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ABSTRACT Model X-ray scattering behaviour of arrays of
structured cylinders. T.J. Gale

The model X-ray scattering behaviour of hexagonal arrays of 
infinitely long cylinders with various internal structures is considered 
by regarding the model as a function of three parameters, viz:- 
the cylinder's scattering function, the swelling factor (^), and 
the lattice interference function.

The behaviour of the scattering function is considered 
as the cylinder's structure (electron density distribution) is 
systematically varied from the case of a solid cylinder to that 
of a thin shell. A ten stage electron density strip model is 
shown to be sufficient for this purpose.

The effects of packing of the cylinders is examined by 
the use of the swelling factor 06), and the behaviour of the diffraction 
pattern due to an array of solid cylinders is used to illustrate 
the effects of changing .

The behaviour of the lattice function is examined as the 
numbers of lattice points in a centred hexagonal array is varied 
from seven to sixty-one. It is shown that the interference function 
due to a hexagonal array of thirty-seven points represents a reasonable 
approximation to the case of the interference function due to an 
infinite hexagonal array.

The behaviour of the diffraction patterns due to a series 
of cylinders with various structures in a centred hexagonal array 
of thirty-seven components is examined as systematic changes to 
the various parameters are made, and explained in terms of the 
combined behaviour of those parameters as outlined above.
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OBJECTIVE OF THE STUDY

In the past, identification of the various phase structures 
formed by amphiphilic liquid crystals has depended mainly on the 
position of the lines within the diffraction pattern, and additional 
confirmatory information such as the composition and density of 
the sample, and the chemical properties of the molecules. It has 
also been necessary to assess whether or not a particular structure 
could exist in the light of what else was known about the system 
under consideration.

The number of diffraction lines recorded depends on the 
amphiphiliccompound, the liquid crystal phase, and the composition. 
Somewhere between two and seven lines may be observed, but sometimes 
larger numbers may be seen. When the numbers of lines are few, 
interpretation of the diffraction pattern may be difficult. Even 
when large numbers of lines are observed, close proximity may make 
classification difficult.

Whilst the above approach has lead to some measure of 
success in the identification of the various phases, valuable confirmatory 
evidence may be excluded by ignoring diffraction line intensities.
Due to this, little information relating to the structure of the 
micelles has resulted. Observation of the change in intensities 
of the diffraction lines as the concentration of the amphiphiles 
is varied may provide additional information relating to the micellar 
structure. This is particularly true in the case of the hexagonal 
phase.

The objective of the present study is to establish a mathematical 
model of the scattering of X-rays by the hexagonal phase, based 
upon arrays of infinitely long structured cylinders. The effects 
on the position and intensities of the diffraction lines as predicted 
by the model, and also the manner in which these intensities vary 
as the type, and separation of the cylinders are changed, are assessed, 
with a view to providing a tool for the investigation of the hexagonal 
phase in a more positive and detailed manner.



1.1 INTRODUCTION

In the physical world, matter exists in three main states or
(1 2)phases, gas, liquid and solid. ’ There are however, many 

materials that exhibit properties belonging to more than one of 
these phases. Certain of these mesophases, with properties in 
between those of a liquid and a crystalline solid have come to 
be known as liquid crystals.

Liquid crystals are most commonly composed of elongated 
"rod-like" molecules and exhibit a degree of rotational and translational 
order over a limited range.

(3 4)The optical properties of liquid crystals ’ have been 
studied mostly by the combined techniques of hot-stage and polarisation 
microscopy, which enables the substances under investigation to 
be heated to the ranges of temperature in which the mesophases 
are stable.

The first observations of liquid crystalline behaviour 
were made at the end of the 19th century, principally by Lehmann 
and Reinitzer. It was Lehmann who pioneered the use of the polarising 
microscope in his observations on "plastic crystals", c1877.

1.2 CLASSIFICATION OF LIQUID CRYSTALS

The classification and terminology of liquid crystals 
dates back to the observations made by Friedel c1922. Two types 
of liquid crystal may be distinguished, those whose behaviour 
is temperature dependent, and those whose behaviour is solvent 
dependent. They are known as thermotropic and lyotropic liquid 
crystals respectively.

1.3 THERMOTROPIC LIQUID CRYSTALS

Thermotropic liquid crystals are formed by melting such 
substances as cholesteryl benzoate, cholesteryl chloride, and 
cholestcfylamine.^ Three major types of thermotropic mesophases 
may be distinguished, nematic, cholesteric and smectic.
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The nematic mesophases derive their name from the thread
like lines that have been observed in them when they have been 
prepared by rapid cooling of the melt. There is a high degree 
of rotational order present in the nematic phase and the molecules 
are aligned parallel to one another. Microscopic examination 
of the nematic phase shows that several different textures are 
observed, such as the homogeneous and the homeotropic textures.

As far as is known, all compounds forming cholesteric 
mesophases have molecules that are asymmetric. In general terms, 
this provides an explanation of why the mesophases have twisted 
structures.^ The absence of a long range translational ordering 
of the cholesteric phase (as with the nematic) means that the phase 
is fluid. Over a limited range, there is little physical difference 
between the cholesteric and nematic phases.

Optical and X-ray evidence show that the chief characteristic 
of the smectic mesophase^ is that the molecules are arranged 
in layers with their long axes, or at least their main directions, 
normal to the layer planes. As many as eight different smectic 
mesophases have been identified, of which only three, the smectic 
A,C and B phases are well documented.(6,8)

Some thermotropic liquid crystals have been observed 
to pass through more than one mesophase in between the solid and 
liquid states, for instance, consider a material which has a nematic 
and three smectic phases. The order of the mesophases occurring 
will be:-

Solid -9 smectic B smectic C smectic A -=> hematic =̂> cholesteric 
T increasing
For compounds having cholesteric and smectic mesophases, the occurrence 
of the mesophases will be:- 
Solid -?> cholesteric -? isotropic 
or
Solid smectic A -j> cholesteric -■>cholesteric isotropic 
T increasing ->
Experimental evidence for the above has been found, but not for the 
nematic/cholesteric.mesophases.
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1.4 LYOTROPIC LIQUID CRYSTALS

Lyotropic liquid crystals, as with thermotropics, are 
highly ordered fluid states that are formed by the penetration 
of a solvent in between the molecules of a crystal lattice. Many 
pure substances exhibit thermotropic mesomorphism, but the presence 
of a solvent is always required for lyotropic mesomorphism. Systems 
of lipid and water that exhibit lyotropic mesomorphism have also

(9)been observed to form thermotropic mesophases at high temperatures.

As indicated, lyotropic liquid crystals are systems composed 
of two or more compounds, and may be mixtures of amphiphilic compounds 
and a solvent. The amphiphilic molecules themselves are of two 
main types, those in which the polar group is at the end of a 
long lipophilic chain, and those in which the polar group is linked 
to two chains.

Polar Group
v J

5\/
\
v>S/N

hydrophobic
chains

(a) (b)

Figure 1
An example of a type (a) molecule is sodium laurate.

Ternary, or three component systems, composed of an amphiphile, 
water and a water insoluble compound may also form mesophases.
Here, the water and water insoluble compound are "solubilised" 
in one another by the amphiphile, which acts as a co-solvent.
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With the binary system (of amphiphiles and water), the 
tendency of the polar groups, to associate with each other and 
with the water, causes the molecules to form micelles. It is 
believed that whatever mesophase is formed, the shape of the structure 
is governed mainly by the polar groups. The lipophilic or
hydrophobic part of the molecules forming the liquid-like associations,

1.4.1 Conditions for micelle formation

With very dilute amphiphile concentrations, the molecules are 
uniformly and randomly distributed throughout the solution.
As the concentration increases, the amphiphilic molecules start 
to form groups. Some typical micellar forms are shown below:

A / V \ A ®  7 , /
W  7  ^ v w v \  tefeK  i« I \

| A A A A M  \  d  ® — •

(a) " (b)'

(c) 

Figure 2
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Figure 2(a) represents the randomly distributed amphiphilic 
molecules at low concentrations. Figure 2(b) and (c) are 
examples of spherical and cylindrical micelles, respectively, 
the hydrophobic "tails" of the molecules being grouped within 
the interiors of the micelles, and are fluid in nature. The 
structure of the micelles is properly regarded as being of 
a statistical nature, fluctuating in size and shape, being 
in an equilibrium state with the surrounding amphiphilic molecules, 
temperature being a controlling factor.

Further increase in concentration of the amphiphilic molecules 
results in the formation of lyotropic liquid crystal mesophases, 
which may take up several different forms. The interior of 
the micelles may be regarded as pGckets of pure liquid hydrocarbon, 
which is capable of dissolving hydrophobic molecules that are 
added to the solution. The action of soap as a cleansing 
agent employs this mechanism.

1.4.2 Lyotropic mesophases

(11)The macroscopic structures of lyotropic mesophases ore similar 
to that of emulsions that are stabilised by surfactants. Often 
they are opalescent in colour and gel-like. Difficulties in 
discerning the difference between micellar and liquid crystal 
systems, and heterogeneous dispersions are sometimes experienced, 
but heterogeneous dispersions do not exhibit X-ray diffraction 
profiles as do micellar and mesomorphous phases. The interplanar 
spacings that correspond to the hydrocarbon and aqueous regions 
vary with the amount of water present in the system.

The state of the hydrocarbon chains in the micelles and mesophases
(9)is indicated by the Krafft phenomenon. The Krafft point

is defined for an aqueous solution to be that temperature at 
which the solubility reaches the critical micelle concentration.
As the temperature rises further, the solubility also rises 
rapidly, since the molecules form micelles.

6



Some typical examples of phase diagrams may be found in the 
Handbook of Liquid Crystals (Verlag Chemie 1980), and also 
reference (9) (Lyotropic Liquid Crystals, Advances in Chemistry 
1976). Ternary systems comprising a surfactant, a slightly 
polar additive and water, also display many interesting properties.

1.4.2.1 The Neat Phase

It is generally agreed that this phase is lamellar ije smectic 
with the amphiphile forming double layers separated by water.

Solves

Figure 3

The molecules are arranged with the head groups on both 
surfaces. These layers are practically of infinite extent 
(c.f the layer thickness). The double layers are stacked 
periodically, being separated by solvent. The distance 
Dg is less than twice the molecular length, and is of the 
order 30-40 A. Dg is of the order 20 A.
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1.4.2.2 The Middle Phase
The middle phase seems to be formed only from single chain 
amphiphilic molecules and not of the two chain type. In 
cases where both the neat and the middle phases are formed, 
the middle phase is stable at higher water concentrations 
than the neat phase. X-ray diffraction studies indicate 
that the molecules are grouped into cylinder-like micelles 
of indefinite length. These cylinders are arranged in 
parallel fashion in a 2-D hexagonal array, with water being 
the intervening medium between the cylinders.

Figure 4
As already noted, the middle or hexagonal phase suffers 
from a lack of detailed information relating to the micelle' 
structure, due mainly to the fact that previously only 
diffraction line positions were considered. Only after 
consideration of the known physical and chemical properties 
of the phase, and other supporting information, could a 
micellar model be proposed with any reasonable degree of 
certainty.



.1.4.2.3 The Viscous Phase

The viscous phase appears in some systems at concentrations 
in between those within which the neat and the middle phases 
are stable. The structure of the viscous phase is not 
well understood. The only information that optical investigation 
has so far provided is that the phase is isotropic. X-ray 
studies were originally interpreted to mean that the structure 
was a face centred cubic lattice. However, more recent 
studies have shown that the structure is based upon a body- 
centred cubic lattice.

1.4.2.4 The Isotropic Phase

The isotropic phase has been observed in binary systems 
of water and such substances as decyl-trimethylammonium 
cholide, at higher water concentrations than those at which 
the middle phase has been found to be stable. It has also 
been observed in certain ternary systems. It is thought 
to have a primitive lattice.

1.4.2.5 The Inverse Phases

In some lyotropic mesophases, at greater concentrations 
than those at which the neat phase is stable, the V2  phase 
which is also isotropic, occurs. At still higher concentrations 
the inverse middle (M2 ) phase is formed. The V2  phase, 
as with the neat (V^) phase is not structurally well understood.

The M2  phase has been found to possess a similar structure 
to the middle (M>|) phase, but of an "inverted" nature.
This means that the hydrophobic heads are on the inside 
of the cylinder, enclosing a water core. The medium in 
between the micelles must therefore be of a lipophilic nature.

9



Lipophilic medium

Figure 5

1.4.2.6 Other Phases

Apart from phases with hexagonally arranged micelles, other
(11 12)phases with 2-D periodicity are possiblev 1 J Luzzati_

has encountered a rectangular (R) phase present in aqueous
amphiphile systems. This phase is characterised by two
independent series of interplanar spacings:-
a: a/2 : a/3 and b: b/2 : b/3. The ratio between the
two repeat distances being dependent on the type of amphiphile,
and indicates a 2-0 network with two independent parameters.
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Figure 6

Rectangular phases have also been observed by Ekwall, in 
systems of potassium soaps. This phase appears between 
the middle and neat phases.

The case where the parameters a and b are equal defines 
a structure that might be possessed by the C and K phases

<5 > )US
-i .  — \ O

•3
o 0 o 0 h?

s
i,-

5

Tetragonal C Tetragonal K
Figure 7



These phases have been observed by Ekwall et al in a number 
of amphiphilic systems. They observed a series of X-ray 
reflections with corresponding d-values in the ratios 
1 : i : 1/3. Location of these phases within the phase 
diagram indicates that the structures of the C and K phases 
are complimentary. C being normal, whilst the K phase 
being of an inverted nature. This type of structure implies 
the presence of a reflection corresponding to the diagonal 
of the square lattice. This has not been observed.

1.3 THE ORDER OF APPEARANCE OF THE PHASES

Consider a binary system, maintained at a fixed temperature, 
in which the concentration of the amphiphile is allowed to vary.
As the concentration of the amphiphile increases, the sequence 
of appearance of the various phases would be

Hi
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<4- /  _

*-v//

4>—  — 9 — ©

Cabv\de.us tw
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As shown above, the succession of the phases is:- 

S1C " M1 - V1 " G - v2 " M2

This complete series has not yet been found in any single 
system. Quite often the only sequences observed are G, M and

or , V1 or G, but whichever phases are present, they always 
occur in the order defined above.

1.6 X-RAY DIFFRACTION AND AMPHIPHILIC LIQUID CRYSTALS

X-ray diffraction techniques have been widely applied 
to both amphiphilic and non-amphiphilic liquid crystal systems, 
however, only amphiphilic systems and in particular the hexagonal 
phase, will be considered further.

As noted earlier, X-ray diffraction data alone has not 
been sufficient to categorise a structure uniquely. Additional 
information, such as the composition and density of the sample, 
the size and shape and chemical composition of its molecules, 
has been necessary. Even when such data described above has 
been considered as a whole, a unique definition of the structure 
may not be possible. Examination of any other relevant information 
about the system has to be assessed before any valid predictions 
may be made as to the structure of the sample.

At one time, due mainly to the scarcity of X-ray data, 
all amphiphilic phases were thought to be of the lamellar type.

Amphiphilic liquid crystal systems tend to have diffraction 
patterns characterised by a series of sharp reflections corresponding 
to interplanar spacings in the range 10-100°A, and a wide diffuse 
reflection at 4.5°A. A system containing water will display 
an additional diffuse reflection at 3.2°A. Reflections corresponding 
to large distances or "long” Bragg spacings may sometimes be as 
sharp as those obtained from well crystallised substances. The 
number of reflections observed depends on the amphiphile, and 
on the phase and composition. When few reflections are observed, 
interpretation of the diffraction pattern may be difficult.

13



In order to interpret X-ray diffraction photographs, 
they are treated as powder patterns. The Bragg equation, viz: 

n S  = 2d. sin 8
is used to convert the position of the diffraction lines into 
interplanar spacings 
where A  = wavelength

d = interplanar spacings 
n = order of reflection 

26 = diffraction angle

The symmetry of the lattice may be determined by finding 
an equation with which all the observed spacings agree, hence 
the unit cell dimensions may be calculated.

It is the degree of agreement between the observed and 
the predicted intensities of reflections that determine the validity 
or correctness of the proposed structure. Only a small number 
of reflections are observed in the case of amphiphilic liquid 
crystals, so that comparisons are difficult to make. However, 
as will be shown later, it has been possible to make valid comparisons 
in some cases, when the diffraction patterns were studied as a 
function of the water content. For a structure that is formed 
of aggregates of fixed dimensions separated by variable amounts 
of water, the intensities of the reflections are proportional 
to the Fourier transform of the aggregates sampled at the lattice 
sites. In order for a proposed structure to be valid, the ratio 
of the observed intensities must match the amplitudes of the Fourier 
transform.

1.7 CONCLUDING REMARKS

It has been seen that X-ray crystallographic data alone 
usually does not provide enough information to make unequivocal 
statements about a particular structure. It is easy to misinterpret 
a particular mesophase if only X-ray data is considered. A more 
reliable approach is to construct a series of phase diagrams.
Each phase, and the model associated with it, should progress 
logically as a consequence of its composition within the sequences 
of the phases. In addition, the structural parameters resulting 
from X-ray data based upon the model adopted, should be realistically 
inter-related.

14



2.1 INTRODUCTION

X-ray diffraction provides a powerful and effective tool 
for investigating the structure of many materials. It is possible 
in principle, to determine an exact and usually unique structure 
for atomic and molecular arrays having 3-D periodicity. However 
for a liquid, the situation is different, due to the fact that 
the atoms are not fixed in space but are in constant motion.
Hence only a statistical, time averaged distribution can be established. 
With liquid crystal mesophases, which possess properties intermediate 
between the solid and the liquid states, it is possible to obtain 
information about the structure of the mesophase in proportion 
to the degree of correlation existing along specific directions 
in the array. It is not generally possible to derive a unique 
molecular arrangement directly from the observed X-ray data in 
the case of systems with partial or intermediate ordering. X-ray' 
diffraction photographs tend to be used to distinguish between 
the various mesophases, but little in the way of information about 
the molecular arrangements of the particular phase results.

Many attempts have been made to interpret X-ray diffraction 
data from liquid crystal systems, by the use of highly simplified 
mathematical models based on cylinders and spheres to represent 
the meso-aggregates or micelles..

2.2 OSTER AND RILEY

(13)Oster and Riley applied scattering theory to several 
idealised models of colloids and macro-molecules, in order to 
explain the angular scattering due to solutions of such particles.
In order to compare X-ray and light scattering by the same system, 
the dimensionless parameter kR was introduced, where R is the 
radius of the spherical particle, and k = (4TT/^)sin0, A =  wavelength 
of radiation and 28 = angle between the incident and scattered 
radiation.

16



(13)Their paper also points out that for the simple dipole 
theory of scattering^^ to be applicable, it is a necessary requirement 
that the refractive index of the particle be nearly the same as 
that of the surrounding medium. This condition is almost always 
satisfied in practice with X-rays, and is in the main satisfied 
by visible light, except for example in the case of metallic colloids
which have a high refractlyfe index.

Oster and Riley developed an expression for the scattering 
of X-rays by a uniform solid sphere, viz:

F(kR) = 3 |~_sin(kR) - (kR) cos(kR)
(kR)3

or expressed in more compact form

F(kR) = 3 FT (kR)
V  2 ~TkR)3S7

-(1)

- ( 2 )

where F(kR) represents the scattering amplitude and J3/2(kR) is 
the spherical Bessel function of order V 2. Recognising the fact 
that a solid sphere might not adequately represent certain types 
of molecular aggregates, Oster and Riley introduced the concept 
of a variable thickness shell to take this into account. For 
a shell of thickness (1-C)R, where 1*C>0, then the equation for 
the scattering due to a spherical shell is given by:

F(kR) = 3 (sin(kR) - kRcos(kR)) - (sin(CkR) -CkRcos(CkR)) 
(1-C3)(kR)3

-(3)

Letting C -̂> 1, the scattering amplitude due to an infinitesimally 
thin shell is obtained:

F(kR) = sin(kR) 
(kR) -(4)

The intensity of scattering (F2(kR))due to various thicknesses 
of spherical shells obtained by Oster and Riley using equations 
(3) and (4) are shown below:

17
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Figure 8, curve B, shows F2(kR) for C=0.8 ie for a shell 
of thickness one fifth the outer radius of the sphere. By letting 
C -^1, the scattering intensity due to an infinitesimally thin 
shell is obtained (C); curve(A)represents the scattering intensity 
due to a solid sphere. As can be seen, the F2 curves in figure 
8 fall off more rapidly the thinner the shell.

When certain conditions are met, colloidal particles and 
macro-molecules will aggregate together in solution. If the system 
is sufficiently dilute, then the aggregates may be considered 
to scatter independently of each other, so that the total observed 
scattering is just the summation of the intensities scattered 
by each individual aggregate.

For an aggregate consisting of n particles, each with 
scattering faction F, then the averaged intensity of scattering 
will be F2(kR) multiplied by:

1  ^  ^  sin(krjj) - (5)

r2 1 J (krjj)

18



where r ^  is the distance between the particles i and j. Expression 
(5) originally due to Debye (1915) was modified by Oster and Riley 
to include the factor (1/n2) to obtain the scattering per particle.

For example, for two spheres in contact, the scattering 
equation becomes -

I = F2(kR) [i [2+2 sin (2kR) ]] -(6)
(2kR)

where F2(kR) is the scattering intensity due to the sphere.

Figure 9 shows the normalised intensity of scattering 
per sphere for independent solid single spheres, (curve A) aggregates 
of five solid spheres (curve C), and aggregates of two hydrated 
spheres (curve D).

0-2 _

5Z

Fi-gure 9

For small values of (kR), the scattering intensity falls off 
more rapidly, the greater the complexity of the aggregate.
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MS')In a following paper^1̂ ', Oster and Riley considered 
the scattering due to systems of long macro-molecules, by likening 
the molecules to rigid, smooth cylinders with internal radial 
structure, in order to account for the electron density variation 
within the molecules. The basis for this particular model's 
approach being argued as follows -

On the macroscopic scale, systems of long particles may 
be isotropic or anisotropic. Whilst isotropic systems are composed 
of collections of cylindrically symmetric domains, anisotropic 
systems have domains with preferred orientations. It was known 
that very long particles tend to show correlation in orientation 
even in fairly dilute solutions, thus enabling considerable simplifications 
to the mathematics of the situation, reducing a 3-D problem to 
one in 2-D. As a further qualification, the rods or cylinder- 
like particles were considered to be parallel to each other, within 
their independently scattering domains. Due to the fact that 
only two dimensions are considered, the intensity of scattering 
is localised in a plane at right angles to the axes of the cylinders.

Diffraction patterns, for various structured cylinders 
were produced, the mathematical forms of the solutions being conveniently 
expressed in terms of the Bessel functions J0(X) and J^(X). The 
nature of the solutions imply that the diffraction patterns must 
be of an oscillatory nature.

For an infinitely long solid cylinder Oster and Riley 
obtained the following expression for the scattering amplitude

F(kR) = 2 J1 (kR)

and for a cylindrical shell of thickness (1-C)R.

20



F(kR) = 2 (kR)J,(kR)-(CkR)Jt(GkR) -(8)
(kR)2(1-C2)

where k denotes the same parameter used in the earlier Oster and 
(13)Riley paper R represents the radius of the cylinder. Both

equations (7) and (8) represent the normalised scattering amplitude 
for both types of cylinders. From equation (8), by allowing 
C *■> 1, Oster and Riley obtained the scattering amplitude due to 
an infinitely thin cylindrical shell:

F(kR) = J0(kR) - (9)

Equation (9) is equivalent to the Fraunhofer diffraction by a 
circular line aperture.

The results obtained, for the cases discussed above, 
by Oster and Riley, are represented graphically below:

So Lid Ĉ Lt'Â ler
ShUl llo?e tkidO 
«-Thin Shell

2
6c n

Figure 10

As can be seen from Figure 10, the central peak tends 
to become sharper as more material is removed from the interior 
of the cylinder, the first and second subsidiary peaks becoming 
more pronounced. Oster and Riley showed that for small values 
of (kR), equation (8) may be approximated by the expression - 

F2(kR) = 1 - i (kR)2(1 + C2) - (10)

21



Hence showing that for small values of (kR) the scattering is 
practically independent of the internal structure of the particles.

Oster and Riley then consider the scattering due to limited 
assemblies of cylindrical particles. By analogy with Debye, 
and in similary manner to their earlier paper^-^, the normalised 
intensity of scattering due to an array of structured cylinders 
was obtained:

n n
I - 1/n2 F2(kR) %  £  JQ (kSpq) -(11)

P P

Where Spq = separation of the p,qtfc particles. At this 
stage, the important concept of the swelling factor was introduced,
being defined by the relation X  = S/2R. This was intended to 
take account of the fact that the cylinders might not always be 
in contact, owing to inter-particle repulsion or hydration.

For two parallel cylinders, equation (11) becomes:

I = 1/22 F2(kR) [2 + 2 J0 (kS)] - (12)

and for seven cylinders grouped in a centred hexagonal array, 
equation (11) becomes :

K = 1/72 F2(kR) [7 + 24J0(kS) + 6J0(2kS) + 12J0 (V3kS)] - (13)

where kS = 2 #kR

The normalised intensity of scattering, obtained by Oster 
and Riley, for several independent aggregates of seven cylinders 
in a centred hexagonal array, at various values of ̂  are shown 
below: -
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As can be seen from Figure 11, increase in interparticle
separation (S = 2^R), causes an increase in intensity of the
subsidiary diffraction peaks. The second of these subsidiary
peaks, moves towards the position corresponding to the (10) planes
in a 2-D hexagonal lattice of infinite extent as (^) increases.
It was noted by Oster and Riley that the first subsidiary peaks
shown in Figure 11, have no equivalent in the case of the infinite
2-D lattice. The positions of the diffraction peaks resulting
from an infinite 2-D hexagonal lattice may be calculated from

(16)standard crystallographic theory.^ ' See also Appendix B.

2.3 BURGE

A diffraction pattern may be envisaged as the combination 
of two effects, the scattering due to each individual unit cell 
or cylinder, and the interference of these scattered waves in 
a manner determined by the spatial distribution of the cylinders.
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(17)Burgev , considered inter-particle interference effects
in some detail. Starting with seven points in a centred hexagonal
array, and expanding the array or lattice by adding complete hexagonal 
"rings", Burge produced interference functions for up to eight 
concentric hexagonal arrays. Each configuration containing 3t2+3t+1 
lattice points, where t = the number of complete hexagonal rings 
in the array.

The form of the interference function used by Burge was 
essentially the same as that used by Oster and Riley, (see equation (11)), 
but in a slightly modified form, viz:

^max
T (x) = 1/n2 [n + £  b-J0(r .x)] - (14)

j = 1 J
where x = kS, and the number of vectors between the cylinders 
or particles, in any plane parallel to the equational plane of 
length rjS, is bj.

The following co-ordinate system was defined by Burge, 
in which any inter-cylinder vector may be described by two integers 
(«l,m), where l2-m*£0.

m
71
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/

/
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Figure 12
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The separation r- or r, between lattice points (or J 1 j ni
the centres of the cylinders) being defined by the relation:

r2 m = I2 + Tm + m2' -(15)■̂,m

For example, from Figure 12, the separation between the lattice 
points A and B is

ra,b = 32+3.1 + 12 = vT ?

The following results were obtained by Burge, for a series 
of interference functions with up to 8 complete rings of points.

b 1

0-

2.
LX) Lx)

ICO 0 0

Figure 13

Figure 13 shows the variation of TCx.) with x, for lattices containing 
from 7 to 317 points, ie t = 1 to 8, in the ranges (a) X = 0 to 
X = 3, and (b) x= 5 to X= 9. As can be seen from the diagram, 
the more points included in the lattice, the sharper the main 
peak becomes. Also note that due to the factor (1/n2), the more 
points that are added to the lattice, the less intense the peaks 
become, as shown by Figure 13b. It may also be seen from Figure 13b 
that as the number of lattice points is increased, there is a progressive 
movement in the position of the peaks towards the equivalent (10) position 
of an infinite 2-D hexagonal lattice.
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(18 19)Two subsequent papers by Burge ’ introduced a modified 
form of the interference function. The first of these papers^^, 
discussed the structure of bacterial flagella, and introduced 
the concept of different levels of ordering of the lattice, the 
model was defined as follows:

Let the normalised, cylindrically averaged intensity 
of equatorial X-ray scattering from a molecular unit be F2(kR). 
Suppose that S of these identical units be arranged into a filament, 
and let m filaments be arranged into a flagellum, furthermore 
let n flagella be associated into a coherent bundle, forming the 
specimen. Thus, according to Burge, the normalised, cylindrically 
averaged scattered intensity is given by the expression:

- (16)I(kR) = F2(kR) T(U) T ' (U)TM(U)
S S

where T(U) = 1/S2 £ £ J0 (KUpq)

p q

T ’(U) = 1/m2 m
£

m
£ Jo (WJp ,q,)

P 1 q\
n n

T"(U) =1/n2 1 £ Jo (kUp"q"^
P" q"

The pth and qth units within a filament being separated by a distance 
Upq in the equational plane, the p'th and q'th filaments are separated 
by Up * q •, and the pMth and q"th flagella by UpHqii* ^o^^pq^ e^c 
being the zero order Bessel., functions.

Four rotation axes are implied by the form of equation 
(16), the centre of the scattering unit, the centre of a filament 
the centre of a flagellum, and the centre of the lattice within 
which the flagella are packed.

The X-ray diffraction predicted by the use of the above 
model, thus arises from three different systems in which short 
range order exists, and consequently X-ray reflections may occur at 
spacings not found in extended structures. Burge developed expressions 
for interference functions with numbers of components ranging 
from 2 to 10, corresponding to the models shown below:
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Figure 14

The interference functions corresponding to the various 
structures above, being given by:

T(U) = 1/22 [2 + 2Jq (KU)] - (17)

T(U) = 1/32 [3 + 60o(KU)] - (18)
T(U) = 1/A2 [A + 10Jo(k'U) + 2J0 (V3kU)] - (19)
T(U) = 1/52 [5 + 1AJ0(kU + AJ0 (V3kU) + 2J0(2kU) - (20)

T(U) = 1/62 [6 + 18J0(KU) + 6J0(V3kU) + 4JQ(2kU) + 2J0 (V7kU)] - (21)

T(U) = 1/72 [7 + 2AJ0(kU) + 12J0(VJkU) + 6J0(2ku£) - (22)
T(U) = 1/102 (10 + 38J0(kU) + 22J0(\/3kU) + 16J0(2kU) + 12J0(\/7kU)

+ 2J0 (3kU)] - (22)
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The first model (model 1) proposed by Burge to describe the 
X-ray diffraction! from bacterial flagella was that the scattering 
unit was taken to be a single ot-helix. A filament was taken 
to be composed of 19oc-helices in a centred hexagonal array.
The interference function being given by:

T(U) = 1/192 [19 + 84J0(kC) + 54JQ(2kC) + 24Jo(3kC) + 6J0(4kC)

+ 60Jo(-f3kC) + 72 J0(V7KC + 24J0(VT3kC) + 18 JQ(2V3KC)] - (23)

where C = separation between centres of nearest neighbours.
A trigonal array of 3 filaments, with separation b between

centres, was taken to represent a flagellum, with corresponding 
interference function:

T ' (U) = 1/32 [3 + 6J0(kb)] - (24)

A coherent array of three flagella, with separation v 
between centres, having the interference function

T"(U) = 1/32 [3 + 6J0(kV)] - (23)

So that the complete scattering equation being composed of equations
(23), (24) and (23) becomes:

I2 (kR) = F2 (kR) T(U) T'(U) T"(U) - (26)
where F 2(kR) representing the scattering function due to theoc- 
helix.

Various values for the ratio b/c were taken and the corresponding
intensity curves calculated. Scattering by a single flagella
was found to be sensitive to this ratio.

Figure 15 shows the normalised, cylindrically averaged, 
intensity of scattering by an isolated flagellum, and a coherent 
aggregate of three flagella in trigonal positions.
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Figure 15

In the second model (model 2) considered by Burge, each 
filament was assumed to be composed of seven o<-helices, and seven 
filaments were assumed to make up a single flagellum. This means 
that the interference functions T(U) and T'(U) are of the same 
form:

0 G
T(U), T 1(U) = 1/72 [7 + 24J (Kb) + 12J„(V3Kb) + 6J (2Kb)] - (27)

c = separation of ot-helices within a filament 
b = separation of filaments within a flagellum

Figure 16 shows the results obtained by Burge for the 
model 2 case.
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In order to account for certain observed reflections,
Burge modified model 1 by the introduction of small systematic 
departures at the level of the filament, i£ a cylindrical lattice 
of 19 components was considered in contrast to a hexagonal lattice 
with the same number of components.

It was found by Burge that the general features of both 
the cylindrical and hexagonal forms of T(U) were similar, but 
in the cylindrical case certain values of T(U) were enhanced by 
a factor of three compared to the corresponding values of T(U) 
for the hexagonal case.
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Both of the models evaluated by Burge gave reasonable 
agreement with experimental data in terms of both positions and 
intensities of the equatorial diffraction lines. However on the 
basis of observed diffraction evidence, model 2 gave marginally 
the better results, but by allowing lattice distortion effects 
at the T(U) level, as described above, model 1 could not be discounted.

(19')In the second of the two papers^ , Burge applied the 
approach outlined above to the proteins, feather keratin and f- 
actin. The problem of the number of filaments to include in 
the array was approached by trial and error. Comparison of experimental 
and theoretical data showed that a fibril composed of seven filaments 
gave the closest match in the case of feather keratin. As no 
specific model was available for the molecular unit, it was taken 
to be a uniform solid cylinder.

Burge also pointed out that for a restricted hexagonal 
lattice, non-Bragg maxima are possible at spacings higher than 
the (10) spacing of the infinite 2-D hexagonal lattice.

2.4 LUZZATI AND CO-WORKERS

Luzzati et a l , ^ ^  discussed the liquid crystalline phases 
of amphiphile/water systems, in a general way, distinguishing 
the various phases by the positions of the X-ray diffraction lines,- 
and by observing the effects of temperature on the diffraction 
patterns, were able to deduce the structure of the paraffin chains 
of the amphiphilic molecules.

The above evidence enabled Luzzati to make certain predictions 
about the nature of the various phases, for example, the middle 
phase being composed of a series of cylindrical particles of indefinite 
length, the separations of which being governed by the diffraction 
line spacings. The radius of the cylinder being obtained via 
the concentration and the partial specific volume of the amphiphile.
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(21)A subsequent paper examined the characteristics of 
the various phases separately, by the use of the combined techniques 
of polarisation microscopy and X-ray diffraction. It was noted 
that only a relatively small number of diffraction lines were 
recorded for the various phases, three lines being recorded in 
the case of the middle phase, and only two for the lamellar phase.
For the hexagonal phase, the intensities of the diffraction lines 
were found to be dependent on the concentration of the amphiphiles, 
the (10) reflection always being present and of large magnitude, 
whilst the (11), (20) reflections were observed to vary in magnitude, 
the (11) reflection tending to zero intensity at high concentrations, 
whilst the (20) reflection was at first appreciable, then diminished, 
and finally increased in intensity as the concentration increased.

The model electron density distribution used by Luzzati 
was based upon the structured cylinder model proposed by Oster 
and Riley, d 3')

(22)In a further paper, Luzzati and Reiss-Hussonv ' presented 
an interpretation of absolute low-angle X-ray scattering by micellar 
solutions of soaps and detergents in water, pointing out that 
if the scattered intensity is determined only on a relative scale, 
intepretation of the data may only be carried out with reference 
to some arbitrary model.

They also pointed out that in the past, in order to facilitate 
the interpretation of the diffraction patterns from micellar solutions, 
simplified mathematical models, whose structure was concentration 
independent, were put forward.

By contrast, it was claimed that low-angle X-ray scattering, 
measured on an absolute scale should provide a more precise and 
systematic structure analysis, the basis of the method being to 
compare the recorded angular scattering by an amphiphile solution 
to the total energy present in the incident X-ray beam. By comparing 
a series of curves of absolute scattering intensity versus scattering 
angle at various concentrations, for a particular amphiphile,
Luzzati and Reiss-Husson were able to deduce micellar shape and 
dimensions.
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In an attempt to solve the phase problem in relation
('23')to the study of biological membranes, Luzzati and Tardieu * 

used a pattern recognition approach. The mathematical technique 
of which was equivalent to looking at all the possible Foufrier 
transforms consistent with the amplitude of the reflections and 
recognising the most satisfactory one. In contrast to the usual 
methods that seek to determine phase as a function of the experimental 
data, their method consisted in generating all possible combinations 
of phase v.alues. These phase values are then screened in accordance 
with a set of criteria related to some of the known, or postulated 
properties of the system under consideration.

These unknowns are determined by consideration of previous 
crystallographic evidence, and known physical and chemical properties 
of the compounds under examination. More importantly the method 
relies on the structure under examination being centro-symmetric.

This technique of pattern recognition was claimed to 
offer significant savings in the time required to analyse a particular 
structure, over the traditional method of generating the Fourier 
transform from the experimental evidence.

2.3 BLAUROCK AND WORTHINGTON

Blaurock and Worthington^^ considered the treatment 
of X-ray diffraction data from planar and concentric multilayered 
biological structures, such as retinal rods, nerve myelin, and 
other fibrous proteins such as collagen. These structures have 
well defined repeating units, with linear or repeat distances 
of order 300-400°A. Whilst the low-angle spacings provide information 
about the lattice or repeat structure, the X-ray intensities convey 
information about the large scale structure of the unit cell.

The purpose of the paper was to derive a relation between 
the integrated intensities and the Fourier transform of the unit
cell, in order to test the validity of a proposed model against
the observed X-ray data.
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The relation between the Fourier transform of the unit cell 
and the integrated intensities being defined as follows:

1(h) «  A(h) J T(h) | 2 - (28)

where h is an integer defined by the relation a* = h/d, and a* 
represents reciprocal space co-ordinates.

In order to obtain |T(h) ] from the intensity 1(h), the 
value of &  (h) must be found.

Blaurock and Worthington set out to obtain A(h) for various 
structures possessing rotational symmetry. As they pointed out, 
difficulty is encountered in recording sufficient data to ensure 
adequate resolution of the Fourier synthesis. The resolution 
available is ~  d/2hQ, where hQ is the largest order of diffraction 
recorded. The value of hQ is determined by many factors, but 
A(h) also influences the number of orders recorded. In the case 
of collagen, for example, up to twenty-five orders may be recorded.

(25)In a further paper, Worthingtonv ' considered the interpretation 
of low-angle X-ray data from planar and concentric multi-layered 
structures by the use of 1-D electron density strip models. When 
a low-angle diffraction pattern is recorded, only a limited set 
of intensities, J(h) are obtained. The problem is to deduce 
an accurate structure from these values.

Worthington also compared the Fourier synthesis method 
to the model approach as follows. In the Fourier synthesis approach, 
the phase must be determined, and a Fourier series representation 
must be computed. However, with the model approach, the predictions 
of a proposed model must be compared to the experimentally obtained 
values J(h)obs-

As already stated, the Fourier synthesis approach requires 
knowledge of the systems phases, which have to be determined by 
the use of heavy atoms, or from shrinkage or swelling phenomena.
Phases are not easily obtained in low angle X-ray studies. Hence 
the phase problem poses a definite limitation to the Fourier synthesis 
technique. Even if the phase problem were solved, interpretation 
of the Fourier synthesis in terms of absolute electron densities 
-remains.
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Due to this limited resolution of the Fourier synthesis 
technique, and the absence of absolute electron density information, 
the preferred method is to test a proposed electron density strip 
model against the observed data d(h)0^s

Worthington pointed out that in order to advance a suitable 
model, that physical and chemical data such as microscopy, bi
refringence and composition need to be considered.

In order to assess the validity of such a model, Worthington 
defined the R value -

R= [ J'(h)calc]i - W ( h ) obs] M  .(29)

1 |  [ KJ(h )obs] M

where J ’(h)caic = caLcuLatpc\ d.\Qroc(iov^

J(h)obs = ued d\44rad±a\

K  -  cx\\\o il< ai-Lc\.v_ - F a c t o r  -  c_ov\u€ lv \s  o b s - P v v jr d  r l a V a
L-o ci\accbofc€. volLxjE^ .

The value of R should be close to the error in obtaining
[J(h)0bs]2 . However, even if the R value obtained from a particular
model satisfies the above criterion, the question as to whether 
or note the proposed model is the correct one still remains.
All the features of the proposed model should be in keeping with 
the known physical and chemical properties. Also, a sharp minimum 
in the value of R should be observed as the model's parameters 
are varied. If several models were shown to fit the above conditions 
satisfactorily, the one with the smallest R value should be taken 
to represent the unit cell.

Use of the R factor defined by Worthington has been made
(7£\ 71 7R 79)by several workers,v ’ » 1 notable amongst them being Luzzati

in investigating the structure of low density lipo-proteins and 
by Blaurock and Nelander in investigating the disorder in nerve 
myelin.
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Application of an electron density strip model was made 
by Blaurock^^ in a paper discussing the diffraction of X-rays 
from a lipid bi-layer with added protein molecules. The paper 
showed that the effect of adding small amounts of protein to one 
or both surfaces of the bi-layer causes a cross-interference effect, 
or a ripple in the diffraction pattern. It was claimed that 
the amount, thickness and distance of the protein layer from the 
bi-layer can be predicted from the observed ripple.

The problem of deciding whether the protein is on one 
or both sides of the layer is not quite so easy to accomplish.
This difficulty may be overcome to a certain extent by carefully 
recording and measuring the intensity near the centre of the diffraction 
pattern, only then may the structure by inferred with reasonable 
accuracy. When large amounts of protein are added, profound 
changes in the diffraction pattern are said to result.

As an example of a typical electron density profile considered 
by Blaurock, Figure (7 shows a bi-layer membrane with protein added 
to one side in a saline environment.
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In arriving at the model, Blaurock made^ certain simplifying 
assumptions were made. First that the bi-layer and the protein 
layer were parallel to one another spaced a distance 5 apart, 
and second that both profiles were symmetric.

Blaurock noted that the effect of increasing the separations 
between the bi-layer and protein increases the frequency of the 
ripple in the diffraction pattern, and by allowing the protein 
layer to "thicken-up" -has the effect of damping out the ripple 
near the origin. If the value of S had been unknown previously 
it could be estimated from the diffraction pattern ripples.

Blaurock concluded the paper by noting that the principal 
agent leading to the form of the diffraction pattern is the contrast 
between the average electron density of the protein and the surrounding 
water. Consequently, the diffracted intensity will be strongest 
near to the origin, falling off to a low value near the Bragg 
spacing equal to the half width of the protein layer profile.
Beyond this it was noted, small subsidiary bands may be present.
With the lipid bi-layer, it is the contrast between the average 
electron densities of the head groups and the fatty chains that 
determine the structure of the X-ray diffraction pattern, being 
of low intensity near the origin, but when the head group layers 
are well defined, produce an exclusive series of diffraction bands.

The validity of the theory put forward above by Blaurock^^ 
was put to the test in a further paper^^, which discussed the 
structure of a lipid-cytrochrome C membrane. After adding cytochrome 
C to lipid vesicles, the predicted ripple in the diffraction pattern 
was observed. Analysis of this ripple enabled the confirmation 
of the structure proposed by earlier workers.(^2,33)

2.6 LE55LAUER

Lesslauer^^ considered X-ray diffraction by various 
systems of fatty-acid multilayers, such as barium stearate and 
barium myristate, the multilayers being treated as simple trial 
structures, in order to investigate low-angle diffraction experiments 
with biological membranes.
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Fourier syntheses were then carried out (using scaled 
amplitudes of the structure factors), on the experimental data, 
providing electron density maps of the bilayer profiles on an 
absolute scale of electron density. The electron density maps 
adopted as the correct models for the bilayers were selected by 
consideration of the known physical and chemical properties of 
the multilayers. The main criterion for the selection of the 
appropriate Fourier map being that it should have a region representing 
a flat hydrocarbon core.

Lesslauer found that for all of the barium and magnesium 
stearate multilayers that were considered, there was only one 
Fourier synthesis out of the many possible solutions that gave 
a flat region in the electron density profile that could be attributed 
to the hydrocarbon core of the bilayer.

The scaling factors needed in order to derive the absolute
electron densities from the Fourier maps were calculated, in the

(25)manner of Worthingtonv J , from the known chemical properties 
of the compounds.

In his concluding remarks, Lesslauer stated that low- 
angle X-ray diffraction provides a significant advantage over 
microscope techniques in the study of biological membranes, because 
no prior sample preparation such as fixation, staining or dehydration 
needs to be done.

What remains essential is to show that not only the X- 
ray spacings, but also the intensities of the recorded diffraction 
data, contain reliable information relating to the structure under 
study. This can only be done by investigating simple trial structures, 
hence inferring the structures of the more complex biological 
membranes for which they act as models.

In a further paper, Lesslauer considered the angular 
width of the X-ray diffraction peaks from fatty-acid multilayers with 
few unit cells. The purpose being to observe how the width of 
the diffraction peaks varied as the number of unit cells in the system 
was changed, this number being known from the method of preparation.
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The theoretical basis for the model being that for a 
structure with few unit cells, the form of the diffraction pattern 
is determined by the scattering function of the unit cell being 
sampled at specific points (of the reciprocal lattice) by an- interference 
function whose main peaks possess finite width due to the low 
numbers of unit cells.

X-ray diffraction data was recorded from barium stearate 
multilayers, with numbers of layers (N) ranging from 2 to 10.
It was observed that the positions of the main diffraction peaks, 
although shifting slightly, did not significantly depend on N.

By selecting a single, well defined diffraction peak 
(ie strong and with equal levels of background radiation on either 
side of the peak), Lesslauer clearly demonstrated that the angular 
width of the diffraction peaks varies as (1/N).

It was also noted that for small N (^ 2), secondary diffraction 
peaks were observed, in the regions in between the main lamellar 
peaks, the existence of which increased the difficulty of finding 
the true minima on either side of the main peaks.

By observing that the change in width of the diffraction 
peaks, as the number of unit cells vary, was due to the jstructure 
Factor | 2 being sampled at the reciprocal lattice points, Lesslauer 
noted that direct analysis of the diffraction pattern due to a 
multilayer was feasible, since the number of unit cells (N) was 
known exactly.

2.7 SUMMARY OF PREVIOUS WORK

Oster and Riley, after introducing the concept of the 
structured cylinder as a scattering unit, only considered the 
two extreme cases of the solid cylinder and the infinitely thin 
shell, in various simple arrays with various packings of the cylinders.

In consequence, there is a lack of information relating to arrays 
of cylinders with structures intermediate between the limiting 
cases described above, and since the scattering profile due to 
the solid cylinder is substantially different to that of the thin 
shell case, predictions made on the basis of the above models, 
for these intermediate cases, may be misleading.
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Burge, in examining the effects of inter-particle interference 
in close packed hexagonal arrays, introduced the concept of 
the multiple interference function, but did not consider model 
scattering units.

The work of Luzzati and co-workers serving to identify 
the various liquid crystalline phases, and to make general predictions 
as to the structures of these phases, Their predictions being 
based on a combination of X-ray diffraction data (mainly diffraction 
line positions) and supporting chemical and physical data.
In the study of biological membranes, Luzzati used the method 
of pattern recognition in order to solve the phase problem.
Again possible structure solutions being proposed after consideration 
of the relevant physical and chemical data.

Blaurock and Worthington outlined the usefulness of 
the electron density strip model in considering the treatment 
of X-ray diffraction data from concentric multi-layered systems.
The modifications to the diffraction pattern due to a lipid 
bi-layer, by the addition of protein molecules to the system, 
was considered by Blaurock, noting in the investigation that 
the form of the diffraction pattern was due to the contrast 
between the electron density of the protein and the surrounding 
water medium.

Lesslauer used the concept of a model, this time due 
to an actual fatty-acid multi-layer, in order to investigate 
the low-angle X-ray diffraction experiments with biological 
membranes, using the Fourier synthesis technique on the experimental 
diffraction data to generate electron density maps of the structure.
The map chosen to represent the structure being determined by 
corroborative chemical and physical data.
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Both the Fourier synthesis method and the model approach 
used to derive the structure of a particular liquid phase have 
their drawbacks. The Fourier synthesis method experiences 
difficulty in selecting the correct phase model, and supporting 
chemical and physical evidence is required before a structure 
may be proposed. With the model approach, only a limited 
range of model scattering units have been considered, and little 
detailed information is available concerning the effects of 
packing on the various arrays of model cylinders' diffraction 
patterns.
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CHAPTER 3

MODEL PARAMETERS - THE ELECTRON DENSITY DISTRIBUTION
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3.1 INTRODUCTION

In concept, the diffraction model that is now to be described, 
and later used to examine the scattering behaviour of various 
arrays of cylinders, may be regarded as a function of three variable 
parameters or arguments.

Diffraction pattern = f (ED,L,S) - (1)
The components of equation (1) will now be discussed in outline, 
so that an overview of the model may be gained, and in more detail 
later on when specific questions need to be answered.

First the electron density distribution (ED) of the cylinder, 
which bears a (1:1) relation to the distribution of matter within 
the cylinder, and determines its scattering behaviour. Second, 
the lattice interference function (L), which describes how the 
scattered waves interfere due to the spatial arrangement of the 
array of cylinders. Third, the swelling factor (S), which governs 
the spatial separation of the cylinders within the array. Since 
the lattice function and the swelling factor are inter-related, 
due to the fact that each, in its own way, describes one aspect 
of the cylinders' distribution in space, the conceptual equation 
(1) might be more properly written

Diffraction pattern = f (ED,L(S)) - (2)

The behaviour of the diffraction pattern, as will be shown 
later, is due to the subtle interplay of the effects produced by 
often seemingly slight variations in the model's parameters.
In order to understand the underlying diffraction mechanism, each 
of the above parameters and its variations will be examined in 
turn.

Once the individual behaviour of each of these parameters 
has been established, an analysis of the mechanism behind the complete 
diffraction model will be attempted.
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3.2 THE ELECTRON DENSITY DISTRIBUTION OF THE CYLINDER

The central concept of the diffraction model used in this 
thesis is that the electron density distribution (ED) of the cylinder 
or motif may be represented by an electron density strip model.
Before this is discussed in detail, it seems appropriate to briefly 
consider why the ED is so important a concept to the model's scattering 
mechanism.

to£u;£
The electric field £  of an E-M^acts upon the electric 

charge q of a particle producing a force defined by:
F = q E - (3)

This force F_ causes the particle, mass m, to experience an 
acceleration jl, governed by the relation

F_ = m a_ - (4)

combining (3) and (4)

a = (q/m) E - (3)

Classical E-M theory states that any charged particle in a state 
of oscillation will emit E-M waves, of intensity proportional to the 
(acceleration)2 of the particle

I x (a)_2 = (q/m)2 (E)2 - (6)

From equation (6), it can be seen that the intensity of the radiation 
scattered by a particle is inversely proportional to the square 
of its mass. Since (me/mp) is approximately 2000, electrons will 5da(tef 
E-M radiation of the order of 4 x 10^ times more effectively than 
protons, and must therefore be regarded as the primary scatterers 
of E-M radiation.

3.2.1 The Electron Density Strip Model

An electron density strip model is simply obtained by dividing 
the model cylinder into a series of concentric shells, each 
with a discrete electron density (Pe). By allowing the number 
of shells (N) to increase indefinitely, the discrete electron 
density distribution tends towards a continuously varying function 
of the cylinder's radius (R).
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The scattering function of a structured cylinder with a finite 
number (N) of shells (or its equivalent electron density strip 
model, with a finite number of strips) will now be developed, 
by considering the cases of the solid cylinder and the thin 
shell and then generalising the theory to cover the N shell

3.2.1.1 Scattering from an isolated solid cylinder

If the cylinder is long c.f. the wavelength of the X-rays 
used then the scattering due to a thin slice of the cylinder 
may be taken to be representative of that due to the whole 
rod.. Thus reducing a complex 3-D problem to a relatively 
simpler one in 2-D.
Any point within the cylinder may be expressed in cylindrical 
polar co-ordinates (r,0,z). However, since only a thin-slice 
of the cylinder need be considered, the z co-ordinate is 
a constant.

In 3-D space, £  described the position of a point wrt an 
arbitrary origin 05 „..
i , .: dr may be taken to define an element of
volume dV. In 2-D space, dr defines an element of area

case.

.’. (r,8,z) -> (r,0)

dA. ■.

Figure 18 
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Consider an incident wave \l/- ^VpCl^vl), if vp0

\jj| - &*p(t£\£)is taken to be 1, then:—

A 2-D object may be thought of as f  dr_ , the scattering effect 
of the obstacle will then be the sum of the individual scattering 
effects due to each dr_.

If f(r) defines an amplitude function for the obstacle, then 
f(r)dr represents the scattering effect of each element of 
area dfi.

If dS represents the scattering by an element of area dft, 
then

dS = f (r) drexp (ik;*r_) 
or dS = f(r_)exp(ik»t ) dr_

so that S = f  dS = C  f(r) exp(ik*r) dr - (7)
This is generally written as :

F(k) = C  f (r)exp(ik«r) dr - (8)
/ Sa\L£ ~  ~

is a function of k_, the wave vector.

Consider a slice through the cylinder
y

> -c
A ilfc e x T n a t iu G L y  —

JC d e fin e s . UOQ\ie'/€crCC 

CS.Y\c\. \£\_~ tnc.id2.ut. VjQVJ£.
- Slatted (aJ £i\J£.

Lcl)

Figure 19
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Let
and

1 k\ = k

'y

= k cos 0  
= k sin 0

similarly r, = r cos 8 
= r sin 0

\ t J  = r  
The dot product Jk * _r may be written as

ii * L  ' kxrx + k y r y

- (9)

- (10) 

- (11)

So that using (10) and (8)
F(k) = S  f(£) + kvr )) d £ L-. - (12)

allr y y

where dr_ = dA :
Due to the fact that cylindrical symmetry exists, equations 
may be written in terms of polar co-ordinates, so that the 
results may later be more conveniently expressed in terms 
of the Bessel functions, JQ and .

— dA. - 'c dx d6

Figure 20

From Figure 20 it may be seen that
dA —  r rdrd© - (13)

hence substituting (9), (10), (11) and (13) into (12) gives:-

F(k) = f(r) exp(i (kcosXrcosS + ksinJZrsinB)) rdrdB
all A

(14)
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Here the S is over two variables, r and 9, so that

F(k) = [ f f(r) exp(i (kcos0rcos0 + ksinj/lrsin0) rdrdB - (13)
r=Q 8=0

(13) may be re-written as:^ 2 m
F(k) = f  ( f(r) exp(ikr (cos#cos0 + sin0sin9) rdrdB - (16) 

o °0
But (cos0cos0 + sin0sin0) = cos(0 - 8) 
writing (JZf - 0) = A  so that cos(^-0) = cos SL.

and d0 = d A

Integration limits for JV are 0 -> 2TT
cxO 2ft

Re-writing (16) F(k) = §  J f(r) exp(ikr cosA) rdrd0 - (17)

casting (17) into the form °F(B) = f  f(r)rdr F^exp (ikrcos/0 d A
0 0 . .- (18)

and intergrating wrt gives
cx£)

F(k) = S rf(r) 27TJ (kr) dr - (19)
0 o

It is convenient to introduce a "normalising factor" at this 
point. The amplitude of the scattered wave is governed by f(r)
'and the maximum value of the scattered wave is given by
S T f(r_)dr_, since exp(ikr) has a maximum value of ±1.

Returning to equation (8), and dividing by f(r_)dr_, then a

relative scattering factor frrei(k) may be defined as:

F (k) = vT f(r)exp(ikr)dr - (20)

f(r)dr

writing f(r_)d_r in terms of (r,0)
~  y  2TT
A. f(r_)d£ = J  S  f(r)rdrd8 - (21)
—  o 0

CA

= T  2TTrf(r)dr - (22)o
and dividing (19) by (22)

Frel(k) = 4  2 ffrf(r)J0(kr)dr ■ - (23)

5^  2 TT r f(r)dr .
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f(r) cannot exist outside the obstacle, and within the obstacle 
can have a maximum value of 1.

i.e. f(r) = 1 for 0 r 4. R
= 0 for r >  R

so that equation (23) may be written 

Frel(K) = .So 2TT r(1)J0(kr)dr

J T  2 TT'r(1 )dr

Now rJQ(kr)dr = (R/K)J^(kR)

so substituting in (24)

- (24)

- (25)

Frel(K) = 2T(R/k)J1(k/R) 
2TT (R2/2) 
2J1(kR)

(kR) “
- (26)

this then is the scattering amplitude due to a solid cylinder.

3.2.1.2 Scattering from an Isolated Cylindrical Shell

Consider now a cylindrical shell, of thickness (1 - C)R, 
where 1 > C > 0. The amplitude function only exists within 
the confines of the shell walls, so that: 

f(r) = 0 
= 1 

= 0
Equation (23) gives

CR> r > 0 
R >  r ;> CR 
r ^ R

Frel(k) = ^ 2 m ( 1 ) J 1(kr)dr 

X  21J r(1)dr

°r Frel(k) = 2 T T  r(R/k)J,,(kR) - 2 T ( C R / k ) J 1 (CkR) - (27)

Frel(k) 2

2T(RV2) - 21T(CRV2)

RJ,(kR) - CRJ-j (CkR)
_  k(1 - C 2)R2

so that multiplying top and bottom by k

- (28)

F(k) = (kR)J1 (kR) - (CkR)J1 (CkR) 
(kR)2(1 - C2)

- (29)
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This represents the scattering amplitude for a thick cylindrical 
shell.
As the walls of the shell decrease in thickness, so the 
"thickness factor" C increases.
Consider equation (22), with c -5>1, and for convenience write 
kr = c*

- (30)so that f (lOt = 2<eL j  \ L a . ~  CC^-2 i iCcx j

Expanding J((°<) as a series:

3\fo) =Ot_ _ og_, -)- (31)
2 2?ll2l 2s al Bi '

and
CotH, Lco& - C?^2 _ + __ + , .. •

2- 2?Ull o^.s! ? Z I M  
Substituting (31) into (30) gives

F fiO = 2_ 
reL

J_- <^l+c2) + 4- . .
2 2^I! 2! a5 2(31

As c -> 1 then F n(k) ^  14 od
rel ‘ i W

so that in the limit, for an infinitely thin cylindrical 
shell, the scattered amplitude is given by:

Frel(k) = J0(kR) - (32)
(13)These results were obtained by Oster and Riley in 1932.

3.2.1.3 Scattering from a Structured Cylinder with N Shells

The solution of F(kR) for a cylindrical shell is obtained 
by making the assumption that f(r) is constant ( = 1) within 
the shell walls, the various thicknesses of shell wall being 
obtained by allowing C to vary.
F(kR) for a cylinder consisting of series of concentric shells 
may be obtained by splitting the integration range (R -» 0) 
in equation (23), into several sections, and summing the 
separate integrals due to each of these sections.
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Equation (23) states:J.Frel(kR) = f R 2fUf(r)j„(kr)dr - (23)

f 27Trf(r)dr 
vJ0

Dividing R according to the number of shells (N) defined 
by the model, and letting f(r) take the appropriate values 
for the electron densities of each individual shell, then:

f (xRj - |27Tfot3o6!.T)dr InTPJottr'i dtf.).;..*IZn-rtlofiiYldr
Jc-R c„.,R o

r R /-Ck)-i R / 'C i
\27hrezdvf +  ITIvi'S cLf + ..*•+ ( 2iT i'Ydr J J j

Cjj--, R O
- (33)

where C>(;^...etc are the electron density values for the 
Nth (N-1)th...etc shells.
Solving equation (33), the scattering amplitude due to a 
structured cylinder with N shells is given by

(«t _____________________________________ ;___________________________
Ccx + (e-ci} cl, + dVS-eicLj. L'O-tyC,7!

- (34)

Each shell of the cylinder (or strip of the electron density 
profile) is represented by a pair of terms in equation (3 4 ).
For instance, terms relating to the (N-1)th shell involve 
the factor CfSj_-j, and those relating to the innermost shell,
C-]. Since the factor Ĉ j varies in magnitude from zero to 
unity, the actual values of relating to a particular shell 
are given by Cp = P/N, for example for a model containing 
N=100 shells, then

^N-1 = 0.99 and CC = 0.01 etc.
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3.2.2 The number of strips in the model

The problem of the number of strips to include in order to make 
the model realistic, is resolved as follows. Since it is the 
aim of the work only to establish a comparative description 
of the behaviour of the diffraction pattern, i.e. the prediction 
of trends that occur as the various parameters are varied, it 
follows that an infinite number of strips need not be considered. 
Only a relatively small number of strips (^10) need be included.

The process of dividing the cylinder into a series of concentric 
shells, and obtaining the equivalent electron density strip 
model is best illustrated pictorially as follows:

(a)
Figure 21

(b)



Figure 21 represents the concept of a structured cylinder with 
N concentric shells (a), and its equivalent electron density 
strip model (b), which represents the electron density distribution 
across a thin slice of the cylinder. Note that the shells 
are divided into equal widths, not equal areas, so that the 
amount of matter contained within each shell will increase with 
shell radius, hence each shell's contribution to the total scattering 
by each cylinder will also vary.

In order to describe and compare the different electron density 
strip models effectively, some form of shorthand notation is 
required. The method adopted here will now be described.
Examination of Figure 21 (b) shows that the diagram is symmetrical 
about the P0  axis (due to the radial symmetry of the cylinder), 
so thutonly one half (say the left) is needed to describe any 
particular strip model or cylinder.

As it is only the relative electron density distribution of 
the cylinder that is important in determining the scattering 
envelope, a normalised form of the electron density strip model 
will be used. That is to say, the maximum value of P0  occurring 
in any of the strips will be one.

The electron density profile (EDP) of a structured cylinder 
may now be defined numerically as:

EDP = (DDDDDDDDDD) 
where each digit (D) represents the relative electron density 
of each strip, when read from left to right (ie from the outer 
to the inner shell).
For example: —
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- 0 *M- 
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E D P - L  1 1 2<s f c b L . U . 1 1 )

Figure 22

Figure 22 represents a structured cylinder with 5 levels of P .
Note that decimal points are omitted from the numeric representation 
and to avoid confusion between unity and 0 . 1  densities, the 
former carries an underscore.

3.2.3 Model cylinders and their Scattering Profiles

Before considering the scattered intensity profiles (SIP) which 
are produced by various model.cylinders, it is worthwhile to 
consider how such a profile from a particular cylinder varies 
according to the number of strips included in the EDP. To illustrate 
this, a "sawtooth" electron density profile will be used, and 
several approximations, each with a different number of strips, 
will be presented.
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Figures 23 (b)-(d) represent the successive approximations to 
the "sawtooth" profile shown in (a). The SIP produced by each 
of these approximations consists of a central main peak, and 
a single subsidiary peak (as shown in diagram 1). In order 
to illustrate the variation in SIP of each approximation, the 
changes occurring in this subsidiary peak, as the number of 
strips included in the model is varied, are plotted in diagram 1 d
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In the case of the two stage approximation, a peak height of 
1^0.043 (intensity units) is observed at a kR value of^5.0.
As can be seen the values of I for the 5 and 10 stage models
are 0.030, 0.053 at kR values of 4.9, 4.8 respectively are observed.

As can be seen from Figure 23 all the approximations employ, 
to a greater or lesser extent, an overestimate of the area of 
the original sawtooth electron density distribution, the estimate 
of this area improving with the number of strips included in 
the model. The tightening spread of the SIP for the 2,5 and 
1 0  strip models seems to indicate that a limiting curve is being 
approached, thus lending support to the choice of a 1 0  strip 
model as sufficient to describe an electron density profile.

3.3
3.3.1 Scattering profiles due to a series of Cylindrical Shells 

of various thicknesses

In order to illustrate the change in the model's SIP, as the 
transition from a solid cylinder to a thin shell occurs, the 
following series of cylinders is used: (1 1 1 1 1 1 1 1 1 1 ) to (1_0 0 0 0 0 0 0 0 0 )
with an electron density / decrement (&.Pe) of (-1_) per strip.
Each of these cylinders, together with its SIP is illustrated 
in diagram 2y and plotted as the normalised intensity-of scattering 
vs kR.
The following points of interest may be noted from the diagrams.
The solid cylinder (diagram 2a) has only a single main peak 
of half width 3.2kR, and a subsidiary peak positioned at 5.3kR 
and of intensity 0.01. No other peaks are observed, at the 
level of resolution of intensity used. As the thickness of 
the shell decreases (more zeros appear from right to left in 
the EDP), a number of subsidiary peaks appear and increase in 
intensity.
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With the 80% thick shell (diagram 2b), the subsidiary peak has 
increased in intensity to 0.03, and its position has shifted
slightly to a kR value of 5.2. No other peaks are observed.
As the shells thickness decreases further, to 60%, a more pronounced 
change in the intensity of the subsidiary peak occurs. A maximum 
value of 1=0.07 is recorded at a kR value of 5.0. Again, no
other peaks are recorded.

At a thickness of 40%, the position of the subsidiary peak has 
moved to kR=4.7 and has an intensity of 0.12. An additional 
peak occurs at a kR value of 8.5, of intensity 0.03.

The 20% thick shell exhibits 4 subsidiary peaks over the range 
shown (0-20kR). The first and largest of these subsidiary peaks 
has an intensity of 0.15, and is positioned at a kR value 4.2.
The second subsidiary peak both in position and magnitude has 
an intensity of 0.07, and is situated at kR=7.7. The other 
peaks diminish progressively in amplitude as kR increases.

The SIP of an infinitely thin cylinder forms one of the limiting 
cases for the scattering function (the other being the solid 
cylinder). Any other type of cylinder or its equivalent EDP 
must therefore give rise to an SIP intermediate between the 
2  limiting cases described above.

The SIP of an infinitely thin shell is described by the function 
[JQ(kR)]2. This function will therefore provide the limiting 
case, both in terms of the observed or predicted intensities, 
and also in terms of the positions that are occupied by the 
subsidiary peaks.

Variations in the magnitude and positions of the subsidiary 
peaks (diagram 2 ) bring to the fore, several important points.
As the shell's thickness changes from 100% to 80%, there is 
only a relatively small change in intensity from 0.02 to 0.03, 
in the first (and only) subsidiary peak. The difference between the 
80% thick case and the 60% case is (0.07-0.03)=0.04, as opposed to the 
0 . 0 1  difference in intensity between the 1 0 0 % and 80% thick shells.
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From the 60% to the 40% thick shells, a difference of (0.12- 
0.07)=0.05 is observed, but from the 40% to the 20% case, a 
difference in intensity between the first subsidiary peaks of 
(0.15-0.12)=0.03 is observed.

The only case where a substantial second order subsidiary peak 
is observed, at least at the resolution used for plotting, are 
the 20% and the 40% thick shells. It will be noted that there 
is a greater change in peak height or intensity for this second 
order difference (0.04) than the corresponding change between 
first order peaks (0.03), for these two cases.

As already indicated, accompanying the change in magnitude of 
the subsidiary peaks there is also a shift in the positions 
of these peaks. For the first order peaks, positional shifts 
from a kR value of 5.3 for the SIP due to a solid cylinder, 
to a kR value of 4.2 due to the 20% thick cylindrical shell, 
are observed.

Again, as with peak intensities, there is a correspondingly
greater positional shift in the second order peak's position
for the 40% and 20% thick cases, than in the first order positions.

3.3.2 Scattering profiles due to a series of cylinders with 
"sawtooth" electron density profiles

The SIP due to various sawtooth distributions are compared using 
diagram 1. The first order peak for the two level EDP (diagram 
1a) has an intensity of 0.043, and is centred at kR=5.0. As 
the number of levels in the EDP change, a slightly different 
sawtooth profile results, with corresponding changes in peak 
heights and positions. The positions of the first order peaks 
occurring are kR=4.9 for the 5 stage, and kR=4.8 for the 10 
stage model. Corresponding intensities being 0.050 and 0.053 
respectively. Only small variations in the intensities of 
the first order peaks are observed, a range of 0 .0 1 , compared 
to the corresponding variation in intensity (0.14) for the first 
order peaks of the rectangular EDPs illustrated in diagram 2.
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3.3.3 Scattering profiles due to a series of cylinders with 
two stage electron density profiles

Diagram 3 shows the effect of reducing the electron density 
of the inner portion of the cylinder, effectively creating a 
2 level electron density distribution. The maximum intensities 
for the first order subsidiary peaks for the three models are
0.025, 0.045 and 0.070 for the models defined as (a), (b), (c), 
and their respective positions at kR values of 5.1, 5.0 and 
4.9. A "smooth" variation in peak intensity is to be expected 
due to there being only a reduction in electron density in one 
region of the cylinder. The limits of this sequence must be 
on the one hand the SIP of the solid cylinder, and on the other 
hand, the shell of 50?o thickness, with the equivalent electron 
density values.

Diagram 4 illustrates the SIPs due to a "standard" sawtooth 
electron density distribution, and its corresponding mirror 
image distribution. As can be seen, this reverse distribution 
behaves in a different manner to the "standard" distribution.
The "standard" SIP has a main peak of half width 3.2kR, and
the first order peak has intensity 0.053, at a kR value 4.8.
The reverse distribution has no subsidiary peaks whatsoever,
and the central or main peak has a half width of 5.2kR.

It is interesting to compare this "reverse" SIP, with that due 
to the solid cylinder, as shown in diagram 2a. The solid cylinder 
has a first order peak, the "reversed" cylinder has none. The 
half width of the central peak due to the solid cylinder is 
3.8kR, whereas the "reversed" distributions central peak is 
5.2kR, quite the largest by far of all the models illustrated. 
Discussion of this will be deferred until after the presentati.on 
of the next and final set of diffraction profiles.
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3,3.4 Scattering profiles due to the "moving-shell" series

The effects produced by an EDP in which a pair of shells is 
separated by increasing distances across the cylinder's radius, 
whilst one of the shells remains in a fixed position are shown 
in diagram 5. The basic EDP used is (11_00000000), progressing 
through intermediate stages such as 0  0 0 0 0 1 0̂ 0 0 0 ) to the limit 
of the sequence (lOOOOOOOCn ).

The SIP due to the 20% thick shell used as the basis for the 
series is shown in Diagram 3a. The central peak is of half 
width 2.40kR. As the separation between the shells increases, 
by increments of 10%R, so the half width of the central peak 
increases from that of the 2 0 % thick shell, to a value of 2.60kR 
for the case of the 2 0 % separation between the shells (diagram 
5b), up to a value of 2.80 for the 20%R separation. The half 
width of the central peak remains constant at the value 2.80kR, 
up to a separation of 60%R between the shells, thereafter decreasing 
to a value of 2.60kR at 70%R separation, and again decreasing 
to a value of 2.40kR at the maximum separation of 80%R. The 
constancy of the central peak's width occurs over the range 
from 30% to 70%R, measured from the inner to the outer shells,
i.e from shells 3 to 7 inclusive.

As the separation of the two shells increases, a shift in position
of the first subsidiary peak occurs, from a value of kR=4.2
for the 20% thick shell, to a kR value of 4.6 for a separation
of 20%R between the shells. This position is maintained up
to a separation of 30%R, and thereafter the position of the
peak is observed to move towards the origin as the shells' separation
increases, achieving a position of kR=4.1 at the maximum separation
of the first subsidiary peak from the origin (kR=4.6) is achieved
as the "moving" shell "occupies" shells 6  and 7, as measured
from the inner to the outer shell.
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Accompanying this change in the position of the first subsidiary 
peak, there is also a corresponding change in intensity. The 
20% thick shell has an intensity of 1=0.15 for the first peak, 
and as the separation between the shells increases there is 
a corresponding diminution in amplitude, until a minimum value 
of 1=0.02, at a kR value of 4.3 is achieved, for a separation 
of 50%R between the shells. The intensity remains at this level 
as the separation is increased to 60%R, but as the separation 
increases still further, to the maximum possible value of 80%R, 
the intensity starts to increase, until it attains the value 
1=0.10 at the maximum possible separation. The changes occurring 
in the values of the intensity and position of the first subsidiary 
peak follow opposite trends, from minimum to maximum to minimum 
for the separation from the origin, and from maximum to minimum 
to maximum for the changes in intensity. The positions of 
these relative maximum and minimum values of position and intensity 
do not coincide over all of their respective ranges. The 
maximum positional movement of 4.6kR away from the origin is 
constant as the "moving" shell occupies shells 3 to 7, whilst 
the minimum constant intensity 1 =0 . 0 2  occurs only when shells 
6  and 7 are occupied.

Variations in the position and amplitude of the second subsidiary 
peak are not so well defined as in the case of the first order 
peak. With certain of the cylinders no second peak is observed 
at all. For the 20% thick shell, the second peak occurs at 
a kR value of 7.8, and is of intensity 1=0.07. At the 10%R 
level of separation, the position of the second peak has moved 
to a value of kR=8.0, and has an intensity of 0.04. As the 
shell's separation increases to a value between 20% and 40%R, 
no second peak is observed. At the 50% level of separation 
between the shells, the second subsidiary peak re-appears, at 
a position of kR=7.1, and an intensity 1=0.03. As the separation 
increases: to the maximum possible, the magnitude of the peak 
increases to a maximum of 0.12, at a kR value of 7.4, for the 
70%R separation, and then decreases to an intensity of 1=0.10 
at kR=7.4 for the 80%R separation.
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Compared to the first subsidiary peak variation, there is a greater 
relative change in magnitude of the observed intensities in 
the case of the second subsidiary peak. Also, it will be noted 
that the variation in intensity of this peak decreases to a 
minimum value, increases to a maximum and then decreases again, 
whereas the first subsidiary peak decreases to a single minimum 
value and then increases again.

Returning again to the 20?o thick shell on "base" EDP, over the 
range shown (0-20 kR), there are additionally third and fourth 
subsidiary peaks situated at kR values of 11.2 and 14.7, with 
respective magnitudes 1=0.04, and 0.02. At a separation of 
10?oR between the shells, the third and fourth peaks are absent.
At 20?oR, a fifth subsidiary peak appears at kR=16.80 and is 
of intensity 1=0.02. No second, third and fourth peaks are 
observed. At a separation of 30?oR, the first, fourth and fifth 
peaks are present and at 40?oR, peaks one, three and four 
may be seen. Subsidiary peaks one, two and three are present 
at 50?oR separation, and again on the 60?oR case. An additional 
fifth subsidiary peak is noted at the 60?oR level of separation.

At the 70?oR level of separation, five subsidiary peaks may be 
seen, but in the case of the limiting separation, only the first 
four peaks are present.

The third subsidiary peaks, when present increase from a value 
of 1=0.04 for the 20?o thick shell, to a value of 1=0.07 for 
the 50?oR separation, and then decrease to a value of 1=0.02 
in the 70%R case, but in the limiting 80?£R separation case, 
increases again to a value of 1=0.03.

If a comparison is made of the variation in intensity over the 
first three subsidiary peaks, the following points are of note.
As the shell's separation increases, the intensity of the first 
peak decreases smoothly to a minimum, and then increases. The 
second subsidiary peaks intensity variation decreases to a minimum, 
increases to a maximum, and then decreases again, up to the 
limit of the shell's separation.
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Variation in intensity of the third subsidiary peak takes the 
form of a function which decreases to a minimum value, then 
increases to a maximum value, followed by another minimum, and 
finally increasing again as the limiting separation case is 
approached.

A further interesting point becomes evident if a comparison 
is made beteween the relative peak intensities occurring in 
the series showing the transition from the solid cylinder (diagram 
2) to the thin shell, and the series discussed above. In the
former series, each SIP exhibits a gradual fall off in intensity
as the peak's positional number increases, but in the latter 
series, there are several cases where this pattern is not followed.
This is clearly demonstrated as the separation of the two shells 
exceeds the 50?oR value, and at this stage, no particular pattern 
to these variations is evident.

Insufficient numbers of the fourth and fifth subsidiary peaks 
are present to enable any reliable conclusions to be drawn as 
to the behaviour of the SIPs, due to the various cylinders, 
in this region.

3.4 ANALYSIS OF THE SCATTERING PROFILES

In order to analyse the governing mechanism that produces
the SIP due to a structured cylinder, it is necessary to look in 
detail at the scattering function, as described earlier. This 
will now be presented in a slightly simplified form, so that any 
relevant points may be illustrated more clearly.

The scattering equation (34) for a structured cylinder 
may be re-written as:

F(X) = 2 [P1 Q(X)J1 (X) + (P9 -P1 0 )(0.9X)J1 (0.9X) +...+(P1 -P2 )(0.1X)J1 (q.1X)]

[(X)j(P1 0 +(P9 _p1 0 )0.92+...+ (Pr P2 )(0.1)2]

the resultant intensity of the scattered radiation is given by 
I = [F(X) ] 2
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In order to make clear the contribution of each individual 
shell to the SIP, a slight re-arrangement in the terms of equation
(35) is required. So that:
F(X)=2 [P1 QX(J1 (X) - 0.9J1 (O.9X))+ P9 X(0.9J.,(0.9X) - 0.8J., (0 .8 X))

+...+ P2 X(0.2J1 (0.2X) - 0 .1 J-|(0 .1 X))+ P1 X(0 .I^CO. 1 X)]

[X2 (1-0.92 )P1q+ (0.92 -0.85P9+ ... +(0.22 -0.12 )P2  + ( O . D ’P.,]

' - (36)

From equation (36) it may be seen that the cylinder’s 
scattering function is composed of the weighted sum of the differences 
between pairs of Bessel functions of the first order, which represent 
the contribution of each shell to the SIP. Each shell's contribution 
to the total pattern is weighted according to its radial position 
and relative electron density. This may be represented mathematically 
as follows:

A NF(X) = PN(X) [(N/1 0 X) - (N-1/10) J1 (N-1/10X)]

X 2 (NF) - (37)

where A|SjF(X) is the contribution of the Nth shell to the scattering 
amplitude

= relative electron density of the shell

N = the shell number (1 for inner shell, 10 for the 
outer)

NF = the "normalising factor" which is a function of 
the electron density distribution as a whole.

The two weighting parameters (electron density and shell 
position or number) introduce the necessary variation into the

A N sub-function in order for the diffraction pattern to occur 
at all, otherwise the paired Bessel functionsr of the typps shown. 
Ih-’eqUatioh^ (37),' would simply..-cancel each other out. Although 
only two basic parameters are present (apart from X), variation 
in&ng, is controlled by three factors.
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First, it is the shell's position that controls the relative 
rates of variation of the pair of Bessel functions that combine 
to produce A a n d  the rates of variation of these two functions 
are in the ratio N:(N-1), the function involving the factor (N- 
1 ) varying the slowest rate of the two.

Second, it is again the position of the shell that is
responsible for the relative proportion or ratio of the two Bessel
functions included i n A K1, but third, it is the relative electronN
density that "weights" the contribution of each individual shell 
to the total scattering equation.

The normalising factor (NF) that is used to force the 
SIP to take a maximum value of unity (at the origin), may be seen 
to represent the total number of electrons that form the relevant 
EDP.

The following diagram serves to illustrate the complex 
manner in which the pairs of Bessel functions that compose the 
various A^ sub-functions behave.

Figure 24 shows 3 pairs of related Bessel functions that 
might typically make up the A ^ sub-functions of the scattering 
equation. The resultant composite (or difference) function of 
the pairs of Bessel functions are shown as the dashed lines on 
their respective diagrams.

The form of this composite function, may be seen by inspection 
to depend on the relative rates of variation of the component Bessel 
functions. Figure 24a shows J^(X) and (0.9X). The rate of 
variation(R) of the two functions is given by ( X / 0 . 9 X ) .1.
The composite curve is seen to oscillate periodically about the 
(X) axis, the position of its zeros being determined by the places 
where the two Bessel functions intersect each other.

Figure 24 shows the pair of Bessel functions J,j(0.5X) and J,j(0.4X) 
together with their derived composite funciton. The R value of the two 
functions is ‘-'1.3, which means that the two Bessel functions will be even
more out of phase, compared to those in Figure 24a this is reflected by the
fact that the position of the zeros of the composite function have changed, 
as have the values of the relative maxima and minima, compared to the
composite function shown in Figure 24a.
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Figure 24c shows the pair of functions (0.2X) and (0.1X) 
the former function varying at twice the rate of the latter (R=2.0).
The composite function has changed considerably (over the ranges 
shown), compared to cases (a) and (b).

With reference to Figure 224 a,b,c and equation (37) it 
may be seen that the three pairs of Bessel functions chosen are 
those that appear in the 4^ sub-functions corresponding to the 
outer and inner-most shells (Figure 24a, c) and the fifth shell 
(Figure 24b) of the model cylinder.

The effect of changing the shell’s number or equivalently 
its position, on the composite function on moving from the outer 
to the inner shells is to magnify or "exaggerate” the "basic" composite 
function shown in Figure 24a. Composite curves (Figure 24a and 
c) are in the main similar in form or shape, except in the position 
of their corresponding zero values and magnitudes.

This is to be expected, since the rates of variation of 
the two pairs of Bessel functions are almost the same, (1.1 and 
1.23).

A more pronounced change in the composite function . 
shown in Figure 24c is expected since the rate of variation of 
the paired Bessel functions is almost twice the rates in the other 
two cases.

The range of values of X chosen for Figure 24 a,b,c corresponds 
approximately to the range of values used to plot the SIP. Over 
this range, the composite functions that serve to make up the "core" 
of the A g sub-functions grow progressively more simple as the
shell number decreases, but the absolute values or magnitudes of 
the functions increase. Hence the contribution of each shell 
to the diffraction pattern should increase as the shell number 
decreases, if the ̂  function were to be governed purely by composite 
function alone. This is not the case, due to the second and third 
controlling factors previously mentioned.
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With the second controlling factor in t h e ^  sub-function, 
account is taken of the fact that the actual composite function 
is made up of the contributions of "weighted" pairs of Bessel functions, 
which serves to reduce the absolute values of the composite function 
in relation to its shell number or position.

It is at the level of the third controlling factor where 
the complete SIP is assembled from the sub-functions, A  due 
to each individual shell. Each sub-function's contribution to 
the SIP is weighted according to the electron density value occurring 
in the particular shell to which it relates.

On the basis of the above discussion, an attempt will 
now be made to analyse the behaviour of the SIPs due to the various 
types of structured cylinder outlined earlier.

The "rectangular" series of EDPs due to the solid cylinder/ 
thin shell set of structured cylinders will now be considered, 
recalling equation (36)

F(X)=2[P,0 (X)(3,(X) - 0.93,(0.9X))+ P9 (X)(0.93,(0.9X) - 0.83,(0.8X))
+ --  + P,(x) 0.13,(0.1X)]

X 2NF - (36)
A solid cylinder is defined by the particular case of a structured 
cylinder with constant electron density throughout _ie P^g=P^= ....=P^=1.0 
which means that all of the ten shells making up the amplitude 
function F(X) are equally weighted in their contributions. The 
normalising factor (NF), both here and throughout, serves merely 
to adjust the scale of the resultant SIP to a suitable value.
The intensity is derived from the square of F(X), and this process 
'will serve to highlight certain features of the F(X) or its derived 
function [F(X)]2.

As the transition from a solid cylinder to a thin shell 
occurs, the effect upon the scattering function is that the contributions 
of the certain shells are absent, because the electron density 
(P ) in these particular regions are zero.
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Referring to diagram (2) it will be seen that the effects 
of reducing the shell's thickness on the various SIPs shown, are 
in accord with the theory just developed. The transition from 
a solid cylinder to an 80% thick shell produces only a relatively 
small difference between the respective SIPs. This corresponds 
mathematically to the slowest varying composite functions, that 
carry the least weightings (lowest shell numbers), being omitted 
from the scattering equation.

The biggest relative changes between SIPs occur when the 
shell's thickness lies in the 80% to the 40% range, thus indicating 
that it is the cylinder's mid-radius shells, in the numerical 
rang'e 3 to 7, or their corresponding A ^  sub-functions that have 
a major impact upon the structure of the SIPs. This may be explained 
by reference to Figure 24. Although the composite functions that 
compose the various A ^  functions tend to increase in absolute 
value as the shell number decreases, it might be supposed that 
the A^ functions due to the low numbered shells (1 ,2 ) make the 
biggest contribution to the SIP. This is not so, due to the fact 
that the highest value composite functions due to the lowest numbered 
shells also carry the lowest positional weightings. One parameter's 
effect opposes the other. Even though the higher number shells 
carry the largest positional weightings, the relatively small contribution 
of the relevant composite functions tends to oppose this, effectively 
lessening the contribution due to the higher numbered shells.
It is with the middle order shells that the composite function, 
or the Bessel functions that form the basis of it are sufficiently 
well separated that the effect of the positional or shell weighting 
is overcome, therefore making the middle orders have the biggest 
impact upon the SIP.

From the 40% to the 20% thick case, and then to the infinitely 
thin shell, the relative changes between the corresponding SIPs 
will be less marked due to the fact that a limiting scattering 
function is being approached.
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The variation in SIPs, as noted earlier, is most evident 
in the first order peak heights and positions, and also in the 
changes in shape (not magnitude) of the central or main peak.

It is worthy of note at this point that the normalising 
factor is self-adjusting to the number of shells that are included 
in the scattering function, due to the fact that electron density 
factors are present within the (NF) itself.

Diagram (1) shows the SIPsdoe.to the various sawtooth 
approximations, and illustrates the result of a scattering function 
that contains the contributions of all ten shells of the cylinder, 
weighted according to a series of decreasing electron density values
(1.0, 0.9, 0.8,....... , 0.1) because the three EDPs used are very
similar, particularly in the five and ten level cases, no significant 
changes in the SIPs are to be expected. Comparing the 2 level 
EDP to the five and ten level cases, it might be expected that 
a significant difference should occur here.

The differences between the 3 EDPs presented are of relatively 
small changes in the electron density weighting of the shell's 
composite functions and these small changes in weighting are not 
of a sufficient size to alter the shape of the SIPs in a major 
way.

Again diagram (1), showing the effects of reducing the 
electron density of the inner five shells, relative to the remainder, 
illustrates the effects of electron density weighting on the scattering 
function due to a full set of ten shells. Only as the weightings 
of the inner five shells approach the value 0 .2 , does any significant 
variation in the SIP occur.

The "standard" sawtooth EDP and its mirror image distribution, 
diagram (4) pose a more interesting test of the theory just outlined. 
The shape of the reverse distribution may be accounted for in the 
following way.
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The shells that normally contribute the most to the SIP, 
are the middle to the outer shells, as in the cases of the solid 
cylinder etc, and the standard sawtooth, where more or less "normal" 
electron density weightings of the A  ^ functions are present.
However, in the case of the reverse sawtooth, the weightings used 
in the scattering function are reversed. This results in the 
contributions of the middle to outer shells being reduced at the 
expense of the inner shells with less varying A  ^  which are greatly 
enhanced, compared to the standard sawtooth. The contributions 
of the fastest varying functions are diminished as the contributions 
due to the slowest varying are enhanced.

The net result of this is that the SIP due to the reverse 
sawtooth has only a single main peak of half width 5.2kR, which 
is by far the largest central peak width noted of any of the models 
used.

The importance of the terms due to the mid-radius shells 
to the scattering profile will now be examined with the aid of 
the moving shell series of EDPs as presented in diagram (5) and 
Figure 24 in which a pair of shells are selected, one of which 
is fixed as the 1 0 th and outer shell and the other being allowed 
to move in relation to fixed shell. The effect on the scattering 
equation may be seen as follows:
Re-calling tequation (35)

F(X)=2[P1 0 (X)(J1 (X) - 0.9J1 (0.9X)) + P9 (X) (0.9^ (0.9X) - 0.8J1 (0.8X)) + 
  + P1 (X)(0.1)J1 (0.1X)]

(X) 2 C(1-0.92 )P1q + (0.92 -0.82)P + ....  + 0.12P«)]
- (35)

Since the outer or 10th shell remains fixed in position the term 
in equation (35) relating to this viz [P^q (0^(X))-0.9J^(0.9X)] 
will always be present. The effect of the moving shell on the 
remaining terms in equation (35) will be to select the terms that 
relate to the current position of the moveable shell for inclusion 
in the "reduced" scattering equation, and exclude the rest.
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The normalisation factor being treated in similar manner. 
Equation (36) reduces to: v

F(X)=2 CP1 0 (X)(J1 (X) - O.^CO.9X)) .+ PN(X) (N/IOJ^NX) - (N-1/10)
• J-, (N-1/10X)) ]

X 2 [(1-0.92 )P1CJ + ((N/10) 2 - (N-1/10)2 )Pn]

- (37)

where N = shell number

Since the electron density values for these two shells are taken 
to be 1 .0 , P q  = P^ throughout the "moving-shell" series of cylinders. 
For the two shells in contact the moving shell is number N=9.
Inserting this value on N, together with the appropriate P0  values, 
has the effect of cancelling out the two terms in equation (3) involving 
the function J^(0.9X), thereby reducing the equation to the variables 
J-j(X) and J,j(0.8X). Diagram (4a) shows that four subsidiary peaks 
are observed in the case of the two shells in contact, 0 1 0 0 0 0 0 0 0 0 ).

Moving on to diagram (4b) the (1010000000) case, equation 
(38) has become a function of two clear-cut A ^  sub-functions, 
as opposed to the previous case where the two sub-functions merged 
into one. The effect of the interaction of two composite functions 
on the SIP diagram (4b) is the reduction in the number of subsidiary 
peaks from four in the close contact case, to two with reduced 
amplitude in the present case.

Diagram (4c) illustrates the (1001000000) case, where 
the first order peak has been reduced in intensity even further 
compared to the latter case, and the second subsidiary peak has 
disappeared. However a fifth subsidiary peak has been introduced

Diagram (4d) has three subsidiary peaks at positions one, 
four and five, and represents the case where the two shells are 
separated by three equivalent of three "empty" shells.

72



At shell separations of between three and five, diagram 
(4 d,e,f), only three subsidiary peaks are observed of varying 
orders. The interesting point is that these subsidiary peaks 
become more closely spaced i£ from (1,4,5) to (1,3,4) to (1,2,3) 
for the three cases.

These latter three cases correspond to the terms in equation
(36) that are due to the mid-range shell positions of the structured 
cylinder. This means that the corresponding composite function 
involving the two relevant Bessel functions is maximising its contribution 
in this region.

As the separation increases to the maximum possible (1000000001) 
the number of subsidiary peaks increases to five, and finally back 
to four at maximum separation.

The scattering function for the cases approaching maximum 
separation, is composed of the A ^  sub-function for the outer or 
tenth shell, combined with, nd one of the sub-functions relating 
to the inner shells. ,At almost maximum separation the relevant 

A^j function is varying at a slow rate(c.f that of the shell),
so that here the SIP ought to be composed of the pattern due to 
the thin shell (of 10?o thickness) with slight modification due 
to the more slowly varying, and low positionally weighted inner 
shell. Diagram (4d,h,j) apparently confirms this.

As will be noted from the diagrams (2,3,5), the intensities 
of the subsidiary peaks tend to decrease with peak position number, 
but with the "moving-shell" series diagram (5), this is not always 
the case. This is presumably due to the fact that interactions 
between the sub-functions making up the latter case are not concealed 
by the contribution of additional shells that are present in cases 
such as the solid cylinder etc.



CHAPTER 4 

MODEL PARAMETERS - THE LATTICE FUNCTION
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4.1 INTRODUCTION

The concept of the lattice interference function as used 
by Oster and Riley^^’^ ^  and Burge, forms the basis
of the model's interference function, the behaviour of which is 
examined as the number of points in a centred, hexagonal lattice 
is varied.

As is shown, an infinite lattice need not be considered, 
since a sufficiently close approximation to the interference effects 
produced by an infinite lattice is obtained from an array with 
only a limited number of points.

Starting with a centred hexagonal array consisting of 
seven points, the resulting behaviour of the interference function 
is examined as the lattice is expanded by adding extra lattice 
points. This is accomplished by the process of adding complete 
concentric "rings" of points to the basic array of seven points.

Figure 25
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A series of 4 centred blocks of lattice are shown in Figure 
25. The block L, consisting of the central point and ring 5

l_ 2  consisting of (L-j + S-j), L3  consisting of (L2  + S3 ) etc.

Figure 26

As can be seen from Figure 26, the lattice points for 
the series of centred lattices fall on a series of concentric
circles. The number of circles associated with each hexagonal 
ring increases as the ring number increases and is given by the 
relation:

C = (S + 2)/2 S even
= (S + 1)/2 S odd ; ”

For example, if S = 2 then (2+2)/2 = 2 circles are required to 
describe the second ring, and for S = 3 then (3+1)/2 = 2 circles 
are required. Inspection of Figure 26 shows that for any odd 
numbered ring S, then the S^h anc  ̂ (S + 1)th rings are described 
by the same number of circles.
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The radii (R^) of the various circles are related to the 
ring number (5), by the following relation:

RS(K) = [S(S-K) + K2]*R - (2)
where K = 0,1...S

Rg(K) = radius of a particular circle related 
to the Sth ring 

R = radius of , the basic array.

As an example, consider the 4th ring of lattice points.
The radii of the various circles relating to the 4th ring are obtained
from equation (2) by allowing K to take the values 0,1,...S, so 
that S = 4, the values of Rg(K) obtained are 4R, \Fr3R, N/12R, \Zl3R,
4R. Hence it is seen that only three circles of radius 4R, Vl3R,
VTlR are needed to describe the radiaL symmetry of the fourth ring. 
Figure 27 illustrates the case for the fourth ring.

Figure 27

The multiplicities of the values of Rg(K) occurring for each particular 
ring are determined by the number of times (T) a particular circle 
cuts.a side of the related hexagonal ring. Referring to Figure 
29 it can be seen that T can only take two values, namely T=1 or 
T=2.
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Figure 27 illustrated a series of concentric lattices, 
consisting of from one to four complete rings of points. The number 
of points contained within each of the lattices to is given 
by the following relation:

N = 3s2 + 3s + 1 - (3)

For example, if the array consists of three concentric rings, then 
the number of lattice points N =  (3 x 3 2 + 3 x 3 + 1 )  = 3 7  points. 
Each ring included in a particular array contains N = 6 S lattice 
points. For instance if the lattice is expanded to L^, then 
an extra N = ( 6  x 4) = 24 lattice points are added, giving a 
total of 61 lattice points in all. The use of a series of centred 
lattices in the form described above, enables an orderly transition 
from the basic lattice configuration (L^) consisting of seven points, 
through to the lattices with increasing numbers of lattice
points, to be made. This enables a detailed examination of the 
behaviour of the lattice function as the number of points included 
in the array increases.

4.2 THE LATTICE CO-ORDINATE SYSTEM

At this point, it is convenient to introduce a co-ordinate 
system that is to be used to describe the relation between the 
lattice points in a centred hexagonal array. Use will be made 
of the system in order to describe the phase relationships existing 
between waves scattered by such centred arrays of model cylinders. 
Such a system was described by Burge^^^ and is adopted here.

If a convenient lattice point be taken as the origin 
of the co-ordinate system, any other lattice point may be referenced 
by a pair of integers (l,m), which serve to define a lattice vector. 
This is illustrated as follows:
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Figure 28

The length or magnitude DA B of the vector AB between 
the pair of points A, B is given by the following relation:

da,b = d 2 + lm + m 2 )* ~ W
l,m ^  0

for the particular points in question 1  = 2 , m = 1

from (44) DA>B = (22 + 2.1 + 12)i = \pf

For an array containing N lattice points, there are N 2 lattice 
vectors, not all of different magnitude. For example, an array 
containing seven lattice points hSs (72) = 49 lattice vectors of 
various lengths, whilst an array of 4 complete rings (61 lattice 
points) has 3721 lattice Vectors relating the lattice points. 
Applying the condition l,m = 0 to equation (4) implies the presence 
of lattice vectors of zero length. The number of zero length 
yectors present for any given array is equal to the number of points 
(N) included in the array.
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The number V-i m of lattice vectors of length u s in any given 
> l,m

hexagonal array is determined by the following relation, due to
Burge(17)

Ucm^s-rw^-e-M) %

V = it. f L z s - f c - m + l - u I l  + a s c ^ s - e - w v + l ]  + I2_£ U-S-c- t + l j  
^  a=0 u _ t |  ( A = r v \ a * ( v w , 0

- (5)

The second term in equation (5) is valid for those vectors where 
m-1= 0. If m = 0 or 1 = m, the vectors are counted twice, and 
equation (5) gives 2 x Vijm.

The multiplicity factor 12 which is due to the symmetry 
of the hexagonal lattice is not valid for the zero length or identity 
vectors (0,0), thus equation (5) is only applicable for l,m^0.

Whilst equation (5) determines the number of vectors of 
a particular length m , the total number of m vectors of different 
lengths is given by

£ v1 > b = ( L  + 1>* - ( 6 )

where L = number of complete rings in the lattice.
The significance of equations (4) and (5) which serve 

to determine the lengths and numbers respectively of the lattice 
vectors, is as follows.

Whilst it is the motif or cylinder that is responsible 
for the scattering of the incident X-radiation, it is the purpose 
of the lattice function to account for the way that the scattered 
waves interfere to produce the diffraction pattern, by the introduction 
of phase differences between the scattered waves.

The number of inter-point vectors defined by the array, 
including the zero length r'ectors, determine the number of phase 
relationships possible beteween the scattered waves, whilst the 
length of each Vector between a pair of lattice points, determines 
the difference in phase between the scattered waves.
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The number of phase relationships possible for a given 
lattice, corresponds to the number of lattice vectors present.
For example, the hexagonal lattice consisting of four complete 
rings, has 3721 possible phase relationships between scattered
waves, and from equation (6 ), it can be seen that of these 3721
phase relationships, there are only 23 different magnitudes.

4.3 THE LATTICE INTERFERENCE FUNCTIONS

The mathematical form of the interference function may 
be defined as follows: 

n n
I = 1 /n 2 £  £  JQ (kU1>m) - (7)

1  m

where I = WorrwolUfefid imMctudk. d  tkSL uvt&rfef'eJic£ 'fuixrticru 
K = 4 sin0/-X
8  = Bragg angle

Ui m= separation of the 1 th and mth lattice points

n = number of lattice points

The origial form of equation (.7) due to Debye (1915)  ̂ ^
is modified here by the inclusion of the^factor (1 /n2), in order 
to obtain the interference per lattice poi ît, the significance 
of this will be apparent when the whole model is discussed.

The variable (U) in equation (7) corresponds to the lattice 
vector defined earlier, the link between the lattice vector and 
phase being established when the variables K and U are considered 
together.

The radial nature of the lattice used is reflected by 
the inclusion of the zero order Bessel function J0  in equation 
(7).

The interference functions due to the lattices to 
are shown below:

I1 = 1/71 [7 + 24J0(X) + 63o(2X) + 1 2 JQ(^X)] - (8)
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12  = 1/192 [ 1 9 + 8 4  JQ(X) + 54Jq(2X) + 24JQ(3X) + 6JQ(4X)

+ 60Jo (V3X) + 72JO07X) + 24J0 (\/T3X)
+ 18J0(2V?X)] - (9)

13  = 1/372 [37 + 180J (X) + 138Jq(2X) + 96JQ(3X) + 54JQ(4X)

+ 24J0 (5X) + 6Jq ( 6 X )
+  144J0 (V?X) +  216J0 (V7X) +  144JQ (VT3X) + 72J0 ( V n X )
+ 24J0(\fi3X)

+ 78J (2V3X) + 96J (VT9X) + 36J0(2\/7X) + 24JQ(3\/3X)]
- (10)

14  = 1/612 [61 + 312J0(X) + 258J0(2X) + 204Jo(3X) + 150JQ(4X)

+ 96J0(5X) + 54J0 (6X) + 24J0(7X) + 6 J0 (8 X)
+ 264Jq (73X) + 432J0(\/7X) + 336J0(Vt3X)

+ 240Jo(\^1X) + 144aQ(VT3X) + 72J0(\®3X) + 24J0(\/57X)

+ 174JQ(2\/3X) + 264J0(Vl9X) + 180Jo(2V7X)

+ 96J0(\/35x ) + 36J0(2VT3X) + 96JQ(3V5X) + 120JQ(V57X)

+ 48J (7X) + 30J (4\(3X) ]
0 ° - (1 1 )

where X = KU

The number of terms present within the brackets is given by (L+1)2, 
hence for L = 4, there are twenty five terms present inside the 
brackets.

Diagram (6 ) shows the form of the four lattice functions
to L^. Also shown in the diagrams are the positions of the

reflections that would be expected from an infinite hexagonal array, 
(see AppendixBfor the calculation of the reflections for an infinite 
lattice).

4.3.1 The 1̂  interference function

In order to gain a deeper insight into the structure of the 
interference function, it is necessary to consider in detail 
the component parts of the function.
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As a particular case, consider the 1̂  interference function 
describing the interference produced by a centro-symmetric array 
of seven points.
Re-calling equation (8 )

^  = 1 /7 2 [ 7  + 24J (X) + 12Jq (V 5x) + 6 JQ(2 X)] - (8 )

where X = (ktL ) l,m'
As can be seen, the function 1̂  is composed of combinations 
of the function JQ, weighted according to the numbers of the 
various lattice vectors of length (Ui>m) present in the array.
By writing the quantity (KU^ m ) as (X), it is evident that the 
1  ̂ function is composed of a series of weighted combinations 
of the same function that are varying at different rates. Re
call that the scattering function of a structured cylinder is 
built up in much the same manner as the above, except that the 
function concerned is J^x) instead of JQ(X). For example, 
the component Bessel functions in equation (8 ) vary at rates
of X, V3X and 2X.

(  IoCd O

D O

Figure 29
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Figure 29 shows the three Bessel functions JQ(X), J0 (V3X), and 
jq(2X), whose rates of variation are in the ratio (1:^3:2).
As can be seen from equation (8 ), the functions composing the 
interference function are not paired, as in the case of the 
scattering function (see earlier). The composite function C, 
derived from the average value of JQ(X), JQ(V3X) and Jq(2X) 
has a central peak of maximum value 1.0 at the origin. As X 
increases the function C takes positive and negative values 
of diminishing absolute value. The form of the curve C is 
due to :the fact that the component functions are varying at 
different rates.

The interference function 1̂  is however composed of weighted 
values of the functions shown in Figure 30, which account for 
the multiplicities of the phase differences between the waves 
scattered from pairs of lattice points, plus the zero phase 
difference waves scattered from the individual lattice points.

Figure 30 shows the components parts of the interference function 
defined by equation (8 ).

Cx)

CorA?oslt^ 4ov\c.tiOr\ C uses scale. 0 - I -0

Figure 30 
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The composite function C shown in Figure 30 represents the weighted 
sum of the four functions defined in equation (8 ). The maximum 
value of which is 49 at the origin. It will be noted that in 
contrast to Figure 29 where the three functions are unweighted, 
the effects of weighting, plus the offset (due to waves scattered 
from each lattice point), force the composite function to take 
only positive values. The interference function 1̂  = C/72, 
is in effect, the average contribution of each lattice point 
to the scattering function.

Several interesting points emerge from inspection of Figure 
30 above. Close to the origin, the composite function is dominated 
by the slowest varying component function viz 24JQ(X). The 
region from 2*LX. to where the function is negative
is offset by the two faster varying functions 1 2 JQ(V3 X) and 
6Jq(2X), and the constant term, represented by the straight 
line. In the region near the origin, where the components 
C-j = 12JQ(V3X) and C^ = 6 JQ(2 X), the width of the central peak 
is in the main determined by the function C^ and C^ which are 
the fastest varying components in the interference function.
Due to the fact that C 3  and C^ are varying collectively at approximately 
twice the rate of the function, the absolute magnitudes of 
these two functions fall away more rapidly than the C2  function.
Hence the behaviour of the interference function away from the 
origin becomes more and more dominated by the slowest varying • 
functions (=7) and C2 . The fact that the interference function 
never takes negative values may be visualised as follows. If 
the sum of two slowest varying functions C,j and C£ is considered, 
only in one region, from ~3.0 to -4.5 does the function take 
negative values. If the sum of the functions and is 
considered, then it can be seen by inspection that (C^ + C2 )>
(C3  + C^) hence the total function I-j = (C^ + C2  + + C^)/49
can never take negative values.
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4.3.2 The I9 interference function

The interference function due to points in a centred 
hexagonal array is given by equation (9) viz:

I2  = 1/192 [19 + 84Jq(X) + 54Jq(2X) + 24JQ(3X) + 6Jq(4X)

+ 60Jo(V3X) + 72J0(V7X) + 24JQ(\/l3X)

+ 18J0(2V3X)] - (9)

The function is composed of 9 functions ,........C9 , taken
in order of appearance in equation (9) i.e = 19, C2  = 84JQ(X) 
etc. As with the I  ̂ function, the largest weighted component 

^ 2  is the function involving the slowest varying Bessel function 
J0 (X). The sum, (C^ + C2 ) of I2  is much larger than the equivalent 
partial sum of the 1  ̂ interference function, due obviously to 
the additional numbers of lattice points included in the array 
and also the fact that these extra lattice points introduce 
extra phase variability of "length X". This is however compensated 
for by the additional numbers of the type C^, as per the 
I<l interference function, together with additional "phasing" 
terms viz, JQ(VTX), J0 (\ff5X) etc.

The addition of the "extra" terms in I2 , as compared to the 
interference function does not alter in any major way the 

overall shape of the I2  function, v's the 1  ̂ function, as can 
be seen in diagram (6 ). This is due to the fact that although 
there are additional terms included in the interference function, 
these extra terms are varying so rapidly c.f the basic term 
viz, JQ(X), that the effects produced by them are short lived.
The main influence of these additional terms being to affect 
the graph in the region of the central peak of the interference 
function, and to resolve certain other peaks.

4.3.3 The Interference Function

The Ij interference function due to 37 lattice points, is composed
of 16 terms , ........C^, defined in the order of appearance
in equation (1 0 ) viz:-
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I3  = 1/37z [37 + 180Jo(X) + 138Jq(2X) + 96JQ(3X) + 54JQ(4X)

+ 24J0 (5X) + 6 Jq(6 X)
+ 144Jq (V3X) + 21630CV7X) + 144J0(\/l3X) + 72J0(V21X)
+ 24J0(VTiX) + 78JQ(2l/3X) + 96JQ(Vl9X) + 36JQ(2VTX)
+ 24J0(3V3X)] - (10)

The fastest varying term in equation (10) is C-j = 6 J0 (6 X), which 
is varying at 6  times the rate of the C2  components, so that 
by the time that X attains the value , the C7  components
of the interference function is almost insignificant compared 
to the C£ function.

4.3.4 The I7[ Interference function 

The interference function, viz

I 4 = 1 /6 12C(ol +3!LJo60 + 2S«To(2x) +  20kJofe>0 + l50Xoktfi +
tSu-joLfox) + z a  + k j aL%x) + 2b\j,JoLtl)0 + uzUclfiY)
•f +  Z iu O  X )  -b l u u  JcC J izy . )  + "?z 3 & ( ' uJ 3 Y )

+2Ll 7 o ( )  -i 0 4  3 0 ( 2 \ i r , O  4- Z G D - T J T w k I  +  I S O J p f r v T l x }
+ + +\io3oGJr?x)
a LL'lIoftx) + 20 W&\jGLNt)3 ■

contains 23 terms consisting of the weighted values of the zero
order Bessel Function, all varying at different rates, with
the exception of terms c 8  + c24> both of which contain the term
JQ(7X) , ie correspond to lattice vectors of the same length,
and are due to the lattice 'Vectors (7,0) and (5,3) respectively.
This is accounted for by the fact that as the size of the lattice
increases, the greater the probability that within a given lattice
there will be two ^vectors (l^m-j), (^n^) whose lengths are equal.
For this to be so, the following relation between the components
holds:

l^2 + 1-jm-j + m^2 = l£2 + l2m2 + m2 ~

As already noted, there are 2 lattice vectors of length 7 present
in the lattice, and onwards ......... etc. No more multiplicities
of lengths are encountered until Lg, which contains 317 lattice 
points, where the vectors of length 13 and 14 occur twice.
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As an example of the duplication of vectors it may be seen that for 
vectors of the type (7n,0), (n = 1,2,3...) the following relation 
holds:
If <(l,m)> = v/l2 + lm + m 2

then ^(7n,0)> = <C(5n,3n))> - (13)

So that, provided the lattice contains enough points then equation 
(13) holds. A similar relation may be seen to be valid.
For vectors of the type (13n,0), (8n,7n) etc. the fastest varying 
terms present in the 1^ interference function is = 6 JQ(8 X).

4.4 ANALYSIS OF THE INTERFERENCE FUNCTIONS

By inspection of Figure 3© (the composite functions), 
it is evident that after a certain value of X is attained, the 
faster varying composite functions make considerably less contribution 
to the interference function than do the slower varying functions.
This is easily seen for example in the cases of the C£ (= 312JQ(X)) 
and the (= 6 JQ(8 X)J component functions since C2 /C9  s 312/6 = 32,
a t y - o .

The main contribution to the interference function of 
the faster varying component functions present in the interference 
functions 1  ̂ _ 1 ^ therefore seems to be in the vicinity of the 
central peak of the interference function, where the various weights 
of the said functions are utilised to the best effect. The contributions 
of these functions falling off to zero very rapidly, eg in the 
case of the component function which has the value |C^l = 
at X=10 compared to the C2  term which has the value |C^|~77 which 
is to the slowest varying components present.

If the above argument is accepted, it follows that the 
form of the interference function is mainly determined by the slowest 
varying component functions that are present, with the faster varying 
components making their biggest contribution to the form of the 
central peak, and making practically no contribution to the form 
of the interference function as X takes on higher values.
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With the appropriate choice of functions included in any 
interference function, it may be possible to reduce a complicated 
interference function which would otherwise include a large number 
of terms, to a relatively simpler one with fewer, slower varying 
terms.

The functions used for this work will however include 
the full number of terms present in the interference function, and 
not the reduced form with fewer terms.

Before discussing the significance of the four interference 
functions, as shown in diagram (6 ), it is useful to recall the 
definition of the interference function so that useful comparisons 
may be made between the four functions. The functions plotted 
in diagram (6 ) represent the "averaged" interference due each lattice 
point within the particulnTarray, and is obtained from the "true" 
interference function by simply scaling the values in inverse proportion 
to the number of points within each array. This enables the 
contribution of each individual lattice point to its appropriate 
interference function to be examined, and how this contribution 
varies as more points are added to the lattice.

The 1̂  interference function due to seven points shown 
in diagram (6 a) has a central main peak of magnitude unity, and 
has four well defined peaks of significant magnitude, in the range 
0-20 X or kS. The central peak is of half width -2.40 KS.

The 1^ interference function due to a 19 component lattice, 
diagram (6 b) has a central main peak of half width -1.5 kS and 
seven significant / subsidiary peaks.

The 1^ interference functions (diagram 6 c) has a central 
main peak of half width -1.2 kS and as with the 1̂  and ^  functions 
has seven subsidiary peaks. However, with the 1^ function, (diagram 
6 d) there are eight well defined subsidiary peaks, the central 
peak being of half width -1 . 0  kS.
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As the number of points included within the lattice increases 
the central or main peak of the function decreases in half width 
from a value of -2.5 for the L'j lattice containing 7 points to
a half width of -1 . 0  for the lattice containing 61 lattice points.
This trend is to be anticipated since the case of the interference 
function due to an infinite lattice should result in a series of 
delta functions at specified intervals that are determined by the 
planes of points present within the lattice and which are characteristic 
of the hexagonal lattice.

As with the central peak, the first subsidiary peak gets 
narrower as the number of points included in the lattice increases, 
from a width of -4.2 kS in the 1̂  case to ~2.6 KS for the 1^ case.
Along with this deacrease in peak width, there is also a decrease
in the magnitude of the peaks as the lattice expands, from I (kS)
~0.33 for to I (kS) ~0.11 for L^. The second subsidiary peak 
present in the I-j function of width -6.2 kS, is very quickly resolved 
into two peaks in the l£ and subsequent interference functions, 
the total width of the pair also decreasing to a value of 3.2 kS
progressing through the functions 12 ......1^. In similar fashion,
the other subsidiary peaks present in the four functions both decrease 
in width and amplitude, and in some cases are resolved into a pair 
of peaks. As individual peaks are resolved, the resulting pair 
of peaks tend to maintain a constant ratio between the magnitudes 
of the two peaks.

The decrease in peak amplitude may be explained by the ■ 
fact that inherent in the interference function is the scaling 
factor. It is this factor that is responsible for this fall off 
in amplitude of the subsidiary peaks.

Indicated on the diagram (6 a,b,c,d) are the positions 
of the peaks that result from the interference function due to 
an infinite hexagonal lattice. With relatively few numbers of 
points in the lattice, as in the case, peak merging occurs, 
for example, in the (11) and (20), the (21) and (30) and the (22) 
and the (31) cases as the numbers of lattice points are increased, 
as in the l_ 2  to series of lattices, resolution of the merged
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peaks into their component occurs. With a lattice consisting 
of 19 components, all of the merged peaks, except the (22), (31) 
case have resolved in sufficient detail to enable their component 
peaks to be identified.

With the lattice, the (22), (31) set has just resolved 
sufficiently to identify the separate components.

Inspection of the diagram (6 a,b,c,d) shows that the positions 
of these subsidiary peaks, changes little (at least to the resolution 
in k5 used) as the numbers of lattice points increases. With 
finer resolution in KS it may be possible to estimate the numbers 
of component points in the particular lattice given the interference 
function, by say noting the position of one of the prominent peaks 
such as the (1 0 ) reflection which at least over the range of lattices 
used is strong compared to the other reflections observed.

Once sufficient numbers of lattice points are included, 
the general form of the interference function remains fairly uniform 
(allowance being made for the change in magnitude of respective 
values due to the scaling function). For example, there appears 
to be less relative change over the I2  to 1 ^ interference functions, 
than comparing the 1̂  to 1^ interference functions. If the lattices 
used are compared'over the range say of 0-20 KS, then it may be 
seen that the 1 ^ and 1 ^ lattices show a more or less identical 
pattern, again due allowance being made for the scaling factor.
It may be inferred that the Ij lattice therefore represents a 
reasonable minimum approximation to the case of the infinite two 
dimensional hexagonal lattice.

Apart from the "standard" Bragg reflections that are characteristic 
of the hexagonal lattice, diagram (6 ) shows the presence of a number 
of non-Bragg peaks of significant magnitude, whose appearance may 
be explained by analogy with the diffraction pattern resulting 
from a one dimensional array of slits with varying numbers. When 
the numbers are low, the diffraction pattern consists of a series 
of broad peaks, as the number of slits (n) increases, the main 
peaks occupy the same position but are narrower still with the 
attendant smaller peaks. Until in the case of the infinite array, 
only a series of delta functions is observed, with no subsidiary peaks at all.
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The non-Bragg peaks present in diagram (6 ) are therefore due to the 
limited numbers of lattice points in the arrays L^- L^. Recalling 
that the interference function is built up from a set of component 
functions varying at different rates (see Figures 31,32), it may 
be easily seen for example that in the vicinity of the origin, 
the presence of the non-Bragg peaks may be attributed to the faster 
varying component functions present within the interference function.

As the number of lattice points increases, so more rapidly 
varying terms are included in the interference function and serve 
to reduce the amplitude of these non-Bragg peaks in relation to 
the standard peak's, the amplitude of these non-Bragg peaks, eventually 
reducing to zero when l_x is attained.

The main problem, as far as the lattice funciton is concerned 
is the most efficient manner by which the lattice may be expanded.

A method used by Burge (18,19) to take account of lattices 
which are not highly symmetrical was to use the multiple interference 
function approach.

In line with the above approach, a suitable manner by 
which to expand a hexagonal lattice is shown below:

\

Figure 31
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where consists of a centred array of seven lattice points, 
consists of a centred array of 7 units, and consisting of 

a centred array of 7 units, and so on.

At each level 9 h2,  etc, there is a sevenfold
increase in the number of lattice points when compared to the level 
below. For example, contains 7 points, H2  contains 7 2 points, 
and contains 7 3 points.

The interference function 1(H) due to the lattice may 
. conceptually be written as

1(H) = HI1 .HI2  . HI3  ... HIn - (14)

where HI^, HI3   etc are the interference functions due to
, H2  .... etc.

The interference function due to the H^ lattice is the 
same basic function used previously (see equation (8 )..)

HI1 = 1/72 [7 + 12J„(X) + 24J0(\/3X) + 6JQ(2X)] - (15)

At the second level of a diagram the lattice H2  may be represented 
by a similar function to that used for the case.

H I2 = 1 /7 2 [7  +  12J 0 («X) + 24J0 ((XV5x) +  6J0 («2X ) ) ]  -  ( 16)

The factor X included in equation (16) takes account of the scaling 
factor between the two levels, when the two functions are combined.

In similar manner, the H^ lattice interference function 
may be written

H I j  = 1 /7 2 [7  + 12J0 (p x )  +  24Jo (pV3X) +  6JQ(p 2X ) ]  -  ( 17)

and so on.

The interference function due to a lattice of 7n components 
may be compiled by taking n interference functions of the types 
defined by equations (15), (16), (17) as above, and forming their 
product function, i.e
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HIn = 1/72 [7 + 12J0 (X) + 24Jq(\/3X) + 6 Jq(2 X)] -1/72 [7 + 12J0 ((XX)

+ 24Jo(<*f3X) + 6J0 (W2X)] •

1/72 [7 + 1 2 J0 (PX) + 24J0(pV3X) + 6JQ(p2X)]___ - (18)

The mathematical advantage of modelling the interference 
function., in this manner is that each of the "sub" interference 
functions is composed of the same basic unit -

viz: 1/72 [7 + 12JO(0X) + 24 JO(0V3X) + 6Jq(02X)]

where 0  = scaling factor appropriate to each sub-function.

Once the behaviour pattern of the sub-function, as defined above, 
is established, the behaviour of the overall lattice function should 
follow readily.

Diagram (7) shows the interference functions due to the 
, H2 > and lattices, containing 7, 49, 343 and 2401 lattice 

points, respectively.

The H2  lattice consisting of 49 lattice points should 
produce an interference funciton whose form follows closely that 
due to the and lattices, with due allowance being made for 
the scaling factors etc. This does not appear to be the case 
since the lattice produces an interference function consisting 
of a series of more or less evenly spaced peaks.

The departure of the behaviour of the H series of lattices 
as compared to the L series is even more marked when the and 

lattices are considered. With the comparatively large numbers 
of points involved in the H series as opposed to the L series, 
it should be expected the interference function due to the lattice
should be approached rapidly i£ in the case. This is not found 
to be so.

This' method, involving multiple interference functions, 
as indicated earlier, has found criticism by such authors as 

Vainshtfibn and Tyson and Woods'^.. Comparing the L and H lattices, 
it is evident that the interference functions due to the latter 
lattices, do not generate sufficient lattice vectors, or equivalently 
phase relations between the scattered waves. This accounts for the fact 
that no consistent behaviour is observed in the interference functions 
due to the H series of lattices. Accordingly, this approach will not be 
considered further.
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CHAPTER 5

MODEL PARAMETERS - THE SWELLING FACTOR
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5.1 INTRODUCTION

In order to allow for varying inter-cylinder separation 
within any particular array of model cylinders, the concept of 
the "swelling" Tactor has'been adopted.

Inter-cylinder, separation may be specified in two ways. 
Firstly in terms of the separation between the boundaries of the 
cylinders, and secondly between the centres of the cylinders.
The latter method has been adopted here.

The swelling factor ( #) was first introduced by Oster
( 1 3  -i 5 )

and Rileyv 9 ' in order to account for the hydration or lateral
swelling of a lattice of macro-molecules or fibrous material. 
Their definition as presented below is also employed here.

-S

(CLl Ci>}

Figure 32

The separation 5 between a pair of nearest neighbours 
is given by

S = 2 & R  - (1)
where eS = swelling factor

R = cylinder's radius.

Inspection of Figure 32 shows that the minimum possible 
separation Sm^n = 2R for which ^  = 1.0, hence fixing a lower
limit for the range of values of Jf. A ^  value <.1 might be taken 
to imply either of two things, a) that the array is so compacted
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that cylinder deformation is occurring, or b) that the cylinders 
are so "nebulous" that inter-cylinder penetration takes place.
Neither case is allowed within the definition of the model used 
here. It is the function of the swelling parameter then, to allow
for variations in the packing of the cylinders.

5.2 THE SWELLING FACTOR AND ITS RELATION TO THE DIFFRACTION EQUATION

In order to illustrate the relation of tfto the diffraction 
equation, the diffraction model for an array of seven solid cylinders 
is considered. The diffraction equation due to the above array 
may be written in the following form:

I = F2(kR).1/72 [7 + 24J0(kS) + 12J0(V3kS) + 6JQ(2kS)] - (2)

where I = scattering intensity due to the array

F2 (pjR) = scattering function of the cylinder 
k = scattering sector

Equation (2) contains the variables R and S, defining 
the radius and separation of the cylinders, respectively. Recalling 
the definition of the swelling factor (equation 1), enables equation
(2) to be written in either of the following two forms:

I = F2(kR).1/72 [7 + 24J0(2}fkR) + 12JQ (2 V3 SKR) + 6J0(4tfkR)] - (3)

or
I = F 2 (kS/2>f).1/72 [7 + 24J0(kS) + 12JQ(V3kS) + 6 JQ(2 kS)] - (4)

Equation (4) is the most convenient form of the diffraction equation, 
due to the fact that since the variable S, which represents the 
distance between lattice points, is used for the independent variable, 
the interference function will always give the "standard" Bragg 
reflections in the same places (on the graph), irrespective of 
the value of . This enables easy comparisons to be made between 
arrays of cylinders, as Stakes different values.

The swelling factor may be thought of as operating on 
the cylinder's scattering function by effectively shrinking the 
cylinders radius and retaining constant S instead of expanding 
the lattice, (ie increasing S) for constant cylinder radius.
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The effect of the swelling factor on the components of 
the diffraction equation is more clearly seen with the aid of the 
following diagram.

(JO) Li i) (zri) LZ\)

<22 L. M10 \U

I
TL

-T~
Ll. 9

~r —r~ 
Ci.

"T"
"L.

Figure 33

Figure 33 shows the graphical representation of the two 
main components of the interference function _ie the scattering 
profile of the cylinder and the lattice interference function.
The interference function is represented by 1 ,̂ and uses the horizontal 
(kS) scale, whilst the scattered intensity profiles due to the 
solid cylinder, labelled *r = 1 , *  = 2 , etc. use the appropriately 
labelled kR scales. As is shown, in the diagram, the value of ^  
determines the range of kR values of the SIP that combine with 
the interference function to form the diffraction pattern. At 
the higher values of ^  2 , it is evident that it is only the central 
peak of the SIP that contributes to the diffraction pattern, over 
the range 0 - 20 in units of kS.
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Also made clear from Figure 33 is the reason for scaling 
the cylinder's radius rather than the lattice. With the lattice 
parameter being fixed, the standard Bragg peaks due to a complete 
hexagonal lattice, will always appear in the same kS positions.
If the diffraction pattern were plotted as a function of (kR), 
rather than (kS), then due to the fact that the lattice parameter 
is "scaled-up", the Bragg peaks will change positions as the value 
of#is changed. Thus, this method of presenting the results, enables 
the diffraction patterns produced by the various arrays of cylinders 
to be easily compared.

3.3 THE EFFECTS OF VARIATION IN &QN THE DIFFRACTION PATTERN

Diagram (8 ) shows the diffraction patterns due to seven
solid cylinders in a hexagonal array with various values of ^  ,
ranging from 1 . 0  - 5.0, the former value representing the case 
where the cylinders are in contact, whilst the latter represents 
the case where the cylinders'- centres are separated by ten times 
the cylinder's radius.

The following points are noted, from diagram (8 ). The 
number of well defined peaks present is dependent on the value 
of 2f. The case = 1 has only a single central peak of half width 
+* 2.40 kS. At a value of ^  = 2, two subsidiary peaks are evident, 
the first one being a non-Bragg peak, centred about a kS value 
'•*3.8, and of magnitude -0.03. The second of these peaks corresponds 
to the (10)Bragg reflection, centred about kS ~7.0 and of magnitude 
~0.14. For ^ = 3 ,  there are 3 subsidiary peaks present, the 
second and third of these peaks corresponding to the (1 0 ) and a 
merged (11) and (20) peak, of magnitudes 0.23 and 0.06 respectively.

For - 4, there are 5 subsidiary peaks, the second, third 
and fourth of these peaks corresponding to the reflections (1 0 ),
((11), (20)) and (21) reflections of magnitudes 0.27, 0.11 and 
0.04 respectively.
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At b' = 5, the values of these Bragg peaks are 0.28, 0.12 
and 0.07 respectively. Over the range of 8  used in the diagram, 
the non-Bragg first subsidiary peak that is present increases in 
magnitude from 0.03 at X = 1.0, to 0.04 at 8 " = 3.0, and also shifts 
in position from kS = 3.8 to kS = 3.9 for the respective values 
of .

As a general feature of diagram (8 ) all of the subsidiary 
peaks observed have a) increased in number, b) increased in magnitude, 
c) have broadened and d) have changed their position to higher 
values of kS.

3.4 ANALYSIS OF THE CHANGES IN THE DIFFRACTION PATTERN DUE TO 
VARIATIONS IN ^

All of these features may be explained by recourse to 
Figure 33. Taking the X  = 1 and 1  ̂ cases as shown, the value 
of V  = 1 curve is sensibly zero after a kS value of ̂ 7.2, so that 
the product of these two functions for values of kS >7.2 may be 
taken to be zero. The product function is dominated by the faster
varying term 1^. From Figure 33, it may be estimated that the
central peak of the product function (ie the diffraction psttern) 
should be ~2.2 kS in half width. The values of the product function 
for kS values between 2.0 and 7.2 are negligible.

As the value of increases, the interference function 
(I<j) combines with a smaller range of the various SIP ( X) curves 
that are shifted to higher values. It is to be expected then, 
that more variation be introduced into the product function. For 
example a (1 0 ) peak might be expected at V  = 2  but no others since 
the SIP ( ^ = 1 )  tails off in the region of the (1 1 ) interference 
peaks.

At values of - 3,4,5 etc, the "full range" of the Bragg 
peaks that are encompassed by the 1  ̂ function should be seen.

Items b), c), d) mentioned above (section 5.3), are due 
to the fact that the value of chosen changes the magnitudes and 
slopes of the ranges of the SIP (£f) that combine with the 1̂  function, 
in the vicinities of the relevant "Bragg-regions".
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The non-Bragg peak is seen more clearly at higher values of 
since the value of 1  ̂ in this region is multiplied by almost unity, 
and as explained earlier (see page ), this peak is due to the 
limited numbers of lattice points, _ie cylinders in the array.

For very large separations between the cylinders, assuming 
the diffraction equation is still valid, the 1  ̂ function would 
effectively combine with an SIP ( )  which is almost unity over 
the whole range of (kS) values of 1^, so that the diffraction pattern
should: tend to a limiting set of values.

If the function 1̂  is replaced by I^, I^> 14  etc, then
recourse to the above discussion supports the idea that for a given
type of structured cylinder, the form of the diffraction pattern
should change little over the various values of 2T* , and the various
I functions used. Some additional resolution of the diffraction n
peaks occurring, as more cylinders are added to the array.

It is evident from the above discussion that whichever 
particular model cylinder is chosen to include in the diffraction 
equation with the various lattice functions, only a very limited range 
of the particular SIP is ever used. The maximum range of values 
of kR that is used in forming the product function, or diffraction 
pattern, over a given range in kS is determined by the case of 
the cylinders in contact according to the relation kR = (kS/2^), 
with ^ = 1. So that for example, if the range defined for kS is 
0 to 20, with the cylinders in contact, the range of kR is 0 to 
10. At^= 2, the range of kR is 0 to 5, and so on.

With the solid cylinder, Figure 33 shows that it is only 
the central peak in the SIP that takes any part at all in determining 
the diffraction pattern. As well as the width or extent of the 
central peak, it is obvious that the shape of the central peak 
must also affect the final form of the diffraction pattern.

Variations in electron density profile (EDP) also affect 
the diffraction pattern due to the fact that changes in the half 
width of the central peak and the introduction of subsidiary peaks 
occur.
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If, as already mentioned, the diffraction model is valid 
for very large values ofV, then no matter what structured cylinder 
is chosen to include in the model, it will only be the shape and 
extent of the central peak that ultimately decides the form of 
the diffraction pattern for a given lattice.
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CHAPTER 6  

MODEL DIFFRACTION PATTERNS
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6.1 INTRODUCTION

The set of cylincfers with EDPs in the range (1111111111) 
to (1 0 0 0 0 0 0 0 0 0 ), with = - 1  are used in various arrays in an 
attempt to ana^se certain general features that are present in 
the models diffraction pattern. The above set of cylinders will 
be considered in the basic array of seven components, with various 
values of X '. Certain of these cylinders will then be used to 
illustrate the trends occurring in the diffraction pattern as the 
number of components in the array is increased.

The next set to be considered is the series representing 
a two level electron density distribution, ie a cylinder with an 
inner portion of varying width and electron density, in the 
array of 37 components.

Finally a series of cylinders that might be taken to represent 
a reasonable approximation to the micellar electron density distribution 
will be examined in the lattice configuration.

Recalling the diffraction equation described earlier (see 
section 5*1 ) •

I = F 2 (kS/2S') 1/72[(7+24Jo (kS) + 12J0 (V3kS) + 6JQ(2kS)] - (1)

for seven cylinders in a centred hexagonal array of seven components 

where F 2 (kS/2 ^) is given by the function

rtvs/aa) » fZ t  e . o O ^ a ) + (?<r6o)( 0 ^ -
+ . . . . . . . .  +

/ _

L(uS/2g)1( e 104-(p!,-^0)0-A2-+- . . .
- (2)

Note that instead of using kR as the independent variable in (1) 
the radius parameter has now been scaled by the X  factor ( see 
section S *'1  ).
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The (H11111111) cylinder has already been discussed in 
the configuration (see section So ), but the main points will 
be reiterated in order to maintain continuity in the following 
discussion.

The diffraction patterns due to a solid cylinder (EDP 
= (Hllllllll’)) in the array are shown in diagram (8 ) and as 
previously noted, the number of peaks present depend on the value 
of . The case of the cylinders in contact, ^  = 1 displays 
only a single main peak of half width ~2.40 kS. For &  = 3 there 
are three subsidiary peaks present, the second and third peaks 
corresponding to the (1 0 ) and a merged ((1 1 ),(2 0 )) peak, of magnitudes 
0.23 and 0.06 respectively. The first subsidiary peak being a 
non-Bragg peak of intensity ~0.03. •

The effects on the diffraction pattern of reducing the 
electron density of the ineermost two shells of the cylinder to 
zero are shown in diagram (9). For = 1., only the single main 
peak of half width ~2,49 kS is observed, and to the level of resolution 
used, no difference is detected between this case and the (1 1 1 1 1 1 1 1 1 1 _) 
case, in terms of peak width.

For ^ = 2 ,  two subsidiary peaks are observed, the first 
of magnitude ~  0.03, positioned at kS~3.8, and the second of magnitude 
M 0.14 positioned at kS~7.0. The width of the central peak again 
is "2.40 kS in half width.

At 3, there are three subsidiary peaks present of 
magnitudes 0.04, 0.23 and 0.06 at kS values of 3.8, 7.0 and 12.40 
respectively. The half width of the central peak has increased 
to - 2.60 kS.

As the width of the zero electron density region of the, 
cylinder increases to 40?o of the radius ie EDP = (1111110000), 
diagram (1 0 ) the case of the cylinders in contact^ = 1 , shows 
no detectable difference in central peak width from the cases described 
earlier (half width~2.40 kS), and no other peaks being observed.
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At = 2.0 the half width of the central peak is 2.40 
and two subsidiary peaks are observed at kS = 3.8 and 6 . 8  of magnitudes 
0.03 and 0.12 respectively.

As ^increases to 3.0, the central peaks half width has 
not changed, but the magnitudes of the first two subsidiary peaks 
have increased to 0.04 and 0.22 respectively. The positions of 
these peaks have not changed from the previous case. A third 
subsidiary peak is also present of magnitude 0.03 and positioned 
atkS*v12.40.

Diagram (11) shows the set of diffraction patterns due 
to an array where the cylinders zero electron density region is 
60% ie EDP = (1111000000). The '̂ = 1 or contact case, shows that 
the half width of the central peak is still constant at 2.40 kS, 
but there is a single subsidiary peak present centred at kS = 7.8, 
corresponding approximately to the (10) Bragg peak.

At X  - 2 , again no change in the central peak is noticeable, 
but there are three subsidiary peaks present, the first positioned 
at kS-3.8 and of magnitude 0.03. The second peak at k S " 6 . 8  

is of magnitude 0.10 and corresponding to the (10) Bragg reflection, 
whilst the third peak at kS~19.0 is of magnitude 0.03 and corresponds 
to the (21) Bragg reflection.

At = 3, 3 subsidiary peaks are observed, the first non- 
Bragg at kS -,3.8 and of magnitude 0.04, the second and third Bragg 
peaks positioned at kS = 7.0 and 12.4 and of intensities 0.20 and 
0.03 respectively. Note the "change" in position of the third 
subsidiary peak from the (2 1 ) position to the merged (1 1 ), (2 0 ) 
position.

The diffraction patterns due to the cylinder with the 
inner 80% of zero electron density is shown in diagram (1 2 ).

As with all the cases previously discussed the central 
peak's half width remains constant at~ 2.4 kS throughout this series.
At 1, one subsidiary peak is present in the (1 0 ) position, 
centred at kS**7.6, and of intensity 0.04. No other peaks are 
observed.
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At - 1.5, two subsidiary peaks are present in the non- 
Bragg position at kS ^3.8 of magnitude 0.02, and in the ((11),
(20)) position of magnitude 0.03 and position '-'13.0.

Four subsidiary peaks are observed at X  = 2.0, three of 
which correspond approximately to the Bragg reflections (10), (20) 
and (21) at positions of kS = 6 .6 , 14.6 and 18.8 and of intensities 
0.08, 0.02 and 0.03 respectively. The first subsidiary peak
(non-Bragg) is of intensity 0.03 at kS = 3.8.

At y  = 2.5, three subsidiary peaks are present, two of 
which correspond approximately to the (1 0 ) and (2 1 ) reflections.
The intensities of these two peaks being 0.13 and 0.03 at kS =
6 . 8  and 19.4 respectively. But at a - 3.0, only one Bragg peak
is observed (10), at kS = 7.0 and of intensity 0.18, apart from
the non-Bragg peak at kS~3.8, no other subsidiary peaks are observed.

The diffraction patterns due to the thin shell, where 
the inner 90?£ of the cylinder has zero electron density, EDP = 
(1000000000) are shown in diagram (13). Throughout this series 
of diffraction patterns, the central peak's half width, as with 
the other models discussed earlier, remains constant at a value 
of - 2.4 kS.

The contact caseV= 1.0 exhibits only a single subsidiary 
peak centred at kS =7.6 and of intensity 0.05. A single subsidiary 
peak is also present at ^  = 1.5, but this time corresponds to 
the ((1 1 ), (2 0 )) peak, and is centred at 1 2 . 8  and is of intensity ’ 
0.03. With the X- 2.0 case, the peaks (10), (20) and (21) are 
present at kS = 6 .6 , 14.4 and 18.8 and of intensities 0.06, 0.03 
and 0.03 respectively.

With the y =  2.5 case the (20) peak has disappeared, leaving 
the (10) and (21) peaks of intensities 0.12 and 0.04 respectively. 
Again in the ^ = 3.0 case, the (10) and (21) peaks are present 
of intensities 0.17 and 0.02 respectively.
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As will be noted from the above presentation of the results 
for the (1 1 1 1 1 1 1 1 1 1 ) to (1 0 0 0 0 0 0 0 0 0 ) series of cylinders in the

array, the extremes of the range viz (1 1 1 1 1 1 1 1 1 1 ) aad (1 0 0 0 0 0 0 0 0 0 ) 
form the limiting cases for the diffraction patterns of the whole 
series of cylinders, the rest of the series exhibiting behaviour 
intermediate between these two cases. For the lattice consisting 
of 19 components only the (1111111111) and the (1000000000) cylinders 
will therefore be representative of the behaviour limits of the 
whole series in this configuration.

The diffraction patterns due to the solid cylinder and 
the thin shell in the l_ 2  configuration are shown in diagrams (14) 
and (15).

From diagram (14) which shows the diffraction patterns 
due to the t_ 2  array of solid cylinders, the first point of note 
is that the half width of the central peak is ~ 1.60 kS, as opposed 
to the array of solid cylinders. This peak width remains at 
the same value throughout the range of ^ values used. The case 
#  = 1 has in common with the ( £ = 1 ) case only a single central 

peak, but at &  = 1.5 only 1 subsidiary peak is observed in the
(10) position of intensity 0.04 at kS = 7.0. The non-Bragg peak 
in the vicinity of kS 3.8 is absent unlike the (£= 1.5) case.

Attf= 2 .0 , two subsidiary peaks are present the first 
at kS^2.2, and of magnitude ~0.02, and the second at k S -7.2 and 
of intensity 0.08 and corresponding to the (1 0 ) peak.

At %  - 2.5, again only 2 subsidiary peaks are present 
in the same position as the^= 2  case, but of intensities 0 . 0 2  

and 0.12 respectively. Again attf = 3.0, only two subsidiary peaks 
are observed, as in the previous 2  cases of magnitude 
respectively.

Comparing the cases of the solid cylinder in the configurations 
L'| and l_£ it is evident that the corresponding (1 0 ) peak intensities 
in the L_ 2  are reduced pro-rata from the L*| case by a factor of 
^2. The half width of the main peak has also been reduced from 

a value of * 1 2.2 in the case to kS -*1.6 in the l_ 2  case.
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The position of the first subsidiary peak present in the case 
has "moved" to a kS value of -'2.2 and has again been reduced in 
intensity by a factor of ~ 2 .

Diagram (15) shows the diffraction patterns due to the 
0000000000) cylinder in the configuration. In common with 
the solid cylinder/l_ 2  series, the half width of the central peak 
has decreased to a value of r-1 . 6  for this series, and again a 
corresponding reduction in intensities in the subsidiary peaks 
observed compared to the corresponding cases. A peculiarity 
arises at 1.5, where no subsidiary peaks are observed, as compared 
to the configuration.

At 2.0 only one subsidiary peak is observed at kS '-*7.0 
of intensity ^  0.03, and is approximately half the value observed 
in the case. For 8  ̂= 2.5, as in the L-j case 3 subsidiary peaks 
are observed, the second and third of which correspond to the (1 0 ) 
and (21) Bragg peaks, positioned at kS = 7.2 and 19.2, of intensities 
0.07 and 0.02 respectively, the first subsidiary peak is kS = 2.2 
and of intensity 0 .0 2 .

At 3.0, only 2 subsidiary peaks are observed at kS 
= 2,2 and 7.2 and of intensities 0.02 and 0.10 respectively, no
(2 1 ) peak is observed as in the case.

Diagrams (16) and (17) show the diffrac.tion patterns due 
to the cylinders (1 1 1 1 1 1 1 1 1 2 ) anc  ̂ (1 0 0 0 0 0 0 0 0 0 ) in the configuration, 
ie a centred " hexagonal array of 37 points, and as shown earlier, 
the behaviour of the diffraction pattern for an Lj array of 37 
cylinders represents a reasonable approximation to the diffraction 
pattern of an infinite array.

As can be seen from diagrams (16) and (17), the central 
peak has now decreased in half width to ~'1.20 kS and a non-Bragg 
peak appears at kS'-1.60, and of intensity 0.02. As the value 
of if increases from 1 to 3 the (10) peak increases in intensity 
from zero- at if = 1 to a value of 0.10 at 2f = 3. No additional 
peaks are observed until = 2.5 when the (11) peak is present 
and of magnitude 0.01. At *f = 3  the (10) peak is of intensity 0.10 
and the ((1 1 ) , (2 0 )) merged peak has now separated into two distinct
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if low, intensity peaks of values 0 . 0 2  and 0 . 0 1  respectively.

The (lOOOOOOOOOVL^ series are shown in diagram (17),
For the X  = 1 case, there is only a single central peak of half 
width 1.2 kS. Only the (1 1 ) reflection of intensity 0.01, and 
a non-Bragg peak centred on kS = 1.6, and of magnitude 0.02 are 
present at 1.5. At K  = 2 the (10)m, (20) and (21) peaks are 
observed, of intensities 0 .0 2 , 0 .0 1 , and 0 . 0 1  respectively, in 
addition to the non-Bragg peak at kS = 1.6, the (20) peak being 

absent, the (10), and (21) peaks are of intensities 0.05 and 0.02 
respectively, and again only the (1 0 ) and (2 1 ) peaks are present 
in the 3.0 case, and are of magnitudes 0.07 and 0.01 respectively.

It will be noted from diagrams (8 ) and (17) which show 
the diffraction patterns due to the solid cylinder and thin shell 
in the various arrays , L£ and L-̂  that the arrays involving the 
solid cylinder produce a more consistent set of diffraction patterns 
than the thin shell series. As “̂ increases from the contact case 
of 1 .0 , the number of peaks observed also increases in the case 
of the arrays containing the solid cylinder. This is not found 
to be the case for the thin shell, for example in the L2 /(1 0 0 0 0 0 0 0 0 0 ) 
series as ^increases from 1 to 1.5, the (10) peak disappears, 
but at = 2 . 0  is observed again, no (1 1 ), (2 0 ) reflections are 
noted, butthe (21) peak appears for ^>1.50. In the L-̂ /( 1000000000) 
series, no (10) reflection is observed for K<2.0. The (11) reflection 
is present at V= 1.5,2.0and 3.0 whilst the (21) peak is present 
at^= 2, 2.5 and 3.0.

The above results will now be discussed using the theory 
developed earlier, and with the aid of the following diagram -
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As already discussed, the diffraction pattern is formed 
from the product of the scattering function of the cylinder, and 
the lattice function. Figure 34 shows the three lattice functions 

, L2  and and also the ranges of the scattering profiles due 
to the solid cylinder and the 10?o thick shell that combine with 
the lattice functions (see section 3.3 ). it is also useful at 
this point to recall that the diffraction patterns as presented 
represent the averaged contribution of each point in the array.

Considering the solid cylinder in the array, it is 
the faster varying function 1  ̂ that dominates the true diffraction 
pattern, so that considering the 1  ̂ function and the solid cylinders 
scattering profile at^= 1 , the product of these two functions 
should give a central diffraction peak of half width ^2.4 kS at 
most and since the scattering profile is zero at equivalent values of 
k S > 6 .8 , no other peaks are to be expected.
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As the value of ^increases through 1.5 to 2.0 the central peak 
at the solid cylinder's scattering profile is effectively broadened 
and encompasses a wider range of the function. As a consequence 
the diffraction function might be expected to produce two peaks 
at kS values of approximately 4.0 and 7.2. This latter corresponding 
to the (10) Bragg reflection.

At ^  = 3.0, the solid cylinder and the lattice should 
produce 3 Bragg peaks ie 10, (11) and (20) the latter two peaks
being merged. Also if figure 34 is examined the magnitudes of
the (1 1 ) and (2 0 ) peaks should be considerably reduced in intensity
(c.f. the (1 0 ) peak).

It can be seen therefore, that recourse to Figure 34 and 
the previously developed theory, a satisfactory explanation of 
the diffraction pattern due to an array of solid cylinders is 
obtained.

As shown in Figure 34 the difference between the 1̂  and 
I2  interference functions is one of intensity [again, recall that 
it is the lattice interference function that provides the "averaged" 
interference per lattice point].

Attf = 1, it is to be expected that there will only be
a central peak due to the solid cylinder/L^ combination of half
width 1.2 kS.

As S increases from 1 . 0  through to 2 . 0  or in the case 
a (10) peak is to be expected. The non-Bragg peak that is observed
in the (L^/ 1 .5 ) case is not present, because due to the scaling
factor built into the interference function, the amplitude of this 
peak is effectively zero, and it is this scaling factor that has 
reduced the amplitude of the (10) peak by almost 50?o compared 
to the (L^) case.
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Throughout the (l^/ Y* = 1 to 3) cases the major differences 
between the diffraction patterns due to the solid cylinder in the 

and [_£ series of lattices, is one of reduction in intensity 
of the subsidiary peaks, some of which are not present due to this 
factor.

The same is true as the number of solid cylinders in the 
array increases from 19 in the lattice to 37 in the case of 
the L-jj lattice, the general trend being a reduction in intensity 
in the amplitude of the peaks found in the previous two cases.

The case of the thin shell (EDP = 1000000000), in combination 
with the L to series-of lattice, diagrams (13), (15), (17), 
is seen to produce a series of diffraction patterns, that are not 
as predictable as the case of the solid cylinder and the same set 
of lattices. This is seen to be due to the fact that the scattering 
profile of the thin shell exhibits a series of subsidiary peaks 
that are not present in the case of the solid cylinder. Some of 
the "peculiarities" observed in the diffraction patterns due to 
the thin shell, are caused by the movement of these subsidiary 
peaks relative to the interference functions.

For the L-j array of thin shells, the following points 
are noted. At V = 1, there is only a single main peak of half 
width **1.2 kS and from Figure 34 by combining the relevant I-j 
and thin shell scattering profiles for X  = 1 , no other peaks should 
be observed.

From the Figure 34, it may be estimated that in the 
1.5 case, there is a sufficient shift in the first zero of the 
thin shell's scattering profile to bring it into the vicinity of 
the (1 0 ) peak due to the interference function, their product being 
effectively ^ero. This is observed (see diagram (13)). The 
separated (1 1 ) and (2 0 ) peaks are caused by the fact that the second 
zero of the thin shell's scattering profile falls in between these 
particular (1 1 ) and (2 0 ) positions, effectively causing the combined
(11),(20) peak of the I-j function to resolve into two separate 
peaks.
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Progressing to Y' =3.0, recourse to Figure 34 shows that, since 
the scattering profile falls of to zero in the vicinity of the
(2 0 ) peak, there will be no (2 0 ) peak present in the diffraction 
pattern, see diagram (13).

In the same manner as for thesolid cylinder, the effect 
of increasing the number of lattice points in general causes a 
reduction in peak amplitude, as the progression from to l_ 2  to 
Lj occurs.

Since the above two models _i£ the solid cylinder and the 
thin shell, in the various arrays to produce diffraction 
patterns that may be regarded as the limiting cases of a series 
of model arrays where cylinders of various thicknesses are considered.
It follows therefore that the predictions made using the knowledge 
gained by investigating these two limiting cases, may with reasonable 
validity be applied to any intermediate cases.

The general principles upon which predictions are made 
as to the features that ought to be found in a particular diffraction 
pattern, are as follows. Again reference is made to Figure 34.
The three main components that combine to produce the diffraction 
pattern are the scattered intensity profile, the swelling factor 
and the interference function. The form of the interference function 
is quickly established, and the array of seven points shows 
all the features that are present in the l_ 2  and arrays of 19 
and 37 components respectively. However at the higher numbers 
of lattice points resolution of certain of the peaks occur.

It follows therefore, that since the lattice function 
-is to a first approximation constant (apart from diminished magnitudes) 
the chief sources of variation in the diffraction pattern are the 
scattering function due to the particular type of cylinder, and 
the swelling factor Y'. For a given type of cylinder, it is the 
swelling factor that produces the variations in the diffraction 
pattern.
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As clearly demonstrated, a cylinder which possesses an 
SIP with several subsidiary peaks will introduce the most variation 
into the diffraction equation. For the cases already considered 
the maximum number of subsidiary peaks that are useful in determining 
the shape of the diffraction pattern is governed by the case of 
the c£> thin shell, by JQ(kR) and it is the range of kS used 
for the interference function that actually selects the number 
of subsidiary peaks of the scattering profile that play a part 
in the diffraction pattern.

It may be said then that no matter what structured cylinder 
is taken, that even the limited amount of cases discussed, the 
general features of the diffraction patterns variation with cylinder 
type and numbers is now established. Even the case of the reverse 
sawtooth (see diagram 4), with only the single peak of half width 
^5.0 kR, should produce a diffraction pattern when considered 

in the , |_£> L3  array that starts at an equivalent solid cylinder 
case where ft= 2 .0 .

The diffraction patterns due to an L3  array of infinitely 
thin shells are shown in diagram (18). For the case V  = 1 , the 
(1 0 ) and (2 0 ) peaks are present, and of magnitudes 0 . 0 2  and 0 . 0 1  

respectively. At 1.5, the (10) and the (20) peaks are absent, 
butthe (1 1 ) and (2 0 ) peaks are present, being both of magnitude 
0.01. At ^ = 2 . 0 ,  the (10), (11), (20) and (21) peaks are all 
present, and of magnitudes 0 .0 2 , 0 .0 1 , 0 . 0 1  and 0 . 0 1  respectively.

At = 2.5, only the.(10) and (21) peaks are present, 
and are of magnitudes 0.04 and 0 . 0 2  respectively, and at V  = 3.0, 
again only the (1 0 ) and (2 1 ) peaks are observed, and are of magnitudes 
0.06 and 0 . 0 1  respectively.

Throughout the whole of this series, there is a non^-Bragg 
peak present, •:centred at kS-1.6, and of almost constant magnitude 
(-0.02).

115



Contrasting this case with that of the 10% thick shell, 
it will be noted that the basic trends exhibited by the thin shell 
or (^OOOOOOOOO) case, are followed by the infinitely thin shell 
case, for example, the sequence of appearance and disappearance 
of the (1 0 ) peak.

The magnitude of the (10) peak is always found to be marginally 
greater in the (2 0 0 0 0 0 0 0 0 0 ) case than in the case of the infinitely 
thin shell, but in the main, the reverse appears to be true when 
the (11), (20), (21) peaks are considered. In general, the diffraction 
peaks due to the infinitely thin shell are narrower than their 
counterparts in the 1 0 % thick case, although for both cases, the 
central peak's width is of the same magnitude throughout.

Since the SIP due to the infinitely thin shell exhibits 
narrower scattering peaks, than the SIP due to the (2000000000) 
shell, then the combination of a given lattice function and the 
above two SIPs should produce narrower diffraction peaks in the 
former case.

Also, since the scattering peaks due to the infinitely 
thin shell are greater in magnitude than those due to the (2 0 0 0 0 0 0 0 0 0 ) 
shell, it might be expected that in general, the diffraction peaks 
due to the former case should be greater than these due to the 
later case. This does not appear to be true, and may be explained 
by the fact that for the two series of diffraction patterns considered, 
only a limited value of ^ i s  used, and that the particular increments 
in "6 always select particular regions where the SIP due to the 
(2 0 0 0 0 0 0 0 0 0 ) shell has the greater magnitude of the two cases considered.

The effect on the diffraction pattern is that the (10) 
peak is strongest in the (1 0 0 0 0 0 0 0 0 0 ) shell case c.f. to the equivalent 
peak in the case of the infinitely thin shell*

As a final series of examples to confirm the hypothesis 
advanced in this work, the following series of cylinders, whose 
EDP are in the range (1111NNNNNN) where N = 8  to 2 with A ^ I  =-2.
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The series of electron density profiles representing the above 
series are shown in diagrams -22,05 are the corresponding diffraction
patterns.

On the basis of the theory previously outlined, since 
the EDP of the cylinder is intermediate between that of a solid 
cylinder O H 1 1 H 1 1 1 ) ar>d a thin shell 0 0 0 0 0 0 0 0 0 0 ) then the diffraction 
patterns obtained from the L3  array at various values of <$ should 
also be intermediate between the diffraction patterns due to the 
solid cylinder and the thin shell.

The (1111888888) case, since the electron density profile 
differs very little from the EDP of the solid cylinder, should 
exhibit a diffraction pattern similar to that of the solid cylinder. 
Examination of diagrams(16) and (19) confirm this. There is a 
slight reduction in intensity of the peaks that are observed with 
this case, compared to the solid cylinder case. This at first 
might seem contrary to the facts since as the density of the inner 
part of the cylinder is reduced relative to the outer partjdiagram
(19) (the EDP's) show that, enhancement of the SIP should occur, 
therefore the intensities of the observed peaks should increase. This 
apparent anomaly is explained by the fact that accompanying an 
increase in peak intensities, as the cylinder changes by degrees 
into a shell, there is also a shift in peak position, and a change 
in the width of the central peak. Recourse to Figure 34 shows 
this to be valid.

As the relative electron density of the inner portion 
of the cylinder falls to 0 . 2  over the 6  inner shells of the cylinder, 
so the diffraction profiles exhibited by this series, tend to those 
of the thin shell. This is confirmed by inspection of diagram
( 2 1 ), and noting that the appearance and disappearance of certain 
of the peaks present in the diffraction pattern, follow similar 
trends to those observed in the case of the diffraction patterns 
due to the thin shell.
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The whole of the work! presented in this thesis may be described 
as the determination of the behaviour of combinations of the zero 
and first order Bessel functions, the scattering function due to 
the motif or cylinder being expressed in terms of combinations 
of (X), and the lattice interference function being expressed
in terms of combinations of JQ(X).

The behaviour of the SIPs due to the various structures, 
falls in the main between the cases of the SIPs due to the infinitely 
thin shell, and the solid cylinder. The main characteristics 
of these SIPs are a central peak, and a series of subsidiary peaks, 
which show a gradual fall offin intensity with distance from the 
origin. For a given range of KR in the SIP, the infinitely thin 
shell exhibits narrower, and more numerous scattering peaks than 
does the solid cylinder.

i
The "thick-thin" shell series exhibits intermediate behaviour 

to the cases described above, with the numbers of subsidiary scattering 
peaks in a given range decreasing as the progression from a thin 
shell to a solid cylinder occurs. There is also an attendant 
decrease in intensity of these subsidiary peaks. The SIP due 
to the "reverse saw-tooth" EDP exhibits only a single central scattering 
peak with the greatest width of any of the models considered.

The SIPs due to the "moving" shell series of cylinders 
exhibits different characteristics to those of the "thick-thin" 
shell series. At certain separations of the shells, certain of 
the subsidiary peaks that are typically present in the "thick-thin" 
series for example, are absent. Also in contrast to the "thick- 
thin" series of SIPs, the magnitudes of the scattering peaks, in 
some of the cases due to the "moving" shell series, do not exhibit 
the gradual fall off in intensity as the distance from the- origin 
increases.
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The interference function due to an infinite 2-D hexagonal 
lattice may be approximated with reasonable confidence by the interference 
function due to an array with relatively few points. The main 
differences between the interference functions 1  ̂ to 1 ^ being in 
the resolution of certain of the "standard" Bragg peaks, for example 
in the case of the 1  ̂ interference function where the (1 1 ) and
(2 0 ) peaks are merged, but resolved in the case of the l£ interference 
function. It has been shown elsewhere (O), that the positions 
of these "standard" peaks change very little as the numbers of 
lattice points is increased, thus giving support to the contention 
that only the interference functions due to a limited array need 
be used to approximate to that due to the infinite case.

Consideration of the interference functions 1̂  to 1^ shows 
that the 13  interference function due to an array of 37 lattice 
points provides a reasonable "minimum" approximation to the case 
due to the infinite lattice.

Having established the behaviour of the separate components 
of the diffraction pattern i£-the SIP due to the cylinder, and 
the lattice interference function, the behaviour of a wide range 
of structured cylinders in an infinite hexagonal array may be predicted 
with reasonable accuracy, by recourse to a diagram of similar 
nature to that shown in Figure 34.

The sometimes complex nature of the diffraction pattern 
due to a particular array of cylinders, being explained by the 
shift in the peaks in the scattering profile, relative to the interference 
function, due to variations in the swelling factor (/), i£ the 
separation between centres of the cylinders in the array.

For any given array of structured cylinders, it is seen 
that only a relatively small part of the SIP is "useful" in determining 
the form of the diffraction pattern. For any given interference 
function I, the range of (kR) in the SIP due to the cylinder used 
to produce the diffraction pattern, is given by (S/2 20. If a 
range of kS = 0 to 20 is taken as a reasonable figure for low-angle 
X-ray diffraction work, then a range of kR = 0 to 10 is the maximum 
of the SIP that is ever used to form the diffraction pattern.
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It therefore follows that it is the central peak and perhaps 
one or two at the most, of the subsidiary peaks of the SIP, that 
are important. In particular it is the position and extent of 
the first subsidiary peak of the SIP, determined by the first two 
zeros as they change position as £ changes, that serve to introduce 
the variation into the diffraction pattern at low values of # .

As X  takes on higher values ^5, the form of the diffraction 
pattern, for a given I, is determined completely by the shape and 
extent of the central peak of the particular SIP being used.

The behaviour of the diffraction patterns due to the structured 
cylinders considered in this work, fall in between the two limiting 
cases defined by the solid cylinder and the thin shell. This is 
to be expected since for a given array the dominant influence on 
the diffraction pattern is the SIP of the cylinder, which as already 
noted is limited by the two extreme cases, described above.

The diffraction patterns due to arrays of solid cylinders 
and thin shells are easily distinguished, by amongst other things, 
the change in intensities of the various Bragg peaks as the swelling 
factor (#) changes, and also by comparing the shape and extent 
of the central diffraction peak. Consider for example, the 
array of solid cylinders with £  - 1 , there is only the central 
peak in evidence, whilst for the corresponding case of the thin 
shell (10?o R thick), the (10) reflection is observed.

In the case of the solid cylinder, as#increases, there 
is an orderly progression in the appearance of the various Bragg 
peaks, starting at X  = 1.5, where the (10) peak is seen. A t ^ =
2.5, the (10) and (11) peaks are present, whilst at^= 3.0, the 
(10), (11) and (21) peaks are evident. This progression is maintained 
until the thickness of the shell approaches ^30?oR, below this value, 
the behaviour of the diffraction pattern follows the trends exhibited 
by the thin shell case.
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The diffraction patterns due to the solid cylinder and 
the thin shell result from structures with EDPs that are quite 
distinct from one another. However, when such structures have 
EDPs that are little different, as for example, when the (1111111111) 
and the (11H111100), or (IIIVMOOOO) and (1111000000) cases are 
compared, the differences between the respective pairs of diffraction 
patterns being small, but distinguishable as slight changes in 
the magnitude of the diffraction peaks, rather than by their presence 
or absence.

In such cases as the above, in order to distinguish between 
particular models it may be necessary to consider the respective 
diffraction patterns as a function of#', since comparison of the 
diffraction patterns at specific, well separated values ( Y- 1 ,2,3....etc) 
may be misleading, as for example when comparing the thin shell 
(10?oR) and the infinitely thin shell cases.

The diffraction theory and the models presented during 
the course of this work do not differ greatly from those presented 
in previous studies. Where this work differs, is that the specific 
components of the diffraction model have been examined in more 
detail than in previous works, in an attempt to gain a deeper insight 
into the way that each of these components affects the diffraction 
pattern. The use of a ten strip electron density profile being 
determined to be sufficient to illustrate the trends occurring 
in the diffraction pattern as the cylinder's structure is varied. 
Similarly, the behaviour of the interference function Ij, due to 
a centred hexagonal array of 37 points being determined to be sufficient 
to describe the behaviour of the interference function due to an 
infinite hexagonal lattice.

The diffraction pattern shows an interesting change in 
behaviour as the shell's thickness decreases to around 30?£R.
The use of an EDP with more strips, in any future work, might enable 
a more precise determination of the.shell's thickness at which this 
change occurs. In conjunction with this, a range of diffraction 
patterns, due to suitable arrays of model cylinders with smaller 
increments in 'C , be examined.
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Consideration of the above,might provide some useful information 
relating to arrays of shells of thicknesses around 10?oR. Also, 
the consideration of models which allow for larger arrays of cylinders 
than in the case of the array may also provide useful information 
in the way of diffraction peak definition and intensity.

The investigation of irregularities in the packing of 
the cylinders has not been considered in this work, but might be 
incorporated into some future study with some benefit.

Finally, in order to cater for any deformities that might 
exist in such micellar structures (or models of them), that have 
been examined during the course of this work, the consideration 
of a model incorporating a non-radially symmetric scattering unit 
might also provide a source of useful information.
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DIAGRAMS

MODEL SCATTERING PROFILES AND DIFFRACTION PATTERNS
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vâ

 
tf 

^M
e\A

 
Sh

-dL
ls 

id 
$0

% 
HY

irU
'K

es
s')

oh 
ucu

Tld
u^ 

v/a
LDe

^ 
o£ 

X. 
McW

twa
U^Q

di 
iY\t

QAAf
iiti

4 
of. 

^rn
deu

iuu
 

£.3 
Lv

sS
) 

Oev
f 

-fo
r

i K
rte

<> 
£M

d<
> 

a 
<3  ̂

\f e
la

te
s.



o

L <r

L r-

-  ,9

-

-  fO

- cJ

- cr

- o°

- r-

-  o

- \n

1- d

- to

rJ

ifl
0 1cxg;
yk

<̂av2?

cj
,OvC/1

S3«2

3Hr

GJ■a.5
_Ij
§

<y
c_

\Z>NJ
•o
H

cis'<■>
au
d
a

*N/o

s  is

d
C
C Ta

o
o

t
QJ
aCu

2Xd2

Q_£V-

3*4-J

1

-aov/1

>3

/I
a—id>
&
3
I

3

ICl
0 J■S’*
o'

~£
3

§
tds:

O

cic



<r

7 0  7* X)

C*

cr vi

t)l
on

fa
v\

,v
 
1\ 

t
im

l
 

tiv
Rr

ac
Ai

fc
V'

v 
P

a
fe

/i
A

^
 

cl
.no

 
-to

 
a 

V
\€

^
t\

d
o

i\
n

l 
/h

u
o

iA
 

o
f 

Sk
elk

 
(o

f 
4-0

% 
tK

\c
k

^
s

^

a-h
 
x/
a<
ic
oe
> 

vra
luê
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oû
 

vra
Vu

ê
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APPENDIX A

The following computer program is used to calculate the scattering 
profiles and diffraction patterns referred to during the course of this 
work.

The Bessel functions JQ(X) and (X) used in computing the lattice
interference functions and scattering profiles of the various cylinders 
are calculated in accordance with the following integrals.

and are computed to an overall accuracy of eight decimal places.

O
COS (X sin &) d& - (A1)

sin (X sin &) sin 6  d& - (A2 )
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DEFINE VARIABLES

REAL*8 J 0 ,J1 ,E D (1 0 ) ,KR, KS, MOTIF, LATTIC,DIFPAT, NUM, DEN
REAL*8 INTFER ,V ,ENDV,DELV, D, SCALE,LATPNT, SQR3, SQR7 , SQR13
REAL*8 SQR19 SQR21,SQR31,SQR37, SQR39, SQR43, SQR57
INTEGER I,N,HEX,OPTION,PLOT
LOGICAL*l MOT,GRAPH,LAT, STARS(1 0 0 ) ,NUMER
DATA STARS/1 0 0 * '* ' /

CALCULATE SQROOTS FOR INTERFERENCE FUNCTION

SQR3=DSQRT(3 .)
SQR7=DSQRT(7 .)
SQR13=DSQRT<13.)
SQR19=DSQRT(1 9 .)
SQR21=DSQRT(2 1 .)
SQR31=DSQRT(3 1 .)
SQR37=DSQRT(3 7 .)
SQR39=DSQRT(3 9 .)
SQR43=DS0RT(43.)
SQR57=DSQRT(5 7 .)
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C SET UP OPTIONS
C 
C 
C

W RITE(5,10)
10 FORMAT( ' 1 ' , 'ENTER T (RUE) OR F(ALSE) FOR OPTIONS REQD')

WRITE(5 ,2 0 )
20 FORMAT( 'O ' , ' MOTIF' )

READ(5 ,3 0 )MOT 
30 FORMAT(LI)

WRITE(5 ,4 0 )
40 FORMAT( '  ' , 'L A T T IC E ')

READ(5 ,5 0 )LAT 
50 FORMAT(LI)

WRITE(5 ,6 0 )
60 FORMAT( '  ' , ' NUMERICAL OUTPUT')

READi 5 ,7 0 )NUMER 
70 FORMAT(LI)

WRITE(5 ,8 0 )
80 FORMAT( '  ' , 'GRAPHICAL OUTPUT')

READ(5 ,9 0 )GRAPH 
90 FORMAT(LI)

IF (.N O T. NUMER.AND..NOT.GRAPH)STOP 
IF ( .NOT.GRAPH)GOTO 96 
WRITE(5 ,95 )

95 FORMAT( '  ' , 'ENTER INTENSITY SCALE MAXVAL')
READ( 5 , * ) SCALE

96 IF(LAT.AND..NOT.MOT)GOTO 200 
WRITE(5 ,100)

100 FORMAT( 'O ' , 'ENTER ELECTRON DENSITIES(10 VALUES)' )
READ(5 , * )  (ED (N ),N =10,1 , - 1 )
I F (LAT)GOTO 200 
WRITE(5 ,110)

110 FORMAT( '  ' , 'ENTER START, END,DELTA K R ')
READ( 5 , * ) V,ENDV,DELV 
GOTO 240 

200 WRITE(5 ,210 )
210 FORMAT( ' 0 ' , 'ENTER INTERFERENCE FUNCTION NUMBER')

READ(5 , * ) I  
LATPN T=3*I**2+3*I+1 
WRITE(5 ,220)

220 FORMAT( '  ' , 'ENTER START, END, DELTA K S ')
READ( 5 , * ) V , ENDV, DELV 
WRITE(5 ,230 )

230 FORMAT( '  ' , 'ENTER SWELLING FACTOR')
READ( 5 , * ) GAMMA
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C WRITE HEADINGS TO OUTPUT FILE
C
C
240 IF ( .NOT.NUMER)GOTO 300

WRITE(1 ,310) (E D (N ),N = 1 0 ,1 ,-1 )
WRITE(1 ,3 2 0 )1 ,LATPNT, GAMMA 
WRITE(1 ,330)
I F ( . NOT. GRAPH)GOTO 400 

300 WRITE(2 ,3 1 0 ) (E D (N ),N = 1 0 ,1 ,-1 )
WRITE(2 ,3 2 0 ) I , LATPNT, GAMMA 
WRITE(2 ,340 ) SCALE/2 ,SCALE 
GOTO 400

310 FORMAT( '  ' , 'M O T IF ',1 0 F 6 .2)
320 FORMAT( 7 0 ' , ' INTERFERENCE FUNCTION N O :' , 1 4 , 1 OX,

1 'NO. P O IN T S :', F 1 6 .0 , 1OX,' SWELLING FACTOR' ,F 6 .2 ) 
330 FORMAT( ' 0 ' , '  K R ',1 0 X ,' K S ',5 X , ' M O TIF ',

1 5 X , ' LATTIC E ', 5X, ' DIFF PATTN')
340 FORMAT( ' 0 ' , '  K R ',1 0 X ,' KS' ,5 X , ' 0 ' ,47X,

1 F 5 .3 ,4 4 X ,F 5 .3 )
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C TEST WHICH OPTIONS HAVE BEEN SELECTED AND SWITCH
C TO APPROPRIATE ROUTINE
C
400 V=V+DELV

IF(V.GT.ENDV)STOP 
I F ( .NOT.MOT)GOTO 470 
IF(MOT.AND.LAT)GOTO 420 

410 KR=V
GOTO 430 

420 KR=V/(2*GAMMA)
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C CALCULATE SCATTERING FUNCTION FOR CYLINDER
C AND WRITE VALUES TO OUTPUT FILE
C
430 NUM=ED(10)*J1(KR)

DEN=ED(10)
DO 440 N=9,1 , - 1
NUM=NUM+ ( (ED(N) -E D (N + l) ) * < 0 .1 *N )*J 1 ( 0 . 1*N*KR) ) 
DEN=DEN+((ED(N)-ED(N+1) ) * ( ( 0 . 1 *N )**2>>

440 CONTINUE
MOTIF=( ( 2*NUM) / ( KR*DEN) )* *2  
IF(MOT.AND.LAT)GOTO 470 
I F (NUMER)WRITE(1 ,4 5  0 )KR,MOTIF 
IF(GRAPH)WRITE(2 ,4 6 0 )KR,
1 ( STARS(M),M=1,PLOT(MOTIF,SCALE))
GOTO 400

450 FORMAT( '  ' ,F 5 . 2 , 20X,F10.7 )
460 FORMAT( '  ' ,F5 .2 ,20X ,100A 1)
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c
c

CALCULATE LATTICE INTERFERENCE FUNCTION 
AND WRITE VALUES TO OUTPUT FILE

C
470

475

477

480

490
500

KS=V
I F ( I  .GT. 1 )GOTO 472
LATTIC=(7+24*JO(KS)+ 6 *JO( 2*KS)
1 +12*JO(SOR3*KS)) /49
GOTO 480
472 I F ( I  .GT. 2 )GOTO 475
LATTIC=( 19+84*J0(KS)+54*JO( 2*KS) + 2 4*J0 ( 3*KS)+ 6 *J 0 ( 4*KS)
1 +60*JO( SQR3*KS) + 7 2 *J0 ( SQR7*KS)+24*JO( SQR13*KS)
1 + 1 8*J0 ( 2*SQR3*KS)) /3 6 1
GOTO 480
I F ( I  .GT. 3 )GOTO 477
LATTIC=(37+180*JO(KS)+138*JO( 2*KS) + 96 *J0 ( 3*KS)
1 +54*JO( 4*KS)+24*JO( 5*KS)+ 6 *JO( 6*KS)
1 +144*JO( SQR3*KS)+216*JO( S0R7*KS)+144*JO( SQR13*KS)
1 + 7 2 *J0 ( SQR21*KS)+ 2 4 *J0 ( SQR31*KS)
1 + 78 *J0 ( 2*SQR3*KS)+96*JO( SQR19*KS)+ 3 6*JO( 2*SQR7*KS)
1 +24*JO( 3*SQR3*KS))/1 3 6 9
GOTO 480
I F ( I  .GT. 4 )STOP
LATTIC=( 61+312*J0(KS) +258*J0 ( 2*KS)+204*J0 ( 3*KS)+150*JO( 4*KS) 
1 +96*JO( 5*KS)+54*JO( 6*KS)+24*JO( 7*KS)+ 6 *JO( 8*KS)
1 +264*J0 ( SQR3*KS)+432*J0 ( SQR7*KS)+ 336*J0 ( S0R13*KS)
1 +240*J0( SQR21*KS)+ 144*J0 ( SQR31*KS)+ 7 2 *J0 ( SQR43*KS)
1 +24*J 0 (SQR57*KS)
1 +174*J0 ( 2*SQR3*KS) +264*J0 ( SQR19*KS)+180*JO( 2*SQR7*KS)
1 + 96 *J0 ( SQR39*KS)+ 3 6 *J0 ( 2*SQR13*KS) + 9 6 *J0 ( 3*SQR3*KS)
1 +120*J0 ( SQR37*KS) + 4 8 *J0 ( 7*KS) + 3 0 *J0 ( 4*SQR3*KS)) /3 7 2 1
IF(MOT.AND.LAT)GOTO 510
IF (NUMER)WRITE(1 ,4 9 0 )KS, LATTIC
IF(GRAPH)WRITE(2 ,5 0 0 >KS,( STARS(M),M=1, PLOT(LATTIC, SCALE)) 
GOTO 400
FORMAT( '  ' ,1 5 X ,F 5 .2 ,20 X ,F 10 .7 )
FORMAT( '  ' ,15X ,F 5 .2 ,5X ,100A 1)
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C CALCULATE DIFRACTION PATTERN AND WRITE RESULTS
C TO OUTPUT FILE
C
510 DIFPAT=MOTIF*LATTIC

IF  < NUMER)WRITE(1 ,5  2 0 )KR, KS,MOTIF, LATTIC, DIFPAT 
IF(GRAPH)WRITE(2,530)KR,KS,<STARS(M),M=1, PLOT(DIFPAT,SCALE)) 

520 FORMAT( '  ' ,F 5 . 2 , 1 0 X ,F 5 .2 ,5 X ,F 1 0 . 7 ,5 X ,F 1 0 . 7 , 5X ,F10.7 )
530 FORMAT( '  ' ,F 5 . 2 , 10X ,F5. 2 , 5X,100A1)

GOTO 400 
END
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C PLOT FUNCTION SUBROUTINE
C
C

INTEGER FUNCTION PLOT(A , SCALE)
REAL*8 A
PLOT=IDINT(100*A/SCALE)
IF(PLO T.G T.100)PLOT=100
RETURN
END

C
C JO FUNCTION SUBROUTINE
C

REAL*8 FUNCTION JO(A)
REAL*8 NDPTS, SUMODD r SUMEVN,DTHETA , P I
REAL*8 A
INTEGER M,STRIPS
P I= 3 .141592653589793
M=100
DTHETA=PI/(2*M)
NDPTS=1+DCOS(A )
SUMODD=DCOS(A*DSIN(DTHETA))
SUMEVN=0.0
DO 1000 STRIPS=2 , ( M -2) ,2
SUMODD=SUMODD+DCOS(A*DSIN(DTHETA*( STRIPS+1) ) )  
SUMEVN=SUMEVN+DCOS(A*DSIN(DTHETA*STRIPS))

1000 CONTINUE
J0= (NDPTS+4*SUMODD+2 *SUMEVN) / (3*M)
RETURN
END

C
C J1 FUNCTION SUBROUTINE
C

REAL*8 FUNCTION J1(A )
REAL*8 NDPTS r SUMODD, SUMEVN,DTHETA,P I
REAL*8 A
INTEGER STRIPS,M
P I= 3 .141592653589793
M=100
DTHETA=PI/(2*M)
NDPTS =DSIN(A )
SUMODD=DSIN(A*DSIN(DTHETA) ) *DSIN (DTHETA) 
SUMEVN=0.0
DO 2000 STRIPS=2, (M -2 ) ,2
SUMODD=SUMODD+DSIN(A*DSIN(DTHETA*( STRIPS+1) ) )  
1 *DSIN(DTHETA*( STRIPS+1))
SUMEVN=SUMEVN+DSIN(A*DSIN(DTHETA*STRIPS))
1 *DSIN(DTHETA*STRIPS)

2000 CONTINUE
J1=(NDPTS+4*SUM0DD+2*SUMEVN)/ ( 3*M)
RETURN
END
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APPENDIX B

Conversion of diffraction line positions into equivalent interplanar 
spacings

For a 2-D hexagonal lattice recourse to standard crystallographic 
theory enables the inter-planar spacing (d) of a set of (hk) planes 
to be expressed in the form:

Allowing h and k to take the various values 0,1,2,3.... etc. the 
equivalent <k>s ( or (kS)) spacings of the particular sets of 
(hk) planes are obtained.

The equivalent (kS) spacings of the (10), (11), (20) and (21) planes 
obtained from equation (B7) are 7.26, 12.57, 14.51 and 19.20 respectively.

1 /d 2 4(h2 + hk + l2) - (B1)
3s 2

where s is the distance between lattice points

The standard Bragg relation is defined as:

- 2 d sin 8 -(B2)

The wave vector jv is defined by the relation 

I k \ = <k> = 4 ~Pr sin 0 /?\ - (B3)

so that using equation (B2) and equation (B3) gives 

d = 2 Tt/<k > - (B4)

and substituting equation (B4) into equation (B1) gives 

4 l T 2 / < k > 2 = 3s 2__________ - (B5)
4(h2 + hk + k2)

re-arranging terms,

( < k > s ) 2 = 1 2 (h 2 + hk + K2) - (B6 )
3

- B7
rr
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