
The influence of class structure on program comprehension : An empirical study.

ALARDAWI, Ahmed.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/19232/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/19232/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Sheffield S i 1VVD

r e f e r e n c e

ProQuest Number: 10694112

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10694112

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

The Influence of Class Structure on Program

Comprehension: An Empirical Study

Ahmed Alardawi

A thesis submitted in partial fulfilment of the requirements of
Sheffield Hallam University

for the degree of Doctor of Philosophy

April 2013

Abstract

This thesis describes and reports on two sets of empirical studies investigating

the ease of comprehension of Object Oriented (00) programs, including the

underlying various types of knowledge that can be present in the program text

during the process of comprehension.

The two empirical studies are referred to as the Car and the Line-Edit. These

are two well established programming problems in the early literature from the

Psychology of programming research. Both novice and experienced 0 0

programmers were asked to undertake comprehension tasks based on a paper

and pen exercise and a set of comprehension questions associated with either

an 0 0 or a non 0 0 programming version of the Car or the Line-Edit. The

studies focus on the elements of class concept, problem characteristics, and

solution decompositions and their effect on the comprehension of different types

of knowledge which are present in the program text. It is found that 0 0

programs are better understood than of the non 0 0 programs. It is also found

that the class concept, problem characteristics, and solution decompositions are

empirically to be the influential elements in the comprehension of 0 0 programs,

especially for Control Flow, State, and Problem Classes types of knowledge.

An empirical grounded based model of 0 0 program comprehension is

proposed; the model forms a framework to the future empirical studies that

focus on the critical aspects of the 0 0 program comprehension. The thesis

suggests a knowledge-based categorisation of the example programs. This

categorisation should be embodied for better 0 0 program comprehension

amongst novices. The methodological issues for future investigations are also

discussed. In particular it is suggested that different 0 0 versions of the same

program should be used as the experimental material as the next step.

Acknowledgements

I would like to thank Dr. Babak Khazaei and Prof. Jawed Siddiqi for their

support, supervision, encouragement, and stimulating discussions. I believe it is

fair to say that without their help and guidance it is likely that this thesis would

never have been completed. It has been a pleasure working with you,

gentlemen.

There are also several other individuals who have contributed, in one way or

another, towards the body of research contained within this thesis. They are:

Alla Elakari, Mohammed Jomma.

I also wish to thank researchers, who have been, or still are, PhD candidates

within the C3RI as well as many of the departmental staff, our friendly

discussions helped me gain confidence in my research and sustain my attempt

to complete it.

Dedication

To the soul of my father, Salem, and my mother, Badrea, for their never-ending

love and prayers for my success and happiness.

To my wife, Nessrin, and my beloved children, Logien, Lama, Sanad and Adam

for love, patience, sacrifices, and continuous support.

To all my brothers and sisters for their eternal faith in my ability to complete this

thesis and for helping whenever they could

It is to them I dedicate this modest piece of work.

List of Publications

1. Empirical Study of Novices Comprehension of Object-Oriented Programs,

Ahmed Alardawi, Babak Khazaei, Jawed Siddiqi (2010) In Proceedings of 6th

Work-in-Progress Workshop of the Psychology of Programming Interest

Group (PPIG), Dundee, UK, 7-8 January.

2. Influence on Novices of Class Structure on Program Comprehension,

Ahmed Alardawi, Babak Khazaei, Jawed Siddiqi (2011a) In Proceedings of

7th Work-in-Progress Workshop of the Psychology of Programming Interest

Group (PPIG), Sheffield, UK, 18-19 April.

3. Influence of Class Structure on Program Comprehension, Ahmed Alardawi,

Babak Khazaei, Jawed Siddiqi (2011b) In Proceedings of the 23th Annual

Workshop of the Psychology of Programming Interest Group (PPIG), York,

UK, 6-8 September.

v

Table of Contents

CHAPTER 1 INTRODUCTION..1

1.1 M a in T h e s is Q u e s t io n s a n d A i m s ...7

1 .2 O u t l in e o f t h e T h e s is ... 8

CHAPTER 2 LITERATURE REVIEW..11

2 .1 I n t r o d u c t io n .. 1 1

2 .2 O b ject - O r ie n t e d A p p r o a c h a n d c o n c e p t s ..1 1

2.2.1 The Cognitive Benefits of Object-Oriented Approach ..15

2 .3 P r o g r a m C o m p r e h e n s io n ...2 1

2.3.1 What is the Definition of Program Comprehension?..21

2.3.2 Program Comprehension from Different Perspectives..24

2.3.3 Cognitive Theories o f Program comprehension...27

2.3.4 Program Comprehension as a Temporal Activity...28

2.3.4.1 Top-Down Models of Program Comprehension.. 29

2.3.4.2 Bottom-Up Models of Program Comprehension... 30

2.3.4.3 Integrated Model of Program Comprehension... 32

2.3.5 Program Comprehension as Strategies fo r Deployment...33

2.3.6 Program Comprehension as a Construction of Different types o f Knowledge......................35

2.3.6.1 Pennington's Model of Program Comprehension.. 35

2.3.6.2 Limitations of Pennington's Model for 0 0 programs... 38

2.3.6.3 Burkhardt et al.'s Model of 0 0 Program Comprehension...40

2 .4 Em p ir ic a l W o r k s o n 0 0 .. 4 3

2.4.1 Empirical Works in 0 0 Program Comprehension...44

2.4.2 Problem Characteristics and Solution Decomposition in 0 0 Program Comprehension 55

2 .5 I m p l ic a t io n s o f t h e 0 0 A p p r o a c h o n D if f e r e n t T y pes o f Kn o w l e d g e ..5 9

2 .6 C h a p t e r S u m m a r y ..6 5

CHAPTER 3 RESEARCH METHODOLOGY .. 66

vi

3 .1 I n t r o d u c t io n .. 6 6

3 .2 P h il o s o p h y o f R e s e a r c h ... 6 6

3 .3 R e s e a r c h M e t h o d ... 7 1

3 .4 Ex p e r im e n t a l Fr a m e w o r k ...7 6

3 .5 S p e c if ic o f t h e M e t h o d o l o g y .. 8 0

3.5.1 Subjects..83

3.5.2 Materials..87

3.5.3 Measures..91

3 .6 H y p o t h e s is T e s t in g .. 9 7

3 .7 St a t is t ic a l M e t h o d s o f A n a l y s is ..9 9

3 .8 Et h ic a l Is s u e s ..1 0 0

3 .9 C h a p t e r S u m m a r y ...1 0 1

CHAPTER 4 SPECIFIC OF THE INVESTIGATION... 103

4 .1 In t r o d u c t io n ..1 0 3

4 .2 Ex p e r im e n t a l C o n t e x t .. 1 0 3

4 .3 C h o ic e o f S u b j e c t s ...1 0 7

4 .4 C h o ic e o f P r o b l e m s U s e d a n d So l u t io n s D e l iv e r e d .. 1 0 9

4.4.1 Designing Car Problem Solutions.. 115

4.4.2 Designing the Line-Edit Solution...119

4.4.3 Designing the Experimental Materials.. 122

4 .5 C h o ic e o f m e t r ic s ...1 2 9

4 .6 C h a p t e r S u m m a r y ... 1 3 2

CHAPTER 5 REPORT OF THE INVESTIGATION...133

5 .1 T h e Ca r St u d y ..1 3 4

5.1.1 A im ..194

5.1.2 Subjects.. 134

5.1.3 Materials.. 136

5.1.4 Procedure...136

5.1.5 Metrics and Experimental Hypotheses.. 138

vii

5.1.6 Experimental Results o f the Car Study ... 139

5.1.6.1 Comparison of the Tim e.. 141

5.1.6.2 Comparison of the Performance...142

5.1.6.3 Comparison of the Ranking...144

5.1.6.4 Comparison of Performance in Knowledge Category between Program Versions.................. 145

5.1.6.5 Comparison of Performance in Knowledge Categories.. 148

5 .2 T h e Lin e -E d it St u d y ... 1 5 8

5.2.1 The Rationale of the Second Study ... 158

5.2.2 A im ...159

5.2.3 Subjects... 159

5.2.4 Materials and procedure..160

5.2.5 Metrics and Experimental Hypotheses... 160

5.2.6 Experimental Results of the Line-Edit Study...160

5.2.6.1 Comparison of the Performance... 161

5.2.6.2 Comparison of Ranking..162

5.2.6.3 Comparison of Performance of Knowledge Categories between Program Versions 163

5.2.6.4 Comparison of Performance in Knowledge Categories................................ 166

5.2.7 Summary of the Investigation Results...173

CHAPTER 6 DISCUSSION... 176

6 .1 In t r o d u c t io n .. 1 7 6

6.2 In t e r p r e t a t io n o f th e S tu d ie s ' F in d in g s ...177

6.3 A n E m p ir ic a lly G r o u n d e d based M o d e l o f 0 0 P r o g r a m C o m p re h e n s io n ...184

6.3.1 Formulation of the M odel..185

6.3.2 Limitation and Possible Extension o f the Proposed Model..193

6.4 M e t h o d o lo g ic a l Issues o f th e In v e s t ig a t io n ...194

6.5 P e d a g o g ic a l Is s u e s .. 196

CHAPTER 7 CONCLUSIONS AND FURTHER WORK..198

7.1 F in d in g s a n d C o n t r ib u t io n s .. 198

7 .2 S u g g e s t io n s a n d F u r t h e r W o r k ... 2 0 1

7 .3 S u m m a r y ...2 0 3

REFERENCES..205

APPENDIXES.. 219

A p p e n d ix A : M a t e r ia l s : Ca r St u d y ..2 1 9

The Car Problem's Specification..220

Experimental purposes and procedures... 220

The Experimental Treatments... 224

A l. Visual Basic Non-Object based Experimental Treatm ent...224

A2. Visual Basic Object based Experimental Treatm ent.. 228

A3. JAVA Non-Object based Experimental Treatm ent..232

A4. Java Object based Experimental M aterial... 236

A p p e n d ix B: M a t e r ia l s : L in e -E d it St u d y ..2 4 0

The Line-Edit Problem's Specification..240

Experimental purposes and procedures... 241

The Experimental treatments.. 244

Bl. Visual Basic Non-Object based Experimental Treatm ent... 244

B2. Visual Basic Object based Experimental Treatm ent...248

B3. Java Non-Object based Experimental Treatm ent.. 252

B4. Java Object based Experimental Treatm ent.. 256

A p p e n d ix C: Et h ic a l A p p r o v a l .. 2 6 0

A p p e n d ix D : N o r m a l it y t e s ts a n d Ex p e r im e n t a l D a t a .. 2 6 5

D l. Normality Test o f the Car Study..265

D2 Normality Tests fo r the Line-Edit Study... 267

D3. Experimental Database..268

ix

List of Tables

T a b le 2 .1 : T ask s a n d a c t iv it ie s r e q u ir in g c o d e u n d e r s t a n d in g (s o u r c e , V o n M a y r h a u s e r a n d V a n s , 1 9 9 5) 2 5

T a b le 2 . 2 : Co r r e s p o n d e n c e b e t w e e n t e x t r e l a t io n s , k n o w l e d g e s t r u c t u r e s , m e n t a l r e p r e s e n t a t io n , a n d m o d e l

in P e n n in g t o n m o d e l o f p r o g r a m c o m p r e h e n s io n (s o u r c e P e n n in g t o n , 1 9 8 7 a) .. 3 6

T a b le 2 . 3 : C o r r e s p o n d e n c e b e t w e e n t e x t r e l a t io n s , k n o w l e d g e s t r u c t u r e , m e n t a l r e p r e s e n t a t io n , a n d m o d e l

IN BURKHARDT ET AL.'S MENTAL MODEL OF 0 0 PROGRAM COMPREHENSION. (SOURCE: BURKHARDT ET AL. 2 0 0 6 b) .

..................................... 4 1

T a b le 2 .4 P r e d ic t io n s a b o u t t h e c o m p r e h e n s io n o f d if f e r e n t t y p e s o f k n o w l e d g e c a t e g o r ie s in 0 0 a n d n o n 0 0

PROGRAMS... 6 3

T a b le 4 .1 : T h e c o r r e s p o n d in g LO C o f e a c h p r o g r a m in e a c h s t u d y ... 1 2 5

T a b le 4 .2 : C o r r e s p o n d e n c e b e t w e e n k n o w l e d g e c a t e g o r ie s , k n o w l e d g e s t r u c t u r e s , a n d m e n t a l

REPRESENTATION OF 0 0 PROGRAM COMPREHENSION MODEL USED IN THIS INVESTIGATION.. 1 2 6

T a b le 5 . 1 : I n s t it u t io n s a n d p r o g r a m m in g l a n g u a g e t a u g h t in e a c h e x p e r im e n t a l s e t ... 1 3 4

T a b le 5 . 2 : G r o u p a l l o c a t io n s f o r e a c h e x p e r im e n t s e t o f t h e C a r s t u d y ... 1 3 6

T a b le 5 .3 : St a t is t ic a l s u m m a r y o f t h e t im e o f t h e C a r s t u d y ...1 4 1

T a b le 5 .4 : M e a n r a n k s o f t im e in t h e Ca r s t u d y ... 1 4 2

T a b le 5 .5 : M a n n - W h it n e y t e s t res u lts o f t im e in t h e Ca r s t u d y ...1 4 2

T a b le 5 .6 : St a t is t ic a l s u m m a r y o f t h e p e r f o r m a n c e o f t h e Ca r s t u d y ... 1 4 3

T a b le 5 -7 : Ra n k s o f p e r f o r m a n c e in t h e Ca r s t u d y ..1 4 3

T a b le 5 .8 : M a n n - W h it n e y t e s t r e s u lt o f p e r f o r m a n c e in t h e Ca r s t u d y ...1 4 3

T a b le 5 .9 : M e a n r a n k s o f p e r f o r m a n c e s in k n o w l e d g e c a t e g o r ie s b e t w e e n p r o g r a m v e r s io n o f t h e Ca r s t u d y

.. 1 4 7

T a b le 5 .1 0 : M a n n - W h it n e y t e s t r e s u lts o f p e r f o r m a n c e s in k n o w l e d g e c a t e g o r ie s b e t w e e n p r o g r a m v e r s io n s

o f t h e Ca r s t u d y .. 1 4 7

T a b le 5 .1 1 : St a t is t ic a l s u m m a r y o f t h e p e r f o r m a n c e in e a c h k n o w l e d g e c a t e g o r y o f A ll g r o u p s o f t h e Ca r

STUDY.. 1 4 9

T a b le 5 .1 2 : Ra n k s o f A ll g r o u p 's p e r f o r m a n c e in e a c h k n o w l e d g e c a t e g o r y o f t h e Ca r s t u d y1 5 0

T a b le 5 .1 3 : Kr u s k a l - W a ll is t e s t r e s u lt o f A ll g r o u p 's p e r f o r m a n c e in e a c h k n o w l e d g e c a t e g o r y in t h e C a r

STUDY... 1 5 0

T a b le 5 .1 4 : P a irw is e c o m p a r is o n o f A l l g ro u p s ' p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f t h e C a r s tu d y 1 5 1

T a b le 5 .1 5 : S t a t is t ic a l s u m m a ry o f t h e p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f N o n -O b je c t g r o u p in t h e

C a r s t u d y ... 1 5 2

T a b le 5 .1 6 : R an ks o f N o n -O b j e c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f th e C a r s t u d y 1 5 3

T a b le 5 .1 7 : K r u s k a l - W a l l is t e s t r e s u l t o f N o n -O b j e c t g ro u p 's p e r fo r m a n c e in e ac h k n o w le d g e c a te g o r y o f

t h e C a r s t u d y ... 1 5 3

T a b le 5 .1 8 : P a irw is e c o m p a r is o n o f N o n -O b j e c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f th e C a r

STUDY.. 1 5 4

T a b le 5 .1 9 : S t a t is t ic a l s u m m a ry o f t h e p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f O b j e c t g r o u p o f t h e C a r

STUDY........................ 1 5 5

T a b le 5 .2 0 : Ra n k s o f O bject g r o u p 's p e r f o r m a n c e in ea c h k n o w l e d g e c a t e g o r y o f t h e Ca r s t u d y 1 5 6

T a b le 5 .2 1 : K r u s k a l - W a l l is t e s t r e s u l t o f O bje c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f th e C a r

STUDY... 1 5 6

T a b le 5 .2 2 : P a irw is e c o m p a r is o n o f O b j e c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f t h e C a r s tu d y

... 1 5 6

T a b le 5 .2 3 : St a t is t ic a l s u m m a r y o f p e r f o r m a n c e in t h e Lin e -E d it s t u d y ...1 6 1

T a b le 5 .2 4 : Ra n k s o f p e r f o r m a n c e in t h e L in e -E d it s t u d y ...1 6 2

T a b le 5 .2 5 : M a n n - W h it n e y t e s t r e s u lt o f p e r f o r m a n c e in t h e L in e - e d it s t u d y ..1 6 2

T a b le 5 .2 6 : M e a n r a n k s o f p e r f o r m a n c e s o f e a c h k n o w l e d g e c a t e g o r y b e t w e e n p r o g r a m v e r s io n s o f t h e L in e -

EDIT STUDY..1 6 5

T a b le 5 .2 7 : M a n n - W h it n e y t e s t r e s u lts o f p e r f o r m a n c e o f e a c h k n o w l e d g e c a t e g o r y b e t w e e n p r o g r a m

VERSIONS IN THE LlNE-EDIT STUDY.. 1 6 5

T a b le 5 .2 8 : S t a t is t ic a l s u m m a ry o f th e p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f A l l g ro u p s o f th e L ine-

E d it s t u d y ..1 6 6

T a b le 5 .2 9 : Ra n k s o f A ll g r o u p 's p e r f o r m a n c e in e a c h k n o w l e d g e c a t e g o r y o f t h e L in e -E d it s t u d y1 6 7

T a b le 5 .3 0 : K r u s k a l - W a llis t e s t r e s u lt o f A ll g r o u p s ' p e r f o r m a n c e in e a c h k n o w l e d g e c a t e g o r y o f t h e L in e -

EDIT STUDY..1 6 7

T a b le 5 .3 1 : S t a t is t ic a l s u m m a ry o f th e p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f N o n -O b j e c t g r o u p in th e

L in e -E d it s t u d y ...1 6 8

T a b le 5 .3 2 : R an ks o f N o n - O b j e c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f th e L in e -E d it s tu d y . 1 6 9

T a b le 5 .3 3 : K r u s k a l - W a l l is t e s t r e s u l t o f N o n - O b je c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f

THE LlNE-EDITSTUDY.. 1 6 9

T a b le 5 .3 4 : P a irw is e c o m p a r is o n o f N o n - O b je c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f th e L ine-

E d it s t u d y ..1 7 0

T a b le 5 .3 5 : S t a t is t ic a l s u m m a ry o f p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f O b j e c t g r o u p o f t h e L in e -E d it

STUDY.. 1 7 1

T a b le 5 .3 6 :R a n k s o f O b j e c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f th e L in e -E d it s t u d y 1 7 2

T a b le 5 .3 7 : K r u s k a l - W a l l is t e s t r e s u l t o f O b je c t g ro u p 's p e r fo r m a n c e in each k n o w le d g e c a te g o r y o f t h e L ine-

EDIT STUDY..1 7 2

T a b le 5 .3 8 : S u m m a r y o f t h e s t u d ie s ' f in d in g s ...1 7 3

T a b le D . l : D e s c r ip t iv e s t a t is t ic s , s k e w n e s s a n d k u r t o s is t e s ts r e s u lts f o r n o r m a l it y f o r Ca r s t u d y2 6 5

T a b le D.2: T h e k o l m o g o r o v - s m ir n o v t e s t r esu lts f o r n o r m a l it y f o r Ca r s t u d y ...266

T a b le D .3 : D e s c r ip t iv e s t a t is t ic s , s k e w n e s s , a n d k u r t o s is te s ts res u lts o f n o r m a l it y in t h e Lin e -E d it s t u d y . . . 2 6 7

T a b le D.4: T h e k o l m o g o r o v - s m ir n o v t e s t r esu lts o f n o r m a l it y in t h e Lin e -E d it s t u d y ... 268

T a b le D.5: Ro w d a t a f o r t h e r u n o f t h e C a r s t u d y ..270

T a b le D.6: Ro w d a t a f o r t h e r u n o f t h e Lin e -E d it s t u d y ..279

List of Figures

F ig u r e 3.1: Ca s e St u d y M e t h o d (S o u r c e , Y in , 2009).. 75

F ig u r e 4.1: C l a s s if ic a t io n o f t h e p r o b l e m s u s e d in t h e r e s e a r c h 112

F ig u r e 4.2 T h e c o m p l e t e r e f in e m e n t o f t h e CD1... 117

F ig u r e 4.3 t h e c o m p l e t e r e f in e m e n t o f CD2...118

F ig u r e 4.4 T h e c o m p l e t e r e f in e m e n t o f LD1...120

F ig u r e 4.5: T h e c o m p l e t e r e f in e m e n t o f LD2..121

F ig u r e 5 .1 : G r a p h ic a l r e p r e s e n t a t io n o f t h e s u b je c t s ' r a n k in g f o r e a c h p r o g r a m v e r s io n o f t h e Ca r s t u d y . 1 4 4

F ig u r e 5 .2 : G r a p h ic a l r e p r e s e n t a t io n o f t h e p e r f o r m a n c e in k n o w l e d g e c a t e g o r ie s f o r e a c h p r o g r a m v e r s io n

o f t h e C a r s t u d y ..1 4 6

F ig u r e 5 .3 : G r a p h ic a l r e p r e s e n t a t io n o f t h e s u b je c t s ' r a n k in g o f e a c h p r o g r a m v e r s io n in t h e Lin e -E d it s t u d y .

 1 6 2

F ig u r e 5 .4 : G r a p h ic a l r e p r e s e n t a t io n o f p e r f o r m a n c e in e a c h k n o w l e d g e c a t e g o r y f o r ea c h p r o g r a m v e r s io n

IN THE LINE-EDIT STUDY... 164

F ig u r e 6.1: E l e m e n t s o f s o f t w a r e c o m p r e h e n s io n m o d e l s (s o u r c e : O 'B r ie n , 2003).. 186

F ig u re 6 .2 T h e o p e r a t io n a l v ie w o f t h e m o d e l used in th is in v e s t ig a t io n ... 1 8 8

F ig u r e 6 .3 : T h e e m p ir ic a l l y g r o u n d e d b a s e d p r o p o s e d m o d e l o f O O p r o g r a m c o m p r e h e n s io n1 9 2

Chapter 1 Introduction

In a society where considerable reliance is placed on computer software, it is

vital constantly to improve software construction methods and practitioner skills,

so that ultimately we are able to justify, and have confidence in, this reliance.

The motivation and perhaps the ultimate goal of this thesis is to attempt to have

a direct bearing on this continuing need for improved software. However, the

immediate aim to which this thesis addresses itself is to contribute to the field of

software engineering by improving our understanding of the program

comprehension process. This investigation, in common with many that involve

the study of human behaviour, is empirical in nature. It employs the established

principle of such research known as the "scientific method", which consists of

conducting empirical experiments to gather, evaluate, and interpret empirical

evidence.

This chapter is structured as following: first, the cognitive benefits of Object

Oriented (00) programs and the suggestions from research on empirical

evaluation of 0 0 are highlighted. Secondly, the approach followed in this thesis

to investigating 0 0 program comprehension and the idea underpinnings this

approach is introduced. The main thesis questions and aims are given then.

Finally, the structure of the thesis is outlined.

There is a reasonable argument about the cognitive benefits of the Object

Oriented (00) approach; Briand et al. 1999 and Detienne 2006a are considered

to be good sources for some of the claims. Briand et al. 1999 claimed that

although some concepts of an 0 0 approach (class, encapsulation, inheritance,

client-server relationships, polymorphism, and decentralised architecture) have

changed the nature of software development, these concepts have not brought

the unconditional enhancements that were promised, for they have also set a

number of new challenges from human factors as well as software engineering

perspectives. It is likely that various 0 0 concepts will show different advantages

and drawbacks and there is a necessity to understand them better. Advocators

of the 0 0 approach (for example, Detienne, 2006a) are claiming that there is a

direct correspondence between an 0 0 approach and the nature of how people

think about a computation problem. Therefore, the breakdown of a problem's

entities into classes may be easier in the 0 0 approach than by any other

approach, and the mapping from problem domain to the program domain can

be relatively easier and straightforward (Rosson, 1990; Borgida, 1985; Detienne

2006a). Taking a starting position that the 0 0 approach is connected more

closely to the problem domain, it has been thought that it might be of benefit not

only in program design but also in program maintenance, comprehension, and

reuse (Daly, 1996; Burkhardt et.al. 2006a, b).

Research on empirical evaluation of 0 0 began to appear as early as 1995, for

example, in the Special Issue of Human Computer Interaction on Object-

Oriented programming, in which a number of empirical studies on 0 0

technologies were undertaken (for example: Daly 1996; Corritore and

Wiedenbeck, 1999; Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al,

1999; Harrison, 2000; Khazaei, 2002; Burkhardt et al. 2006a, b; Detienne,

2006a). There is a need to refocus some of the research on replicating prior

studies across different programming approaches and environments, taking into

account the methodological issues, limitations, and threats of these prior studies.

These studies had also suggested some further research directions. For

example: deploying different 0 0 programming languages may differ in

2

significant ways from the programming language used, determine the role-play

in the comprehension of specific 0 0 concept, determine the stages by which

programmers develop more balanced what so called "mental representations"

in 0 0 approach, and determine the factors' effect on the comprehension. All

these above have started to help in establishing a solid body of empirical

knowledge from which general conclusions can be drawn. Most of these

studies concentrate on program design and reuse, for example Detienne,

(2006b) and Pennington, Lee and Rehder, (1995). However, the number of

empirical studies of an 0 0 approach is still comparatively limited compared to

the rapid growth of this technology in both industrial and educational fields,

especially empirical work on 0 0 program comprehension.

Program comprehension is important, and yet difficult. It is an integral part of

the programming process, playing a role in activities such as coding, debugging,

and maintenance. Unfortunately, computer science students, especially those

who take introductory programming courses, (hereafter referred to as novices)

often find it extremely problematic to understand a program; the types of

difficulty have been well documented (see Mayer, 1988 for a summary of some

of these). .Novices' problems may be compounded by the fact that

comprehension per se is often not an explicit part of the curriculum. This may

be because attempting to isolate the skill of comprehension and teach it directly

can prove to be difficult, as there seems to be no universally agreed definition of

what it is, and how it proceeds. This is unfortunate, as comprehension is an

implicit first step in coding: learning a new programming approach almost

inevitably starts with exposing novices to a short program (e.g. the ubiquitous

'hello world') and then writing similar programs. Thus, even before writing

programs, novices must be able to understand them. Good (1999) claimed that,

3

if teaching comprehension is difficult, a number of other techniques might be

used to approach program comprehension in a more indirect way, for example,

by choosing a programming approach which claims to make comprehension

less painful, or by building learning environments to tackle program

comprehension difficulties in novel ways. These are, however, not without their

own problems; Ben-Ari (2001), for example, argued that many introductory

programming courses teach programming starting with an 0 0 approach.

However, several programming teachers and educators argue it is impossible

for novices to properly understand and use 0 0 concepts without a viable

understanding of fundamental programming concepts such as variables and

assignment.

This thesis takes the view that novice program comprehension should be

supported as a recognised activity rather than as a by-product of learning to

program. It envisages an approach based on the combination of a number of

external factors, many of which have been presented in some form in previous

solutions to novice programmer difficulties. It is felt that a more detailed

examination of the effects on comprehension on a programming approach,

combined with a change in the conceptualisation of program comprehension

itself, have implications for the ways in which novice problems can be

addressed: by moving from a traditional "process" view to one based on

information "knowledge" entities, novel types of program comprehension

support can be envisaged. By combining this conceptualisation with an

approach which takes into account potential novice difficulties with particular

types of knowledge display, the characteristics of problems novices make use

of as programming examples, and the type of solution to this particular problem

4

to learning programming, this thesis lays the groundwork for an empirically

grounded based model for 0 0 program comprehension.

This thesis suggests a new approach to investigating 0 0 program

comprehension which is based on lessons learned from previous approaches.

The proposed approach represents in many ways an ideal one. It relies on a

number of as yet unsubstantiated suppositions about ways in which 0 0

program comprehension might usefully be fostered. This thesis undertakes a

detailed exploration of some of these hypotheses, looking at the elements

influencing 0 0 program comprehension and the ways in which they interact.

The outcome of the thesis should inform the design of empirically grounded

proposed model of 0 0 program comprehension.

This thesis puts forward the idea of replacing process with types of knowledge.

Many differences in existent program comprehension models are not so much

related to the knowledge necessary for 0 0 program comprehension, yet they

do not incorporate knowledge that is considered important to 0 0 program

comprehension. They mostly relate to the process used in searching for this

knowledge. Therefore, rather than focusing on the temporal aspects of program

comprehension, one can focus on the entities thought to be involved in

comprehension. It is postulated that the comprehension process can be

conceived of as combinations of steps, where each step involves the search for

a particular type of knowledge. Different comprehension directions/processes

(e.g. top-down, bottom-up, and mixed) would therefore involve different

combinations of steps, rather than trying to determine a fixed order on the sets

of steps themselves. In other words, the focus should be on the product of each

particular step, rather than the process which combines them. This implies a

less prescriptive approach, which leads to the following research question: Can

we teach novices about the different types of knowledge present in a program

text, and how to allocate that knowledge, providing support for them as they do

so, rather than limiting teaching to a single, invariant process?

Knowledge types are a way of describing different types of knowledge or

information, as Pennington (1987a, b) called them, which are present in the

program text, whose detection is necessary for program comprehension

(Pennington, 1987a). In the non 0 0 approach, these include such entities as

function, data flow, control flow, etc. However, in the 0 0 approach, Burkhardt et

al., (2006a, b) have expanded the knowledge proposed by Pennington to

include other knowledge that they consider more related to 0 0 concepts, such

as problem classes and the client-server relationship. Novices’ support could be

based on these types of knowledge, first by informing novices what they are,

and secondly, by helping them to learn how to recognise them in program text.

Despite their potential usefulness, unanswered questions remain, both on a

theoretical and empirical level. In theoretical terms, both Pennington and

Burkhardt et al. sought to embed knowledge types within a theory of program

comprehension, based on Kintsch and van Dijk's theory of text comprehension

(Kintsch and van Dijk, 1978; van Dijk and Kintsch, 1983). This thesis examines

whether knowledge types, especially in the case of 0 0 programs, can have a

useful role out with this theory of comprehension. For an empirical perspective,

work on knowledge types has focused on finding empirical evidence for the

comprehension theory described above, and on uncovering the nature of

programmers' understanding, which represents their comprehension of different

sets of knowledge, (Pennington, 1987a, b; Corritore and Wiedenbeck, 1991;

Ramalingam and Wiedenbeck, 1997; Corritore and Wiedenbeck, 1999;

6

Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al, 1999; Khazaei and

Jackson, 2002; and Affandy et al 2011). Issues such as the influence of

particular elements (in this thesis, the class concept, the problem characteristics,

and solution decompositions) on the ease of comprehension of these different

types of knowledge have not been investigated in detail.

1.1 Main Thesis Questions and Aims

The proposed model of 0 0 program comprehension centres on activities such

as searching for and identifying particular types of knowledge in a program. As

such, the features of the base programming approach (in this case we consider

the concept of class) may play a role in determining the ease (or difficulty) with

which different knowledge can be comprehended compared to a program

without this particular concept. The characteristics of the problem used and thus

the possible solution decompositions derived and used in designing the

program may also play a key role in comprehending these different types of

knowledge. The thesis attempts to assess the ease of comprehension of 0 0

programs for different problem characteristics that can possess different

possible solution decompositions. This suggests that preliminary work should

focus on issues such as the relationship between these elements and the

comprehension of different types of knowledge. In light of this aim, the following

lists the research questions explored in this thesis:

1. Are 0 0 programs easier to comprehend than non 0 0 programs? How to go

about empirically investigate 0 0 program comprehension?

2. What are the existing models of program comprehension? What are the

main types of knowledge appropriate to investigate 0 0 program

comprehension?
7

3. How do different elements, such as, class concept, problem characteristics,

and solution decomposition influence the comprehension of 0 0 programs?

To effectively answer these research questions, the aims of this thesis are to:

• provide a rich view of the difference in the ease of comprehension

between 0 0 programs and non 0 0 programs;

• evaluate current models of 0 0 program comprehension;

• propose a new empirically grounded based model of 0 0 program

comprehension.

1.2 Outline of the Thesis

This thesis examines the role which different types of knowledge, hypothesised

to be present in a program, play in program comprehension. It does that by

examining the influence of class concept, the problem characteristics, and

solution decomposition in the comprehension of object based programs versus

non object based programs. In this thesis, Object based programs are defined

as software programs written in 0 0 way. This was done by mainly using of

class concept. However, the non object based programs are defined as

software programs written in non 0 0 way. More precisely, the non object based

programs are written without using of class concept. As such it does not make

the claim that any of the hypotheses or findings described are in any way

applicable to expert programmers. However, it considers both novice and

experienced programming students. Furthermore, it considers primarily the

notion of program comprehension rather than program design.

Chapter 2 provides an overview of the 0 0 programming approach. It then

reviews generic models of program comprehension, looking at how the best-

known models of comprehension, based on their primary emphasis, fit into and

might be relevant to 0 0 program comprehension. It also reviews empirical

literature in related empirical research with respect to 0 0 program

comprehension, and looks at the notion of program comprehension as derived

from different types of knowledge, before going on to describe experiments

which have looked specifically at these types of knowledge. Finally, it identifies

various implications of using an 0 0 programming approach for studying

program comprehension.

Chapter 3 describes the research methodology, research design, and research

procedures considered appropriate to the empirical work reported in this thesis.

It examines methodologies used in empirical software engineering research and

establishes a framework for conducting this investigation.

Chapter 4 discusses the rationale behind using specific settings of the

investigation. It identifies important empirical issues that should be given more

consideration by researchers in the design of comparable experiments.

Chapter 5 reports the design and conduct of a set of two studies (Car and Line-

Edit) carried out using the tailored experimental methodology discussed in

chapter 4. It also presents a statistical analysis of the studies' findings.

Chapter 6 includes an interpretation of the findings obtained in the studies

described in Chapter 5 and evaluation of the program comprehension model

used in this investigation. An empirically grounded based of 0 0 program

comprehension model is proposed. It then discusses methodological issues and

the way in which they may affect the investigation's findings. Suggestions for

9

several pedagogical issues to consider when teaching 0 0 programming come

at the end of this chapter.

The final chapter summarises the findings of this thesis. It states clearly the

main contributions. It also summarises the main findings of the thesis and ends

with suggestions for further work.

10

Chapter 2 Literature Review

2.1 Introduction

The purpose of this chapter is to provide information related to the main issues

of this thesis. These issues are summarised in four major sections. The first

section provides an overview of the 0 0 programming approach and its

associated concepts. It also reviews the cognitive benefits of 0 0 approach and

its related claims about the ease of comprehension of 0 0 programs. The

second section presents a brief discussion about the existent theories,

strategies, and models of program comprehension in general and how they can

be related specifically to 0 0 program comprehension. The third section

describes empirical work on 0 0 program comprehension. It also discusses

how elements of problem characteristics and solution decompositions can

influence the comprehension of 0 0 programs. Finally, the fourth section gives

details about implications of the 0 0 approach on different types of knowledge

that are considered important to 0 0 program comprehension. It then gives a

research plan that to be followed in this investigation

2.2 Object-Oriented Approach and concepts

Weinberg (1992) makes an interesting statement on the nature of programming

in the preface of his book on quality software management when he says:

"When I didn't think right about a program, the program bombed. The

computer, I learned, was a mirror of my intelligence, and I wasn't too

impressed by my reflection"

11

He contends that a program is a 'mirror' of the intelligence of the programmer. If

we are to accept Weinberg's comment as being realistic about the nature of

programming, then we need to understand how to train programmers to

understand the intellectual issues that are involved in programming. Weinberg's

statement provides some insight into how he, as a programmer, understood

what a program was, or what he conceived were the intellectual characteristics

that would be reflected in a good program.

0 0 programming is described as a programming approach. A programming

approach is defined in a number of different ways, each emphasising different

aspects of the concept.

Ambler et al. (1992) describes a programming approach as:

“A collection of conceptual patterns that together model the design

process and ultimately determine a program’s structure.” (p 28).

In contrast, Stolin and Hazzan (2007) initially talk about approach in a generic

sense that reflects the concept of approach. For their investigation into how the

concept of a programming approach is understood, they use the definition:

"Programming paradigms are heuristics used for algorithmic problem

solving. A programming paradigm formulates a solution for a given

problem by breaking the solution down to specific building blocks and

defining the relationship among them" (p 65).

Programming approach would appear to be a way of thinking and constructing

software solutions. Each approach will bring its own tools and techniques and

its own way of thinking through how to construct software. Pfleeger (2010)

defines an 0 0 approach as:

12

"An approach to software development that organises both problem

and Its solution as a collection of discrete objects; both data structure

and behaviour are included in the representation”, (p 286)

She also identifies the 0 0 approach by seven concepts: identity, abstraction,

classification, encapsulation, inheritance, polymorphism, and persistence

(Pfleeger 2010). These concepts have changed the nature of software

development; however, Briand et al. (1999) argue that they have set a

considerable debate about their appropriateness from both human factors and a

software engineering perspective.

The concept of identity in an 0 0 approach refers to the fact that data are

organised into discrete, distinguishable entities called "class". A single class has

states and behaviours associated with it. Class structure represents one of the

essential concepts of the 0 0 approach. Classes are program entities which

integrate a structure defined by a type and functionalities. Class is a construct

that is defined as a template used to instantiate objects of the class; these

objects are instances of classes. Objects and classes will be used

interchangeably throughout this thesis. Attributes and methods are defined for

the entire class. A class is defined as a structure (a type) and a set of methods.

A method is a function attached to a class that describes a part of the behaviour

of the objects which are instances of this class (Detienne, 2006a).

Abstraction is essential for building any software system, whether it is 0 0 or

non 0 0 . Pfleeger (2010) contends that abstractions in 0 0 help to represent the

different viewpoints incorporated in the system being developed. Together, the

abstractions form a hierarchy that shows how different system entities relate to

one another. Detienne (2006a) argues that abstraction is obtained by the

means of encapsulation, polymorphism and late binding. Encapsulation means
13

an object owns its data and methods. The data and methods are private and

may be accessed and used by other objects only if the other objects send an

appropriate message to the owner. The initiating object may send the same
\

message to multiple objects which will act on it differently according to their own

interpretations. This is the property of polymorphism, which aids abstraction by

allowing messages to remain abstract. It is only during execution that the

system decides which method will be executed according to the object with

which the method is called. This property is referred to as late binding Pfleeger

(2010).

Classes can accelerate software development by reducing redundant program

code, testing and bug fixing. If a class has been thoroughly tested and is known

to be a 'solid work', it is usually true that using or extending the well-tested class

will reduce the number of bugs - as compared to the use of freshly-developed or

ad hoc code - in the final output. In addition, efficient class reuse means that

many bugs need to be fixed in only one place when problems are discovered. It

has been asserted that the 0 0 approach promotes reuse of software because

the code is encapsulated into objects and the internal details of each object are

hidden. The claim about reuse rests on an argument that hierarchies, which

form the model of classes, are well-suited for reuse (Johnson and Foote, 1988).

A programmer needs only to adopt a hierarchy appropriate for the domain of the

problem, and then provide the specialisation needed for a particular problem by

adding new low-level classes. Thus, much of the needed structure and

functionality already present in the higher levels of the class hierarchy is

automatically reused by inheritance Pfleeger (2010).

14

2.2.1 The Cognitive Benefits of Object-Oriented

Approach

Advocates of an 0 0 approach have made strong claims about what they called

the ‘naturalness’, ‘ease of use’, and ‘power’ of this programming approach

compared to the procedural programming approach (see for example: Meyer,

1988;Rosson and Alpert, 1990; Zhu and Zhou 2003; Detienne, 2006a, b).

Rosson and Alpert (1990) suggest that OO may be especially valuable in new

domains or when practised by relatively experienced designers. However, in the

procedural approach, problem decomposition is driven by generic programming

constructs and specialised design knowledge. In terms of the concepts of

problem and solution spaces introduced by Kant and Newell (2002), this implies

that reasoning in the problem space is not separate from reasoning in the

software solution space; thus, the objects are considered, but remain implicit.

Meyer (1988) does emphasise that objects can be picked directly from physical

reality and modelled in software. However, the emphasis is on the way in which

software addresses the needs of the problem domain through the development

of a model that describes that domain. As such, the model becomes

"If you have a good model for describing the problem domain, you will

find it desirable to keep a clear correspondence (mapping) between

the structure of the solution, as provided by the software, and the

structure of the problem, as described by the model" (p 47).

For Meyer, the programming approach becomes a way of thinking about the

problem domain. This idea is picked up by Quatrani (2003) who contends that

"Visual modelling is a way of thinking about problems using models

organised around real-world ideas." (p 13)

15

Concerning problem understanding, Meyer (1988) assumes that the

identification of classes should be easy as they form natural representations of

problem entities. Thus it seems particularly relevant to organise a model of

design around a software representation of these classes. Therefore, we can

say that in an 0 0 approach, decomposing the problem into a solution consists

of identifying the relations between objects and the associations between their

structures and the functionalities.

Detienne (2006b) argues that mapping between the problem domain and the

program domain should be more straightforward in an 0 0 approach than in a

procedural approach. She states that there is a direct correspondence between

the 0 0 approach and the way people naturally think about problem, therefore,

decomposition of a problem into classes may be easier in the 0 0 approach

than by any other approach, and programmers can easily switch from the

problem domain to the program domain. The theoretical argument in support of

ease of mapping between domains in 0 0 is that program classes are clear and

visible entities in the problem domain. They are represented as explicit entities

in the solution domain, and thus the mapping between the problem and solution

domains is simple and clear. The domain objects are identified and used to

structure the software system. Detienne (2006b) says that

"It has been suggested that 0 0 design, in its initial phase, is based

on understanding of the problem itself rather than on specialised

knowledge of design, in contrast, procedural design solutions are

structured by generic knowledge of programming rather than problem

domain entities" (p 60).

The activity of problem decomposition with 0 0 languages is more likely to be

derived from a designer’s knowledge about the structure of the world than by

16

knowledge about the design process or particular software design. However, in

the case of the procedural approach, this activity is more likely to be derived

from generic programming constructs and specialised design knowledge.

In their endeavour to propose an 0 0 methodology as first taught, Zhu and Zhou

(2003) argue that 0 0 is not only a programming approach, but also a

methodology that deduces from general concepts to the special and induces

from the special to the general. These methods are similar to a human’s natural

thinking style. Therefore, its basic concepts (identity, abstraction, information

hiding, encapsulation, and modularity) can be introduced as a very powerful

methodology for both thinking and programming. The authors suggest that the

general concept of 0 0 can be effectively shown from a methodology viewpoint

as following: everything in the world is an object. For example, in the real world,

flowers, trees, and animals are objects; students and professors are objects;

desks, chairs, classrooms, and buildings are objects; universities, cities, and

countries are objects; even the world and the universe are objects. The second

view is that: every system is composed of objects. A subject, such as electrical

engineering, computer engineering, and history, is also an object. A cultural

system includes history, language, food, costumes, relationships, and people

etc. that are all objects; an educational system includes schools, students,

professors, administrators, etc. that are also objects; an economic system

includes objects like economic regulations, services, customers, and currency,

etc.; a control system includes a plant to be controlled, a controller, sensors,

actuators, and so on; a computer system includes monitor, keyboard,

motherboard, CPU, memory, I/O devices, operating systems, and application

software that are all objects. The third methodological perspective is that the

development of a system X is caused by the interactions among the objects not

17

only inside but also outside X. For example, a specific X Institute is a system, its

development is caused by the interactions among students, tutors, staffs, and

even government officers of the country who are outside X (Zhu and Zhou

(2003).

Detienne (2006a) claimed that, since an 0 0 approach is more intimately

connected to the problem domain, it might be of benefit not only in program

design but also in program comprehension. Ramalingam and Wiedenbeck

(1999) stated that:

"In program design the problem is establishing mappings between

real world entities and their representation in a program. In program

comprehension the problem is making reverse mappings from the

given program to comprehending of the real world entities and actions

involved'fp 134).

Moreover, Detienne (2006a) argues that classes allow a clear correspondence

(mapping) between the model and the domain, making it easier to. design, build,

modify and even comprehend these models. Classes also provide some control

over the often challenging complexity of such models. Computer programs

usually model aspects of some real or abstract world (the Domain). Because

each class models a concept, 0 0 advocators argue that classes provide a

more natural way to create such models. Each class in the model represents a

noun in the domain, and the methods of the class represent verbs that may

apply to that noun. For example, in a typical business system various aspects of

the business are modelled, using such classes as Customer, Product, Worker,

Invoice, Job, etc. An Invoice may have methods like Create, Print or Send; a

Job may be Performed or Cancelled, etc. Once the system can model aspects

of the business accurately, it can provide users of the system with useful

18

information about those aspects. However; a number of different difficulties and

negative effects of other approaches are associated with 0 0 design activity,

such as difficulties associated with process of class creation, difficulties in

articulating declarative and procedural aspects of the solution (e.g. the

hierarchy of classes and the main procedure), misconceptions about some

fundamental 0 0 concepts, and the transfer effect associated with shifting from

traditional design to 0 0 design. Detienne (2006a) provides a comprehensive

survey of these difficulties).

Rist (1996a) claimed that the structure of an 0 0 system is built around its

control flow, data flow, and class encapsulation. This system is created by the

interaction between the plans and objects in the system. He has defined a plan

as a set of actions that, when placed in a correct order, achieves some desired

goal. Applying this to 0 0 systems, the actions in a plan are encapsulated in a

set of routines, and the routines are divided among a set of classes and

connected by control flow. He claims that there is an orthogonal link between

plans and objects in 0 0 ; he contends that:

"Plans and objects are orthogonal, because one plan can use many

objects and one object can take part in many plans. The code that

executes a plan will thus be spread over several classes." (p 555).

This orthogonality allows the structure of a system to be shown as a lattice of

nodes, where a node marks the intersection between a plan and an object. Rist

argues that this can also be considered as a reflection of the real world, where a

plan can use many objects (i.e., a plan for a cake uses flour, eggs, water, and

so on), and an object can be used in many plans (i.e., an egg can be used to

make a cake, omelette, souffle and so on).

19

There is a wealth of literature that takes for granted that the 0 0 approach

entails a greater focus on the problem, thus it should facilitate not only problem

decomposition but also program design and thus program comprehension.

However, other studies argue that the 0 0 approach does not support the

claims mentioned and argue in favour of the procedural approach being natural.

Neubauer and Strong (2002) stated that

"It is true that the world around us consists of objects which possess

attributes and have behaviours. But good object-oriented

programming does not depend so much upon the identification of

objects (as challenging as that can be) as upon the ability to grasp

complex patterns of interactions among many objects. While it is

possible to anticipate and run many scenarios through an object-

oriented application, a complex application has a very large number

of possible states. At some point these complex systems begin to

exhibit unanticipated behaviour." (pp 284-285).

It seems clear that the ease of comprehension of 0 0 programs is mainly based

on the nature of the problem domain “problem characteristics", and solution

decompositions. However, little empirical evidence exists in supporting this

claim. There is a need to assess the claim about the ease of comprehension of

0 0 programs on the basis of these elements. In terms of the problem domain,

the claim cannot be valid for all types of problems, where the classes are not

clear and visible in the problem domain. The overall aim of this thesis is to focus

on assessing the ease of comprehension of 0 0 programs for different problem

types that can possess different possible solution decompositions.

20

2.3 Program Comprehension

This section provides a description of program comprehension and considers

the importance of program comprehension in the field of software engineering.

2.3.1 What is the Definition of Program

Comprehension?

Paradoxically, literature on comprehension tends not to define comprehension

explicitly, perhaps because it seems so naturally obvious, in the same way that

research papers on reading do not begin by asking what reading is. However, it

may be because comprehension, like reading, covers a wide range of activities,

with subtle differences between them.

From the perspective of Biggerstaff et al, (1993), a programmer starts to

construct an understanding of an unknown software system. He/she is creating

an informal, human oriented expression of computational intent. The creation of

this expression happens through a process of analysis, experimentation,

guessing and puzzle-like assembly. When it comes to a definition of what

program comprehension means, we follow the explanation by Biggerstaff et al.

(1993):

“A person understands a program when able to explain the program,

its structure, its behaviour, its effects on its operation context, and its

relationships to its application domain in terms that are qualitatively

different from the tokens used to construct the source code of the

program. ” (p 482)

Pennington and Grabowski (1990) have also offered a more precise description

of the program comprehension task:

21

“Understanding a program involves assigning meaning to a program

text, more meaning than is literally 'there\ A programmer must

understand not only what each program statement does, but also the

execution sequence (control flow), the transformational effects on

data objects (data flow), and the purposes of groups of statements

(function). In order to do this, the programmer will employ a

comprehension strategy that co-ordinates information 'in the program

text' with the programmer’s knowledge about programs and the

application area. This results in a mental representation o f the

program meaning. ” (p 54)

From these descriptions, one possible reason why a general definition of

comprehension is not forthcoming is that program comprehension is a highly

individual activity. Therefore, the scope of this activity varies from person to

person. It can involve an attempt to comprehend an entire program in detail,

looking for a specific piece of information in the program, or acquiring a general

overview of the program. Since program comprehension is an individual activity,

persons who are carrying out the activity could have different levels of previous

experience from different domains. Moreover, a person attempts to comprehend

program code for a particular programming task (i.e., maintenance, debugging,

transferring some aspect of the program to another person, etc.). Since the

nature of the task varies, they will necessarily have different requirements in

terms of the type and the amount of information extracted from the program and

the way it is combined. Comprehension activity also can involve experience

about programming domains with very different programming approaches. Each

programming approach should have its own characteristics which could largely

affect the comprehension process.

Numerous attempts have been made to derive a theory of program

comprehension from various points of views. Good (1999) contends that these

22

views vary, focusing on the processes which arise when people try to

comprehend programs, the kind of prior experience they have about

programming, the mental representations they construct during the

comprehension process, and the role of information the programmer extracts

from the program. The author adds that program comprehension can be seen

as multi-faceted, encompassing different aspects. There is a need for a generic

definition of program comprehension. This definition can serve as a framework

to position theories and research on program comprehension, and therefore will

lead to better understanding of the relationships between these various aspects.

Good (1999) provides a notable generic model with a definition of program

comprehension:

“Given a program in a particular language, program comprehension is

a process in which the programmer uses prior knowledge about

programming and information present in the program to form a

dynamic, evolving model of the program which can then be applied to

a task.” (p 14)

She highlights a number of interrelated entities and processes, which are

central to theories of program comprehension. These entities represent:

comprehension processes and strategies, programming knowledge, mental

models of the program, information contained in the program, and purposes of

the comprehension.

Despite all attempts to provide a useful description of program comprehension

and highlight entities and processes that form theories and models of program

comprehension, they lack generalisation in terms of different programming

approaches. These attempts were carried out largely in the context of

procedural and imperative programming approaches and do not highlight the
23

major aspects and concepts of other programming approaches, especially the

0 0 approach. Since the descriptions provided are approach-dependent and our

research interests lie in the 0 0 approach, there is a need to either generalise

these descriptions, or to provide an OO-related description. This 0 0 description

could outline entities and processes that take into account 0 0 concepts to form

a theoretical framework of 0 0 program comprehension.

2.3.2 Program Comprehension from Different

Perspectives

Program comprehension could be considered as a necessary prerequisite and

plays a key role in several programming tasks. Works by Pennington, 1987a;

Corbi, 1989; von Mayrhauser and Vans, 1995; Spinellis, 2003, and Zaidman,

2006 suggest that more than half of software engineers' task time is spent in

program comprehension activity; more precisely, in maintenance tasks which

require a certain level of insight into the application to be maintained. Von

Mayrhauser and Vans (1995) have made a compilation of software

maintenance-specific scenarios in which program comprehension is a

necessary prerequisite activity in all maintenance tasks. Table 2.1 provides an

overview of these maintenance tasks.

24

Table 2.1: Tasks and activities requiring code understanding (source, Von Mayrhauser
and Vans, 1995)

Maintenance tasks Activities

Adoptive

Understand system.

Define adaptation requirements.

Develop preliminary and detailed adaption design.

Code changes.

Debug.

Regression tests.

Perfective

Understand system.

Diagnosis and requirements definition for improvements.

Develop preliminary and detailed perfective design.

Code changes/additions.

Debug.

Regression tests.

Corrective

Understand problem.

Understand system.

Generate/evaluate hypotheses concerning problem.

Repair code.

Regression tests.

Reuse

Understand problem, find solution based on close fit with

reusable components.

Locate components.

Integrate components

Code leverage

Understand problem, find solution based on predefined

components.

Reconfigure solution to increase likelihood of using

predefined components.

Obtain and modify predefined components Integrate

modified components

Being aware of the fact that program comprehension is a prerequisite in all

software evolution and maintenance tasks, improving the efficiency of program

comprehension activity will lead to a significant overall efficiency gain. Table 2.1

also shows clearly the link between various programming tasks and program

comprehension.

25

Shneiderman and Marey (1979) categorise the tasks of programming as

composition, comprehension, debugging, maintenance, and learning. The

learning task could reasonably cover the first four tasks as each includes skills

to be learnt. Learning how to comprehend a program is an open question in the

software engineering community.

Good (1999) has also highlighted a number of factors which may have caused

the lack of instruction in program comprehension. Firstly, many theories and

models of program comprehension do not take into account the fact that

program comprehension is multi-faceted. They try to propose an invariant

model for comprehending an entire program while they are taking a single

activity. Additionally, the issue of novice/expert variation is ignored in

comprehension models; this difference plays a role in the suitability of the

comprehension process the model provides. Von Mayrhauser and Vans (1995)

point out that prior knowledge is an important factor in applying some

comprehension processes, top-down process in particular, and so would not

even be available to novices, at least at the very beginning stage of

comprehension. However, in the 0 0 case the situation may be different: the

representation of the class, for instance, could facilitate comprehension for

novices (Detienne, 2006a).

Despite the above points, considering program comprehension as a process,

and describing this process in terms of a set of steps would be more valuable.

However, taking into account issues of variability and appropriateness of the

process for an explicit programming approach, it may seem sensible to consider

comprehension at a lower level of granularity rather than trying to explain the

whole process of comprehension from start to end. This makes a

26

comprehension model more widely applicable, possibly introducing a more

flexible approach to program comprehension that serves an explicit

programming approach.

2.3.3 Cognitive Theories of Program comprehension

Francois Detienne represents a good example of a comprehensive survey of

the history of cognitive models of program comprehension and sets of empirical

experiments over the past forty years (Detienne, 2002). She delves back to a

time in the early 1970s when the research lacked a theoretical framework to

underpin the evaluation of the software tools. Story (2005) added:

"it was neither possible to understand nor to explain to others why

one tool might be superior to other tools" (p 188).

All these lacks, however, have made it difficult to explain the mechanism of an

effect. In other words, cognitive models, which provide a richer explanation of

the processes of how an effect works, were not applicable. The research of

program comprehension started to borrow related theoretical frameworks from

other areas of research, such as text comprehension, problem solving, and

education (Storey, 2005). Using these theoretical underpinnings, this period is

characterised by the development of cognitive theories that give a rich

explanation of the way in which programmers comprehend software programs.

The perceived benefits of these would lead to more efficient and enriched

theoretical frameworks that provide rich and comprehensive descriptions of

program comprehension activity (Detienne, 2002; Storey, 2005).

As preliminary, this thesis will recount a brief survey of the different theoretical

frameworks of comprehension of natural language text, as these frameworks

27

represent the underpinning theoretical frameworks of program comprehension.

This will enrich the readers’ view about program comprehension models and

where they were derived from.

Following this section, a description of the ways in which program

comprehension can be categorised will be discussed. The aspects forming this

discussion are:

• program comprehension as a temporal activity

• program comprehension as strategies for deployment

• program comprehension as a construction of different knowledge categories

2.3.4 Program Comprehension as a Temporal

Activity

This section describes theories of program comprehension, many of which are

based on exploratory experiments; some of these have been empirically

validated - von Mayrhauser and Vans (1995) and Storey (2005) provide a

comprehensive survey of these theories. Good (1999) describes these theories

as “temporal theories”; she assumes that all these theories primarily focus on

the idea of a sequence which the programmer takes to comprehend a program,

and the progression direction in which they carry out this sequence. She also

reports that this sequence is primarily related to levels of abstraction and varies

based on the direction of the comprehension process (i.e., top-down, bottom-up,

and mixed). These models will also be discussed in terms of their

appropriateness to 0 0 programs.

28

2.3.4.1 Top-Down Models of Program

Comprehension

There are numerous theories that consider program comprehension to be top-

down. The most notable one is the behavioural theory of program

comprehension by Brooks (1983). He postulates that comprehension is the

reverse process to coding: while coding involves mapping from the problem

domain, possibly through several intermediate domains, into the programming

domain, comprehension is process of reconstructing different knowledge about

the programming domain and mapping it to the problem domain. This mapping

occurs through mainly hypothesis-driven processes and involves different but

closely related intermediate knowledge domains; the type of knowledge is

primarily based on the nature of the program under consideration. Brooks also

assumes that the mental model is built by successively generating and refining

hypotheses and by forming subsidiary hypotheses in a hierarchical top-down,

depth first manner. Several knowledge domains will act as cues and contribute

to refining and evaluating these subsidiary hypotheses, by searching for

beacons, until they can be matched to specific code in the program text. Brooks

has referred to beacons as:

"Sets of features that typically indicate the occurrence of certain

structures or operations within the code." (p 548)

Verification or rejection of these subsidiary hypotheses depends heavily on the

absence or presence of beacons. The process will be repeated until the code is

understood entirely.

Soloway and Ehrlich (1989) report that a top-down comprehension process

typically applies when the code is familiar and therefore the constructed mental

29

model will contain a hierarchy of goals and plans. A top-down comprehension

process presumes progression from a high level of abstraction to a lower level

of generation, refinement, and finally verification, of the hypotheses. Storey

(2005) also argued that this nature of direction requires a good level of

experience with the program code and therefore, this model will be

inappropriate for novices. However, there is no empirical evidence about the

inappropriateness of this model for novices in the case of 0 0 . Theoretically, in

modern 0 0 programming languages - with different hierarchical structure of the

classes, the levels of abstractions, and comparatively readable programming

languages’ syntax - a top-down model could be assumed to be appropriate for

novice programmers and possibly invoked early in the comprehension process.

Therefore, there is a need to investigate this assumption.

2.Z.4.2 Bottom-Up Models of Program

Comprehension

The idea of bottom-up theories of program comprehension assumes that

comprehension occurs initially from the lower-level abstractions of the program

to the higher-level abstraction based on the program text. Shneiderman and

Mayer (1979) is the most cited article in the literature as the first of the bottom-

up theories. They postulate that programmers start from a low level by reading

code statements and then mentally group or chunk these statements into a high

level abstraction. A high-level comprehension of the program is achieved by

further combining these chunks. This theory mainly focused on the structure of

the programmers’ knowledge, by differentiating between syntactic and semantic

knowledge of programs, than on the order in which the comprehension process

occurs. The theory describes syntactic knowledge as language dependent,

concerning the statements and basic units in a program, while semantic

knowledge is language-independent and is built in progressive layers until a

mental model is formed which describes the problem domain (Shneiderman and

Mayer, 1979). In the case of 0 0 programs, the claim about closer mapping

between program domain and problem domain in 0 0 could also be assumed to

facilitate the mental model construction.

Pennington’s adoption theory of program comprehension focuses on describing

the general characteristics of the bottom-up model (Pennington, 1987a, b). She

derived an adopted comprehension model of program comprehension from a

prior theory of text comprehension put forward by Kintsch and van Dijk (1978)

and van Dijk and Kintsch (1983). Pennington hypothesises that the

comprehension process results in the production of two distinct but interrelated

representations of the text, the Program Model and the Situation Model. These

two sub-models represent different abstract views of the program text. She

empirically observed that the program model is first built based on a procedural

reading of the program text. The programmer first develops a control flow

abstraction of the program which captures the sequence of operations in the

program. This program model is developed through the chunking of

microstructure levels in the program text, which represent the program’s

statements, control construct, and relationships, into macrostructure levels,

which represent text structure abstractions, by making inferences about these

microstructures. Once a program model has been fully assimilated, a situation

model is developed. The situation model encompasses knowledge about data

flow abstraction and abstraction of functional relationships between domain

objects. The programmers’ comprehension is further enhanced through the

31

cross referencing of the artefacts in the program model and situation model.

The model’s knowledge categories are fully described in Section 2.3.6.1

2.3A.3 Integrated Model of Program

Comprehension

This theory postulates that comprehension is built at several levels of

abstractions simultaneously by switching between different comprehensions

processes (Storey, 2005). The theory centres on the idea of combining four

major sub-models during the comprehension process:

• The top-down model is usually invoked and developed when the

programming language or program code is familiar to the programmer. It

incorporates domain knowledge as a starting point for formulating

hypotheses. However, in the case of 0 0 programs, this model may be

invoked in the early stages.

• The program model is a control flow abstraction, invoked when the code is

completely unfamiliar.

• The situation model describes data flow and functional abstractions in the

program. It is usually developed after a partial program model is formed.

• The knowledge base represents the programmer’s current state of

knowledge, usually consisting of the information needed to build the above

three models, and is used to store new and inferred knowledge.

Von Mayrhauser and Vans (1995) and Storey (2006) argued that, while the first

three sub-models are involved in constructing an internal representation of the

program and the strategy deployed in this construction, the fourth supplies the

32

related preferred knowledge to the corresponding process involved. As a result

of this combination, a mixed model of program comprehension becomes

necessary, especially for large size systems. Von Mayrhauser and Vans (1995)

also assume that, during the comprehension process, any of the first three sub

models might be activated by the programmer. For example, while constructing

a program model, a programmer might identify a beacon representing a

common task such as sorting. This will cause a jump to the top-down model.

The programmer then generates sub-goals and will search for clues to support

these sub-goals. If the programmer finds a section of unrecognised code during

this search, the programmer returns to constructing a program model.

Structures built by any one sub-model component are accessible by the other

two, but each sub-model component has its own preferred knowledge types.

2.3.5 Program Comprehension as Strategies for

Deployment

Littman et al. (1987) link the strategy deployed in program comprehension to

the breadth of familiarity with program text gained by the programmer during

comprehension activities. The authors observed that there are two types of

strategy that are deployed by programmers in the context of a maintenance task:

a "systematic" strategy, and an "as-needed" strategy. In the systematic strategy,

the programmer attempts to read the code in detail, gaining a broad

understanding of the entire program by tracing it through the control flow and

data flow abstractions in the program before carrying out modifications. On the

other hand, in the as-needed strategy, the programmer minimises the amount of

code to be comprehended and focuses only on the part of the code where a

modification should be made. The authors argue that the systematic strategy is

33

more successful in modification as it increases the ability to detect interactions

between the code central to modification and code elsewhere in the program.

However, the problem with as-needed strategy is that the modification may

have side effects on other parts of the program which the programmer might not

anticipate. Thus the programmer tends to apply as-needed strategy in the case

of maintenance rather than modification tasks.

Littman et al. (1987) also found that there is a direct influence between the

strategy used by a programmer and the knowledge gleaned and stored in the

programmer's mental model. For example, programmers using systematic

strategy acquired both static knowledge, which concerns objects, actions and

functional components of the program, and dynamic knowledge, which

describes the interactions between functional components in the program when

it is executed. This strategy enables programmers to form a strong mental

model. However, programmers deploying the as-needed strategy only acquired

static knowledge, resulting in a weaker mental model of how the program

worked.

Although the strategy deployed during the comprehension process is task- and

knowledge-dependent, it seems that there is an influence between the strategy

deployed and the programming approach of the program under comprehension.

Burkhardt et al. (2006a, b) argued that, in the case of an 0 0 approach and

despite the task being performed - whether modification or maintenance -

programmers may deploy both systematic and as-needed strategies

interchangeably to comprehend the whole program. The emphasis on classes

representing program entities may encourage use of an as-needed strategy to

understand the static aspects of the program classes and what classes do

34

through their structure and behaviour/functions, and a systematic strategy to

know about the dynamic aspects of these classes and how they do it. Whether

novice 0 0 programmers are able to deploy these strategies interchangeably

during the comprehension process is, however, still open to question.

2.3.6 Program Comprehension as a Construction of

Different types of Knowledge

Mental model approaches of program comprehension represent interesting

theoretical frameworks to study program comprehension. This section describes

works which have focused on the way in which a particular program is mentally

represented by the programmer. Many of the works on mental representations

are empirically based: a number of empirical studies have aimed to elicit

programmers' mental representations of a program, sometimes at distinct

intervals (e.g. before and after modification/debugging), and to characterise its

structure and contents. Two of the most empirically validated models,

Pennington (1987a) and Burkhardt et al. (2006a, b) are described below.

2.3.6.1 Pennington’s Model of Program

Comprehension

Pennington’s model of program comprehension (Pennington, 1987a) is

considered to be the most useful existing framework that explains the mental

model and has been extensively empirically investigated in various

programming approaches (For example, Ramalingam and Wiedenbeck 1997;

Wiedenbeck et al. 1999; Wiedenbeck and Ramalingam 1999; Harrison et al.

2000; Khazaei and Jackson 2002, Affandy et al. 2011). The idea of the

Pennington model centres on distinguishing between two different mental

35

representations which may be built while comprehending a program: (1) the

situation model, which is equivalent to van Dijk and Kintsch’s (1983) situation

model and reflects entities of the problem domain and their relationships, and (2)

the program model, which is equivalent to van Dijk and Kintsch’s (1983)

propositional textbase and reflects the textbased representation of the program.

Pennington argues that the model is built on five different types of knowledge,

divided between program and situation models. Table 2.2 represents the

correspondence between text relations, knowledge structures, mental

representation, and model related in Pennington's program comprehension

mental model.

Table 2.2 : Correspondence between text relations, knowledge structures, mental

representation, and model in Pennington model of program comprehension (source
Pennington, 1987a)

text relations
knowledge

structures

mental

representation
model

elementary
operations

text structure
knowledge

dynamic and
functional views

program model

control flow
text structure
knowledge

dynamic view program model

function plan knowledge functional view situation model

data flow plan knowledge
dynamic and

functional view
situation model

state plan Knowledge
dynamic and

functional view

program/situation

model

In this table, text relations refer to abstractions of the program text. Knowledge

structures refer to relatively generic knowledge stored in long-term memory that

must be activated to be used. Mental representation refers to the content of

working memory at a particular point in the comprehension activity, constructed

from activated knowledge in long-term memory, the results of prior

36

comprehension episodes, and external information gathered from the

environment. The following is an explanation of text relations, which are defined

later as knowledge categories:

• elementary operations form part of the text microstructure, and

constitute basic text units usually consisting of one or few lines of code.

The feature of this category is that it is directly available in the source

code;

• control flow forms part of the text microstructure, constitutes the links

between text units, which in the simplest case are sequential or in

complex situations involves looping or calls to subprograms; thus this

category is procedural in nature;

• functions explain the goal of the whole program, what the program

accomplishes in terms of the problem situation it addresses. Function

information expresses what the program does in terms of entities,

relationships, and actions in the world; this information is not usually

directly available in a program text, but must be inferred from the

program text in combination with knowledge of the real-world problem

domain of the program;

• data flow relates to Communication between variables, corresponding to

data flow relationships connecting units of local plans within a routine

and also changes that occurs to data variables while they pass through

the program. The transformations of the data are, thus, at the heart of

whatever useful action a program achieves. For this reason, data flow

37

information is considered to be very closely related to a program’s

functions and goals and forms a part of the situation model;

• state comprises the state of all aspects of the program at the time a

given action occurs in a program.

In testing her model, Pennington’s methodological approach was to give

participants a program to read for a limited time and then ask them

comprehension questions reflecting different information/knowledge categories

presumed to make up the program and situation models. The correctness of the

responses served as an indicator of the nature of their representations.

2.3 6.2 Limitations of Pennington's Model for 0 0

programs

Thompson (2008) argued that, at simple 0 0 program level, the Pennington

model's knowledge categories may have some meaning, but the more the

classes, and their related interactions, are used in the program, the more

difficult it would be to determine whether these flows actually occur. This may

be reflected and supported in the many of empirical results reported from

related empirical studies that attempted to empirically validate Pennington's

model in the case of 0 0 programs (for example, Ramalingam and Wiedenbeck

1997; Wiedenbeck et al. 1999; Wiedenbeck and Ramalingam 1999; Khazaei

and Jackson 2002).

Some previous empirical studies have applied Pennington model to investigate

the effect of programming approaches on the construction of mental

representations e.g. imperative, procedural, event-driven, and 0 0 . Some

studies argue that the model cannot be applied to 0 0 approach. Sajaniemi and

38

Kuittinen (2007, 2008) argue that Pennington's model is more related to the

procedural nature of the languages used by her and to the small size of the

program she used. Burkhardt et al. (2006a, b) claims that Pennington’s model

has several limitations with relation to an OO approach. The authors explained

this limitation in three main points.

Firstly, the model lacks key characteristics of 0 0 concepts; in more detail, it

does not examine representations about classes and objects, or even data

structures. Since objects are central entities in 0 0 programs, construction of

representations of objects should be taken into account in a model of 0 0

program comprehension, Burkhardt et al. assume that the representation of

objects is part of the situation model inasmuch as it reflects the objects of the

problem situation.

Secondly, Pennington’s model accounts for comprehension of relatively small

programs but does not scale up easily to larger programs. She does not

account her model for the representation of delocalised plans. This is

considered as an important aspect of 0 0 approach. Pennington assumes that

the reader uses plan knowledge to construct the situation model, thus that plan

representations of a program are primarily based on data flow. Soloway et al.

(1982) assume that programmers have knowledge about patterns of program

instructions which typically go together to accomplish certain functions or goals.

However, in the case of large programs, particularly in 0 0 programs, it happens

that many plans are delocalised. Thus the actions in a plan are encapsulated in

a set of routines, and the routines are divided among a set of classes and

connected by control flow. Detienne (2006a) claims that this can reflect the real

world, where a plan can use many objects, and an object can be used in many

plans. In the introduced 0 0 model of program comprehension by Burkhardt et

al (2006a, b), they take the view that the construction of these complex

delocalised plan representations is primarily based on client-server relationships

knowledge, in which one object processes and supplies data needed by another

object.

Finally, Pennington also accounts for the representation of elementary

operations as part of the text microstructure and the control flow between these

operations at the level of program model. However, the macrostructure of large

programs, consisting of the representation of larger text units such as routines,

is not accounted for in her model. Burkhardt et al. (2006a, b) argued that the

representation of the macrostructure is based on the elementary functions of

the program model.

In accordance with all three points mentioned above, Burkhardt et al. (2006a, b)

have proposed a new 0 0 mental model that takes into account all the

limitations highlighted in Pennington’s model.

2.3.6.3 Burkhardt et al/s Model of 0 0 Program

Comprehension

In pursuit of identifying the mental representations constructed by 0 0

programmers, Burkhardt et al. (2006a, b) developed a model of 0 0 program

comprehension based on the mental model approach (see table 2.3). The 0 0

model adopts and expands Pennington’s model to take into account OO

concepts such as classes, message passing, and the structure of larger

programs. To achieve this goal, knowledge related to objects as well as client-

server relationships between objects was added to expand the situation model.

40

Knowledge about objects and goals represents the static aspects of the

problem solution, whereas knowledge about data flow and client-server

relationships represents more dynamic aspects of the solution to the problem.

Knowledge about macrostructure, which represents larger text units such as

routines attached to objects, is incorporated into the program model.

Table 2.3 : Correspondence between text relations, knowledge structure, mental

representation, and model in Burkhardt et al.’s mental model of 0 0 program
comprehension. (Source: Burkhardt et al. 2006b).

text relations knowledge structures
mental

representation
model

Program model

control flow text structure knowledge dynamic view
program
model

elementary
operations

text structure knowledge
dynamic and functional
views

program
model

elementary
functions

text structure knowledge
dynamic and functional
views

program
model

situation model
Static Aspects of Situation Model

problem classes
problem knowledge and
plan knowledge

object view
situation
model

relations between
' problem classes

problem knowledge and
plan knowledge

object view
situation
model

computing or
reified classes

generic programming
knowledge and plan
knowledge

object view
situation
model

main goals
problem knowledge and
plan knowledge

functional view
situation
model

dynamic aspects of situation model

client-server
plan knowledge
(complex delocalised
plans)

dynamic and functional
views

situation
model

data flow plan knowledge
dynamic and functional
views

situation
model

41

The following is an explanation of each knowledge category used in this 0 0

model as stated by Burkhardt et al (2006b):

• elementary operations form part of the text microstructure, constituting

basic text units, usually consisting of one or a few lines of code;

• control flow also forms part of the text microstructure; control flow

constitutes the links between text units. Control flow, at this fine level of

granularity, represents the control structure (sequence, loop or test)

linking individual operations within a routine;

• elementary functions consist of larger units of text, and thus form part

of the text macrostructure. These functions correspond to units in the

program structure, i.e., routines attached to objects;

• problem objects directly model objects of the problem domain;

• relationships between problem objects consist of the inheritance and

composition relationships between objects;

• computing or reified objects: An example of a computing, or reified,

object is a string class, which is not a problem domain object per se.

Reified objects are represented at the situation model level inasmuch as

they are necessary to complete the representation of the relationships

between problem objects, i.e., they bundle together program-level

elements needed by the domain objects;

• main goals of the problem correspond to functions accomplished by the

program viewed at a high level of granularity. They do not correspond to

42

single program units. Rather, the complex plan which realises a single

goal is usually a delocalized plan in an 0 0 program;

• client-server relationships: Communication between objects

corresponds to client-server relationships in which one object processes

and supplies data needed by another object. These connections between

objects are the links connecting units of complex delocalized plans. In an

0 0 program, the actions in a complex plan which perform a main goal

are encapsulated in a set of routines, and the routines are divided among

a set of classes and connected by control flow. Client-server

relationships represent those delocalized connections;

• data flow relationships: Communication between variables correspond

to data flow relationships connecting units of local plans within a routine.

Having comprehensively surveyed the 0 0 approach, its claims, and the various

theories of program comprehension, in the next section we turn to question

what evidence there is to support either the claims or the validity of the

proposed models.

2.4 Empirical Works on 0 0

The major aims of empirical studies of 0 0 software development and evolution

are to investigate the effectiveness of an 0 0 approach and to evaluate the

quality of 0 0 software products. Briand et al. 1999 stated that:

"The overall objective of empirical studies of object-oriented

technologies and products is to gather tangible evidence about its

properties and gain deeper insights into the nature of the object-

oriented paradigm and its relationship to other approaches." (p 394)

43

This will in turn help to provide a scientific foundation to the engineering of 0 0

software. A considerable number of empirical studies of the 0 0 software

development and maintenance have been involved with developing and

assessing quality models of 0 0 software. The goal is to relate structural

attribute measures intended to quantify 0 0 concepts to external quality

indicators, such as development time, reusability, maintainability, and

comprehension. Thus, this would significantly help in technology assessment

and comparison. However, there is a gap in various aspects of empirical studies

of 0 0 software development to effectively answer some research questions. A

very comprehensive survey of this can be found in Briand et al. 1999.

2.4.1 Empirical Works in 0 0 Program

Comprehension

Research on an 0 0 programming approach began to appear as early as 1995,

in which numbers of empirical studies on the 0 0 approach had been

undertaken. This section describes a series of empirical studies based on the

framework for determining mental representation developed by Pennington

(1987a, b) and adopted by Burkhardt et al. (2006a, b); both models were

detailed in the previous section. The idea of these models centres on

classification of different knowledge categories, and the distinction between two

sub-models, mainly, the program model, and the situation model. Most of the

studies applied these sub-models primarily in areas of comparing

comprehension of program text written in different programming approaches,

and investigating the influence of certain factors such as expertise, tasks (i.e.

modification, reuse, maintenance, documentation), and development time on

the constructed mental model and thus on comprehension. It has been found

44

that different programming approaches have different effects on the mental

representation constructed during comprehension. Although the overall aim of

most of these studies was to investigate the nature of the mental

representations held by programmers during comprehension. The work

reported in this thesis looks specifically at assessing the ease of comprehension

of 0 0 programs. More precisely, the investigation uses the concept of mental

representations in the form of sets of different types of knowledge categories.

Also, the investigation does not use what we called “two-stage” model to

distinguish between the two models (program and situation) models mentioned

above. Rather it considers the comprehension of each type of knowledge

individually. This approach will help in highlighting the most important

knowledge, thus incorporating these types of knowledge in a new proposed

model of 0 0 program comprehension. In order to do so, the empirical works in

this thesis have borrowed, thus tailored, from the methodology used in previous

empirical studies. Therefore, it is useful to illustrate these studies.

Pennington (1987a) carried out two experiments to validate her model. She

gave subjects relatively short programs to read in a limited, premeasured, time

and then asked questions reflecting different categories of knowledge

considered. In a first experiment involving 80 professional programmers, she

found that after reading a program, whether written in COBOL or FORTRAN,

subjects respond better and faster to questions about elementary operations

and control flow knowledge than questions about program goals and data flow

knowledge. This analysis thus tends to show that, during the process of

comprehending the program, representations of the program model are

constructed first and the representations of the situation model emerge later.

Although the results provide some experimental support for the approach, its

45

generality is in question because the programs used were so short (15 lines)

(see Pennington, 1987a).

In the second experiment, 40 professional programmers were involved, and the

programs used were longer (200 lines) than in the first experiment. The

experimental procedure comprised two phases: the first phase was the same as

in the first experiment, i.e. reading the program and answering questions. In the

second phase, subjects were asked to modify the program and were then again

asked questions. The results of the first phase were the same as in the first

experiment. However, different response patterns were observed in the results

of the second phase. Answering questions related to program goals and data

flow were improved and even exceeded previous results in questions related to

control flow. One interpretation is that a situation model can be developed over

time, or the nature of the given task (in this case, modification) can also effect

the dominant representation constructed or an earlier construction of the

situation model.

Pennington concluded that the knowledge related to a program model tend to

be initially more available, emerges first to the subjects, but knowledge related

to a situation model grow as subjects work longer with a program, emerges later,

and is based on parts in the program. However, certain factors, such as the task

and given time, can facilitate earlier construction of the situation model.

In endeavouring to compare novices’ comprehension in different programming

approaches, Ramalingam and Wiedenbeck (1997) carried out an empirical

study focusing on how different programming approaches, in this case

imperative versus 0 0 , affects the construction of mental representations of

novices. 75 novice 0 0 programmers participated in.the experiment. Results

46

show that error rate, represented by the percentage of error responses to the

questions, was higher on 0 0 programs than imperative programs. Thus the two

approaches differ in the nature of the mental representation formed during the

comprehension process. The authors claim that 0 0 subjects formed a strong

situation model, while the imperative subjects formed a strong program model.

The authors also go on to claim that an 0 0 programs are easier to comprehend.

They say:

"This research suggests that the 0 0 style facilitates the mapping

from the program to the domain for novice programmers working on

small and simple programs. This may be because there is more

explicit and salient domain-related information in the 0 0 style

programs than in the imperative style programs" (p 134).

While the evidence is certainly intriguing, there are several reasons why the

claim seems over-confident and thus the study was criticised. Given the higher

overall error rate of 0 0 subjects, it seems unlikely that 0 0 programs are easier

to comprehend. Additionally, Good (1999) claimed that the data comes from

one source only: binary choice questions, as no program summaries were

collected during the experiment.

Wiedenbeck, Ramalingam, Sarasamma, and Corritore (Corritore and

Wiedenbeck, 1999; Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al,

1999) have completed a series of studies similar to Pennington's second study.

They endeavoured to compare mental representations constructed by 0 0

programmers and procedural programmers. Two of these studies included

novice programmers (Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al,

1999). Pennington's model, with its associated knowledge categories

(Pennington 1987a, b), was used in these sets of studies. The results showed

47

that the distributed nature of control flow and "hidden" actions (e.g. constructor

or destructor calls) made it more difficult for novices to comprehend 0 0

programs than of a corresponding procedural programs. However, the class

structure of the 0 0 programs made it a bit easier to comprehend program

entities. Also program goals and data flow issues were easier to comprehend

from a procedural program.

Considering a simple 0 0 program level, Wiedenbeck and her colleagues

argued that Pennington's knowledge categories may have some meaning in 0 0

programs. However, the more that advanced 0 0 concepts, such as

composition, inheritance and polymorphism, are used in the program, the more

difficult it would be to determine whether these flows actually occur. This may

be reflected in the results reported when Wiedenbeck et al. (1999) say:

"The scores of the 0 0 subjects on function and data flow questions

making up the domain model were very low, round 55% correct" (p

274).

They contend that the procedural programmers performed better in all

knowledge categories when working with larger procedural programs. These

results may be more a reflection that these types of questions have more

meaning for procedural programs than for 0 0 programs rather than an

indication of a greater difficulty of comprehension in 0 0 programs. This is

acknowledged to some extend by Wiedenbeck et al.:

"With respect to control flow, we argue that, within a single program

module, procedural and 0 0 programs do not differ because in both

styles local flow of control involves sequence, branching, and iteration.

On the other hand, between module control flow may be clearer in a

procedural program because a procedural program is normally based

48

on a hierarchy in which a top-level function calls lower-level functions

to carry out smaller parts of the overall task. It is relatively easy to

determine where the top is and to understand the calls through

successive layers of decomposition. In 0 0 programs there is no top

level, but rather parts of a task are distributed across objects which

pass messages to other objects to act on their behalf." (pp 259-260)

The difficulty is that this research does not seem to have considered how 0 0

programs differ from procedural programs when it comes to the knowledge

categories that involved in forming the mental representations. Rather

Wiedenbeck et al. are assessing whether those programmers who are familiar

with the 0 0 approach perform with similar characteristics to those doing

procedural programming. This makes some of the conclusions questionable

when Wiedenbeck et al. (1999) say:

"The distributed nature of control flow and function in an 0 0 program

may make it more difficult for novices to form a mental representation

of the function and control flow of an 0 0 program than of a

corresponding procedural program." (p 276)

They added:

"We tend to believe that the comprehension difficulties that novices

experienced with a longer 0 0 program are attributable partly to a

longer learning curve of 0 0 programming and partly to the nature of

larger 0 0 programs themselves. Certainly there is much to learn in

0 0 programming and it may take longer for a beginner to gain a

comparable level of skill." (p 211)

Wiedenbeck et al. (1999) failed to elicit a rich view of the mental representations

of the 0 0 subjects. In order to obtain such a view, knowledge categories that

do not have a direct counterpart in procedural programming approach should be

investigated. For example, the authors failed to ask questions specifically about

49

the static and dynamic aspects of classes. This is considered as one of the

essential differences between 0 0 and non 0 0 approaches. Thus, they do not

have direct evidence about whether the subjects gained a good mental

representation of the attributes of objects.

Khazaei and Jackson (2002) have also conducted an empirical study

endeavouring to investigate program comprehension differences between

Event-Driven (ED) and 0 0 approaches for novice 0 0 programmers. 40

postgraduate computer science students were participated in the experiment.

They tailored the experiment of Wiedenbeck et al (1999) towards an

investigation of ED and 0 0 approaches. Interestingly, results show that

knowledge related to a situation model was more available than that related to a

program model in both approaches. The authors agreed that the

comprehension of both approaches had "a lot in common". They also reported

that the Pennington model of program comprehension still has some limitations

in the case of these two programming approaches. Authors have raised call for

further work to substantiate their findings and to address advanced 0 0

concepts such as inheritance and polymorphism.

Burkhardt et al. (2006a, b) were the first to introduce the 0 0 model of program

comprehension. Their study aimed to evaluate the effect of three factors

(programmer expertise, programming task, and the development of

comprehension over time) on program comprehension. 51 participants (30 0 0

experts and 21 0 0 novices) were recruited for the experiment. The

experimental materials consisted of a university database program for the

documentation task and a library problem, introduced by Wing, (1988), for the

reuse task. The library problem was partially isomorphic to the database

50

problem and allowed for reuse by inheritance or by template copying and

modification. The materials were large enough to take full advantage of 0 0

concepts of classes, encapsulation, inheritance, composition of classes,

function overloading, operator overloading, and polymorphism. The study found

that the expertise factor played a role only in the documentation task but not in

the reuse task. It was also found that the expertise of programmers affected

only the construction of the situation model in the documentation task. The

authors argued that the reuse task appears to entail a decrease of

expert/novice differences as concerns the construction of a situation model.

Thus novices are capable of building a situation model if they are given a task

that requires situation knowledge.

Although Burkhardt et al model of 0 0 program comprehension incorporates

most important 0 0 concepts; the authors highlighted some limitations to their

model. They raised two theoretical questions in this context. The first concerns

the suitability of the model to describe a situation model in the case of complex

0 0 programs and the difficulties associated with extending the situation model

to distinguish between multiple levels of abstractions. The authors presume that

developing more empirical studies of large 0 0 programs, by moving from the

study of what they called "programming-in-the-small to programming-in-the-

large", and by integrating theoretical evidences made in these two branches of

the field, could probably provide an answer to this question. The generality of

the proposed comprehension model is set as a second theoretical question.

The authors expect the type of knowledge to be represented in the situation

model regardless of whether the notation of the specific language is similar, in

particular static and dynamic, referring to objects and plan knowledge. However,

they expect knowledge related to the program model will be notation-dependent.

51

Replicating the experiment across different 0 0 programming languages and

different problem domains will most likely help in answering this question.

Affandy et al. (2011) conducted an empirical study with 294 novice students in

an introductory programming course. The study followed Pennington’s

methodology and aimed to address novices' problems in dealing with tracking

the logic flow and writing simple program code. The study found that overall

students’ tracing skills were poor. More specifically, students lacked knowledge

in comprehending the dynamic behaviour of the program. However, they were

able to master the static part of programming knowledge. The authors

concluded that students' ability to trace a program becomes one of the factors

that are related to the ability to solve problems and the ability of problem-solving

contributes to programming skills. The study attempted to propose a model to

shift the internal working memory load of students through integrated

visualisation tools. These tools can work as a learning aid by revealing the

dynamic behaviour of programs and related concepts that appear in each level

of program abstractions. The authors reported that developing learning aid

tools with such complexity can be used to help students with different learning

strategies to comprehend the essentials of programming.

Although empirical studies into the psychology of programming have raised call

for further empirical research in 0 0 program comprehension (for example,

Sajaniemi and Kuittinen 2007, 2008; Briand et al 1999), the work reported

above are relatively old in terms of empirical studies of software engineering.

This is an indicator of the progress (or lack if it) that has been made during this

time.

52

Regarding the shift to an 0 0 approach in education, Lister et al. (2006)

reported that this shift is not motivated by the psychology of programming or

computer science education research. Thus there is practically no empirical

evidence that would indicate that such a shift is desirable, or even effective, for

learning programming. Therefore, further research needs to be conducted to

identify what types of knowledge, which represent the mental representations,

are used by 0 0 programmers.

Sajaniemi and Kuittinen (2007, 2008) contend that the cognitive consequences

of the shift to 0 0 had not been studied before the shift, and only superficially

even after it. The authors argued that the assessment used for the claims about

the ease of comprehension of 0 0 programs has remained constant despite a

change in programming approach, and further empirically based researches

needs to be conducted to identify what mental representations are used by 0 0

programmers. Moreover, the authors argue that most researchers introduce

various pedagogic techniques and tips, such as visualization tools or curriculum

changes, without consideration for educational or psychological theories (see

for example Cooper et al., 2003; Bierre et al., 2006; Kolling & Henriksen, 2005).

Rist (1996b) argues that studies in 0 0 do not support claims about the natural

way of conceptualising real-world problems. Moreover, he suggests that 0 0

programming adds the complexity of class structure to a procedural system.

Therefore, 0 0 educators should not think that 0 0 is particularly easy for

students, or that using 0 0 from the very beginning relieves educators from

teaching procedural programming issues.

From all the above, it seems difficult to assess whether the 0 0 approach is

easier "natural" way of conceptualising and modelling a real world situation. In

53

their state-of-art review of the psychology of 0 0 programming education,

Sajaniemi and Kuittinen (2008) mentioned that studies into 0 0 programming

are still few and the results mentioned make it clear that both the 0 0 approach

itself and learning an 0 0 programming approach are very different from their

imperative and procedural counterparts: mental representations of programs

are different; problems used have different roots; conceptual contents of

knowledge are different; the level of understanding the underlying notional

machine is different; and the overall approaches to program design and

program comprehension are completely different. These differences are so

fundamentals to learn that it is daring to claim that the classic educational and

cognitive results of novice imperative and procedural programming should be

used in the 0 0 context. Furthermore, the number of cognitive empirical studies

about 0 0 programming is small. In the context of program comprehension, the

authors argued that if the measures used for verifying mental representation do

not accurately reflect 0 0 mental representation then these types of claims are

difficult to support. The authors state that:

"Object-oriented programming is so much more complicated than

imperative and procedural programming -both at the concrete

notational level and at a more abstract conceptual level." (p 87)

They add:

'There are practically no theories on the development of

programming skills or comprehension of programming concepts in the

0 0 case." (p 87)

The authors have presented a research agenda intended to improve the

understanding of 0 0 approach. As a result, there is a need to know more about

0 0 mental representations with respect to 0 0 programming, the cognitive

54

development of the approach and novices’ and experts’ program

comprehension processes.

2.4.2 Problem Characteristics and Solution

Decomposition in 0 0 Program Comprehension

Example programs in textbooks are the most important tools that play an

important role in learning and teaching programming. They also work as a

reference for how to solve specific programming problems. However, it is

difficult to find or develop examples that are fully faithful to all principles and

guidelines of the 0 0 approach and also follow general pedagogical principles

and practices. Bdrstler et al. (2010, 2011) claimed that there are no existent

systematic evaluations of textbook examples. In the literature the terms

'problem type1, 'problem characteristics', ‘example’ and ‘example program’ are

used interchangeably. In the context of this thesis, we define problem

characteristics as a specification of the given programming problem and the

example program as a complete solution of the given problem. Both terms will

be used interchangeably throughout this thesis.

Bdrstler et al. (2010) claimed that the strength of 0 0 is in managing complexity.

The authors stated that:

"In fact, the strength of object-orientation is in managing complexity.

Kristen Nygaard, one of the originators of object-orientation, often

stressed that object-orientation is a better problem solving tool for

complex problems than for simple ones." (p 128)

They have identified a number of basic properties that example programs must

include to meet the requirements of an effective educational tool. These are:

technically correct, readable, valid role model for an 0 0 program, promote

55

“object-oriented thinking”, and emphasise programming as a problem solving

process. The authors also warn that the cognitive load of the students should be

carefully controlled. This control can be achieved through focusing on simple

concepts within the example, upholding and enforcing the principles of 0 0 , and

keeping the example small and easy to understand, thus within the cognitive

load of the students. All above alarming those high-quality 0 0 program

examples are a prerequisite for successfully learning 0 0 programming. In their

attempt to evaluate example programs for introductory programming courses,

Bdrstler et al. (2010) proposed an evaluator instrument. The authors argued

that their quality instrument is highly reliable and measures aspects of quality

that are not captured by common size or complexity measures. The study

results show that the quality of many examples is not as high as one would

expect to find in an introductory programming text. In particular, many examples

received low ratings for “object thinking" and reasonable state and behaviour

quality factors. Whether the examples used in related studies that assess

novices’ 0 0 program comprehension meet the requirements as an effective

educational tool is an important question.

Daly (1996) claimed that not all problems types are well suited to an 0 0

approach. There is no clear classification of the scope and the characteristics of

the problems used in learning 0 0 programming. The author argued that

whether the characteristics of the problems are example programs that can be

used to fulfil certain properties to be effective as an educational tool in teaching

0 0 programming is not clear in the literature.

The literature of 0 0 design contributed to propose a typology of problems for

0 0 . Hoc (1981) proposed a framework for classifying problems. Two

56

dimensions are distinguished: procedural versus declarative, and prospective

versus retrospective. These distinctions have been made in the context of a

procedural approach. However, whether the same dimensions are relevant and

influence the choice of design strategy in an 0 0 approach is an important

question.

Detienne (2006b) suggested that the distinction between declarative versus

procedural problems is more relevant for an 0 0 approach. She hypothesised

that declarative problems would be easier to solve than procedural problems in

an 0 0 approach. However, the hypothesis was not confirmed. She found that

experienced 0 0 designers tended to use a declarative plan whatever the

problem type.

Chatel and Detienne (2007) revealed the importance of the typology of design

problems. However, the critical question is which dimensions of problems are

relevant for determining the correspondence between the problem

characteristics and the programming approach. The authors discussed the

typology of problems regarding 0 0 . They proposed a new problem dimension

for an 0 0 approach. They assumed that the solutions in an 0 0 approach

should consider not only the structure of the solution, objects and procedures,

but also the way objects communicate within this structure. They classified the

problems into two dimensions: problems with a hierarchical structure of classes

with vertical communication among objects, and problems with a flat structure of

classes with horizontal communication among objects. The authors observed

that, for the former type of problem, expert 0 0 designers used a declarative

plan, and objects and functions guided solution development. 0 0 experts used

a procedural plan for the latter type, and dynamic characteristics of the

procedure guided solution development. However, the study does not consider

novice 0 0 designers. Certainly, it could be argued that the 0 0 approach

encourages the development of hierarchical solution structures rather than flat

solution structures; however, it is likely, especially for large scale software

development, various kinds of plan may be used for developing parts which

have different structures.

In the context of program comprehension, an important question is whether

problem characteristics form an important element that influences the

comprehension process. One of the critical questions that this thesis

approaches is which problem dimension is relevant for determining the

correspondence between problem characteristics and possible solution

decompositions, and program comprehension. This question has not been

addressed especially in the context of 0 0 program comprehension.

There is a lack of literature of program comprehension on how a problem

characteristic and its possible solution decompositions, as elements, affect

program comprehension. However, the focus on these elements was in the

sense of the program being developed rather than the program being

comprehended (Siddiqi, 1984). Empirical studies carried out on 0 0 program

comprehension have considered the variations in control flow and data flow as

major elements in evaluating the ease of comprehension of 0 0 . approach (for

example, Ramalingam and Wiedenbeck 1997; Wiedenbeck, et.al 1999;

Wiedenbeck and Ramalingam 1999; Khazaei and Jackson 2002; Burkhardt et

al 2006a, b; Affandy, et al., (2011). There has been no explicit distinction made

between the characteristics of the problems used and their solution

decompositions in these studies. More precisely, the role of problem

58

characteristics and the role of solution decompositions were not clearly

addressed. This can be seen from the data produced that were almost

considered as one set. The only notable common criterion in selecting problems

used in these studies was their familiarity with the domain knowledge.

Thompson (2008) reported that it is unclear from this field what distinguishes

the 0 0 approach from other approaches from the point of view of problem

characteristics and solution decompositions. These elements seem to be paid

less attention in this field. In this investigation, using different problems with

different characteristics was an attempt to produce empirical evidence

emphasising how problem characteristics and solution decompositions might

affect 0 0 program comprehension. This in turn would lead to proposing a new

categorisation of problems that would help to improve 0 0 program

comprehension. For example, if any study relies only on problems that are more

amenable to 0 0 comprehension, this will most probably affect its validity. Thus,

to identify characteristics of problems in which their solution decompositions are

better comprehended, one possible research direction is using problems with

significantly different characteristics. In this context, this thesis used a variation

in problem characteristics and a variation of solution decompositions as a basis

in assessing the ease of comprehension of 0 0 programs, where each 0 0

program is an implementation of a different problem which possesses different

solution decompositions.

2.5 Implications of the 0 0 Approach on Different

Types of Knowledge

The use of an 0 0 programming approach for a program comprehension study

has various implications. Firstly, the fact that it differs substantially from a
59

procedural programming approach in terms of the nature of the constructed

mental models means different types of knowledge are made more salient (or

conversely, are obscured). Secondly, the claims for and against the ease of

comprehension of 0 0 programs will lead to different predictions about the

pattern of the knowledge one might expect to observe: these are considered in

turn below. These predictions will be discussed in this section. It should also be

mentioned that this discussion will specifically focus on empirical evidences.

Before doing so, however, it should be noted that most specific claims tend to

refer to program design and construction rather than program comprehension,

even though most authors also contend that 0 0 programs are easy to

comprehend. Additionally, many of the claims are quite general and slightly

vague; they do not map directly onto different types of knowledge, and therefore

some speculation is called for. The rest of this section reviews empirical results

found about the comprehension of 0 0 programs with respect to different types

of knowledge. These are: elementary operations, control flow, data flow,

program goals, state, and problem classes. These types of knowledge were

found in Pennington and Burkhardt models of program comprehension. They

are considered important to the investigation carried out in this thesis. Thus,

they form the model of program comprehension used in this investigation. This

review could help in building predictions about the comprehension of these

types of related knowledge,.

Comprehension of elementary operations knowledge did not differ significantly

between 0 0 and non 0 0 programs. According to Pennington (1987a), this is

due to programmers focusing only on small segments of code (one line or a few

lines of code). Also, this expected similarity in comprehension could refer to the

fact that this related knowledge is more language dependent. Pennington also

60

argued that the other reason for using elementary operations questions is that

they act as warming-up questions that orient programmers to a specific part of

the program text.

In terms of comprehension of control flow knowledge, it is expected to find

comprehension of control flow knowledge difficult in the 0 0 programs, given

that control flow knowledge is explicitly available in the program text. In most

prior related empirical studies, it was found that the comprehension of control

flow knowledge was more difficult in 0 0 programs (Ramalingam and

Wiedenbeck 1997; Wiedenbeck and Ramalingam 1999; Wiedenbeck et al.,

1999). This difficulty could refer to the way programmers tend to read the

program. These studies argued that programmers, especially novices, tend to

read the program line-by-line rather than in execution order, thus the sense of

temporal ordering of actions in 0 0 programs is lossless. This in turn makes the

comprehension of control flow knowledge difficult. Wiedenbeck et al., (1999)

found that determining where the top of the program is and comprehending the

calls through successive layers of decomposition is easier in non 0 0 programs.

In 0 0 programs there is no top level of the program. Rather, parts of a task are

distributed across objects which pass messages to other objects to act on their

behalf. This "non-hierarchical" interaction of objects may make comprehension

of control flow knowledge more difficult in 0 0 programs. They added that

difficulties due to the disparity of different control structures, the partially implicit

nature of control flow in 0 0 programs, and the introduction of messages

passing among objects negatively affect comprehension of control knowledge.

Regarding data flow and program goals knowledge, it could be hypothesised

that comprehension of data flow and program goals knowledge would be

61

relatively easier in 0 0 programs than non 0 0 programs. This can be attributed

to the presenting of 0 0 programs in chunks of code represented by objects.

Wiedenbeck and Ramalingam (1999) argued that, in 0 0 programs,

programmers learn to give more attention to the class declarations, to get an

overview of the objects manipulated in the program, the data elements making

up the objects, and the functions carried out. This makes tracking data

transformations across an 0 0 program's parts less difficult than in an

equivalent non 0 0 program. This appears to aid novice 0 0 programmers to

better comprehend these types of knowledge.

With respect to the nation of state knowledge, it could be expected that

comprehension of state knowledge would be found difficult in 0 0 programs.

Wiedenbeck (1997) and Wiedenbeck argued that state knowledge is not directly

highlighted in program text. Due to the independent nature of an 0 0 program's

parts and the unordered sequence of the program's actions, it is unclear how

comprehension of state knowledge category will differ between 0 0 and non-00

programs. However, Khazaei and Jackson (2002) found comprehension of state

knowledge easier in 0 0 programs. They argued that spotting state knowledge

from the program text was relatively easier. This contradiction will make it

difficult to predict the comprehension of state knowledge.

For the problem classes knowledge, it could be also expected that

comprehension of knowledge related to problem classes will be relatively easy.

The expectation was based on empirical results found in Burkhardt et al.’s

(2006a, b) studies, where problem classes knowledge was the most easily

comprehended knowledge. It could be claimed that comprehension of this

knowledge is more dependent on the problem characteristics, specifically the

62

tangibility of the problem entities. Obviously, if the problem entities are

physically tangible and already exist in the real world then highlighting these

entities will be more straightforward. On the other hand, the claim is vague if the

problem's entities are intangible and do not directly exist in the real world..Thus,

it is unclear what comprehension of this knowledge category would be in

problems where entities are relatively intangible. Prior related empirical studies

did not show comprehension of problem classes knowledge (for example,

Ramalingam and Wiedenbeck, 1997; Wiedenbeck and Ramalingam, 1999;

Wiedenbeck et al., 1999; Good, 1999; Khazaei and Jackson, 2002). There is a

lack of empirical evidences in these related studies about comprehension of the

objects used and their associated attributes and functions.

Table 2.4 summarises the predictions of comprehension of the above

mentioned types of knowledge in 0 0 and non 0 0 programs.

Table 2.4 Predictions about the comprehension of different types of knowledge
categories in 00 and non 0 0 programs

knowledge categories predictions of comprehension

elementary operations
comprehension is similar between 0 0 and non 0 0

programs

control flow
comprehension is difficult in 0 0 programs than of non 0 0

programs

data flow and program
goals

comprehension is easier in 00 programs than of non 0 0
programs

state
comprehension is difficult in 0 0 programs than of non 0 0

programs. However, empirical evidences are contradict

problem classes
comprehension is easier in 0 0 programs than of non 0 0
programs. However, there is a lack of empirical evidences

In terms of 0 0 concepts, the investigation was only limited to assess the ease

of comprehension of the concept of class structure and concepts such as

63

inheritance, polymorphism etc were not considered due to subjects’ availability.

To better assess the claim about the ease of comprehension of 0 0 programs,

the reset of this section gives the research plan followed in this investigation.

Pennington’s (1987a) and Burkhardt et al.’s (2006a, b) models of program

comprehension were taken and their methodology was tailored to meet the

purposes of the investigation. For this, there was a necessity for a

corresponding shift in emphasis away from memory-based tasks used in related

empirical studies (Ramalingam and Wiedenbeck, 1997; Wiedenbeck and

Ramalingam, 1999; Wiedenbeck et al., 1999; Khazaei and Jackson, 2002), to a

search-based task which required searching through the program text for the

necessary knowledge It is also considered worth assessing the ease of

comprehension at the types of knowledge level (elementary operations, control

flow, data flow, program goals, state, and problem classes) rather than

comprehension at the overall program level. The investigation mainly focused

on how elements of "class concept', "problem characteristics" and "solution

decompositions" can influence the comprehension of these types of knowledge.

Additionally, the investigation did not follow the approach of distinguishing

between the development of the two sub-models (program model and situation

model) as in prior related empirical studies. Rather, we were interested in

assessing the comprehension of each type of knowledge individually. We

believed this would be more fruitful in evaluating, thus, enhancing the model of

program comprehension used in this investigation. Therefore, we were led to

propose empirically grounded based model of 0 0 program comprehension.

64

2.6 Chapter Summary

This chapter, reviewed a generic model of program comprehension and

considered a number of theories of program comprehension and empirical work

in relation to these models. It reviewed research related to empirical work

comparing program comprehension of different programming approaches. It

described the reasons why the idea of mental representations, which is

represented in different types of knowledge, might be useful in this context, and

highlighted unanswered questions. It then considered the implications of an 0 0

approach on each type of knowledge. Finally, it called for assessing the ease of

comprehension of each type of knowledge and how elements of class concept,

problem characteristics and solution decompositions would influence the

comprehension of these types of knowledge.

65

Chapter 3 Research Methodology

3.1 Introduction

This chapter gives an overview of the methodology used in this investigation. It

explains the philosophy of the research, and the research method considered

appropriate and adopted in this thesis. It examines methodologies used in empirical

software engineering researches and establishes a framework for conducting two

sets of empirical studies. This chapter also outlines methodological issues that affect

conducting these studies, such as choosing subjects, materials, and measurement,

and how these issues are tailored to enhance the reliability and validity of the

conducted studies. Hypothesis testing, statistical methods of analysis and ethical

issues are then outlined.

3.2 Philosophy of Research

Having specified the research questions in Chapter One, it is worth considering what

to accept as valid answers to these questions from data generated from the fieldwork.

Different researchers make different assumptions about scientific truth. These

different assumptions reflect major differences in philosophical stances and opinions

about the nature of truth and how researchers arrive at it through scientific

investigation (Easterbrook et al., 2008). Because of the differences in philosophical

assumptions, underlying philosophical stances are critical for determining the

methodological approach to research design. Each of the philosophical stances

provides a framework based on ontological and epistemological assumptions about

66

the nature of reality and the way in which information should be organised to explain

reality (Jonker and Pennink, 2010).

The ontological assumptions underlying scientific paradigms are concerned with the

nature of reality. They describe the nature of human knowledge and how we obtain it.

Prior to considering a methodology, the researcher makes an assumption

concerning the nature of reality that influences the way in which reality can be

understood. Ontology can be normative, which suggests that reality is objective and

the same in all situations, or interpretive, which suggests that reality is subjective and

differs depending on situations (Grix, 2010). Epistemology involves the way in which

information or knowledge is organised to provide an understanding of reality. It

describes the nature of the world irrespective of our attempts to understand it. The

ontological assumption determines the epistemology used in research because

information or knowledge has to be organised in a manner that is consistent with the

assumption concerning the objectivity or subjectivity of reality (Grix, 2010).

Creswell (2011) characterises four dominant philosophical stances (positivism,

interpretivism, critical theory, and pragmatism). The stance adopted by a researcher

determines which research methods the researcher believes lead to acceptable

evidence in response to stated research question(s). Being explicit about the stance

also helps when undertaking research. It might not be possible to convince other

people to change their philosophical stance, but it will be possible to argue

persuasively for why certain methods were chosen.

Positivism states that all knowledge must be based on logical inference from a set of

basic observable facts. Positivists are reductionist, in that they study things by

breaking them into simpler components. This corresponds to belief that scientific

knowledge is built up incrementally from verifiable observations, and inferences

67

based on them. Positivism has been much attacked over the past century due to

doubts about the reliability of observations of the world, and the complication that

scientific “fact” built up in this manner sometimes turns out to be wrong. While

positivism still dominates the natural sciences, most positivists today might more

accurately be described as post-positivists, in that they tend to accept the idea (due

to Popper) that it is more productive to refute theories than to prove them, and we

increase our confidence in a theory each time we fail to refute it, without necessarily

ever proving it to be true. Easterbrook et al. (2008) argued that positivists prefer

methods that start with precise theories from which verifiable hypotheses can be

extracted and tested in isolation. Hence, positivism is most closely associated with

controlled experiments. However, survey research and case studies are also

frequently conducted with a positivist stance.

Interpretivism, also known as constructivism (Klein and Myers, 1999), rejects the

idea that scientific knowledge can be separated from its human context. In particular,

the meanings of terms used in scientific theories are socially constructed, so

interpretations of what a theory means are just as important in judging its truth as the

empirical observations on which it is based. Constructivists concentrate less on

verifying theories, and more on understanding how different people make sense of

the world and how they assign meaning to actions. Theories may emerge from this

process but they are always linked to the context being studied. Constructivists

prefer methods that collect rich qualitative data about human activities, from which

local theories might emerge. Constructivism is most closely associated with

ethnographies, although constructivists often use exploratory case studies and

survey research too (Easterbrook et.al, 2008).

68

Critical Theory judges scientific knowledge by its ability to free people from restrictive

systems of thought (Calhoun, 1995). Critical theorists argue that research is a

political act, because knowledge empowers different groups within society, or

entrenches existing power structures. Critical theorists therefore choose what

research to undertake based on whom it helps. They prefer participatory approaches

in which the groups they are trying to help are engaged in the research, including

helping to set its goals. Critical theorists therefore tend to take emancipatory or

advocacy roles. In sociology, critical theory is most closely associated with Marxist

and Feminist studies, along with research that seeks to improve the status of various

minority groups. In software engineering, it includes research that actively seeks to

challenge existing perceptions about software practice, most notably the open

source movement and, arguably, the process improvement community and the agile

community (Easterbrook et al., 2008). Critical theorists often use case studies to

draw attention to things that need changing.

Pragmatism acknowledges that all knowledge is approximate and incomplete, and its

value depends on the methods by which it was obtained (Peirce and Menand, 1997).

For pragmatists, knowledge is judged by how useful it is for solving practical

problems. Put simply, truth is whatever works at the time. This stance therefore

entails a degree of relativism: what is useful for one person to believe might not be

useful for another; therefore truth is relative to the observer. To overcome obvious

criticisms, many pragmatists emphasise the importance of consensus - truth is

uncovered in the process of rational discourse, and is judged by the participants as

whoever has the better arguments. Pragmatism is less dogmatic than the other three

stances described above, as pragmatists tend to think a researcher should be free to

use whatever research methods shed light on the research problem. In essence,

pragmatism adopts an engineering approach to research - it values practical

knowledge over abstract knowledge, and uses whatever methods are appropriate to

obtain it. Pragmatists use any available methods, and strongly prefer mixed methods

research, where several methods are used to shed light on the issue under study

(Capps, 2012).

Easterbrook et.al, (2008) argued that although there are examples of research from

each of these stances in software engineering literature, the underlying philosophies

are never mentioned. There is a belief that this has contributed to confusion around

the selection of empirical methods and appropriate evaluation of empirical research

in software engineering. In particular, it is impossible to avoid some commitment to a

particular stance, as you cannot conduct research, and certainly cannot judge its

results, without some criteria for judging what constitutes valid knowledge

(Easterbrook et.al, 2008).

The investigation carried out in this thesis used a positivist stance: it is empirically-

based research method. Empirical or experimental research can be defined as an

investigation based on the observation of actual practice on which to found a theory

or answer a question and derive a conclusion in science (Fenton and Bieman, 2013).

William (2009) argues that empirical research methods are part of the scientific

method that requires all evidences to be empirically based, as opposed to

theoretical-based methods that are based on existing theories and explanations.

Empirical methods are used extensively in many disciplines, including software

engineering. The empirical work of the present thesis focuses on assessing the ease

of comprehension of OO programs in comparing to non OO programs in different

problems characteristics and different solution decompositions. It seeks to assess

ease of comprehension of these problems' solution decomposition, in actual

70

implementation, by programmers who are considered novices to experiences in OO

programming. A positivist stance was used in this research; to assess the

appropriateness of this selection it is necessary to examine the differences between

the deductive and inductive methodological approaches.

3.3 Research Method

This section presents an overview of the choices involved in selecting appropriate

empirical research method for software engineering research. The aim was to cover

the issues that we faced when deciding how to address the research problem under

investigation. The main interest of this research is the investigation of the influence

of class structure, problem characteristics, and solution decompositions on the ease

of comprehension of OO programs. It is essential to discuss the research strategy

used to implement the adopted research method, so as to provide a reliable and

valid research result.

The choice of the research method is influenced by the researcher’s theoretical

perspective and also his attitude towards the ways in which the data will be used

(Gray, 2009). It should also explain the rationale behind the selection of the methods

adopted. This research has undertaken case study as a research method to reach

the overall aim of the research. Two case studies were formed to investigate ease of

comprehension of OO programs. The justifications for the selection of case study

research method are explained in detail in the following sub-sections.

The choice of a case study as research method had been attributed to a number of

reasons. Case study has a distinctive advantage over other research methods when

“how” or “why” questions are being posed to discover a current phenomenon and

71

when the researcher has little or no control over the events (Yin, 2009). It offers the

opportunity to explain why certain outcomes may happen more than just find out

what those outcomes are. This is actually very important for the present research to

identify how elements of class structure, problem characteristics, and solution

decomposition influence the ease of comprehension of OO programs. Gray (2009)

confirmed that a case study approach is particularly useful in revealing the casual

relationships between the phenomenon and the context in which it takes place.

However, the case study approach has not been widely accepted as a reliable,

objective and legitimate research strategy. One of the most critical criticisms directed

to this approach related to the difficulty in generalizing the findings to a larger

population (Yin, 2009; Thomas, 2003).

It is essential to define a boundary around the phenomenon - what to include and

what to exclude (Stark and Torrance, 2005). Yin (2009) proposed four different types

for case study designs. These types include: single-case (holistic) designs; single

case (embedded) designs; multiple-case (holistic) designs; multiple-case

(embedded) designs. It is important to note that holistic designs are based on single

unit of analysis whereas embedded cases include multiple unit of analysis. The

undertaking of multiple-case study designs is expensive and time consuming (Yin,

2009). However, this research adopted multiple case (holistic) designs to investigate

the ease of comprehension of OO programs in two different problems that have

different settings. This can be justified using two main reasons. First, the evidence

and conclusions coming out from multiple-case designs are more reliable and

convincing than those based on single-case designs and thus the findings are more

likely to be generalised (Yin, 2009). Second, the assumptions that there are different

72

types of conditions surrounding comprehension of OO programs and there is a need

to have sub-units of cases to cover all different conditions and practices.

According to the purpose of the research, Gray (2009) explained three different

forms of study: exploratory, explanatory and descriptive. Robson (2002) indicated

that the purpose of the enquiry may change over time. This reflects that the research

project may have more than one purpose at the same time. An exploratory study

intends to explore what is happening; to seek new insights; to ask questions and to

assess the phenomena in a new light. It is valuable particularly when there is very

little information known about the phenomenon. On the other hand, explanatory

study aims to find out the causal relationships between variables (Saunders et al.,

2011). Finally, descriptive study seeks to provide a clear picture about the

phenomenon as it already occurs (Hedrick et al., 1993).

The current research is based on multiple-case studies each of which is explanatory

in nature. For each case study, well known programming problem for empirical

experimentation purposes was chosen. Each empirical experiment intends to

investigate factors affect the ease of comprehension of OO programs.

The approach of multiple-case studies is illustrated in Figure 3.1. The figure indicates

that the initial step in designing the study must consist of theory development, and

then shows that case selection and the definition of specific measures are important

steps in the design and data collection process. Each individual case study consists

of a “whole” study, in which convergent evidence is sought regarding the facts and

conclusions for the case; each case’s conclusions are then considered to be the

information needing replication by other individual cases. Both the individual cases

and the multiple-case results can and should be the focus of a summary report. For

73

each individual case, the report should indicate how and why a particular proposition

was demonstrated (or not demonstrated). A cross cases, the report should indicate

the extent of the replication logic and why certain cases were predicted to have

certain results, whereas other cases, if any, were predicted to have contrasting

results.

74

0.o
•§o
€
<D

- C

TO
CD
COQ>
o:

~o
C
CO
0</>>?
0c<

5».9 coo0SI R.I-I-*Q. (0o O&
-O 0 Q.o S .iQ

1(0■cw Oo Q.1—o 01_0 0.ti (/)
5 0o

0
CO>
0c0
T>
C0
O
0

oo
0'
v _

0
Q .
0

CO

■SQ
0-C
o

c0)co
0T3
T3
C
0
0C

H—
0
Q

▼

w 00
5 . 2 8

(/>
0O c o o
"o
0

o> 0 o
0 8 ^0

CO Q

Fig
ur

e
3.

1:
 C

as
e

St
ud

y
Me

tho
d

(S
ou

rc
e,

 Y
in,

 2
00

9)

An important part of Figure 3.1 is the dashed-line feedback loop. The loop

represents the situation where important discovery occurs during the conduct of

one of the individual case studies (e.g., one of the cases did not in fact suit the

original design). Such a discovery even may require reconsidering one or more

of the study’s original theoretical propositions. At this point, “redesign” should

take place before proceeding further. Such redesign might involve the selection

of alternative cases or changes in the case study.

When using a multiple-case design, a further question you will encounter has to

do with the number of cases deemed necessary or sufficient for your study.

Multiple-cases, in this sense, resemble multiple experiments, in which a

previously developed theory is used as a template with which to compare the

empirical results of the case study. If two or more cases are shown to support

the same theory, replication may be claimed. The empirical results may be

considered yet more potent if two or more cases support the same theory but

do not support an equally plausible (Yin, 2009).

3.4 Experimental Framework

Many researchers in the field of software engineering have been motivated by

the belief that their recommendations will aid the programmer's task and

therefore improve the quality of the software produced. Whilst the contributions

made by expert programmers' recommendations have been, in the majority of

cases, couched in human factors terms, these recommendations have taken

the form that a particular aspect of programming practice will make the

programming task either easier, or faster, or less error-prone etc. (Sheil, 1981).

Despite the authority and vigour with which these expert recommendations

have been made and their common-sense appeal to our intuitive notions of
76

programming, they do not constitute a scientific basis for acceptance but need

to be empirically tested. Indeed, experimental evaluation can not only be a

useful and powerful tool for assessing such proposals but can also provide

empirical evidences augmenting the contributions of practitioners and experts in

the field. Therefore, the temptation to accept experts' proposals without

evaluation must be resisted.

A researcher can choose from a number of research methods suitable for a

particular study and in the area of software engineering. Creswell (2011)

highlights five classes of research method that are most likely to be applied in

this field of research: controlled experiments, case studies, survey research,

ethnographies, and action research.

Many software engineering researchers consider that Weinberg's classic work

"The Psychology of Computer Programming" (Weinberg, 1971) was the catalyst

for arousing a much-needed interest in human factor investigation generally. In

particular, it was directly responsible for most of the investigations on the

psychology of programmers' team organisation (Basili and Reiter, 1981; Baker,

2003). The thrust of initial experiments in programming, and to a lesser extent

of current works, was in the vein of establishing whether a particular product or

practice was in some sense better than others. For example, a number of the

earliest contributions comparing different programming approaches from

psychological aspects were studies by, for example, Shneiderman (1975, 1977,

1980), Siddiqi, (1984), Pennington (1987a,b), Ramalingam and Wiedenbeck

(1997), Wiedenbeck et al. (1999), Wiedenbeck and Ramalingam (1999),

Khazaei and Jackson(2002), and Affandy et al. (2011). The primary force

responsible for the increased volume of work within the last decade has arisen

from the debate caused by the 0 0 programming movement with its radical

ideas on programming practices and language constructs. This debate has

provided researchers with the opportunity of empirically evaluating various

claims made by proponents of the philosophy. However, there has been no

parallel increase between 0 0 programming ideas and empirical experimental

work in 0 0 programming (Sajaniemi and Kuittinen, 2007, 2008).

In order to understand experimental research, some key terms used should be

described. Robson (2002, p. 100) uses the term variable to represent a “defined

property or characteristic of a person, thing, group or situation”. Treatment or

Condition refers to the key factor that is compared or evaluated: a product, a

technique, or a method. A precise description of the independent variable is

crucial to every experimental design. The independent variable is the variable

that is manipulated by the researcher, and takes the form of an experimental

treatment, which is either present or not present. This setting, whether the

treatment is present or not, describes a conventional model in which the

researcher compares two conditions. However, instead of one treatment, two

treatments can be used. In this case, treatments are compared with each other.

Subjects are the people, the participants (not the researchers) involved in the

experiment, while Objects refer to the entities under investigations and to which

the treatment is applied (a project, a program, a product, etc.), the subjects are

assigned to groups. One group is the "Experimental group" (given the

experimental treatment) and another group is the “Control group” (given no

experimental treatment). In a two-treatment comparison, the two groups are

designated Experimental group 1 and Experimental group 2. The Dependent

variables in experimental research represent the factors that are expected to

change in response to the application of the treatment. Extraneous variables

78

are factors that can affect the dependent variable but are of no interest. These

variables should be controlled by the experimental design to eliminate their

effect on the outcome. However, in the opposite case, if an extraneous variable

influences the dependent variable, due to a weak research design, the variable

is considered to be a confounding variable.

The two possible empirical evaluation paradigms available to researchers are

observational and comparative experiments. Both types involve testing a

relationship known as the "null hypothesis". This hypothesis asserts that there is

no relationship between the independent variable, which is the variable under

investigation and therefore the one the experimenter manipulates, and the

dependent variable, which is the variable that is affected and therefore the one

on which measurements are performed (Siddiqi, 1984). A crucial aspect of

designing an experiment is to ensure that the effect on the dependent variable

is attributable to the independent variables that may affect the outcome. It is

precisely because these controls are absent that there are a number of

reservations about results obtained from them.

The simplest form of comparative experiment is introspection and is probably

the basis of many recommendations from many prior related empirical studies

(for example Pennington 1987a, b; Wiedenbeck et al., 1999). A variant of this

rather subjective method is verbal protocol analysis (Simon and Newwell, 1971J.

Traditionally, this technique involves recording individual subjects "talking

aloud" about the task they are performing. The recorded speech transcription is

divided into lines known as protocols. This technique has been relatively little

used in programming experiments, notable exceptions being Brooks, (1977),

Atwood and Jeffries (1980), and Burkhardt et.al (2006a, b). However, as

79

Shneiderman (1980) points out, whilst this technique can be "worthwhile when

the subject is a capable sensitive programmer, since important insights may be

obtained", there is no guarantee about similar behaviour of other programmers.

3.5 Specific of the Methodology

In this section an overview of the approach taken in the experiments conducted

in this investigation is presented. A controlled experiment research approach

was used in this investigation employing a quantitative technique. The ease of

comprehension of OO program was assessed. This was done by asking

programmers to carry out a comprehension task.

The experimental part of the investigation consists of two studies, each of which

took place in different higher educational institutes, shown later in Chapter 5.

Each study employed two groups of programmers to receive different

treatments. By choosing university students with relatively convergent

programming experience level in each study, an effort was made to eliminate

any effect of ability variation and previous programming experience along with

knowledge a programmer might have acquired from previous practice in

programming. This issue will be discussed later in this section. Aspects related

to chosen experimental materials will be also highlighted in this section. To

assess subjects' comprehension a combination of metrics were used as

measures in both studies and will also be discussed in this section. Other

methodological issues related to conducting an experiment, such as data

collection and analysis techniques, and ethical issues are also detailed in this

section

80

Having accepted at the outset that programming is a complex form of human

problem-solving behaviour, it may seem tempting to consider what

psychological theories of problem-solving behaviour have to offer. Unfortunately,

as Green (1980) points out, psychology does not have a general theory of

thinking and is not likely to have one in any reasonable time to come. Sheil

(1981) observes that although some psychological theory is very suggestive, it

usually lacks the robustness and precision required to yield exact predictions for

behaviour as complex as programming. The need to establish a suitable

experimental methodology was recognised earlier by Weissman (1974) and

Shneiderman (1975). Since then, there has been little progress and there are

few references on investigations into the methodology itself (Easterbrook et al.,

2008).

Given that empirical software engineering research is not an exact discipline,

several factors, such as design, preparation, and analysis of empirical

experiment, should be considered carefully. These factors are not new concepts

and, indeed, are very similar to those used within the behavioural sciences

(Miller, 2006). There has been considerable good progress in this area (for

example, Brooks, 1980; Pennington, 1987a, b; Wiedenbeck et al., 1999;

Burkhardt et al. 2006a, b).

Conducting empirical software engineering research has become an important

part of evaluating new software technology. However, much existing software

technology has still been adopted on the basis of expert opinion and anecdotal

evidence, not on the basis of empirical or strong theoretical evidence. Because

of this absence, researchers investigating intuitively based on claims of expert

programmers have, in many cases, made methodological decision that are,

81

ironically, based on intuitive grounds, (See for example, Basili, 1992; Porter et

al, 1995; Sjoberg et al., 2002, 2003, 2005; Fenton and Bieman 2013). While this

can be partially blamed on the fact that software engineering is a relatively new

field which has grown quickly over a short period of time, empirical evaluation of

such technology should be attempted. Evaluation is usually not performed

because the need for scientific confirmation is outweighed by the software

engineering community's reliance on intuition. However, many software

engineering experiments show that many instances of such intuition about

software are mistaken (Briand et al. 1999). For example, Daly (1996) reported

that in Basili and Selby’s (1987) experiments evaluating the efficiency of code

reading, functional testing and structural testing, they claimed to have

discovered that professional programmers using code reading detected more

software faults and had a higher fault detection rate than other methods. This

was a surprising result to many of the programmers that participated in the

experiments, who felt they had performed better with the testing techniques.

While findings about intuition being misleading strengthen the need for more

empirical research, it should be noted that performing empirical software

engineering research is not an exact discipline and there is a need for

researchers to consider various concerns (Briand et al. 1999).

The review of experimental work that follows is not intended to be a

comprehensive survey of the literature (for such a treatment, see Sjoberg et al.,

2002, 2003, 2005; Easterbrook et al., 2008), but concerns itself specifically with

the methodological issues central to programming experiments and the controls

necessary for such experiments to be effective.

82

Daly (1996) argued that the aim of comparative behavioural experiments in

programming is to create an environment in which subject behaviour can be

observed and analysed effectively. Devising such environments obviously

necessitates the selection of suitable subjects, suitable materials that will yield

the desired effect of the application of appropriate measures to analyse the

effect produced. Therefore, the methodological issues at the heart of this type of

experiment relate to a judicious choice of subjects, materials, measures, and

data collection (see Brooks, 1980; Siddiqi, 1984; Daly 1996). Additionally, these

issues will guide our process in producing an effective experimentation

framework.

3.5.1 Subjects

Cook and Campbell (1979) suggest that a weakness in all experiments is that

the assumption of initial equivalence between the groups is possibly violated.

Even a small difference in the two groups will make the groups not comparable

and any observed differences in outcomes could be due to extraneous factors

or pre-existing differences (Cohen et al., 2013).

There are two primary concerns in the selection of subject, according to Brooks

(1980). First, the sample chosen should be representative, that is, the observed

behaviour of the sample should be characteristic of the population under

consideration. Second, the individuals in it should be relatively homogeneous as

regards characteristics other than those under investigation, so as not to

influence the results obtained. The reason for insisting that these requirements

be satisfied is that, when an experimental sample is sub-divided into groups for

differing treatments, it is essential that any significant results obtained for any

group are attributable to the treatments and not the characteristics of the

83

subjects in the group. It is not always possible to know all the subject

characteristics that will influence experimental results for any programming-

related task in advance, although, in practice, for a given task, it may be

possible to determine which subject characteristics will introduce an

experimental bias. For instance, in an experiment investigating the effect of

particular programming practices, differences in such factors as intelligence,

discipline studied, and level of education, could introduce an unwanted bias and

therefore measures would need to be taken to control their effects.

One aspect that should be considered in this investigation is to minimise the

effects of those subject characteristics that are responsible for experimental

bias. Anderson (2001) has introduced various well-established techniques

which reduce the effect of between-subject variations, these are included:

• random assignment of treatments;

• a “within-subject-design” where all the subjects undergo all experimental

treatments;

• the use of “matched pairs”, in which subjects of an experiment are

matched on some important characteristics; the consequence of this is

that no group has a disproportionate number of biased subjects.

There are good reasons for conducting experiments with students as

experimental subjects, for example, for testing experimental design and initial

hypotheses, or for educational purposes. Depending on the actual experiment,

students may also be representative of junior/inexperienced professionals.

However, the low proportion of professionals used in software engineering

experiments reduces experimental realism, which in turn may inhibit the

understanding of industrial software processes and, consequently, technology

transfer from the research community to industry (Briand et al. 1999). Hence, to

break the trend of few professionals as subjects, Sjoberg et al. (2002, 2003,

and 2005) introduced new strategies to overcome these challenges.

A good experimental design should take into consideration any extraneous

variables that may influence the independent variable by controlling for them.

Controlling these extraneous variables, usually through randomisation,

eliminates systematic bias due to them and increases the internal validity of the

experiment (William, 2009).

The implication of experimental investigations with students suggests little

justification for assuming that their findings are applicable to experienced

programmers. However, comparative experiments involving both types of

subjects (novice and expert) need to be performed before such an implication is

verified. Some researchers have attempted to design experiments so that the

effect of variation in subjects' characteristics is brought under experimental

control. They have tried to conduct experimental investigations in such a way as

to reveal the class of subjects to which their findings apply. An obvious attempt

to control the effect of variability in subject characteristics is to use subjects that

are undergoing similar training. However, Cohen et al. (2013) argue that even

small differences in experience between subjects will make the subjects not

comparable and any observed differences in outcomes could be due to

extraneous factors or pre-existing differences.

One possible way of ensuring that results obtained are representative of the

parent population under consideration is to replicate experiments (Daly 1996).

This approach has been successfully adopted by researchers (see for example

Pennington 1987a; Wiedenbeck et al 1999; Burkhardt et al., 2006a, b). This can

85

be achieved by performing experiments by novice and expert programmers in

such a way that findings can be compared for both groups of subjects.

The technique that is most effective in systematically controlling individual

differences in performance between experimental treatments is the within-

subjects-design, which has been used in a number of related studies

(Ramalingam and Wiedenbeck 1997; Wiedenbeck et al. 1999; Wiedenbeck and

Ramalingam 1999; Khazaei and Jackson 2002; Burkhardt et al., 2006a, b). The

overall aim of these studies was to investigate the effect of different

programming approaches on program comprehension. The experimental

procedure consisted of randomly assigning each subject to one of the

experiment groups, each of which received exactly the same set of programs to

study and recall. Hence, each subject received the same set of experimental

treatments. The advantage of this design was that it enabled the investigation to

measure the effect of another independent variable that could influence the

results, namely, the sequence of programs. However, its major disadvantage

generally is that it involves the preparation of large amounts of material. Also it

could lead to subjects getting bored because of the number of experimental

tasks. More fundamentally, it could lead to what can be referred to as "carryover

effect'. In general, this means that participation in one condition may affect

performance in other conditions, thus creating a confounding variable.

Robson (2002) suggests the selection of “equivalent groups through matching”

method by using one or more matching variables. He further draws attention to

another approach, a matched-pairs design, used in many experimental designs

(Cook and Campbell, 1979), where individuals are matched to form a pair and

then each member of the pair is randomly assigned to one group. Creswell

86

(2011) indicates that a matched-pairs design is expensive, takes time and could

possibly result in incomparable groups if some of the participants choose to

leave the experiment. Instead of matched-pairs, a stratified sampling technique

can be used to strengthen the assumption that the two groups are initially

equivalent. Another problem with matching is the accuracy with which matching

between two individuals will take place. To address this issue, stratified random

sampling approach has been used in this investigation.

In summary, it must be acknowledged that many researchers were, and still are,

forced to use students as subjects. In many cases, because of cost constraints,

the use of professionals is impossible. However, the burden of proof still lies on

the experimenter to show that the results obtained are representative of the

population under consideration.

3.5.2 Materials

The second of the methodological concerns - the choice of experimental

materials - is only one factor relating to a broader category, namely, that of

"experimental environment" (i.e., that which encompasses all the available

stimuli). As Moher and Schneider (1982) point out, behavioural researchers

have long realised that differences in results can often be attributed to a variety

of factors in the experimental environment. Amongst the environmental factors

that investigators need to consider, in their opinion, are:

• the choice of experimental materials;

• the physical setting in which programmers work, so that this can be

reflected in the experimental settings;

87

• different types of incentive (whether money, or the satisfaction of

knowing the aims and subsequent achievements of the research, or

being reassured that experimental results will not reflect course grades),

so that these incentives can be used in a manner that ensure consistent

performance of subjects;

• various ways of presenting experimental instructions (i.e., whether in oral

or written form, or whether presented informally or formally), as small

differences in statement of objectives can be responsible for large

differences in results.

The main concern in controlling unwanted bias in the experimental stimuli lies

with the choice of material used. There are two issues relating to this choice.

Firstly, the material should allow the experimenter to elicit any existing

differences in treatments; secondly, the effect of these differences should be

attributable to these treatments. When considering the effects of subject

variation, it was seen that these could be controlled by the use of a number of

standard techniques. However, when choosing experimental material, the

controls required for counteracting possible bias will vary from experiment to

experiment.

Empirical investigations into programming approach features provide examples

of the types of materials-choice problem encountered by researchers and their

attempts to overcome the latter. These investigations have used material that

includes different sets of languages, natural language (Miller, 1974), small sub

sets of a programming language (Sime et al, 1999), complete languages

(Wiedenbeck et al., 1999; Burkhardt et al., 2006a, b) and a special purpose

query language (Reisner, 1977). Each type of material allows researchers to

88

focus on the specific issue being investigated, thereby avoiding any bias due to

differences in subject training. Obviously, the use of specific material should be

based on the specific programming aspect under investigation. Siddiqi (1984)

has given an example of Gannon and Horning (1975) work, which evaluated

TOPPS and TOPPS II (a pair of statically and dynamically typed languages

developed at the University of Maryland for teaching programming and studying

the design of programming languages). Siddiqi argued that this work provides a

starting point for the systematic comparison of two different (but syntactically

similar) programming languages. He pointed out that when it is necessary to

investigate the interaction of language features, the latter must be evaluated in

the context in which they are used. The author advanced a clear rational in the

choice of experimental material for detecting existing differences and made a

reasonable case for their findings.

In studies attempting to investigate the comprehension of different programming

approaches (Pennington 1987a; Ramalingam and Wiedenbeck 1997;

Wiedenbeck, et al 1999; Wiedenbeck and Ramalingam 1999; Khazaei and

Jackson 2002), the researchers focused on assigning the subjects'

comprehension of a specific program implemented in different programming

approaches. The experimental materials used consisted of multiple, diverse,

programs examples, each of which was implemented in different programming

approaches. Comprehension was evaluated in the context of the mental

representations, which represent different types of knowledge, constructed by

subjects during comprehension of given treatment. This was considered an

appropriate method to investigate how different programming approaches have

different effects on program comprehension. The comprehension questions

were designed to ask about particular relations between program parts and thus

89

represent different types of knowledge incorporated in the program text.

However, no explicit details were given about the characteristics of the

problems used and the criteria followed in choosing them. Also it was not clearly

stated what type of solution decompositions these studies used in implementing

these problems. Moreover, it was unclear if this set of solutions

decompositions/programs could unwittingly bias the results of one type of

example over the other (Alardawi et. al., 2011a, b).

In Siddiqi's (1984) study, type of task, general problem characteristics, and

solution decomposition were the most important elements considered in

designing the experimental materials. For example, his study was restricted to

problems whose general characteristics were similar to each other. This choice

was made to avoid undue emphasis either on input data content or on

processing requirement. Limiting the study to a specific problem arena gave the

advantage of allowing a more detailed conclusion. In this thesis, characteristics

of the problems chosen and their relevant solution decompositions as

experimental materials were also limited to a specific problem arena.

In some other cases, devising experimental material may require experimental

subjects to undergo special training to adapt to the physical setting of the

experiment. The presence of this effect pertaining to the experimental materials

is a further factor that could produce an unwanted bias by increasing the

already large variance between subjects that is present in programming tasks

(see for example Green et al., 1975). Another different example of these effects

is the difference in experimental program length highlighted by Ramalingam and

Wiedenbeck 1997; Wiedenbeck et al., 1999; Wiedenbeck and Ramalingam

1999; Khazaei and Jackson 2002. This difference is due to the different

90

programming approaches used in implementing experimental materials, for

example, the overhead of defining classes and constructors of classes in the

materials implemented using 0 0 programming approach. However, no

significant effect was reported in this context.

3.5.3 Measures

The final methodological concern is the choice of measures. Human factor

investigations in programming have a variety of experimental metrics. These

metrics seem to have resulted from a combination of necessity and a carte-

blanche application of the principle "to measure is to know". Most experimental

researchers would claim that their choice is based on necessity. However,

some concerns have been expressed as to the relevance of some of the

metrics in contributing to the understanding of the program comprehension

process (for example, Brooks, 1980; Pennington 1987a, b; Wiedenbeck et al.,

1999). Brooks (1980) argued that most innovations in programming approaches

can influence the ease with which programs can be constructed and/or the ease

with which existing programs can be comprehended. The experimental tasks

used in these relevant studies will, therefore, be aimed at measuring changes in

either or both of these properties.

Choosing an experimental measure is mainly based on the nature of the claim

being assessed. Software science is, to paraphrase Yeh (1979), a unified and

coherent field in which attributes of a computer program, such as

implementation time, clarity, structure; error rates, language levels, etc. can be

derived from metrics based on intrinsic characteristics of the program itself.

Such metrics measure what Shneiderman (1980) terms as the "logical

complexity" of the program. These include functions of frequencies of operators

91

and operands in a program. Such metrics have the obvious advantage of

facilitating automatic computation of measures from the program text, and the

gathering of quantitative evidence that readily lends itself to hypothesis-testing

methods. Investigation by Curtis et al. (1979) using Halstead and McCabe’s

metrics reveal that "these metrics appear to assess psychological complexity

primarily where programming practices do not provide assistance" (i.e., they

measure the difficulty in comprehending programs which have been written in

an "unstructured" manner). Such experiments exhibiting high correlations

between factors and their proposed metrics, therefore, can offer useful

quantitative evidence. However, because these measures are based on intrinsic

properties of the program, they take no account of the interaction between the

program and the programmer.

Program comprehension measures are frequently used in empirical studies as a

means of establishing the level of comprehension a subject has of a program.

Such measures are useful in a wide range of studies involving technological

developments, for example new languages/concepts, methods of

documentation, approaches to visualisation etc. However; the wide variety of

approaches to measuring comprehension means that it is difficult to compare

measures and have confidence in the reliability and accuracy of measures.

Although there is a variety of metrics, the effect being measured in most cases

has been the ease with which existing programs can be comprehended. There

is a need for an accurate and reliable measure of program comprehension.

Experimentation involving program comprehension tasks usually takes the form

of comparing two groups of subjects: a control group and a group undergoing

the treatment being investigated. Moreover, the choice of a model of measure

will have a decided impact on the construction of experimental materials and on

92

the interpretation of the obtained results. For example, mental simulation

measure model is consistent with an interpretation of comprehension of a

program as complete knowledge of all the details of the program's construction.

Dunsmore and Roper (2000) claim that there is not one established measure of

comprehension, and the studies which try to make use of and measure levels of

comprehension use a diversity of techniques (often this is because the

technique used is related to the particular form of comprehension that the

researcher is trying to investigate). For example, there is no direct way to

measure a person’s comprehension of a piece of code, so all comprehension

measures should be more properly referred to as "indirect" or "proxy" measures.

The authors identified four essential comprehension measures: "maintenance",

"mental simulation", "static", and "subjective (self-ranking)". They empirically

found that a measure based on mental simulation is the most reliable

comprehension measure. It is also the one that is the most easily controlled

(very roughly, by increasing the amount of information that has to be kept in

mind, the comprehension task similarly increases). The followed reliable

measure is the maintenance based tasks, however; care must be taken with the

type of maintenance required. Static tasks appear to be notoriously unreliable

and hardest to control. A subjective measure is cheap and worth using along

with another measure.

Mental simulation, also known as recall test technique, has been used in many

empirical studies for measuring comprehension of program (see for example,

Shneiderman, 1977; Pennington 1987a; Ramalingam and Wiedenbeck 1997;

Wiedenbeck et al., 1999; Wiedenbeck and Ramalingam 1999; Khazaei and

Jackson 2002; Burkhardt et al., 2006a, b; Affandy et al., 2011). These studies

used similar methodology, where the technique usually involves presenting a

93

subject with a segment of code and allowing them to study it for an allotted time,

estimated by the experimenters. Subjects were then asked to recall as much of

the code as possible. In some cases, both of these steps were repeated several

times (for example, Wiedenbeck et al., 1999; Affandy et al., 2011). This task is

also known as "memory-based" comprehension task. Evidence from these

studies supports the use of this technique as a metric for measuring program

comprehension. However, Brooks (1980) argued that the problem with the

mental simulation approach is that it is applicable only to isolated modules or to

toy or student programs. Even though a programmer is thoroughly familiar with,

say, a typical compiler, he or she will certainly be unable to reproduce it literally.

For systems of realistic size, instructions which encourage subjects to behave

consistent with a reconstruction model will probably be more appropriate. The

drawback of such instructions is that it will be necessary to develop a scoring

scheme that compares programs on underlying structure, rather than on literal

equivalence. If the goal of the study is primarily to assess comprehension of a

program, then an attractive task is simply to have the subject study this program

and then to respond to questions about it. These tasks may be used alone or in

conjunction with program construction or program maintenance tasks. The kind

of questions used can range from completely open-ended (i.e. "How does this

program work?") to completely structured multiple-choice. Open-ended and

short-answer questions have an advantage in that it is fairly easy to construct a

comprehensive set of questions. On the other hand, scoring is often difficult;

unless an elaborate formal scoring scheme has been created, it is often difficult

to tell how much more accurate one description of how a program works is from

another. The primary drawback to multiple-choice questions is that construction

of a sufficiently large set of questions often requires considerable effort, since

the questions must satisfy a number of criteria. First, while the correct response

should be the one that is chosen most often, the other responses should also

be chosen a moderate fraction of the time. Second, if the goal of the experiment

is to measure comprehension of the entire program, then the questions must

cover all aspects of the program to approximately the same degree. Finally, the

content of one question must not inadvertently reveal the answer to another.

Given the difficulty of balancing all these requirements, extensive pretesting is

virtually a necessity in the use of multiple-choice questions.

In a program comprehension context, subjective rating is simply the subject’s

own judgement of how much they found a piece of code easy/difficult to

comprehend. Although the subjective measure has been criticised in some

quarters, it has continually been used for measuring comprehensibility

(Shneiderman, 1977, Daly 1996). The primary drawback of a subjective rating

measure is that subjective levels could be attributed to the naivety of novice

subjects, as they might feel less inhibited to offer a realistic opinion of their

abilities. Dunsmore and Roper (2000) suggested using subjective measures

can only be useful along with another measure.

Another measure technique most commonly used for measuring the effort

required to accomplish a certain programming task is the time taken. This

technique has been widely used especially to measure programming tasks such

as construction, maintenance, modification, etc. (see for example Brooks, 1980;

Siddiqi, 1984, Daly, 1996). Nevertheless, this measure suffers from the

problems that are common to time measures in general; for example, difficulties

in excluding irrelevant behaviour and irrelevance of some parts of the program

to the hypothesis under test (see Brooks, 1980 for more detailed discussion).

95

An additional problem of ensuring accurate measurement arises if subjects are

allowed to set their own work periods. For these reasons, time measures must

be supplemented with other measures. For example, Brooks (1980) suggested

using the number of debugging runs or the ratio of total lines written to final

program size; Daly (1996) used a debriefing questionnaire to produce another

alternative interpretation to his results. In studies measuring program

comprehension, the rate at which subjects are able to perform the task of

reading a program and responding to the related comprehension questions

reflects the time required to comprehend this program. Time required to perform

a comprehension task can be used as a supplementary measure, as

recommended, in this investigation. It gives an indicator about the

comprehension of the given program (i.e., an easy-to-comprehend program will

take less time than an equivalent difficult-to-comprehend program).

The previous discussion has not advocated any particular experimental

measure as being uniformly superior. The choice of a particular measure will

primarily depend on the claim being assessed, experimental question, subject

population, and resources available to the experimenter. To ensure the

accuracy of the assessment method, the current investigation aimed to use a

combination of the mentioned metrics (mental simulation, subjective rating, and

time) in measuring program comprehension.

Finally, whilst it is desirable to conduct an "ideal experiment" (i.e., one in which

unwanted bias due to between-subject variation, non-uniform characteristics in

experimental materials, and/or inaccuracies in metrics, is negligible) so that the

results obtained can be attributed solely to the treatment under investigation

rather than anything else, in practice this is extremely difficult to achieve when

96

investigating the complex human tasks involved in programming. The options

are to choose either what Green (1980) describes as the utopian solution, that

is, "once psychologists have taken the wrinkles out of a theory of thinking,

programming can be treated as a special case and it will be obvious how to

make it easier", or to conduct experiments as methodologically precise as is

practically achievable so as to "chip away" at the problem under investigation.

The latter option was followed in this thesis

3.6 Hypothesis Testing

A statistical test procedure is a decision mechanism, founded on the principles

of mathematical probability theory, which transforms the experimental

hypothesis and the set of collected observations by means of a decision statistic

into an outcome that accepts or rejects that hypothesis. Siddiqi (1984) has

reported that Leach (1979) notes the similarity between the mechanics of a

statistical procedure and the reasoning used in a court of law provides a useful

analogy to explain the force of argument used in the former. Daly (1996)

reported that a common method of conducting an experiment is to use

statistical significance testing of the Neyman-Pearson type: the form of rejecting

or accepting a null hypothesis (denoted H0), where the null hypothesis is stated

simply for the purpose that it may be rejected. The researcher then accepts the

alternative hypothesis (denoted Hi) and concludes that an effect exists. The

standard procedure for carrying out a statistical test is as follows:

1. Posit the validity of the null Hypothesis (i.e., assume that there is no

relationship between the variables being investigated).

2. Choose the decision statistic to be used.

3. State the level of significance.
97

4. Compute, using the decision statistic chosen, the probability of obtaining the

observed sample, this probability being denoted by p

5. Reject the null hypothesis (and accept the experimental hypothesis)

provided the computed probability exceeds the significance level.

Once the researcher has stated the null and alternative hypotheses, a

significance criterion (pj should be set. The level of significance is the smallest

probability value for the collected observations that would result in the null

hypothesis being accepted (Sawyer and Ball, 1981). In theory, the value chosen

is at the discretion of the experimenter and may vary from experiment to

experiment depending on the degree of assurance required; However, in

practice, the sole purpose of experiment is to verify the desired hypothesis and

demonstrate the occurrence of an effect. Therefore, the smaller the significance

level, the greater the confidence that an effect has occurred (Bailey, 2008). The

most frequently used value for the significance level in experimental psychology,

so that the researcher can conclude that the observed effect is not the result of

chance variation, is 0.05. However, many studies adopt the convention of using

the value of the computed probability p, asserting that the result is significant at

that level; for example in Sheil (1981) the significant level chosen is p<0.2.

There is, however, an even greater danger in choosing "appropriate"

significance levels in such a manner, because the computed value for p is an

estimate that an effect has occurred and not an estimate of the size of an effect.

The commonly quoted values within software engineering are 0.05 or 0.1. The

empirical study is then conducted, the collected data analysed, and statistical

tests applied. If the researcher achieves a statistical result that is less than the

preset p value, the null hypothesis is rejected and the alternative hypothesis

accepted. From the many articles read by the researcher, it is clear that

98

researchers within software engineering use this type of significance testing as

their primary means to detect the presence of an effect within the phenomena

being empirically investigated.

3.7 Statistical Methods of Analysis

Several decision statistics were employed to analyse the quantitative data

gathered in the studies. Descriptive statistics were also used to describe and

summarise data, and more complex techniques, parametric and non-parametric

(based on the results of normality tests), were used to make inferences and test

the hypotheses advanced. Pallant (2010) stated that the choice of an

appropriate statistical technique requires consideration of several factors,

including the following: the type of question being addressed, the type of items

and scales chosen, the nature of the data, and, finally, the assumptions

required for each particular technique.

Daly (1996) argued that the assumptions underlying parametric statistics are

rarely used in software engineering studies (e.g., the assumption of normality).

Parametric tests require assumptions about the format of the data, and usually

normality is assumed for the data. Parametric tests rely on estimating and

testing values of parameters. In contrast, a non-parametric test, also called a

distribution-free test, does not require any assumption about the distribution of

the data (Clark-Carter, 2009). However, each particular test, even a non-

parametric one, requires certain criteria to be met. The main advantage of non-

parametric tests is that they can be used for small samples where there is no

information about the distribution of the sample available (Cohen et al., 2013).

However, these tests are less powerful than parametric tests and also less

99

sensitive in that they may not detect differences which actually exist (Walliman,

2005).

The particular techniques employed in this investigation are: Mann-Whitney U

unrelated samples test, Hodges-Lehman estimate test, and a kruskal-wallis

"chi-square". Consideration and details about these tests will be given in

Chapter 5, where the results of specific tests are presented.

3.8 Ethical Issues

Saunders et al. (2007) stated that, in any experimental research, ethical

considerations are a significant issue. However, the ethical issues raised by

empirical methods have received little attention in software engineering

literature (Shull et al., 2008). This is even more important in the current thesis

since all studies took place within an academic environment and involved

human subjects. Carver et al, (2003) provided a practical guide to ethical

research involving humans.

Every ethical and legal issue involved in this research, such as obtaining

subjects’ consent and academic approval, and conforming to educational

principles, was appropriately considered beforehand, and copies of

correspondence and approved forms from the Universities, where subjects took

place in any of the research's studies, have been attached as Appendix (C).

The ethical issues that are relevant to this investigation are outlined below:

• prior to the start of each study, the appropriate academic authorities were

informed. In some cases, in order to proceed with the study and have

access to the resources of the academic institution, the approval of

corresponding paperwork was required;
100

• in all cases, it was ensured that the participation of the students had no

effect on their academic evaluation and grading in any course/module;

furthermore, participation did not earn them any course credit;

• participation was voluntarily and students had the right to withdraw from the

study if they felt uncomfortable;

• all students were informed orally of the experimental purposes, the

procedures, and the task that were to be conducted. Moreover, students

were informed of how the data were to be collected and used;

• finally, confidentiality and anonymity was offered to the students. This is

especially recommended by the course tutors of the students in order to

encourage them to be more sincere and open.

3.9 Chapter Summary

The discussion presented in this chapter has outlined important aspects of the

methodology and empirical considerations taken into account in conducting

empirical software engineering experiments. It provided an account of the

rationale for the choice of a comparative empirical evaluation paradigm and the

way in which the method was employed. The methodological concerns and

justifications for adopting a controlled comparative experiment in the present

investigation were also discussed and the research framework identified.

Methodological issues for the specific investigation, such as subjects, materials,

and measures were discussed. Moreover, hypothesis testing, statistical

methods of analysis, and ethical concerns of this study were also outlined.

101

Whilst this investigation acknowledges that the evidence obtained using the

scientific method is not irrefutable, it does, however, take as axiomatic the view

that using this method can provide a probability measure of the comparison

being representative of the phenomena under investigation, so that the latter's

significance can be assessed. Moreover, a model or theory based on the results

from such comparisons then constitutes a proposed explanation of the nature of

the phenomenon under investigation. The research was faced with the problem

of applying the broad principles of scientific method, rather than a suitably

designed experimental methodology. However, the unwanted bias introduced

because of this problem can be controlled by judiciously augmenting the

scientific method with guidelines based on methodological decisions made in

previous empirical investigations. Therefore, it was decided to make effective

use of such guidelines so that an increased level of confidence could be placed

in the results obtained.

In conclusion, the specific research objectives were to investigate:

• the difference in ease in comprehension between 0 0 programs and non 0 0

programs;

• how elements of class concept, problem characteristics, and solution

decomposition influence the comprehension of different types of knowledge

in 0 0 programs.

102

Chapter 4 Specific of the Investigation

4.1 Introduction

The aim of this chapter was to detail the specifics of the investigation. Before

these were detailed, consideration was gave to two important aspects: first, the

identification of the context within which studies were performed, and hence

within which the investigation findings were interpreted; second, the description

of the experimental methodology employed - in particular, subjects, materials,

and measures - and the steps taken to provide a methodology tailored to the

need of the investigation.

4.2 Experimental Context

The experimental context specifics of the investigation described is given here.

Several factors contributed to the experiment context. The most significant

include: the population under investigation, the physical setting, and the size of

the problems to be investigated. Ideally, it was felt desirable to conduct the

investigation so that the findings:

• applied to a large cross-section of the programming community whose

members' characteristics varied considerably with regard to ability,

experience, training, etc.;

• were obtained from an experimental environment which closely resembled

the physical setting within which programmers work;

• related to "realistic" programming problems.

103

In practice, empirical research (whether conducted in an industrial or an

academic environment) on a complex programming activity such as program

comprehension (an area in which there is a scarcity of empirical investigation)

can have little hope of arriving at a satisfactorily complete solution. However,

there is a difference between investigations in industrial and academic

environments. The former often involve large-scale experiments, whereas the

latter are frequently constrained to small-scale experimentation. Therefore,

academic studies are open to the often-voiced criticism that such studies deal

with "toy" rather than "life-size" programs, and use subjects from academic

rather than production environments performing tasks in artificial settings. The

reason for this disparity between academic and industrial investigations is often

attributable to differences in availability of finance, resources, and subjects.

The circumstances surrounding this investigation were such that no provisional

arrangements had been agreed either for industrial co-operation (i.e., there

were no commercial organisations who had agreed to supply volunteer subjects

and/or make available resources) or for financing programmers to act as

volunteers. In addition, at the academic establishments where students are

usually willing to be participants, there was no precedent for their being used as

experimental subjects, which ruled out any serious possibility of organising

experiments in students' free time. Moreover, subjects' tutors were concerned

that experimentation should be performed only during one tutorial/practical

session (i.e., a period of approximately forty minutes) per term.

These circumstances dictated that:

1. Unpaid subjects should be used.

104

2. Since subjects' availability was restricted to infrequent, short periods, the

size-related complexity of experimental materials should be relatively small.

3. Due to the necessity for adequate numbers of experimental participants,

experimentation had to be performed across different institutions.

Nevertheless, it was considered that, despite these practical constraints, an

experimental context in which computer-science undergraduate and

postgraduate students were asked to comprehend relatively "small" programs

under experimental conditions, rather than test-like conditions, could constitute

a meaningful research framework. This view could simply be justified on the

principle that, because of the scarcity of research in program comprehension,

any contribution - even one with severe constraints - could be worthwhile. The

provision of a reassurance that subjects were participating in an experiment

rather than a test would help to motivate subjects. However, a stronger case

can be advanced:

• the chosen subjects represent a significant proportion of the programming

community. Subjects were from different institutions across different

countries, as well as being potential future professional programmers;

• the specific objectives of the investigation meant that a number of important

elements influencing 0 0 program comprehension could be investigated;

• the "reward" of being allowed access to the outcome of the investigation

would help to overcome possible adverse effects associated with the

artificial setting of experimental conditions.

The overall direction that any programming research project using the scientific

method follows is an investigative path combining exploration and evaluation. In

an approach where the former is emphasised, the intention is to "discover" from

105

a human-factors standpoint what features of a program make its specification,

construction, verification etc. more comprehensible. However, in an approach

where emphasis is on evaluation, the investigator posits, prior to

experimentation, certain elements which are believed, or assumed, to be of

interest; the aim then becomes to "measure" the effect of those elements.

Investigations on programming approach and program design by Siddiqi (1984)

and Khazaei (1990) provide examples of the exploration approach, whilst the

evaluation approach is exemplified by, for example, Good, 1999; Wiedenbeck et

al., (1999) and Burkhardt, (2006a, b). The current research essentially followed

an evaluation path. The investigative approach followed in this research

assumes - based on claims existing in the literature - that elements such as

class concept, problem characteristics, and solution decomposition affect ease

of comprehension of 0 0 programs. One of the consequences of this decision

was that the approach could make it easier to identify evaluative experimental

hypotheses (i.e., factors under investigation could be transformed into specific

experimental aims and hypotheses). Another reason is that there is an existing

number of relevant prior experimental studies which could be used as a starting

point and their outcomes built upon (for example, Pennington, 1987a, b;

Wiedenbeck et al., 1999; Khazaei and Jackson 2002; Burkhardt et al., 2006a, b).

The investigation can be viewed as two sets of studies. Each was associated

with a particular problem characteristic and was designed to study the influence

of the mentioned elements. Initially, a comparative experiment was preferred,

where the overall aim was to discover the influence of only one factor on

program comprehension. For example, the influence of problem characteristics

as a factor was discovered by varying the problems used in each study, the

influence of solution decomposition was discovered by varying the solution

106

decomposition in each problem. The discussion that now follows details the

methodological issues involved in choosing subject, materials, and measures.

4.3 Choice of Subjects

Two previously mentioned factors concerning training and payment restricted

the population from which subjects could be chosen to that of computer science

students trained in considerably broad principles of programming. Subjects

were willing to be unpaid volunteers. The criterion of choosing subjects from this

population was dependent on the fact that the studies were comparative in

nature. The comparative studies had specific aims of establishing differences

for a particular aspect of program comprehension between two or more groups

of subjects; this meant that the criterion was the need for homogeneity of

subjects' characteristics.

The techniques considered in order to control the carryover effect produced by

using within-subject-design were between-subjects-design, matched pairs and

random assignment of treatments. Use of the first technique meant devising

problems of variance in training and intelligence levels between subjects The

obvious difficulties in undergoing all experimental treatments and the

consequent carryover effect produced (equal to the number of treatment levels)

ruled out this technique. However, producing two equivalent experimental

subject groups in terms of intelligence level could be problematic.

The second technique would have involved the pairing of subjects in relation to

characteristics that might contribute to subject variance. A stratified random

sampling approach was used to allocate the subjects into two experimental

groups. Stratification is the formation of categories or strata from a population.

107

Every member of the population is assigned to only one stratum that is relatively

homogenous with regards to the characteristic or attributes forming the stratum

(Black, 1999). Considering the case of this investigation, the two subject groups

were equivalent or balanced regarding the characteristics that affect them. One

approach, in order to have similar and comparable groups that would ensure

high precision in a study, is to match the two groups on a significant variable(s)

to the results in the study. The main concern involved in grouping subjects was

that the two groups should be similar. Theoretically, this could be achieved by

matching on length or course of study undertaken by subjects and course

grades obtained. However, this was only partly possible because, in practice, it

was not known prior to experimentation which of the subjects would volunteer.

Therefore, the homogeneity assumption was based on choosing subjects from

the same course (i.e., matching differences due to length and type of training),

as well as using a stratified sampling approach to allocate subjects into two

matched groups. This allocation was based on the course grades that subjects

obtained (i.e., assuming that effects of other factors such as skills levels would

be randomly distributed across experimental groups). By using a stratified

sampling approach, in each experiment, subjects were placed into four groups

of similar ability - ranked as adequate, medium, good or excellent - and then

the members of each of these groups assigned to one of the two groups in a

random fashion. Finally, from the two groups, each group was then exposed to

different experimental treatment. Subjects also did not know the details of the

treatment or experimental procedure to be followed until the start of the

assigned task.

108

4.4 Choice of Problems Used and Solutions

Delivered

In terms of experimental materials, it was essential to consider carefully a

number of factors which can influence the choice of problems and the related

solution decompositions as experimental materials.

One important factor which influences the choice of experimental materials is

deciding the type of task to be performed. Two possible choices are program

construction and program comprehension tasks. The latter type was considered

more appropriate to the needs of the investigation. Program comprehension

activity provides an obvious means of investigating several programming tasks

(i.e., program development, modification, maintenance, and reuse). It is

considered as a necessary prerequisite activity that plays a key role in several

programming tasks (von Mayrhauser and Vans, 1995). The activity is usually

employed in a comparative studies approach. The obvious preference for

comparative experimentation necessitates devising experimental programs in

which the variable under investigation is a treatment rather than an attribute.

The material to be used for each experiment consisted of functionally equivalent

software programs written in two different programming approaches and a set

of corresponding comprehension questions reflecting different types of

knowledge. The task to be performed broadly involved comprehending the

given program by responding to the comprehension questions.

Another most significant factor in choosing experimental materials was the

decision to restrict the scope of the investigation to problems whose general

characteristics are as following:

109

• the problems chosen should be built on existing sets of problems used in

prior related studies. Thus the investigation findings could be compared to a

wide range of existing related studies and able to build on existing

knowledge;

• due to subjects' availability, as the experimental subjects were

undergraduate and postgraduate computer sciences students who are

represented as novice and experienced programmers respectively, the

investigation was restricted to problems whose general characteristics do

not require any specialised domain knowledge. Thus, chosen problems

should also be within the spectrum of programming example programs, and

well-suited to different programming paradigms;

• each problem used should have different characteristics from the other.

More precisely, the problems used should differ in terms of tangibility of the

problem’s entities, complexity level, and richness in possessing different

solution decompositions. The idea behind using problems with these

different characteristics was an attempt to produce empirical evidence

concerning the influence of problem characteristics and solution

decompositions in the ease of comprehension of 0 0 programs. A decision

was made in this study so that one problem could be considered as “triviaf

(its problem entities are relatively tangible and exist in the real world, are

less complex, and can posses one possible solution decomposition).

However, the other problem could be considered as “r/c/7” (its problem

entities are relatively intangible and do not exist physically in the real world,

it is comparatively more complex than the trivial one, and can possess

different solution decompositions);

110

• additionally, and to be more consistent, the problems chosen should fall into

well-known standard problem frames and be drawn from different problem

domains. Jackson's problems classification was identified as a good

classification standard of problem types to be followed (Jackson 1995; 2005).

This classification was also considered in distinguishing between the

experimental problems used in this thesis.

The problems chosen were considered to satisfy the above-mentioned

requirements. The reason for choosing this approach was that it would have the

advantage of reaching more detailed conclusions that - although derived from

relatively limited problems scope - could with circumspection be extrapolated to

a family of programming examples.

For the first study, the problem used was derived, and then adopted, from

Ramalingam and Wiedenbeck (1997) “Car” problem as a basis for the first

study’s material (specified in Appendix A). This problem had been used in other

similar studies (Wiedenbeck et al., 1999; Wiedenbeck and Ramalingam, 1999;

Khazaei and Jackson, 2002). The Car problem was considered to be a good

starting point for the investigation. It meets the investigation requirements as a

trivial problem. It also possesses one type of solution decomposition. Moreover,

according to Jackson's classification, this problem is considered as an example

of an information display problem, where the information machine is required to

monitor the state and behaviour of a concrete "real world" problem entity, in this

case a car, and to display information about it, in this case a speed, on a display.

It was considered important to the investigation to choose another problem with

characteristics rich enough to be perceived from different perceptions, which

can thus possess different solution decompositions. This was a pre-requisite to

111

investigate the influence of problem characteristics and solution decompositions

on 0 0 program comprehension.

Naur's “Line-Edit” problem (Naur, 1969), which is considered as a rich problem,

was used as a basis for the second study’s material (specified in Appendix B).

This problem was also used in Siddiqi's (1984) study. The problem differs from

the Car problem as it is relatively complex and its entities are comparably

intangible. It is also richer than the Car problem in that it can possess different

types of solution decompositions. Considering Jackson's classification, a Line-

Edit problem is a good example of the workpiece problem. A user edits a text

document using problem entities such as character, line, and word. These

problem entities are considered as less tangible than those of the Car problem.

The requirement is that the edit commands issued by the user should effect

appropriate corresponding changes in the workpiece. Figure 4.1 show the

problems used and how they differ in their characteristics.

P r o b le m c h a ra c te r is tic s

C a r p r o b le m L in e -E d it p ro b le m

• relatively tangible problem's • Relatively intangible problem

entities

• relatively simple problem

• trivial problem that posses

entities

• relatively complex

• rich problem that posses different

one solution decomposition solution decompositions

Figure 4.1: Classification of the problems used in the research

112

Since one aspect of this section concerns choice and design of the

experimental materials, it is considered relevant and vital to detail how the

investigation proceeded in designing these experimental materials, and how the

solution decompositions for each experimental problem (Car and Line-Edit)

were achieved. Different experimental materials were developed for the

purposes of the investigation. These represent the correct solution

decompositions of the corresponding problems, each of which uses a different

programming approach. The aim was to produce, for the Car problem, two

functionally equivalent program versions in which each program version is

based on the same solution decomposition but implemented in different

programming approaches. One program version containing classes, hereafter

called "Object based" program, while the other does not, hereafter called "Non-

Object based" program. For the Line-Edit problem, there are two functionally

equivalent program versions in which each program version is based on

different types of solution decompositions but implemented in a different

programming approach. One program version, hereafter known as "Object

based" program, contains classes, while the other, hereafter known as "Non-

Object based" program, does not. In order to achieve this aim, for the Car

problem, primitive solution decomposition was used in designing Object based

and Non-Object based program versions containing and not containing classes

respectively. For the Line-Edit problem, different solution decompositions were

applied. A primitive solution decomposition was used in designing the Non-

Object based program version that does not contain classes. An Abstract

decomposition solution was used in designing the Object based program

version containing classes.

113

In decomposing Car and Line-Edit problems, an informal "top-down" exposition

is presented. The function/process is used as a basis for the design of the

problems solutions. Initially, each solution is characterised in terms of an "item-

type-to-be-processed", hereafter referred to as "item". Siddiqi (1984) defined the

item as:

"a perception obtained from consideration of input data and/or

processing requirements (including output) which becomes pivotal to

the subsequent decomposition of the problem." (p 79)

The various alternative item based solutions to each problem, if they exist, are

mapped onto characteristic process structure pairs for each problem.

In designing the Car solutions, only one possible item, which is "car status"

process, can be considered as a perception that dominates the elaboration of

the primitive solution decomposition. This solution decomposition is then

implemented in two different forms (Non-Object based and Object based). Thus,

we considered the Car problem as a trivial problem.

In designing the line-edit solutions, Siddiqi (1984) reported that there are three

possible alternatives of item, namely, "character", "line", or "word". Each of

these perceptions can dominate the elaboration of equivalent solutions. Siddiqi

(1984) reported that a solution based on more abstract perception (viewing the

item as a word) is superior to those based on more primitive perceptions

(viewing the item as a character). Taking these findings into consideration, the

decision was made to consider the character item as perception that dominates

the elaboration of the primitive solution decomposition. This primitive solution

decomposition was implemented in the form of a Non-Object based program.

The decision was also made to consider the word item as an appropriate

114

perception that dominates the elaboration of the abstract solution

decomposition. This abstract solution decomposition was implemented in the

form of an Object based program. Therefore, the Line-Edit problem was

considered to be a rich problem.

As result, four solution decompositions implemented in different forms (specified

in Appendices A and B) are defined as following:

1. CD1: the Non-Object based primitive solution decomposition of the Car

problem.

2. CD2: the Object based primitive solution decomposition of the Car problem.

3. LD1: the Non-Object based primitive solution decomposition of the Line-Edit

problem.

4. LD2: the Object based abstract solution decomposition of the Line-Edit

problem.

The rest of this section details the way in which the study designed a set of

program versions for each experimental problem.

4.4.1 Designing Car Problem Solutions

Considering the Car problem adopted from Ramalingam and Wiedenbeck

(1997), and after much consideration, the decision was made to extend the

program by adding more details. However, to be consistent with the prior

related studies, to avoid any bias in the findings produced, and to make the

findings more comparable, these additional details do not impact on the

functionality of the evolved programs. The added details represent the addition

of two more entities, an "engine" and a "body ', to the problem in the new Object

based program version. This in turn resulted in adding two more classes to the

115

original 0 0 program (see Ramalingam and Wiedenbeck 1997 for the original

0 0 program version). The justification for this was to utilise the use of classes.

However, in the Non-Object program version, these problem entities were

represented as data variables. Moreover, both new program versions offered

additional output messages back to the user.

For the CD1, where "car status" perception dominates the elaboration of the

decomposition, the solution involves a sequence of two processes (“input car

details” and “car status”). The "input car details" process involves inputting

details of the added specifications of the problem entities engine and body. The

elaboration of the "car status" process consists of the two composite processes

"process number of passengers" and "process check speed limit". The

complete refinement of the CD1 is presented in figure 4.2.

116

Process
number of

passengers

Process
check speed limit

Process
empty car

Process
over speed

Process
car status

Process
input car details

Process Car

Process
final

Process
within speed limit

Figure 4.2 The complete refinement of the CD1

For the CD2, where also "car status" perception dominates the elaboration of

the decomposition, a different criterion was applied. This criterion was

fundamental to meet the design specifications of Object based version of the

Car problem. The solution was characterised in terms of a set of objects

117

required to perform certain processes. The "input car details" process involved

defining the specifications of the problem entities body and engine as separate

objects. The object engine has the attribute "power" and performs operations

"set-engine" and "get-engine". The object body' has the attribute "brand" and

performs operations "set-body" and "get-body". Both engine and body are

composed into the object "car1', as they are parts of this object. The "car status"

process was incorporated as an operation in the object car. The object car has

the attributes "speed" and "passengers" and performs operations called "set-

car", "car-status", and "get-car". Figure 4.3 illustrates the complete refinement of

the CD2.

set-body ()
get-body ()

brand: string

body

set-engine ()
get-engine ()

power: integer

engine

passengers: integer
engine: engine
body: body

set-car ()
get-car ()
carstatus ()

car

Figure 4.3 the complete refinement of CD2
118

Although CD1 and CD2 were differently implemented, the way in which the "car-

status" perception is processed is similar in both CD1 and CD2. The "car status"

was incorporated as a process in CD1 and was incorporated as an operation

embodied within the object car in CD2. More precisely, the perception of input

data and processing requirements was similar even though the implementation

differed. This is because the characteristic of the car problem was not rich

enough to be perceived from different perceptions so alternative items could be

introduced.

4.4.2 Designing the Line-Edit Solution

For LD1, where “character” perception dominates the elaboration of the

decomposition, the solution was borrowed from Siddiqi's L2-type solution. The

solution involves two processes, "non-space character" and "space character".

The elaboration of the "non-space character" process consists of two

elementary actions: adding a character to a word, and incrementing the size of

the word. The refinement of the "space character" process needs to distinguish

between the cases when a space is either redundant or acts as control

character. The complete refinement of LD1 is presented below in figure 4.4.

119

Process
text body

Process text

Process
character

Process
start of text

Process
end of text

Process
space character

Process
end of line

Process
end of word

Process
control space

Process
redundant space

Process
non-space
character

Figure 4.4 The complete refinement of LD1

120

LD2 was an adoption of Siddiqi's L3-type solution. This fundamental adoption

was made to meet the design specifications of an Object based version of the

Line-Edit problem. Since word perception dominates the elaboration of the

decomposition, word was considered as problem entity. This entity was

implemented as object called “word” with its relevant possible attributes and

operations. There was a need for another object to manipulate the given text, by

use of the "word" object, in the word basis. This object was called

"buildingword". Figure 4.5 illustrates the complete refinement of LD2

word

textlndex: integer

wordLength: integer

character: char

buildword (string Text)

printword (string Text)

<►

buildingword

linelength: integer

textedit(string text, integer maxlinelength)

Figure 4.5: The complete refinement of LD2

LD1 and LD2 were differently designed and equivalent alternative solutions

were produced. The perception dominating the elaboration of the decomposition

was different in LD1 and LD2. The characteristic of the line-edit problem was

121

rich enough to be perceived from different perceptions, thus alternative

solutions were achieved.

4.4.3 Designing the Experimental Materials

This investigation carried out two empirical studies (hereafter known as Car

study and Line-Edit study). For each study, suitable experimental materials

were specifically devised based on the above design settings, this comprising

outline programs with corresponding lists of comprehension questions

(hereafter known as “experimental treatments”). The experimental treatments

for the Car study and the Line-Edit study are provided in Appendices A and B

respectively. It is considered worthwhile to mention that the term “experimental

treatment” throughout this thesis represents: the program being comprehended,

the corresponding list of comprehension questions, the ranking question, and

the background questionnaire.

For the Car study, two functionally equivalent treatments were developed. The

first treatment was developed based on CD1 (see figure 4.2), with the absence

of classes, (known as Non-Object based program). The second treatment was

developed based on CD2 (see figure 4.3), with the presence of classes, (known

as Object based program).

The Object based program contains three classes, engine, body, and car, each

class consisting of private data member(s) and public interface containing

declarations of member functions (see figure 4.3). The execution starts in the

program’s main function, which begins by creating instances of classes, engine

and body. These instances objects are composed into the class car. The main

program function creates an instance of class car and calls the other objects’

122

methods in which the principal computations were carried out (see Appendix A

for the Object based program of the Car study).

The alternative, functionally equivalent, Non-Object based program does not

use classes; rather it was created by removing all classes (see figure 4.2).

Entities of engine and body were represented as data variables. The Non-

Object based program initialises variables, and then it carries out the principal

computations of the program in the program’s main function (see Appendix A

for the Non-Object based program of the Car study).

Similarly, for the Line-Edit study two functionally equivalent treatments were

developed. The first treatment was developed based on LD1 (see figure 4.4),

with the absence of classes (known as Non-Object based program). The

second treatment was developed based on LD2 (see figure 4.5), with the

presence of classes, (known as Object based program).

The Object based program contains two classes, word and buildingword, each

class consisting of private data member(s) and public interface containing

declarations of member functions (see figure 4.5). The execution starts in the

program's main function, which begins by creating instance of class word. This

instance object is composed in buildingword class. The main program function

creates an instance of class buildingword which then calls the word object’s

functions in which the principal computations were carried out (see Appendix B

for the Object based program of the Line-Edit study).

The alternative, functionally equivalent, Non-Object based program does not

use classes, rather it was created by removing all classes (see figure 4.4). The

Non-Object based program initialises variables, and then it carries out the

123

principal computations of the program in the program’s main function (see

Appendix B for the Non-Object based program of the Line-Edit study).

All the experimental programs (Non-Object and Object based programs of both

Car and Line-Edit studies) were developed to a level such that complete run

programs were obtained. The general format of the experimental materials

(including program and list of comprehension questions) was designed to be

consistent with previous related studies (see for example, Siddiqi, 1984;

Ramalingam and Wiedenbeck, 1997; Wiedenbeck et al., 1999; Khazaei and

Jackson, 2002; Burkhardt et al., 2006a, b). The experimental procedure

involved subjects having to read a given program and then respond to a list of

respective comprehension questions. Furthermore, in order to ensure that the

effect of any significant differences could be attributed to the experimental

treatment rather than alternative sources of variation, the following criteria were

considered in developing the experimental treatments:

• the programming languages used were from the subjects' main

programming languages. Since subjects were from different institutions,

JAVA and Visual Basic.net (hereafter known as JAVA and VB respectively)

were used. Possible effects of the syntactical differences between the

programming languages used were minimised as much as possible;

• the positioning and size of the programs were such that no implied

significance could be attached to them regarding the readability of the code.

Each program was fitted onto only one page;

• the stylistic rules used regarding formatting and discrimination of key-words,

choice of variables and procedure names, indentation, comments etc. were

124

in accordance with the conventions for program clarity as advocated on their

programming code.

One methodological problem is the variation in programs' sizes, in term of

number of lines of code. Table 4.1 shows the number of lines of code (hereafter

known as LOC) for all programs in each experiment.

Table 4.1: The corresponding LOC of each program in each study

the study
programming

language

program

version
LOC

Car

VB
Non-Object 24

Object 60

JAVA
Non-Object 35

Object 48

Line-Edit

VB
Non-Object 37

Object 55

JAVA
Non-Object 29

Object 45

The Non-Object based programs in Car and Line-Edit studies were slightly

shorter than the corresponding Object based programs. This basically was due

to the overhead of class and function definitions in the Object based programs.

For each experimental treatment, a set of corresponding comprehension

questions was formulated. The comprehension questions were formulated to

address the six different knowledge categories. A mixture of all knowledge

categories introduced in Pennington's model (Pennington, 1987a) with one

knowledge category added from Burkhardt's model (Burkhardt et. al., 2006a, b)

composing the model of 0 0 program comprehension was used in this

investigation., see table 4.2. Due to the scope of the subjects' ability and the

125

nature of the Non-Object based programs, the rest of Burkhardt's model

knowledge categories were excluded.

Table 4.2: Correspondence between knowledge categories, knowledge structures, and

mental representation of 0 0 program comprehension model used in this investigation

knowledge category
knowledge

structures

mental

representation

elementary operations (EO)
text structure

knowledge

dynamic and functional

views

control flow (CF)
text structure

knowledge
dynamic view

data flow (DF) plan knowledge
dynamic and functional

views

program goals (GOAL) plan knowledge functional view

state (STATE) plan knowledge
dynamic and functional

view

problem classes (CLASS)
problem and plan

knowledge
object view

Each knowledge category explained as follow:

• elementary operations form part of the text microstructure, and

constitute basic text units usually consisting of one or few lines of code.

The feature of this category is that it is directly available in the program

text, thus it represents low-level knowledge;

• control flow forms part of the text microstructure, and constitutes the

links between text units, which is sequential in the simplest case or, in

complex situations, involves looping or calls to subprograms; thus this

knowledge is procedural in nature and represents low-level knowledge;

• data flow relates to communication between data variables, corresponds

to data flow relationships connecting units of local plans within a routine

and also changes that occurs to data variables while they pass through

126

the program execution. The transformations of the data are, thus, at the

heart of whatever useful action a program achieves. This knowledge is

considered to be high-level knowledge;

• program goals explain the goal of the whole program, what the program

accomplishes in terms of the problem situation it addresses. Program

goals knowledge expresses what the program does in terms of entities,

relationships, and actions in the world; this knowledge is usually not

directly available in a program text, but must be inferred from the
/

program text in combination with knowledge of the real world problem

domain of the program. Thus, it represents high-level knowledge;

• state comprises the state of all aspects of the program at the time a

given action occurs in a program. It is considered as high-level

knowledge;

• problem classes are objects which directly model entities existing in the

problem domain and represent high level knowledge.

To illuminate any discrepancy with other related prior studies, the

syntax/wording of the comprehension questions was similar to that used in

Wiedenbeck (1997), Good (1999), and Burkhardt et al. (2006a, b). However, the

wording of the questions was reviewed by the tutors of the relevant courses

from which the subjects participating in the studies were drawn. This was to

ensure subjects were familiar with the terms used and to improve their response

to the questions. In terms of the type of response, most related studies had

used questions with yes/no answers (Ramalingam and Wiedenbeck, 1997;

Wiedenbeck et al., 1999; Wiedenbeck and Ramalingam, 1999; Burkhardt,

2006a, b). This type of question indicates that answers at a level of 50% can be

considered barely above chance. It is also difficult to predict whether subjects

are just guessing their answers or these answers are their real responses. To

overcome the problem of subjects guessing the answer, each question was

presented with the option of three responses (yes/no/don't know). This idea was

used by Khazaei and Jackson (2002). The 'don't know' response was

considered as a 'no' response in analysing the results.

A ranking question was also positioned at the end of the comprehension task

and was excluded from the time recorded for the task. Subjects were asked to

explain how well they understood the given program. Introducing this question

was an attempt to gather more data and therefore possibly to offer alternative

interpretations of the results obtained via the comprehension questions.

For the purpose of the studies, a background questionnaire was used at the

beginning of each experimental session. The aim of this questionnaire was to

collect demographic data to highlight any possible existence of significant

differences in prior programming experience among subjects. The questionnaire

asked subjects to rank their previous programming experience at one of three

levels (novice/intermediate/expert). To ensure consistency with other relevant

studies, the questionnaire format, which can be found in Appendices A and B,

was similar to the background questionnaire used in Good's (1999) study.

In order to conduct the Car study in Libyan institutions, translation of the

experimental materials (including the background questionnaire and

comprehension questions) into Arabic was undertaken by the researcher. The

Arabic versions were also revised by corresponding tutors who are teaching

programming courses where part of the car experiment took place. This revision

128

was made to illuminate any possible terminology differences that Libyan

subjects may be unfamiliar with.

4.5 Choice of metrics

Deciding upon suitable metrics depends largely on the variable being

investigated and the type of task being performed (Siddiqi, 1984; Daly, 1996). In

the experiments where subjects comprehend an existing program, it was

necessary to devise an investigation rationale/framework so that subjects'

attempted comprehension could be analysed.

In the classification of attempted comprehension, the quantitative metric in

analysing subjects' attempts at comprehension would be the proportion of

comprehension based on different programs. It was considered that this metric

would effectively quantify subjects' "preference" for a particular program and

would therefore be a useful contribution to the investigation.

In both the Car and Line-Edit studies, there was a specific aim of investigating

the ease of comprehension of 0 0 programs. Subjects were asked to

comprehend specific programs that represent problems' different delivered

solutions; these Non-Object based programs and Object based programs

(hereafter known as program versions) were developed for this purpose. It was

necessary to devise metrics to analyse subjects’ attempted comprehension.

Comprehension was measured in terms of the total correct responses to the

respective comprehension questions about one of the program versions of a

given study (Non-Object based or Object based of either Car or Line-Edit

problem). The rationale for using this measure is that the average of the total

correct responses reflects the amount of knowledge subjects have gathered

129

from a given program. Moreover, the justification for such a view is as follows: it

can be assumed that, in comprehending a program, a subject gathers different

types of knowledge about the program under comprehension. This is consistent

with Pennington's ideas of cognitive representation and mental representations

in the area of program comprehension (Pennington 1987a).

Considering the quality of the metrics used in this investigation, Dunsmore and

Roper (2000) evaluated the mental simulation metric as the most reliable and

accurate comprehension measure. Furthermore, this measure has been widely

used in a number of empirical related studies (for example, Ramalingam and

Wiedenbeck 1997; Wiedenbeck and Ramalingam, 1999; Wiedenbeck et al.,

1999; Good, 1999; Khazaei and Jackson, 2002; Burkhardt et al., 2006a, b;

Affandy et al., 2011). It follows therefore that the ease/difficulty with which

subjects comprehend a given program version will be dependent upon the

degree to which the latter "mirrors" their comprehension. On this basis, it was

found reasonable to use this metric to assess the comprehension of different

program versions with respect to the total correct responses (hereafter known

as “performance’) to the respective comprehension questions.

Another metric used for measuring subjects' comprehension was the “time"

required to comprehend the given program version. The time required was

measured in terms of the total time taken to accomplish a given task. The

rationale of using this measure is that the time which subjects spend on

performing the task of reading the program and responding to the related

comprehension questions reflects the ease/difficulty of the task. It was

considered necessary to use this metric, in conjunction with performance, to

130

assess the ease of comprehension of different program versions with respect to

the time required for their comprehension.

It was also considered important to use a subjective rating measure (hereafter

known as “ranking”) along with performance measure. A subjective ranking

question was used as a supplementary metric alongside performance and time

in this investigation. The rationale for using this measure is that it reflects

subjects' own judgment about the level of the comprehensibility of a piece of

given program. Moreover, it could yield extra results/information that could

support and complement results from the other measures.

Performance, time, and ranking measure the ease of comprehension in each

program version, whereas knowledge category performance measures the

extent to which these knowledge categories are present and interact as

hypothesised by the model. According to all the above, the metrics used to

analyse the investigation results are:

• time: the time each subject spends to accomplish the comprehension task.

• performance: the subjects' correct responses to all the corresponding

comprehension questions.

• ranking: the level at which subjects rank their comprehension of the given

program version.

The first metric was used to evaluate the significance of the rate at which

subjects accomplished the given task. The second metric was used to evaluate

the significance of the subjects' correct responses to the questions. The third

metric was used to evaluate the significance of subjects' judgement of their

comprehension experiences.

131

4.6 Chapter Summary

In this chapter, the experimentation context was identified. Factors such as

population, physical settings, and problem size were considered and detailed. In

relation to the aim of the investigation, an evaluation investigation approach was

followed in this thesis.

The chapter has also discussed concerns relating to specific methodological

issues. It reported how the experimental methodology was tailored to the needs

of the investigation. The chapter detailed how subjects, materials and metrics

were chosen and the circumstances surrounding these choices. The next

chapter details the plan, execution, and analysis of the investigation involving

the Car and Line-Edit studies.

132

Chapter 5 Report of the Investigation

Class structure represents one of the essential concepts of 0 0 approach and

therefore, a good understanding of this concept will positively affect the

effectiveness of 0 0 programmers. To investigate the phenomenon in a

controlled manner, decision was made to conduct controlled comparative

empirical studies. The problems chosen in these studies were considered

appropriate to the needs of the investigation because they contain explicit

references to both primitive and abstract problem specification features. The

Car problem used in the Car study was considered trivial problem that posses

only one primitive possible solution decomposition. However, the Line-Edit

problem used in the Line-Edit study was considered rich problem that posses

primitive and abstract solution decompositions. This approach was considered

appropriate to the need of the investigation.

This chapter reports the investigation of the research involving the Car study

and the Line-Edit study. The studies were designed to assess the ease of

comprehension of 0 0 programs by varying problem characteristics and their

possible solution decompositions in each study. The class concept, problem

characteristics, and solution decomposition are elements considered pertinent

to the objective of obtaining insight into subjects' comprehension. A group of

subjects was asked to perform an identical comprehension task on a simple

Object based program; another equivalent group of subjects was asked to

perform the same task but with a functionally equivalent Non-Object based

program. A background questionnaire was also collected to highlight any

133

significant differences among subjects' previous programming experiences. The

remainder of this chapter details the two studies.

5.1 Case Study 1: The Car Study

5.1.1 Aim

The aim of this study was to assess the ease of comprehension 0 0 program of

the Car problem’s solution. The problem considered contained trivial

specifications. This aim was achieved through focusing on comprehension of

different sets of knowledge categories of an Object based program of the Car in

contrast to an equivalent Non -Object based program of the Car.

5.1.2 Subjects

Due to subjects' availability, the study was performed over three different

academic institutions, and two different 0 0 programming languages were used.

The study was conducted in three different experimental sets (hereafter known

as expsetl, expset2, and expset3 respectively). Table 5.1 illustrates the

institutions and the programming language used for each experimental set.

Table 5.1 : Institutions and programming language taught in each experimental set

experimental

set
institution

programming

language

expsetl Sheffield Hallam University-UK VB
expset2 Faculty of Electronics-Libya VB
expset3 Faculty of Computer Technologies-Libya JAVA

For expsetl, the subjects were first year undergraduate students studying a

Programming Concepts module using VB at Sheffield Hallam University in the

UK. For expset2, the subjects were first year undergraduate students also

134

studying Programming Concepts using VB at the Faculty of Electronics in Libya.

Both modules introduce programming concepts particularly in Event-Driven

style. For expset3, the subjects were first year undergraduate students studying

an Introduction to Programming module using Java at the Faculty of Computer

Technologies in Libya. The aim of recruiting these three sets was to gather data

from a large number of subjects.

As a result, a total of 353 undergraduate first year computer science students,

from three different institutions, participated in the study, all of whom had

completed 15 to 16 weeks’ study of programming using either VB or JAVA.

Demographic data collected from the background questionnaire showed that

the subjects’ gender ratio was 37% males to 62% females. The average age

was about 20 years. The majority of the participants had no previous

experience in 0 0 programming and the only significant programming

languages currently experienced were VB or JAVA. However, all subjects were

studying programming concepts when the study took place. Prior to each

experimental session, a stratified random sampling approach was used to

matching the experimental subjects. The subjects were then randomly allocated

into one of two matched groups (hereafter known as Non-Object group and

Object groups). For all experimental sessions, 176 subjects were allocated in

the Non-Object group and 177 subjects were allocated in the Object group.

Matching was based on the subjects' grades on the courses they were

attending. Table 5.2 shows subjects' group allocations in each experimental set.

135

Table 5.2 : Group allocations for each experiment set of the Car study

Group expsetl expset2 expset3 totals
Non-Object 25 subjects 52 subjects 99 subjects 176 subjects

Object 25 subjects 54 subjects 98 subjects 177 subjects

5.1.3 Materials

Each subject was supplied with the following experimental materials:

• a copy of the background questionnaire;

• a copy of either the Non-Object based or the Object based program version,

each of which contains a copy of the program code;

• a list of the corresponding comprehension questions with the option of three

responses for each question (YES, NO, DON'T KNOW);

• the comprehension ranking question.

VB or JAVA versions of the Non-Object and Object based programs were

supplied depending on the course the subjects enrolled in. Appendix A provides

a copy of all the above experimental materials.

5.1.4 Procedure

The experiment was paper-based; each experiment session was conducted

during a lab session for each experimental set and over different time periods.

In each experiment session, the experimental instructions were explained

verbally by the researcher at the beginning. Subjects were also informed that

they were participating in an experiment and they were assured that they were

not being assessed. The experimental instructions followed for each

experimental session were:

136

1. All subjects were verbally informed about the purposes and the procedure of

the experiment (see Appendix A).

2. Each subject was asked to fill out a background questionnaire at the

beginning of the experimental session.

3. Once all subjects had responded to the background questionnaire, each

subject was presented with a hard copy of either the Non-Object or Object

based program version with its corresponding list of comprehension

questions depending on the group the subject was allocated to. The start

time of the experiment was recorded.

4. After completing the comprehension task, the end time was recorded for

each subject individually. Then, subjects were asked to respond to the

ranking question at the end. As the experiment is timed, the ranking

question was excluded from the recorded duration of the experimental

session.

Since the experiment was paper-based, data was collected manually by the

researcher. The data collected from conducting each experimental session

for any given subject were: (i) answers to the background questionnaire, (ii)

responses to both the corresponding comprehension questions and the

ranking question, and (iii) the start and end time of the task.

A pilot study was performed using four experienced programmers, one for

each program version for each programming language. No significant issues

were encountered during the pilot study. However, there was a need for

clarification of several points in the experimental instructions (i.e., in the first

run of the experiment, three programmers mentioned that the experimental

137

instructions were not clear enough and should be explained in more detail).

These suggestions were incorporated into the experimental instructions,

which made the instructions clearer in the subsequent experimental runs.

5.1.5 Metrics and Experimental Hypotheses

Three metrics were used to analysis the data. These are:

• time is measured by time taken to accomplish the comprehension task;

• performance is measured by correct responses to all knowledge categories;

• ranking is measured by the level at which subjects ranked their

comprehension.

Standard significance testing was adopted for the stated null hypotheses. These

were:

H01: There is no significant difference in terms of ease of comprehension

between Non-Object based program and Object based program by (i)

time, (ii) performance, and (iii) ranking.

Hq2. There is no significant difference in terms of ease of comprehension in

knowledge categories between Non-Object based program and Object

based program.

H03: There is no significant difference in terms of ease of comprehension in

knowledge categories by (i) All group (ii) Non-Object group, and (iii

Object group.

To be rejected in favour of the alternatives hypotheses:

138

Hu: There is significant difference in terms of ease of comprehension

between Non-Object based program and Object based program by (i)

time, (ii) performance, and (iii) ranking.

Hi2: There is significant difference in terms of ease of comprehension in

knowledge categories between Non-Object based program and Object

based program

H13: There is significant difference in terms of ease of comprehension in

knowledge categories by (i) All group (ii) Non-Object group, and (iii)

Object group.

No direction has been specified in the alternative hypotheses: it was not

predicted whether the effect on comprehension would be positive or negative.

This was attributed to the varying opinions expressed in the program

comprehension literature about the ease of comprehension of 0 0 programs.

The experimental design provided two independent variables and three

dependent variables. The "program version" and "knowledge category" were

the independent variables. The dependent variables were: time, performance,

and ranking.

5.1.6 Experimental Results of the Car Study

Since data distribution is shown to be non-normal (see appendix d), to be

conservative, corresponding non-parametric statistical tests were applied. For

the case of having only two unrelated samples (Non-Object and Object groups),

a Mann-Whitney U ranks (unrelated) test was calculated. However, in the case

of having more than two unrelated samples (i.e. the differences in performances

in knowledge categories) the Kruskal-Wallis test was calculated. Kruskal-Wallis,

139

equivalent to ANOVA (Analysis of variance) parametric test, is used to calculate

the differences between more than two unrelated sets of data (Hinton, 2004 and

De Sa, 2007).

Preliminary statistical analysis was done to determine whether there was a

significant difference in ease of comprehension among the three different

experiment sets. A Kruskal-Wallis test was run. This tests whether the time and

performance for the three different experiments were significantly different. An

"experimental sets" (expsetl, expset2, and expset3) was the independent

variable and "time" and "performance" were the dependent variables. The result

was not significant. Therefore, time and performance among the three different

experimental sets was not significantly different. Thus the "experiment sets"

was not included as a variable in further analysis. Since different programming

languages were used in the study, different specific details of notations (such as

presentations of classes and syntax) were expected to be a factor that might

affect the comprehension. Therefore, testing this factor could be instructive at

this stage. Another preliminary analysis was done to determine whether the

programming languages affected the performance and the time. A Mann-

Whitney was run with “programming language” (VB and java) as the

independent variable and "time" and “performance” as the dependent variables.

The result was not significant. There was no significant effect of the

programming languages on the time and performance. Thus "programming

language" was not included as a factor in further analysis. These preliminary

analyses have established that hereafter the experimental data from the three

different experimental sets and two different programming languages could be

grouped together and combined as one data set for data analysis, beginning

with the whole of the three experiment sets.

140

The rest of the analysis was divided into five main levels. In the first level, time

was tested. This level of analysis was to compare the time between the

program versions. The second level of analysis was done to compare the

performance between the program versions. The third level of analysis aimed to

compare the ranking between the program versions. These three levels of

analysis aim to these the first null hypothesis. The fourth level of analysis aim to

test the second null hypothesis, this level was to compare the performance in

knowledge category between program versions. The last level of analysis was

to compare performance in each knowledge category for different sets of

subjects groups (All group, Non-Object group, and Object group), this last level

aim to test the third null hypothesis.

5.1.6.1 Comparison of the Time

This level of the analysis was to compare the time required to accomplish the

given task. The descriptive analysis of the timing data is presented in table 5.3.

Column two gives the number of observed times (N), Columns three and four

give the minimum and maximum times, column five gives the mean time, and

column six gives the standard deviation. First row presents the summary of

Non-Object group and second row represents the summary of Object group.

Note that the mean times for the Non-Object and Object groups are very similar

which indicates that there was no program version effect in terms of time.

Table 5.3: Statistical summary of the time of the Car study

descriptive statistics

N min max mean SD
time of Non-Object group 176 6 18 12.61 2.500

time of Object group 177 7 18 12.58 2.501

141

Statistical tests were then applied to test the first null hypothesis. The difference

in time between subjects’ times to complete the Non-Object based program and

the Object based program was calculated. A Mann-Whitney U test was run with

"program version" (i.e. Non-Object and Object based programs) as the

independent variable and "time" as the dependent variable. The result was not

significant (U=15533.000, p=.964>0.05 2-tailed). The first null hypothesis H0i

was accepted in terms of time. There is no significant difference between the

Object based and the Non-Object based programs in relating to time. The sum

and means of the ranks for the subjects are shown in table 5.4 and the Mann-

Whitney test results are shown in table 5.5.

Table 5.4: Mean ranks of time in the Car study

ranks

program version N mean rank sum of ranks

time
Non-Object based

Object based

total

176
177

353

176.76
177.24

31109.00
31372.00

Table 5.5: Mann-Whitney test results of time in the Car study

test statistics

time

Mann-Whitney U

asymp. Sig. (2-tailed)

15533.000

.964

Since the result was not significant, no further analysis was considered.

5.1.6.2 Comparison of the Performance

Analysis was carried out to find the effect of the program version on

performance. The descriptive analysis of the performance data is presented in

table 5.6. Examination shows that the mean performance of the Object based

142

group is higher than the mean performance of the Non-Object based group.

This indicates that there is program version effect in terms of performance.

Table 5.6: Statistical summary of the performance of the Car study

descriptive statistics

N min max mean SD
performance of Non-Object Group

performance of Object Group

176
177

10.53
10.53

94.74
100.00

54.54
63.81

17.59
18.23

In comparing the two different groups each of which undergoing one of the two

different "program versions" (as independent variable) and performance (as

dependent variable), a Mann-Whitney U test was applied. The result revealed

that there was a significant difference (U=10784.500, p=.000<0.05 2-tailed).

The performance of Non-Object group and Object group is significantly different

supporting the Hu. The sum and means of the ranks for the subjects are shown

in table 5.7 and the Mann-Whitney results are shown in table 5.8.

Table 5.7: Ranks of performance in the Car study

ranks

program version N mean rank sum of ranks

performance
Non-Object based

Object based

total

176

177

353

149.78

204.07

26360.50

36120.50

Table 5.8: Mann-Whitney test result of performance in the Car study

test statistics

performance

Mann-Whitney U
asymp. Sig. (2-tailed)

10784.500
.000

We wanted to estimate the difference in performance between the two groups,

so a Hodges-Lehman estimate test was run as a follow-up. The test is used to

143

measure the size of the difference between the subjects (Hinton, 2004; Chris,

2004).

5.1.6.3 Comparison of the Ranking

This level of analysis was to assess subjects' judgment about their

comprehension of the given program version (Non-Object based or Object

based). The assessment was based on the subjects ranking the given program

in terms of its comprehensibility. Figure 5.1 shows the mean of subjects'

responses to the ranking categories (Not very well, fairly to moderated well, and

Well to very well) broken down by the programs versions.

Non-Object based

Object Based

Not very well fairly to
modurately

well

well to very
well

Ranking Categories

Figure 5.1: Graphical representation of the subjects' ranking for each program version

of the Car study

Examination of the data confirms that the Object based program was often

assessed as being easier to comprehend than the Non-Object based program.

Moreover, comparing subjects’ ranking of the given program version showed

that the Non-Object group differed from the Object group in their responses.

144

44% of the Non-Object group graded their program as Not very well. However,

only 22% of the Object group graded their program as Not very well. Moreover,

15% of the Non-Object group graded their program as Well to very well, while

31% of the Object group graded their program in this ranking category. This

gives substantial agreement and supports the above findings from the

performance measure that the Object based program appears to be more

comprehensible than the Non-Object program. Moreover, this also shows that

ranking is a possible measure in assessing the ease of comprehension of 0 0

programs.

On the basis of the above three measures used (time, performance, and

ranking), there is a significant difference between Non-Object based and Object

based programs as measured by performance (the number of correct

responses) and ranking (subjects' judgment about the comprehensibility), but

not by time (the time taken to accomplish the given task). One could reasonably

argue that performance and ranking are better indicators of comprehension.

However, time is not as good an indicator in measuring comprehension, and

therefore, time will not be used further in the investigation.

5.1.6.4 Comparison of Performance in Knowledge

Category between Program Versions

This analysis was undertaken to account for effect of program version (Non-

Object based and Object based) on each knowledge category (elementary

operations, control flow, data flow, program goals, state, and problem classes).

Figure 5.2 shows the mean of the correct responses to each knowledge

category broken down by the programs versions.

145

90

■ N o n -O b je c t b a s e d

■ O b je c t b a s e d

E le m e n t a r y C o n t r o l d a t a f lo w P r o g r a m S t a t e P r o b le m

O p e r a t io n s F lo w „ . , G o a ls . C la s s e s
K n o w le d g e C a te g o r ie s

Figure 5.2: Graphical representation of the performance in knowledge categories for

each program version of the Car study

In comparing the two experimental groups where each of which undergoing one

of the two different Car program versions (as an independent variable) with

performance in each knowledge category (as a dependent variable), a Mann-

Whitney U test was applied to test the second null hypothesis H02- The result

revealed that Data Flow and Problem Classes knowledge categories were

significantly different supporting H i2. The sum and means of the ranks for the

groups are shown in table 5.9 and the Mann-Whitney results for each

knowledge category are shown in table 5.10.

146

Table 5.9: Mean ranks of performances in knowledge categories between program

version of the Car study

ranks

knowledge categories program version N mean rank sum of ranks

Elementary Operations

Non-Object based

Object based

total

176

177

353

171.20

182.77

30131.50

32349.50

Control Flow

Non-Object based

Object based

total

176

177

353

176.81

177.19

31118.50

31362.50

Data Flow

Non-Object based

Object based

total

176

177

353

187.52

176.54

33004.00

31177.00

Program Goals

Non-Object based

Object based

total

176

177

353

169.67

184.29

29862.00

32619.00

State
Non-Object based

Object based

total

176

177

353

183.93

170.11

32371.50

30109.50

Problem Classes

Non-Object based

Object based

total

176

177

353

125.09

228.62

22015.50

40465.50

Table 5.10: Mann-Whitney test results of performances in knowledge categories

between program versions of the Car study

test statistics

Elementary
Operations

Control
Flow

Data Flow
Program
Goals

State
Problem
Classes

Mann-Whitney U

asymp. sig.(2-tailed)
14555.50

.261
15542.50

.971
13724.00

.069
14286.00

.150
14356.50

.131

6439.500

.000

To estimate the difference in performance between the two groups for the

significant Problem Classes knowledge category, a Hodges-Lehman estimate

test was run as a follow-up for these two significant categories. The Hodges-

Lehman indicated that the Object group performed 30% better than the Non-

Object group in the Problem Classes knowledge category.

147

One could say that subjects using the Object based program version

outperformed subjects using the Non-Object based program by nearly a third in

the Problem Classes knowledge category. However, there appeared to be no

difference between the groups in the other knowledge categories. Therefore,

the easiest result of H12, relating to significant difference between subjects’

performance in relation to the two program versions, is that it is largely

attributable to the Problem Classes knowledge category.

5.1.6.5 Comparison of Performance in Knowledge

Categories

We measured comprehension by performance and ranking and showing the

ease of comprehension of the Object based program version over the Non-

Object based program version. Taking the knowledge categories, which

composed the model used in this investigation, into account, our main interest

in comprehension accuracy is in the differences that might occur between

different knowledge categories, that is, between questions asked about different

types of knowledge in the given programs versions. We assume that higher

error rates for questions in a particular knowledge category imply that the

knowledge in that category is less easily comprehended. This level of analysis

aimed to test whether these knowledge categories exist and, if so, how they

interact, and whether they help in explaining any difference found in

performance. This was done by comparing the six knowledge categories,

mentioned above, in different sets of groups (All group, Non-Object group, and

Object group).

148

5.1.6.5.1 Comparison of Performance in

Knowledge Categories for All Group

The descriptive analysis of data for the All group’s performance is presented in

table 5.11. Examination shows that the mean performance of the State

knowledge category is the highest among all other knowledge categories.

However, performance of the Data Flow and the Program Goals knowledge

categories were the lowest among other knowledge categories.

Table 5.11: Statistical summary of the performance in each knowledge category of All

groups of the Car study

descriptive statistics

knowledge categories N min max mean SD

Elementary Operations 353 10.53 100.00 60.33 29.31
Control Flow 353 10.53 100.00 59.86 30.81

Data Flow 353 10.53 100.00 53.96 38.78
Program Goals 353 10.53 100.00 53.35 28.24

State 353 10.53 100.00 76.34 35.35
Problem Classes 353 10.53 100.00 57.22 30.34

Statistical tests were then applied to test the third null hypothesis H03 for All

group. A Kruskal-Wallis test was run. The independent variable was the

"knowledge categories". The dependent variable was the performance in each

knowledge category of the All group. The test revealed a significant difference

among knowledge categories (x2=128.12, p=.000<0.05). Means of the ranks for

All group's performance in each knowledge category are shown in table 5.12

and the Kruskal-Wallis results are shown in table 5.13.

149

Table 5.12: Ranks of All group's performance in each knowledge category of the Car

study

ranks

knowledge categories N mean rank

Elementary Operations 353 1050.52

Control Flow 353 1051.64

performance of for All Data Flow 353 965.53

group Program Goals 353 925.14

State 353 1372.35

Problem Classes 353 991.81

Total 2118

Table 5.13: Kruskal-Wallis test result of All group's performance in each knowledge

category in the Car study

test statistics

performance for All group

chi-square 128.12
df 5

asymp. sig. .000

The result revealed that, for All group, performance in each knowledge category

was significantly different. Moreover, the knowledge category State had the

highest score value, whilst the knowledge categories Program Goals and Data

Flow were amongst the lowest mean scores. Since the results were significant,

a pairwise comparison test was run as a follow-up to investigate the interaction

between the knowledge categories.

150

Table 5.14: Pairwise comparison of All groups' performance in each knowledge

category of the Car study

Sample1-Sample2
Test

Statistic

Std.

Error

Std.Test

Statistic
Sig. Adj.Sig.

Elementary Operations-

State
-321.834 44.958 -7.158 .000 .000

Control Flow-State -320.708 44.958 -7.133 .000 .000

Program Goals-State -447.208 44.958 -9.947 .000 .000

Data Flow-State -406.820 44.958 -9.049 .000 .000

Problem Classes-State -380.537 44.958 -8.464 .000 .000

Program Goals-Control

Flow
126.500 44.958 2.814 .005 .073

Program Goals-

Elementary Operations
125.374 44.958 2.789 .005 .079

Data Flow-Control Flow 86.112 44.958 1.915 .055 .832

Data Flow-Elementary

Operations
84.986 44.958 1.890 .059 .881

Program Goals-Data Flow 40.388 44.958 .898 .369 1.000

Problem Classes-Control

Flow
59.829 44.958 1.331 .183 1.000

Elementary Operations-

Control Flow
-1.126 44.958 -.025 .980 1.000

Data Flow-Problem

Classes
-26.283 44.958 -.585 .559 1.000

Program Goals-Problem

Classes
-66.671 44.958 -1.483 .138 1.000

Problem Classes-

Elementary Operations
58.703 44.958 1.306 .192 1.000

From table 5.14, we can see that the five pairwise combinations all involving the

State knowledge category have a significant interaction with the other five

knowledge categories. This is to be expected given the considerably higher

value of the mean performance score of State knowledge category found in
151

table 5.11. Therefore, for All group, State knowledge plays a significant positive

role in program comprehension for groups using both Non-Object based and

Object based versions of programs. The dominant role of this reinforced by its

high value in the first test as well as its continued presence in the interaction

with other knowledge categories.

5.1.6.5.2 Comparison of Performance in

Knowledge Categories for Non-Object Group

The descriptive analysis of data for the Non-Object group's performance is

presented table 5.15. Examination shows that the mean performance of the

State knowledge category is the highest among all other knowledge categories.

This was expected as it was found in All group's performance. However,

examination also shows that the Problem Classes knowledge category

represents the lowest performance of all other knowledge categories.

Table 5.15: Statistical summary of the performance in each knowledge category of

Non-Object group in the Car study

descriptive statistics

knowledge categories N min max mean SD

Elementary Operations 176 10.53 100.00 58.52 29.65
Control Flow 176 10.53 100.00 59.84 30.30

Data Flow 176 10.53 100.00 58.23 38.21
Program Goals 176 10.53 100.00 51.13 27.80

State 176 10.53 100.00 79.26 33.53
Problem Classes 176 10.53 100.00 42.14 25.93

A Kruskal-Wallis test was run with the independent variable "knowledge

categories" and dependent variable performance in each knowledge category

for the Non-Object group. The test revealed a significant difference in

performance among knowledge categories (x2=127.91, p=.000<0.05). Means of

the ranks for Non-Object groups' performance are shown in table 5.16 and the

Kruskal-Wallis results are shown in table 5.17.

Table 5.16: Ranks of Non-Object group's performance in each knowledge category

of the Car study

ranks

knowledge categories N mean rank

Elementary Operations 176 529.07

Control Flow 176 546.12

performance for Non- Data Flow 176 531.59

Object group Program Goals 176 464.07

State 176 721.99

Problem Classes 176 378.17

Total 1056

Table 5.17: Kruskal-Wallis test result of Non-Object group's performance in each
knowledge category of the Car study

test Statistics

performance for Non-Object group

chi-square 127.91

df 5

asymp. sig. .000

The result revealed that, for the Non-Object based group, there is a significant

difference in performance between knowledge categories. The State knowledge

category has a considerably higher mean score, whilst the Problem Classes

knowledge category has a lower mean score.

A pairwise comparison test was also run as a follow-up to investigate the

interaction between the knowledge categories for Non-Object group.

153

Table 5.18: Pairwise comparison of Non-Object group's performance in each

knowledge category of the Car study

Sample1-Sample2
Test

Statistic
Std.
Error

Std.Test
Statistic

Sig. Adj.Sig.

Elementary Operations-State -192.923 31.759 -6.075 .000 .000

Control Flow-State -175.872 31.759 -5.538 .000 .000

Problem Classes-Control

Flow
167.949 31.759 5.288 .000 .000

Problem Classes-Data Flow 153.420 31.759 4.831 .000 .000

Program Goals-State -257.915 31.759 -8.121 .000 .000

Data Flow-State -190.401 31.759 -5.995 .000 .000

Problem Classes-Elementary

Operations
150.898 31.759 4.751 .000 .000

Problem Classes-State -343.821 31.759 -10.826 .000 .000

Problem Classes-Program

Goals
85.906 31.759 2.705 .007 .102

Program Goals-Control Flow 82.043 31.759 2.583 .010 .147

Program Goals-Data Flow 67.514 31.759 2.126 .034 .503

Program Goals-Elementary

Operations
64.991 31.759 2.046 .041 .611

Data Flow-Control Flow 14.528 31.759 .457 .647 1.000

Elementary Operations-

Control Flow
-17.051 31.759 .591 .591 1.000

Elementary Operations-Data

Flow
-2.523 31.759 .937 .937 1.000

From table 5.18, we can see that the State knowledge category has a

significant interaction with all other five knowledge categories. However,

Problem Classes knowledge category has a significant interaction with

Elementary Operations, Control Flow, Data Flow, and State knowledge

categories. This is to be expected given the considerably higher value of the

mean performance score of State knowledge category and considerably lower

value of the mean performance score of the Problem Classes knowledge

154

category found in table 5.15. We can conclude that, for the Non-Object group,

there is a significant difference in performance between knowledge categories.

This difference is largely attributable in a positive manner to State knowledge

category. In relation to Problem Classes knowledge category, it plays a

significant negative role in program comprehension for the group using a Non-

Object version of the program. The different dominant roles of these knowledge

categories are emphasised by their high and low values in the first test as well

as their continued presence in the interaction with other knowledge categories.

5.1.6.5.3 Comparison of Performance in

Knowledge Categories for Object Group

Comparing only the Object based group, table 5.19 shows the descriptive

analysis of data for the Object groups' performance. Examination shows that the

mean performance of both State and Problem Classes knowledge categories

are higher than all other knowledge categories. However, examination also

shows that the Data Flow knowledge category represents the lowest

performance of all other knowledge categories.

Table 5.19: Statistical summary of the performance in each knowledge category of

Object group of the Car study

descriptive statistics

knowledge categories N min max mean SD

Elementary Operations 177 10.53 100.00 62.59 28.66
Control Flow 177 10.53 100.00 59.88 31.45

Data Flow 177 10.53 100.00 49.71 38.98
Program Goals 177 10.53 100.00 55.55 28.57

State 177 10.53 100.00 73.44 36.94
Problem Classes 177 10.53 100.00 72.22 26.80

155

A Kruskal-Wallis test with "knowledge categories" as independent variable and

performance in each knowledge category as dependent variable was revealed a

significant result (x2=71.72, p=.000<0.05). Means of the ranks for the Object

group's performance are shown in table 5.20 and the Kruskal-Wallis results are

shown in table 5.21.

Table 5.20: Ranks of Object group's performance in each knowledge category of the

Car study

ranks

knowledge categories N mean rank

Elementary Operations 176 517.41

Control Flow 176 502.89

performance for Object Data Flow 176 433.69

group Program Goals 176 457.39

State 176 649.34

Problem Classes 176 610.26

Total 1056

Table 5.21: Kruskal-Wallis test result of Object group's performance in each knowledge

category of the Car study

test statistics

performance for Object group

chi-square 71.72
df 5

asymp. sig. .000

The result revealed that, for the Object based group, there is a significant

difference in performance between knowledge categories. The State and

Problem Classes knowledge category have considerably higher mean scores

than other knowledge categories. To investigate the interactions between the

knowledge categories for Object group, a pairwise comparison was run.

Table 5.22: Pairwise comparison of Object group's performance in each knowledge

category of the Car study

156

Samplel -Sample2
Test

Statistic
Std.
Error

Std.Test
Statistic

Sig. Adj.Sig.

Elementary Operations-State -221.497 31.802 -6.965 .000 .000

Control Flow-State -143.372 31.802 -4.508 .000 .000

Elementary Operations-

Problem Classes
-187.372 31.802 -5.895 .000 .000

Program Goals-State -187.866 31.802 -5.907 . .000 .000

Data Flow-State -214.852 31.802 -6.756 .000 .000

Data Flow-Problem Classes -180.827 31.802 -5.686 .000 .000

Program Goals-Problem

Classes
-153.841 31.802 -4.837 .000 .000

Control Flow-Problem

Classes
-109.347 31.802 -3.438 .001 .009

Elementary Operations-

Control Flow
-78.125 31.802 -2.457 .014 .201

Data Flow-Control Flow 71.480 31.802 2.248 .025 .369

Program Goals-Control Flow 44.494 31.802 1.399 .162 1.000

Elementary Operations- Data

Flow
-6.645 31.802 -.209 .834 1.000

Data Flow-Program Goals -26.986 31.802 -.849 .396 1.000

Problem Classes-State -34.026 31.802 -1.070 .285 1.000

Elementary Operations-

Program Goals
-33.631 31.802 -1.057 .290 1.000

Table 5.22 showed that both State and Problem Classes knowledge categories

have a significant interaction with all other four knowledge categories. This is to

be expected given the considerably higher value of the mean performance

score of State and Problem Classes knowledge categories. We can conclude

that, for the group using the Object based program version, performance scores

differed significantly in the knowledge categories. It could be argued that State

and Problem Classes play a significant positive role in program comprehension

for the subjects using Object based version of program.

157

In summarising findings from the Car study, we could argue that, in measuring

the ease of comprehension of different programs version, performance and

ranking would be better indicators of comprehension, whilst time could be

considered as an inappropriate indicator of comprehension. Therefore, time will

not be used further in this investigation. Groups of subjects given the Object

based program outperformed (i.e., found the program easier to comprehend)

those given the Non-Object based program by nearly a third. This is largely

attributed to the Problem Classes knowledge category. In investigating the

interaction between knowledge categories in different sets of groups, we could

say that State knowledge category has a positive dominant effect in program

comprehension for the all sets of groups (All group, Non-Object group, and

Object group); Problem Classes knowledge category has also a positive

dominant effect in program comprehension only for the Object group. However,

it has a negative strong effect for the Non-Object group.

5.2 Case Study2: The Line-Edit Study

5.2.1 The Rationale of the Second Study

Considering the Car study, one possible contributory factor that was advanced

to explain the ease with which the Object based program was comprehended

was the type of solution decomposition (CD2) used in implementing the Object

based program version. It is almost axiomatic that problem characteristics will

influence the types of solution decomposition produced and hence the

ease/difficulty with which a program is comprehended. This formed the basis for

the second study. The Car problem example can be considered to be more

amenable to 0 0 program comprehension. However, laying on example

programs that have precisely this characteristic could, unwittingly, lead to
158

limiting the validity of the investigation (Alardawi et al, 2011a, b). To make the

investigation more valid, and to identify characteristics of problems that their

possible solutions are best comprehended in their 0 0 form, care was taken not

to limit the investigation to problems that are classified and used as common

0 0 example programs, as mentioned in Chapter 4. A decision was made to

conduct another empirical study that using problem with different characteristics.

A Line-Edit problem was used in the second study. The problem chosen was

considered appropriate to the needs of the investigation because it contains

explicit references and can posses both primitive and abstract solution

decompositions, thus could meet the above-mentioned requirement.

5.2.2 Aim

The aim of the study was to assess the ease of comprehension of 0 0 program

for a Line-Edit problem. This aim was similar to the Car study. However, the

problem here is considered different in terms of its specification features.

5.2.3 Subjects

The complexity of the program versions produced for the purpose of the study

{Non-Objects and Object based program versions of the Line-Edit problem) may

require subjects to have a comparatively higher level of programming

experience than the subjects of the Car study. For this reason, postgraduate

software engineering students were recruited in this study. A total of 56 subjects,

all from Sheffield Hallam University UK, were participated in the experiment.

Demographic data from the background questionnaire showed that the subjects’

gender ratio was 89% males and 11% females. The average age was about 23

years. All subjects had previous programming experience, particularly in event-

159

driven programming using VB and 0 0 programming using C++ and JAVA. All

subjects had completed 18 weeks studying 0 0 programming when the

experiment took place. The experiment was conducted over two lab sessions.

Prior to each session, a stratified random sampling approach was used to

match the subjects. Matching was based on the subjects' grades on the courses

they were attending. The subjects were then randomly allocated to one of two

matched groups (Non-Object and Object groups). For the two sessions, 28

subjects were allocated to the Non-Object group and 28 subjects to the Object

group.

5.2.4 Materials and procedure

These were as for the Car study except that each subject was supplied with a

copy of either the Non-Object based or Object based program version of the

Line-Edit programs instead of the Car programs.

5.2.5 Metrics and Experimental Hypotheses

Metrics and hypotheses were as for first study.

5.2.6 Experimental Results of the Line-Edit Study

Normality test (see appendix d) showed that data to be non-normal.

Corresponding non--parametric statistical tests were applied. The analysis was

divided into four levels. The first and second levels were done to compare the

performance and ranking between the program versions respectively, thus, to

test the first null hypothesis. The third level aim to test the second null

hypothesis, it was to compare the performance in each knowledge category

between program versions. The last level of analysis aim to test the third null

160

hypothesis, it was done to compare performance in knowledge categories for

different sets of subjects' groups (All group, Non-Object group, and Object

group).

5.2.6.1 Comparison of the Performance

The analysis accounted for the effect of the program version on performance.

The descriptive analysis of the performance data is presented in table 5.23.

Examination shows that the mean performance of the Object based group is

higher than the mean performance of the Non-Object group. This indicates that

there is program version effect in terms of performance

Table 5.23: Statistical summary of performance in the Line-Edit study

descriptive statistics

N min max mean SD

performance of Non-Object group 28 18.75 81.25 50.66 16.25
performance of Object group 28 50.00 93.75 69.86 9.77

In comparing all groups undergoing the two different Line-Edit programs

versions (as independent variable), performance (as dependent variable), a

Mann-Whitney U test was applied. The result revealed that there was a

significant difference (U=131.500, p=.000<0.05 2-tailed). The performance of

Non-Object group and Object group is significantly different supporting the Hn.

Sums and means of the ranks for the subjects are shown in table 5.24 and the

Mann-Whitney results are shown in table 5.25.

161

Table 5.24: Ranks of performance in the Line-Edit study

ranks

program version N mean rank sum of ranks

Non-Object based 28 19.20 537.50
performance

Object based 28 37.80 1058.50

total 56

Table 5.25: Mann-Whitney test result of performance in the Line-edit study

test statistics

performance

Mann-Whitney U

asymp. sig. (2-tailed)

131.500

.000

5.2.6.2 Comparison of Ranking

In assessing subjects' judgment about their comprehension of the given

program version (Non-Object based and Object based), Figure 5.3 shows the

means of subjects' responses to the ranking categories broken down by the

program versions.

■ N o n - O b j e c t b a s e d

■ O b j e c t b a s e d

Not very well fairly to
m o d u r a t e l y w e l l

Ranking Categories

Figure 5.3: Graphical representation of the subjects' ranking of each program version in

the Line-Edit study.

162

Examination of the data confirms that the Object based program was often

assessed as being easier to comprehend than the Non-Object based program.

More specifically, 39% of the Non-Object group ranked their comprehension as

Not very well, while only 14% of the Object group graded comprehending their

program as Not very well. The percentage of both Non-Object and Object

groups in ranking their related program as Fairly to moderate well was similar.

Only 17% of the Non-Object group graded their program as Well to very well,

while 39% of the Object group graded their program in this ranking category.

This gives substantial agreement and supports the above findings, by using

performance measure, that the Object based program was easier to

comprehend than the Non-Object based program. On this basis, the Object

based program appears easier to comprehend if it is measured by performance

and ranking. In comparing the comprehension of the subjects with Object based

and Non-Object based programs versions, the results revealed that the Object

based group outperformed the Non-Object based group. These results

concurred with what was found in the Car study.

5.2.6.3 Comparison of Performance of Knowledge

Categories between Program Versions

This analysis accounted for the effect of program version on each knowledge

category. Figure 5.4 shows the mean of the correct responses to each

knowledge category broken down by the programs versions.

163

90

80

70ST

§ 60
lO0/
t 50 i Jl i i l

40 a l l ' m Non-Object based

% 30
£

20

10

aI
I m

■ Object based

Elementary Control Data Flow Program State Problem
Operations Flow Goals Classes

Knowledge Categories

Figure 5.4: Graphical representation of performance in each knowledge category for

each program version in the Line-Edit study

In comparing the two groups each of which undergoing one of the Line-Edit

programs versions (as an independent variable) with performance in each

knowledge category (as dependent variable), a Mann-Whitney U test was

applied. The result revealed that Control Flow, State, and Problem Classes

knowledge categories were significantly different supporting H i2. The sums and

means of the ranks for the groups are shown in table 5.26 and the Mann-

Whitney results for each knowledge category are shown in table 5.27.

164

Table 5.26: Mean ranks of performances of each knowledge category between
program versions of the Line-Edit study

ranks

knowledge categories program version N mean rank sum of ranks

Non-Object based 28 27.32 765.00

Elementary Operations Object based 28 29.68 831.00

total 56

Non-Object based 28 23.84 667.50

Control Flow Object based 28 33.16 928.50

total 56

Non-Object based 28 30.25 847.00

Data Flow Object based 28 26.75 749.00

total 56

Non-Object based 28 26.89 753.00

Program Goals Object based 28 30.11 843.00

total 56

State
Non-Object based 28 23.82 667.00

Object based 28 33.18 929.00
total 56

Non-Object based 28 23.82 667.00

Problem Classes Object based 28 33.18 929.00

total 56

Table 5.27: Mann-Whitney test results of performance of each knowledge category

between program versions in the Line-Edit study

test statistics

Elementary
Operations

Control
Flow

Data Flow
Program
Goals

State
Problem
Classes

Mann-Whitney U

asymp. sig.(2-tailed)

359.000

.513

261.500

.010

343.000

.383

347.000

.388

261.000

.027

60.000

.000

A Hodges-Lehman indicated that Object group performed 30% better than the

Non-Object group in the Problem Classes knowledge category.

In comparing the two groups for different program versions (Non-Object based

and Object based) in terms of performance in each knowledge category, the

results indicated that the Object group outperformed the Non-Object group by

165

nearly a third in Problem Classes knowledge category. This was similar to the

Car study, where the knowledge category contributing to the difference was the

Problem Classes (i.e., nearly third more in the mean score). However, both

Control Flow and State knowledge categories were also significant and

contributed to the difference that was revealed in the Line-Edit study.

5.2.6.4 Comparison of Performance in Knowledge

Categories

The level of analysis accounted for compare the knowledge categories in

different sets of groups (All groups, Non-Object group, and Object group).

5.2.6.4.1 Comparisons of Performance in

Knowledge categories for All Group

The descriptive analysis of data for All group's performance is presented in

table 5.28. Examination shows that the mean performance of the Program

Goals knowledge category is the highest among all other knowledge categories.

However, performance of the Problem Classes knowledge category is the

lowest among all other knowledge categories.

Table 5.28: Statistical summary of the performance in each knowledge category of All

groups of the Line-Edit study

descriptive statistics
knowledge categories N min max mean SD

Elementary Operations 56 0.00 100.00 63.39 26.09

Control Flow 56 0.00 100.00 56.25 28.70

Data Flow 56 0.00 100.00 64.28 38.98

Program Goals 56 0.00 100.00 66.07 27.14

State 56 0.00 100.00 62.05 30.89

Problem Classes 56 0.00 100.00 54.02 31.54

A Kruskal-Wallis test, with all six knowledge categories questions (as

independent variable) and performance in each knowledge category (as

dependent variable), revealed no significant difference among knowledge

categories (x2=9.320, p=.097>0.05). The third null hypothesis H03 was accepted.

Means of the ranks for All groups' performance are shown in table 5.29 and the

Kruskal-Wallis results are shown in table 5.30.

Table 5.29: Ranks of All group's performance in each knowledge category of the Line-
Edit study

ranks

knowledge categories N mean rank

Elementary Operations 56 157.26

Control Flow 56 153.39

performance for All Data Flow 56 187.04

group Program Goals 56 181.05

State 56 181.91

Problem Classes 56 150.35

Total 336

Table 5.30: Kruskal-Wallis test result of All groups' performance in each knowledge
category of the Line-Edit study

test statistics

performance for All group

chi-square 9.320

df 5
asymp. sig. .097

One can conclude in this case that, for All group, the performance in knowledge

categories was not significantly different. Indeed, even the difference in the

highest mean score in Program Goal (66%) and the lowest mean score in

Problem Classes (54%) was marginal.

167

5.2.6.4.2 Comparisons of Performance in

Knowledge categories for Non-Object Group

The descriptive analysis of data for Non-Object group’s performance is

presented in table 5.31. Examination shows that the mean performance of the

Data Flow knowledge category is the highest among all other knowledge

categories. However, the knowledge category Problem Classes represents the

lowest performance of all other knowledge categories.

Table 5.31: Statistical summary of the performance in each knowledge category of

Non-Object group in the Line-Edit study

descriptive statistics

knowledge categories N min max mean SD

Elementary Operations 28 0.00 100.00 60.71 28.40
Control Flow 28 0.00 100.00 46.42 26.97

Data Flow 28 0.00 100.00 67.85 41.30
Program Goals 28 0.00 100.00 62.50 29.26

State 28 0.00 100.00 52.67 31.43
Problem Classes 28 0.00 100.00 31.25 25.11

The Kruskal-Wallis test revealed a significant difference among knowledge

categories (x2=24.55, p=.000<0.05). Means of the ranks for Non-Object group's'

performance in each knowledge category are shown in table 5.32 and the

Kruskal-Wallis results are shown in table 5.33.

168

Table 5.32: Ranks of Non-Object group's performance in each knowledge category of

the Line-Edit study

ranks

knowledge categories N mean rank

Elementary Operations 28 94.68

Control Flow 28 75.41

performance for Non- Data Flow 28 104.61
Object group Program Goals 28 97.11

State 28 83.39

Problem Classes 28 51.80

Total 168

Table 5.33: Kruskal-Wallis test result of Non-Object group's performance in each

knowledge category of the Line-Edit study

test statistics

performance for Non-Object group

chi-square 24.55
df 5

asymp. sig. .000

Results revealed that, for the Non-Object group, there is a significant different in

performance between knowledge categories. The Problem Classes knowledge

category has a considerably lower mean score. A pairwise test was run as a

follow-up.

169

Table 5.34: Pairwise comparison of Non-Object group's performance in each

knowledge category of the Line-Edit study

Sample1-Sample2
Test

Statistic

Std.

Error

Std.Test

Statistic
Sig. Adj.Sig.

Problem Classes-Data Flow 52.804 12.175 4.337 .000 .000

Problem Classes-Program

Goals
45.304 12.175 3.721 .000 .003

Problem Classes-Elementary
Operations

42.875 12.175 3.522 .000 .006

Problem Classes-State 31.589 12.175 2.595 .009 .142

Control Flow-Data Flow -29.196 12.175 -2.398 .016 .247

Problem Classes-Control

Flow
23.607 12.175 1.939 .053 .788

Control Flow-Elementary

Operations
19.268 12.175 1.583 .114 1.000

Program Goals-Data Flow 7.500 12.175 .616 .538 1.000

Control Flow-State -7.982 12.175 -.656 .512 1.000

State-Elementary

Operations
11.286 12.175 .927 .354 1.000

State-Program Goals 13.714 12.175 1.126 .260 1.000

Control Flow-Program

Goals
-21.696 12.175 -1.782 .075 1.000

State-Data Flow 21.214 12.175 1.742 .081 1.000

Elementary Operations-

Data Flow
-9.929 12.175 -.815 .415 1.000

Elementary Operations-

Program Goals
-2.429 12.175 -.199 .842 1.000

From table 5.34, the result in comparing performance between knowledge

categories for the Non-Object group revealed that there was a significant

different between knowledge categories. Moreover, investigation of these

knowledge categories’ contributions and their interactions revealed that
170

Problem Classes knowledge category has a significant interaction with the

Elementary Operations, Data Flow, and Control Flow knowledge categories.

This was expected given the considerable lower value of the mean performance

score of Problem Classes found in table 5.31. Therefore, Problem Classes once

again plays a significant negative role in program comprehension for the

subjects using the Non-Object based program version of the Line-Edit problem.

5.2.6.4.3 Comparisons of Performance in

Knowledge categories for Object Group

The descriptive analysis of data for Object group’s performance is presented in

table 5.35. Examination shows that the mean performance of the Problem

Classes knowledge category is the highest among all other knowledge

categories. However, Data Flow knowledge category represents the lowest

performance than all other knowledge categories.

Table 5.35: Statistical summary of performance in each knowledge category of Object

group of the Line-Edit study

descriptive statistics

knowledge categories N min max mean SD

Elementary Operations 28 50.00 100.00 66.07 23.77

Control Flow 28 .00 100.00 66.07 27.39
Data Flow 28 .00 100.00 60.71 36.91

Program Goals 28 50.00 100.00 69.64 24.86

State 28 25.00 100.00 71.42 27.81
Problem Classes 28 50.00 100.00 76.78 17.90

The Kruskal-Wallis test, with "knowledge categories" as the independent

variable and performance in each knowledge category as dependent variable,

revealed a non-significant difference among knowledge categories (x2=5.22,

171

p=.389>0.05). Means of the ranks for Object group's performance are shown in

table 5.36 and the Kruskal-Wallis results are shown in table 5.37.

Table 5.36:Ranks of Object group's performance in each knowledge category of the
Line-Edit study

ranks

knowledge categories N mean rank

Elementary Operations 28 76.25

Control Flow 28 79.64

performance for Object Data Flow 28 78.11
group Program Goals 28 84.46

State 28 89.11

Problem Classes 28 99.43

Total 168

Table 5.37:Kruskal-Wallis test result of Object group's performance in each knowledge

category of the Line-Edit study
test statistics

performance for Object group

chi-square 5.22

df 5

asymp. sig. .389

In comparing performance of knowledge categories for the Object group, we

can conclude that there is no significant difference. The highest mean score of

Problem Classes (77%) and the lowest mean score of Data Flow (61%) means

that there is a marginal difference.

In summarising the findings of Line-Edit Study, we can conclude that the group

given the Object based program version outperformed the group given the Non-

Object based program version. This outperform a nee is largely attributable to the

Problem Classes and perhaps Control Flow and State knowledge categories.

Investigating the.interaction between knowledge categories in different sets of

subjects groups, we can conclude that the most significant negative effect in

172

program comprehension was found in the Non-Object group and was caused by

the Problem Classes knowledge category. However, the interaction between

knowledge categories in the All group and the Object group was found to be

marginal.

5.2.7 Summary of the Investigation Results

This chapter reported two sets of empirical studies (Car and Line-Edit)

assessing the ease of comprehension of 0 0 programs with different sets of

problem characteristics and different solution decompositions. Both

performance and ranking were found to be good indicators. However, time was

not a good indicator for measuring the ease of comprehension and was

therefore omitted from the investigation. Table 5.38 details the summary of the

findings from both Car and Line-Edit studies.

Table 5.38: Summary of the studies' findings

studies Car study Line-Edit study

Performance

Object based group

outperformed the Non-

Object based group

Object based group

outperformed the Non-

Object based group

Knowledge categories that

contributed to the difference

between program version

Problem Classes

Control Flow

State

Problem Classes

Performance in each

knowledge category

positive

dominant

negative

dominant

positive

dominant

negative

dominant

All group State none none none

Non-Object group State
Problem

Classes
none

Problem

Classes

Object group

State

Problem

Classes

none none none

173

Looking at the second and third row in table 5.38, clearly, the similarity between

the two studies indicates that the Object group outperformed (i.e., found the

program easier to comprehend) the Non-Object group in both studies. The

knowledge categories contributing to these differences differ in each study. In

the Car study, Problem Classes knowledge category is the highly contributor to

the difference between program versions. However, Control Flow, State, and

Problem Classes knowledge categories are high contributors to this difference

in the Line-Edit study.

In investigating performance in each knowledge category, represented in the

last three rows in the above table, it was found that, in the Car study, the State

knowledge category has a highly positive dominant effect upon performance for

All groups. However, when considering them separately, for the Non-Object

group, State knowledge category had a positive dominant effect whilst Problem

Classes knowledge category had a negative dominant effect. In contrast, for the

Object group, State and Problem Classes knowledge categories had a positive

dominant effect. We can therefore clearly infer that the State knowledge

category is important and plays a key role in comprehension for both Non-

Object and Object based program versions. Moreover, Problem Classes

knowledge also plays a key role in comprehension, but it has opposite effects

on the two program versions. For the Line-Edit study, we found that there was

no significant difference for All group or Object group. However, for the Non-

Object group, Problem Classes knowledge category has the greatest negative

effect.

In conclusion, the Problem Classes knowledge category contributes to the

difference in comprehension between groups in both studies, whilst Control

174

Flow and State knowledge categories contribute to this difference only in the

Line-Edit study. In terms of ease of comprehension of knowledge categories, it

is clear that the first study indicates that Problem Classes has a positive effect

on the Object based program and a negative effect on the Non-Object based,

whilst State knowledge category has a positive effect in both program versions.

The counterpart of this in the second study is that Problem Classes has a

negative effect only on the Non-Object based program.

175

Chapter 6 Discussion

6.1 Introduction

The investigation has focused on whether 0 0 programs are easier to

comprehend than non 0 0 programs. The investigation considered the influence

of class concept, problem characteristics, and solution decompositions on the

comprehension of different sets of knowledge categories. In order to achieve

this, the investigation was built on and adapted from existent empirical works in

the field of 0 0 program comprehension.

The obtained findings are positive in extending and tailoring empirical works,

based on established principles of the scientific method, done by Wiedenbeck

and Ramalingam (1999) for the Car problem and by Siddiqi (1984) for the Line-

Edit problem. The adaptation allowed us to improve the experimental materials

to carry out this investigation. For example, incorporating three classes in the

Car problem and implementing abstract solution decomposition of the Line-Edit

problem in the form of Object based program helped in investigating the effect

of class concept better and brought interesting findings to the field of empirical

studies of 0 0 program comprehension. Using different sets of problems

allowed us to investigate the influence of problem characteristics in 0 0 program

comprehension. Moreover, utilising Siddiqi's different solution decompositions of

the Line-Edit problem helped in investigating the influence of solution

decompositions in comprehension of 0 0 programs. This has also made it

possible to investigate these solutions in the sense of a program being

comprehended rather than a program being designed. The investigation has

also obtained a rich view of the comprehension of a set of different types of
176

knowledge, which are taken from the best-known models of program

comprehension in this field (Pennington, 1987a, Burkhardt et al 2006a, b). The

shift in emphasis from a memory-based task to a search-based task, which was

considered necessary for the needs of this investigation, has also helped in

obtained these findings. The investigation was also able to use and evaluate

different measures of comprehension; these are time, performance, and ranking.

These measures were used in different related studies. All the above

adaptations have improved the experimental materials used in this investigation.

These improvements have allowed us to relate the investigation findings to a

wide range of related studies. Thus, the findings are interesting and add to the

body of knowledge about empirical work on 0 0 program comprehension.

Section 6.2 interprets the findings of the two empirical studies reported in

Chapter 5 and evaluates the model used in this investigation. Section 6.3

discusses the proposed empirically grounded based model of 0 0 program

comprehension along with the limitations of the model. Section 6.4 then

discusses methodological limitations of the studies conducted and how they

might affect the findings. Finally, possible pedagogical issues are highlighted in

section 6.5.

6.2 Interpretation of the Studies' Findings

The investigation assessed comprehension using time, performance, and

ranking measures. In terms of time, it was found that this was not a good

indicator in measuring comprehension. This was similar to Siddiqi’s finding

(Siddiqi, 1984). Performance has been widely used by most related studies (for

example, Pennington 1987a; Ramalingam and Wiedenbeck, 1997; Wiedenbeck

et al., 1999; Wiedenbeck and Ramalingam, 1999; Good, 1999; Khazaei and
177

Jackson, 2002, Burkhardt et al., 2006a, b; Affandy, 2011). It is found that

performance is a better indicator of comprehension in the studies reported in

this thesis too. The investigation has also found ranking as a good indicator and

has provided substantial supporting indicators for the finding of performance.

Assessing the ease of comprehension of OO programs, the investigation found

that, despite the variation in the problems' characteristics between Car and

Line-Edit studies, the Object based programs were easier to comprehend than

the Non-Object based programs. The overall comprehension was

advantageous to Object based programs.

Interpreting this finding in terms of building mappings between program and

problem domains, this finding supports Detienne’s (2006a) claim about the ease

of comprehension of the 0 0 approach. However, the comprehension process

involves application of a number of different types of knowledge. It is, therefore,

difficult to ascertain this claim from the overall comprehension. In order to

assess such a claim, it is more reasonable to consider these different types of

knowledge rather than the overall comprehension of the programs. This work

provides supporting empirical evidence as it is found that comprehension of

certain types of knowledge is easier than of the other types of knowledge.

These better-comprehended types of knowledge are highlighted and discussed

further in this section. Looking to other related studies, our finding does not

always concur. While Khazaei and Jackson (2002) found that comprehension of

0 0 and event-driven programs have a lot in common, Ramalingam and

Wiedenbeck (1997), Wiedenbeck and Ramalingam (1999), and Wiedenbeck et

al., (1999) found 0 0 programs are more difficult to comprehend than their

corresponding imperative and procedural programs. In their explain of their

178

findings, they argued that their findings may be more a reflection that the types

of comprehension questions used have more meaning for procedural programs

than for 0 0 programs rather than an indication of difficulty.of comprehension in

0 0 programs.

The rest of this section is divided into two parts. It first discusses the types of

knowledge that contributed most to the difference between Object based

programs and Non-Object based programs. The second part evaluates the

model used in this investigation.

Problem Classes knowledge was found to contribute most in showing the

difference in comprehension between the program versions in both studies.

Moreover, Control Flow and State types of knowledge also contributed to this

difference, but only in the Line-Edit study.

The knowledge that contributed most was the Problem Classes. The high

performance in Problem Classes knowledge in the Object based programs

reflects how easy it was to comprehend this related knowledge from the

program text in both studies. This supports Burkhardt et al.’s (2006a, b) findings.

This high performance could be attributed to the clarity of classes' declarations

and their related attributes in the Object based programs, which in turn makes

Problem Classes knowledge easier to comprehend regardless of the variations

between the problem characteristics and the solution decompositions used in

each study. The Problem Classes knowledge of the Non-Object based

programs was the most difficult knowledge to comprehend in both studies. This

finding represents the main similarity between the studies in terms of the

negative effect on comprehension. It was assumed that comprehension of

Problem Classes knowledge in the Non-Object based programs is more related

179

to the understanding of problems' entities. Thus, the problem characteristics

could be a factor that plays a role in the ease of comprehension of Problem

Classes knowledge. On this basis, comprehension of Problem Classes

knowledge would be easier in the Car study, where car, engine, and body are

considered more tangible, than of Line-Edit study, where word and buildingword

can be argued to be relatively intangible. The findings support this assumption;

it was found that the Non-Object group in the Car study performed better than

the Non-Object group in the Line-Edit study.

The second greatest contribution was made by Control Flow. This type of

knowledge was found easier to comprehend in the Object based program than

the Non-Object based program in the Line-Edit study. This finding is the

opposite to what was found in Ramalingam and Wiedenbeck’s (1997),

Wiedenbeck and Ramalingam’s (1999), and Wiedenbeck et al.’s (1999) studies.

These studies assume that the control flow is mainly based on the program

execution order (sequential vs. non-sequential). They found comprehension of

execution of non 0 0 programs was better than of the 0 0 programs. Building on

our finding, the difference in comprehension of Control Flow knowledge could

reasonably be attributed to the difference in control structures used in designing

the Line-Edit program versions (Non-Object and Object based). Since the

solution decomposition (primitive vs. abstract) used in implementing each

program version was different, the selection of the control structure was mainly

influenced by this difference. We found that the more abstract the solution

decomposition, which represents the Object based program, the easier it was to

comprehend the Control Flow knowledge. Thus, it could be argued that not only

the execution order of the program affects the comprehension of Control Flow

180

knowledge, but also the type of solution decomposition used in designing the

program versions has a significant influence.

The last type of knowledge found which contributed to comprehension is the

State knowledge. It also played a role in the ease of comprehension of Object

based programs in the Line-Edit study. This finding contradicts other related

studies. For example, Ramalingam and Wiedenbeck (1997) and Wiedenbeck

and Ramalingam (1999) argue that the difficulty in comprehension of State

knowledge is almost attributed to the indirect representation of this knowledge

in the program text. It is worth mentioning here that these studies used

programs written in C++. Khazaei and Jackson (2002), who had used VB and

JAVA in their programs, attributed the ease of comprehension of the State

knowledge to the nature of the State comprehension questions used in their

study. These questions asked about the state change for a specific variable at

the time when a certain action occurred, the action involves the output

statement in relation to the value of the variable within a conditional statement.

The authors argue that these questions were relatively easier to answer as they

can easily be spotted in the program text. With respect to all these, it is

reasonable to argue that the ease of comprehension of State knowledge in the

Object based program found in this investigation is possibly more attributable to

the high readability nature of the structure of the Object based programs over

the corresponding Non-Object based programs, rather than to the indirect

representation of the knowledge or to the nature of the State questions. More

precisely, the relatively easier control structure used in the Object based

program, which is influenced by the abstract type of solution decomposition,

made tracking the program's certain action and the changes on its associated

181

variable easier in the Object based program than the Non-Object based

program, which is influenced by the primitive type of solution decomposition.

From all discussed above, it seems that Object based programs are easier to

comprehend than their corresponding Non-Object based programs for Control

Flow, State, and Problem Classes types of knowledge. These types of

knowledge seem to be significant in showing the difference in ease of

comprehension between program versions.

In evaluating models of program comprehension, most related studies base

their evaluations on distinguishing between two distinct but interrelated models.

We called this the "two-stage modet' of program comprehension. These models

are: program model and situation model. Each model combines different sets of

knowledge. While the program model encompasses knowledge related to

Elementary Operations and Control Flow, the situation model combines

knowledge related to Data Flow and Program Goals, the State knowledge fall in

between these program and situation models. In order to evaluate the model

used in this investigation, we did not follow the two-stage model approach.

Instead, we treated each type of knowledge individually. The advantage of this

approach is that we can then incorporate the most significant types of

knowledge that play a role in the ease of comprehension of 0 0 program into a

new proposed model. There is less of a need to include the non-significant

types of knowledge.

In the Car study, it was found that State is the most easily comprehended

knowledge which positively affected the comprehension of both our program

versions. Problem Classes knowledge was found as the least comprehended

knowledge which negatively affected the comprehension of our Non-Object

182

based program. However, Problem Classes knowledge was the most easily

comprehended knowledge which positively affected the comprehension of the

Object based program. The different effects of the Problem Classes in different

program versions were expected. For the Object based program, the knowledge

of classes is directly relevant, whilst this knowledge is less so in the Non-Object

based program. Therefore, State and Problem Classes are the two important

types of knowledge that played a significant role in program comprehension.

Our findings regarding State are consistent with Khazaei and Jackson's (2002)

findings, whilst they somewhat contradict Ramalingam and Wiedenbeck (1997)

and Wiedenbeck and Ramalingam (1999) findings. It is worth mentioning that

programming languages used in the Car study were similar to that used in

Khazaei and Jackson (2002) but were different from what was used in

Ramalingam and Wiedenbeck (1997) and Wiedenbeck and Ramalingam (1999).

Thus, it could be argued that the difference in the programming languages

could be a factor that has affected the comprehension of State knowledge. The

program listings and the State comprehension questions used in all of the

related studies as well as our own Car study were the same.

In the Line-Edit study, it was found that Problem Classes knowledge was the

least comprehended knowledge and it negatively affected the comprehension of

the Non-Object based program. This was also expected, as Problem Classes

knowledge is probably less relevant in the Non-Object based program. This also

consistent with the findings in the Car study, where Problem Classes negatively

affected the comprehension of the Non-Object based program. In terms of the

rest of the types of knowledge, although Control Flow and State knowledge

categories were significant in showing the difference in comprehension between

Non-Object based and Object based programs, none of these types of

183

knowledge, as well as the rest of types of knowledge, was found to contribute

significantly to the comprehension in the Line-Edit study.

To summarise, in comparing the ease of comprehension between program

versions, Control Flow, State, and Problem Classes significantly contributed to

this difference with advancing to Object based program version. In evaluating

the model used in this investigation, State and Problem Classes are the most

dominant types of knowledge that affected comprehension. Therefore, it can be

argued that Control Flow, State, and Problem Classes knowledge are the most

important types of knowledge that should be taken into consideration in

proposing a new model of 0 0 program comprehension. The next section

discusses the proposed empirically grounded based model of 0 0 program

comprehension along with its limitations.

6.3 An Empirically Grounded based Model of 0 0

Program Comprehension

Software practitioners and human factor researchers, whose goal is that of

facilitating the programmers' task, have used notions from cognitive psychology,

problem-solving, and text understanding to produce models of programmer

behaviour for various programming-related tasks. For instance, Shneiderman

and Mayer (1979) propose a syntactic/semantic model of programmer

behaviour, Brooks (1983) introduced a conceptual model of program

comprehension, and Pennington (1987a, b) and Burkhardt et al. (2006a, b)

propose mental models of program comprehension. Although these models

have provided good frameworks in the field of program comprehension,

empirical works that attempted to assess comprehension and validate these

184

models have been shown to be simplistic and insufficient in different contexts.

For example, empirical works done to evaluate Pennington's model showed its

inability to account for the 0 0 programming approach (See, for example,

Ramalingam and Wiedenbeck, 1997; Wiedenbeck and Ramalingam, 1999;

Wiedenbeck et al., 1999; and Khazaei and Jackson, 2002).

The model proposed here is based on the synthesis of previous models and is

enriched by the findings of the empirical investigation reported in this thesis.

This investigation raised a number of novel issues in 0 0 program

comprehension that had previously remained unexplored. In terms of relevance

to the theory of program comprehension, the types of knowledge used in this

investigation^ which are found in Pennington’s (1987a) and Burkhardt et al.’s

(2006a, b) models of program comprehension (see table 4.2), have provided

good frameworks to assess the ease of comprehension of 0 0 programs. More

precisely, the types of knowledge that were found to contribute significantly to

comprehension were Control Flow, State, and Problem Classes. These types of

knowledge will be the basis for the proposed model of 0 0 program

comprehension.

6.3.1 Formulation of the Model

The starting point for formulating the model is the diagram of software

comprehension models provided by O’Brien (2003). He contended that, despite

the variations in emphasis between comprehension models, all of them consist

of four common elements, namely, a 'knowledge base', a 'mental model',

'external representation', and some form of 'assimilation process'. Figure 6.1

illustrates these elements and shows how they relate to each other.

185

P r o g r a m m e r

K n o w l e d g e

B a s e M e n t a l M o d e l

E x t e r n a l

R e p r e s e n t a t i o n sA s si m i I a t i o n P r o c e s s

Figure 6.1: Elements of software comprehension models (source: O'Brien, 2003)

An operational overview of the model in the extension to our experimental

settings can be defined as follows:

• the knowledge base is defined as programmers' previous knowledge before

they comprehend the given code. This knowledge may consist of previous

programming experience and domain knowledge;

• the mental model refers to the programmers' current understanding of the

program code. It represents the output of the model and encompasses

different types of knowledge. In the context of this thesis, these are:

Elementary Operations, Control Flow, Data Flow, Program Goals, State, and

Problem Classes. These types of knowledge have contributed differently in

program comprehension. They provide detailed descriptions of different

aspects of the programs;

• external representations can essentially be defined as any external supports

in the form of system documentation, advice from other programmers

186

familiar with the problem domain, or, indeed, program code itself. External

representations represent the input to a model. In our experimental settings,

it is known as treatments which consist of the different program versions and

their corresponding lists of comprehension questions used in the Car and

the Line-Edit studies. Three more elements are incorporated into the

treatments. These are: class concept, problem characteristics, and solution

decompositions. The class concept was investigated by being present or

absent in the treatments. Two problems with different characteristics were

used in the treatments. These are represented as trivial in the Car study and

as rich in the Line-Edit study. For the Car study, there was only one possible

solution decomposition, which is primitive. The solution was implemented in

two different forms (Non-Object based program and Object based program).

In the Line-Edit study, two alternatives solution decompositions, which are

primitive and abstract, were implemented in two different forms. The

primitive type of solution decomposition was implemented as Non-Object

based program and the abstract type of solution decomposition was

implemented as Object based program. Thus, the input to the model is two

different programs versions for each problem and solution decompositions is

therefore depicted on the model as treatments;

• the assimilation process is defined as the actual strategy the programmer

employs to comprehend the program. Thus, the assimilation process depicts

the program comprehension process that yields a description of text-to-be-

understood. This comprehension process represented as subjects

performance of the six types of knowledge mentioned above.

187

Programmer

Elementary Operations< 1

Control Flow

Data FlowKnowledge
Categories

Program Goals

Problem Classes
Knowledge

Based State

Treatments

Solution
Decompositions

Problem
Characteristics

Class Conept

Comprehension

Process

Figure 6.2The operational view of the model used in this investigation

Figure (6.2) illustrates the tailored operational view of the model used in this

investigation. The model is intended to describe the influence of treatments on

the comprehension process. The treatments are: class concept, problem

characteristics, and solution decompositions. The comprehension process

represents the contributions of different types of knowledge to comprehension.

These are: Elementary Operations, Control Flow, Data Flow, Program Goals,

State, and Problem Classes. The influences of the treatments are captured in

the next few paragraphs.
188

For the class concept:- the classes play a key role in facilitating comprehension

of 0 0 programs. The key feature of a class is that its special structure and

representation carries a lot of the meaning for the program text. Classes can

easily be seen in the text of an 0 0 program. Just skimming through a program

listing leads to identifying classes during comprehension. The evidence for this

was reported in both studies, where the Problem Classes contributed most to

ease of comprehension of Object based programs.

In terms of the problem characteristics: - this element has shown a strong

influence in facilitating the comprehension of Problem Classes knowledge. A

problem characteristic was a significant factor in recognising the classes, their

boundaries, their static data members, and their related functions. This

recognition was more evident in the Car study, where the problem entities were

relatively tangible. In the Line-Edit study, the problem entities were relatively

intangible. Our findings showed that knowledge related to Problem Classes of

Object based programs in the Car study was easier to comprehend than in the

Line-Edit study. Moreover, comparing ease of comprehension of the Non-Object

based programs in both studies; there is also evidence about the effect of the

tangibility of the problem entities on comprehension of Problem Classes

knowledge. Our findings showed that the comprehension of Problem Classes

knowledge was easier in the Car study than in the Line-Edit study. Thus, a

problem characteristic is considered to be an important element in the proposed

model of 0 0 program comprehension.

In terms of solution decompositions: - there is also evidence to suggest that

there is a great influence of this element on comprehension of the 0 0 program

in the Line-Edit study. Implementing abstract solution decomposition led to

189

facilitating comprehension of the Object based program. The Non-Object based

program, implemented based on primitive solution decomposition, was less

easy to comprehend. The abstract solution made tracking the flow of the

program execution and its associated changes in the program actions easier in

the Object based program. The evidence for this is that knowledge related to

Control Flow and State in the Object based programs was comprehended better.

Therefore, solution decomposition was found empirically to be influential. Thus,

it is another important element that should be included in the proposed model of

0 0 program comprehension.

To summarise, the treatments incorporated in the model have shown a strong

influence on comprehension of 0 0 programs over non 0 0 programs. Based on

the empirical evidence found in both studies, we can conclude:

• where the problem characteristics are trivial, the primitive Object based

solution type is comprehended better than the primitive Non-Object based

solution type. This especially influences comprehension of the Problem

Classes knowledge;

• where the problem characteristics are rich, the abstract Object based

solution type is comprehended better than the primitive Non-Object based

solution type. This especially influences the comprehension of Control Flow,

State, and Problem Classes knowledge.

However, these treatments did not show a strong influence on comprehension

of the other types of knowledge in our studies. These are: Elementary

Operation, Data Flow, and Program Goals. Therefore, in proposing a new

empirically grounded based model of 0 0 program comprehension, shown in

figure 6.3, the following points were considered:

190

• incorporating class concept, problem characteristics, and solution

decompositions as treatments is important as they were shown to be

influential on comprehension of 0 0 programs. These are highlighted as bold

in the new model;

• the Control Flow, State, and Problem Classes should be considered as

"primary' types of knowledge. They showed significant difference in

comprehension between different program versions (Non-Object based and

Object based). They also contributed significantly and showed positive

effects on the comprehension of 0 0 programs. These primary types of

knowledge are highlighted as bold in the new model;

• the Elementary Operations, Data Flow, and Program Goals should be

considered as "secondary" types of knowledge. They did not show any

significant difference in comprehension between different program versions.

Thus these secondary types of knowledge are not highlighted bold in the

new model as they would be considered less important.

191

Programmer

Control Flow

State

Problem GassesKnowledge
Categories

Elementary Operations

Data Flow
Knowledge

Based Program Goals

Treatments
Problem

Characteristics

Solution
Decompositions

Class Concept

Comprehension
Process

Figure 6.3: The empirically grounded based proposed model of 0 0 program

comprehension

The model proposed here is empirically based and could provide a good

framework to the field of empirical studies of 0 0 program comprehension. It

could be a starting point for further empirical work in this field. However, as in

any model of program comprehension, this new model can also be considered

simplistic, for any other context and findings are only limited to our experimental

settings. The next section elaborates on this limitation and suggests an

extension to the proposed model.

192

6.3.2 Limitation and Possible Extension of the

Proposed Model

The contributory types of knowledge found in this investigation may be sufficient

to account for comprehension of 0 0 programs used here. However, it may be

simplistic for these types of knowledge to be described as the "critical aspects"

of 0 0 programs. In order to achieve a thorough understanding of 0 0 program

comprehension, there is a need to review Control Flow knowledge and expand

its definition from "a sequential execution of the program” to "the way in which

objects interact with each other". Burkhardt et al. (2006, b) defined this

interaction as the dynamic aspects of the Problem Classes and any other

objects used in the program. The dynamic aspects can be represented as

client-server relationships via message passing, objects composition, and

inheritance relationships. These aspects were introduced and empirically tested

by Burkhardt et al. (2006a, b). There is also a need to reconsider State

knowledge not only as "a state of a specific variable" but also as a "state of

specific object", where this object is holding state and changing through its

behaviour. The proposed model has limits in describing these critical aspects of

Control Flow, State, and Problem Classes.

An extended model should probably distinguish between these critical aspects.

Developing an extended model that includes these critical aspects in the form of

a set of knowledge categories will be difficult if we base it on empirical

investigation that compare non 0 0 and 0 0 program versions. More precisely,

the questions relating to critical aspects of Control Flow, State, and Problem

Classes knowledge can only be limited to those spanned in Object based

programs but not included in the Non-Object based programs. In order to go

193

further with investigating these types of knowledge based on the broad

definition given above, there is a need to realise the limitation of experiments

comparing 0 0 programs with non 0 0 programs. This proposal is that a further

empirical study must compare two 0 0 programs for these critical aspects.

The next section discusses methodological issues raised from this investigation

and how they might affect the investigation's findings.

6.4 Methodological Issues of the Investigation

Adopting Pennington’s (1987a) and Burkhardt et al.’s (2006a, b) models of

program comprehension in this investigation proved successful, yet devising a

specific tailored experimental methodology to empirically assess the ease of

comprehension of 0 0 program was not easy and needed very careful

consideration of many different issues. While the investigation was able to

assess the ease of comprehension of 0 0 programs, some methodological

issues may have played a role in this assessment. Two methodological issues

are highlighted in this investigation: these are: the lack of a criterion for

comparability between program versions, and the use of additional cues. This

section discusses these issues and the way in which they may have affected

the investigation's findings.

In conducting an empirical study, it is important to illuminate the effect of the

extraneous variables on the outcome of the study. We were able to keep all the

variables constant except the variables under investigation (i.e., keep

comprehension questions the same in both program versions). However, one

methodological issue which may be questioned is the lack of a criterion for

comparability between the program versions (Non-Object base and Object

194

based) used in each study. Since the programs were developed based on the

existence/absence of class, there was no criterion of comparability to be used to

argue about their “equivalence”. The Object based programs were

systematically slightly longer than the corresponding Non-Object based

programs due to the overhead of declaring classes. Thus, such variation can be

difficult to avoid. However, all corresponding programs were equivalent in terms

of their functionality. Considering the comprehension questions used in each

program version, the criterion of their comparability was based on the

availability of related knowledge in both program versions, thus, except for the

Problem Classes questions, the same comprehension questions were asked in

both program versions. Although the investigation was able to produce

equivalent counterpart questions for all types of knowledge under investigation,

the equivalence of comprehension questions related to the Problem Classes

knowledge is questionable.

Meaningful variable names and comments were used in the program versions

of the two studies. Additionally, as the task here is search-based, the programs

were available to subjects during the experiment session. This is a distinction

different from the memory-based task used by other related studies. By the time,

subjects may well have formulated prior ideas about what the program did and

how it worked; for example, one expectation could stem from the variables

names, such as, "speed", "passengers", "wordlength", and "newcharacter1' and

comments, such as, "assign the speed value of the Car1' and "output the word

on current or new line". Good (1999) argued that the availability of the program

gave subjects an additional source of information on which to base their

comprehension, by using the program text more as part of a hypothesis

verification process than anything else. This in itself does not necessarily

195

explain why differences in comprehension between program versions were

found and it was difficult to avoid. Using these additional cues in the

experimental settings could also be an issue that influences the findings. The

possible solution to this problem was to include the approach of using non

meaningful variable names and the approach of fewer textual comments about

the program. However, our pilot study suggested that introducing such

approaches was considered difficult and found beyond the ability of our subjects.

These approaches may be possible directions for future investigation, provided

that subject group is made up of more experienced programmers.

6.5 Pedagogical Issues

The outcome of this thesis suggests several pedagogical issues to consider

when teaching 0 0 programming. Identifying what types of knowledge novice

programmers found difficult to comprehend in 0 0 programs will contribute to

the theory of 0 0 program comprehension as well as helping educators to teach

0 0 program comprehension skills. Wiedenbeck and Ramalingam (1999)

emphasised the importance of understanding how 0 0 programs affect novice

programmers in comprehending different types of knowledge. In terms of

pedagogy, the investigation points to the need for careful attention to knowledge

of Data Flow and Program Goals in teaching 0 0 program comprehension.

Further empirical studies are needed in order to determine the reason for the

comprehension difficulties with these two types of knowledge in 0 0 programs.

It also calls for a thorough understanding of the comprehension of the critical

aspects of Control Flow, State, and Problem Classes knowledge.

Another pedagogy issue is the lesson learned from using different types of

example programs in teaching 0 0 programming approach introduced by
196

Borstler et al. (2010. 2011). The authors have identified properties of what they

called "quality factors" 0 0 example programs. These properties are: technically

correct, readable, promote “object-oriented thinking”. This investigation

suggests that emphasising types of knowledge, investigated in this thesis, as

well as the proposed critical aspects of these types of knowledge, should also

be added to the property list. It seems not possible to incorporate all these types

of knowledge in one small program example. Rather, different program

examples would highlight and, thus, facilitate comprehension of different types

of knowledge. For example, as in this investigation, the Object based program

version of the Car study facilitated comprehension of Problem Classes

knowledge. Therefore, a program example such as the one used in the Car

study is a good example program to highlight and teach this type of knowledge.

Similarly, the Object based program version of the Line-Edit study made Control

Flow, State and Problem Classes knowledge easier to comprehend than the

other types of knowledge. So perhaps we should use Line-Edit as an example

program in teaching these types of knowledge. The findings of differences in

comprehension among different types of example program in this investigation

make further study of such a question interesting. What type of

problems/program examples emphasis what type of knowledge is a good area

of future empirical research? This research has, therefore, succeeded in

producing the first categorisation of programming examples. We call it

"knowledge-based" program example categorisation. This categorisation acts

as an effective educational tool for 0 0 educators to improve 0 0 program

comprehension skills.

197

Chapter 7 Conclusions and Further Work

The broad aim of the thesis was to investigate the ease of comprehension of

0 0 programs versus the non 0 0 program. Therefore, the original motivation for

conducting empirical studies was simply to gather empirical data that would

reinforce or refute the claim regarding the ease of comprehension of 0 0

programs. This chapter reports the primary contributions and findings of the

thesis and relates them to the main thesis questions put forward in Chapter 1. It

then discusses the achievements and limitations along with suggestions for

future work. A summary comes at the end.

7.1 Findings and Contributions

In endeavouring to answer the thesis questions about the ease of

comprehension of 0 0 programs over the non 0 0 programs, the investigation's

findings can be summarised as follows:

• the investigation provides empirical evidence that supports claims about

the ease of comprehension of 0 0 programs. Different types of

knowledge contributed to the ease of comprehension of 0 0 programs in

each of the studies. Only Problem Classes knowledge contributed to the

difference in comprehension between the Object based program and the

Non-Object based program in the Car study; Control Flow, State, and

Problem Classes also contributed to the difference in comprehension

between the Object based program and Non-Object based program in

the Line-Edit study;

198

• the performance and the ranking measures were found to be good

indicators in measuring comprehension, whilst time was not;

• the State and Problem Classes knowledge were the most dominant

positively affecting comprehension of the Object based program in the

Car study. However, Problem Classes knowledge had a negative

dominant effect on comprehension of the Non-Object based programs in

both Car and Line-Edit studies;

• the proposed model of 0 0 program comprehension considered Control

Flow, State, and Problem Classes as primary types of knowledge, whilst

it considered Elementary Operations, Data Flow, and Program Goals as

secondary types of knowledge;

• there is a strong influence of class concept, problem characteristics, and

solution decompositions on comprehension of primary types of

knowledge in the Object based programs. On the other hand, no

significant influence was found on comprehension of secondary types of

knowledge;

• due to the equivalence between experimental programs, the

investigation's scope was restricted to assessing the ease of

comprehension of types of knowledge that have equivalent counterpart

questions in both program versions (Non-Object based and Object

based);

• the use of additional cues as well as the lack of criteria for comparability

between Non-Object based and Object based programs seem to be

unavoidable methodological issues that can affect the investigation's

findings;

199

• pedagogically, there is a need to give careful attention to critical aspects

of primary types of knowledge as well as secondary types of knowledge.

Moreover, introducing knowledge-based example programs would help

in improving 0 0 program comprehension skills.

The following contributions have been made:

1. Assessing the ease of comprehension of 0 0 programs by devising a

specific experimental methodology, based on previous empirical

experiments on program comprehension but tailored to the need of our

experimental settings. This led to considering different methodological

issues, such as choice of subjects, materials, and metrics.

2. Conducting two main sets of empirical studies (Car and Line-Edit), based on

the tailored methodology, aiming to assess the ease of comprehension of

0 0 programs and in particular class concept, problem characteristics, and

solution decompositions. This led to proposing a new empirically grounded

based model of 0 0 program comprehension.

3. Highlighting a number of methodological issues that affected the

investigation's findings. Introducing different critical aspects that are

considered important to 0 0 program comprehension.

4. Suggesting a number of pedagogical issues that can be considered as

supporting education tools in teaching 0 0 programming. Proposing a

categorisation of example programs to improve 0 0 program comprehension

skills.

200

7.2 Suggestions and Further Work

The investigation carried out in this thesis has shed some light on the field of

empirical works in 0 0 program comprehension. The investigation has also

pointed to other areas of future empirical research in this field. This section

discusses suggestions for further research in this files based on the limitations

of this investigation.

The present investigation is one of what should eventually be an ensemble of

empirical studies of 0 0 program comprehension. The investigation established

a foundation for further work in this field. The investigation suggests that other

researchers can build up on this work by using other problem types as case

study materials to cover all Jackson problem frames.

Although the investigation found 0 0 programs easier to comprehend than non

0 0 programs, especially for primary types of knowledge, it calls for further

empirical studies to find out why secondary types of knowledge were found

difficult to comprehend. In this context the investigation was able to introduce a

new knowledge-based categorisation of program examples for teaching 0 0

programming. These findings are representative and can be generalised for

other program examples that have similar characteristics. Moreover, these

findings raise new questions which may be pursued. The investigation

suggests a future direction of empirical studies to find out what type of program

examples emphasise what type of knowledge. One possible research direction

is to investigate the ease of comprehension of program examples each of which

is assumed to emphasise a certain type(s) of knowledge. The main goal here is

to expand the knowledge based categorisation of program examples which can

be used in improving 0 0 program comprehension skills.
201

The investigation also has limits to obtain empirical data about the

comprehension of the critical aspects of the primary types of knowledge. This

limitation was attributed to the nature of the comparison approach followed by

the investigation. In order to investigate all these critical aspects, the core

direction of further research should focus on investigating these critical aspects

within the 0 0 approach rather than between different programming approaches.

This also requires adapting the experimental settings and, in turn, will lead to

expanding the scope of the investigation. A possible research direction would

be to assess the ease of comprehension of these critical aspects in a particular

problem that possesses different solution decompositions both of which can be

implemented in the form of Object based programs. The assessment could then

be discussed in terms of contributions to critical aspects of the comprehension

process. The original intention here is to develop a teaching tool based on

comprehension of the critical aspects and then to apply this tool in teaching 0 0

programming.

Although the investigation involved subjects who are considered at novice and

experienced programmers’ level, the example programs addressed here are still

appropriate to be scaled up to professional software developers’ level. This can

emerge another research direction. The direction focus on investigating how

including advanced 0 0 concepts, such as, inheritance and polymorphism, can

affect the comprehension of types of knowledge used in this investigation. This,

in turn, will help to enrich the knowledge-based categorisation of the program

examples for professionals and improve their program comprehension skills.

202

7.3 Summary

The broad aim of the thesis was to investigate whether 0 0 programs are easy

to comprehend. Thus, the original motivation for this investigation was to look at

the issue of 0 0 program comprehension. The investigation focused on the

influence of problem characteristics and solution decompositions on 0 0

program comprehension. The idea of different types of knowledge was looked

at in depth, both as a methodological tool for experimentation and as a basis for

supporting 0 0 program comprehension.

Although the thesis did not aim to investigate the stages of how different types

of knowledge were comprehended, it was able to classify types of knowledge

used based on their importance to 0 0 comprehension (primary and secondary).

The thesis also sought to uncover critical aspects of the primary types of

knowledge which are considered important to 0 0 program comprehension. It

appears that elements of class concept, problem characteristics, and solution

decomposition are influential in 0 0 program comprehension. The thesis

suggested different research directions to improve 0 0 program comprehension

skills by discovering the ease of comprehension of critical aspects of primary

types of knowledge. It also proposed another research direction to expand the

categorisation of knowledge based program examples by investigating the ease

of comprehension of secondary types of knowledge

To conclude, this thesis focused on topics of interest in the domain of 0 0

program comprehension. In doing so, it has considered the influence of different

elements and methodological issues, and highlighted critical aspects relating to

the way in which 0 0 program comprehension might best be studied. It has

described how the findings of the investigation might be used to provide useful
203

support in the field of empirical work in 0 0 program comprehension. As such, it

has established a foundation for further work in this field.

204

References

Adelson, B. (1984). When novices surpass experts: The difficulty of a task may

increase with expertise. Journal of experimental psychology: Learning, memory,

and cognition, 10 (3), 483.

Affandy Herman, N. S., Salam, S. B., & Noersasongko, E. (2011). A Study of

Tracing and Writing Performance of Novice Students in Introductory

Programming. In Software Engineering and Computer Systems, Springer Berlin

Heidelberg, 557-570.

Alardawi, A., Khazaei, B., & Siddiqi, J. (2011a). Influence on Novices of Class

Structure on Program Comprehension. In Proceedings of 7th Work-in-Progress

Workshop of the Psychology of Programming Interest Group, PPIG, 1-3.

Alardawi, A., Khazaei, B., & Siddiqi, J. (2011b). Influence of Class Structure on

Program Comprehension. In Proceedings of the 23th Annual Workshop of the

Psychology of Programming Interest Group, PPIG, 10-23.

Ambler, A. L., Burnett, M. M., & Zimmerman, B. A. (1992). Operational versus

definitional: A perspective on programming paradigms. Computer, 25(9), 28-43.

Anderson, N. H. (2001). Empirical direction in design and analysis: scientific

psychology series. Mahwah, New Jersey: LEA.

Atwood, M. R., & Jeffries, R. (1980). Studies in Plan Construction I: Analysis of

an Extended Protocol (No. SAI-80-028-DEN). Science applications inc

Englewood Co..

Bailey, R. A. (2008). Design of comparative experiments. Cambridge University

Press, 25.

Baker, F. T. (2003). Chief programmer team. John Wiley and Sons Ltd , 209-

210 .

Basili, V. R. (1993). The experimental paradigm in software engineering.

Springer Berlin Heidelberg. 1-12.

205

Basili, V. R. (1992). Software Modelling and Measurement: The

Goal/Question/Metric Paradigm. Technical Report. University o f Maryland at

College Park, College Park, MD, USA.

Basili, V. R., & Reiter Jr, R. W. (1981). A controlled experiment quantitatively

comparing software development approaches. Software Engineering, IEEE

Transactions on, (3), 299-320.

Basili, V. R., & Selby, R. W. (1987). Comparing the effectiveness of software

testing strategies. Software Engineering, IEEE Transactions on, (12), 1278-

1296.

Bierre, K., Ventura, P., Phelps, A., & Egert, C. (2006). Motivating OOP by

blowing things up: an exercise in cooperation and competition in an introductory

java programming course. In ACM SIGCSE Bulletin, ACM, 38 (1), 354-358.

Biggerstaff, T. J., Mitbander, B. G., & Webster, D. (1993). The concept

assignment problem in program understanding. In Proceedings of the 15th

international conference on Software Engineering, IEEE Computer Society

Press, 482-498.

Black, T. R. (1999). Doing quantitative research in the social sciences: An

integrated approach to research design, measurement and statistics. Sage

Publications Limited.

Borgida, A., Greenspan, S., & Mylopoulos, J. (1985). Knowledge representation

as the basis for requirements specifications, Springer Berlin Heidelberg. 152-

169.

Borstler, J., Hall, M. S., Nordstrom, M., Paterson, J. H., Sanders, K., Schulte, C.,

& Thomas, L. (2010). An evaluation of object oriented example programs in

introductory programming textbooks. ACM SIGCSE Bulletin, 41(4), 126-143.

Borstler, J., Nordstrom, M., & Paterson, J. H. (2011). On the Quality of

Examples in Introductory Java Textbooks. ACM Transactions on Computing

Education, 11-21.

Briand, L., Arisholm, E., Counsell, S., Houdek, F., & Thevenod-Fosse, P.

(1999). Empirical studies of object-oriented artifacts, methods, and processes:
206

state of the art and future directions. Empirical Software Engineering, 4(4), 387-

404.

Brooks, R. (1977). Towards a theory of the cognitive processes in computer

programming. International Journal of Man-Machine Studies, 9(6), 737-751.

Brooks, R. (1983). Towards a theory of the comprehension of computer

programs. International journal of Man-Machine studies, 18(6), 543-554.

Brooks, R. E. (1980). Studying programmer behaviour experimentally: the

problems of proper methodology. Communications of the ACM, 23(4), 207-213.

Bryman, A. (2012). Social research methods. OUP Oxford.

Burkhardt, J. M., Detienne, F., & Wiedenbeck, S. (2006a). Mental

representations constructed by experts and novices in object-oriented program

comprehension. arXiv preprint cs/0612018.

Burkhardt, J. M., Detienne, F., & Wiedenbeck, S. (2006b). Object-Oriented

Program Comprehension: Effect of Expertise, Task and Phase. arXiv preprint

cs/0612004.

Calhoun, C. (1995). Critical social theory: culture, history, and the challenge of

difference. Wiley-Blackwell.

Capps, J. (2012). Pragmatism: An introduction. New York, Continuum Inti Pub

Group.

Carver, J., Jaccheri, L., Morasca, S., & Shull, F. (2003). Issues in using

students in empirical studies in software engineering education. In Software

Metrics Symposium, 2003. Proceedings. Ninth International, IEEE, 239-249.

Chatel, S., & Detienne, F. (2007). Strategies in object-oriented design. arXiv

preprint cs/0703008.

Cheatham, T. J., & Mellinger, L. (1990). Testing object-oriented software

systems. In Proceedings of the 1990 ACM annual conference on Cooperation,

ACM, 161-165.

207

Chris, D. (2004). Calculating a nonparametric estimate and confidence interval

using SAS software. Glaxo Wellcome Inc., Research Triangle Park, NC.

Christensen, L. B. (2007). Experimental methodology. PearsonAAllyn & Bacon.

Clark-Carter, D. (2009). Quantitative psychological research: The complete

student's companion. Psychology press.

Cohen, L., Manion, L., Morrison. K., (2013). Research methods in education.

Routledge.

Cook, T. D., Campbell, D. T., & Day, A. (1979). Quasi-experimentation: Design

& analysis issues for field settings (p. 405). Boston: Houghton Mifflin.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in

introductory computer science. In ACM SIGCSE Bulletin, AMC, 35 (1), 191-195.

Corbi, T. A. (1989). Program understanding: Challenge for the 1990s. IBM

Systems Journal, 28(2), 294-306.

Corritore, C. L., & Wiedenbeck, S. (1991). What do novices learn during

program comprehension?. International Journal of Human-Computer Interaction,

3(2), 199-222.

Corritore, C. L., & Wiedenbeck, S. (1999). Mental representations of expert

procedural and object-oriented programmers in a software maintenance task.

International Journal of Human-Computer Studies, 50(1), 61-83.

Creswell, J. W. (2011). Educational research: Planning, conducting, and

evaluating quantitative and qualitative research,. 4th edition. Pearson Education.

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A., & Love, T. (1979).

Measuring the psychological complexity of software maintenance tasks with the

Halstead and McCabe metrics. Software Engineering, IEEE Transactions on,

(2), 96-104.

Daly, J. (1996). Replication and a multi-method approach to empirical software

engineering research, PhD thesis, University Of Strathclyde.

208

De Sa, J. M. (2007). Applied Statistics: Using SPSS, Statistica, MATLAB, and R.

Springer.

De Vaus, D. (2013). Surveys in social research. Routledge.

Detienne, F. (2006a). Assessing the cognitive consequences of the object-

oriented approach: a survey of empirical research on object-oriented design by

individuals and teams. arXiv preprint cs/0611154.

Detienne, F. (2006b). Design Strategies and Knowledge in Object-Oriented

Programming: Effects of Experience. arXiv preprint cs/0612008.

Detienne, F., & Bott, F. (2002). Software design-cognitive aspects. Springer

Verlag.

Dijkstra, E. W., Dijkstra, E. W., Dijkstra, E. W., & Dijkstra, E. W. (1976). A

discipline of programming. Englewood Cliffs: prentice-hall, 1.

Dunsmore, A., & Roper, M. (2000). A comparative evaluation of program

comprehension measures. The Journal of Systems and Software, 62(3), 121-

129.

Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting

empirical methods for software engineering research. In Guide to advanced

empirical software engineering, Springer London. 285-311.

Fenton, N. E., & Bieman, J. (2013). Software metrics: a rigorous and practical

approach. Taylor & Francis Group.

Gannon, J. D., & Horning, J. J. (1975). The impact of language design on the

production of reliable software. In ACM SIGPLAN Notices, ACM, 10 (6), 10-22.

Gray, D. E. (2009). Doing research in the real world. Sage.

Gilmore, D. J., & Green, T. R. G. (1984). Comprehension and recall of miniature

programs. International Journal of Man-Machine Studies, 21(1), 31-48.

209

Good, J. (1999). Programming paradigms, information types and graphical

representation: Empirical investigation of novice program comprehension, PhD

thesis, The University of Edinburgh.

Green, T. R. G., Sime, M. E., & Fitter, M. (1975). Behavioural experiments on

programming languages: Some methodological considerations. University of

Sheffield. Dept, of Psychology. Medical Research Council Social and Applied

Psychology Unit,

Green, T. R. G. (1980). Programming as a cognitive activity. Human interaction

with computers, 271-320.

Grix. J., (2010). The foundation of research. 2nd Edition, Palgrave Macmilian.

Harrison, R., Counsell, S., & Nithi, R. (2000). Experimental assessment of the

effect of inheritance on the maintainability of object-oriented systems. Journal of

Systems and Software, 52(2), 173-179.

Hedrick, T. E., Bickman, L., & Rog, D. J. (1993). Applied research design: A

practical guide. Newbury Park, CA: Sage.

Herbsleb, J. D., Klein, H., Olson, G. M., Brunner, H., Olson, J. S., & Harding, J.

(1995). Object-oriented analysis and design in software project teams. Human-

Computer Interaction, 10(2-3), 249-292.

Hinton, P., Brownlow, C., & McMurray, I. (2004). SPSS explained. Routledge.

Hoc, J. M. (1981). Planning and direction of problem solving in structured

programming: An empirical comparison between two methods. International

Journal of Man-Machine Studies, 15(4), 363-383.

Jackson, M. (1995). Software requirements & specifications. New York: ACM

Press, 8.

Jackson, M. (2005). Problem frames and software engineering. Information and

Software Technology, 47(14), 903-912.

Johnson, R. E., & Foote, B. (1988). Designing reusable classes. Journal of

object-oriented programming, 1(2), 22-35.
210

Johnson-Laird, P. N. (1986). Mental models: Towards a cognitive science of

language, inference, and consciousness (No. 6). Harvard University Press.

Jonker, J., & Pennink, B. J. W. (2010). The Essence of Research Methodology:

A Concise Guide for Master and PhD Students in Management Science.

Springer.

Kant, E., & Newell, A. (1984). Problem solving techniques for the design of

algorithms. Information Processing & Management, 20(1), 97-118.

Khazaei, B., & Jackson, M. (2002). Is there any difference in novice

comprehension of a small program written in the event-driven and object-

oriented styles?. In Human Centric Computing Languages and Environments,

2002. Proceedings. IEEE 2002 Symposia, IEEE, 19-26.

Khazaei. B. (1990). The determinations of program designer behaviour: An

empirical study. PhD thesis. University of Wolverhampton.

Kintsch, W., & Van Dijk, T. A. (1978). Toward a model of text comprehension

and production. Psychological review, 85(5), 363-394.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C.,

El Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical

research in software engineering. Software Engineering, IEEE Transactions on,

28(8), 721-734.

Klein, H. K., & Myers, M. D. (1999). A set of principles for conducting and

evaluating interpretive field studies in information systems. MIS quarterly, 67-93.

Kolling, M., & Henriksen, P. (2005). Game programming in introductory courses

with direct state manipulation. ACM SIGCSE Bulletin, 37(3), 59-63.

Pfleeger, S. L. (2010). Software Engineering: Theory and Practice, Prentice-Hall.

Inc.,.

Leach, C. (1979). Introduction to statistics: A nonparametric approach for the

social sciences. New York: Wiley.

211

Liskov, B., Snyder, A., Atkinson, R., & Schaffert, C. (1977). Abstraction

mechanisms in CLU. Communications of the ACM, 20(8), 564-576.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., ... &

Whalley, J. L. (2006, June). Research perspectives on the objects-early debate.

In ACM SIGCSE Bulletin. ACM. 38 (4), 146-165.

Littman, D. C., Pinto, J., Letovsky, S., & Soloway, E. (1987). Mental models and

software maintenance. Journal of Systems and Software, 7(4), 341-355.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C. (1981).

Knowledge organization and skill differences in computer programmers.

Cognitive Psychology, 13(3), 307-325.

Mendonga, M. G., Maldonado, J. C., de Oliveira, M. C., Carver, J., Fabbri, C. P.

F., Shull, F., ... & Basili, V. R. (2008). A framework for software engineering

experimental replications. In Engineering of Complex Computer Systems, 2008.

ICECCS 2008. 13th IEEE International Conference. IEEE, 203-212.

Meyer, B. (1988). Object-oriented software construction. 331-410. New York:

Prentice hall, 2.

Meyer, B. (1997). Object-oriented software construction. Prentice hall New

York., 2.

Miller, L. A. (1974). Programming by non-programmers. International Journal of

Man-Machine Studies, 6(2), 237-260.

Miller, S. (2006). Experimental design and statistics. Routledge, 1.

Moher, T., & Schneider, G. M. (1982). Methodology and experimental research

in software engineering. International Journal of Man-Machine Studies, 16(1),

65-87.

Naur, P. (1969). Programming by action clusters. BIT numerical mathematics, 9

(3), 250-258.

212

Neubauer, B. J., & Strong, D. D. (2002). The object-oriented paradigm: more

natural or less familiar?. Journal of Computing Sciences in Colleges, 18(1), 280-

289.

O’Brien, M. P. (2003). Software comprehension-a review & research direction.

Department of Computer Science & Information Systems University of Limerick,

Ireland, Technical Report.

Pallant, J. (2010). SPSS survival manual: A step by step guide to data analysis

using SPSS. Open University Press.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12), 1053-1058.

Peirce, C. S., & Menand, L. (1997). Pragmatism: A Reader. New York, Vintage

Pennington, N. (1987a). Stimulus structures and mental representations in

expert comprehension of computer programs. Cognitive psychology, 19(3), 295-

341.

Pennington, N. (1987b). Comprehension strategies in programming. In

Empirical studies of programmers: second workshop. Ablex Publishing Corp,

100-113.

Pennington, N., & Grabowski, B. (1990). The tasks of programming. Hoc et al,

307, 45-62.

Peter, M. (1990). Expert programmers and programming languages.

Psychology of programming, 103-115.

Porter, A. A., Votta Jr, L. G., & Basili, V. R. (1995). Comparing detection

methods for software requirements inspections: A replicated experiment.

Software Engineering, IEEE Transactions on, 21(6), 563-575.

Quantrani, T. (2003). Visual modeling with rational rose 2002 and uml. Addison-

Wesley Professional.

Ramalingam, V., & Wiedenbeck, S. (1997, October). An empirical study of

novice program comprehension in the imperative and object-oriented styles. In

213

Papers presented at the seventh workshop on Empirical studies of

programmers. ACM, 24-139.

Reisner, P. (1977). Use of psychological experimentation as an aid to

development of a query language. Software Engineering, IEEE Transactions on,

(3), 218-229.

Rist, R. (1996a). System structure and design. In Proceedings of the Workshop

on Empirical Studies of Programmers. 163-194.

Rist, R. S. (1996b). Teaching Eiffel as a first language. Journal o f object-

oriented programming, 9 (1), 30-41.

Robson, C. (2002). Real world research: A resource for social scientists and

practitioner-researchers . Oxford: Blackwell, 2.

Rosson, M. B., & Alpert, S. R. (1990). The cognitive consequences of object-

oriented design. Human-Computer Interaction, 5(4), 345-379.

Sajaniemi, J., & Kuittinen, M. (2007). From procedures to objects: What have

we (not) done. In Proceedings of the 19th Annual Workshop of the Psychology

of Programming Interest Group, University of Joensuu, Department of

Computer Science and Statistics, Citeseer, 86-100.

Sajaniemi, J., & Kuittinen, M. (2008). From procedures to objects: A research

agenda for the psychology of object-oriented programming education. Human

technology, 4 (1), 75-91.

Saunders, M. A., Liang, H., & Li, W. H. (2007). Human polymorphism at

microRNAs and microRNA target sites. In Proceedings of the National Academy

of Sciences, 104(9), 3300-3305.

Saunders, M. N., Saunders, M., Lewis, P., & Thornhill, A. (2011). Research

Methods For Business Students, 5/e. Pearson Education India.

Sawyer, A. G., & Ball, A. D. (1981). Statistical power and effect size in

marketing research. Journal of Marketing Research, 275-290.

214

Schmalhofer, F., & Glavanov, D. (1986). Three components of understanding a

programmer's manual: Verbatim, propositional, and situational representations.

Journal of Memory and Language, 25(3), 279-294.

Sheil, B. A. (1981). The psychological study of programming. ACM Computing

Surveys (CSUR), 13(1), 101-120.

Shneiderman, B. (1975). Experimental testing in programming languages,

stylistic considerations and design techniques. In Proceedings of the May 19-22,

1975, national computer conference and exposition. ACM, 653-656.

Shneiderman, B. (1977). Measuring computer program quality and

comprehension. International Journal of Man-Machine Studies, 9(4), 465-478.

Shneiderman, B. (1980). Software psychology: Human factors in computer and

information systems (Winthrop computer systems series). Winthrop Publishers.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions in

programmer behaviour: A model and experimental results. International Journal

of Computer & Information Sciences, 8(3), 219-238.

Shull, F., Singer, J., & Sjberg, D. I. (2008). Guide to advanced empirical

software engineering. Springer.

Siddiqi, J. (1984). An empirical investigation into problem decomposition

strategies used in program design. PhD thesis. The University of Aston.

Sime, M. E., Green, T. R. G., & Guest, D. J. (1999). Psychological evaluation of

two conditional constructions used in computer languages. International journal

of human-computer studies, 51(2), 125-133.

Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the

theory in 1970. American Psychologist, 26(2), 145-159.

Sjoberg, D. I., Anda, B., Arisholm, E., Dyba, T., Jorgensen, M., Karahasanovic,

A., & Vokac, M. (2003). Challenges and recommendations when increasing the

realism of controlled software engineering experiments. In Empirical methods

and studies in software engineering. Springer Berlin Heidelberg, 24-38.

215

Sjoberg, D. I., Anda, B., Arisholm, E., Dyba, T., Jorgensen, M., Karahasanovic,

A. & Vokac, M. (2002). Conducting realistic experiments in software engineering.

In Empirical Software Engineering, 2002. Proceedings. 2002 International

Symposium n. IEEE, 17-26.

Sjoberg, D. I., Hannay, J. E., Hansen, O., Kampenes, V. B., Karahasanovic, A.,

Liborg, N. K., & Rekdal, A. C. (2005). A survey of controlled experiments in

software engineering. Software Engineering, IEEE Transactions on, 31(9), 733-

753.

Soloway, E., & Ehrlich, K. (1989). Empirical studies of programming knowledge.

In: Software Reusability, ACM, 235-267.

Soloway, E., Ehrlich, K., & Bonar, J. (1982, March). Tapping into tacit

programming knowledge. In Proceedings of the 1982 conference on Human

factors in computing sysfems.ACM. 52-57.

Spinellis, D. (2003). Code reading: the open source perspective. Addison-

Wesley Professional.

Sprent, P., & Smeeton, N. C. (2007). Applied nonparametric statistical methods.

Chapman & Hall.

Stark, S., Torrance, H. (2005). Case Study, w: B. Somekh, C. Lewin (red.),

Research Methods in the Social Sciences, Londyn, New Delhi: Thousands

Oaks.

Stolin, Y., & Hazzan, O. (2007). Students' understanding of computer science

soft ideas: the case of programming paradigm. ACM SIGCSE Bulletin, 39(2),

65-69.

Storey, M. A. (2006). Theories, tools and research methods in program

comprehension: past, present and future. Software Quality Journal, 14(3), 187-

208.

Thomas, R. M. (2003). Blending qualitative and quantitative research methods

in theses and dissertations. Corwin-volume discounts.

216

Thompson, E. (2008). How do they understand? Practitioner perceptions of an

object-oriented program. PhD thesis, Massey University.

Van Dijk, T. A., Kintsch, W., & Van Dijk, T. A. (1983). Strategies of discourse

comprehension. New York: Academic Press.

Von Mayrhauser, A., & Vans, A. M. (1995). Program comprehension during

software maintenance and evolution. Computer, 28(8), 44-55.

Walliman, N. (2005). Your research project: a step-by-step guide for the first

time researcher. Sage Publications Limited.

Weinberg, G. M. (1971). The psychology of computer programming. New York:

Van Nostrand Reinhold, 932633420.

Weinberg, G. M. (1992). Quality software management: systems thinking.

Dorset House Publishing Co., Inc, 1.

Weinberg, G. M. (2005). The Psychology of Computer Programming. Phi Delta

Kappan.

Weissman, L. (1974). Psychological complexity of computer programs: an

experimental methodology. ACM Sigplan Notices, 9(6), 25-36.

Wiedenbeck, S., & Ramalingam, V. (1999). Novice comprehension of small

programs written in the procedural and object-oriented styles. International

Journal of Human-Computer Studies, 51 (1), 71 -87.

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. (1999). A

comparison of the comprehension of object-oriented and procedural programs

by novice programmers. Interacting with Computers, 11(3), 255-282.

William, W. (2009). Research methods in education. Pearson Education India.

Wing, J. M. (1988). A study of 12 specifications of the library problem. Software,

IEEE, 5(4), 66-76.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslen, A.

(2012). Experimentation in software engineering. Springer.

217

Yeh, R. T. (1979). In Memory of Maurice H. Halstead. IEEE Trans. Software

Eng., 5(2), 74.

Yin, R. K. (2009). Case study research: Design and methods (Vol. 5). Sage.

Zaidman, A. (2006, March). Scalability solutions for program comprehension

through dynamic analysis. In Software Maintenance and Reengineering, 2006.

CSMR 2006. Proceedings of the 10th European Conference on, IEEE, 4.

Zhu, H., & Zhou, M. (2003). Methodology first and language second: a way to

teach object-oriented programming. In Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages,

and applications, ACM, 140-147.

218

Appendixes

Appendix A: Materials: Car Study

This appendix shows the experimental packet given to subjects in the Car

experiment (described in Chapter 5), and includes:

1. The Car problem specification1;

2. The experimental purpose and procedure2

3. The programming background questionnaire.

4. The experimental treatments (problem solutions) and the corresponding

comprehension questions. The ranking question at the end

1 The problem specification was not given to the subjects.
2 As the experiment took place within a lab session for each group, the purposes and procedure
for the experiment were verbally embedded within a description of that day's lab session.

219

The Car Problem's Specification

There is no definitive statement for the car problem's specification3. The

following is the best description that I can provide.

Design a simulation program that maintains the speed of a car. This car serves

as a generic description of any existing car; car could have, for example, brand

name, speed, number of passengers, and engine. The program should first

describe the car specifications (brand and engine), by outputting description

messages to the user. Then, based on whether there are passengers on the car

or not, the program maintains the car's speed. This also can be done by

outputting different messages back to the user based on the value of the

passengers and speed as following:

• if there are no passengers on the car, this means the car speed equal 0 mph

and the car is stopping. Otherwise, move to the next two options:

.1 The speed is less than or equal to 50 mph. output message that the

car is travelling within the speed limit.

.2 The speed is more than 50 mph. output message that the car is

travelling over speed limit.

Experimental purposes and procedures

During this lab session, you will be asked to take part in a short experiment.

This experiment is a part of a research aims to investigate program

comprehension for Object Oriented concepts. Obviously, we could simply ask

you this question directly, but as you can probably guess, doing so wouldn't

necessarily give us the types of answers which might be useful: for example,

3 The references had discribed different attributes of the car program that deals with passengers
and speed (Ramalingam and Susan Wiedenbeck 1997; Wiedenbeck et al 1999; Wiedenbeck
and Ramalingam 1999; Khazaei and Jackson 2002)

220

the answers might not be quantifiable in a consistent way and hence will be not

suitable for any sort of statistical analysis. We hope to collect data which can be

analysed, and which either support work which has already done or offer new

and possibly conflicted evidence. If you are interested obtaining more

information on this research, please let me know.

Before starting the experiment, you should be aware that:

• This is no way a test of your programming knowledge level will not be used

in any form as part of your assessment on the all courses.

• You are not expected to get all of the answers right. What we are interested

in here are the types of questions which people get wrong compared to

those they get right.

• The data collected will be both anonymous and strictly confidential and will

be only used in the purposes of this research.

Now, the experiment has three stages. At the first stage, you will be given a

programming background questionnaire that contains two sections. The first

section asking about personal details, please note that giving these details is

optional. The second section asking you about you programming experience,

please fill this in, and then give it to your experimenter.

In the second stage, you will be given a booklet of two pages to work through.

The booklet contains a computer program and a number of questions you are

asked to answer. Please do not start work with the program unless the

experimenter tells you to do so. Once you told to start please spend some time

reading the program before you go to the questions. If you finish or you decide

to stop or withdraw from the experiment please tel the experimenter

immediately.

221

The last stage you will have a question asking you to rank the program you had

just gone through please answer this and give it back to the experimenter.

Note that it will not be possible for the experimenter to give you details of the

experiment through the whole experimental period, as knowing the hypotheses

may influence how you respond4. If you have any questions about these

instructions, please ask the experimenter now.

Thank toy for taking part of this experiment.

4 For the same reason, please do not discuss you ideas on the experimental program you given
with people who have not taken part in this week's lab session.

222

Programming Background Questionnaire

Thank you for taking the time to complete the following questions, through the

following questions you will be asked about your programming experience,

please fill this in. The information you provide will be used in a study to

investigate program comprehension for Object Oriented concepts and will be

treated confidentially.

Personal Details:
Name (optional) Age: (Optional)

Course/Module: Gender: Male / Female

Programming Experience:

For the following programming languages, please indicate:

1. How you learnt the language (School, University, Work, Self taught).
2. Rate yourself according to your level of knowledge (1- Novice, 5-Expert).
3. Add any Programming language which is missed.

School University Work
Self

Taught
Rate of Knowledge (1 to 5)

Basic

Fortran

Logo

Pascal

C

Visual Basic

C++

Java

C#

223

The Experimental Treatments

7.3.1.1 A1. Visual Basic Non-Object based

Experimental Treatment

The Car Study Booklet

Please do not turnover the page until you asked to do.

The name of the program listed over leaf is "Car program". It deals with body,

engine, speed, and passengers.

Once you being asked, to turn over the page, please give your self time to read

all the given code before starting on the questions

for researcher use

Program Version:
VB Non-Object based Subject code

Date Place:

Starting Time Ending Time

Code
Elementary
Operation

Control
Flow

Data
Flow

Progra

m Goals
State

Problem
Classes

Total
Performance

Time
Rank

Response

score

224

Please read the code below:
Public Class Car_Program

Private Sub Set_Car_Click(...) Handles Set_Car.Click
Dim Power As Integer
Dim Type As String
' Assigne the Power value of the engine
Power = Val(TextPower.Text)
' Assigne the type value of the body
Type = TextType.Text
' Discribe Car's specification
HessageBox. Show ("You have created car"sType£"Itsengme power="£Power)
Car_status.Enabled = True

End Sub
Private Sub Car_status_Click(...)Handles Car_status.Click

Dim Passengers, Speed As Integer
' Assigne the No.of.Passengers valus
Passengers = Val(TextPassengers.Text)
If Passengers = 0 Then

MessageBox.Show("Car is Stopping")
Else

1 Assigne the Speed value of the car
Speed = Val(TextSpeed.Text)
If Speed > 50 Then

MessageBox.Show("Over Speed")
Else

MessageBox.Show("Within Normal Speed")
End If

End If
End Sub

End Class

ECar Program

engine power j Brand Set Car

225

Please answer the following questions:
• Does the user assign a value to variable "Brand"? (Yes/No/Do not Know)
• Is the variable "Passengers" initialized to zero? (Yes/No/Do not Know)
• Does the user assign a value to variable "Speed"? (Yes/No/Do not Know)
• In "Car_Status" method, does "Speed" value assigned in the case of "Passengers"

=zero? (Yes/No/Do not Know)
• Is the value of variable "Speed" assigned before the value of variable "Passengers"?

(Yes/No/Do not Know)
• In "Set_Car" method, does the program instantiate engine before body?

(Yes/No/Do not Know)
• Does the value of "Passengers" affect the value of "Speed"? (Yes/No/Do not Know)
• Does the value of "Brand" affect the value of "Power"? (Yes/No/Do not Know)
• Does the program allow you to create new car with a certain brand and power?

(Yes/No/Do not Know)
• Does the program allow you to change the car specifications (Brand / Power)?

(Yes/No/Do not Know)
• Does the program compare number of passengers in two cars? (Yes/No/ Do not

Know)
• When the “Car is Stopping” statement is reached, is the value of "Passengers" >

zero?(Yes/No/Do not Know)
• When the “Over Speed” statement is reached, is the value of "Speed" = 50?

(Yes/No/Do not Know).
Now, i f you were asked to develop the same program based on the concept o f
chunking every relevant code together into num ber o f entities, this concept is called a
"CLASS" in Object-Oriented programming. Each entity/Class has its own attributes and
functions/methods. Fro the following questions please state which o f the following
entities would be useful?
• Entity called "Body", putting together all relevant attributes and functions, used to

set and describe the body's specifications. (Yes/No/Don't Know). If yes, please
write names of attributes and functions of this entity

• Entity called "Wheels", putting together all relevant attributes and functions, used to
set and describe the wheels' specifications. (Yes/No/Don't Know). If yes, please
write names of attributes and functions of this entity.

• Entity called "Engine", putting together all relevant attributes and functions, used to
set and describe the engine's specifications. (Yes/No/Don't Know). If yes, please
write names of attributes and functions of this entity

• Entity called "Passengers", putting together all relevant attributes and functions,
used to set and describe the passengers' information. (Yes/No/Don't Know). If yes,
please write names of attributes and functions of this entity

• Entity called "Car", putting together all relevant attributes and functions, used to set
and describe the car's specifications by communicating with the appropriate entities
in the program. (Yes/No/Don't Know). If yes, please write names of attributes and
functions of this entity.

• Entity called "Lor/y", putting together all relevant attributes and functions, used to
set and describe the lorry's specifications by communicating with the appropriate
entities in the program. (Yes/No/Don't Know). If yes, please write names of
attributes and functions of this entity.

226

Ranking Question:

• How well do you understand the code?

o not very well o fairly to moderately o well to very well.

well

Thank you for your cooperation

227

7.3.1.2 A2. Visual Basic Object based

Experimental Treatment

The Car Study Booklet

Please do not turnover the page until you asked to do.

The name of the program listed over leaf is "Car program". It deals with body,

engine, speed, and passengers.

Once you being asked to turn over the page, please give your self time to read

all the given code before starting on the questions

for researcher use
Program Version: VB Object based Subject code

Date Place:

Starting Time Ending Time

Code
Elementary
Operation

Control
Flow

Data
Flow

Progra

m Goals
State

Problem
Classes

Total
Performance

Time
Rank

Response

score

228

Please read the code below:
Class Engine ' Beginning of Engine class Class Body ' Beginning of Body class

'Declare Engine class Attributes ' Declare Body class Attributes
Private Power As Integer Private Brand As String
' Class Hethods and behaviour ' Class Hethods and behaviour
Public Sub Set_Engine() Public Sub Set_Body{)
Console.WnteLine("Enter the engine's power") Console. Writeline ("Enter the Body's Brand")
' Assigne the Power value of the engine ' Assigne the Brand value of the engine
Power = Val (Conso le. ReadLineO) Brand = Console. ReadLineO
End Sib End Sub
Public Sub Engine_Describe{) Public Sub BodyJDescribeO

Console. WnteLine ("Engine power is ="4Power) Console.Writeline("Car Brand is: " 4 Brand)
End Sub End Sub

End Class 1 End of class Engine End Class ' End of class Body

Class Car ' Beginning of Car class
Private Passengers, Speed As Integer 'Declare Car class Attributes
Private CEngine As New Engine ' Creates new instant of class Engine
Private CBody As New Body ' Creates new instant of class Body
'Class Methods and behaviour
Public Sub Set_Car()

CEngine.Set_Engine() 'Instantiate Engine object
CBody. Set_Body() 'Instantiate Body object

End Sib
Public Sub Car_Descnbe()

CEngine. Engme_Describe()
CBody.Body Descnbe()

End Sib
Public Sub Car_Status()

Console.WriteLine("Enter the No.of.Passengers")
Passengers = Val (Console. Re adL me 0)
I f Passengers - 0 Then

Console.WriteLine("Car is Stopping")
Else

Console.WnteLine("Enter the Car Speed")
Speed = Val (Console. ReadLineO)
I f Speed > 50 Then

Conso le. Writ el me ("Over Speed")
Else

Console.Writeline ("Within Normal Speed")
End If

End I f
End Sib

End Class

'the main program start here
Hodule Hodulel

Sub HainO
Dim CCarl As New Car 'Create new instance
CCarl. Set_Car ()
CCarl.Car_Describe()
CCarl.Car_Status()
Dim CCar2 As New Car 'Create new instance
CCar2.Set_Car()
CCar2.Car_Describe()
Console. ReadLineO

End Sib
End Hodule

229

Please answer the following questions:

• Does the user assign a value to variable "Brand"? (Yes/No/Do not Know)
• Is the variable "Passengers" initialized to zero? (Yes/No/Do not Know)
• Does the user assign a value to variable "Speed"? (Yes/No/Do not Know)
• In "Car_Status" method in class "Car", does "Speed" value assigned in the case of

"Passengers" =zero? (Yes/No/Do not Know)
• Is the value of variable "Speed" assigned before the value of variable "Passengers"?

(Yes/No/Do not Know)
• In "Set_Car" method in class "Car", does the program instantiate engine before body?

(Yes/No/Do not Know)
• Does the value of "Passengers" affect the value of "Speed"? (Yes/No/Do not Know)
• Does the value of "Brand" in class "Body" affect the value of "Power" in class

"Engine"? (Yes/No/Do not Know)
• Does the program allow you to create new car with a certain brand and power?

(Yes/No/Do not Know)
• Does the program allow you to change the car specifications (Brand / Power)?

(Yes/No/Do not Know)
• Does the program compare number of passengers in two cars? (Yes/No/Do not Know)
• When the "Car is Stopping" statement is reached, is the value of "Passengers" >

zero?(Yes/No/Do not Know)
• When the "Over Speed” statement is reached, is the value of "Speed" = 50?

(Yes/No/Do not Know)

The listed program has been developed based on the concept o f chunking every relevant
code together into number o f entities. This concept is called a "CLASS" in Object-Oriented
programming. Each entity/Class has its own attributes and function/methods. Fro the
following questions please state which o f the following entities were used?

• Entity called "Body", putting together all relevant attributes and functions, used to set
and describe the body's specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Wheels", putting together all relevant attributes and functions, used to set
and describe the wheels' specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity.

• Entity called "Engine", putting together all relevant attributes and functions, used to set
and describe the engine's specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Passengers", putting together all relevant attributes and functions, used
to set and describe the passengers' information. (Yes/No/Don't Know). If yes, please
write names of attributes and functions of this entity

• Entity called "Car", putting together all relevant attributes and functions, used to set and
describe the car's specifications by communicating with the appropriate entities in the
program. (Yes/No/Don't Know). If yes, please write names of attributes and functions of
this entity.

• Entity called "Lorry", putting together all relevant attributes and functions, used to set
and describe the lorry's specifications by communicating with the appropriate entities in
the program. (Yes/No/Don't Know). If yes, please write names of attributes and
functions of this entity.

230

Ranking Question:

• How well do you understand the code?

o not very well o fairly to moderately o well to very well.

well

Thank you for your cooperation

231

7.3.1.3 A3. JAVA Non-Object based Experimental

Treatment

The Car Study Booklet

Please do not turnover the page until you asked to do.

The name of the program listed over leaf is "Car program". It deals with body,

engine, speed, and passengers.

Once you being asked to turn over the page, please give your self time to read

all the given code before starting on the questions

for researcher use
Program Version: JAVA Non-Object based Subject code

Date Place:

Starting Time Ending Time

Code
Elementary
Operation

Control
Flow

Data
Flow

Progra

m Goals
State

Problem
Classes

Total
Performance

Time
Rank

Response

score

232

Please read the code below:

public class Hodule {
private static boolean isStatusEnabled = false;
private static void set_Car() ...{

System.out.println("Enter the engine's power");
// Assign the power value of the engine
int Power = Integer.parselnt(i n .readlinef));
System.out.pnntin("Enter the Body's Type");
//Assign the brand value of the body
String Brand = in.readline();
// D i s c n b e Car's specification
System out.println("You have created car "+Brand+"Its engine power +Power);
isStatusEnabled = true; }

private static void statusf) {
System.o u t . p n n t l n ("Enter the Ho. of Passengers");
// Assign the No.of Passenger value
int passengers = Integer parselnt(m.readLinef));
if (passengers == 0) {

System.out.println("Car is Stopping"); }
else {

System.o u t . p n n t l n ("Enter the Car Speed");
// Assign the speed value of the car
int speed = Integer parselnt(in r e a d L m e f));
if (speed > SO) {

System.o u t . p n n t l n f O v e r Speed"); }
else {

System.out.pnntln("Uithm Normal Speed");
}

}
}public static void m a m {

System.out.pnntln("Vhat would you like to do?");
System.out.println("l) Set Car");
if (isStatusEnabled) {

System.out.pnntln("2) View Car Status"); }
int option = Integer.parselnt(m.readlineO);
if (option == 1) {

setCarf);}
else if (option « 2 SA isStatusEnabled) {

status)); }
else {

System.o u t . p n n t l n ("Invalid Option"); }
main(args); // loop back

233

Please answer the following questions:

• Does the user assign a value to variable "Brand"? (Yes/No/Do not Know)
• Is the variable "Passengers" initialized to zero? (Yes/No/Do not Know)
• Does the user assign a value to variable "Speed"? (Yes/No/Do not Know)
• In "Car_Status" method, does "Speed" value assigned in the case of "Passengers"

=zero? (Yes/No/Do not Know)
• Is the value of variable "Speed" assigned before the value of variable "Passengers"?

(Yes/No/Do not Know)
• In "Set_Car" method, does the program instantiate engine before body? (Yes/No/Do

not Know)
• Does the value of "Passengers" affect the value of "Speed"? (Yes/No/Do not Know)
• Does the value of "Brand" affect the value of "Power"? (Yes/No/Do not Know)
• Does the program allow you to create new car with a certain brand and power?

(Yes/No/Do not Know)
• Does the program allow you to change the car specifications (Brand / Power)?

(Yes/No/Do not Know)
• Does the program compare number of passengers in two cars? (Yes/No/ Do not Know)
• When the "Car is Stopping" statement is reached, is the value of "Passengers" >

zero?(Yes/No/Do not Know)
• When the "Over Speed” statement is reached, is the value of "Speed" = 50?

(Yes/No/Do not Know)

Now, if you were asked to develop the same program based on the concept o f chunking
every relevant code together into number o f entities, this concept is called a "CLASS" in
Object-Oriented programming. Each entity/Class has its own attributes and
functions/methods. Fro the following questions please state which o f the following entities
would be useful?

• Entity called "Body*', putting together all relevant attributes and functions, used to set
and describe the body's specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Wheels", putting together all relevant attributes and functions, used to set
and describe the wheels' specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity.

• Entity called "Engine", putting together all relevant attributes and functions, used to set
and describe the engine's specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Passengers", putting together all relevant attributes and functions, used
to set and describe the passengers' information. (Yes/No/Don't- Know). If yes, please
write names of attributes and functions of this entity

• Entity called "Car", putting together all relevant attributes and functions, used to set and
describe the car's specifications by communicating with the appropriate entities in the
program. (Yes/No/Don't Know). If yes, please write names of attributes and functions of
this entity.

• Entity called "Lorry", putting together all relevant attributes and functions, used to set
and describe the lorry's specifications by communicating with the appropriate entities in
the program. (Yes/No/Don't Know). If yes, please write names of attributes and
functions of this entity.

234

Ranking Question:

• How well do you understand the code?

o not very well o fairly to moderately o well to very well.

well

Thank you for your cooperation

7.3.1.4 A4. Java Object based Experimental

Material

The Car Study Booklet

Please do not turnover the page until you asked to do.

The name of the program listed over leaf is "Car program". It deals with body,

engine, speed, and passengers.

Once you being asked to turn over the page, please give your self time to read

all the given code before starting on the questions

for researcher use
Program Version: JAVA Object based Subject code

Date Place:

Starting Time Ending Time

Code
Elementary
Operation

Control
Flow

Data
Flow

Progra

m Goals
State

Problem
Classes

Total
Performance

Time
Rank

Response

score

236

Please read the code below:

p tb lic class Engine (//Beginning of Engine class public class Body (//Beginning o f Body class
//Declare Bngine class Attributes //Declare Body class A ttribu tes
priva te in t power; private String Brand;
//C lass 's Methods and behaviour //C lass's Methods and behaviour
p ib lie void Set Engine!)
i

public void Set_Body()
\

/ / Assign the Power value of the engine
1

//Assign the type value of the Body
Syst«».out.println("Ent«x th« engine's power"); System, out. p rin t In ("Enter the Body's Type");
power = In teger.parseInt!in.readLine());

i
type = in .readL ine!);

I)
public void Engine Describe!)
{
System, out. p rin t In ("Bngine power is = " +

)
pxfclic void BodyJDescri.be 0
/1 |
System, out. p rin t In ("Car Type is : " + type);

String. valueOf (power));)
)

) //End of class Engine
} //End of class Body

public class Car ' Beginning of Car class
(

private in t passengers, speed; //Declare Car class A ttribu tes
private Engine engine; //Declare new instant of class Engine
private Body body; //Declare new instant of class Body
//Class Methods and behaviour
public void Set_Car()
<

engine = new Engine 0 ;
engine.setEngine0 ; / / Instantiate Engine object
body = new Body!);
body.setBody();//Instantiate Body object

}
public void Csr Describe!)
i •sgtat. !tj$x<iBg*erJb* (} t

hedyJody 5*s«rib« 9 ;
}
public void Car Status ()
I

System - ou t, p r in t lu< “Six nr the |ia_ o f Passengers");
$*&&&$*** * Ia t (in . raadtin*!)) ;
i i dpw fttjja r* *■ 0)

{ *C« i*)? }
•It*

{ Sfattar. out. peLnfclttf Css

i f fsghasS > SB)
!^ *a ,e ^ ,S > 5 d s s li5 f*S ^)

« lsa
Sbml %#•**};)

)

}

’ the main program sta rt here
pdblic class Module
{

piblie static void main! ..)
(

/ / create new instance
Car carl - new Car ();
carl.setCar () ;
ca rl, describe!);
carl.sta tus ();
/ / create new instance
Car car2 = new Car ();
car2.setCar () ;
car2. describe!);
sttr2.fct«*s» i) i

I
}

237

Please answer the following questions:

• Does the user assign a value to variable "Brand"? (Yes/No/Do not Know)
• Is the variable "Passengers" initialized to zero? (Yes/No/Do not Know)
• Does the user assign a value to variable "Speed"? (Yes/No/Do not Know)
• In "Car_Status" method in class "Car", does "Speed" value assigned in the case of

"Passengers" =zero? (Yes/No/Do not Know)
• Is the value of variable "Speed" assigned before the value of variable "Passengers"?

(Yes/No/Do not Know)
• In "Set_Car" method in class "Car", does the program instantiate engine before body?

(Yes/No/Do not Know)
• Does the value of "Passengers" affect the value of "Speed"? (Yes/No/Do not Know)
• Does the value of "Brand" in class "Body" affect the value of "Power" in class

"Engine"? (Yes/No/Do not Know)
• Does the program allow you to create new car with a certain brand and power?

(Yes/No/Do not Know)
• Does the program allow you to change the car specifications (Brand / Power)?

(Yes/No/Do not Know)
• Does the program compare number of passengers in two cars? (Yes/No/Do not Know)
• When the “Car is Stopping" statement is reached, is the value of "Passengers" >

zero?(Yes/No/Do not Know)
• When the “ Over Speed" statement is reached, is the value of "Speed" = 50?

(Yes/No/Do not Know)
The listed program has been developed based on the concept of chunking every relevant
code together into number of entities. This concept is called a "CLASS" in Object-Oriented
programming. Each entity/Class has its own attributes and function/methods. Fro the
following questions please state which of the following entities were used?
• Entity called "Body", putting together all relevant attributes and functions, used to set

and describe the body's specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Wheels", putting together all relevant attributes and functions, used to set
and describe the wheels' specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity.

• Entity called "Engine", putting together all relevant attributes and functions, used to set
and describe the engine's specifications. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Passengers", putting together all relevant attributes and functions, used
to set and describe the passengers' information. (Yes/No/Don't Know). If yes, please
write names of attributes and functions of this entity

• Entity called "Car", putting together all relevant attributes and functions, used to set and
describe the car's specifications by communicating with the appropriate entities in the
program. (Yes/No/Don't Know). If yes, please write names of attributes and functions of
this entity.

• Entity called "Lorry", putting together all relevant attributes and functions, used to set
and describe the lorry's specifications by communicating with the appropriate entities in
the program. (Yes/No/Don't Know). If yes, please write names of attributes and
functions of this entity.

238

Ranking Question:
• How well do you understand the code?

o not very well o fairly to moderately o well to very well.

well

Thank you for your cooperation

239

Appendix B: Materials: Line-Edit Study

This appendix shows the experimental packet given to subjects in the Line-Edit

experiment (described in Chapter 5), and includes:

5. The Line-Edit problem specification;

6. The experimental purpose and procedure

7. The programming background questionnaire.

8. The experimental treatments (problem solutions) and the corresponding

comprehension questions. The ranking question at the end

The Line-Edit Problem's Specification

A piece of text consisting of words separated by one or more space character is

terminated by an *.

It is required to convert it to line by line form in accordance with the following .

rules:

a) Redundant spaces between words are to be removed;

b) No line will contain more than m characters and each line is filled as far

as possible;

c) Line-breaks must not occur in the middle of a word.

(You may ignore the presence of line-feed character and the possibility of a

word being greater than m character).

Design a program to read the text and output it in accordance with the above

rules.

240

Experimental purposes and procedures

During this lab session, you will be asked to take part in a short experiment.

This experiment is a part of a research aims to investigate program

comprehension for Object Oriented concepts. Obviously, we could simply ask

you this question directly, but as you can probably guess, doing so wouldn't

necessarily give us the types of answers which might be useful: for example,

the answers might not be quantifiable in a consistent way and hence will be not

suitable for any sort of statistical analysis. We hope to collect data which can be

analysed, and which either support work which has already done or offer new

and possibly conflicted evidence. If you are interested obtaining more

information on this research, please let me know.

Before starting the experiment, you should be aware that:

• This is no way a test of your programming knowledge level will not be used

in any form as part of your assessment on the all courses.

• You are not expected to get all of the answers right. What we are interested

in here are the types of questions which people get wrong compared to

those they get right.

• The data collected will be both anonymous and strictly confidential and will

be only used in the purposes of this research.

Now, the experiment has three stages. At the first stage, you will be given a

programming background questionnaire that contains two sections. The first

section asking about personal details, please note that giving these details is

optional. The second section asking you about you programming experience,

please fill this in, and then give it to your experimenter.

241

In the second stage, you will be given a booklet of two pages to work through.

The booklet contains a computer program and a number of questions you are

asked to answer. Please do not start work with the program unless the

experimenter tells you to do so. Once you told to start please spend some time

reading the program before you go to the questions. If you finish or you decide

to stop or withdraw from the experiment please tel the experimenter

immediately.

The last stage you will have a question asking you to rank the program you had

just gone through please answer this and give it back to the experimenter.

Note that it will not be possible for the experimenter to give you details of the

experiment through the whole experimental period, as knowing the hypotheses

may influence how you respond5. If you have any questions about these

instructions, please ask the experimenter now.

Thank toy for taking part of this experiment.

5 For the same reason, please do not discuss you ideas on the experimental program you given
with people who have not taken part in this week's lab session.

242

Programming Background Questionnaire

Thank you for taking the time to complete the following questions, through the

following questions you will be asked about your programming experience,

please fill this in. The information you provide will be used in a study to

investigate program comprehension for Object Oriented concepts and will be

treated confidentially.

Personal Details:
Name (optional)

Course/Module:

Programming Experience:

F or the following programming languages, please indicate:

4. How you learnt the language (School, University, Work, Self taught).
5. Rate yourself according to your level of knowledge (1- Novice, 5-Expert).
6. Add any Programming language which is missed.

School University Work
Self

Taught
Rate of Knowledge (1 to 5)

Basic

Fortran

Logo

Pascal

C

Visual Basic

C++

Java

C#

Age: (Optional)

Gender: Male / Female

243

The Experimental treatments

7.3.1.5 B1. Visual Basic Non-Object based

Experimental Treatment

The Line-Edit Study Booklet

Please do not turnover the page until you asked to do.

The name of the program listed over leaf is "Line Edit". It deals with character,

word, and line.

Once you being asked to turn over the page, please give your self time to read

all the given code before starting on the questions

for researcher use
Program Version: VB Non-Object based Subject code

Date Place:

Starting Time Ending Time

Code
Elementary
Operation

Control
Flow

Data
Flow

Progra

m Goals
State

Problem
Classes

Total
Performance

Time
Rank

Response

score

244

Please read the code below:

Module _ineEdit
Sub MainQ

Dirr Textlndex, MaxLineLength, WordLength, LineLength As Integer
Dins NewCharacter As Char
Dirr TextBody, NewWord As String
Textlndex = 8
MaxLineLength = WordLength = LineLength = 8
NewWord = ""
Console.WriteLine("enter the original text")
'insert the original text into string TextBody
TextBody = Console.ReadLine()
Console.Write.ine("Enter the TaxiruT line length") ^-------------- 1
'the rraxirrurr line length given by user
MaxLineLength = Val(Console.Readline())
NewCharacter = TextBody.Chars(TextIndex)
While (NewCharacter <> "'")

If (NewCharacter = " ") Then
If 'WordLength <>8 Then

'output a word on current or new line
If LineLength + Word.ength <= Max.ine.ength Then

LineLength = LineLength + 1
Else 'strats a new line and reset the LineLength to zero

Console.Writeline() <----------------------------- 4V
LineLength = 8

End If
'print out a built word followed by space and reset the
'WordLength to start building a new word

I Console.'Write(NewWord.Substring(8, 'Word.ength) + NewCharacter)
LineLength = LineLength + 'WordLength * ---------------- 2 !
NewWord =
Word.ength = 8

End If
Else

'build a word by adding up characters to the NewWrod string
NewWord = NewWord.Insert(WordLength, NewCharacter)
Word.ength = Word.ength + 1

End If
'pull out a new character
Textlndex = Textlndex + 1
NewCharacter = TextBody.Chars(Textlndex \ ^ 3

End While
Console.Read.ine()

End Sub
End M u l e

245

Please answer the following questions:

• Does the program contain the code fragment: "NewCharacter =
TextBody.Chars(Textlndex)"? (Yes/No/Don't Know)

• Does the program contain the code fragment: "LineLength = WordLength +
MaxLineLength"? (Yes/No/Don't Know)

• Does the program check the "LineLength" value before starting output the new built
word? (Yes/No/Don't Know)

• Does the program start building a word before check "WordLength" value?
(Yes/No/Don't Know)

• Does the value of “WordLength" affect the value o f "LineLength"? (Yes/No/Don't
Know)

• Does the value of “LineLength" affect the value o f"MaxLineLength“? (Yes/No/Don't
Know)

• Does the program remove any spaces within the input text? (Yes/No/Don't Know)
• Does the program output the original text in upper case format? (Yes/No/Don't

Know)
• When the statement labelled with number (D is reached, is the original text entered?

(Yes/No/Don't Know)
• When the statement labelled with number ® is reached, is the value of

“WordLength” > 0? (Yes/No/Don't Know)
• When the statement labelled with number ® is reached, is the value of “Textlndex”

= 0? (Yes/No/Don't Know)
• When the statement labelled with number @ is reached, is the value of “LineLength"

= 0? (Yes/No/Don't Know)

Now, if you were asked to develop the same program based on the concept of
chunking every relevant code together into number of entities, this concept is called a
"CLASS" in Object-Oriented programming. Each entity/Class has its own attributes and
functions/methods. Fro the following 4 questions please state which of the following
entities would be useful?

• Entity called "Word', putting together all relevant attributes and functions, used to
build a word from the given piece of text. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Building Word', putting together all relevant attributes and functions,
used to edit a given piece of text by communicating with "Word' entity.
(Yes/No/Don't Know). If yes, please write names of attributes and functions of this
entity

• Entity called "Read Character", putting together all relevant attributes and functions,
used to read character from the given piece of text. (Yes/No/Don't Know). If yes,
please write names of attributes and functions of this entity

• Entity called "Print Word', putting together all relevant attributes and functions,
used to print the built word. (Yes/No/Don't Know). If yes, please write names of
attributes and functions of this entity

246

• Ranking Question:

• How well do you understand the code?

o not very well o fairly to moderately o well to very well.

well

Thank you for your cooperation

247

7.3.1.6 B2. Visual Basic Object based

Experimental Treatment

The Line-Edit Study Booklet

Please do not turnover the page until you asked to do.

The name of the program listed over leaf is "Line Edit". It deals with character,

word, and line.

Once you being asked to turn over the page, please give your self time to read

all the given code before starting on the questions

for researcher use
Program Version: VB Object based Subject code

Date Place:

Starting Time Ending Time

Code
Elementary
Operation

Control
Flow

Data
Flow

Progra

m Goals
State

Problem
Classes

Total
Performance

Time
Rank

Response

score

248

Please read the code below:

Class Word
Public Textlndex As Integer = 8
Public Word_ength As Integer = 8
Public NewCharacter As Char
Public NewWord As String = ""
Public Sub Build'Word(ByVal Text As String)

’build a word by adding up characters to the NewWrod string
NewWord = NewWord . Insert(WordLength, NewCharacter)
’pull out a new character
Textlndex = Textlndex + 1
NewCharacter = Text.Chars(Textlndex) ^ ___________________ 3
WordLength = WordLength + 1

End Sub
Function OutputWord(ByVal Text As String) As String

NewWord.Substring(8, Word_ength)
Return NewWord

End Function
End Class

Class BuildingWords
Private LineLength As Integer = 8
Private word As New Word ’creates new instance of class Word
Public Sub TextEdit(ByVal Text As String, ByVal MaxLineLength As Integer)

word.NewCharacter = Text.Chars(word.Textlndex)
While word.NewCharacter <>

While word.NewCharacter = ” "
’pull out and read the next character
word.Textlndex = word.Textlndex + 1
word.NewCharacter = Text.Chars(word.Textlndex)

End While
wo r d .NewWor d =
word . W’ord_ength = 8
While ((word.NewCharacter <> " ") And (word.NewCharacter <> "*")) :

wo r d .Bu i1dWo r d(T e xt)
End While
‘output a word on current or new line
If -ine^ength + word,Kord_ength <= MaxLineLength Then

LineLength = LineLength + 1
Else ‘strats a new line and reset the LineLength to zero

Console .WriteLine() 4 -------------------------------------- 4
LineLength = 8

End If
’print out a built word followed by space and reset the
’WordLength to start building a new word
Console.Write(word.OutputWord(Text) + ” ")
LineLength = Line.ength + word . WordLength-4----------------------- 2

End While
End Sub

End Class

Module Modulel
Sub Main()

Dim TextBody As String
Dim MLL As Integer = 8
Dim B'w'ords As New Building,Lords ()
Console.WriteLine("enter the original text")
'insert the original text into string TextBody
TextBody = Console.ReadLine()
Console.WriteLine("enter the Maximum line length”) 4 --- — 1
'the maximum line length given by user
MLL = Val(Console.ReadLine())
'creates new instance of class BuildingWord
BWords.TextEdit(TextBody, MLL)
Console.Readtine()

End Sub
End Module

249

Please answer the following questions:

• Does the program contain the code fragment: "word. NewCharacte
=Text.Chars(word.Textlndex)"? (Yes/No/Don't Know)

• Does the program contain the code fragment: "LineLength = WordLength +
MaxLineLength"? (Yes/No/Don't Know)

• Does the program check the "LineLength" value before starting output the new built word? '
(Yes/No/Don't Know)

• Does the program start building a word before check "word.WordLength" value?
(Yes/No/Don't Know)

• Does the value of “wordWordLength" affects the value of "LineLength"?
(Yes/No/Don't Know)

• Does the value of “LineLength" affect the value of "MaxLineLength“?
(Yes/No/Don't Know)

• Does the program remove any spaces within the input text? (Yes/No/Don't Know)
• Does the program output the original text in upper case format? (Yes/No/Don't

Know)
• When the statement labelled with number ® is reached, is the original text entered

(Yes/No/Don't Know)
• When the statement labelled with number (D is reached, is the value of

“word.WordLength” > 0? (Yes/No/Don't Know)
• When the statement labelled with number d) is reached, is the value of “Textlndex”

= 0? (Yes/No/Don't Know)
• When the statement labelled with number @ is reached, is the value of "LineLength”

= 0? (Yes/No/Don't Know)

The listed program has been developed based on the concept of chunking every
relevant code together into number of entities. This concept is called a "CLASS" in
Object-Oriented programming. Each entity/Class has its own attributes and
function/methods. Fro the following 4 questions please state which of the following
entities were used?

• Entity called "Word', putting together all relevant attributes and functions, used to
build a word from the given piece of text. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Building Word', putting together all relevant attributes and functions,
used to edit a given piece of text by communicating with "Word' entity.
(Yes/No/Don't Know). If yes, please write names of attributes and functions of this
entity

• Entity called "Read Character1', putting together all relevant attributes and functions,
used to read character from the given piece of text. (Yes/No/Don't Know). If yes,
please write names of attributes and functions of this entity

• Entity called "Print Word', putting together all relevant attributes and functions,
used to print the built word. (Yes/No/Don't Know). If yes, please write names of
attributes and functions of this entity

250

Ranking Question:

• How well do you understand the code?

o not very well o fairly to moderately o well to very well.

well

Thank you for your cooperation

251

7.3.1.7 B3. Java Non-Object based Experimental

Treatment

The Line-Edit Study Booklet

Please do not turnover the page until you asked to do.

The name of the program listed over leaf is "Line Edit". It deals with character,

word, and line.

Once you being asked to turn over the page, please give your self time to read

all the given code before starting on the questions

for researcher use
Program Version: JAVA Non-Object based Subject code

Date Place:

Starting Time Ending Time

Code
Elementary
Operation

Control
Flow

Data
Flow

Progra

m Goals
State

Problem
Classes

Total
Performance

Time
Rank

Response

score

252

Please read the code below:

public class lineEditCharacterBased{
public static void main(String[] args) throws IOException {

BufferedReader in = new BufferedReader(new InputStreaiReaderfSysten.in));
int Textlndex, MaxLineLength, WordLength, LineLength;
char NewCharacter;
String NewWord = new Stringf);
Textlndex = MaxLineLength = WordLength = LineLength =0;
System.out.println("enter the original text");
//insert the original text into string TextBody
String Textbody = in.readLine!);
System.out.printlnf"enter the Maximum line length11); < 1
//the maximum line length given by user
MaxLineLength = Integer.parselnt(in.readLinef));
NewCharacter = Textbody.charAt(TextIndex);
while (NewCharacter != '*') {

if (NewCharacter == ' '){
if (WordLength != 0){

//output a word on current or new line
if (LineLength + WordLength <= MaxLineLength) {

LineLength ++;
} else {

//strats a new line and reset the LineLength to zero
System.out.printlnf); M_ _ _ _ _ _ _ _ _ _ _ _ 4
LineLength = 0;

}//print out a built word followed by space and
//reset the WordLength to start build a new word
System.out.print(NewWord,substring)0,WordLength)+ NewCharacter);
LineLength = LineLength + WordLength; <- - - - - - - - - 2
NewWord = "";
WordLength = 0;

}} else {
//build a word by adding up characters to the NewWord string
NewWord = new StnngBuff erf NewWord (.insert (WordLength, NewCharacter). toStringO;
WordLength ++;

}//pull out a new character
Textlndex ++;
NewCharacter = Textbody.charAt(TextIndex); <- - - - - - - - - - - - - - - - 3

}System.out.printlnf);
}

}

253

Please answer the following questions:

• Does the program contain the code fragment: "NewCharacter =
Textbody. charAt(Textlndex);"? (Yes/No/Don't Know)

• Does the program contain the code fragment: " LineLength = WordLength +
MaxLineLength;"? (Yes/No/Don't Know)

• Does the program check the "LineLength" value before starting output new word?
(Yes/No/Don't Know)

• Does the program start building a word before check the value o f"WordLength"?
(Yes/No/Don't Know)

• Does the value of “WordLength" affect the value o f "LineLength"? (Yes/No/Don't
Know)

• Does the value of “LineLength" affect the value o f"MaxLineLength“? (Yes/No/Don't
Know)

• Does the program remove any spaces within the input text? (Yes/No/Don't Know)
• Does the program output the original text in upper case format? (Yes/No/Don't

Know)
• When the statement labelled with number © is reached, is the original text entered?

(Yes/No/Don't Know)
• When the statement labelled with number (D is reached, is the value of

“WordLength” > 0? (Yes/No/Don't Know)
• When the statement labelled with number (3) is reached, is the value of “Textlndex"

= 0? (Yes/No/Don't Know)
• When the statement labelled with number © is reached, is the value of “LineLength”

= 0? (Yes/No/Don't Know)

Now, if you were asked to develop the same program based on the concept of
chunking every relevant code together into number of entities, this concept is called a
"CLASS" in Object-Oriented programming. Each entity/Class has its own attributes and
functions/methods. Fro the following 4 questions please state which of the following
entities would be useful?

• Entity called "Word', putting together all relevant attributes and functions, used to
build a word from the given piece of text. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Building Word', putting together all relevant attributes and functions,
used to edit a given piece of text by communicating with "Word1 entity.
(Yes/No/Don't Know). If yes, please write names of attributes and functions of this
entity

• Entity called "Read Character", putting together all relevant attributes and functions,
used to read character from the given piece of text. (Yes/No/Don't Know). If yes,
please write names of attributes and functions of this entity

• Entity called "Print Word', putting together all relevant attributes and functions,
used to print the built word. (Yes/No/Don't Know). If yes, please write names of
attributes and functions of this entity

254

Ranking Question:

• How well do you understand the code?

o not very well o fairly to moderately o well to very well.

well

Thank you for your cooperation

255

7.3.1.8 B4. Java Object based Experimental

Treatment

The Line-Edit Study Booklet

Please do not turnover the page until you asked to do.

The name of the program listed over leaf is "Line Edit". It deals with character,

word, and line.

Once you being asked to turn over the page, please give your self time to read

all the given code before starting on the questions

for researcher use
Program Version: JAVA Object based Subject code

Date Place:

Starting Time Ending Time

Code
Elementary
Operation

Control
Flow

Data
Flow

Progra

m Goals
State

Problem
Classes

Total
Performance

Time
Rank

Response

score

256

Please read the code below:

public class BuildingWords{
private in t LineLength = 0 ;
Word word = new Word(); //c rea tes new instance of class Word
public void TextEdit(String Text, in t MaxLineLength) {

word.NewCharacter = Text.charA t (word.Tex11ndex);
while (word.NewCharacter ! = ' * ') {

while (word.NewCharacter ==' ') {
/ /p u l l out and read the next character
word.Textlndex ++;
wor d . N ewCharac te r =' Tex t . char A t (word. Tex 11 ndex);
\
J

word.NewWord = " "
word.WordLength = 0;
while ((word.NewCharacter != ' ') && (word.NewCharacter != ' * ')) {

word.BuildWord(Text);
}
//output a word on current or new line
i f (LineLength + word.WordLength <= MaxLineLength){

LineLength ++;
} else {

/ /s t ra ts a new lin e and reset the LineLength to zero
System, out ,p r in t ln (); -4-------------------------------- 4
LineLength = 0;
}

/ /p r in t out a b u ilt word followed by space and
/ /re s e t the WordLength to s ta rt building a new word
System.out.print(word.PrintWord(Text) + " ");
LineLength = LineLength + word. WordLength ;•*----------------- 2

public class Word{
public int Textlndex= 0;
public int WordLength =0;
public char NewCharacter;
String NewWord = new String();
public void BuiIdWordiString Text){

//build a word by adding up characters to the NewWrcd string
NewWord = new StringBuffer(NewWord).insert(WordLength, NewCharacter). toString();
//p u ll out a new character
Textlndex++;
NewCharacter = Text.charAt(TextIndex); ___________________ 3
WordLength ++;

}
public String PrintWord(String Text){

NewWord = NewWord.substring(0,WordLength);
return NewWord;

}

public class LineEditWordBase{
public s ta tic void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

String Textbody = new S tring ();
in t MLL = 0;
BuildingWords BWords = new BuildingWords();
System.out,println("enter the original text");
// in s e rt the orig inal text into string TextBody
Textbody = in.readLine();
System.out.println("enter the Maximum line length"); -4— 1
/ / th e maximum line length given by user
MLL = Integer.parselnt(in .readLine());
//creates new instance of class BuildingWord
BWords.TextEdit(Textbody, MLL);
System.out.p r in t ln ();

s
}

257

Please answer the following questions:

• Does the program contain the code fragment: " word.NewCharacter =
Text.charAt(word.Textlndex);"? (Yes/No/Don't Know)

• Does the program contain the code fragment: "LineLength = WordLength +
MaxLineLength;"? (Yes/No/Don't Know)

• Does the program check the "LineLength" value before starting output new word?
(Yes/No/Don't Know)

• Does the program start building a word before check the value of
"word.WordLength"? (Yes/No/Don't Know)

• Does the value of “word.WordLength" affects the value of "LineLength"?
(Yes/No/Don't Know)

• Does the value of “LineLength" affect the value of "MaxLineLength“?
(Yes/No/Don't Know)

• Does the program remove any spaces within the input text? (Yes/No/Don't Know)
• Does the program output the original text in upper case format? (Yes/No/Don't

Know)
• When the statement labelled with number ® is reached, is the original text entered

(Yes/No/Don't Know)
• When the statement labelled with number ® is reached, is the value of

‘ word.WordLength” > 0? (Yes/No/Don't Know)
• When the statement labelled with number ® is reached, is the value of “Textlndetf’

= 0? (Yes/No/Don't Know)
• When the statement labelled with number @ is reached, is the value of

1LineLength” = 0? (Yes/No/Don't Know)
The listed program has been developed based on the concept o f chunking every

relevant code together into number of entities. This concept is called a "CLASS" in

Object-Oriented programming. Each entity/Class has its own attributes and

function/methods. Fro the following 4 questions please state which of the following

entities were used?

• Entity called "Word', putting together all relevant attributes and functions, used to
build a word from the given piece of text. (Yes/No/Don't Know). If yes, please write
names of attributes and functions of this entity

• Entity called "Building Word', putting together all relevant attributes and functions,
used to edit a given piece of text by communicating with ''Word' entity.
(Yes/No/Don't Know). If yes, please write names of attributes and functions of this
entity

• Entity called "Read Character", putting together all relevant attributes and functions,
used to read character from the given piece of text. (Yes/No/Don't Know). If yes,
please write names of attributes and functions of this entity

• Entity called "Print Word', putting together all relevant attributes and functions,
used to print the built word. (Yes/No/Don't Know). If yes, please write names of
attributes and functions of this entity

258

Ranking Question:

• How well do you understand the code?

o not very well o fairly to moderately o well to very well.

well

Thank you for your cooperation

259

Appendix C: Ethical Approval

The following research ethical approval form was used at Sheffield Hallam

University

Faculty of ACES Research Ethics Checklist

This form is designed to help students and staff to complete an ethical scrutiny

of their proposed research. It also enables the University and Faculty to keep a

record of research conducted that has been subjected to ethical scrutiny.

Answering the questions below will help decide whether your research proposal

requires ethical review by the Faculty Research Ethics Committee (FREC). In

cases of uncertainty members of the FREC can be approached for advice, or

alternatively students and staff can refer to the SHU Research Ethics Policy.

The large majority of research proposals will not need further scrutiny after

completion of this form.

For staff research the form should be completed by the principal investigator.

For student projects it may be completed by the student or the supervisor. In all

cases it should be counter signed by the supervisor and kept as a record that

ethical scrutiny has occurred. The final responsibility for ensuring that ethical

research practices are followed rests with the supervisor for student research

and the principal investigator for staff research projects.

Please note it may still be necessary to conduct a risk assessment for the

proposal - for information contact the Faculty Safety Co-ordinator.

260

Name of student or principal

investigator

Name of supervisor (if

applicable)

Title of research proposal

Outline of investigation

Question Yes/No

1. Does the research involve human participants? This includes

surveys, questionnaires, observing behaviour etc.

If NO please go to question No. 6.

If YES, then please answer the following questions No. 2 -5 :

2. Will any of the participants be vulnerable?

(E.g. Young people under 18, people with learning disabilities,

people who may be limited by age or sickness or disability

from understanding the research, etc.)

3. Is there any reasonable and foreseeable risk of physical or

emotional harm to any of the participants? (E.g. Distressing or

intrusive interview questions, uncomfortable procedures

involving the participant, invasion of privacy, topics relating to

261

highly personal information, topics relating to illegal activity)

4. Will anyone be taking part without giving their informed

consent? (E.g. Research involving covert study, coercion of

subjects, or where subjects have not fully understood the

research etc.)

5. Will the research output allow identification of any individual

who has not given their express consent to be identified?

If the answer to any of the questions 2 - 5 is YES then the researc

must be submitted to the FREC for approval unless it fal

category/programme of research that has already received category

h proposal

Is into a

approval.

6. Does the research involve the use of live animals?

If the answer to questions 6 is YES then the research

proposal must be submitted to the FREC for approval unless it

falls into a category/programme of research that has already

received category approval.

7. Does the research require approval from any external ethics

com-mittee, e.g. the NHS? For NHS research, this includes

any service evaluation work, work concerning NHS Patients

(tissues, organs, personal information or data), NHS staff,

volunteers, carers, NHS premises or facilities.

If the answer to question 7 is YES then the research proposal

must be submitted to the relevant external body. For NHS

262

Research Ethics Committees please refer to

http://www.corec.orq.uk

If the research proposal does not require submission to either the FREC or an

NHS or other external REC then standard approval applies.

If the research proposal requires submission to the FREC please contact a

member of the committee for more information.

Approval awaited applies until the proposal has been considered by the FREC.

ETHICAL APPROVAL (please tick):

□ (Standard approval) This project does not require specific ethical

approval.

□ (Category approval) In my opinion this work falls within the category

of .. projects which has been previously

approved by

the FREC and it does not therefore need individual approval.

□ (Approval awaited) This project must be referred to the FREC for

individual

consideration - the work must not proceed unless and until the FREC

gives

approval.

I can confirm that I have read the Sheffield Hallam University Research Ethics

Policy and Procedures document and agree to abide by its principles (please

tick). □

Signed ... Name................................

Date.........................

Student / Researcher/ Principal Investigator (as applicable)

Signed ... Name................................

263

http://www.corec.orq.uk

D ate.........................

Supervisor or other person giving ethical sign-off

Note: University Research Ethics policy available from the following web link:

http://www.shu.ac.uk/research/researchhallam.html

Students - If standard approval applies, please return this form to your

supervisor before starting your research, and retain a copy for inclusion in your

research report.

Staff - If standard approval applies, please keep this form for your own records.

264

http://www.shu.ac.uk/research/researchhallam.html

Appendix D: Normality tests and Experimental

Data

D1. Normality Test of the Car Study

Due to the relatively large number of subjects, timing data in minutes and the

subjects' responses are presented in Appendix D. At the first stage, normality

tests were run. These tests were used to check whether the collected data are

normally distributed or not. Upon the tests results, the decision would be made

to follow either parametric statistical tests or equivalent non-parametric

statistical tests. Firstly, formal skewness and kurtosis tests were performed.

Skewness involves the symmetry of the distribution and kurtosis involves the

peakedness of the distribution. Both skewness and kurtosis are 0 in a normal

distribution, so the farther away from 0, the more non-normal the distribution.

Table 5.3 shows the descriptive statistics results about the dependent variables,

including the value of skewness and kurtosis, with accompanying standard error

for each.

Table D.1: Descriptive statistics, skewness and kurtosis tests results for normality for

Car study

descriptive

mean SD skewness kurtosis

statistic statistic statistic std. error statistic std. error

time 12.59 2.49 0.08 0.13 -0.56 0.26

performance 59.19 18.49 -0.49 0.13 0.05 0.26

From table D.1 the mean for time was 12 minutes (SD = 2.49). The time was

non-normally distributed, with skewness of 0.08 (SE = 0.13) and kurtosis of 0.56

(SE = 0.26). The time distribution clustered to the left, the tail extending to the

right with flat distribution. The mean of performance was 59% (SD = 18.49),

performance was non-normal with skewness of -0.49 (SE = 0.13) and kurtosis

of 0.05 (SE = 0.26). The performance distribution clustered to the right, the tail

extending to the left with non-flat distribution. However, how much skewness or

kurtosis render the data non-normal could be an arbitrary determination, is

sometimes difficult to interpret using the values of skewness and kurtosis.

Luckily, there are more objective tests of normality.

The descriptive statistics for skewness and kurtosis are not as informative as

established tests for normality that take skewness and kurtosis into account

simultaneously. The kolmogorov-smirnov test (k-s) and shapiro-wilk (s-w) test

are designed to test normality by comparing data to a normal distribution with

the same mean and standard deviation of the sample (De Sa, 2007).

Since the sample size was greater than 50, the kolmogorov-Smirnov (k-s) test

was carried out to check the normality of the data. The value of the significant

(sig) column is the most important value that needs to be checked in a test of

normality. In general, a sig. value less than or equal to 0.05 is considered good

evidence that the data set is not normally distributed. Table D.2 illustrates the

results of the kolmogorov-smirnov (k-s) normality test.

Table D.2: The kolmogorov-smirnov test results for normality for Car study

tests of normality

kolmogorov-smirnov (k-s)

statistic df sig.

time .098 353 .000

performance .118 353 .000

266

Table D.2 shows that all variables have sig values < 0.05, therefore time and

performance can be assumed to be non-normally distributed (time: p = 0.000

and performance: p = 0.000).

D2 Normality Tests for the Line-Edit Study

Timing data in minutes and the subjects' responses are presented in Appendix

D. Normality tests were applied, and formal skewness and kurtosis tests were

performed. Table D.3 shows the descriptive statistics results about the

dependent variables, including the value of skewness and kurtosis, with

accompanying standard error for each.

Table D.3: Descriptive statistics, skewness, and kurtosis tests results of normality in the

Line-Edit study

descriptive

mean SD skewness kurtosis

Statistic Statistic Statistic
Std.

Error
Statistic

Std.

Error

time 16.71 3.51 0.01 0.31 -0.64 0.63

performance 60.26 16.44 -0.21 0.31 .000 0.63

From table D.3 the mean of time was 16 minutes (SD = 3.51), time was non-

normally distributed, with skewness of 0.01 (SE = 0.31) and kurtosis of -0.64

(SE = 0.63). The time distribution clustered to the left with the tail extending to

the right with flat distribution. The mean of performance was 60% (SD = 16.44),

performance was non-normal with skewness of -0.21 (SE = 0.31) and kurtosis

of 0.00 (SE = 0.63). The performance distribution clustered to the right with the

tail extending to the left with non-flat distribution.

As for the Car study, the kolmogorov-smirnov test (k-s) test was applied to test

normality by comparing data to a normal distribution with the same mean and

267

standard deviation of the sample. Table D.4 illustrates the results of the

kolmogorov-smirnov (K-S) normality test.

Table 0.4: The kolmogorov-smirnov test results of normality in the Line-Edit study

Tests of Normality

kolmogorov-smirnov (k-s)

Statistic df Sig.

time .125 56 .029

performance .233 56 .000

Table D.4 shows that all variables have sig values < 0.05, therefore time and

performance can be assumed to be non-normally distributed (time: p = 0.029

and performance: p = 0.000). Consequently, as data distribution was shown to

be non-normal, corresponding non-parametric Mann-Whitney U and Kruskal-

Wallis tests were calculated where appropriate.

D3. Experimental Database

This appendix presents the database for each study run, i.e., one data based

for the Car study and one database for the Line-Edit study. The logical variables

from these two studies are presented.

The logical groupings of data for variables in table D.5 and table D.6 are now

explained. Variable (1) represents the subject's Age. Variable (2) Gender is

graded as: male and 2 = female. Variables from (3) to (8) represent the

response for Elementary Operations, Control Flow, Data Flow, Program

Goals, State, and Problem Classes knowledge categories respectively.

Variable (9) represents the performance, which is the sum of all knowledge

categories. Variable (10) time is the time taken to accomplish the

comprehension task, in minutes, by each subject individually. Finally, Variable

(11) rank is graded as: 1^not very well, 2 = fairly to moderated well, and 3 =

268

well to very well. For table D.5, the first 176 row represent the data of subjects

who were given the Non-Object based program version, and the rest of the

table represent the data of subjects who were given the Object based program

version. For D.6 table, the first 28 rows represent the data of subjects who were

given the Non-Object based program version; the other 28 rows represent the

data of subjects who were given the Object based program version.

269

Table D.5: Row data for the run of the Car study

Experimental Variables

1 2 3 4 5 6 7 8 9 10 11
1 21 1 66.67 66.67 100 66.67 100 83.33 78.95 11 1
2 18 1 33.33 33.33 100 33.33 100 0 36.84 13 1

3 19 1 66.67 33.33 100 66.67 100 50 63.16 12 1
4 21 1 33.33 66.67 100 66.67 100 50 63.16 13 1
5 19 1 66.67 100 50 66.67 0 66.67 63.16 12 1
6 19 1 66.67 66.67 0 0 0 33.33 31.58 12 1
7 18 1 33.33 66.67 0 33.33 0 83.33 47.37 11 1
8 20 2 66.67 66.67 100 100 100 83.33 84.21 11 1

9 19 2 33.33 33.33 50 66.67 100 50 52.63 12 1

10 20 2 100 66.67 0 66.67 0 66.67 57.89 12 1
11 20 1 66.67 66.67 100 33.33 100 66.67 68.42 10 1
12 20 1 33.33 33.33 50 66.67 100 66.67 57.89 16 1
13 20 1 33.33 100 100 33.33 100 66.67 68.42 17 1
14 21 1 33.33 66.67 100 33.33 100 16.67 47.37 18 1
15 19 1 33.33 0 100 33.33 50 66.67 47.37 7 1

16 19 1 66.67 33.33 100 66.67 50 66.67 63.16 12 1
17 19 1 66.67 100 50 66.67 100 83.33 78.95 12 1

18 18 1 33.33 0 0 0 100 33.33 26.32 8 1

19 20 1 33.33 33.33 50 100 50 50 52.63 13 1

20 19 1 33.33 33.33 0 66.67 0 66.67 42.11 6 1
21 19 1 100 33.33 50 0 100 0 36.84 17 1

22 18 1 100 66.67 50 66.67 100 66.67 73.68 10 1
23 21 1 66.67 33.33 100 33.33 100 50 57.89 12 1

24 20 1 33.33 66.67 100 0 50 0 31.58 10 1

25 19 33.33 33.33 100 33.33 100 66.67 57.89 10 1

26 19 33.33 100 100 33.33 100 66.67 68.42 10 1

27 20 1 100 66.67 100 0 100 50 63.16 10
28 22 1 33.33 33.33 100 100 100 66.67 68.42 14 1
29 23 2 66.67 66.67 50 66.67 100 50 63.16 11 1

30 20 2 66.67 66.67 100 100 100 16.67 63.16 14 1
31 20 2 33.33 66.67 100 66.67 50 50 57.89 10 1
32 21 1 66.67 33.33 0 33.33 100 33.33 42.11 12 1
33 19 2 66.67 100 •0 33.33 100 66.67 63.16 10 1
34 21 2 33.33 100 100 66.67 100 50 68.42 14 1
35 20 2 66.67 100 100 66.67 100 50 73.68 12 1
36 24 1 100 66.67 100 0 100 50 63.16 17 1

270

37 19 1 66.67 33.33 50 66.67 50 33.33 47.37 10 1
38 20 1 0 100 100 66.67 0 33.33 47.37 10 2
39 20 1 33.33 33.33 50 33.33 100 0 31.58 10 2
40 20 2 33.33 33.33 50 66.67 50 33.33 42.11 16 2
41 20 2 66.67 66.67 100 66.67 100 33.33 63.16 12 2
42 20 2 66.67 0 50 33.33 0 0 21.05 12 2
43 20 2 100 100 50 100 100 33.33 73.68 11 2

44 20 2 33.33 100 50 33.33 100 50 57.89 12 2
45 20 2 66.67 66.67 0 0 50 33.33 36.84 10 2

46 21 2 33.33 0 0 33.33 50 0 15.79 13 2
47 21 2 100 66.67 50 66.67 50 66.67 68.42 14 2
48 21 2 66.67 66.67 100 33.33 100 66.67 68.42 14 2
49 21 2 66.67 33.33 50 66.67 100 0 42.11 15 2

50 21 2 33.33 33.33 50 33.33 50 0 26.32 17 2

51 21 2 66.67 66.67 50 66.67 100 50 63.16 11 2

52 22 1 66.67 33.33 50 33.33 0 33.33 36.84 16 2

53 22 1 66.67 66.67 0 33.33 100 16.67 42.11 13 2

54 22 2 33.33 66.67 100 33.33 100 50 57.89 10 2

55 23 2 33.33 0 0- 0 50 33.33 21.05 15 2

56 23 2 33.33 0 50 33.33 100 16.67 31.58 14 2

57 23 2 66.67 33.33 50 33.33 100 50 52.63 14 2

58 23 2 66.67 66.67 100 33.33 50 66.67 63.16 8 2

59 23 2 100 100 50 66.67 100 33.33 68.42 9 2

60 24 2 33.33 0 100 66.67 50 0 31.58 15 2

61 24 1 66.67 33.33 0 33.33 50 0 26.32 11 2

62 25 2 66.67 33.33 0 0 50 16.67 26.32 8 2

63 22 2 0 33.33 0 0 100 0 15.79 15 2

64 22 2 66.67 66.67 0 33.33 100 16.67 42.11 13 2

65 22 2 100 66.67 50 33.33 100 33.33 57.89 16 2

66 23 2 66.67 100 50 66.67 100 33.33 63.16 16 2

67 22 2 66.67 100 50 66.67 100 16.67 57.89 13 2

68 22 2 66.67 100 50 66.67 100 16.67 57.89 15 2

69 21 2 100 33.33 50 66.67 100 66.67 68.42 15 2

70 24 2 33.33 33.33 50 66.67 100 33.33 47.37 14 2

71 21 1 100 100 100 66.67 100 66.67 84.21 11 2
72 20 2 100 100 100 100 100 16.67 73.68 11 2
73 20 2 66.67 100 50 66.67 100 50 68.42 16 2
74 21 2 100 66.67 0 66.67 100 50 63.16 16 2
75 20 1 100 66.67 100 100 100 16.67 68.42 17 2
76 28 1 66.67 100 100 66.67 100 33.33 68.42 13 3

271

77 21 2 66.67 66.67 50 100 100 33.33 63.16 17 3
78 22 1 66.67 33.33 0 100 0 16.67 36.84 14 3
79 21 1 100 66.67 100 100 100 50 78.95 10 3
80 20 2 0 0 0 66.67 100 16.67 26.32 14 3
81 18 1 66.67 66.67 100 100 100 50 73.68 14 3
82 19 2 33.33 66.67 0 0 50 50 36.84 14 3
83 21 2 100 0 0 0 50 0 21.05 14 3

84 19 2 66.67 66.67 50 66.67 50 33.33 52.63 13 3
85 20 2 66.67 33.33 50 66.67 50 0 36.84 13 3
86 22 1 66.67 100 50 66.67 100 16.67 57.89 14 3
87 20 1 0 33.33 100 0 50 50 36.84 13 3
88 19 1 0 0 0 33.33 0 0 5.26 11 3

89 18 1 66.67 33.33 0 66.67 100 0 36.84 11 3

90 19 2 33.33 33.33 50 ' 33.33 0 16.67 26.32 11 3

91 20 1 33.33 66.67 100 66.67 100 50 63.16 10 3

92 21 1 33.33 66.67 0 66.67 100 66.67 57.89 10 3

93 19 1 0 0 0 0 0 0 0 11 3

94 22 2 66.67 33.33 0 33.33 100 33.33 42.11 14 3

95 19 2 100 100 100 66.67 100 83.33 89.47 11 3

96 19 2 100 66.67 0 33.33 100 66.67 63.16 14 3

97 20 2 33.33 66.67 100 33.33 50 16.67 42.11 17 3

98 20 2 33.33 66.67 50 33.33 100 33.33 47.37 15 1

99 23 2 66.67 100 100 66.67 50 16.67 57.89 13

100 21 2 100 100 50 66.67 50 50 68.42 9 1

101 22 1 66.67 33.33 50 33.33 100 66.67 57.89 9 1

102 20 1 66.67 66.67 100 66.67 50 83.33 73.68 11 1

103 21 2 100 33.33 0 66.67 0 16.67 36.84 9 1

104 22 2 66.67 0 0 33.33 100 83.33 52.63 10 1

105 23 2 33.33 33.33 50 66.67 0 83.33 52.63 11 1

106 21 2 33.33 0 50 33.33 100 0 26.32 12 1

107 19 1 0 66.67 100 66.67 100 66.67 63.16 10 2

108 19 1 100 100 100 100 100 66.67 89.47 17 2

109 21 1 0 66.67 50 0 100 100 57.89 10 2

110 23 1 66.67 66.67 50 66.67 100 0 47.37 11 2

111 19 2 33.33 66.67 100 66.67 100 0 47.37 15 2

112 20 2 66.67 66.67 100 66.67 100 50 68.42 15 2

113 22 2 66.67 66.67 100 66.67 100 50 68.42 12 2
114 21 2 66.67 100 0 100 100 16.67 57.89 11 2
115 19 2 33.33 66.67 50 33.33 100 33.33 47.37 12 2
116 19 2 100 66.67 50 66.67 100 50 68.42 14 2

272

117 20 1 33.33 0 50 66.67 100 100 63.16 11 2

118 23 2 100 66.67 100 33.33 100 83.33 78.95 16 2

119 19 1 100 100 100 33.33 100 50 73.68 12 2

120 28 1 100 100 100 33.33 100 16.67 63.16 11 2

121 19 2 66.67 66.67 50 66.67 50 50 57.89 12 2

122 20 1 66.67 66.67 50 66.67 100 33.33 57.89 16 2

123 20 1 66.67 66.67 100 66.67 100 66.67 73.68 14 2

124 19 2 66.67 33.33 0 33.33 100 50 47.37 14 2

125 19 1 66.67 0 100 100 100 50 63.16 17 2

126 20 2 0 66.67 50 66.67 0 33.33 36.84 12 2

127 19 2 0 66.67 50 33.33 100 50 47.37 10 2

128 18 2 66.67 66.67 50 66.67 100 50 63.16 10 2

129 19 2 66.67 0 50 0 100 33.33 36.84 13 2

130 19 2 33.33 66.67 100 0 0 0 26.32 14 2

131 18 2 100 66.67 100 100 100 50 78.95 15 2

132 19 2 33.33 100 100 33.33 100 50 63.16 18 2

133 18 2 33.33 33.33 0 33.33 100 16.67 31.58 18 2

134 19 1 33.33 0 50 33.33 50 0 21.05 10 2

135 18 1 66.67 100 100 66.67 100 0 57.89 11 2

136 18 2 66.67 66.67 100 33.33 50 66.67 63.16 12 2

137 20 2 66.67 100 100 33.33 100 66.67 73.68 13 2

138 21 1 66.67 100 100 66.67 100 33.33 68.42 15 2

139 18 2 33.33 66.67 100 66.67 100 50 63.16 16 2

140 18 1 100 100 50 33.33 100 66.67 73.68 17 2

141 22 1 66.67 66.67 50 66.67 50 16.67 47.37 16 2

142 18 2 0 66.67 50 66.67 50 16.67 36.84 17 2

143 18 2 66.67 100 0 66.67 50 66.67 63.16 15 2

144 20 2 33.33 66.67 0 66.67 100 33.33 47.37 12 2

145 19 2 66.67 33.33 50 66.67 50 33.33 47.37 13 2

146 19 1 33.33 33.33 100 66.67 100 50 57.89 10 2

147 19 2 33.33 66.67 50 33.33 100 66.67 57.89 12 2

148 18 1 66.67 33.33 50 33.33 100 50 52.63 14 2

149 22 2 33.33 100 100 66.67 100 50 68.42 13 2

150 20 2 33.33 66.67 100 66.67 50 0 42.11 15 3

151 23 2 100 100 50 100 100 66.67 84.21 16 3

152 20 2 100 100 50 66.67 100 33.33 68.42 13 3

153 18 1 66.67 100 0 66.67 100 66.67 68.42 12 3

154 19 1 100 66.67 50 66.67 100 16.67 57.89 16 3

155 20 2 33.33 66.67 100 33.33 100 33.33 52.63 14 3

156 20 2 66.67 33.33 50 66.67 100 83.33 68.42 14 3

273

157 20 2 0 33.33 100 0 100 50 42.11 13 3

158 21 1 100 100 100 100 100 83.33 94.74 13 3

159 20 2 100 66.67 50 33.33 100 33.33 57.89 12 3

160 19 2 66.67 66.67 50 66.67 100 66.67 68.42 12 3

161 21 2 0 66.67 50 66.67 50 50 47.37 14 3

162 23 2 66.67 66.67 0 33.33 100 16.67 42.11 11 3

163 21 2 33.33 33.33 0 33.33 0 83.33 42.11 9 3

164 25 2 100 66.67 0 33.33 100 66.67 63.16 10 3

165 20 1 100 66.67 100 33.33 100 0 52.63 10 3

166 24 1 33.33 33.33 0 0 100 0 21.05 11 3

167 21 1 100 100 100 66.67 100 83.33 89.47 12 3

168 20 2 66.67 33.33 50 0 0 50 36.84 8 3

169 20 1 100 100 100 66.67 100 66.67 84.21 10 3

170 20 1 100 66.67 100 33.33 50 66.67 68.42 15 3

171 19 2 33.33 66.67 0 33.33 100 50 47.37 11 3

172 18 2 0 66.67 50 33.33 50 33.33 36.84 9 3

173 19 1 33.33 100 100 100 100 66.67 78.95 11 3

174 19 2 100 66.67 50 0 50 83.33 63.16 9 3

175 22 2 33.33 100 50 66.67 100 66.67 68.42 9 3

176 20 1 100 66.67 50 66.67 100 50 68.42 13 3

177 21 1 66.67 66.67 100 66.67 100 83.33 78.95 11 1

178 22 1 66.67 66.67 0 100 100 100 78.95 14 1

179 20 1 0 100 0 66.67 100 83.33 63.16 13 1

180 19 1 33.33 66.67 50 100 100 83.33 73.68 12 1

181 19 1 33.33 66.67 100 100 50 83.33 73.68 12 1

182 18 1 100 66.67 100 100 0 100 84.21 11 1

183 18 1 66.67 33.33 100 66.67 100 83.33 73.68 11 1

184 19 1 100 33.33 100 66.67 100 100 84.21 12 1

185 19 1 100 66.67 50 66.67 50 83.33 73.68 13 1

186 18 1 0 66.67 50 33.33 50 100 57.89 13 1

187 19 1 66.67 100 50 33.33 100 83.33 73.68 12 1

188 18 1 66.67 66.67 50 66.67 100 83.33 73.68 13 1

189 18 1 66.67 100 100 100 50 100 89.47 12 1

190 18 1 33.33 100 100 66.67 50 100 78.95 13 1

191 21 1 33.33 33.33 0 66.67 0 66.67 42.11 7 1

192 21 1 66.67 66.67 100 66.67 0 33.33 52.63 18 1

193 19 2 66.67 66.67 0 33.33 0 66.67 47.37 17 1

194 20 1 66.67 33.33 50 33.33 0 83.33 52.63 14 1

195 20 1 100 66.67 50 33.33 50 83.33 68.42 13 1

196 18 1 33.33 100 50 100 100 100 84.21 9 1

274

197 20 2 66.67 33.33 0 66.67 50 66.67 52.63 11 1

198 20 1 33.33 66.67 0 33.33 0 83.33 47.37 18 1

199 20 1 66.67 100 0 66.67 50 50 57.89 10 1

200 19 1 33.33 66.67 100 0 50 83.33 57.89 11 1

201 18 1 66.67 0 50 100 0 83.33 57.89 10 1

202 20 1 66.67 66.67 100 33.33 0 83.33 63.16 7 1

203 20 2 100 66.67 0 0 100 50 52.63 14 1

204 21 1 33.33 66.67 50 66.67 100 50 57.89 9 1

205 21 2 66.67 66.67 0 33.33 100 50 52.63 11 1

206 20 2 66.67 100 100 66.67 100 100 89.47 13 1

207 19 2 66.67 66.67 100 66.67 50 50 63.16 12 1

208 20 2 33.33 33.33 0 66.67 100 66.67 52.63 13 1

209 24 1 0 100 100 66.67 100 50 63.16 13 1

210 20 2 100 0 100 33.33 50 16.67 42.11 16 1

211 23 2 33.33 100 0 33.33 100 100 68.42 10 1

212 21 2 66.67 66.67 100 66.67 100 50 68.42 12 1

213 20 2 33.33 0 0 66.67 100 83.33 52.63 10 1

214 19 2 100 100 100 100 100 100 100 10 1

215 20 2 33.33 100 0 66.67 100 83.33 68.42 17

216 22 1 100 100 100 66.67 100 33.33 73.68 15 1

217 23 2 66.67 66.67 50 66.67 0 83.33 63.16 15 1

218 22 2 66.67 33.33 50 33.33 100 33.33 47.37 15 1

219 19 2 33.33 33.33 50 33.33 0 66.67 42.11 12 2

220 20 2 66.67 33.33 0 0 100 50 42.11 9 2

221 20 2 33.33 100 50 100 100 66.67 73.68 17 2

222 20 2 33.33 33.33 100 66.67 50 33.33 47.37 8 2

223 20 2 100 66.67 0 66.67 50 83.33 68.42 11 2

224 20 2 100 100 50 66.67 100 83.33 84.21 12 2

225 21 2 66.67 0 50 66.67 50 16.67 36.84 15 2

226 21 2 33.33 33.33 50 0 0 33.33 26.32 16 2

227 21 1 33.33 33.33 0 66.67 50 50 42.11 15 2

228 21 2 66.67 33.33 0 0 100 50 42.11 8 2

229 21 2 66.67 0 0 33.33 100 100 57.89 11 2

230 21 2 33.33 66.67 0 33.33 0 66.67 42.11 11 2

231 21 2 33.33 66.67 50 100 50 83.33 68.42 13 2

232 22 1 66.67 66.67 100 100 100 83.33 84.21 16 2

233 22 1 66.67 66.67 50 33.33 50 33.33 47.37 10 2

234 22 1 0 33.33 50 33.33 0 0 15.79 10 2

235 22 2 33.33 33.33 0 66.67 0 33.33 31.58 8 2

236 22 2 100 66.67 50 33.33 50 100 73.68 10 2

275

237 22 2 66.67 0 50 33.33 100 83.33 57.89 11 2

238 23 2 33.33 33.33 0 0 50 83.33 42.11 7 2

239 23 2 66.67 33.33 0 66.67 0 83.33 52.63 8 2

240 23 2 66.67 33.33 0 0 0 0 15.79 12 2

241 23 2 66.67 100 50 66.67 100 83.33 78.95 10 2

242 24 2 100 33.33 0 0 50 50 42.11 14 2

243 25 2 33.33 33.33 0 0 0 0 10.53 9 2

244 23 2 66.67 0 100 66.67 100 100 73.68 13 2

245 21 2 66.67 66.67 50 66.67 100 50 63.16 12 2

246 23 2 100 100 100 66.67 100 50 78.95 14 2

247 21 2 0 33.33 50 66.67 100 50 47.37 14 2

248 21 2 66.67 33.33 50 66.67 100 50 57.89 11 2

249 21 2 66.67 66.67 0 33.33 100 100 68.42 10 2

250 20 2 33.33 66.67 100 66.67 100 50 63.16 10 2

251 19 2 66.67 66.67 50 33.33 100 100 73.68 16 3

252 20 2 66.67 100 100 100 100 50 78.95 15 3

253 19 2 33.33 100 0 66.67 100 100 73.68 15 3

254 22 2 0 33.33 0 66.67 50 83.33 47.37 15 3

255 21 2 66.67 100 0 100 100 50 68.42 16 3

256 22 1 33.33 100 50 100 100 83.33 78.95 12 3

257 19 2 100 100 50 100 50 66.67 78.95 10 1

258 18 1 100 100 100 100 100 83.33 94.74 14 1

259 20 2 33.33 66.67 0 66.67 100 16.67 42.11 14 1

260 23 1 33.33 33.33 50 33.33 50 100 57.89 15 1

261 20 2 66.67 33.33 0 33.33 0 0 21.05 15 1

262 20 1 100 66.67 100 66.67 50 83.33 78.95 13 1

263 18 2 33.33 100 100 100 100 83.33 84.21 15 1

264 20 1 66.67 0 0 0 0 0 10.53 13 1

265 21 2 66.67 33.33 100 33.33 100 100 73.68 13 1

266 17 1 100 66.67 50 33.33 100 83.33 73.68 13 1

267 21 2 100 33.33 0 100 100 100 78.95 12 1

268 20 1 33.33 33.33 100 33.33 50 16.67 36.84 12 1

269 18 1 33.33 0 0 0 0 0 5.26 12 1

270 22 1 33.33 66.67 0 66.67 100 83.33 63.16 14 1

271 22 1 66.67 33.33 100 66.67 100 50 63.16 13 1

272 19 1 100 100 100 100 100 100 100 17 1

273 19 2 66.67 0 50 66.67 100 83.33 63.16 14 1

274 19 2 66.67 100 50 66.67 0 33.33 52.63 14 1

275 21 2 100 66.67 50 33.33 100 50 63.16 14 1

276 21 1 33.33 0 50 33.33 100 50 42.11 9 1

276

277 23 2 100 66.67 100 33.33 100 83.33 78.95 9 1

278 20 2 33.33 0 50 66.67 100 83.33 57.89 11 1

279 21 2 100 100 50 33.33 100 100 84.21 13 1

280 26 2 33.33 66.67 50 66.67 100 83.33 68.42 17 1

281 21 2 100 100 100 0 100 33.33 63.16 14 1

282 20 2 100 100 50 33.33 100 50 68.42 15 1

283 20 1 66.67 100 50 66.67 100 83.33 78.95 8 1

284 23 2 100 33.33 0 66.67 50 100 68.42 17 1

285 20 2 66.67 33.33 50 33.33 100 100 68.42 12 1

286 22 1 66.67 100 50 66.67 100 50 68.42 11 1

287 22 2 66.67 100 0 0 100 83.33 63.16 11 2

288 20 2 66.67 66.67 100 33.33 100 83.33 73.68 10 2

289 25 1 33.33 0 50 66.67 100 100 63.16 10 2

290 18 2 100 100 100 100 100 100 100 12 2

291 20 1 100 66.67 100 33.33 100 100 84.21 12 2

292 18 2 100 66.67 100 33.33 100 83.33 78.95 11 2

293 19 1 100 66.67 50 66.67 50 100 78.95 9 2

294 21 2 33.33 33.33 50 66.67 100 83.33 63.16 13 2

295 18 2 66.67 100 0 66.67 100 83.33 73.68 13 2

296 20 2 66.67 100 50 33.33 100 83.33 73.68 16 2

297 23 2 33.33 66.67 50 0 100 66.67 52.63 16 2

298 22 2 33.33 66.67 50 33.33 100 33.33 47.37 15 2

299 20 2 66.67 100 100 33.33 100 100 84.21 12 2

300 19 2 33.33 66.67 0 100 50 83.33 63.16 11 2

301 20 2 100 33,33 100 66.67 100 83.33 78.95 11 2

302 19 2 66.67 33.33 0 66.67 50 50 47.37 17 2

303 20 2 100 100 50 66.67 100 100 89.47 17 2

304 19 2 33.33 66.67 100 66.67 100 100 78.95 13 2

305 20 1 100 100 100 66.67 100 83.33 89.47 11 2

306 22 2 66.67 66.67 50 33.33 100 83.33 68.42 18 2

307 18 2 33.33 66.67 100 33.33 100 100 73.68 16 2

308 19 2 100 66.67 100 33.33 50 100 78.95 13 2

309 20 2 33.33 66.67 50 66.67 100 16.67 47.37 11 2

310 19 2 33.33 33.33 0 66.67 0 83.33 47.37 15 2

311 19 2 33.33 33.33 50 33.33 50 16.67 31.58 16 2

312 18 2 33.33 100 100 66.67 100 100 84.21 18 2

313 21 1 66.67 0 0 33.33 50 100 52.63 15 2

314 19 2 66.67 66.67 0 66.67 100 83.33 68.42 14 2

315 19 2 66.67 33.33 50 33.33 50 16.67 36.84 10 2

316 18 2 0 66.67 0 66.67 100 50 47.37 12 2

277

317 18 2 66.67 66.67 100 33.33 100 100 78.95 12 2
318 18 1 66.67 66.67 50 0 100 83.33 63.16 12 2
319 23 1 33.33 0 50 66.67 0 50 36.84 8 2
320 22 1 66.67 0 0 66.67 0 33.33 31.58 13 2
321 18 1 0 33.33 50 100 50 66.67 52.63 15 2
322 20 2 33.33 100 0 33.33 50 50 47.37 15 2
323 20 2 66.67 66.67 50 33.33 50 100 68.42 11 2
324 18 2 100 33.33 100 100 100 83.33 84.21 11 2
325 19 2 33.33 66.67 0 33.33 100 100 63.16 12 2
326 22 2 0 0 50 66.67 0 66.67 36.84 15 3
327 19 2 66.67 66.67 100 66.67 100 83.33 78.95 15 3
328 19 2 33.33 33.33 0 66.67 100 50 47.37 14 3
329 20 1 100 100 50 66.67 100 100 89.47 11 3
330 19 2 66.67 66.67 50 33.33 50 100 68.42 12 3
331 22 1 100 100 50 100 100 66.67 84.21 14 3
332 23 1 100 66.67 0 66.67 100 100 78.95 14 3
333 25 2 66.67 100 0 33.33 100 83.33 68.42 14 3
334 20 2 100 66.67 50 66.67 100 83.33 78.95 15 3
335 23 2 0 66.67 50 33.33 50 66.67 47.37 15 3
336 20 2 100 100 50 100 50 66.67 78.95 13 3
337 22 2 100 100 100 66.67 100 100 94.74 12 3

338 24 2 100 100 0 66.67 100 83.33 78.95 12 3

339 20 2 66.67 66.67 0 33.33 100 66.67 57.89 14 3
340 22 1 100 66.67 50 66.67 100 83.33 78.95 13 3
341 20 2 66.67 66.67 100 66.67 100 83.33 78.95 13 3
342 22 2 66.67 66.67 50 66.67 100 83.33 73.68 13 3

343 21 2 33.33 33.33 100 0 100 83.33 57.89 11 3

344 22 2 66.67 66.67 50 66.67 100 83.33 73.68 9 3

345 21 2 100 33.33 100 33.33 100 83.33 73.68 . 9 3
346 20 1 66.67 33.33 100 66.67 100 66.67 68.42 9 3
347 21 1 100 66.67 50 100 100 83.33 84.21 15 3

348 22 1 66.67 66.67 50 66.67 100 100 78.95 10 3
349 19 2 100 100 100 100 0 100 89.47 13 3
350 20 2 100 66.67 0 0 100 83.33 63.16 15 3
351 19 2 66.67 0 100 33.33 50 100 63.16 10 3
352 19 2 66.67 33.33 50 66.67 50 100 68.42 10 3
353 20 2 66.67 33.33 0 66.67 50 83.33 57.89 10 3

278

Table D.6: Row data for the run of the Line-Edit study

Experimental Variables

1 2 3 4 5 6 7 8 9 10 11

1 19 1 50 0 100 0 50 0 31.25 10 3

2 19 1 0 50 50 50 25 25 31.25 14 2

3 20 1 100 0 100 50 75 50 62.5 14 2

4 19 1 50 50 50 50 75 25 50 14 2

5 22 1 50 100 0 50 0 50 37.5 15 3

6 20 1 50 50 0 50 0 0 18.75 11 3

7 18 1 100 50 100 50 25 50 56.25 15 3

8 20 50 50 100 50 100 50 68.75 19 2

9 19 1 50 0 100 100 0 0 31.25 13 3

10 20 50 50 50 50 100 50 62.5 13 2

11 19 1 50 50 100 100 75 25 62.5 13 2

12 19 1 100 50 100 100 75 25 68.75 13 3

13 19 1 50 100 100 50 50 50 62.5 17 2

14 19 1 50 50 0 100 50 0 37.5 16 1

15 23 1 50 0 100 0 50 0 31.25 18 2

16 20 1 100 50 50 50 25 25 43.75 19 2

17 20 1 100 0 100 50 75 50 62.5 21 2

18 25 1 100 50 50 50 75 50 62.5 21 1

19 19 1 50 50 0 50 25 50 37.5 18 2

20 20 1 50 50 0 50 25 0 25 18 1

21 20 1 100 50 100 100 25 50 62.5 18 2

22 19 ■ 1 50 50 100 50 100 100 81.25 19 1

23 20 1 50 50 100 100 25 0 43.75 15 2

24 19 1 50 50 50 50 100 25 56.25 20 2

25 21 1 50 50 100 100 75 50 68.75 20 2

26 19 1 100 50 100 100 75 25 68.75 18 3

27 19 1 0 50 100 50 50 50 50 20 1

28 19 1 50 100 0 100 50 0 43.75 15 2

29 18 1 50 50 50 100 50 100 68.75 14 2

30 19 1 50 100 50 50 75 75 68.75 10 2

31 20 1 100 100 100 50 75 75 81.25 14 3

32 20 1 50 50 100 100 50 75 68.75 20 2

33 19 1 50 50 100 50 25 50 50 14 2

34 19 1 50 100 0 100 50 75 62.5 14 2

35 20 1 100 50 100 50 75 100 81.25 16 1

36 18 1 50 100 100 50 25 100 68.75 16 2

279

37 18 1 50 50 0 50 100 75 62.5 13 1

38 19 1 50 100 50 50 25 75 56.25 13 2

39 20 50 50 50 50 100 75 68.75 18 2

40 19 1 100 100 50 100 25 50 62.5 16 3

41 20 1 50 50 100 100 100 100 87.5 16 1

42 21 1 100 50 50 50 75 50 62.5 13 1

43 21 1 50 50 50 100 100 100 81.25 22 2

44 19 50 50 50 50 100 75 68.75 20 2

45 19 100 100 100 50 75 75 81.25 21 2

46 18 1 50 50 100 50 50 75 62.5 18 2

47 21 1 100 100 100 100 50 50 75 18 3

48 21 1 50 50 0 100 75 75 62.5 22 2

49 19 1 100 50 100 50 50 100 75 12 1

50 24 1 50 100 100 100 100 100 93.75 19 2

51 24 1 50 50 0 50 100 75 62.5 20 3

52 21 1 50 50 50 100 50 75 62.5 20 3

53 22 1 50 100 50 50 100 75 75 24 2

54 19 1 100 50 50 50 100 50 68.75 25 1

55 20 2 50 50 0 100 100 100 75 12 2

280

