmission fluids by ICP-OES using different acids; HC1, HNO3, H2SO4, and a 

(75:25) mixture of HC1 and HNO3. They found that both HC1 and HNO3 have good 

extraction efficiency with the recommendation to use HNO3 if Ag and Pb were 

among the elements of interest.

pH=8 pH=l l p H = 1 2

Figure. 9 Pictures of the emulsions formed after centrifugation for 30 min at pH 

between 2 and 12 [77].
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The pH for the prepared microemulsion used in this study was 2.4 and it was found to 

provide good stability, which lasted more than three months without phase separation. 

In order to verify the significance o f acidifying the microemulsion prior to 

introducing it into the plasma, El-Bouri, El-Sharara and Amna crude oil samples were 

emulsified using the proposed procedure with and without the addition o f 0.1 % v/v 

nitric acid. From the visual inspection o f the samples, the acidified microemulsions 

were clear, transparent, homogeneous and stable while the non-acidified 

microemulsion was cloudy and unclear. Figure 10 shows a picture for the emulsified 

crude oils (a) El-Sharara, (b) El-Bouri and (c) Amna prepared with the proposed 

method.

It is noticeable in Table 6 that the vanadium results for the El-Bouri, El-Sharara and 

Amna oil samples have increased from 22.2, 0.79, 0.6 pg g’1 in the acidified 

microemulsion to 51.8, 1.4, 1.2 pg g’1 in the non-acidified microemulsion, 

respectively. The nickel results were 20.0, <0.1, 2.1 pg g' 1 in the acidified 

microemulsion then increased to 48.4, 1.1, 7.1 pg g' 1 in the non-acidified 

microemulsion. This behaviour was similar to that observed for vanadium. This 

increase may be due to the polyatomic isobaric interference on 51V caused by 

34S16OH+ [20,63]. Interferences on Ni may be caused by

36A rI2C12C;36A r13C 13C;38A r12C12C [23]. For Ti, Mn, Cu, Sn Mo and Pb 

measurements, this trend was not observed.
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Table 6  El-Bouri, El-Sharara and Amna crude oils microemulsion results with and 

without 0.1 % HNO3 A and B, respectively. The results are in pg g '1; for emulsified 

samples without acid (n=5) and for emulsified samples with the use of acid (n=5).

Element Sample
W et digestion 

M"g g '

Microwave 

digestion pg g '1

Microemulsion 

A p g g 1

Microemulsion 

B p g g '1

V

El-Bouri 22.4 ± 1.8 22.0 ±0 .8 22.2 ± 1.1 51.8 ± 8.4

El-Sharara 0.5 ±0.1 0.5 ± 0.02 0.79 ± 0.07 1.4 ± 0 .2

Amna 0.24 ± 0.08 0.25 ±0.01 0.60 ± 0.02 1.2 ± 0 .2

Ni

El-Bouri 23.8 ± 1.8 19.8 ± 1.0 20.0 ±1.4 48.4 ± 8 .5

El-Sharara < 0 .05 0.6 ± 0 .2 <0.1 1.1 ±0.1

Amna 2.8 ±0.07 2.7 ± 0.4 2.1 ±0.1 7.1 ± 0 .5

Figure. 10 A picture for the emulsified crude oils prepared with the proposed 

method, (a) El-Sharara, (b) El-Bouri and (c) Amna
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3.2.3 Dryness o f Glassware and Order of Addition o f Emulsion Constituents

During this study, it was found that preparing the samples in wet glassware resulted 

in an unstable emulsion. In addition, the order in which the constituents o f the 

emulsion were added together has been found to be critical [24]. Consequently the 

following procedure was developed: A small portion o f oil is weighed in a clean dry 

flask followed by an equivalent amount o f co-solvent (Tetralin) with mechanical 

agitation to homogenize the crude oil. Then an appropriate amount o f surfactant 

(Triton X-100) is added with a continuous agitation. After that a small amount o f de­

ionized water (approximately 5 ml) is added dropwise with continuous agitation, then 

the flask is filled up to the mark with 0.1 % HNO3 to obtain a clear transparent stable 

solution. Figure 11 shows a microemulsion prepared from Amna crude oil using the 

proposed method. It can be seen that the microemulsion is clear, transparent, 

homogeneous and stable. It does not contain any undissolved particles. In contrast, 

Figure. 12 shows the same crude prepared with the proposed procedure but without 

the use o f heating, ultrasonic radiation, and the adding o f nitric acid. The resulting 

solution was unclear and unstable, and after about 5 hours, it separated into distinct 

phases (Figure. 13).
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Figure. 11 A stable transparent microemulsion of Amna crude oil prepared with the 

proposed method : 0 .1% w/v of oil was mixed with 0 .1% w/v tetralin with 

mechanical agitation using the ultrasonic bath at temperature between 45°C to 55°C , 

then 0.3% w/v Triton X-100 is added with a continuous agitation. After that, 5 ml of 

de-ionized water was added drop by drop with a continuous agitation then the flask 

was filled up to the mark with 0.1 % HNO3.
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Figure. 12 An unstable unclear microemulsion of Amna crude oil prepared with the 
proposed method without the addition of acid and sonication.
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Figure. 13 Separate phases of Amna crude oil microemulsion prepared with the 
proposed method without the addition of acid and sonication.
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3.3 Analytical Figure o f Merit

In this study, calibration curves were established using microemulsions containing 

increasing concentrations o f inorganic standards 0.1, 1, 10, 100 pg L '1, and In 20 pg 

L ' 1 as an internal standard added to both standard solutions and samples.

A blank was prepared in the same manner with the addition o f 20 pg L ' 1 o f In.

Good linearity for all ten elements was observed. Limits o f detection (LOD) and 

limits o f quantification (LOQ) were calculated using 3 times standard deviation o f ten 

measurements o f blank and 10 times standard deviation o f ten measurements of 

blank, respectively. LOD was between 0.1 ng g' 1 and 0.7 ng g’1 for all elements, and 

4.8 ng g' 1 for Cr. LOQ was between 0.2 ng g' 1 and 2.4 ng g ' 1 for all elements, and 

16.1 ng g' 1 for Cr. The relative standard deviation was < 5% for all elements and 

30.9% for Cr. The correlation coefficient (r2) was 1.000 for all elements as can be 

seen in Table 7. Comparing LOD for Mn, Ni, Cu and Sn with those obtained by ETV- 

ICP-MS [38] (results displayed in Table 8) shows that they are very similar with a 

slightly higher Sn detection limit obtained by ICP-MS using the proposed method.
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Table 7. Precision (RSDs), LODs, LOQs (ng g '1) and (r2) for trace elements

determination using oil in water microemulsion by ICP-MS; number o f replicates =10

Element LOD ng g*1 LOQ ng g' 1 RSD % ....r2 "

4/Ti 0.7 2.4 4.8 1.000

i lV 0.1 0.5 3.3 1.000

5JCr 4.8 16.1 30.9 1.000

"Mn 0.1 0.2 2.1 1.000

bUNi 0.1 0.4 3.4 1.000

"Cu 0.2 0.6 4.8 1.000

"M o 0.1 0.3 2.1 1.000

lu Cd 0.1 0.5 1.6 1.000

U8Sn 0.6 2.1 3.4 1.000

m Pb 0.1 0.3 1.5 1.000

Table 8 . Figures o f merit for trace elements determination using oil in water

emulsion by ETV-ICP-MS [38].

Element
. .

LOD (pg L '1)

b3Cu 0.9979 0 .2 2

bbMn 0.9996 0 .0 2

5aNi 0.9966 0.38

. 12USn 0.9991 0.03
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Figure. 14 Calibration curves for Ti, V, Cr, Ni, Cu, Mo, Mn, Cd, Sn and Pb 

microemulsion standard solutions analysed using ICP-MS. Refer to the relative 

standard deviation in Table 7.
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3.4 Method Validation

The method was validated by comparing the obtained results for two certified 

reference materials; HU-1, (Used Oil) and NIST 1084a, (Wear Metals in Lubricating 

Oil) prepared using the emulsification procedure with those obtained using three 

different preparation methods; wet digestion, dry ash and microwave digestion. The 

results obtained for HU-1 used oil and NIST 1084a are given in Tables 9&10, 

respectively and comparison o f the results shown in both tables indicates that there is 

a very good agreement between the four methods.

Table 9, generally shows a very good agreement between the results o f the four 

procedures with excellent performance for all elements when the microemulsion 

method was used. A decrease in performance is seen for Cr may be due to the 

increased background signal caused by the organic matter. The decrease in Ni, Mo, 

Cd and Pb results with the dry ash procedure may have been due to the volatility of 

the compounds o f those elements during the ashing step.

A statistical F-Test was applied on the results o f Table 9 (comparing microemulsion 

with wet digestion, dry ash and microwave digestion, respectively) and it was found 

that the calculated F  values were 1.02, 1.29 and 1.36 which were less than the F value 

from the table F5^(0.05) = 6.26. The results proved that the variances between the 

results are likely to be the same. An unpaired t-Test was also performed and the 

calculated t values were -  0.04, 0.05 and 0.036 which were less than t7 from tables 

/>(0.01,0.025,0.05)= 2.998, 2.365, 1.895 which means that there was no significant 

difference between the results. F-Test was also applied on the results o f Table 10 

(comparing microemulsion with wet digestion, dry ash and microwave digestion,
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respectively) and it was found that the calculated lv a lu e s  were 0.12, 1.18 and 2.37 

which were less than the F value from the table F5(̂ (0.05) = 6.26. The results proved 

that the variances between the results are likely to be similar. An unpaired t-Test was 

also performed and the calculated t values were -0.24, 0.033 and 0.007 which were 

less than t7 from tables ^(0.01,0.025,0.05)= 2.998, 2.365, 1.895 which confirmed 

that there was no significant difference between the results [81].

Table 9 Comparison o f HU-1 Used Oil analytes results prepared with the proposed 

methodology and traditional sample preparation methods with the certified values ± 

standard deviation.(n=5)

Element
W et Digestion  

H gg ' 1

Dry Ash 

ngg ' 1

Microemulsion

ngg '1

Microwave

ngg ' 1

Certified values 

ligg'1

Ti 15.6 ± 2 .8 13 ± 1.1 10.7 ± 1.5 12.5 ± 0 .6 9 ± 2

V 7.5 ± 0.4 6.9 ± 0.6 7.5 ± 0.6 7.1 ± 0 .4 7 ± 0 .5

Cr 17.2 ± 1.1 15.5 ± 1 .4 12.7± 6.8 15.2 ± 0 .7 15 ± 2

Mn 20.1 ± 1 .4 17.1 ±0 .3 18.0 ± 1.4 16.5 ± 2 .0 18 ± 1

Ni 46.9 ± 0 .9 40.3 ± 3 .6 45.5 ± 3 .7 40.2 ±2.1 45 ± 3

Mo 11.5 ± 0 .4 9.5 ± 0.9 12.4 ± 0.9 10.4 ± 0 .6 11 ±  1

Cd 12.4 ± 0 .6 9.8 ± 0.8 15.7 ± 1.5 12.4 ± 0 .7 15 ± 1

Pb 2 2 .2  ± 1.6 16.3 ± 1.1 20.1 ± 1.9 17.6 ± 1.0 2 0  ± 1
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As shown in Table 10, the results obtained for Ti, V, Ni, Cu and Mo in the1084a 

CRM are in good agreement using the four methods, and also with the certified 

values. Low Cr measured values have been reported by others [53,55,56]. The low 

result was attributed to the increased background signal caused by the organic matter 

[53]. Both the emulsification and dry ash procedure results were lower than those 

obtained by wet and microwave digestion procedures.

The results show that emulsion formation can be successfully applied to the 

determination o f trace elements in crude oil. The results are reliable and sample 

preparation is less time consuming.

Table 10 Comparing NIST 1084a Wear-Metals in Lubricating Oil analytes results 

prepared with the proposed methodology and traditional sample preparation methods 

with the certified values ± standard deviation.

Element
W et Digestion  

Pgg'1

Dry Ash 

P g g 1

Emulsion

P g g 1

M icrowave

Pgg'1

Certified values 

Pgg*1

Ti 96.9 ±  2.5 101.8 ± 2 .5 95.4 ± 1 .8 95.0 ± 2 .0 100.4 ± 3 .8

V 97.4 ± 1 .4 95.8 ±  1.9 95.2 ± 1 .8 97.3 ±3 .1 95.9 ± 9 .4

Cr 96.2 ±  0.3 90.5 ± 1 .2 77.7 ±4 .1 89.6 ± 2.6 98.3 ± 0 .8

Ni 99 ±  0.7 92.8 ±2 .1 99.8 ± 1 .9 97.4 ± 3 .4 99.7 ± 1 .6

Cu 99.2 ±2 .1 96.8 ± 2 .8 99.4 ± 1 .5 93.7 ± 2.7 100.0 ±  1.9

Mo 104.2 ±  1.6 94.1 ± 3 .8 94.9 ±  3.0 92.0 ±  2.5 100.3 ± 1 .4

Sn 98.1 ± 0 .2 81.8 ± 0 .9 94.2 ± 2 .6 82.6 ±  2.5 97.2 ± 2 .6

Pb 96 ± 2 .8 82.9 ±  2.5 85.8 ± 8 .6 93.8 ± 2 .0 101.1 ± 1 .3
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3.5 Recovery Test

In order to evaluate the accuracy of the method, a spike recovery test was performed 

on the Elsharara crude oil (Figure 15). Multielement standards were used to spike the 

samples so that the emulsion solutions contained 2 and 10 pg L '1 respectively. Table 

11, shows the good recovery of the 2 pg L 1 spike, ranging from 95% to 120% for all 

elements, while Mo and Sn recoveries were 83.4% and 77.8% respectively. The 

recovery was improved for the 10 pg L 1 spike, ranging from 93.3% to 101.0 % with 

relative standard deviation less than 5% for all elements except for Cr, where the 

result was higher in the two spikes. This behaviour has been observed before 

[53,55,56] without a possible explanation. Despite the variable results across the 

study, the determination of Cr is not crucial in oil samples. This demonstrates that 

the method developed here is appropriate for oil samples but possibly not for other 

kind of samples where Cr is important.

Figure. 15. Emulsified El-Sharara Libyan crude oil samples spiked with 10 pg L 1 of

a multielement standard solution.

64



Table 11 Analyte recovery in El-Sharara oil sample spiked with 2 and 10 pg L ' 1 

standards. (n= 5)

Element
Spike concn: 2 pg L'1 Spike concn: 10 pgL*1

Mean Recovery % RSD % Mean Recovery % RSD %

Ti 2.4 120.0 26.5 10.0 100.3 4.8

V 2.1 106.0 1.6 10.0 100.0 3.3

Cr 3.8 194.0 21.6 15.1 151.1 30.9

Mn 2.2 110.2 1.3 10.0 100.2 2.1

Ni 2.0 98.1 33.0 9.6 96.3 3.4

• Cu 2.1 103.3 16.3 9.7 97.3 4.8

Mo 1.7 83.4 2.5 9.5 95.2 2.1

Cd 1.9 95.8 13.0 9.9 99.3 1.6

Sn 1.6 77.8 3.8 9.3 93.3 3.4

Pb 2.1 103.9 8.9 10.1 101.0 1.5

The excellent results obtained from the spike recovery test indicate that the proposed 

procedure can be applied to the determination o f low element concentrations in crude 

oil without the risk o f interference or analyte transport associated problems or high 

background.
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3.6 Analysis o f Reference Materials

The accuracy o f the method was evaluated by the analysis o f two standard reference 

materials HU-1 used oil and NIST SRM 1084a using the emulsification procedure. 

Table 12 shows the good recovery for the eight elements determined in emulsified 

HU-1 used oil. Apart from chromium, the recoveries for the rest o f the elements 

ranged from 100.1 % to 119.9 % . The chromium recovery was 85.1 % . This 

decrease may be due to the increased background signal caused by the organic matter. 

As shown in Table 13, good recovery (between 94.7% and 100.1 %) for eight 

elements o f NIST 1084a were obtained. Excellent agreement with the certified results 

was obtained for Ni, V, and Cu. There was a slight decrease in Cr and Pb recovery, 

79.1% and 84.8 %, respectively. Such behaviour for Cr in crude oils was also 

reported by other authors [53,55,56]. A statistical t-test was applied (comparing the 

measured and certified values for HU-1 used oil) and it was found that the calculated 

t values for all elements in Table 12 is less than ts from tables (0.01) = 3.365 and in 

Table 13 (comparing the measured and certified values for NIST SRM 1084a) is less 

than from tables (0.01) = 4.541. Consequently, there was no significant difference 

between the measured and certified results at a  = 0.01 [81]. Cr and Ti calculated t 

values for 1084a CRM were slightly higher.

The results achieved for the analysis o f both CRMs, confirm the accuracy o f the 

proposed method for both low and high element concentrations, especially for 

vanadium, nickel and copper measurements in oil samples along with satisfactory 

results for other elements. The method developed is suitable for routine application
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because sample preparation is less time consuming and does not require prior 

removal o f the hydrocarbons before sample analysis.

Table 12 The analysis o f the HU-1 Used Oil with the proposed method ± standard 

deviation (n=6 ). t$ from tables (0.01) = 3.365

Element
Measured value 

Pgg'1

Certified value 

Pgg'1

Recovery

%

Calculated t 

value

Ti 10.7 ± 1 .5 9 ±  2 119.9 2.9

V 7.5 ± 0.6 7 ± 0 .5 107.2 1.9

Cr 12.7± 6.8 15 ± 2 85.1 -0.7

Mn 18.0 ± 1 .4 18 ±  1 100.1 0.0

Ni 45.5 ± 3 .7 45 ± 3 101.2 0.3

Mo 12.4 ± 0 .9 11 ±  1 112.7 3.1

Cd 15.7 ±  1.5 15 ±  1 105.1 1.1

Pb 20.1 ± 1 .9 20 ± 1 100.9 0.2

Table 13 The analysis o f the NIST 1084a Wear-Metals in Lubricating Oil with the

proposed method ± standard deviation (n=4). ti from tables (0.01) = 4.541

Elem ent Measured value 
Pgg'1

Certified value 
Pgg'1

Recovery
%

Calculated t 
value

Ti 95.4 ± 1 .8 100.4 ± 3 .8 95.0 -5.5

V 95.2 ± 1 .8 95.9 ± 9 .4 99.3 -0.7

Cr 77.7 ± 4 .1 98.3 ± 0 .8 79.1 -9.9

Ni 99.8 ± 1 .9 99.7 ± 1.6 100.1 0.1

Cu 99.4 ± 1 .5 100.0 ±  1.9 99.4 -0.3

Mo 94.9 ±  3.0 100.3 ± 1 .4 94.7 -3.5

Sn 94.2 ±  2.6 97.2 ± 2 .6 96.9 -2.2

Pb 85.8 ± 8 .6 101.1 ± 1 .3 84.8 -3.5
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3.7 Calibration with aqueous standard solutions

Aqueous analyte solutions, containing increasing concentrations o f multielement 

standards (0 .1, 1.0 , 10 and 100 ng m l'^were analysed and good calibration curves 

were obtained. These curves enabled correlation between analyte signal of the 

specimen microemulsion and the signal o f the analyte solutions. Tables 14&15, show 

good agreement between the results o f both CRMs (1084a and HU-1) obtained by 

calibration with inorganic aqueous standards and others obtained by calibration with 

emulsified standards. A paired t-test was applied (comparing results from the 

emulsified standard solution with those from the aqueous standard solutions for both 

CRMs HU-1 and 1084a) and it was found that the calculated / values for Tables 

14&15 were t = 2.734 and 2.677 respectively. These values were less than the t 

values from the table /v=7(0 .01 ) = 2.998 confirming that there was no significant 

difference between the two types o f standard solutions used [81].

Both tables demonstrate very good agreement between the results obtained using the 

aqueous simple standard solutions and the certified values. Despite the difference in 

sample matrix between the aqueous standards used for calibration and the emulsified 

samples, the aqueous standard solutions can be used successfully at least as a rough 

guide to give an idea about trace elements content in the sample or it can also be used 

effectively in semiquantitative analysis.
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Table 14 Comparison between CRM HU-1 microemulsion results obtained from 

calibration with aqueous standard solution and results obtained from calibration with

emulsified standard solution

Element
Aqueous Standard 

Solution n g g '1

Emulsified Standard 

Solution n g g '1

C.V

P g g 1

Ti 13.0 ± 0 .8 10.7 ± 1 .5 9 ± 2

V 7.9 ± 0.6 7.5 ±  0.6 7 ± 0 .5

Cr 13.2 ± 5 .6 12.7± 6.8 15 ± 2

Mn 18.2 ±  1.1 18.0 ± 1 .4 18 ±  1

Ni 46.3 ± 1 .8 45.5 ± 3 .7 45 ± 3

Mo 13.1 ± 1 .0 12.4 ±  0.9 11 ±  1

Cd 16.8 ± 1 .8 15.7 ± 1 .5 15 ±  1

Pb 20.0 ± 1 .7 20.1 ± 1 .9 20 ±  1

Table 15 Comparison between CRM 1084a microemulsion results obtained from 

calibration with aqueous standard solution and results obtained from calibration with

emulsified standard solution

Element
Aqueous Standard 

Solution n g g '1

Emulsified Standard 

Solution jxg g'1
C .V g g g 1

Ti 103.1 ± 1 .6 95.4 ± 1 .8 100.4 ± 3 .8

V 102.8 ± 1 .7 95.2 ± 1 .8 95.9 ±  9.4

Cr 91.02 ± 5 .4 77.7 ±4 .1 98.3 ± 0 .8

Ni 104.7 ± 2 .5 99.8 ± 1 .9 99.7 ± 1 .6

Cu 100.4 ± 2 .4 99.4 ± 1 .5 100.0 ± 1.9

Mo 100.3 ± 2 .4 94.9 ± 3 .0 100.3 ±  1.4

Sn 91.5 ± 1 .0 94.2 ±  2.6 97.2 ± 2 .6

Pb 89.9 ± 3 .5 85.8 ± 8 .6 101.1 ±  1.3
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3.8 Real Samples Results

In order to assess the analytical capability o f the proposed method, three Libyan 

crude oil samples were investigated for their trace elements content using 

microemulsion formation. El-Bouri, El-Sharara and Amna crude oils were emulsified 

using the proposed procedure (section 2.3.4) by dissolving the oils in tetralin then 

adding Triton X-100 , 5 ml o f water, and 20 pg L ' 1 o f indium as an internal standard 

followed by 0.1 % nitric acid. Table 16, displays the concentration o f Ti, V, Ni, Cu, 

Mo, Mn, Cd, Sn and Pb in the El-Bouri, El-Sharara and Amna samples. El- Bouri 

crude oil was found to contain 2 2 .2  pg g' 1 vanadium and 20.1  pg g*1 nickel with a 

trace o f cadmium (0.02 pg g’1), while Ti, Mn, Cu, Mo, Sn and Pb were below the 

detection limit o f the instrument. The El-Sharara crude oil was found to contain 0.79 

pg g' 1 o f vanadium while the other selected elements were below the detection limit. 

Amna crude oil, contained 0.6 pg g' 1 vanadium, 0.05 pg g*1 manganese,

2.1 pg g' 1 nickel and 0.3 pg g' 1 lead, while the other elements concentration was 

below the detection limit. The low levels o f these elements reflect the high quality of 

Libyan crude oils, which make them suitable for the European market [79]. These oils 

do not contain high amounts o f impurities, which require difficult and very expensive 

refinery processes to get rid o f the elements. For example, Venezuelan crude oil 

contains 1400 pg g' 1 o f vanadium [80] which is undesirable as it deactivates the 

catalysts used in refineries, and causes corrosion in the refinery boilers and furnaces.
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Table 16 . Mean o f trace elements concentration in emulsified Libyan crude oil 

samples in pg g ' 1 ± standard deviation; number o f replicates (n= 5)

Element
El-Bouri 

Pg g*1

El-Sharara

P g g ' 1

Amna

P g g ' 1

Ti < 0 .7 < 0 .7 <0.7

V 2 2 .2  ± 1.1 0.79 ± 0 .07 0 .6  ± 0 .02

Mn < 0.1 < 0.1 0.05 ±0.01

Ni 20.1 ±1.4 < 0.1 2.1 ± 0 .12

Cu < 0.2 < 0 .2 < 0 .2

Mo < 0.1 < 0.1 < 0.1

Cd 0.02 ± 0.3 < 0.1 < 0.1

Sn < 0 .6 < 0 .6 < 0 .6

Pb < 0.1 < 0.1 0.3 ± 0.04

The nickel and vanadium results obtained for El-Bouri, El-Sharara and Amna were 

confirmed by wet digestion, dry ash and microwave digestion and the results are 

shown in Table 17. Comparison of the results obtained indicates that there is very 

good agreement between the four methods. With regard to the vanadium results, the 

agreement between the four methods was close apart from the El-Bouri dry ash 

method (17.5 pg g' 1 compared to 22.4 pg g '1). With regard to the nickel results, also 

there was agreement between the four methods although the El-Bouri dry ash method
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gave a slightly lower result than those for the other methods. In El-Sharara crude oil, 

the wet digestion and the emulsion methods quote results that were below the 

detection limit. In contrast, the results for the other two methods were slightly higher. 

Amna crude oil results, exhibited good agreement between the four methods.

A statistical F-Test was applied (comparing the microemulsion results with the wet 

digestion results, in the order shown in Table 17) and the calculated F  values were 

2.67,2.04, 4.93, 1.65 and 2.93 which were less than the F value from the table Fs,s 

(0.05) = 5.05. The results proved that the variances between the results are likely to 

be the same [81].

Table 17. Comparison between the mean concentration o f nickel and vanadium in 

three Libyan crude oil samples prepared with microemulsion, wet digestion, dry ash 

and microwave digestion in pg g' 1 ± standard deviation

Element Sample Wet digestion 

F g g 1

Dry Ash 

Fg g' 1

Microemulsion

F g g ' 1

Microwave 

Fg g 1

V

El-Bouri 22.4 ± 1 .8 17.5 ±0.1 2 2 .2  ± 1.1 2 2 .0  ± 0.8

El-Sharara 0.5 ±0.1 0.40 ± 0 .02 0.79 ± 0.07 0.5 ± 0.02

AMNA 0.24 ±0.08 0 .2 0  ± 0.01 0 .6  ± 0 .0 2 0.25 ±0.01

Ni

El-Bouri 23.8 ± 1.8 15.0 ±0.01 20.1 ±1.4 19.8 ± 1.0

El-Sharara <0.05 0.1 ± 0 .2 < 0.1 0 .6  ± 0.2

AMNA 2.8 ± 0.07 2 .0  ± 0.1 2.1 ± 0.1 2.7 ± 0.4
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It can be seen from the previous results that there is a variation in nickel and 

vanadium concentrations in different crude oil samples from different basins in 

Libya. The resultant vanadium / nickel ratios do not change with the biodegradation 

or weathering o f an oil seep. Therefore, this ratio can be used as a fingerprint in order 

to link the crude oil to its geographic origin. This enables matching oil spills to their 

origin even after many years.
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Chapter 4

4.1 Conclusion
In the present study, a simple analytical method for the determination o f Ti, V, Cr, 

Mn, Ni, Cu, Mo, Cd, Sn, and Pb in crude oils by ICP-MS was developed. Samples 

were emulsified and introduced into the plasma as microemulsions. The experimental 

parameters were optimized to enable the sensitive, accurate and precise determination 

o f these elements in crude oil samples. Calibration curves were established using 

tetralin and Triton X-100 employing analyte inorganic standards and In as an internal 

standard. The limits o f detection and quantification were in the ng g’1 range.

Two certified reference materials (HU-1 used oil and 1084a wear metals in 

lubricating oil) were emulsified and introduced into the plasma in order to estimate 

the accuracy o f the method. The results were compared with those obtained from dry 

ash, wet digestion and microwave digestion and found to be satisfactory. In order to 

evaluate the accuracy o f the method, a spike recovery test was carried out and good 

results were obtained. The two emulsified reference materials (HU-1 used oil and 

1084a) were analysed using aqueous standards and the results were compared with 

those obtained by calibration with emulsified standards. Three Libyan crude oil 

samples were analysed using the proposed methodology and the results were 

compared with the traditional ones (dry ash, wet digestion and microwave digestion). 

Very good agreement between the four methods was achieved.
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In this study, a transparent stable microemulsion was used successfully without the 

need for an oxygen stream and no carbon build up was observed. The stability o f the 

microemulsion lasted more than three months without phase separation or any change 

in appearance. Furthermore, microemulsion sample introduction was found to be a 

very effective technique for the determination o f trace elements in crude oil. The 

major advantage o f the microemulsion approach was that it is less time consuming. It 

presents the possibility o f highly sensitive analysis which does not require 

decomposition, and allows the use o f inorganic standards. Any potential loss of 

analyte elements due to volatilization or precipitation during the decomposition 

procedure is eliminated. The probability o f introducing contamination is also reduced.
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4.2 Recommendations
Identifying the gaps in knowledge on the stability and homogeneity o f the formed 

microemulsion is an essential part o f this study. Therefore, the following 

recommendations for further research are suggested:

First, a considerable amount o f  work still needs to be done to ensure the suitability of 

the depicted technique for the other fractions o f crude oil, especially the light 

fractions such as the naphtha. This should focus on the effect o f temperature on the 

stability o f some volatile analytes such as mercury in the formed microemulsion. 

Second, it would be beneficial to measure the size o f the microemulsion droplets 

formed with the proposed method. Further studies on the effect o f heat and sonication 

on the emulsion droplet size are also recommended because the stability o f the 

micoemulsion increases with the decrease in the emulsion droplet size.

Third, a comparison between detergent and detergentless microemulsions using 

different spectrometric techniques, in terms o f stability and the quality o f the results 

is highly recommended.

Fourth, it would be useful to study the chemical composition o f crude oils before and 

after the emulsification and to investigate any possible changes that may occur 

because o f the presence o f an oxidising agent.

Fifth, applying different acids or a mix o f  some acids such as HC1 and HNO3 , in 

order to acidify the microemulsion could give further knowledge on the stability of 

the analytes o f interest in the microemulsion. In addition, employing hydrogen
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peroxide instead o f HNO3 , may provide information to help improve the stability of 

the microemulsion, and consequently the quality o f the obtained data.

Sixth, as the choice o f  the surfactant has a main role in the stability o f the prepared 

microemulsion, studying the possibility o f applying mixed surfactants, non-ionic and 

anionic, will be very useful and may lead to new knowledge on crude oil 

microemulsion formation.
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