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ABSTRACT

Microstrip line are the most popular interconnection type mainly due to its planar
geometry. The mode of propagation is almost a transverse electromagnetic mode
of wave propagation (TEM) and can be described by the Telegrapher’s equations.
These facts make mathematical and fuzzy modelling of microstrip lines possible.

Two types of nonuniformly coupled microstrip lines, namely, nonuniformly
spaced and strictly nonuniform, are presented in this study. A new model of
capacitance matrix was developed for nonuniformly spaced coupled microstrip
lines. The model obtained was then translated into a Mathematica program in
order to be utilised in real systems. Furthermore, a new matrix; mutual
capacitance ratio matrix, was deduced from the previous model. A few valuable
properties were then established from this matrix.

Novel concepts were introduced to approximate capacitance of strictly
nonuniform coupled microstrip lines and Mathematica programs were coded to
implement these methods. The study then continued with the development of new
algorithms to calculate the time delay and characteristic impedance using
capacitance matrices of both types of nonuniform lines. These algorithms finally
became a generalised algorithm which could be used in any type of coupled
microstrip lines, uniform and nonuniform. The time delay and characteristic
impedance were later used as parameters to simulate crosstalk using SPICE.

Analysis of geometrical and electrical parameters of microstrip lines was
performed mathematically and simulations modelled using the Mathematica
package. Experimental work was also carried out to investigate the characteristic

of crosstalk.

All information obtained from these analyses were then fed into the developed
novel fuzzy model. The model was designed to minimise crosstalk and to
optimise the geometrical and electrical parameters of coupled microstrip lines
simultaneously. These models have the potential to become ‘multi purpose on
board designing tools’ for a designer before the system is finally fabricated.
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1. INTRODUCTION

Integrated circuit (IC) technology today is focusing on very large scale design of
high-speed circuits. Research in interconnections has now become very important
due to the rapid development of high speed, and high-density integrated circuits.
A connection behaves like a transmission line and problems associated with
transmission lines such as attenuations, distortions, signal delay, impedance
matching, and particularly crosstalk arise for the interconnections. In order to
understand these problems, an accurate mathematical modelling of interconnects
is essential. To meet the expectations for speed and chip density, a number of
issues, such as crosstalk and delay time, must be addressed before developing any
design. A powerful tool available for the design engineers is mathematical
modelling. This work addresses the issues involved in coupled microstrip lines

and how they can be modelled, analysed and designed.

The thesis introduces the development of a mathematical model for coupled
nonuniform microstrip lines in order to study their crosstalk. The theoretical basis
for this development can be found in the work due to Romeo and Santomauro
(1987) on time-domain simulation of # coupled transmission lines, and to Gao et

al (1990) on modelling and simulation of interconnection delays and crosstalk in

high speed integrated circuits.



The originality of the thesis lies in the derivation of expression for capacitance of
n coupled nonuniform microstrip lines which have different dimensions and are
differently spaced. The evaluation procedure is implemented using Mathematica
computer packages and the effect of geometrical parameters on electrical
characteristics of microstrip lines is investigated. The mathematical constraints
on these geometrical parameters are then presented. A novel matrix is constructed
from mutual capacitance ratios, giving physically valuable properties of
eigenvalues and eigenvectors. Algorithms are developed in order to evaluate the
time delay and characteristic impedance of different types of nonuniform lines.
Optimisation of geometrical and electrical parameters of microstrip lines are
carried out within the frame work of fuzzy logic in order to reduce the crosstalk.

This model is useful for commercial implementation.

The approach adopted here is based on identifying relevant equations for the
initiation of the models for coupled nonuniform microstrip lines. Geometrical
and electrical parameters of the lines and crosstalk between them are investigated
by performing experiments and simulation. The information obtained is analysed
and then incorporated into a fuzzy model. Fuzzy modelling is undertaken in order
to optimise the geometrical and electrical parameters for minimum crosstalk. The

approach adopted for carrying this work is best illustrated in Figure 1.
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The thesis is organised into nine chapters. Chapter 2 describes the structures of
different types of microstrip lines with emphasis on specific applications.
Necessary and important equations are written in explicit forms in Chapter 3.
Mathematical notations are clearly explained. Chapter 4 introduces the concept of
mathematical modélling of microstrip lines. A newly developed model for
nonuniform coupled microstrip lines is presented and novel algorithms are
included for computing time delay and characteristic impedance. The resulting
physical parameters are then used to simulate the crosstalk between four
nonuniform lines in Chapter 5. Analytical and simulated results for nonuniform
lines are presented in this chapter. Experimental work on crosstalk between
uniform lines is also included in this chapter and this information is used to
predict the nature of crosstalk between nonuniform lines. Chapter 6 provides an
overview of fuzzy set theory and presents the theoretical concepts required to
develop a fuzzy model for design optimisation of microstrip lines. The
formulation of fuzzy algorithms is explained in Chapter 7 as an optimisation
design model with an aim to minimise crosstalk for microstrip lines. Chapter 8
presents the scope of applications of the fuzzy algorithms as a multi-purpose
design tool for determining the geometrical and electrical parameters. Finally,
Chapter 9 presents the conclusions of the present investigation and provides

suggestions and guidelines for future work.



2. MICROSTRIP LINES

2.1 Introduction

Not many years ago electrical equipments were large physically, and constructed
with electrically large discrete components. Nowadays equipments are becoming
smaller and yet more efficient (Ruehli 1979), and as one can see the Japanese are
in the forefront of this movement. They have developed products such as the

micro walkman, the video camera, and the pocket television with physical sizes

reducing each year.

This is partly due to the rapid development in technology of faster circuits
(Schur-Aine and Mittra 1989) and modern integrated circuits (Ruehli 1979).
However, recent integrated circuits have delay times (signal speed) that are
comparable to that of the interconnections, bringing the focus of investigation
further by modelling them as transmission line (Parker 1994). Microstrip lines are
the most popular interconnection methodology mainly due to their planar
structure. The mode of propagation is almost a transverse electromagnetic mode
of wave propagation (TEM) which may be described by Telegrapher’s equations

(Romeo and Santomauro 1987), making mathematical modelling of microstrip

lines possible.

2.2 Microstrip Lines
Microstrip line may well become the most popular transmission line structure.
The term “microstrip” is a abbreviated name for a microwave circuit configuration

that is constructed by printed circuit techniques, modified where necessary to



reduce loss. reflections. and coupling. However it retains advantages in size.
simplicity and reliability (Parker 1994). In general. a microstrip line is a
transmission line deposited on a thin-film or thick film on dielectric substrates.
Ease of fabrication by photolithographic techniques and a good range of
impedances and couplings allow them to be used to interconnect a wide variety of
circuit components. Harold Wheeler developed planar transmission lines (two
coplanar strips) which could be rolled up in 1936 and a stripline-like structure in
1942 (Wadell 1991). Flat coaxial transmission line was first used by V.H.
Rumseyv and H.W. Jamieson for antenna systems during World War II (Barrett
1955). Coaxial cable was first adapted to a flat configuration using printed circuit
techniques by Robert M. Barrett (Barrett 1955) at the Air Force Cambridge
Research Centre, Cambridge, Massachusetts, USA. He successfully developed
filters, directional couplers, matched loads and hybrids which were all constructed
at 440 MHz. This technique evolved into stripline after W.W.II after the
Telecommunications Division of the British Post Office issued a landmark paper
with the title, “The Fundamental Research Problems of Telecommmli‘cations” in
1948 (Black and Higgins 1953). A major problem stressed in the paper was the
difficulties in obtaining wire transmission lines of adequate performance in the

portions of the frequency spectrum devoted to UHF television, radio relay and

radar.

The first use of the microstrip line configuration was reported by engineers at the
Federal Telecommunications Research Laboratories, a division of International
Telephone and Telegraph Corporation sometime after 1949 (Barrett 1955).

Microstrip lines have been increasingly and widely discussed ever since and



reported as early as the 1960’s (Schneider 1969, Yamashita 1968). Their low-loss
characteristics, compactness of structure, and ease of manufacture are particularly
suited to low cost mass production techniques, especially for microwave

applications where size reduction is important (Black and Higgins 1953).

Generally a microstrip line is characterised by conducting strips, large ground
planes, dielectric-layer insulation, and planar geometry, as shown in Fig. 2.1. The
most important geometrical parameters of a microstrip line are the width w and the
height /4 (equal to the thickness of substrate). Also of critical importance is the
relative permittivity of the dielectric substrate (sr). The thickness ¢ of the
metallic, top-conducting strip is generally of much lesser importance (Edwards

1992).

Microstrip Line

(Ickness, ¢

Figure 2.1



A considzrable amount of work has been done on the properties. classifications
and applications of microstrip line and is discussed in the following subsections.

Unfortunzately, almost all of them dealt with uniform microstrip lines.

Recent trends in microelectronics have been driven by the need for increased
packing density of devices and interconnects. The implementation of thin-film
multilayer interconnects has caused the emergence of irregular geometries such as
multilevel crossing metallic signal strips in orthogonal multilayer configurations.
Recent developments in semiconductor manufacturing have also led to system
level integration strategies allowing dense concentration of these interconnects on
package and board level (Schutt-Aine 1992). Even though these interconnections
are treated as uniform, the fact is they are usually nonuniform owing to
physical geometrical constraints (Palusinski and Lee 1989) which are discussed in
a later section. Only a small amount of theoretical work (Palusinski and Lee
1989, Schutt-Aine 1992, Protonotarios and Wing 1967, Curtins and Shah 1985,
Chang 1994) have been devoted to nonuniform lines. Hence, insufficient reports
are available and the majority of them only deal with a single (Schutt-Aine 1992,

Curtins and Shah 1985) or 2 - coupled (Palusinski and Lee 1989) nonuniform

microstrip line.

Furthermore, most of them are ‘not really nonuniform’ since all the lines have the
same thickness (Palusinski and Lee 1989, Qian and Yamashita 1993, Curtins and
Shah 1985, Orhanovic 1990). Therefore, as a result of these motivations, a new
theoretical analysis on ‘really nonuniform’ (strictly nonuniform) is presented in

Chapter 4. This is followed by a simulation to examine the crosstalk of 4 -



coupled. strictlv nonuniform. microstrip lines in Chapter 5. The general

classifications of microstrip lines may be described as follows.

2.2.1 Classification
There are eight basic types of microstrip transmission lines with one strip
conductor supported by a dielectric substrate (Fig. 2.2). The most common is

standard microstrip which is also known as open microstrip (Fig. 2.2.a).

Figure 2.2.a Open microstrip.

The open microstrip line was soon abandoned by microwave designers because of
the radiative nature of the open-strip line. However, the use of thin high-dielectric
materials in open-strip lines greatly reduces the radiation and has been used for
integrated microwave printed circuits (Stinehelfer 1968). Of the many
configurations, the open microstrip appears to be the most convenient and

inexpensive system for batch processing of microwave integrated circuits (Pucel

et al 1968).

Proximity of the air-dielectric interface to the strip conductor can lead to

excitation of plane-trapped surface waves. This problem can be solved by



utilising the embedded microstrip (Fig. 2.2.b) where the air-dielectric interface is

moved into the far field region.

d ielectric

Figure 2.2.b Embedded microstrip.

If the substrate is a semiconductor, surface passivation(coating) may be necessary
to protect against atmospheric contaminants. This can be achieved by a thin

dielectric film as in a microstrip with an overlay (Fig. 2.2.c).

Figure 2.2.c Microstrip with overlay.

Solid-state devices with substantial heat dissipation such as IMPATT, GUNN, and
LSA diodes as well as high-power varactor diodes have to be shunt-mounted in
the microstrip in order to achieve a small thermal spreading resistance in the

ground plane (Schneider 1969). A hole in the dielectric is required such as in the

10



microstrip with hole design (Fig. 2.2.d), for mounting a solid state dzvice between

the two microstrip conductors.

dielectric

dielectric

ground

Figure 2.2.d Microstrip with hole

Other solid-state devices or materials which require shunt mounting are ferrites

for circulators and isolators and high-Q dielectric resonators for microwave band-

pass filters. Shunt mounting is facilitated in inverted microstrips, and suspended

MICroStrips.

dielectric

Figure 2.2.e Inverted microstrip.

11



ground

Figure 2.2.f Suspended microstrip.

Shielded microstrip or the slot transmission line can be coupied with open
microstrip lines to give the widest possible choice of circuits to be built with

existing hybrid integrated circuit technology.

dielectric

< .
e grouwn d. ... N

Figure 2.2.g Shielded microstrip.

d

Figure 2.2.h Slot transmission line.

A‘major advantage of all microstrip configurations with an air gap is that the
effective dielectric constant is small. This means that the effective dielectric loss

tangent is substantially reduced, and since all circuit dimensions can be increased,

12



this leads to less stringent mechanical tolerances, better circuit reproducibility, and

therefore lower production cost.

Even though microstrip line is a simple structure mechanically, it had not been

analysed with reasonable accuracy until the introduction of modified conformal

mapping (Wheeler 1965) and a variational method (Yamashita and Mittra 1968).

The difficulties associated in modelling of this structure are:

o the dielectric boundary conditions restricting electric fields

o the electromagnetic wave cannot be considered a pure TEM because it extends
over air and one or more dielectric substrates

e the circuitry may radiate at high frequencies

e if it is enclosed within a EM reflective enclosure, the waves reflect back to

produce coupling and resonances.

The general classifications of microstrip lines have been deliberately tailored for

certain applications as follows.

-

2.2.2 Application

The increasing importance of miniature planar microwave integrated circuits has
renewed intérest, on the part of microwave circuit designers, in the various forms
of planar strip transmission line system; i.e. microstrip line. It has also been used
in millimetre wave hybrid integrated circuits required for solid-state radio systems
because of their simplicity and planar structure (Pucel et al 1968) and in many fast

digital circuits (Djordjevic and Sarkar 1994).

13



Circuits built with microstrip transmission lines or microstrip components have

three important advantages: (Schnetder 1969)

(1) The complete conductor pattern can be deposited and processed on a
single dielectric substrate which is supported by a single metal ground
plane. Such a circuit can be fabricated at a substantially lower cost than
waveguide or coaxial circuit configurations.

(i)  Beam-leaded active and passive devices can be bonded directly to metal
stripes on the dielectric substrate.

(iii)  Devices and components incorporated into hybrid integrated circuits are
accessible for probing and circuit measurements (with some limitations

imposed by external shielding requirements).

Double dielectric substrates have been used in the development of large scale
integrated circuits (LSI) such as silicon-on-sapphire. Interest in insulating
substrates as an alternative to silicon substrates increased considerably (Yuan et al
1982) during the eariy eighties to develop high-performance LSI and very large
scale integrated circuit (VLSI) components. The widely used insulating

substrates were sapphire and Cr-doped semi-insulating gallium arsenide.

2.2.3 Capacitance and inductance

The development of methods to evaluate the capacitance and inductance of
microstrip lines is very closely related to the development of methods to calculate
the characteristic impedance (Wheeler 1965, Wheeler 1977, Hill et al 1969, Cheng
and Everard 1991, Farrar 1970, Bryant and Weiss 1968). Yamashita (1968) used

the variational method in the Fourier transformed co-ordinate to calculate the

14



capacitance of microsirip lines. By this method. it is possible to take into account
all the dielectric boundary conditions no matter how many planar boundaries exist
in the lines. He started with investigating a shielded double-layer microstrip line
and then derived simpler structures such as a double-layer microstrip line, a

shielded microstrip line, and an ordinary open microstrip line.

Weeks (1970) refined the sub-areas method for the numerical determination of the
coefficients of capacitance for a range of multiconductor transmission-line
systems. His approach is purely mathematical in which basic numerical analysis

tools such as the Simpson’s rule has been applied to calculate the mutual and self

capacitance of three different types of lines.

The problem of open-circuit capacitance was treated purely electrostatically by
Silvester and Benedek (1972); Green’s functions were constructed on the
assumption that time retardation did not exist. In this technique, the formulation
of the problem in a computablé fashion resolves into two parts:

@) determining the necessary integral equation to be solved and;

(ii) finding the Green’s appropriate function.

A programme called TIC (thin-film and integrated-circuits capacitances) has been
written and is based on the method of subdivisions of the conductors into
rectangles (Balabanv 1973). The method is very similar to that of sub-areas
(Weeks 1970). A charge distribution with initial conditions (undefined
parameters) is assumed over each rectangle. It is assumed that the potential is

constant for each conductor and the self and mutual capacitances are computed

15



from the resultant charges and potentials. The programme is used to compute the
capacitance values of geometrically complicated medium and high frequency
circuits. Balaban (1973) introduced for the first time the lower and upper bound

method for approximation of the capacitances.

A mixed order finite-clement technique was used by Benedek (1976) to solve the
integral equations governing the charge density distribution in a planar
multiconductor configuration on a dielectric sheet. The method was then
implemented in a package called PARCAP to calculate the capacitance, which
were in agreement with measured values. Dividovitz (1991) further improved the
technique by introducing the semidiscrete finite element method to compute the

capacitance of multiconductor microstrip lines.

Harms and Mittra (1993) extended the T-equivalent circuit used for single-line
microstrip bends to variable-angle, multiconductor, microstrip bend. These
techniques were employed to obtain the capacitance and inductance matrices and
at the same time effectively avoid the majority of numerical difficulties that
occurred in accounting for the infinite extent of the microstrip lines making up
bends with arbitrary bend angles. The study confirmed the effect of bend on
capacitance and inductance of microstrip lines which in turn effects the digital
pulse propagation along the line. On the other hand, quite recently Dinh et al
(1992) revitalised the original concept based on an impedance-admittance
transformation and on an equivalent ci;"cuit to calculate the capacitance and

inductance of microstrip lines. It was assumed that the line has a lossless

dielectric layer.

16



Capacitance and inductance are the main elements in determining the
characteristic impedance of a microstrip line. These two parameters will be

discussed in greater detail in the subsequent two chapters.

2.2.4 Characteristic impedance

There is a strong market demand for high speed communication links which
require access to ultra-fast switching circuits with high density onchip and
interchip interconnections. The recent advances in integrated circuit technology
have increased the speed of a single device to the multi-giga hertz region. In such
an environment the transmission line property of the IC interconnection plays a
major role which cannot be ignored. In such conditions inter conductor crosstalk

can cause false switching and, therefore, needs closer examination.

The calculation of crosstalk parameters, and the consequent determination of
minimum acceptable line separation and/or line length, depend on a knowledge of
the even-mode and odd-mode characteristic impedances of the lines concerned.

The same data are also required in the closely related microwave problem of

directional-coupler design.

There is a vast amount of literature leading. to methods of calculating
characteristic impedance. Wheeler (1965, 1977) introduced conformal mapping
technique, Bryant and Weiss (1968) treated the problem by the use of a Green’s
function, Hill et al (1969) combined the Green function with a subinterval
technique, Farrar (1970) used the method of moments, John and Arlett (1974)

used Schwarzmann’s equations to produce a very simple equation for

17



charactenistic impedance, and Cheng and Everard (1991) recently pointed to a new

method based on the spectral-domain approach.

The effect of strip thickness on characteristic impedances of a microstrip line must
be taken into account when evaluating circuit performance such as crosstalk
(Gunston and Weale 1969). The thickness affects both the impedance of the line
and its time delay, both decreasing as the strip gets thicker. This relationship is
expiained by the fact that as the line gets thicker, the field is made to propagate
on the surface of the line. This also increases the total capacitance of the line
which in turn reduces the characteristic impedance. The loss per wavelength

increases with thickness of the centre conductor (Stinehelfer 1968).

A new computational approximation method of characteristic impedance for
coupled nonuniform microstrip lines is developed in Chapter 4. It is part of the

mathematical modelling and will be used for simulation of microstrip lines in

Chapter 5.

In any complex systems, static or dynamic, there are always constraints, which a
designer has to deal with. The following sections discuss the sources of

constraints associated with coupled microstrip lines.

2.3 Constraints
A coupled microstrip lines is a static system and will be discussed more

elaborately in Chapter 4. Nevertheless, its constraints are mainly due to:

18



(i) general initial physical system lay out. and

(i1) crosstalk.

2.3.1 Physical

Some of the physical constraints when designing a microstrip line are:

¢ The thickness of the finished board is determined by system requirements
(connectors. card guides, etc).

¢ The lavers of the layout must be made symmetric about the centre line.

¢ Different thickness of dielectric or metallization on either side of the PC
(printed circuit) board centre line can cause board warpage.

¢ Inner layer dielectric thickness must be at least 1.5 times as large as the sum of
the opposing metallization thickness (Wadell 1991).

¢ The inner layers must also have sufficient space to fill the bumps created by the
PC traces when the layers are compressed.

¢ Only a finite number of conducting and dielectric substrates materials are

available off-the-shelf (Wadell 1991).

The main problem in all microstrip design is to evaluate the physical dimensions
of width, length, height, and thickness of the microstrip lines (Edwards 1992)

which will have a significant effect on crosstalk.

2.3.2 Crosstalk

Crosstalk by definition refers to the unintended electromagnetic coupling between

wires and PCB lands that are in close proximity. Although the phenomenon is

19



due to the currents and voltages of the wires and is thus similar to the problem of
antenna coupling. crosstalk is distinguished from the latter in that is a near-field
coupling problem. Crosstalk berween wires in cables or between lands in PCBs
defines the intrasystem interference performance of the product; that is, the source

or the electromagnetic emission and the receptor of this emission are within the

same svstem (Paul 1992).

In designing interconnecting transmission lines, in particular microstrip lines,
crosstalk is one of the three main characteristics that needs to be predicted and
controlled. For example, in order to design an interconnection system for
nanosecond-risetime logic circuitry, it is necessary to obtain a balance between
impedance variations, propagation velocities and crosstalk. Therefore, it is
essential to relate the electrical material properties as well as physical dimensions

(configurations) of the connections to crosstalk phenomena.

A new computational method called multiple-image/subintervals (MISb was
introduced by Hill et-al (1969) to calculate the crosstalk coupling coefficients for
open microstrip lines which can be also used for triplate line configurations. This
technique avoids approximate boundary conditions and uses strictly Dirichlet
boundary conditions. In this method, the coupling coefficient decreases as the line
spacing-to-width ratio increases. This may also be interpreted as an increase in
spacing causes a decrease in coupling, since the width of lines was constant. This
result is confirmed by Seki and Hasegawa (1984). Qian and Yamashita (1993)

showed that the crosstalk decreases when the width of the lines are nonuniform

and widely spaced.
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Assuming TEM mode propagation along microstrip lines, Stinehelfer (1968)

suggested that the width of lines must be smaller than a half wavelength in order

to minimise crosstalk,

Seki and Hasegawa (1984) concluded in their paper that the length, spacing, and
termination conditions of interconnection. substrate thickness, and output
impedance of gates have large and complicated effects on crosstalk.
Shielded/screened lines may reduce crosstalk (Rizvi and Vetri 1996), but there is a
risk of dynamic ringing , and limited wiring capacity since it doubles the spacing
between lines. It can also imply a reaction of the shielded lines on the active lines

and a distortion of the signals propagating on these lines (Chilo and Armaud

1984).

A shielded multilevel interconnect (Seki and Hasegawa 1984) was then proposed
to reduce crosstalk as well as ringing without reduction of wiring capacity. It also
facilitates timing and layout design. Dielectric overlays (Fig. 2.2.c) are a further
possible alternative to reduce crosstalk but, like close shielding (Fig. 2.2.g), can be
difficult to design and control under production conditions (Edwards 1992). Rizvi
and Vetri (1996) showed that selective use of a dielectric substrate (multiple
dielectric substrates) beneath the microstrip lines also can reduce crosstalk.
However, this technique is also difficult to produce. A possible solution to the
problem of reflections is to decrease the length of the interconnections by
increasing the system density. This trend toward greater density, however,

increases the problem of crosstalk too (Palusinski and Lee 1989).
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Parker et-al (1994) studied the crosstalk charécteristics berween the
interconnection of eight uniform lines on high-speed digital circuits using the
SPICE (Simulation Program with Integrated Circuit Emphasis), circuit simulator.
They concluded that crosstalk. decays gradually in a non-linear fashion with
increasing distance from the activated lines, and supports the claim made earlier
by Hill et al (1969), Seki and Hasegawa (1984). In the case of two lines being
activated. an increase in crosstalk is seen on the lines between them. but little or

no change in crosstalk is seen on the other lines, when compared to the case of a

single line.

There has been further work on minimisation of crosstalk. Coekin (1975) has
pointed out that crosstalk can be halved if a grounded conductor:strip can be
interposed between two signal carrying runs of microstrip lines. Further halving
crosstalk can be achieved if the interposed strip can actually be connected through

to the ground plane via close-spaced plated-through holes (Edwards 1992). This

fact is confirmed in Chapter 5.

Porthecary and Railton (1991) proposed the finite difference technique to produce
pulse shaping as an alternative way of reducing crosstalk. However, the work is at

an early stage and requires a large number of different pulses to be further

investigated.

Zhang et al (1992) introduced an optimisation technique to minimise crosstalk,
delay and reflection simultaneously in high-speed VLSI interconnects. This

technique demonstrates significant reductions of crosstalk, delay, distortion and



reflection at all vital connection poris. It is an important step towards optimal

design of circuit interconnects for high-speed digital computers and

communication svstems.

Crosstalk is getting ever harder to eliminate because of the increasing number of
interconnections on a chip. Other than the optimisation described above, another
way to alleviate this would be to have several small, simple processors on a chip

instead of one big, intricate one, but in the end more basic redesign; i.e. modelling

may be needed (Science and Technology 1998).

In order to model crosstalk, it is important to understand the analysis of two-
conductor transmission lines (Fig 2.3) since for such a transmission line there is
no crosstalk. In order to have crosstalk, we must have three or more conductors

(Paul 1992). Therefore in our studies, we must have two or more parallel

microstrip lines.

Figure 2.3 A two-conductor line.
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Several researchers (Edwards 1992. Okugawa and Hagiwara 1970) have

advocated the use of the well-established expression (2.1) to model crosstalk:

Z -
Cr =._0£___Z& (2.1)
ZOe +ZOO

where Zy,. Zy, are the even and odd modes of characteristic impedance used to
model crosstalk. However, there are two problems in using the model:
(1) data for Z, and Z,, are difficult to obtain; and

(if)  even if these data can be obtained, notably by computer-oriented work of

Brvant and Weiss (1968), there has been some debate about their

accuracy.

Therefore, for these reasons, the expression for crosstalk used by Parker et al
(1994) is adopted in the studies. The remaining part of this chapter discusses
microstrip line design structure, a topic researched by many workers (Akhtarzad et

al 1975, Kajfez and Govind 1975, Kirschning and Jansen 1984, Lange 1969,

Dydyk 1990).

24 Structure Design

The design- of the structure is centred around the mid-band coupling factor

(Edwards 1992),

ZOe - ZOO (2.2)

C'=20log
Zoe + ZOo
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and impedance relationship;

Zf)z = Z0eZ0o - (2.3)

From equations 2.2 and 2.3 the even and odd characteristic impedances are given

by;
C'20
1+10
Zoe = Zoy|———== 2.4)
e 1—10€720

C'/20
/1—10
Zop = Z | e . 2.5)
° 1+10C720

The outline of design procedures are summarised as follows:
24.1 C'<-3dB
() Provided the coupling is loose enough for eqn. 2.3 to hold with sufficient

accuracy, then egns. 2.4 and 2.5 give the required characteristic impedances

(Edwards 1992):

Evenmode: Zy, =2 \/ZQ{: (2.6)

Odd mode:  Zp, = ZOJ% 2.7)
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) ) . N
where H=1+10¢ %0 and O=1- 10¢ "0, and the coupling factor C" is directly
substituted as -C" dB’ since eqn. 2.2 is always positive because of its absolute
value. The substitution is necessary to produce the correlation with crosstalk

which is always measured and expressed in negative dB in value.

(b) An approximate synthesis is then performed using the method proposed by
Akhtarzad et al (1975). It is likely that the discrepancies in the region of 10 %

will arise in this process, which yields initial values of the ‘shape ratios’ w// and

sth.

(c) These initial values can then be used to determine the corresponding
impedances, Zy, and Zy,. If higher accuracy is required, then the computational
method developed by Bryant and Weiss (1968) may be used. Some adjustment

for finite conductor thickness may sometimes be necessary.

(d)  The new values obtained in (c) are then compared with the original
requirements, determined at stage (a), and discrepancies are noted. Shape ratios
w/h and s/h can now be adjusted slightly to correct the impedances, and hence the
coupling factor C’, to the desired values. It will usually be best if spacing, s,

alone is slightly altered, since the resulting mismatch to the feed lines will be

small.

Spacing affects the odd mode more than the even mode; increasing s means that

more field is within the (air) coupling gap and Z;,. As a rough approximation
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x %% change in s results in /10 % change in Z,. Finally, the value of the mid-
band coupling factor given by eqn. 2.2 must be checked for accuracy (Edwards

1992).

2.42 C'>-3dB
The problems of unequal even and odd mode wave velocities worsen rapidly as
the coupling increases, e.g. the approximation of eqn. 2.3 becomes poor when

C'> -3 dB. There is an exact expression for Z;which takes into account the even
and odd modes electrical lengths 8, and 8,, respectively, given as (Edwards

1992):

Zpp sinb, + Zy, sinb,, 2.8)
Zy,sinb, +Zy, sinb, |

,
Zy = ZpeZy,

However, in order to find 6, and 8, -one needs to know the geometry of the

structure. One approach could be:
(@)  Carry through a rough, first order synthesis using eqn. 2.3, hence

determining an initial value of w/k and s/A.

(b)  Calculate approximate values of @, and &, and effective microstrip

permittivities, £,4, ,, (Edwards 1992) using the values obtained in step (2). The

electrical length (6, , ) of a microstrip line is given by:
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(2.9)

G, =

e.o Eoffe.o

A,V
)

where / is the physical length of the microstrip and Ag Is the wavelength.

An approximate value of Z, is then obtained using eqn. 2.8. If Z, differs from

that ot the feed lines by an unacceptable amount, then the width w of the
microstrip lines should be altered to compensate. However, altering w will alter

Zoe: Zpo+ B, and G, ; thus the procedure must be iterated to find the optimum

value of w.

(c) The evaluation of w must also ensure that the required mid-band coupling

factor (2.2) is obtained.

(d) Having used the above procedure and obtained the parameter values, the

final values of Zj, and Zj, are then used for the synthesis.

(e)  Finally, for close coupling, the effect of finite microstrip thickness which

is often significant should be taken into account.

2.4.3 Wavelength
In a directional coupler the coupled region extends for one quarter of a wavelength
at mid-band and the designer requires the physical length of this region. Since, in

a microstrip, we are faced with the problem of different phase velocities,
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applicable to both even and odd modes. then the wavelengths associated with

these modes must be considered as given below:

. 390 Zoe (2.10)

~

Age
€ F Zope
and

~£9_g20_ (2.11)

where F is the frequency in megahertz and Zy, and Z,are the even and odd

mode characteristic impedances for the coupled microstrips with a substrate

respectively.  Zy;, and Zjj, are the even and odd mode characteristic

impedances for the air-spaced microstrips respectively. The average value of

wavelength is given as (Edwards 1992):

1
Agn == (Age +Ago) (2.12)

However, a weighted-average method (Kajfez and Govind 1975) can be used for

further improved accuracy of the wavelength estimation.
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2.4.4 Frequency characteristics
There are two fundamental effects governing the frequency dependent behaviour

of coupled microstrips:

a) the basic frequency response of any pair of parallel-coupled lines
(neglecting any dispersion)

b) the effect of microstrip dispersion (Edwards 1992).

Great care must be taken when using the fairly complicated expressions involving

effective permmitivity (Eefre) given as:

b)) = &y~ B 2.13)
1+ G (f/ fpe)

with

Spe = Ti():_h | (2.14)

and

G, = 0.6+00045Z,. (2.15)

/i Mg, €,and A are the frequency, permeability of vacuum, dielectric constant and

height of dielectric substrate respectively.

Although it appears that the even mode electrical length 6, may be evaluated

‘fairly accurately’ using (2.13) and

6, =27/ Ag,, (2.16)

30



there is evidence that the odd-mode calculation overestimates changes in €, (f)

(Edwards 1992). For better accuracy, particularly for high frequencies (0 - 30

MHz) the equations proposed by Kirchning and Jansen should be adopted

(Kirschning and Jansen 1984).

2.4.5 Crosstalk and coupling factor

The expression for crosstalk (2.1) is identical to the coupling factor. Although
several alternative methods to reduce crosstalk have been reported and are
discussed in Section 2.3.2, the technique invented by Lange (1969) still yields an
electrical performance which is generally superior to that of its closest rivals. The
main disadvantage is the requirement for short wire connections. A design
procedure now exists for the ‘Lange coupler’ and combinations of Lange couplers
have been built covering a wide frequency range of 2 - 18 GHz. The design
repeatability of such couplers is generally +0.05 dB, on the coupling factor, that

is £ 2.5um excursions in coupling gaps which results in + 0.1dB changes in the

coupling factor.

Of the other techniques which have been developed the end-connected
compensating lumped capacitor is possibly the next best (Dydyk 1990). However,
when a tight or fairly tight coupling factor is required (i.e. C'2 —3dB) the already

narrow coupling gap makes it difficult to incorporate the lumped capacitive

structures.
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S meamwes

achieve good compensation, the close proximity of the shield to the circuit can

cause ringing and distortion of signals.

2.4.6 Post manufacture adjustment

If a completed coupled line circuit requires adjustment, then this can be achieved
by etching or laser trimming. However, changing s or w slightly will alter the
impedances and hence the coupiing factor. It will generally be necessary to alter
both w and s at the same time so that the correct impedance relationships are
preserved. For example, if s is increased by 1 % then Z, will also increase by
approximately 0.1 %. Therefore w// should be increased slightly by less than 1 %

to reduce the impedance again (Edwards 1992).

These design procedures are complicated. Therefore the need for a new and
revolutionary method to evaluate the physical/geometrical characteristics is of

prime importance. This work has set out to produce such a novel method based

on fuzzy logic which is explained in later chapters.
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3. MATHEMATICAL BACKGROUND

3.1 Introduction

This chapter introduces relevant mathematical equations required throughout this
work. These equations represent the phyvsical meaning of the lines. i.e. electrical
and geometrical parameters, which have been rewritten as mappings. These
mappings are compact and will give significant clarity and precision to the
equations. The chapter begins with an expression for the impedance of a single

microstrip line and then moves on to coupled microstrip line.

3.2 Impedance of a Single Microstrip Line

The earlier published works on a single microstrip line show the characteristic
impedance Z,,, in terms of line width w, dielectric constant ¢,, and the height of
the line above the ground plane 4, as (Schneider 1969, Wheeler 1965, Parker

1994, Hammerstad 1975):

z, = @025 e < G.1)
,/ere w h h
‘ -1
z, =297 [Lu 1393 + 0667 In(— + 1.444)} for Z>1 (3.2)
v Ere LA h h

where the effective dielectric constant € re is

e.+1 ¢, -1
Ere = ’2. +=1 f0%) (3.3)



[ .
(1120 /W)Y +004(1-w/ ) for Y
and f(¥}) = Y A
1(11‘-12/1/11/)"1"

for-‘-1i <1
h

(3.4)

Recently published materials have also included the line thickness ¢ in the

impedance equation given as (Bahl and Garg 1977):

7, = 025y e ¥ o< (3.5)
Ere W h h

2071 ¥
z, 1207 W,

-1
W, w
= ———1—2£+ 1393+ 0.667 In(—= + 1.444 for —2>1 3.6
m (“"‘gre L I 279 n( 7 ):’ or 7 (3.6)

where the effective width, W, is

w125t
—+ = (1+ In(4™))); <
We _|h nh (L+ 7)) h ™ 2rm
h w125t

. B2 3.7)
P +7(1+1n( 4)); for 72_

e, +1 e.-1
+L— /h)—E
3 5 f(wih)

re

(3.9)
such that

E=8,.—1 t/'h te,—-1)

46 Jwih  46vmw

(3.9)
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The inclusion of the thickness of microstrip line, 7, contributes to accuracy in
evaluation of all electrical parameters since the characteristic impedance is one of
the main elements in them. The electrical parameters of microstrip lines are
fringe capacitance, gap capacitance in air, capacitance value due to electric flux,

gap capacitance, modified fringe capacitance and mutual capacitance.

3.3 Fringe Capacitance
The fringe capacitance of the microstrip and the ground plane is given as (Gupta

et al 1979) (Figure 3.0):

— €0y 2

of =0.5["8"e £ l”-} (3.10)

CLom

where & is permittivity of free space (Wadell 1991):

£ =8.854183x10712 F/m (3.11)

All the geometrical parameters are parameters of fringe capacitance except the
spacing of lines, s. The equations for impedance and fringe capacitance are

functions, and they are the main elements in other electrical parameter equations.
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Magnetic Wall

(a) Even mode capacitances.

Electric Wall

(b) Odd mode capacitances.

Figure 3.0 Electrical parameters (a) even mode capacitances (b) odd mode

capacitances.
Keys for figure 3:
Er Dielectric
Cf Fringe capacitance with no neighbouring line
CP Parallel plate capacitance
C>  Modified fringe capacitance
Cq:  Gap capacitance in air
Cgl  Capacitance due to electric flux
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The modified fringe capacitance is a fringe capacitance which takes into account

the spacing between lines.

3.4 Modified Fringe Capacitance
Let R denotes a set of all real numbers and R" is a set of all n tuples of real
numbers. ie; R" = {(a,, a,, .... a,): a, is a real number}. The modified fringe

capacitance of a single line due to the presence of another line can be considered

as a mapping (Gupta et al 1979) (Figure 3.0):

C’f .'R5 — R such that

C
/ £ (3.12)

Crle.,t,whs)=
s ) = S anh(10s 1) \ 2

where the fringe capacitance with no neighbouring line C, is

2| cZyy O h

1{‘/;’: WJ (3.13)

2.33=-253w/h
-0.le
A=e

with ¢ is the speed of light in a vacuum taken as ¢ = 2.99792456 x 108 m/s.
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3.5 Gap Capacitance in Air

The gap capacitance in air of microstrip lines can be considered as a mapping

(Gupta et al 1979) (Figure 3.0):

C’ga:R3 — R such that

! —g—ln!(2l+‘/?J for0<k” <0
I 7
Cga(s,/z,w)={ (1T (3.14)
Eﬂgo 1nl2IT J for05<k~ <1
l U 1-VE
where
k= s/ and k2 =1- k2 (3.15)

(s/h)y+2(w/h)

It is clear from (3.14) that Cg, depends on the spacing, height and the width of

lines.

3.6 Capacitance Value due to the Electric Flux
The capacitance due to electric flux can be considered as a mapping (Gupta et al

1979) (Fig. 3.0):

Cga:R® — R such that

Coa(&rst,w,h,5) = 0=r

0.2
coth(4h)]+065cf —J_ +(1-g2

(3.16)
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3.7 Gap Capacitance
The gap capacitance of microstrip lines can be considered as a mapping (Gupta et

al 1979):

Co :R? - R such that

Cop(t,5) =260~ (.17)
S Ky

3.8 Mutual Capacitance
Finally, the mutual capacitance of a coupled microstrip lines is a composition of

equations (3.12) - (3.17):

C,-j:R5 — R such that

1
C,-j(e‘r,t,w,h,s)=§[Cga +Cgq +Cy = Cs | (3.18)

All the electrical parameters are composed into a matrix which we may call the
capacitance matrix, C. The inductance matrix is then deduced from the
capacitance matrix, followed by the characteristic impedance and time delay

matrices. The next section introduces some general features of matrices.

3.9 Matrix

Some of classifications of matrices which will be used in both the C and L

matrices and fuzzy theory are outlined as follows:
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(D 3.1) A square matrix 4 =[c;] is a tridiagonal matrix if ¢; =0for

]i - jl >1
(D 3.2) A square matrix A is called a symmetric matrix if 4 T'- 4
(D 3.3) A square matrix A4 =[a;] is called a Toeplitz matrix if each entry

is equal diagonally.

a1 =4ax =..=dyy,
. Q12 =423 =--=q(n-1n>
ie.
) = Az =...=Ay(n-1)>
(D34) The symmetric matrix 4 and the corresponding quadratic form

O =x A.t are said to be:
1. positive definite if (any of the conditions) |
O@x)>0,x = 0 < all eigenvalues, 14,>0 < alldet4, = 0;
2. positive semidefinite if Q(x) 2 0 < all A, = 0;
3. indefinite if O assumes positive and negative values <> A4 has posi.tive and

negative eigenvalues;

4. A and Q are negative definite <>-4 and -Q are positive definite (Rade and

Westergren 1988).

3.9.1 Capacitance and inductance matrices

With the assumptions of the transverse electromagnetic mode (TEM) of wave

propagation, the distribution of voltages and currents along a set of n coupled
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lossless microstrip lines is given by the generalized Telegrapher’s equations

earlier in thesis;
v(x,1) 0 L v’(.\'.[)_i

= — H q19

[i"(x,t)J {C 0}[1”(.\'.[” (3-19)

where vectors v(x.r) and i(x.r) denote voltages and currents. respectively. L is the
per unit length (PUL) inductance matrix and C is the PUL capacitance matrix.
Superscripts x and ¢ denote differentiation of signals with respect to space and
time, respectively. Distance and time are denoted by x and ¢ and the capacitance

matrix is given as (Romeo and Santomauro 1987):

Ciu TCp - TC
-C C vee —C
_ 21 2 b R _ n n
C= with ¢; =¢;, + Zj:lcii (3.20)
J=i
_Cnl —CnZ b cnn

where ¢, is the capacitance PUL of line i with respect to ground, ¢; is the
capacitance PUL between line / and j, i.e. mutual capacitance, and ¢; is the self-

capacitance PUL of line i.

The inductance matrix of the lines is given as below (Romeo and Santomauro

1987):

L= p950Cq" (3.21)
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where C, is the capacitance matrix for the same set of lines with dielectric

replaced by a vacuum and y = 47 x 107" H/m isthe permeability of free space

(Wadell 1991).
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4 MATHEMATICAL MODELLING OF MICROSTRIP LINES

4.1 Introduction

Current mathematical equations for uniform microstrip lines have been explained
systematically in Chapter 3. The purpose of this chapter is to propose a
generalised model for a coupled microstrip lines system, both uniform and non-

uniform. It will be used as a foundation for the present study.

The chapter begins with a brief review of the concepts of a system and its model.
Microstrip lines are then introduced as a physical model and relevant
mathematical equations are written in order to simulate crosstalk. The chapter
concludes by presenting a novel algorithm to compute time delay and the

characteristic impedance of coupled microstrip lines of different types.

4.2 System

A system is a collection of things which are related in such a way that it makes
sense to think of them as a whole (Dorny 1975). A set of coupled microstrip lines
(Fig. 4.3) is an example of a system. Microstrip lines have constraints as
discussed in Chapter 2. These constraints lead to r_nodelling (Carlin 1973). A
model itself is neither science nor mathematics, but a way of putting all the
constraints together (Bender 1978, Wang 1997) and mimics relevant features of

the system, the microstrip system, being studied.
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4.3 Modelling

The principal rationale for modelling a system is a desire to determine the method
for the system design and predict its performance characteristic without
experimenting upon with the actual system. Then a designer may use models to
modify the design in order to meet a required set of specifications, and to evaluate
the nature of the interaction of the system with other systems. No model is truly a
perfect one unless all parameters of a real system are taken into account. In
some models, certain simplifying assumptions can be made provided their effects

are insignificant (Bender 1978).

There are three main stages in building a model of a system.
1) Problem formulation.
ii) Model formulation.

iii)  Application of the model.

In the first stage, a designer formulates all questions related to the system that
needs to be answered by the model. The model information is then identified in
three parts: information which need to be neglected (unimportant), information as

input (exogenous) and the output (endogenous) of the model. These are illustrated

in Fig. 4.1.

At the second stage, a designer may reduce the number of different concepts by
making assumptions in order to conceive the system in simpler terms. A complex
system will necessitate a vast number of assumptions. If the assumptions are too

arbitrary, the model gets divorced from reality and if it is too precise the solution
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of the model become unrealitiscally difficult. Models depending only on special

assumptions are, on the other hand, very fragile.

Input Output
" A Model

Exogenous Endogenous

Figure 4.1 Components of a model.

Basically, there are two classes of models: physical and mathematical. They will be
used to represent an actual microstrip lines as shown in Fig. 4.2. In the former
model the system is presented in a simplified form, e.g. a set of coupled microstrip
lines, see Fig. 4.3. System descriptions and all its constraints are carried out

mathematically in the second model.

4.4 Mathematical Modelling

There are several advantages in modelling a system mathematically (Bender 1978):
a) ability to manipulate the mathematical language;

b) availability oflarge number oftheorems;

C) availability ofhigh speed computers.

It is the clearest ofall models used in science and technology that follow physical

laws (Terano et al 1987). Statistical, structural and predicate logic are three
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widely used types of mathematical models. However, a statistical model requires
a large amount of data and for this reason, only the later two are adopted in this

work.

4.4.1 Structural modelling

A structural model is usually presented graphically. It is also sometimes called a
logical model. This model is suitable for handling complex and ambiguous
systems. Expert intuition and interpretation as well as written description of the
system are necessary for the development of this type of the model (Terano et al
1987). This model is adopted to perform simulation. The results with supporting

experimental data are given in Chapter 5.

4.4.2 Predicate logic

Predicate logic forms the basis of knowledge engineering (Terano et al 1987). It

is usually expressed by a short and compact sentence called propositions

(theorems). A proposition is a written model which has been proven analytically.

It can be used for ambiguous objects or situations as long as they fulfil the

definition and meaning.

This type of model produces results which tend to move far away from the actual
system or reality. However, it admits examination of the reasoning, evaluation,

extension, combination and co-ordination among the propositions themselves.
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Predicate logic or theorems are effectively used to explain some of the important

results obtained for modelling a microstrip system.

4.5 Microstrip System

Figure 4.2 illustrates an ideal and a real microstrip line. The reason for the
difference lies in the method of line etching and fabrication. The lines will never
have ideal sharp edges, i.e. there always will be a certain amount of
undetermininistic aspects of the microstrip line, even when the most simple
fabrication process is used. The degree of deviation is negligible when dw < w.
However when dw > w, then the result would have a significant impact on the
effective width of the microstrip line. This becomes a totally different modelling
problem, which goes much further into the physics of the structure and not of our

interest in this work.

Idealised M icrostrip Real Microstrip

Figure 4.2 Microstrip line.

Idealised (see Fig. 4.2) or physical models (Bender 1978) of microstrip lines are
subject to several assumptions which are necessary for building the mathematical

models.
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4.5.1 Assumptions
To simplify both mathematical and fuzzy models, several general assumptions

have been made.

Asp.1- Each transmission line is coupled directly only with the immediate

neighbouring lines.

This assumption will make matrices C and L to be tridiagonal matrices (Gao et al

1990).

Asp.2- The lines are neither identical nor equally spaced.

This assumption will lead to nonuniform coupling between the lines.

Asp.3- The effects of length on the coupling is negligible.

Asp.4- The lengths of all lines are equal

This assumption is made in order to have the same reference point for a specific

set of microstrip lines, see Fig. 4.3.

Asp.5- The dielectric constant, ¢,., and height, h, of the substrate is the same.

This assumption refers to a specific set of coupled microstrip lines.

Asp.6- The material of the microstrip lines are common between the coupled

lines.
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Asp.7- The number of lines must be greater or equal than three.

The purpose of this assumption is to ensure that the capacitance matrix is

tridiagonal.

Assumptions 1 -7 are part of the constraints in our models and are used unless
otherwise stated. They are applied to the uniform as well as the nonuniform

models of a set of coupled microstrip lines. Let us first consider the former lines.

4.5.2 Uniform lines

A uniform microstrip assembly is a set of microstrip lines in which all the
geometrical configurations, namely the width, w, thickness, ¢, and spacing, s, the
same for each of the lines. The dimensions are shown in Fig. 4.3. This is mainly

due to simplicity of its capacitance matrix which is tridiagonal, symmetric and

Teoplitz as:
ajp aj; 0
C=laj; az ap 4.1
0 a;; asz
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Figure 4.3 Uniform lines.

4.5.2.1 Time delay and characteristic impedance

Time delay, W and characteristic impedance, Z, of uniform coupled microstrip
lines depend on the diagonalisation of matrices C and L (Romeo and Santomauro
1987). For a given set of »n uniform coupled microstrip lines, the voltages v and

currents / of'the lines are given as (Fig. 4.4):

~I~ W\
V2 T T2
v3 Vd)

e =Mvvd =
_Mn\ " e o Mntt
Y% 2d, _
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_il _ —l'dl .
iy My .. M Idy
i3 . . . idg,

1= = Miid =

_Minl .o Minn_
_inJ _id,, ]

Note, the change of notation from v to v, and i to i as the transformation

matrices M, and M; are applied to the parameters respectively.

The voltage and current of the 4th line are given as:

Ms

Vi =

J

Differentiating (4.4) with respect to space, x and time, ¢ results in:

2= % MuZy, (v
7.4 kS j=1 kjo’l\fdj '

and

. _n.i 0. .
alk(x:t)—JEIMlg ﬁ:ldj(xvt)a

=% MyZv, (n)
o YT L T e

and

n .
M/g“’dj and i = ,ZlMlkfidj fork=1,2,3, ..., n
J:

(4.3)

(4.4)

(4.5)

(4.6)

@.7)
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—a—i (x,t)= gMik'—a—i (x,t)
o BT L Y

h
Simplifying (4.5) and (4.7) and then rewriting ¥ M); as a square matrix M,

[M, ] where k,j=123,...,n (see eqn. 4.2):

V74 74
—_ ,t =M,6 —
—v(x,t) vé}cvd

and

74 l
—v(x,t) =M, —
07( ) vavd

Similarly (4.6) and (4.8) will give:

J . J.
gz(x,t) =M; ?igc_ld

and

-g—i(x,t) = Mi gid ‘

where M,=| M;;j] is a square matrix (see eqn. 4.3) where k,j=123,...,n.

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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Differentiating eqn. (3.19) with respect to x:

G ety = -LZi(x,1) (4.13a)
X &

and

70‘,-1'(.1', t) = —Cé v(x,t) (4.13b)
oX ct

Substituting (4.12) into the right hand side of (4.13a):

0 0
—v(x,t)=—-LM; —i
ax‘(r ) tatld

=M, %"d because of the equivalence of (4.13a) and (4.9) w9
Thus (4.14) implies that,
gvd =-M; ' LM; gid. (4.15)
Similarly
%i(x,t) =-CM, g"d = M; gl’d (4.16)
which implies that
o 7

i = -Mcum, Vi (4.17)



The new Telegrapher’s equations with respect to the change of basis is written as:

vin|_ | o MM, | v (x,0)
i%(x,1) Miicm, 0 i% (x,t)

[0 Ly vh
__[Cd OLJ (4.18)

The time delay matrix is given as:

W=(L;Cyq)? (4.19)

and the characteristic impedance matrix is:

Z=(LsCHV?cit =wycyt (4.20)

such that C; = M;'CM, and L; = M;'LM;.
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Figure 4.4 Detailed model for the i th line.

The theoretical aspects (time delay and characteristic impedance) of the uniform
coupled microstrip lines described above can be extended to nonuniform coupled
microstrip lines. Here, we shall look at all types of nonuniform lines and their
corresponding capacitance matrices and mathematical properties before the

extension is finally made at the end of this chapter.

4.5.3 Nonuniform lines

In this work, nonuniform microstrip lines are divided into two types;
nonuniformly spaced and strictly nonuniform. The former is a set of microstrip
lines having the same geometrical configurations except the spacing between the

lines, see Fig. 4.5.
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Figure 4.5 Nonuniformiy spaced microstrip lines.

Coupled microstrip lines, nonuniformiy spaced, will have a nonuniformiy spaced
capacitance matrix (C,s) as:

an ae 1

Rps = a12 a22 a23 (4.21)

-0 a23 a33J

The nonuniformiy spaced capacitance matrix is tridiagonal, symmetric and non-

Teoplitz.

In strictly nonuniform microstrip lines, all geometrical configurations are different

from one another, see Fig. 4.6. This is the most non-ideal set of microstrip lines.



Figure 4.6 Strictly nonuniform microstrip lines.

This type of lines has a strictly nonuniform capacitance matrix (Csn ) which is

tridiagonal, non-symmetric and non-Teoplitz.

ran au 0A

Ren = a2l a22 a23 (4.22)

VO a3

Since strictly nonuniform microstrip lines result in a very unstable (non-symmetric
and non-Teoplitz) capacitance matrix, it is very hard to work on especially in
deducing time delay and characteristic impedance. Therefore for this reason,

several methods have been devised to approximate the mutual capacitance of each



4.5.3.1 Bound capacitances

Three methods have been designed and named to estimate the capacitance of

striétly nonuniform coupled microstrip lines (Fig. 4.6). Those methods are:

method 1: general bound

This is a method which computes the minimum and maximum mutual

capacitances of a given set of coupled lines.

The computation is based on

comparing values of each the geometrical parameter of the lines (see Fig. 4.5). It

is defined in the following manner.

For n- strictly nonuniform coupled microstrip lines, the capacitance matrix, C(#)y, ,

is subject to the inequality relation below:

C)spmin S CMsn S C(M)spmax  Where

min(wy, Wy, W3,., Wp_1>, Wy )
C(n)snmin = min(tl,tz,t3,...,t,,_l,tn)
51552553 544585-255p1

and

max(wy, Wy, Wa,eees Wy_1, W)
C(n)s,,max = max(tl,tz,t3,...,tn_1,t,,)
S1552553500058y2 58,1

(4.23)

(4.24)

(4.25)
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method 2: intermediate bound

Contrary to general bound, this method defines the minimum and maximum

capacitances by comparing values of mutual capacitances of neighbouring lines.

It is defined formally as below:

For n strictly nonuniform coupled microstrip lines, the capacitance matrix,

C(n)y, , is subject to the inequality relation below:

CM) spmin SCM sy SC(M)gpmae  Where

COsnmin =[Gy ] A0 C) gy =L 1. (4.26)

Cijpniy, = MIN(c;,¢"; ) and ¢ = max(cy,c'; ) such that (4.27)

¢;j = mutual capacitance of coupled microstrip lines taking line 7 as their parameters

and

¢';j = mutual capacitance of coupled microstrip lines taking line j as their parameters.

method 3: focus bound
The focus bound is treated in more detailed than the previous two methods.
Minimum and maximum values of geometrical parameters for any two pairs of

lines are determined at a time. These parameters are then used to calculate the

minimum and maximum mutual capacitances, respectively.
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For # strictly nonuniform coupled microstrip lines, the capacitance matrix, C(#n), , is

subject to the approximate relation below:

C(M) snmin = CM sn = C(M) gpmax

C(M) snmin = [Cijmin ] and C(n) gy oy =

min(w;,w;)
C’Jmm = min(t,-,tj) r=
J-1 Jj-1
s = Z.sp+ Z Wy
p=i p=i+l = |
max(w;, wy)
and Cy‘max = max(ti,tj)
Jj-1 J-1
s= Z.sp+ Z Wy
p=i p=i+l

The first method will give minimum and maximum capacitance matrices with
respect to all the parameters of lines. On the other hand, the second method will
give minimum and maximum capacitance matrices with respect to the mutual
capacitance of the immediate adjacent line. The second method is expected to
give a better estimation than the general bound. Nevertheless, the third (focus
bound) is the best of the three methods because it compares the geometrical

configurations a line to its adjacent before the mutual capacitance is finally

calculated.

such that

Jimin

= € jimax

[Cijmax ]

(4.28)

(4.29)

(4.30)

(4.31)
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The intermediate and focus methods have been coded as a program using
Mathematica software, see Appendix A.3. To illustrate its application, an

example of a strictly nonuniform set of 4-coupled lines is presented, see Fig. 4.7.

w,

w, w Wy

[
——

o

s

4

s § 53

h

Ground plane

wy =23um, wy =3um, wiy = lum, wy =2um,
f) =2um, ty =5um, t3 =33um, t4 =4um,

s} =3um, sp =15um, s3=7Tpm, h=16um
and &, =12.

Figure 4.7 4 strictly nonuniform coupled lines, (dimension in x m).

By ignoring assumption 1 of section 4.5.1, the capacitance matrix of the set (see

Fig. 4.7) is calculated as follows:

general bound

123571 484587 0.182353 53854
-484587 130195 -429158 323531
C®snmin = 0.182353 -4.29158 107.627 -228375
‘ 53854 323531 228375 94.8966

pF (4.32)

and
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154.225
—-60.2384
0415477

C(4) Snmax =

6.5392

intermediate bound

144173
~60.2384
C®snmin =| 0842355
560243
and
154.434
~518617
COsnmax =| 501300
63153
ZOCllS
1448696
~518617
CO®snmin =| 184727
578479
and
153614
~602384
C®snmax =| 110189
616282

-60.2384 0415477 65392
164526 —-6.80597 3.45963
PF (4.33)
-6.80597 135932 -28.6009
345963 286009 119.543
-60.2384 0.842355 5.60243
154126 -6.80597 2.06533
pF (4.34)
-6.80597 99.0632 -26.1078
2.06533 -26.1078 105.136
-518617 2.01309 63153
16592  —42729 294949
PF (4.35)
-42729 105406 —23.4684
294949 -234684 109.372
-518617 184727 578479
1541261 -4.2729 294949
pF (4.36)
—42729 992290 234684
294949 234684 1056666
-602384 110189  6.16282
1659200 -6.80597 2.06533
pF (4.37)
-6.80597 105406 —26.1078
2.06533 -261078 108812

The focus method is superior since most of its mutual/self capacitance difference

values (Vc,-j) are smaller than values given by the other two methods, see Table



4.1. The smaller the value of the difference, the better is the approximation for

the capacitance of coupled strictly nonuniform microstrip lines.

Vcij =lcj o~ Gy pF Gen. Bound | Inter. Bound | Foc. Bound
Verq 30.654 10.261 8.7444
Vers 11.7797 8.3767 8.3767
Veys 0.233124 1.170735 0.74538
Veyg 1.1538 0.71287 0.37803
Ve, 34.331 11.794 11.7939
Vers 2.51439 2.53307 2.53307
Veoa 0.22432 0.88416 0.88416
Vess 28.305 6.3428 6.177
Vesy 5.7634 2.6394 2.6394
Veyy 24.6464 4.236 3.1454

Table 4.1 Comparison of methods of bound capacitances.

One main beauty of the methods of bound capacitance is that it will transform the
strictly nonuniform capacitance matrices to ‘look a like’ nonuniformly spaced
capacitance matrices. In other word, they are tridiagonal, symmetric and non-
Teoplitz. The matrices are easier to work with than the strictly nonuniform
matrices and most of all, the transformed matrices also behave as any
nonuniformly spaced capacitance matrices. This simply implies that any general

mathematical properties (matrices) that the nonuniformly spaced capacitance
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matrices possesses are also applicable to the transform strictly nonuniform
capacitance matrix. These properties are discussed at the end of the following

section.

4.5.3.2 Theorems

Let us consider a set of any three coupled nonuniformly spaced microstrip lines,

say s, #s,; Where sy is the spacing between line 1 and line 2 and spis the

spacing between line 2 and line 3.

5 s,

Figure 4.8 3-coupled nonuniformly spaced microstrip lines.

With the assumptions of the transverse electromagnetic mode (TEM) of wave
propagation as described in Section 3.9.1, the distribution of voltages and currents

along the lines is given by the generalized telegrapher equations:
X 0 L t
v (x,1) - _ :' v (x,1) (438)
i*(x,1) C 0]fi'(x,0)

where vectors v(x,t) and i(x,f) denote voltages and currents, respectively. L is the
PUL (per unit length) inductance matrix and C is the PUL capacitance matrix.

Superscripts x and ¢ denote differentiation of signals with respect to space and
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time, respectively. Distance and time are denoted by x and ¢ and (Romeo and

Santomauro 1987):

c|1  —C¢2 .- —Cip
—-C c . —C -
C= ‘21 2.2 . .2n such that Cii =Cjp + Z;=ICU (439)
J#i
—Cpl ~Cp2 .- Cpp

where ¢, is the capacitance per unit length (PUL) of line / with respect to ground,

¢, is the capacitance PUL between line 7 and ¢; is the self capacitance PUL of

line i. Thus the capacitance matrix C may be written as:

ay -ap 0
C=|-a;; ayp -axy (4.40)

0 -apy as;

where

@) each line is coupled directly only to adjacent line, (see Asp. 1)

(ii)  all lines are identical, not equally spaced and side effects are negligible,
(iii)  the length of the lines are equal and have the same reference point, |
(iii)  the dielectric and the material of the lines are the same, (see Asp. 5-6)

All the minus signs in C can be ignored since they do not affect calculations and

proofs.
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From (4.39) and (4.40) we have;

ayp=ajg+tajy tajy =aygtay, +0, a5y =ag+ayy+tazy =ajg+ta, +ays,
Furthermore, we can simplify

ajyy =ajp+azz, and ajg=a;;-ap

thus ag3 =ayg+ay3 =(ay)—app)+ayy =(ay) +ay3)=-ap,

Therefore, the new C matrix is represented as:

ap - 0
C= —-Q1p ap +ax —ay (441)
0 —ay3 ap +asy —a;

which is tridiagonal and symmetric.

Eqn. 4.41 indicates that:
e the self capacitance of line 2 depends only on the self capacitance of line 1 and
the mutual capacitance of line 2 and 3,

e the self capacitance of line 3 depends only on the self capacitance of line 1, the
mutual capacitance of line 2 and 3, and the mutual capacitance of line 1 and
line 2.

Therefore we can put the result formally as a theorem.
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Theorem 4.1: For n-coupled identical microstrip lines with different spacing

such that n > 3, see Fig. 4.5, the capacitance matrix can be written as:

[ al —alz 0 0 0 i
—a12 ansy —aj3 0 0
C= . . . . . . (4.42)
L 0 0 0 "an(n—l) ann_

where a,) =a,, +ay,,and  a;; = a_1)(i-1) ~ 4(i-2)(i-1) t Fi(i+1)

for2<i<n.

rooj.

The theorem can be proved by a mathematical induction (Grossman 1984).

For n=2,
azy =ai;—aop; tazz =ay +azs.
ag1= 0 since this term does not exist.

Thus,

ayy =ajg +ajp +azs (443)

Suppose that a,, = a(.1)(n-1) —9(n-2)(n-1) + n(n+1) > then we need to show

A(n+1)(n+1) = 3nn — An-Dn + A(n+1)(n+2) = 3nn ~ Yn-1)n (4.44)
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since a(;41)(n+2) =0 and it does not exist for

-012 :
c=| 0 “An-Nn 0
: “Yn-1)n Tnn Cn(n+1)
0 0 0 0 G CmaD)(nt])
Now,
A(n+1)(n+1) = (n+1)0 + 0+ +O+a(n+1)n

= A(p+1)0 T An+1)n = A10 T Ap(n+1)
=a10 *A(n+1)n = 210 T Ann ~ A(n-1)(n-1) T Un-2)(n-1)

= app +a10 = (n-1)(n-1) +a(n.2)(n-1)

and since

a(n_l)(n_l) = a(,,_l)o + a(n_1)1+ .......... +a(n_1)(n_2) + a(n_l)n
=aj +0+..unenennd 0+a(,,_1)(,,_2) +a(n_1)n
=ajo +a(n-1)(n-2) TE(n-1n

then

An+1)(n+1) = Ann +a10 — (@10 + A(n-1)(n-2) T A(n-1)n) + A(n-2)(n-1)
=ann =~ %(n-1n

because a(,,_l)(,,_z) =a(,,,_2)(,,_1) .

(4.45)

(4.46)

(4.47)

(4.48)
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we have just snown that the sell capacitance oI line i, where 2 <t <n, OI n-

coupled microstrip lines with different spacing is given by

aji = ag-1)i-1) ~@G-2)i-1) T F(i+1)- (4.49)

A modified Mathematica (Wolfram 1991) program of Parker (1994) is developed
(Appendix A.1) and used to verify the above theorem. Below are two examples
of coupled microstrip lines with different spacing. In both examples, different

values are used to generate the capacitance matrices. The matrices obtained are

then compared to those predicted by the theorem.

Geometrical parameters 3-coupled 10-coupled
nonuniformly nonuniformly
spaced microstrip | spaced microstrip
lines lines
Dielectric 12 12
Thickness (nm) 0.01 0.01
Width (pm) 2 2
Height (um) 20 20
s (nm) 3 0.3
S 4 4.114
53 5.002
54 6
S5 4.7
S 8
57 9.2
- 53 5.0343
S9 0.004

Table 4.2 Parameters for coupled nonuniformly spaced microstrip lines.
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The parameters used to calculate and simulate the capacitance matrices are listed
in Table 4.2 for 3 and 10 coupled nonuniformly spaced microstrip lines. The

results obtained are shown below.

1552(1334)  —-50(=50)  —21.79(0)
C=| -50(-50)  1758(1758) —42.4(424)| pF (4.50)
~217.9(0) —42.44(-42.4) 147.6(1258)

—245(226) -143 =302 -125 330 0.948 452 6.60 739 5.7
-143  266(268) —4L7 -167 534 -0281 389 6.27 7.16 737
=302 —417 189(161) 366  -132  -4.78 1.68 517 641 6.68
-125 -16.7 -36.6 183(151) 319 -137 =231 329 518 558
C= -330 534 -132 =319 179(153) -382 -105  -0232 2.96 363
0948  -0281 478 -137 382 168(146) -246 526 —420 1.00
452 389 1.68 231 -105  -246 146(129) -212 -852 -6.23
6.60 627 517 329 -0232 =526 =212 153141  -364 -278
7.39 7.16 641 518 296 -00420 -852 364 4380(4400) 4280

| 757 737 6.68 558 363 1.00 -623 278 —4280  4370(4360) |

pF.

(4.51)

In both cases, the self capacitances, a;;, are very close to the values predicted by

theorem 4.1 (listed in brackets). The calculated and simulateﬂ self capacitances
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of the 10 coupled lines are further compared in Fig. 4.9. The difference is found

to be extremely small.

Comparison of calculated and simulated self capacitances

5000

4000

3000 B—a calculated
- Simulated

pF
2000
1000
.-———'B\m » .

Self capacitance, a,

Figure 4.9 Comparison of calculated and simulated self capacitances of

10 - coupled nonuniformly spaced microstrip lines.

Even though, the main purpose of the theorem is to calculate capacitance matrix
of nonuniformly spaced, because of its generality, it can also be 'flpplied to any
uniformly coupled microstrip lines. The new capacitance matrix, C, (4.42) can be
written as composition of two matrices; namely the identity matrix and the mutual

capacitance ratio matrix. The composition is presented in the following section.
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4.5.3.2.1 Mutual capacitance ratio matrix

The new matrix C given in (4.42) can be written as:

~a]0 +ajp an 0 0

p) Qyp + a2 +az3 a3

Ann-1)  An-1)(n-1) ~m-2)(n-1) +an(n+1)J

(4.52)

by applying the theorem. By substituting a;(;.1) = ;a1 for i=2,...,n, then

(4.52) is transformed as:

(alo +ajo ain 0 0 0
aj; ajg +ayy +byayy  bray 0
C=
| 0 0 0 bn_]alz aio +bn_]a121

(4.53)

By factoring the common terms; i.e. aq;, C becomes:

-alo +ajpp az 0 ces 0 0
aip aio +a12(1+b2) bzalz e 0 0
C=
0 0 0 b,_1a12 ajo +b,-1a12 |

(4.54)

and can be generalised as a composition of two matrices as follows:
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1t oo .. .0 [1 1 0 S 0
0 bz (b2 +b3) b3 . . 0
C=a10 B VI
000 1 0 0 0 0 b1
000 o1 [0 o 0 by_y bp_1
(4.55)
Formally,

C= ajpl +ay;S,,; such that I and S, are identity and mutual capacitance ratio

ai(i+1)

a2

for

matrices, respectively. The entries of §,, b;, are defined as b; =

i=2,..,n.

The eigenvalues and eigenvectors of a system are very valuable information.
They give, or lead to, many physical interpretations of a system. This particular
structure of C allows for the relatively easy computation of eigenvalues and

eigenvectors. They can be deduced directly from the mutual capacitance ratio

matrix, S,,.

4.5.3.2.2 Eigenvalues
Theorem 4.2: For n-coupled identical microstrip lines with different spacing

such that n > 3, see Fig.4.5, the eigenvalues of C are given by;

Aj = a0 +a128,(Sy) (4.56)
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11 0 Lo 0 ]
1 (1 +b2) b2 .o . 0
0 by (b2 +b3) b3 . . 0
where S, =/ . . . o . (4.57)
0 0 .. by
_0 0 0 . . bn—l bn—l_]
ai(i+1) . . ..
such that b; = and (S, ) is the eigenvalue of S, for i,j=2,...,n.
a2
roof:

det (C—4;I)=det (ajof +a128, — 4 ;1) by applying the composition.

= det ([aw -1 j]I +ay,S,) by factoring the common term.

ajg—A;
= det alz(MI+Sn). (4.58)
apn

Let 1; =ajg+aj26;(S,) where 6;(S,) is the eigenvalue of S, for

i,j=2,..,n.

ayg —ayo —a128 ;(S,)
— det 012[( 10 = “10 — “12Y j\¥n )I-*-Sn:I

a2
(4.59)

—ay50 (S,
= et alz{-(alzal—;())-l+Sn} (4.60)
= det ayy[~0(Sy)I +5S, ] (4.61)
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= apydet (S, - 0,(S,)]) =0 (4.62)

The result of (4.62) leads immediately to the following corollary. It is the

application of theorem to any 3-coupled nonuniformly spaced microstrip lines.

Corollary 4.3: For any three nonuniformly spaced coupled microstrip lines

ap a0
suchthat C=|ajp apy; bajy |, then its eigenvalues are

0 balz a33
A=aj +a12{0,(b+l)ir\/b2 —b+1} (4.63)

a3
a2

where b =

Another striking result from the new capacitance matrix is that its eigenvectors are

similar to S,, .

4.5.3.2.3 Eigenvectors
Theorem 4.4: The capacitance matrix C and the mutual ratio matrix S, have the

same eigenvectors.

roofJ:.
(C-ADHx = (a101+a12S,, —H)X

= (a128, =[A - a10]D)x
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/1—010
= alz(Sn—alelf)X

=ap, (S, — 0 (S,))x . (4.64)

Corollary 4.5: For any three nonuniformly spaced coupled microstrip lines

such that C=aypl+apS,, then eigenvalues of C are given by

A; = ay; +ajp(J3) and eigenvectors J, are the same as eigenvectors of C where

01 0
Ji=|1 by by |;b,=22 (4.65)
a2
0 by by-1

rooj.

By (4.56), the capacitance matrix of three non-uniform coupled microstrip lines of

different spacing can be written as C = ay/ +a;,S53 where

1 1 0
S;=|1 (1+by) b, |. (4.66)
0 b b

By theorem 4.2, eigenvalues of C and S, are given by A ; =ajq +a;26 ;(S3)and

8;(83), respectively. From theorem 4.4, C and S, have the same eigenvectors.

76



The mutual capacitance ratio matrix can be written as:

1 00 0 1 0
S3 =0 1 0+]1 b2 bz =]+J3. (467)
00 1] |0 & by

Using theorem 4.2 the eigenvalues of S, are given by 6 ;(S3) =1+18;(J3) where

8;(J3) is eigenvalues of J,.

Therefore,

A =ajg+app(1+18;(J3)) =ajg +ajx +a128;(J3) = ay; +a125,(J3).

(4.68)

The new capacitance matrix is expected to alter the inductance matrix introduced
in Sect. 3.9.1. The new inductance matrix is presented formally in the following

section.

4.5.3.2.4 Inductance matrix

The inductance matrix for nonuniformly coupled microstrip lines is given as:
L=10g0C;! (4.69)

" where C61 = the inverse of capacitance matrix of coupled nonuniform microstrip
lines with the dielectric replaced by vacuum,

€g= 8854183x 10712 F/m; permittivity of free space,

pog = 4mx 1077 H/m; the permeability of free space.

77



The new inductance (eqn. 4.69) and capacitance matrices structures (eqn. 4.42)
have been written as Mathematica programs. They are listed in Appendix A.4 and
A.5 respectively. These programs allow one to calculate the capacitance and
inductance matrices of nonuniformly spaced as well as strictly nonuniform
coupled microstrip lines. The information obtained is essential to determine other

parameters in later sections, i.e. time delay and characteristic impedance.

Before that, there are some special features of the new capacitance and inductance

matrices. These features are established by the following theorems:

Theorem 4.6: If C, is symmetric, then C()l is also symmetric

roof.

Since C, is symmetric, then C, = Cgw .

But, /= C, Cj'

= Cg C61 (4.70)
— CT T -1

= cd «ch) by the fact above (4.71)
=l (GgHT  since @) =D (4.72)
= C, (CH) (4.73)

Since C()1 is symmetric, then L is also symmetric (see eqn. 4.69).
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Because of the symmetry of the new capacitance and inductance matrices, the

following theorem follows immediately.

Theorem4.7: CL = (LC)T

roof:
cL=cTr” because of the symmetry of C and L. (4.74)

= (LO) T by a property of transposition (Rade and Westergren
1988) (4.75)

Equivalence of eigenvalues of LC and CL (Romeo and Santomauro 1987) is

conformed by a corollary below.

Corollary 4.8: Matrices LC and CL share the same eigenvalues
rooj.
Since L=L"and C = C, then LC = (L7 C") = (CL)". (4.76)
Now,
det (LC-AI)= det (CL)T —=AI) since LC=(CL)T (4.77)
= det (CL)T -ADT  since det (A) = det (AT) (4.78)
=det (CL-(AD)T)  since (A+B)T = 4T + BT (4.79)
=det (CL-Al) (4.80)

All the above properties will be used in developing algorithms for modelling and
simulating time delay, W(n),, and characteristic impedance, Z(n),, for

nonuniform coupled microstrip lines as outlined below.
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4.5.3.3 W(n),; and Z(n),; of nonuniform spacing

Using equations 4.2 - 4.20, 4.42 and an algorithm proposed by Romeo and
Santomauro (1987), which only deals with uniform lines, an algorithm has been
developed to calculate W(n),, and Z(n),,. The steps required for this development

are as follows:-

Step 1: Given a set of » coupled microstrip lines with different spacing.
Step 2: The capacitance matrix, C, is given by (4.42).

Step 3: Calculate Cj, .

Step 4: Calculate the inductance matrix, L.

Step 5: Find eigenvectors of LC and CL

Step 6: Find normalised eigenvectors of LC; M,,, and CL; M/, using the

Gramm-Schmidt method (Rade and Westergren 1988).

Step 7: Find My,~', M,T and M;7! suchthat M, = M;7!. (4.81)
Step 8: Find C; = M7L.C.M, and L; = M;'.L.M;.
Step 9: Time delay, W(n),; =+/L;.C; and characteristic impedance,

Z(n)ps = Wy.C5l.

Both Romeo and Santomauro (1987) and Parker (1994) mentioned matrices M,
and M in their algorithms, but they did not emphasise the importance of

normality of these matrices. The normality of these matrices is crucial in order to
establish the relation given in (4.81), which enables one to diagonalize matrices C

and L. The diagonalisation of these matrices is denoted as C; and Lj.

Moreover the diagonal elements of C; and L; are eigenvalues of C and L,
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respectively. The following outlines the procedure for executing the developed
algorithm for determining time delay and characteristic impedance for 3 coupled
nonuniformly spaced microstrip lines with parameters as listed in Table 4.2.
Mathematica program Mat 2 (see Appendix A.4) was used to calculate C and L

matrices, and the results are:

1334 =50 0
=50 1758 -424|pF (4.82)
0 424 1258

!
I

and

592980 168634 0
L=[168634 551567 153391 |pH (4.83)
0 153391 608223

706718 —31428x107% —715008x 107!
Then, LC =| ~5.08257 x 107} 8203 -4.08985x107! |x 10717
—766955x107! 117748 x 107! 7.00107
(4.84)
and
706718 -508257x 107! -7.66955x107!
cL=(LO)T = -31428x107™* 8203 117748x 107! [x107V7
—715008x10™1  —-4.08985x 107! 7.00107
(4.85)
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by theorem 4.7. Eigenvectors of LC and CL are;

0167489  -0963 0211137
0963124 -0.148629 -—0.22428 (4.86)
1 0 0

and

0201858  —0927212 0.315485
1 0 0 . (4.87)
—0.996293 —0.0000378129 —0.0860268

However, the calculated normalised eigenvectors of LC and CL are:

-0.119768 -0.688709 -0.715078
0986475 -0.00137018 -0.163904 (4.88)
-0111902  0.725037  -0.679558

My o=

and

-0.14156  -0.701285 0.698685
M, = 0.98993 -0.100263 0.0999325 (4.89)
0.0000288901 -0.705795 -0.708416

The diagonalization of the capacitance and inductance matrices are in the form:
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195741 x 10710 0 0

C; = MECM, ~ 0 129395 x 10710 0 (4.90)
0 0 1.09864 x 10710
and
479158 10~/ 0 0
Ly =M L (miHT =~ 0 6.01006 x 10~ 0
0 0 6.72606 x 10~/
(4.91)

Thus, the time delay of the set is given as:

W(3)ps = LaCy

[9.07966 0.772113 180724
=1099804 881603 0899562 |ns
0 0599349 7.90884

[9.07966 0 0
~| 0 881603 0 |ns (4.92)
0 0 7.90884

and the characteristic impedance is given as:
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Z(B3)ps = WyCy'

484332 458151 —7.70452
2.1953 67.9386 520651 Q
—233102 +11.9255i 341272 -0246282i 834564 -590914i

484332 0 0
~| 0 67938 0 |Q (4.93)
0 0 834564

The results obtained using Parker’s algorithm (1994) are different as presented

below:

927065 6.78319x107 103595
W' (3),s =| 156044 951151 291816 | ns - (4.94)
1.74216 332388 82234

and

505752 —24.8496 -415538
Z'(3),s =| 560597 308339  337.996 | Q. (4.95)
~443265 283764 369011

As can be seen from eqns. 4.94 and 4.95, the matrices are not diagonal and most
of all the values are inconsistent when compared to (4.92) and (4.93). The novel
algorithm can be generalised to apply to strictly nonuniform types of coupled

microstrip lines.
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4.5.3.4 W(n),, and Z(n),, of strictly nonuniform

The algorithm used to calculate time delay W(n),, and characteristic impedance
Z(n),, of any n-coupled strictly nonuniform microstrip lines is based mainly on
the value of its capacitance matrix. The capacitance matrix can be evaluated by
the bound capacitance methods, see section 4.6.3.2. Once this is achieved, the
rest follows steps 4 to 9 of the algorithm for nonuniformly spaced coupled

microstrip lines.

As a sample of the execution of the algorithm, the time delay, W(4),,, and the
characteristic impedance, Z(4),,, of 4 coupled strictly nonuniform microstrip lines
of 4.5.3.1 (see Fig. 4.6) are presented. The capacitance and inductance matrices
of this set are calculated with respect to the focus method by using a developed
Mathematica program Matrdiff (see Appendix A.5). The calculation of the
mutual capacitance in the program is simplified by taking assumption 1 of section

4.5.1,1.e.

0 forj—-i>1 4.96)
c.. . —_— . . 40
Y max, min c *ijmax,min forj-i=1
* such that (4.30) simplifies to
min(w,- W J)
c *Umm = min(t,- ’tj) =c *J'mm (497)

Sj
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and (4.31) changes to

max(w;,w;)

max(t;,t) p=c* (4.98)

€ iimax = i
Ymax Jimax

Sy

The capacitance matrix for the set is taken to be C,,, for this purpose, and the

values for C, L, LC and CL are given as:

160878 —60.2384 0 0
-60.2384 167.684 —-6.80597 0
C= pF (4.99)
0 -6.80597 133554 -26.1078
0 0 -26.1078 126.748
and
463168 153128 0 0
- | 153128 383396 27.3842 0
L= nH. (4.100)
0 273842 505843 122.789
0 0 122.7890 492.088
Then
652894 222338 -1.04218 0
153976 548788 104789 —0.714941 -18
C= x10 (4.101)
-=1.64958 114914 64.1652 2.35681
0 —-0.835698 355163 59.1654
and
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652894 153976  -1.64958 0

T |—222338 548788 114914 -0.835698 ~18
CL=(LC)" = X
-1.04218 104789 641652 355163
0 —0.714941 235681 591654
(4.102)
by theorem 4.7. The eigenvectors for LC and CL are:
1 0 0 0
—-0.0433443 0345748 -0904037 -0.247581 (4.103)
-0.114657 -0.677855 0.7262 0 '
-0179376 -0576042 0.00462638 0.797483
and
1 0 0 0
-0.329175 -028647 -0897906 -0.0578155 4.104)
—0.00832446 -0.685032 -0.672763 0279377 ’
0.0875933  -0501983 -0422794 0
However, the calculated normalised eigenvectors of LC and CL are
—0977204 0.0423562 0.112043 0.175287
0168612 -0374934 0.701415 0582247
(4.105)

VLC 710127924 -0746156 0158136 —0.63394
0.0166955 0548526 0.685898 —0.477895

and
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~0946561 0311585 0.00787961 -0.0829125
~00161027 -0239939 —0586304 —0.773574

Iy = (4.106)
0314226 0844083 0172244  —0398896
~0.0708834 —0364511 0791528  —0485376

Furthermore

~0946562 -0.01610285 0314226 —0.0708833

_, | 0311585 0239939 0844083 -0364511

M7= (4.107)
000787954 -0586305 0172244 0791529

—-0.0829125 -0.773575 —-0.398896 0485377

and

~0977204 0168612 —0127924 00166955
r | 00423562 -0374934 -0.746156 0548526
Ml = (4.108)
0112043 0701415 0158136  0.685898
0175287 0582247 —063394 —0477895

Note that M fl ~ M f , as expected.

The diagonalization of the capacitance and inductance matrices are:

C; = MECM,
180871 0 0 0
0 155829 0 0
~ x 10710 (4.109)
0 0 130845 0
0 0 0 121319
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Ly =M\ LT

409439 0 0 0
0 394362 0 0 .
~ x 10 (4.110)
0 0 495374 0
0 0 0 54532

Therefore, the time delay and the characteristic impedance of the set are given as:

8.0427 0 0.306727 0

0 774394 0 154731
-9
W =VLaCa = o 75638 o |110°°

0 1.89675 0 7.84535

8.0427 0 0 0
0 7.74394 0 0
= ns (4.1 1 1)
0 0 756938 0
0 0 0 7.84535

504407  7.74007 -13.0882 -—10.5483
564082 508527 ~ -5.70573 13.0876
—-14.7634 -4.09359 641231 —7.42468

—-8.13146 12.0362 -—8.72116 68457

Z(4) gy =WyCy' =

504407 0 0 0
0 508527 0 0
~ . Q. (4.112)
0 0 © 641231 0
0 0 0 68457

All off-diagonal elements (eqns. 4.111 and 4.112) can be neglected and use only

the diagonal elements. Although this approach may appear to be very crude,
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simulation results obtained by using a wide range of different parameters
indicated that the induced error is small. Moreover, since Cyand L; were
diagonal matrices, this made the computation of W, and Z, trivial. For these
reasons, both W, and Z; were also diagonal as appeared above. Similar
observations were true for the case of nonuniformly spaced coupled microstrip

lines, i.e. W, and Z,;.

The difference of the values of characteristic impedance between line 1 and 2 is
small. However, the value of the characteristic impedance of line 3 is drastically
bigger than line 2 because the lines are quite far apart (sy = 15um). This shows
immediately that the spacing has a significant effect on the characteristic

impedance of a coupled microstrip line.

Even though, the main purpose of the algorithm is to calculate time delay and
characteristic impedance of strictly nonuniform coupled microstrip lines, because

of its generality and the fact that C(n)s,,min =C(n)s, = C(n) SMax (see Sect.

4.5.3.1) for bound capacitances of n coupled uniform lines, therefore, the
algorithm can also be applied to any kind of coupled microstrip lines; uniform and

nonuniform.

The generalisation of the time delay and characteristic impedance algorithms for
any type of n coupled lines (Sect. 4.5.3.4)‘ introduces its very own unique
problems. One of these is that the calculation of the eigenvalues and eigenvectors

which is not a trivial since for a quite large matrices, Mathematica may introduce
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errors which then propagate rapidly through to the final evaluation of the time
delay and characteristic impedance. For the same reason, Parker (1994) limited

his calculation to only three coupled uniform microstrip lines.

Simulations were succesfully carried out on three or more nonuniform coupled
lines using the novel algorithms of time delay and characteristic impedance.
However, time delay and characteristic impedance values for 8 nonuniform

coupled lines were quite inconsistent probably due to the same problem as

mentioned above.

Finally the set of » nonuniformly spaced or strictly nonuniform coupled
microstrip lines can be represented by »n single line parameters by applying the
algorithms. These parameters are then used to simulate crosstalk using the

coupled lines SPICE model as described in the next chapter.
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5. ANALYSIS BY SIMULATION AND EXPERIMENTAL

5.1 Introduction

The central idea of Chapter 4 was to develop a mathematical model of a
microstrip system. The model was then used to determine the performance
characteristics of the system, namely; geometrical parameters, electrical

parameters and in particular crosstalk.

This chapter presents all the experimental and simulation results based on the
model. It is divided into three major sections:

¢ geometrical parameters,

¢ celectrical parameters and

¢ crosstalk analysis.

The analysis of geometrical parameters was only done analytically, whereas the
analysis of electrical parameters was carried out using both simulation and
analysis. Finally, the crosstalk analysis was carried out by experimentation and
simulation. These analyses led to important conclusions which were used in

developing a fuzzy model of the system, as outlined in Chapter 7.

5.2  Analysis of the Geometrical Parameters

The investigation of the geometrical parameters was carried out analytically. A
thorough examinations of the mathematical expressions of microstrip lines,

introduced in Chapter 3, led to a few mathematical constraints. These constraints

are described in the following subsection.
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5.2.1 Thickness ()
The capacitance matrix cannot have complex number entries because it must be
definitely positive as well as diagonally dominant (Romeo and Santomauro 1987).

For example, let us suppose

a a+ib 0
C=la+ib ajy ass (5.1

and let

Cl =[ ai a+z’b) (5.2)

a+ib ann

aiy a+ib

Thus det (Cp) = a+ib  ay

=ayjay, —(a+ib)*

=ayjayy —a’ +b% —i2ab (5.3)

which is a complex number (see D 3.4).

Therefore, in order to prevent the capacitance matrix from having complex
numbers as its entries, the mutual capacitance (see. eqn. 3.18) must not produce

any complex number. This is true if any of its components which have a square
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root within their expressions, i.e. €,,, (see eqns. 3.5, 3.6, 3.10, 3.12, 3.3.13, 3.16),
1s positive as below:
g, +1

Ere =~ +8’2—1f(w/h)—E>0 (5.4)

where f{w/h) and E are defined in eqns. 3.4 and 3.9, respectively.

Using (5.4) , then (3.9), it can be deduced that

e, +1 e, —1 ( 1)

or

e =1 1)

e < [e +1+(e, —1)f(w/B)] (5.8)

For e, >1, (5.8) can be rewritten as:

£ < 237k [ LA+ Fw IR+ (= f(w/h)] (5.9)

e, —

Since the thickness, ¢, of a microstrip line is always positive, (5.9) can be

rewritten as:

0<1<23Vh [(1+f(w/h))+(1— fwih)] (5.10)
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The other possibility of having complex numbers as the entries of the capacitance
matrix comes from eqn. 3.7. This equation must be positive in order to avoid this

problem. Therefore the restrictions of # in terms of w and 4 are as given below:

For < ——1— and s > L the restrictions on the thickness are ¢ < 4nwand
27 h 27w

>z

t < 2h, respectively. In summary, the thickness of coupled microstrip lines must

fulfil all the conditions listed below:

1) 0<t< 2:— "_hlw[e,.(l + F(w/h)+ (1= F(w /h))] where e, > 1

2) t<dmw for Lt
h 2«

3) t<2h for—uiz—l—
h 2n

The application of these inequalities is illustrated using set of geometrical

parameters taken from Belahrach (1990) and reproduced below:

Width Spacing Thickness Height Dielectric
405 um 285 pum 16 um 1060 pm 12

These parameters must fulfil all the conditions listed above. Let us look at the

width to height ratio:
¥ _405/
= % 060 = 0:382075471. (5.11)

From (5.11) lhv— > -él—, therefore the thickness of the line must satisfy the third
T

condition:

¢ < 2(1060) 5.12)
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The thickness must also satisfy the first condition:

t <136.9984316[12(1 + 0.175662013) + (1 — 0175662013)]

= 2045.693184pm (5.13)

Eqns. 5.12 and 5.13 impose different values on the constraint on ¢. This deadlock
can be solved by taking the minimum of the two constraint values which is
t <min[2120,2045693184] pm.  This simply implies that as long as

t <2045.693um, the mutual capacitances are not complex numbers, and in this

case Belahrach (1990) has taken ¢ = 16pm.

The restriction on ¢ has been coded as part of the Mathematica program Travail

(Appendix A.2) for electrical parameters analysis in Section 5.3.
5.2.2 Spacing (s), Height (%) and Width (w)

No obvious mathematical restrictions exist for spacing, height and width of

microstrip lines. This can be observed in eqn. 3.14 as,
JE' 1 which implies &'=1. (5.14)
Eqn. 5.14 leads to a restriction on eqn. 3.15 as follows:

1- %2 %1 which implies & # 0 (5.15)

and
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s/h
#0;
(s/h)+2(w/h) (5.16)

Eqn. 5.16 implies:

=0 (5.17)

|t

, thus s, 2 # 0 and similarly for w. (5.18)

Thus s, w,h € R™ \ {0}, in other words the width and the height of the lines can

have any positive values. A similar open condition also applies to the spacing.

5.3 Analysis of the Electrical Parameters
Here electrical parameters are z;.nalysed both analytically and by computer
simulation. The latter is carried out using the Mathematica software package; see

Appendix A.1 and A.2.

5.3.1 Impedance vs. w/h

Parker (1994) has shown by simulation that increasing w/h for a microstrip line,
decreases its characteristic impedance. This can be proved analytically by
observing eqns. 3.1 to 3.4 (excluding the thickness) where the impedance should

. approach zero as w/h tends to infinity. His results are only valid for a specific set
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of 8 -coupled microstrip lines. Here, an attempt has been made to generalise the
result so as to apply to any microstrip line with a configuration which excludes its

thickness. This is done by a theorem and subsequent proof as outlined below.

Theorem 5.1: For a single microstrip line the characteristic impedance is as

0 1 (8—” 0252 for ¥ <1
€re h h
If Z,, =1 (5.19)
1207 -1 w
+1393+06671n(—+1444) for = >1
sre h h

where ¢,, and F(w/h) are defined as in eqns. 3.3 and 3.4, respectively.

Then lim Z,, =0. (5.20)

w/h—©

roof:

Let % =a e R, thus (3.3) can be simplified to

e,e=5’2+1 ér ~ [(1+-2-)—5 +004(1-a)?]

=ar+l+ar—1 1

2 2 [, 12
1+—
a

The proof of this theorem is divided into two parts:

(5.21)
+004(1-a)?].

1) when Y<1.
h



lim 601n[8a ! +0.254]

lim Z,,, = lim 0 in[sa~! +0254] = =21 :
a—1 a—>1,/Ep lim /&,
a—1

_ 60In[8 +025] _ 126612792

lim\Je,,  lim+/¢,
—1 a—>1

_ 126612792

ertl el 1 004-1)2]
2 2 12
1+—
1

126612792 126612792

*\Fr+1+gr—1[ 1 \/g,.+1+g,—1[1]
2 2 J1+12 2 2 V13

_ 126612792 _ 24/13(126612792)
\/Jﬁ(g, +)+(g, —1)  AVIB(E, +1)+(5 —1)
213
339.9996122

=\/8,.(\/E+1)+(1/§—1).

i1) when %—2 1.

m Zy,= lim “=Z[g+1393+0667In(a +1444)]""

a=l-x a=l-wo./&,,

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

.(5.28)
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lim 1207

=— a—-%® (5.29)
lim /e, [a+1393+0.667In(a + 1.444)]
a=1—ow
1207
= 5.30
lim 1/.e,.e [a + 1393+ 0.667In(a + 1.444)] ( )
a=1->0
=120x L =0 (5.31)
lim 1/g,.e [a +1.393+40.667 In(a + 1.444)] '
a=l—w

Notice, &,, — o and [a +1393+0.667In(a +1444)] > 0 as a =1—> o, which

implies that the denominator will become larger and larger.  Therefore

lim Z,,,=0 as claimed earlier.

w
a=—-—>w®
h

The geometrical parameters of coupled microstrip lines have a significant effect
on their electrical parameters. These effects can be best discovered by applying
the developed Travail program (Appendix A.2). Below are some numerical

simulations of the electrical parameters using this program.

5.3.2 Gap capacitance

The geometrical parameters for the gap capacitance (see eqn. 3.17) are the
thickness and the spacing between the lines. Therefore, the gap capacitance for
different line thicknesses and spacings are simulated and showﬁ in Fig. 5.1. The

capacitance increases linearly with the thickness of line and decreases as the
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spacing between the lines increases, as one would have expected. The gap

capacitance almost approaches zero when the spacing between the lines is

>1.0pum. This can be proven as follows:

Cagt (pF)

10

Gap Capacitance vs. Thickness of Lines

Dielectric (g) =12

w=0.6pm
h=0.5um

Thickness (um)

Fig. 5.1(a)
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Gap Capacitance vs. Spacing of Lines

G————o sr=12, w=0.6um, h=0.5um, t=1.2um
v er=13, w=0.8um, h=0.7um, t=0.5um
*—o sr=4.7, w=0.2um, h=0.3um, t=1.5um

o
E
%
&)
2.5 5.0 7.5 10.0
Spacing (pm)
Fig. 5.1(b)
Figure 5.1 Microstrip line gap capacitance vs. (a) thickness
(b) spacing.
Theorem 5.2:
From eqn. 3.17;
If Cyy(t,5) =260, then lim Cgy =0. (5.32)
N S—>©
roo0J.
(5.33)

. . t
lim Cy; = lim 2o —.
§—>© S—© N
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=2¢gpt lim 1 (5.34)

§—>o S

=2£0t(0) =0 (5.35)

5.3.3 Gap capacitance in air

Using the eqn. 3.14, the gap capacitance in air versus the height, spacing, width
and thickness are simulated and the results are plotted in Fig. 5.2. The height of
the line from the ground plane has no effect on the gap capacitance in air. This

result can be explained directly from eqn 3.15 because:

_ s/h

(s/h)y+2(w/h) (5.36)
_ s/h s
T s+2w S+2w (5:37)

h

where 4 is deleted.

The capacitance increases as the width of lines increases (Fig. 5.2.c) and it
decreases as the spacing between the lines increases (Fig. 5.2.b). Therefore, the
need to strike a balance between the width and spacing of lines is necessary when

considering the gap capacitance of microstrip lines.
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Cga (x10"" F)

Gap Capacitance in Air vs. Height of Lines

1.5
*——o 8r=12' w=5um, §=0.5um, t=0.5um
Y sr=13, w=2um, $=0.3um, t=0.4pm
14 CG—©O ¢=4.7, w=8um, s=1.5um, t=0.8um
L @ L 4 L 4 L
1.3}
\% 7 7 7 7 —
1.27
G o S S = 4
1.1¢
1.0 t .
0 0.5 1.0 1.5
Height (um)
Fig. 5.2(a)
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Gap Capacitance Air vs.Spacing of Lines

2.0
1.5¢1
o
‘TO
x
]
o
(&]
1.0¢f
o——o sr=12, w=5um, h=1.5pm, =0.5pm
Y ar=13, w=2um, h=1.0um, =0.4um
c—>oO 8r=4°7' w=8um, h=0.5um, {=0.8um
0.5 : . :
0 0.5 1.0 1.5

Spacing (um)

Fig. 5.2(b)

105



Cga (x10™"'F)

Gap Capacitance in Air vs. Width of Lines

2.0
1.5}
1.0¢f
0.5¢
G—O £=12,t=0.5um, h=1.5um, $=0.5um
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Cga (x10™" F)

The graphs in Fig. 5.2.d (Cq,

Gap Capacitance in Air vs.Thickness of Lines
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Fig. 5.2(d)

Figure 5.2 Microstrip line gap capacitance in air vs. (a) height

(b) spacing (c) width (d) thickness.

vs. t)are identical to the graphs in Fig. 5.2.a

(Cgq Vs. h)due to the fact that thickness is not a parameter of the gap capacitance

in air.
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5.3.4 Capacitance due to electric flux

Using the eqn. 3.16, the capacitance due to electric flux versus the spacing, height,
width and thickness of the lines is shown in Fig 5.3. The capacitance decreases
exponentially (Fig. 5.3.a) as the spacing increases and the capacitance drop is
large when the height of the lines increases (Fig. 5.3.b), to a threshold value of 7 =
0.4 um. It increases very slightly (almost negligibly) when the height of the lines

is above the threshold value.

The capacitance increases steadily, almost linearly, as the width increases; see
Fig. 5.3.c. On the contrary, the capacitance decreases steadily as the thickness
increases (Fig. 5.3.d). These phenomenon (constraints) place demands on a
design of any novel ‘tool’ which can calculate the set of geometrical parameters
that can make compromises between all the constraints when designing microstrip

lines. Such a novel tool is introduced in Chapter 7.
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Capacitance Due to Electric Flux vs.Spacing of Lines
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Fig. 5.3(a)
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Capacitance Due to Electric Flux vs Height of Lines
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Fig. 5.3(b)
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Capacitance Due to Electric Flux vs Width of Lines
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Capacitance Due to Electric Flux vs Thickness of Lines
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Fig. 5.3(d)
Figure 5.3 Microstrip line capacitance due to electric flux vs. (a) spacing

(b) height (c) width (d) thickness.

5.3.5 Modification of fringe capacitance

Using the eqn. 3.12 the modifications of fringe capacitance versus spacing, height,
width and thickness are presented in Fig 5.4. The capacitance decreases rapidly as

the height of the lines increases, see Fig. 5.4.a, reaching a threshold value (~ # =
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0.4 pm) beyond which very little changes take place. Therefore, lines with the

height of 0.4 yum seem to be the most appropriate to use for the given samples.

Fringe capacitance also decreases steadily as the line thickness increases, reaching

a value of zero at ¢t = 1.5 pm (see Fig. 5.4.b) in two of the samples. It increases

as the lines are placed further apart (see Fig. 5.4.c) which is in close agreement
with experimental results obtained by Cottrell and Buturla (1985). However, the

graphs of fringe capacitance vs. width are inconsistent, see Fig. 5.4.d. Therefore

their profile cannot be easily generalised.

Modification Fringe Capacitance vs Height of Lines

200 @ : =12, w=0.4um, s=0.7um, t=0.4um
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Fig. 5.4(a)
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Modification Fringe Capacitance vsThickness of Lines
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Fig. 5.4(b)
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Modification Fringe Capacitance vsSpacing of Lines
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Madification Fringe Capacitance vs Width of Lines
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Figure 5.4 Microstrip line modification fringe capacitance vs. (a) height

(b) thickness (c) spacing (d) width.

5.3.6 Mutual capacitance
Using eqn. 3.18 the graphs showing the mutual capacitance versus the height,
thickness, spacing and width are shown in Fig. 5.5. The capacitance increases

steadily as the width and height increases in all samples, see Fig. 5.5.a and Fig.

5.5.b.
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The mutual capacitance increases only very slightly, as the thickness of lines
increases (Fig. 5.5.d). On the other hand, it decreases exponentially as the
spacing between the lines increases (Fig. 5.5.c). This fact has been confirmed by
Parker’s (1994) simulation as well as by the experimentation of Cottrell and
Buturla (1985) and can be proven analytically (by contradiction). This‘ can be

explained as follows:

If C; (see eqn 3.18) is linear with respect to spacing,
then Cj; (ks) is equal to kC; () for & e R*, hence all of its components are also

linear. However, the capacitance due to the electric flux (see eqn. 3.16) is not

linear ( Coq (ks) # kCqq(s)) since coth(2s) # 2coth(s). If that is the case then

Gij is not linear with respect to s either.
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Mutual Capacitance vs. Width of Lines
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Mutual Capacitance vs. Height of Lines
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Mutual Capacitance vs. Spacing of Lines
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Mutual Capacitance vs. Thickness of Lines
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Fig. 5.5(d)
Figure 5.5 Microstrip line mutual capacitance vs. (a) width (b) height

(c) spacing (d) thickness.

The effect of the geometrical parameters of microstrip lines on crosstalk has been
noted by various researchers (Gunston and Weale 1969, Seki and Hasegawa 1984,
Zhang et al 1992, Palusinski and Lee 1989, Qian and Yamashita 1993) and
discussed in Chapter 2. However, one can suspect from these results, that there is
a relationship between mutual capacitance and crosstalk itself via geometrical
parameters. The increased magnitudes of the width and thickness of coupled lines
will increase the mutual capacitance, hence the crosstalk. On the other hand, the

increased spacing between coupled lines will decrease the mutual capacitance and
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the crosstalk. These important relations are very beneficial in developing a fuzzy

model of microstrip lines in Chapter 7.

5.4 Analysis of the Crosstalk

The objective in crosstalk analysis is to determine the near-end and far-end
voltages of the line for given cross-sectional dimensions (Paul 1992). The far end
crosstalk is measured at the end of line whereas the near end crosstalk is measured

at the beginning of line. However, “crosstalk” normally refers to the far end side.

There are two types of crosstalk analysis: frequency-domain analysis (Snelson
1971, Seki and Hasegawa 1984) and time-domain analysis (Grifith and Nakhla

1990, Zounon et al 1990). Frequency-domain analysis is the determination of the

A

magnitude and phase of the receptor terminal phasor voltages ¥V yg(j@) and

A

V FE(jw) for a sinusoidal source voltage V(¢) =V, cos(wt +¢). Frequency-
domain analysis presumes a steady state. On the other hand time-domain analysis

is the determination of the time form of the receptor terminal voltages Vg (¢) and
Vg (t) for some general time form of the source voltage V(¢) (Paul 1992). Here

the latter type is adopted for experimentation as well as simulations. The

parameters for the simulation are based on the algorithms presented in Chapter 4.
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5.4.1 Experimentation
Tests carried out using the experimental technique were aimed at studying the
characteristics and behaviour of microstrip lines, particularly the occurrence of

crosstalk in coupled microstrip lines. These experiments were undertaken

w=500um

I=100mm
t=35um

s =500um
h=1600um

g, =47

Figure 5.6  Eight coupled microstrip lines (s =w =500 pm)

using four sets of 8 parallel lines, which had equal lengths of 100mm. The sets of
microstrip lines were different in width(spacing) of 1000 pm, 750 pm, 500 pm (see
Fig. 5.6), and 250pum. Some of the experiments were deliberately designed to
verify the simulation made by Parker (1994). The following are details of the
equipment used, specifications of the microstrip lines and general procedures used

during the experiments.

Equipments used:

i. Oscilloscope Hewlett Packard (54520A) 500 Msa/s, 500MHz.

ii. Synthesised Function Generator (30MHz.) model DS 345X2.

iii. Microstrip lines.

iv. Generated signals were connected to the microstrip lines using braid screened

(50Q) cable with screw coupling connector.
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Specifications of the microstrip lines:

Base material:

Thickness:

Copper foil cladding per square ft:
Water absorption:

Specific gravity:

Dielectric constant €, at IMHz:
Dissipation factor tan 0 at 1MHz:

Flex strength length wise:
Surface resistance:

Volume resistivity:
Foil pull off strength:
Photoresist:
Sensitivity:

Coating thickness:

General procedures:

FR4 epoxy all woven glass
laminated to BS 4584 Part 3
1/6” (1.6mm)

loz (35microns)

0.10 %

1.85-1.9

5.0 (= 4.7)

0.020

550N/mm?*

10l

10140

140N

Positive working

Ultra violet

7microns + 0.7micron

¢ The output from the function generator was set to produce a square wave

output to simulate the digital input applied to the source input of microstrip

lines.

¢ The frequency was set to 10MHz and 50% duty cycle with peak-to-peak

voltages ranging from 1V to 5V.

¢ All the lines, except the feeder lines(s) were terminated with 50Q resistors.
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+ Reading of steady state voltage was needed for the calculation of the crosstalk,
and the probe positions were placed at the near end and far end of microstrip
lines.

¢ An oscilloscope with digital storage for up to four (4) memories was used. If
there was an indication of signal modulation, several readings were taken and
the maximum reading was taken as the valid result. Measurement of peak-to-
peak (p-p) voltage was done automatically.

¢ Other parameters that can be obtained from the utilisation of the Oscilloscope,
and were useful for the purpose of these experiments are: rise time, fall time,
pulse width and frequency of signal monitored.

¢ Two function generators were used when two (2) input signals were required
for investigating the effects of superimposition or cancellation of signals.

¢ In probing the signals, a barrel insulator and a grounding spanner were used to
avoid possible shorting of other circuitry. With these two pieces of equipment
the probe was in its sub-miniature mode of operation and a very short ground

lead was required.

Further exploration was achieved by applying varied input lines, frequencies and
voltages in these experiihénts. Through these detailed explorations, the behaviour

of the microstrip lines will be more clearly understood.

54.1.1 The experiments

Seven experiments were performed to study the characteristics and behaviour of

microstrip lines, mainly the occurrence of crosstalk, when different voltages and

125



frequencies were applied to the input. These experiments were conducted on four
sets of eight parallel microstrip lines, where all the sets were similar in length but

different in width and spacing.

These experiments, with one or two input signals applied, were measured at the
near end and far end of each set of microstrip lines. In collecting data, the
voltages of each point were measured twice and results were identified from
readings of the highest voltage. Voltage readings captured at the near and far ends

of each line were calculated in dB and compared. The crosstalk (£) in dB is

defined as:

£ = 20log o[V, (1) / V;(1)] (5.38)
where V; is the voltage source on the activated line at time ¢, and V, is the voltage
at any location along the line at the same time ¢ (Parker et al 1994, Parker 1994).

The results were then plotted using EASY-PLOT.

Experiment 1: (line inputs)

Experiment 1 was carried out to study the profile of crosstalk when the same input

voltage (5 V p-p) was applied to different lines.

Set up no.1
Input applied to Line #4 :

e microstrip lines with s =w =750 gmand s = w =1000 zm .

e with frequency of 10MHz.
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Set up no.2
Input applied to Line #5 :

e microstrip lines with s =w =250 gmand s = w =500 zm .

e with frequency of 10MHz.

......... S00RMS: « -+ ¢ e gt ot

line no 8

Figure 5.7 Experimental set up no. 1.

Results

The crosstalk levels measured at the near and far ends for the first and second
arrangements are shown in Fig. 5.8.a. and b, respectively. In Fig. 5.8.a, the
crosstalk is the highest (-30 dB) at lines 3 and 5, reducing further by 8 dB when
measured at lines 1 and 7 for the near end. Crosstalk at the far end is lower by 3

dB compared to the near end crosstalk when measured at lines 3 and 5.

Figure 5.8.b shows the crosstalk at both ends when the same input signal is
applied to line 5. The crosstalk profile is very similar to Fig. 5.8.a, with the near

end crosstalk being higher (~ 3 - 4 dB) in comparison with the far end crosstalk.
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As shown in both figures the crosstalk at the far ends is lower than the crosstalk at
the near ends. The essential features of crosstalk remain the same in both figures

whether line 4 or 5 were activated. This fact is confirmed by Parker et al (1994).

Crosstalk Near and Far Ends

B——1 Far End; 750pum
EB——+& Near End; 750um
@——@® Far End; 1000um
G——0 Near End; 1000um

......................

Crosstalk (dB)

No. of Lines

(a) Crosstalk of set up no. 1.
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Crosstalk Near and Far Ends

Crosstalk (dB)

T} SO . .......i.| @——@ Far End; 500um
' ' G——0© Near End; 500um

B—1 Far End; 250um

O———-+8 Near End; 250pm

1 2 3 4 5 6
No. of Lines

(b) Crosstalk of set up no. 2

Figure5.8  Crosstalk at near and far ends of (a) setup no. 1; s=w=

750 ym and s = w =1000 um (b) set up no. 2; s =w =250 yum and

s =w =500 um ; microstrip lines with input signal 5V p-p and

frequency of 10 MHz.

Experiment 2: (input voltages)

Experiment 2 was carried out to study the changes in crosstalk magnitude when

different input voltages were applied to the microstrip lines.
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Set up

Inputs applied to Line #4 were:
e of the same direction.

e varied at 1Vp-p to 5Vp-p.

o with frequency of 10MHz.

......... 50ohms. . . . . . . . .l'lné rio.'l . . . . . . . 50ohmas .

line no 8

Figure 5.9 Experimental set up with input to line #4.

Results
Figure 5.10 shows the measured crosstalk at near and far ends for a set of

microstrip lines with s = w = 1000 pm over a range of input voltages Therefore

the crosstalk is unaffected by the range of input voltages, which is in agreement

with the claim made by Parker et al (1994).
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Crosstalk (dB)

Crosstalk Near End

No. of Lines

(a) Crosstalk at near end.
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Crosstalk Far End

Crosstalk (dB)

No. of Lines
(b) Crosstalk at far end.
Figure 5.10 Crosstalk at (a) near end (b) far end; of 1000 pm microstrip

lines with input signals 1V - 5V p-p and frequency of 10 MHz.

Experiment 3: (frequency)
Experiment 3 was carried out to study how crosstalk was affected by increasing

the input frequency.
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Set up

Input applied to Line #4 :

e microstrip lines with s =w =250 umand s = w= 500 um.
e 1Vpp

e with frequency of 0.25, 0.5, 1.0, 2.5, 5, 10, 20 and 30 MHz..

Results

Figure 5.11 shows that the crosstalk at both ends increased steadily as the
frequency increased. This result also confirms recent findings of Son et al (1993),
Van Deventer and Katehi (1994), and Linares y M et al (1995). For s = w =

250 ymand at 30 MHz the crosstalk is measured as being -26.5 dB and -29.5 dB

for near and far ends, respectively. The results decreased by a further ~ -1.5 to -

2.0dB fors=w=500 um.

Crosstalk vs. Frequency

-22.5 - .
g Far End; 500um ' '
O———© Near End; 500m . , ,
gl Far End; 250um ' ' ' 1
B———F] Near End: 250um ! —H

-25.0 : y ST s eeeeeaao]
1 . ) ) b

-27.5 F

Crosstalk (dB)

-30.0

Frequency (MHz)

Figure 5.11 Crosstalk at different frequencies.
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Experiment 4: (spacing)

Experiment 4 was carried out to study the effect of spacing on crosstalk.

Set up
Inputs applied to Line #1:
e of 1Vp-p.

e with frequency of 10MHz.

::"'50}\(}'\?}{?3""""""SOohMS'
: <_/“U *— VWV
ToMed — WV
B B S YV
AN
"_A\/\/\/ .lling. no &l‘

Figure 5.12 Experimental set up with input to line #1.

Results

Further crosstalk measurements were carried out using sets with different spacings
and widths and the results are shown in Fig. 5.14. Both graphs indicate that the
crosstalk decays exponentially with increasing distance from the feeder line. As
expected the crosstalk in line 2 is measured as being -30 dB, decreasing to ~ -40

dB in line 8. Crosstalk for the set with s =w = 1000 zm is the lowest followed by
the sets s =w =750 um, s =w =500 gm and s =w =250 zm respectively. This

demonstrates that the effect of spacing on crosstalk is significant.
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Figure

: b3 ¥+ . : .

—100.0 ns 0.000 s 100.0 ns
20.0 ns/div real time
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aTime (m13>—(m3)>—-63S ps vp—p (mi) 716.378mVv

vp—p (m3> 602.109mV AaTime (mi)—(m3)—-63S5 ps

5.13 Input signals showing Vp-p at near and far ends of microstrip
line #1(250m).

Crosstalk Near End

0 - : . . . .
A0t-WN---aee e . ' TR
' ' ' | @&——@ 250um '
) ) ) F—=7 500um '
' X . | B=——a8 750um X
! ' ' | @=——o 1000um '
m -20p---- TTTTTTTT coTTTo STt cTTTTo TTTTtTTT ST
E ] 1 1 1 1] [
ot X X : X :
= . ' . X ' X
(2] ] 1 ] ' ]
m 1 1] 1 '
e v ' ' '
©  30f------ i -t it ol dmmmmee- e
-40 ------- _: ------- E- ------ -E ------- :‘ ...... , Tttt , Tt T
-50 . . .
1 2 3 4 5 6 7 8

No. of Lines

(a) Crosstalk at near end.
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Crosstalk Far End

0
q0b-Y---- .. feeeeooio..| @——@ 250um |- ool
) . . =7 500pm )
E——-=_ 750um
G——o 1000pm

& 20 ANt

hoA

x

]

&

o . . . . :

S .30f------ S AR e bonennes e
40F------ P [, . :---_-.-\:r-_----a .......
-50 *

1 2 3 4 5 6 7 8

No. of Lines

(b) Crosstalk at far end.

Figure 5.14 Crosstalk of different spacings (a) near end (b) far end.

The effect that spacing has on the electrical parameters of coupled microstrip lines
alone has been shown by simulation; see Sect. 5.3 and experiment (Cottrell and
Buturla 1985). The effect of spacing on crosstalk has also been studied by various
researchers (Seki and Hasegawa 1984, Zhang et al 1992, Parker et al 1994) mainly
by simulation. However, the direct relation between the line spacing and crosstalk
(crosstalk as a function of spacing) has not been dealt extensively and therefore

requires further investigation. This is described in Chapter 7.
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Experiment 5: (between two signals)

Experiment 5 was carried out to study the crosstalk between two signals in the

same direction.

Set up

Inputs applied to Line #3 and #5:

e of the same direction

e of 1Vp-p.

e microstrip lines with s =w =500 um (see Fig. 5.6).

o with frequency of 10MHz.

Figure 5.15 Experimental set up with input to line #3 and #5.

Results

As can be seen from Fig. 5.16, the near end crosstalk ~-18 dB observed in line 4 is
only 2 dB higher than that of lines 2 and 5, confirming the simulation results
reported by Parker et al (1994). The crosstalk taken at the far end of lines 2, 4 and
6 is approximately 2 - 3 dB lower than the near ends’. This is mainly due to
mutual field attraction. However, when further away from the feeder lines,
measurements of the crosstalk from the far end are higher than at the near end for

lines 1 and 7 and beyond. As the spacing increases, crosstalk at the near end
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drops drastically. For example, crosstalk at the near end of line 6 drops to 7.84%
compared to 30.92% at line 7. On the other hand, crosstalk at the far end drops

steadily by about 2% when moving from one line to the next.

Crosstalk of 8-Couplted Lines

/\ /-\ E—-—-—-3JNearend |}
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,’I \‘| I,/ \‘\
i \'\ ,'/ \‘\
10 'p/ \\‘ l, / \‘\
p] W \ :
@ I"’ \‘\ ,'/ \\‘
S / / \\\ H / \‘\
E !l W \
: /! \Yi \
,l’ / \\ﬂl \\‘\‘
20 } Im/ g \l':l ~
o = \T‘ <
Rk
4
-30
1 2 3 4 5 1] 7 8
Line No.

Figure 5.16 Crosstalk for 8-coupled lines with double inputs.

Experiment 6: (length)

The effect of the length of microstrip lines on crosstalk has been discussed briefly
by several authors (Gunston and Weale 1969, Zhang et al 1992). Some of them
even consider it as negligibie (Seki and Hasegawa 1984, Parker et al 1994, Gao et
al 1990, Qian and Yamashita 1993) due to the fact that the length (/) is not one of
the variables (see eqns. 3.1 - 3.18) in any electrical parameters of microstrip lines.

Experiment 6 was designed to study the effect of length on crosstalk.
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Set up no.1
Inputs applied to Line #4:
e of 1Vp-p.

e microstrip lines with s =w =500 gm and /= 100 mm(see Fig. 5.6).

e with frequency of 10MHz.

Set up no.2
Inputs applied to Line #4:
e of 1Vp-p.

e microstrip lines with s =w =500 gm and / =200 mm(see Fig. 5.11).

e with frequency of 10MHz.

Results

The far end crosstalk (Fig. 5.17.a) measured at the adjacent lines 3 and 5 is the
same for both length. However, it drops by 1 dB per line away from the lines 3
and 5 for longer lengths. For .line 7, the drops are 1 and 3 dB, respectively. On
the other hand, the near end crosstalk (Fig. 5.17.b) increases as the length
increases, in particular at the adjacent lines (3 and 5). This result has shown that
as the length increases, mutual field interaction (proximity effect) between the

lines increases, thus effecting the crosstalk at both ends of the line.
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Experiment 7: (shielded line)

Experiment 7 was carried out to reproduce the effects of shielded lines on

crosstalk. Only the first three lines of Fig. 5.6 were involved in the investigation.

Set up
Inputs applied to Line #1:
e were of 5Vp-p.

e microstrip lines with s =

w =500 tm and /=100 mm(see Fig. 5.6).

e had a frequency of 10MHz.

e line #2 was grounded and line #3 was monitored.

Figure 5.18 Shielded line.

Results
Lines Not Grounded Grounded
Line 1 3037 mV | 3037 mV
Line 2 163.697 mV -
Line 3 81.2282 mV T 42.9241 mV
Table5.0  Measurement for shielded line.
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Results of this experiment show that by grounding the in-between lines, the
voltage at line #3 was reduced from 81.2282mV to 42.9241mV, i.e. by 50% as
also found by Coekin (1975). To find out more about the main source of
crosstalk, readings of the ungrounded line #2 (163.697mV) were picked as the
input source. It was observed that the voltage reading of the immediate
neighbouring line was only 14.575mV. From the results of these experiments,
one can conclude that the effects of crosstalk originated mainly from the source
(input) line and that the second generation crosstalk can be ignored or faken as
negligible. This important conclusion is further applied in the next section during
the simulation of the crosstalk of nonuniform coupled microstrip lines. This
simulation used SPICE (Simulation Program with Integrated Circuit Emphasis),

by monitoring only the mutual capacitance between the source and the line.

5.4.2 Simulation

This section presents simulations of the crosstalk of nonuniformly spaéed and
strictly nonuniformly coupled microstrip lines, using the novel algorithms
developed in Chapter 4. The resulting parameters from the algorithms are used to

simulate crosstalk using the coupled lines SPICE model (see Fig. 5.19).
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54.2.1 Nonuniform spacing

A set of 3 nonuniformly spaced coupled microstrip lines, as described in Section
4.5.3.2 was used for the simulation of crosstalk. The time delay (eqn. 4.92) and
characteristic impedance (eqn. 4.93) for the set were calculated as in Section
4.5.3.4. Three distinct simulations were performed on the sample. A pulse train
of 1 V amplitude, was first applied to line 1 and then to line 2 and finally line 3.
All the other lines were terminated with 50Q resistors. The crosstalk were

measured at both ends of the lines and are presented in Figure 5.20.

Crosstalk

B——2 Far end
@————@ Near end

Crosstalk (dB)

-30

No. of Lines

Fig. 5.20(a)
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Figure 5.20 Crosstalk vs. line numbers for 3-coupled nonuniformly spaced

microstrip lines with (a) feeder line 1 (b) feeder line 2 and

(c) feeder line 3.
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In Fig. 5.20.a, the near end crosstalk of lines 2 and 3 is ~ -19 dB and ~ -26 dB,
whereas the far end is ~ -21 dB and ~ -28 dB, respectively. In Fig. 5.20.c, the
near end crosstalk of lines 2 and 1 is ~-21 dB and ~ -27 dB, whereas the far end is
~ -22 dB and ~ -28 dB, respectively. The near and far end crosstalk of the third
simulation drops 2 dB more than the third simulation at line 2 as shown in Fig.

5.21. This is due to the fact that the spacing between lines 3 and 2 is 1 m more

than the spacing between lines 1 and 2. In the other words, the crosstalk
decreases as the spacing increases, which is in agreement with experimental

results (see Exp. 4) in Section 5.4.1.1.

Crosstalk
O T /
3 ---8 Farend,; feeder line 3 /
W——M Far end; feeder line 1 /

G- — —© Near end; feeder line 3 / J
@&——@ Near end; feeder line 1 /,
- 7

Crosstalk (dB)

No. of Lines

Figure 5.21 Comparison of crosstalk when the feeder line is line 1 and line

3.
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The second simulation; see Fig. 5.20.b, also indicated the same results. Both the
near and far ends of line 3 drop about 2 dB in comparison to line 1. It is also
important to note that the drop of the far ends is slightly lower than that of the
near ends in all simulations. This is mainly due to an increase in crosstalk in
neighbouring lines as the input signals propagate along the feeder line for

corresponding time delays.

5.4.2.2 Strictly nonuniform

A set of 4 - strictly nonuniform coupled microstrip lines introduced in Chapter 4,
(see Fig. 4.7) was adopted for the simulation of crosstalk. The time delay (eqn.
4.111) and characteristic impedance (eqn. 4.112) for the set were calculated in
Section 4.5.3.4. A pulse train of 1 V amplitude, was applied to line 1 and then to
line 4. With all the other lines terminated with 50Q resistors the crosstalk results

are measured at both ends of the lines, are shown in Figure 5.22.

Crosstalk for strictly nonuniform m icrostrip lines

Farend; feeder lined4
Nearend: feeder line 4
Farend; feeder line1
Nearend; feeder line1 f =~ F -~

Crosstalk (dB)

...........................

-50

No.oflines

Figure 5.22 Crosstalk vs. line number of coupled 4-strictly nonuniform

microstrip lines with input signal applied to line 1 and 4.
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The far end crosstalk of lines 2 and 3 is ~ - 19 dB and ~ -38 dB, respectively, for
feeder line 1, whereas the far ends crosstalk is ~ -37 dB and ~ -25 dB,
respectively, for feeder line 4. The difference in these results is due to the fact
that the spacing between lines 2 and 3 is the largest (s, = 15um)compared to the
spacing between the other two lines; i.e. s; =3umand s3=7pm. These
important results indicate that the line spacing plays an important role in crosstalk
even for strictly nonuniform coupled microstrip lines, which is in agreement with
the findings of Orhanovic et al (1990) and Mao and Li (1991). However the
findings are more significant compared to them because their results were based
on nonuniform microstrip lines which had the same thickness. Furthermore
crosstalk of the last lines is approximately the same in both cases. This is best

illustrated in Fig. 5.23, where line 1 is the feeder line.
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Figure 5.23 Comparison on both simulations.

148



Finally, crosstalk from the first simulation is not linear with respect to that of the
second simulation; see Fig. 5.23, which confirms that the simulated set of coupled

microstrip lines was indeed strictly nonuniform.
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6. FUZZY LOGIC

6.1 Introduction

In the previous chapter, experiments were performed to investigate the effects of
geometric configurations on crosstalk. The outcome of this work is t(; develop a
method in order to achieve a compromise between different constraints. This will
lead to production of the best possible design of microstrip lines having a

considerable reduction in crosstalk.

This chapter serves as an overview of the topics providing theoretical background
for the construction of fuzzy modelling of microstrip lines. It consists of three
sections: crisp set theory, fuzzy set theory and fuzzy systems. It starts with an
introduction of crisp set theory (ordinary set theory) and its common algebraic
operations. The chapter then introduces the fuzzy set theory with its principal

operations. An overview of a fuzzy system relevant to this work is also presented.

6.2 Crisp Set Theory

The ordinary or crisp set theory is the foundation of all branches of modemn
mathematics. The crisp set is defined in such a way as to dichotomise the
individuals in a universe into two groups: members (those who certainly belong
to the set) and nonmembers (those who certainly do not) (Klir and Folger 1988).

However, the basic concept of a fuzzy set is, in essence, the generalisation of a

crisp set.



(D e6.1) Generally, the letter X denotes the universal set. To indicate that

an individual object x is a member of the set 4, we write

xed
(D 6.2) Whenever X is not an element of A, we write
xed.
(D 6.3) The set 4 the members of which are ay,a;,as,...,a, is usually

written as
A= {ay,ay,a;s,...,a,} .

The process by which individuals make the universal set X is determined by the
condition that either members or nonmembers of a set can be defined by a

characteristic function (Klir and Folger 1988).

D 6.4) For a given set A, the characteristic function assigns a value

n 4(x) toevery x € X such that

. _Jlifandonlyifx € 4
RAY =00 ifand onlyifx e 47



(D 6.5) The set A the members of which satisfy property P is usually

written as

A'= {a € A|a has property P}.

The property P hés to be satisfied in total or not at all, i.e. it is either true or false

for each of the elements of 4. It works well as long as the objects are well

defined.

For example a set A of positive natural numbers which is less than 10 is
A={a e Nja <10} = {1,2,3,4,5,6,7,8,9} .

(D 6.6) A set whose elements are themselves sets is called a family of sets.

It is denoted in the form
{4;li eI}

where i and 7 are called the set identifier and the identification set, respectively.

The identification set is usually the set of natural numbers, N.

An important set which is frequently used in this work is the set of all points in

the n-dimensional Euclidean space, R" (i.e.: all n-tuples of real numbers). Sets



defined in terms of R"are often required to possess a property known as

convexity.

D 6.7) A set4in R"is called convex if, for every pair of elements
Iy p

r=(ilieN)ed, s=(s]ieN)ed

and every real number X €[0,1], exclusively, then the element ¢

t=(Ar; +(1-A)s;lieN) e d.

In other words, a set 4 in R” is convex if, for every pair of points r and s in 4, all

points located on the straight line segment connecting 7 and s are also in 4. This is

explained in Fig. 6.1.

(a) (b)

Figure 6.1  Crisp set (a) convex (b) nonconvex.

6.2.1 Crisp set operations
Operations in the ordinary set theory are used to represent relationships between

elements of two sets.



(D 6.8) If every member of set A4 is also a member of set B, that is, if

a € Aimplies a € B, then 4 is called a subset of B (Fig. 6.2.a), and this is written

in the form

D 6.9) If Ac Band B c A, then these sets are equal sets; this is denoted

by the following equation:

(D 6.10) If every member of a set 4 is not a member of set B, then set 4 and

B are not equal, we write

D 6.11) A is called a proper subset of B when 4 < Band A4 # B, which is

denoted by

Ac B.

(D 6.12) The relative complement of a set 4 with respect to set B is the set

containing all the elements of B that are not elements of 4 (Fig. 6.2.b). This set is

denoted as



B\A=1{beBlbeAd).

D 6.13) The union of sets 4 and B is the set containing all the elements that

belong either to set 4 or B or both of them (Fig. 6.2.c). This set is written as
AUB={x|[xeAdorx eb}.

D 6.14) The union operation can be generalised for any number of sets.

For a family of sets {4;|i €[}, this is defined as

U4; = {x|x € 4; forsome i €]} .
iel

D 6.15) The intersection of sets 4 and B is the set containing all the

elements belonging to both set 4 and B (Fig. 6.2.d). It is denoted as a logic

equation

ANnB={x[xe4andx €b}.

(D 6.16) The intersection operation can be generalised for any number of

sets. For a family of sets {4;|i € I}, this is defined as

N4; ={x|xe4; foralli e]}.

iel



(a) (b)

(©) (d)

Figure 6.2 a) Ac B; b) B\A4; ¢c) AUB; d) ANnB.
D 6.17) A Cartesian product of two crisp sets X and Y, denoted by X' x 7,

is the crisp set of all ordered pairs such that the first element in each pair is a

member of X and the second element is a member of Y. Formally,
XxY={(x,y))lxeXandy el}.
It should be noted that if X #Y,then Y xY =Y x X.

(D 6.18) The Cartesian product of n crisp sets {X,|i € N} are set of n-tuples

defined in this form;



X, X ={(x,,%,,....,x,)|x; € X, foralli e N}.

D 6.19) A relation among crisp sets X|, X5, ..., X, is a subset of the

Cartesian product X X, such that
1€

R(X,,X,,..,X,)c X, x X, x.xX,.

(D 6.20) A crsp relation R(XxJX) 1is reflexive if and only if

(x,x) e R, Vx € X , otherwise it is called antireflexive if (x,x) ¢ R, Vx e X .

(D 6.21) A crisp relation R(X x X)is symmetric if and only if
(x,y)eR=>(y,x)eR for x,yelX. On the other hand if

(x,y) e Rand (y,x) € R = x = y, the relation is called antisymmetric.

(D 6.22) A crisp relation R(X x X)is transitive if and only if
(x,9),0,z) eR=>(x,z) eR for x,v.zelX. On the other hand if

(x,9),(»,z) e R= (x,z) ¢ R, the relation is called antitransitive.

(D 6.23) A crisp binary relation R(X x X)that is reflexive, antisymmetric,

and transitive is partially ordered.

(D 6.24) Let X' be a partially ordered relation and A< X. x € Xiscalled a

lower bound of A if x<y, ye 4.



(D 6.25) Let X be a partially ordered relation and A ¢ X. x e X is called

an upper bound of 4if y<x, ye 4.

(D 6.26) Let X be a partially ordered relation and 4 < X. x € X is called

an infimum (greatest lower bound) of 4, written as inf 4 if and only if;

@) x is a lower bound of 4

(ii)  ify is another lower bound of 4, then y <x

D 6.27) Let X be a partially ordered relationand 4 c X. x e Xiscalled a

supremum (least upper bound) of 4, written as sup 4 if and only if:

@) x is an upper bound of 4

(i1) ~ ifyis another upper bound of 4, then y >x

D 6.28) Let X be a partially ordered relationand 4 c X. x € Xiscalled a

minimum of 4, written as min 4 if and only if:

(i)  xisalower bound of 4

(i) xed

Clearly a minimum of a set is also the infimum.
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(D 6.29) Let X be a partially ordered relationand A< X. x € Xiscalled a

maximum of 4, written as max A if and only if:

(1) x is an upper bound of 4

(ii) xed
Clearly a maximum of a set is also the supremum.

The ordinary or crisp set theory was critically reviewed by mathematicians and
philosophers including Betrand Russell. It is pointed out that the sets cannot be
defined in an arbitrary way without producing paradoxes. The problem is
observed as coming from the real world situations. Axioms of specifications
cannot be used to build the sets in a consistent way (Birkhoff and Bartee 1970).

That is. there are meaningful properties that cannot be used to define sets uniquely

(Kosanovic et al 1994).

The application of a crisp set (see D 5) fails when one attempts to define a set for
objects which are not well defined. The examples of cases may be based on
meaningful properties, but the sets cannot be uniquely determined. The reason is

that the properties involved do not precisely describe the situation as in a crisp set.

6.3 Fuzzy Set Theory
As mentioned earlier, before the beginning of 19th century, the field of science
and engineering was known for precision. specificity, sharpness, consistency and

speciality. This view was adopted mainly due to the fact that mathematics, 1.e.



crisp set theory, was the main tool of science. The technique was considered as
being precise and consisted of two logical values: yes or no. However, this view
was finally challenged by L. Zadeh (1965) in his revolutionary paper, Fuzzy Sets.
In this paper, the concept of degree of membership for a set was introduced in a
closed unit interval [0,1]. The extreme values in the interval, 0 and 1 represent the
total denial and affirmation of the membership in a set, respectively. On the other
hand, all the values between these values represent gradual transitions from
membership to nonmembership of the set. This ground breaking concept provides
meaningful and powerful representation of measurement of uncertainties, and

also gives a meaningful representation of vague expression in natural language.

The purpose of fuzzy set theory is to bring mathematics closer to reality. Being a
constitutive part of modern mathematics, fuzzy sets are not intended to replace
crisp set theory. It will however provide a formal way of describing the real-world
phenomena (Kosanovic 1995). It is a theory in which everything is a matter of

degree, i.e. everything has elasticity (Zimmermann 1991).
Formally, a fuzzy set may be defined as follows:

D 6.30) Let X be the universal set with its element denoted by x. A fuzzy

set F in X is characterised by a membership function pg:X —[0.1], with the

value p g (x) representing the grade of membership of x in F.
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Fuzzy sets are always mappings from a universal set into [0,1]. Conversely, every

function pu: X — [0,1] may be considered as a fuzzy set (Kruse et al 1994).
For example, one can define a set Ff; = {x € R|x is about between 5 and 8} with a

membership function

x -4, x €[4,5)

1 x €[5,8]

hp ()= -x+9, xe(8,9]
0, otherwise

The above relation for the intervals (see Glossary of Symbols) can be represented

graphically in Figure 6.3

Hp

1'0 T :

0.5 7

0.0

Figure 6.3  Membership function of fuzzy set

F{ = {x e R|x is about between 5 and 8}.

Thus a membership function p F measures the extent to which the property of
‘about between 5 and 8’ established by F is valid for each of the elements in X =

R

Another example is F> = {x € R|x is about 4} . The membership function for the

set is written below
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x-3, xe[34)

) 1, x=4
x)=
g _x+5, x e(45]
0, otherwise
The graphical description is given in Fig. 6.4.
33 FZ -~
1.0
| | I 4

3 4 5
Figure 6.4  Fuzzy number F; = {x € R|xis about 4}.

(D 6.31) Since a function can be represented by a set of ordered pairs, any

fuzzy set F can written as

F={(xur(x)ix e X}.

6.3.1 Fuzzy set operations

Since the membership function completely characterises a fuzzy set, the
operations with fuzzy sets are defined based on membership functions (Klir and

Folger 1988). The basic set operations of crisp set theory (D 6.8-D 6.16), may be

extended to fuzzy set theory.
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(D 6.32) If the membership function of each element of the universal set X
in fuzzy set 4 is less than or equal its membership function in fuzzy set B, then 4

is called a subset of B or vice versa, i.e.
AcBep(x)spp(x).

(D 6.33) Fuzzy sets 4 and B are equal if and only if all the membership

functions for every element are equal.
A=Bep (x)=pupgx), VxelX.
Consequently, if 4 =B, then A c Band Bc 4.

(D 6.34) Fuzzy sets A and B are not equal if there is one element which has

a different membership function.
A#B o p 4(x)#ppg(x), forsomex e X .

(D 6.35) Fuzzy set A4 is a proper subset of B when 4 is a subset of B but not

equal

AcBep (x)<pg(x), VxeX and Ix € Xsuchthat p 4(x) <pg(x).
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(D 6.36) The complement of fuzzy set 4 (Fig. 6.4 b), 4, is the fuzzy set

defined as

A= (e (DI (8) = 1= p 4 (x), x € 4},
A A

D 6.37) The union of fuzzy sets 4 and B (Fig. 6.2.c), AU B, is the fuzzy

set defined by the following membership function:
Haop(x) = (xX)V pp(x)=max[p,(x), 45(x)].

(D 6.38) The union operation for fuzzy sets can be generalised for a finite

number of sets. For a family of fuzzy sets {A4;|i €{1,2,...,n}}, the union is

defined by a membership function:

/‘L"J 4; = H 4 (x)v H a4, (x)v---vﬂ,r,, (x)= max[/u,x, (x)a/l,t: (x)’-"’/'lA,, (%]

i=]

(D 6.39) The intersection of fuzzy sets 4 and B (Fig. 6.2.d), AN B, is the

fuzzy set defined by the following membership function:

L (%) = 22,4 (X) A (%) = min[ gz , (x), 115 (%)].
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(D 6.40) Similar to the union, the intersection operation for fuzzy sets can
be generalised for a finite number of sets. For a family of fuzzy sets

{4;li €{1,2,...,n}}, the union is defined with the membership function

B V4, = 114 () A g ()it (5) = Bl (D, (R, ().

i=1

0 X X
F F
1 1
Hap
]
0 s x ° X
© (d)

Figure 6.5 a) Fuzzy sets A and B; b) Fuzzy complement of 4; ¢) Fuzzy

union of A and B; d) Fuzzy intersection of 4 and B .



(D 6.41) A fuzzy relation is a fuzzy set defined on the Cartesian product of
crisp sets Xj, X5, ..., Xo; R(X), X5, ..., X)) where tuples (x,,x,,...,x,) may have

varying degrees of membership within the relation.

D 6.42) A fuzzy relation R(X, X) is reflexive if and only if

Hp(x,x)=1, Vx € X. The relation is called irreflexive if 3x € X' 3 y,(x,x) # 1

and antireflexive if u,(x,x) =1, Vx € X.

(D 6.43) A fuzzy relation R(X, X) is symmetric if and only if

Up(x,y)=up(¥,x), Vx,y € X. The relation is called asymmetric if
Ix,y € X 3 pp(x,y) # pp(y,x) and strictly antisymmetric if

He(x,y) # pp(y,%), Vx,y € X.

(D 6.44) A fuzzy relation R(XX) 1is transitive if and only if

Hp(x,2) 2 max minf 4, (x,y), #(»,2)] is satisfied for each pair (x,z) € X x X.

The relation is called nontransitive if

J(x,2) e X x X3 up(x,z)< max min{u, (x,y), 4 (¥,z)] and antitransitive if

5 (5,2) < max min[as (5, 7), 1 (9], ¥(%,2) € X % X,

(D 6.45) A fuzzy binary relation R on a set X is a fuzzy partial ordering if

and only if it is reflexive, antisymmetric, and transitive under some form of fuzzy

transitivity.
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Any fuzzy partial ordering can be transformed into a series of crisp partial

orderings by taking a series of @ - cuts that produce increasing levels of

refinement.

6.3.2 Alpha cut (a-cut)

The alpha cut (a-cut) is one of the main ingredients in building the fuzzy model.

It is a procedure of creating the fuzzy environment as well as defuzzification.

(D 6.46) The support of a fuzzy 4 in the universal set X is the crisp set

containing all the elements of X with nonzero membership function in 4 (Klir and

Folger 1988).

supp 4 = {x € X|p 4(x) > 0}.

In Figure 6.3, supp A = (4,9).

A more general notion of the support is the o - cut.

D 6.47) An a- cut, 4y, 1s a crisp set which contains all the elements of
the universal set X that have a membership functions at least to the degree ofa

(Fig. 6.6):

Ay = (e Xlp 4(x) 2 ).
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and the set A'y = {x € X|p 4(x) >} is called the strong o - cut.

Figure 6.6 o - cut

6.3.3 Fuzzy numbers
An important feature of a fuzzy set which will be used extensively in the next

chapter is fuzzy numbers.

(D 6.48) Let F={(x,up(x))|x €X}be a fuzzy set. F is called convex

fuzzy set (see Fig. 6.7) if

Up(Ax, + (1= A)x,) 2min[up(x), 4(x,)], Vx,,x, e Xand VA €[0,1].

Clearly, a fuzzy set F is convex if and only if each Fy is a convex set.

(D 6.49) A fuzzy set F is normal if 3x € X such that p 7 (x) =1.0 (see Fig.

6.3)
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A fuzzy set is normal if there exist at least an element with a membership grade of

1.

(D 6.50) A convex and normalised fuzzy set F with the membership
function that is piecewise continuous (Grossman 1984) is called a fuzzy number

(see Fig. 6.4).

) H(x;)

X X2

(a) (b)

Figure 6.7 Fuzzy set (a) convex b) nonconvex.

6.3.4 Fuzzy sets induced by mappings

Like any other branches of mathematics, mappings between two spaces are very
crucial. This is especially valid when they can preserve some topological
properties (Dugundji 1966). Therefore, the identification of these special
functions which have the necessary characteristics is very important in fuzzy set
theory, i.e. fuzzy sets induced by mappings. One of them is the inverse principle

of set theory (Kosanovic 1995).
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(D 6.51) Let O be a mapping from X to space Y. Let A be a fuzzy setin X

with membership function p 4(x). The mapping Q induces a fuzzy set B in ¥

whose membership function is defined by

pga(x)=pp(y), ye¥

for all x € X that are mapped by Q into y, i.e. Vx € Q_l (») (inverse image of y) .

Another important mapping is the extension principle. It was introduced by
Zadeh (1965) and was finally elaborated by Yager (1986). It is a building block

of the model in the next chapter. It is defined formally as (Kruse et al 1994) in the

following.

D 6.52) Let ¢: X" — Y be a mapping. The extension of ¢ is given by:

o™ (F(X)" = F(Y) with

(X, %55000,%, ) €X" andy =X, X, ,...,X, )}

@ (Lys o seens 14, )0) =SUp{MIN{LL;, Ly 5.ens H, }

Le.
A function ¢: X" — Y, which maps the tuples (x,x3,...,x,) of X" to the crisp

value ¢(xy,x7,...,x,) of ¥, can be extended in a suitable way to a function
o™ (F(X)" = F(Y). This maps a vague description

(1 (1) 12 (X2 )sees i (3,)) €(F(X))" to the fuzzy value ¢" (Ri, 12 ,...,Hyp) -
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6.3.5 Methods of fuzzification

The process of fuzzification, i.e. the process of determining the membership
function for a set varies. This largely depends on quantity as well as quality of
information of its elements. These factors make fuzzy set theory very suitable for

a wide range of applications. The determination methods break down into the

following categories.

1. Subjective evaluation and elicitation

As fuzzy sets are usually intended to model people’s cognitive states, they can be
determined from either simple or sophisticated elicitation procedures. At the very
least, subjects simply draw or otherwise specify different membership curves
appropriate to a given problem. These subjects are typically experts in the
problem area or they are given a more constrained set of possible curves from
which they choose. Under more complex methods, users can be tested using
psvchological methods. This is a very popular approach in signal and system
analysis especially in the interpretation of psychological problems such as

sleeping disorder (Kosanovic 1995). It involves a lot of random collection of

data.

2. Ad-hoc forms

While there is a vast (hugely infinite) array of possible membership function
forms, most actual fuzzy control operations draw from a very small set of
different curves, for example simple forms of fuzzy numbers. This simplifies the

problem, for example to choose a just central value and the slope on either side.
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This is a fairly simple but yet an effective means of determining membership
function. It is widely used in a control system involving container crane control
in shipping ports (Altrock 1996). One of the main features of this approach is to
provide normal and convex fuzzy sets immediately. This approach will be widely

used to fuzzify most of the input parameters in the proposed model for microstrip

lines.

3. Converted frequencies or probabilities

Information taken in the form of frequency histograms or other probability curves
is occasionaly used as the basis for the construction of the membership function.
There are a variety of possible conversion methods, each with its own
mathematical and methodological strengths and weaknesses. However, it should

always be remembered that membership functions are not necessarily

probabilities.

4. Physical measurement

Many applications of fuzzy logic use physical measurement, but none of them
measures the membership grade directly. It is widely used in the chemical
industry and in engineering where a vast amount of raw information is available
from experiments. Mostly a membership function is provided by an independent
method, and individual membership grades of data are then calculated from it.

This approach is adopted for fuzzification of crosstalk in the proposed model.



5. Learning and adaptation

This technique is called neurofuzzy (Brown and Harris 1994). It is a combination
of neural network and fuzzy set theory. Several alternative methods of integrating
neural nets and fuzzy logic have been proposed in the literature (Yager 1992).
One major milestone in the development of neural net technology is the
application of the error back propagation (see Fig. 6.8). Firstly, it selects one of
the examples of the training data set. Secondly, it compute.s the neural output
values for the current training example inputs. Then, it compares these output
values with the desired output value of the training example. The difference,
called the error, determines the neurone in the net to be modified. The
mathematical mapping of the error back into the neurones of the net is called error
back propagation. The fuzzy logic is used in building the error back propagation
algorithm (see Fig. 6.8). This particular approach is widely used in medical and

industrial sectors such as in the design of a recycling glass classifier (Altrock

1996).
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Fuzzification Defuzzification

Inference

Figure 6.8  Back propagation.

6.4 Fuzzy System

In science a gradual transition from the traditional view demands that uncertainty
is undesirable and needs to be avoided by all possible means. An alternative view
tolerant to uncertainty is that science cannot avoid the occurrence of uncertainty.
This transition of view is then followed in engineering and in several other areas.
Needless to say, most of the current systems are so complex that the complexity
frequently leads to a degree of uncertainty and the development of illogicality,
ambiguity and subjectivity of the systems. A model of this kind is not expected to
fulfil logical, objective, qualitative, precision of the system. An example of such a

complex system is a set of coupled microstrip lines (Fig. 4.3, 4.5, 4.6).
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Fuzzy logic can deal with the majority of the problems arising from a complex
system because it is designed to measure uncertainties. From this point of view, it
has branched out into several domains of mathematics such as a fuzzy algebra,

fuzzy topology, and fuzzy modelling.

6.4.1 Fuzzy modelling

A complex system such as an array of micro.strip line is not straight forward to
model. The challenge is to develop a model where an optimal level of allowable
uncertainty, vagueness and imprecision can be estimated. A uniform calculus is
incapable of integrating the above three variables. Fuzzy theory, on the other

hand, is a suitable tool for the task.

The basic principles of fuzzy modelling was laid down by Zadeh (1973). It has
been argued that fuzzy modelling ‘provide an approximate and yet effective
means of describing the behaviour of systems which are too complex or too ill-

defined to admit use of precise mathematical analysis’.

In the case of the microstrip lines, the problem of delay and reflections can be
solved by decreasing the length of the lines. This will increase the density of the
circuits. However, the solution of this type will increase the problem of crosstalk
between adjacent lines. Therefore, a designer must make proper trade-offs

between conflicting factors, large numbers of circuit parameters and design

specifications.
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Figure 6.9 Fuzzy model.

defuzzify

Fuzzy modelling is believed to be flexible and it can accommodate these criteria.

Therefore, a future improvement in the numerical equations, specifications of

system designers and consumers and experimental results for crosstalk of

microstrip lines can be easily incorporated into the model.

6.4.1.1 Methods

There are three principles in developing fuzzy modelling:

a) The use of linguistics variables in place of or in addition to numerical
variables;
b) The characterisation of simple relations between variables by conditional

fuzzy statements;

c) The characterisation of complex relations by fuzzy algorithms (Yager and

Filev 1994).

These principles form the basis of two methods used for fuzzy modelling:

i) Direct approach and

ii) System identification.
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In the first method, the system is first described linguistically using terms from
natural language and then translated into the formal structure of a fuzzy system.

The description is taken solely from the knowledgeable expert of the system.

The second method is more objective than the first method. Its development
consists of two stages:
e structure identification and

e parameter identification (Yager and Filev 1994).

It is also called method of transition and rely on the use of extension principle of
fuzzy set theory (Terano et al 1987). Since our work involves in the decision
making for parameters of microstrip lines, the process has to be very objective.
For this reason, the system identification is the most suitable method adopted and

its development is presented in next chapter.
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7. FUZZY MODELLING OF MICROSTRIP LINES

7.1 Introduction

This chapter describes the application of fuzzy theory as an optimisation tool to
the design and modelling of microstrip lines with an aim to minimise crosstalk.
This procedure is essentially a fuzzy model taken in three phases. The first phase
is the fuzzification of all the input parameters required for the model. Then, all
the fuzzified parameters are processed in the fuzzy environment. The third phase

consists of the defuzzification of processed data.

7.2 Fuzzy Flow Chart

As shown in Fig. 7.1, the three phases of our fuzzy model are best described by a
flow chart. Geometrical and electrical parameters and information obtained from
the mathematical analysis on crosstalk are defined in ‘crisp set’ form and then
fuzzified. Data obtained from the fuzzification are:

e fuzzified geometrical/electrical parameters and

o fuzzified intersection of parameters.

The fuzzified data are treated in a fuzzy environment where all the parameters are
defined ina fuzzy set. The fuzzified data in the environment are finally
defuzzified in order to obtain crisp results. The whole process is grouped into
three algorithm blocks namely; induced performance parameter, the process and

defuzzification. These are explained in Fig. 7.2. These algorithms are described

in detail in Sect. 7.4.1.
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7.3 Fuzzifications

Variables involved in an engineering design are usually referred to as parameters.
These parameters are input, output and performance parameters (Kruse et al
1994). The specifications of different types of parameters are presented in Table
7.0:

Inpur Parameters Ourput Paramerers Performance Parameters |
__(design parameters) o

i
i

* independent * involved in design e subject to some ‘
: process functional requirement .
e values are e functionally o
determined during dependent on the input
the design process parameters and
possibly on some
performance
parameters

S . - i e not subject to any

= " . specified functional
requirement

Table 7.0 Design parameters.

The functional requirement may take on a value or a range of values specified for

a performance parameter. These values are, however, independent of the design

process.

The input parameters of our model are geometrical parameters of microstrip lines
(see Fig. 2.1). On the other hand, all the electrical parameters (see eqns. 3.12 -
3.18) of microstrip lines are regarded as being performance parameters or output
parameters. The fuzzification of these parameters is the first phase of the model.
It is divided into three parts:

i) fuzzification of geometrical, performance and crosstalk parameters;
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i) intersection of fuzzified crosstalk and corresponding fuzzified input

parameters:

1i1) evaluation of induced performance parameters.

7.3.1 Fuzzy geometrical parameters

All geometrical parameters of microstrip lines are input parameters. They are
predetermined by the designer. consumer or the current state of technology.
Under these circumstances, the ad-hoc form is the best suitable method of

fuzzification. The fuzzy sets must be normal as well as convex.

7.3.2 Fuzzy crosstalk

The complex phenomenon of crosstalk depends on various factors (Seki and
Hasegawa 1984, Zhang et al 1992). Therefore the scope of obtaining sufficient
information from measurement alone is difficult and it is also fairly complex to
find a mathematical expression for crosstalk. In order to assist designers in
overcoming these difficulties, an alternative approach based on fuzzy logic may
be adopted. This is because the choice of a certain precise membership function
(i.e. line parameters) is less significant in fuzzy applications since only the

qualitative properties of functions are generally needed (Terano et al 1987).

The spacing between the microstrip lines influences the crosstalk (see Sect. 5.4).
The following statements need to be included:

@) lim &(s) =—o (7.1)

§—>x

(i)  crosstalk between lines decreases monotically as spacing increases;
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L.e. Z(a) 2 Z(s) 2 2(D), Vs €[a,b] (7.2)
(111)  all the values of Z appear in the fourth quadrant

(iv)  crosstalk is symmetrical about the feeder line (line 4)

These properties are employed in order to derive the membership function of
fuzzy crosstalk. This may be achieved by a direct physical measurement
(Wheeler 1965). For a given line spacing S =[a,b], where a and b are the
possible range of values for line spacing, the crosstalk for such a configuration is
given as &(s). This is valid for the interval (Vs € §). The crosstalk preference
membership function # mapped over S—[0,1] is defined with respect to the

spacing between lines and initial conditions in the following form:

1, s=b
He(=186) (., (7.3)
E(®)

and a set of fuzzified crosstalk is also defined as F¢ = {(s,ug): s €S}. (7.4)

By the property of (iv), the crosstalk versus line spacing is shown in Fig. 7.3(a).
Due to the symmetry, the spacing between lines 4 to 8 is shown. Using the
defined membership function (7.3), the measured value of crosstalk for
experimental data of Exp. 4 (s = w = 500um), as givgn in Fig 7.3(a) is then
transformed into the fuzzified crosstalk. Corresponding results are presented in

Fig. 7.3(b). Generally, it is an induced crosstalk versus line spacing, generated
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by reflection with respect to the x - axis. It is normal and convex ,and these

properties are essential for our fuzzy model.

The novel fuzzified crosstalk always carries the factor of preference with respect
to spacing. This indicates that as the spacing between the lines increases the
crosstalk decreases and the fuzzy value approaches unity. A fuzzy value of unity

is the goal for a designer to achieve. Therefore, fuzzified results, obtained from a

single set of practical measurement, can be employed for further design of

microstrip lines subject to the condition that the values of physical parameters
are within the fuzzy set.

Crosstalk vs. Spacing of Lines

B ~---- Crosstalk F.E
G- — —© Crosstalk N.E

Crosstalk (dB)

- - -
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- .
g

—_——_————
-30

1000 2000
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Fig. 7.3(a)
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Figure 7.3 Crosstalk versus line spacing (a) measured (b) fuzzified.

7.3.3 Fuzzified constrained optimisation

The process of fuzzified constrained optimisation is the intersection of fuzzified
crosstalk and its respective fuzzified geometrical parameters within the same size
of interval domains. In addition, it is possible that they are normal and convex.
The fuzzified geometrical parameter is a preferred parameter and the fuzzified

crosstalk contains its respective parameter within an allowed limit.

The resulting intersection contains an optimised allowable parameter involving
crosstalk. The collective intersection with other fuzzified geometrical parameters

are then used to estimate the induced performance parameter.
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7.4  Fuzzy Environment
In a fuzzy environment, all the parameters (input and induced) have been

completely fuzzified. They are then used to determine the induced performance

parameter.

7.4.1 Algorithm I (induced performance parameter)

The induced fuzzified performance parameter, Fi 4 plays an important role as a

reference set for optimisation of input parameters. It is produced by applying

extension principle (D 6.52) to the performance and input parameters.

All the fuzzy sets £, expressing preferences of all input parameters

g; €I; © R™ (i € N) are determined, normalised and convex. [is a close interval

of positive real numbers. C, is a performance parameter which considers all input
parameters as its variables and it can be presented within a fuzzy set ch .
The algorithm to determine a fuzzy set induced on C,, F},;, has the following

steps:

Step 1. Let Cj:Ij x I x..xI; = R is the performance parameter (i € N) such

that r=G,(g1,82:835+8n)-

In this step, a designer is able to determine the most suitable performance

parameter for the whole process. The performance parameter contains all input

parameters as its variables.
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Step2.  Select appropriate  values for «- cut, such that

ay,Cto,03,...,0t; €(0.1] which are equally spaced.

The values of o - cut for the process are determined. The smaller the value, the

resolution of output will be finer. This implies an improved degree of accuracy

for the final result.

Step 3. Determine all the o.- cuts for all FI,- (ieN).

Once the value is determined. all o - cuts of the input parameters are calculated.

Step 4. Generate all 2" combinations of the endpoints of intervals

representing o - cuts for all 7}, (i €N). Each combination is an n-tuple

(€1,82583+:8n)+

Combinations of the end points of intervals for all input parameters with respect

to each particular value of «- cut are determined. The smaller of the value of

o - cut, the larger of the number of combinations.

Step 5. Determine 7; = C;(g1,22,83,----8,) for each n-tuple j €1,2,3,...,2".

Find the comresponding performance parameter for each of the combinations with

respect to each particular value of o - cut.
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- =Tming- ; 23 N
Step 6. Set[f,[.”d ={mins;, maxs;] for all j €1.2,3....27.

Find minimum and maximum values of performance parameters with respect to
each value of «- cut. Then plot graph of fuzzy induced performance parameter,

ij i Normal and convex fuzzified input parameters will produce normal and

convex fuzzy induced performance parameter.

7.4.2 Algorithm II (the process)

Step 7. Set F-_ N Fjpyy-

Find the intersection of the fuzzified performance parameter; ch , with the fuzzy

induced performance parameter; F;,,;. This can be performed by superimposing

one graph on to the other.

Step 8. Find the membership value of supremum of step 1, say f* = sup

[FCg nE’nd ]

Determine the largest fuzzy membership value for the intersection.

Step 9. Find the C, value of f* say Cg*.

Determine its corresponding value of the performance parameter.
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Once all the fuzzified parameters have been processed bv the above short

algorithm. they are ready to undergo the final phase of the model.

7.5 Inherited Constrained Defuzzification

The process of inherited and constrained defuzzification starts when the
membership value of intersection, f* is applied to everv fuzzified input
parameters by f* - cuts. These fuzzy values have inherited all the constraints
described earlier in Section 7.3. It is simply a repetition of Step 3 to 5 given in
Section 7.4.1. The folowing theorems are then used to determine a most

appropriate/optimised value of generated combination dara.

7.5.1 Theorems of optimised defuzzified values

The proof of theorems forms the main part of the final phase of defuzzifications.

This will enable one to identify the best optimised value from theoreticaly

predicated results in the final phase.

*

Theorem 7.1: If Cg* = r; =max r; such that ;,t(rj‘)=f‘, for some
(r;sf ") €Finq, then

r" =Cy =max{C,(g|,&2.--»&n)] Where p(g;)=/". (7.5)

rooj.

*

Suppose Cg* =r; =max r; such that p(r;) =f', for some (r-,f') €F,y
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Find all the f"cuts of all £, (i €.V) to create all n-tuples of (g;.83.....g, ) such
that u(g, )=/ and (g;.f ") €F},.

Set r; =max[Cg(g;,g;,...,g,:)], therefore (r~,f*)eF,-,,d. However, since

E’nd

E3

1s normal and convex, therefore K=

Corollary 7.2: If Cg* = rj* = min »; such that p(r;) = f7, for some

(r;+ ") & Fipg » then

r," = Cy =min[Cy(g(.83,.---8y)] where p(g;)=f". (7.6)

The theorems are very important since they encompass the whole algorithms and
hence the model. Theorem 1 (see Fig. 7.4.a) indicates that if the preferred fuzzy
intersects on the maximum side of the fuzzy induced, then the set of optimised
parameters is the set for the maximum induced values. On the other hand,
Corollary 2 (see Fig. 7.4.b) points out that if the preferred fuzzy intersects on the
minimum side of the fuzzy induced, the set of optimised parameters is the set for

the minimum induced values.
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Figure 74  Optimised defuzzified values (a) maximum (b) minimum sides.

An algorithm to simplify the process of defuzzification is presented.
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7.5.2 Algorithm III (defuzzify)

Step 10. Find f*- cut of all F1i (ieN).

Determine all o - cuts of the fuzzified input parameters by using the highest fuzzy

membership value of the intersection in Step 8; f*, as its o - cut value.

Step 11. Generate all 2” combinations of the endpoints of interval

representing f*- cut of all F[l. (feN). Each combination is an n-tuple

(81582 &3 s )

Similar to Step 4, find all combinations of endpoints of intervals for the /*- cuts.
Step 12. Determine Cé(gl‘,gz*, g;,..., g,:) for each n-tuple j €1,2,3,...,2".
Calculate all performance parameters for each of the combinations.

Step 13. If C;, = r; = max r; such that p(r;)= 7', for some

(rjof ) €Fpq» then ;" =C, =max{C,(g;,g3,--g;)] Where p(g;)=f"

(by theorem 7.1)

If the preferred fuzzy intersects on the maximum side of the fuzzy induced, then
optimised parameters are the performance parameters with the largest values.

These have been determined in Step 12.
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Step 14. If C, = r;, = min r; such that u(rj):]", for some
(rj,f*) € F,,; ., then

rj* = C; = mir{Cg(g;,g;,...,g;)] where p(g; )=/ (by Corollary 7.2)

Otherwise, if the preferred fuzzy intersects on the minimum side of the fuzzy
induced, then the optimised parameters are the performance parameters with the

smallest values. These have been determined in Step 12.

These algorithms can be applied easily for determining the electrical and
geometrical parameters of microstrip lines with respect to a wide range of initial

constraints or specifications. These applications are presented in the following

chapter.
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8. IMPLEMENTATION RESULTS

8.1 Introduction
The central theme of fuzzy modelling’ is to develop a decision making model/tool
for designing microstrip lines. This will assist designers in choosing the most

appropriate parameters of microstrip lines in order to reduce the crosstalk.

In this chapter, the method of employing the algorithms is described in order to
determine geometrical and electrical parameters of microstrip lines. Firstly,
these parameters are simulated in order to test our model under some initial
constraints. Later, the fuzzified crosstalk is incorporated into these algorithms.
Finally the parameters obtained are simulated for crosstalk using the mathematical

model developed in Chapter 4 for cross-reference.

8.2 Determination of Geometrical Parameters

In order to illustrate the first application of the algorithms, the value of
capacitance due to the electric flux (eqn. 3.16) is used as the performance
parameter. The domains and values of input parameters are given in Table 8.1. A

suggested values can be any value within the domains.

Parameters

Coa (x 107 F

Dielectric constant (€,.) 3-10 9
Thickness, t (um) 3-7 5
Width, w (um) 4-9 6
Height, h (um) 8-10 9
Spacing, s (1um) 1-5 | 3

Table 8.1 Input parameters.
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Fuzzified values of the input parameters are shown in Fig. 8.1. These figures
represent simple fuzzy numbers. The two limits of the domain will have the

lowest fuzzy values whereas the suggested value will be assigned to the highest

FC“

fuzzy value.

Fuzzy Values of Capacitance Value Due to Electric Flux
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Fuzzy Values of Height
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Figure 8.1 Fuzzification of input parameters: (a) C,, (b) dielectric

(c) thickness (d) width (e) height (f) spacing.
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The o - cuts of all input parameters obtained from Fig. 8.1 are listed in Table 8.2.

For a better resolution much smaller values of o - cuts values are recommended.

a - cuts values

Input Parameters 0.2 0.4 0.6 0.8 1.0

Dielectric [4.2,9.8] | [5.4,9.6] | [6.6,9.4] | [7.8,9.2] [9, 9]
Thickness (um) [3.4,6.6] | [3.8,6.2] | [4.2,5.8] | [4.6,5.4] [5, 5]
Width (pm) [44,84] | [4.8,7.8]][5.2,7.2] | [5.6,6.6] [6, 6]
Height (um) [8.2,9.8] |[8.4,9.6] | [8.6,9.4] | [8.8,9.2] [9, 9]
Spacing (um) [1.4,4.6] |[1.8,4.2] | [2.2,3.8] | [2.6,3.4] (3, 3]

Table 8.2 a - cuts values of input parameters.

As shown in Fig. 8.2 the process of defuzzification begins by setting the
intersection of preferred and induced capacitance curves in order to obtain f*

and C*gzy. Results acquired from the intersection are then analysed to obtain the

best possible geometrical configurations of microstrip lines.

different sets are shown in Table 8.3.

Samples of three
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Intersection of Prefered and Induced Capacitance Due to Electric Flux
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Figure 8.2 Intersection of induced and preferred C,,.

Initial values (A) | Calculated values (B)

|A -BJ/A (%)

Table 8.3 Preferred and calculated parameters and their difference.

It is clear from Table 8.3 that initial parameters may be of random nature.
fuzzified, it is possible to obtain a set of new calculated values. The normalised

difference between the two values are also included. This can be reduced by either
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changing the initial input parameters or by selecting « - cut with increment < 0.2. As
it can be seen the optimisation model/tool has given the most appropriate values of
geometrical parameters. The design optimisation can be further improved by including

other input parameters such as crosstalk. This aspect is discussed in the later section.

8.3 Determination of Electrical Parameters
Another application of the algorithms consists of determination of the electrical
parameters of microstrip lines. As an example, the mutual capacitance (eqn. 3.18) is

adopted as the performance parameters.

The input parameters are given in Table 8.4. A preferred value of a parameter can be
any value between minimum and maximum values. Fuzzified values of these input
parameters are quoted in Fig. 4. As before, these figures are simple fuzzy numbers
where the preferred value is given a the highest membership values and the domain

extreme have lowest membership values.

~ 10
Table 8.4 Input parameters.
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Fuzzy Values of Modified Fringe Capacitance
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Figure 8.3 Fuzzification of input parameters (a) C; (b) C,, (¢) C,

The o - cuts of all input parameters, with increment of 0.2, obtained from Fig. 8.3 are

listed in Table 8.5.

T

[7,7]

[5.8,8.8] [6.2,8.2] [6.6,7.6]
[9.4,9.4] |][10.8,10.8] | [12.2,12.2] | [13.6,13.6] | [15,15]
[6,6] [5,5] [4,4] [3,3] [2,2]
[8.4,12.4] | [8.8,11.8] | [9.2,11.2] | [9.6,10.6] [10,10]
Table 8.5 o - cuts of input parameters

For a better resolution, o - cuts of much smaller value can be used. o - cuts values

given in the Table 8.5 are used to calculate the fuzzy values of induced C;; by using

the defuzzified algorithm, i.e. F,; and the result is displayed in Fig. 8.4.
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Fuzzy Values of Intersection of Induced and Prefered Mutual Capacitance
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Figure 8.4 Intersection of induced and preferred Cj;.

The process of defuzzification begins by setting the intersection of preferred and

induced capacitance curves in order to obtain f* and C*;;, see Fig. 8.4. These data

are then used to obtain the best possible electrical parameters of microstrip lines.

Table 8.6 shows the preferred and calculated values together with their percentage of

differences.
Parameters Preferred (A) | Calculated (B) |A-Bl/A (%)
C;; (pF) 6.6 6.71 1.73
C,, (pF) 7 6.42 8.16
C,,(pF) 15 13 13.33
C,; (pF) 7 3.42 51.02
C’/(pF) 10 9.42 5.71

Table 8.6 Preferred and calculated parameters and their difference.
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8.4 Determination of Geometrical and Electrical Parameters

with respect to Crosstalk

It has already been established that the effect of spacing on crosstalk is more
apparent than any other geometrical parameters (vide Chapter 5). Therefore, the
optimisation of spacing with respect to crosstalk is more critically examined than

other geometrical parameters.

8.4.1 Spacing optimisation
To illustrate the application of the model for this case, the procedure is described

phase by phase. The sample used for this purpose is that from Fig. 5.6.

Phase 1

In the first phase a designer may wish the domain of spacing to lie between 0 and

3500um. The preferred value is 2000pm. With all the other geometrical

parameters defined by the designer, the fuzzified line spacing is shown in Fig. 8.5.
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Fuzzified Spacing
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Figure 8.5  Fuzzified spacing.

Similarly, the domain of mutual capacitance lie between -10 pF to 50 pF and the

preferred value is 30 pF. The fuzzified mutual capacitance is shown in Fig. 8.6.

Fuzzified Mutual Capacitance

0
-2 -1 0 1 2 3 4 5

Cij (x10°"'F)

Figure 8.6  Fuzzified mutual capacitance.
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The fuzzified crosstalk with respect to spacing is given in Fig. 8.7.

Fuzzy Crosstalk

Fuzzy Crosstalk

250 1250 2250 3250

Spacing (um)
Figure 8.7  Fuzzified crosstalk vs. spacing.

As shown (see Fig. 8.8), the first phase is concluded with the intersection

between fuzzified spacing and fuzzified crosstalk. The method of determining the

fuzzified interval for spacing is explained in the following phase.
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Fuzzified Intersection of Spacing
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Figure 8.8  Intersection of preferred spacing and fuzzified crosstalk.
Phase 2

In this phase, algorithms I and II (see Sect. 7.4) are applied to produce induced
mutual capacitance and its intersection with preferred mutual capacitance. Firstly,

o - cuts of the intersection (see Fig. 8.8) are determined and listed in the Table

8.7.

o - cuts 0.2 0.4 0.6 0.8 - 0.96
Spacing | [600,3200] | [950,2900] | [1300,2600] { [1600,2300] | [1900,2050]
Intervals

(p m)

Table 8.7 o - cuts of intersection of preferred spacing and fuzzified

crosstalk.
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Values of induced mutual capacitance are calculated (see Table 8.8) using the

above o — cuts values and the corresponding fuzzy graph is shown in Fig. 8.9.

o — cuts 0.2 0.4 0.6 0.8 0.96

C;(min) | -0.0547284 | -0.00390926 | 0.0590036 | 0.137952 0.219937
x107!'F

C;; (max) 1.43816 0.928958 0.611267 | 0.420749 0.278114
x107!'F

Table 8.8 Induced mutual capacitance values.

Induced Fuzzified Mutual Capacitance

1.0

0.8 1

0.2t

-2 -1 0 1 2 3
Cij (x10™'"F)

Figure 8.9  Induced mutual capacitance.

Next, algorithm II is applied by considering the intersection of preferred and

induced mutual capacitance. This can be graphically described in Fig. 8.10. The

supremum c'.j" and its fuzzy membership values f * are also shown in Fig. 8.10.
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Intersection of Induced and Preference Fuzzified Mutual Capacitance
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Figure 8.10 Intersection of preferred and induced Cj,.
Phase 3

In this phase, the defuzzification is a process to determine the best possible
spacing in order to accommodate all geometrical/electrical and crosstalk

constraints as defined in Phase 1.
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Figure 8.11 Determination of the spacing values.

First, the fuzzy value f "= 0.45 is plotted in Fig. 8.11 in order to determine

minimum and maximum values for spacing, s. and s” , respectively. Using the

equation (see eqn. 3.18), their corresponding mutual capacitances are calculated

as:

(S*, Cy*) (S*’ QJ*)

(900 pm, 0.986604 x107'1F) (2825 pm, 0.0105529 x1071'F)

Table 8.9 Spacings with their respective mutual capacitance values.

The best possible spacing can be determined by applying Theorem 1 in Sect. 7.5.1
to Fig. 8.10. Therefore C;; = max [9.86604 pF, 0.105529 pF] = 9.86604 pF, which

corresponds to s = 900 pm.
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A set of 3-coupled microstrip lines with geometrical configurations given in Fig.
56 (¢, =47,¢t=35 pm, w=500 pm, 2 = 1600 pm and s = 500 pm) is
simulated and measured experimentally for crosstalk. Another set of 3-coupled
microstrip lines with the same geometrical configurations as above except the
spacing is simulated for crosstalk. The optimisation value for spacing (s« = 900

4 m ) obtained from the fuzzy model is used for the latter simulation. Time delay

and characteristic impedances for the two simulations are calculated using the
developed algorithm in Section 4.5 (see Appendix B1 and B2). These lines have
been simulated using coupled TEM model implemented on SPICE package (see
Sect. 5.4.2). A pulse train of 1 V amplitude is applied to line 1. All the other
lines were terminated with 50Q resistors. The crosstalk are measured at both

ends of the lines. The results are presented in Figure 8.12.

Results from the first simulation for crosstalk are in close agreement with those
from the experimental work, in particular at line 2 where the difference is just
within 2 dB. This fact immediately demonstrates the high accuracy of the
mathematical model developed in Section 4.5 to compute the parameters for
crosstalk (time delay and characteristic impedance). However, the second
simulation using the calculated value of spacing from fuzzy model has the lowest

crosstalk compared to the other two.
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Fig. 8.12(a)
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Figure 8.12 Crosstalk (a) near end (b) far end.

The above sample is purposely adopted to demonstrate the scope of application of
fuzzy algorithms when only one geometrical parameter, s, and an electrical

parameter, C;;, of microstrip lines are varied.

8.4.1.1 Other samples

In addition to the above sample, other cases involving different spacings have

been studied and simulated for optimisation. Seven samples with different
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domains and preferred mutual capacitances as the initial constraint are listed in
Table 8.10. These samples are subjected to the previous domain and preferred

value of spacing.

Samples Pr.eference C; | Fuzzy \*/'alues Cz’j f* Spaci:lg
[mm,pr_elfl,max] f 10-1F [56,5 ]
x107°F pm
1 [-1,2,4] 0.55 0.58 [1100,2630]
2 [-1,1.5.3] 0.63 0.5 [1260,2750]
3 [-1,0.15,1.5] 0.95 0.23 [1900,2075]
4 [-1,0.09,1.5] 0.92 0.2 [1840,2120]
5 [-1,0.06,1.5] 0.9 0.2 [1800,2150]
6 [-1,-0.07,1.5] 0.85 0.19 [1700,2225]
7 [-1,-0.9,1.5] 0.6 0.06 [1200,2600]

Table 8.10  Samples for optimisation.

The intersection of preferred and induced fuzzy mutual capacitances is obtained

for each sample (see Fig. 8.13).

Intersection of Induced and Preference Fuzzified Mutual Capacitance Intersection of Induced and Preference Fuzzified Mutual Capacitance

T 1.0 T T T

T

.................................................................

........................................................

ci=10™"'F) clj (x10™"'F)

Fig. 8.13(a) Fig. 8.13(b)
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Intersection of Induced and Preference Fuzzified Mutual Capacitance

Intersection of Induced and Preference Fuzzified Mutual Capacitance
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Fig. 8.13(d)
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Fig. 8.13(c)
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Fig. 8.13(f)
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Fig. 8.13(e)
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Intersection of Induced and Preference Fuzzified Mutual Capacitance
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Figure 8.13 Intersection of preferred and induced C; for sample (a) 1 (b) 2

(©3@4(@)5®H6(2)7.

In samples 1 and 2 (Fig. 8.13.a-b), the fuzzy preference intersect the maximum
side of the induced mutual capacitances. The calculated value of spacing came
from the maximum values of mutual capacitances. On the other hand, for samples
3 to 7 (Fig. 8.13.c-g), the fuzzy preference intersect the minimum side of the
induced mutual capacitances. Therefore the calculated spacing came from the

minimum values of mutual capacitances. Results for each sample are listed in

Table 8.11.
Sample | Mutual Capacitances | Calculated Cj; Calculated
[Cyj»Cy 1x107!'F <10-1'F Sp:;llng
1 [0.776612,0.052066] 0.776612 1100
2 [0.641452,0.025819] 0.641452 1260
3 [0.278114,0.210949] 0.210949 2075
4 [0.30361,0.195241] 0.195241 2120
5 [0.321383,0.185093] 0.185093 2150
6 [0.368754,0.1608] 0.1608 2225
7 [0.689287,0.0590036] 0.05900 2600

Table 8.11  Calculated values for each sample.
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If all the parameters are varied, then design of microstrip lines will become more
complicated and optimisation of constraint and minimisation of crosstalk

simultaneously are essential and important.

8.5 Optimisation of Geometrical and Electrical Parameters and

Minimisation of Crosstalk

The ultimate application of the fuzzy model is to optimise geometrical and
electrical parameters and to minimise crosstalk of coupled microstrip lines at the
same time. A set of input parameters with domains and suggested values are

listed in Table 8.12.

| Parameters |  Domain | _ Sugsested |

Cy(x 107 )F -1-5 3
Thickness, ¢ (um) 20-40 30
Width, w (¢m) 300 - 600 400
Spacing, s (um) 500 - 800 600

Table 8.12  Input parameters

These parameters are then fuzzified (Fig. 8.14) and calculated for their « - cuts

(Table 8.13).
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Figure 8.14 Fuzzification on input parameters (a) thickness (b) width
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The desired interval for spacing is determined from intersection of its

suggested/preferred spacing with fuzzified crosstalk (Fig. 8.15).

Fuzzified Intersection of Spacing

1.0 - - N

0.936

081

0.6

04r

0.2r1

0 250 500 750 1000 1250

Spacing (um)

Figure 8.15 Intersection of fuzzified crosstalk and preferred spacing.

All the o - cuts can be determined for the remaining geometrical parameters using

the result obtained from the intersection, see Fig.8.13.
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o - cuts values

Input 0.2 0.4 0.6 0.8 0.936
Parameters

Thickness (um) [22,38] | [24, 36] [26, 34] [28,32] |[29.36,30.64]
Width (um) [320,560] |[340,520] {[360,480] |[380,440] | [393.6,412.8]
Spacing (zm) [520,760] |[540,720] | [560,680] |[580,640] |[612.7,612.7]

Table 8.13 « - cuts of input parameters.

Induced mutual capacitance are calculated using the above o - cuts values and the

corresponding fuzzy graph is shown in Fig. 8.16.

Induced Fuzzified Mutual Capacitance

1.0

0.8r

067

04r

0.2}

1.0 2.0
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Figure 8.16 Induced mutual capacitance.
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The intersection of suggested and induced mutual capacitance (see Fig. 8.17) is
performed in order to determine the supremum and its fuzzy membership values.
Corresponding fuzzy intervals for the optimised geometrical parameters are also

obtained (Table 8.14).

Intersection of Induced and Preference Fuzzified Mutual Capacitance

Cij (x10™'F)

Figure 8.17 Intersection of induced and suggested C;;.
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Parameters Fuzzy intervals
(1¥=0.624433)
Cij(x 107 )F 1.49773
Thickness, ¢ (4m) [26.2443,33.7557]
Width, w (zm) [362.443,475.113]
Spacing, s (xm) [562.443,675.113]

Using the equation (see eqn. 3.18), corresponding mutual capacitances are
calculated (Appendix B) and the best possible geometrical parameters (optimised)

are determined by Theorem 1 (see Table 8.15). The difference between the

Table 8.14 Fuzzy intervals.

suggested and optimised parameters are also listed in Table 8.15.

Parameters Suggested | Optimised Difference
(s) (p) |s-pl/s (%)
Ci(x 107F 3 1.49769 50
Thickness, ¢ (1m) 30 33.7557 12.5
Width, w (um) 400 475.113 18.7
Spacing, s (xm) 600 562.443 6.25

Once the process of optimisation-minimisation is finalised, the modification is
introduced to initial input parameters; the design of coupled microstrip lines takes
place. Simulation for crosstalk is then performed using coupled SPICE model
presented in Chapter 5. The parameters for the simulation (time delay and

characteristic impedance) are calculated using the algorithm developed in Chapter

4.

Table 8.15 Optimised parameters.
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A set of 3 - coupled microstrip lines (Fig. 8.18) with optimised parameters is

adopted as a sample for the simulation.

475.113um

33.7557um T
—

——
5§=562.443 ym

=

h=16004m

Figure 8.18 Optimised 3-coupled microstrip lines.

Three distinct simulations for crosstalk are performed for each suggested and
optimised sets of parameters. A pulse train of 1 V amplitude, is first applied to
line 1 and then to line 2 and finally line 3. With other lines terminated with 50Q
resistors the crosstalk for suggested and optimised sets are measured (see
Appendix D) at both ends of the lines and presented in Figure 8.19. The near and
far ends crosstalk of optimised and suggested sets are very close for all cases with
the difference between 1 - 2 dB only. Furthermore, the optimised set has the
advantage of compromising all the initial constraints; i.e. geometrical and

electrical parameters.
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Fig. 8.19(a)
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Crosstalk

40F---- 3 -~ -3 Far end (suggested)
B— Far end (optimised)
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@———@ Near end (optimised)
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Fig. 8.19(c)
Figure 8.19 Crosstalk vs. line number for 3-coupled optimised and

suggested sets with feeder (a) line 1 (b) line 2 (¢) line 3.

Finally, if the simulation is satisfactory for a designer, the actual system can be
fabricated on a printed circuit board. Otherwise, the process of optimisation-
minimisation via fuzzy model can be repeated with other constraints until the

designer is fully satisfied with his result.
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9. CONCLUSIONS

9.1 Concluding Remarks

This work is concerned with two techniques for simulation of a set of n coupled
microstrip lines both mathematical and fuzzy models. It begins with development
of a new model for capacitance of nonuniformly spaced, coupled microstrip lines.
Several new properties for eigenvalues and eigenvectors are deduced. An
algorithm for computation of the time delay and characteristic impedance is also
developed. Novel techniques to evaluate the capacitance of strictly nonuniform
coupled microstrip lines are introduced. These methods are incorporated into an
algorithm to calculate the time delay and characteristic impedance, which
eventually becomes a generalised algorithm that can be applied to any coupled

microstrip lines.

Output data from the algorithms have been used in the SPICE package to simulate
for crosstalk. Experimental results on several sets of coupled microstrip lines for
crosstalk prove to be in good agreement with the results obtained from the
simulation results of Parker (1994). Furthermore, results obtained from the
simulation of uniform and nonuniform coupled microstrip lines show that the
spacing between the lines has a more significant effect on crosstalk than other
geometrical parameters. Further investigations, using developed Mathematica
programs, reveal the effect of geometrical parameters on the electrical parameters

of microstrip lines which follows a recognisable pattern.
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A novel fuzzy model for microstrip lines is presented. It has the capability as a
tool of designing microstrip lines with a given set of parameters for a specific
application. The model is also able to minimise crosstalk successfully by
optimising the geometrical and electrical parameters of microstrip lines

simultaneously.

A major advantage of the approach taken in this research is its flexibility. The
model has the flexibility to consider different aspects of input influences such as
improvement on performance parameters, design specifications, and technological

feasibility for microstrip lines simultaneously.

9.2 Possible Further Works and Recommendations

The future work can be developed in several directions. Firstly, further advances
in mathematical modelling may be introduced in order to directly ‘estimate’ the
mutual capacitance of strictly nonuniform coupled microstrip lines. Capacitance
and inductance matrices can be constructed from these values. Improvement on
the evaluation of eigenvalues and eigenvectors of higher dimensional matrices

need to follow concurrently.

Following the discussion in Chapter 5, future work should also examine the effect
of microstrip length on crosstalk. The concept of fuzzified crosstalk can be
extended to study the similar effects of width, thickness, height, length and

dielectric constant.
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The theoretical and simulation results obtained suggest that other problems such
as skin effect and ringing can also be included in the fuzzy model as new fuzzified
input parameters, see Fig. 7.1. Finally, this thesis concludes with an interesting
observation as to the relationship between the principle of incompatibility (Zadeh
1973) and modelling of the microstrip lines, namely, that whenever the precision
and significance concerning complex system behaviour become almost mutually
exclusive characteristics, the models may still provide relevant options to the
system designer. That is, the érisp mathematical model provides for precision,

while the fuzzy model sets focus on minimisation and optimisation.

“Time is not crisp”
Lotfi A. Zadeh
Aachen, Germany
Sept. 9, 1997
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APPENDIX A

List of Mathematica programs:

Al.

A3.

A4,

AS.

Reprogra

Modified program to calculate capacitance and inductance matrices.

Travail

Display the graphs of the electrical parameters.

Met 1&2-¢

Calculate the capacitance matrix for nonuniformly coupled microstrip

lines using the bound capacitance methods.

Matr2ok

Calculate the new capacitance and inductance matrices for nonuniformly

spaced coupled microstrip lines.
Matrdiff

Calculate the new capacitance and inductance matrices for strictly

nonuniformly coupled microstrip lines.
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Reprogra

Off[General::spell]
Off[General::spelll]
Off]Set::setraw]
Off[SetDelayed::write]

BeginPackage["Impedance™"]

Zom::usage = "Zom[Er,t,w,h]

w is width of line

h is height of line above ground plane

t is thickness of line

er is relative dielectric constant of substrate
Calculate the impedance of a single microstrip line
with the above parameters."

Z0::usage = "Z0[Er,t,w,h,s]

Cm:

w is width of line

h is height of line above ground plane

t is thickness of line

s is the separation between the lines

er is relative dielectric constant of substrate
Calculate the impedance of a pair of microstrip lines
with the above parameters."

:usage = "Cm|[Er,t,w,h,s]

w is width of line

h is height of line above ground plane

t is thickness of line

s is the separation between the lines

er is relative dielectric constant of substrate

Calculates the mutual capacitance of a pair of microstrip lines
with the above parameters."

Tline::usage = "Tline[Er,t,w,h,s,totln]

w is width of the lines

h is height of the lines above the ground plane

t is thickness of the lines

s is the separation between adjacent lines

er is relative dielectric constant of substrate

totln is the total number of lines

s, w, and t are the same for all lines .
Calculates the time delay and impedance of a set of
linen microstrip lines with the above parameters and also
returns the transformation network control parameters."

Carray::usage = "Carray[Er,t,w,h,s,totln]

w is width of the lines
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t is thickness of the lines

s is the separation between adjacent lines
er is relative dielectric constant of substrate
totln is the total number of lines

s, w, and t are the same for all lines"

Begin[" Private™"]

EO =8.854188*10"-12
mu0 = 12.566371*10"-7

MakeRuleConditional[var , rhs_, condition_] :=
(var :=rhs/; condition)  (* Assigns var = rhs if condition is
true *)

CalcCler_.t_,w_h ]:=
Module[ {c},
c=(er-1)*t/4.6/Sqrt[w/h] / h;
c
]  (* Correction factor for the effective dielectric *)

We[t ,w _,h ]:=
Module[ {we},
MakeRuleConditional[we,
w+1.25/N[PiJ*t*(1+Log[4*N[Pi]*w/t]),
w/h <= 1/(2*N[Pi])];
MakeRuleConditional[we,
w+1.25/N[Pi]*t*(1+Log[2*h/t]),
w/h > 1/(2*N[Pi))];
we
] (* Calculates the effective width of a microstrip line *)

CalcF[w ,h ]:=
Module[ {conf},
MakeRuleConditional[conf,
1/Sqrt[1+12h/w],
w/h <=1];
MakeRuleConditional[conf,
1/8qrt[1+12h/w]+0.04(1-w/h)"2,
w/h > 1];
conf
] (* Another correction term for the effective dielectric *)

Ere[Er ,t ,w_,h ]:=
Modulef {ere, c, conf},
conf = CalcF[w,h];
¢ = CalcCl[Er,t,w,h];
ere = (Er+1)/2+conf*(w/h)*(Er-1)/2-c;
ere
1 (* Calculates the effective dielectric constant of the
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progra

Zom[Er ,t ,w_h ]:=
Module[ {zom, we, ere},

we = We[t,w,h];

ere = Ere[Er,t,w,h];

MakeRuleConditional[zom,
60/Sqrtfere]*Log[8*h/we+0.25*we/h],
w/h <= 1];

MakeRuleConditional[zom,

120*N[Pi])/(Sqrt[ere]* (we/h+1.393+0.667*Log[we/h+1.444])),
w/h>1];
N[zom]
] (* Calculates the impedance of a single microstrip lines with
the given parameters *)

Cp[Er_,w_,h ]:=
Module[ {cp},
cp = EO*Er*w/h;
cp :
] (* Line to ground plane capacitance *)

Cfl[Er ,t ,w_,h ]:=
Module[ {cf, cp, zom, clight, ere},
ere = Ere[Er, t, w, h];
clight =299792458,;
cp = Cp[Er, w, h];
zom = Zom([Er, t, w, h];
cf = (Sqrt[ere]/clight/zom - cp)/2;

] (* Fringe capacitance for the outside of the lines *)

CalcA[fw_,h ]:=
Module[ {A},
A =Exp[-0.1*Exp[2.33-2.53*w/h]];

Cfpri[Er_,t_,w_h ,s ]:=

Module[ {cfpr, ere, cf, A},
ere = Ere[Er, t ,w, h];
cf= Cf[Er, t, w, h];
A = CalcA[w, h];

fori cfpri = cf*Sqrt[Er/ere]/(1+A*h/s*Tanh[10*s/h]);
cfpri
] (* Fringe capacitance between the lines *)

Cgd[Er_,t ,w_,h ,s ]:=
Module[ {cgd, cf},
cf = Cf[Er, t, w, h];
cgd = EO*Er*Log[Coth[N[Pi]*s/4/h]]/N[Pi]
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=

cgd o
] (* Gap capacitance through the dielectric interface *)

Cga[w ,h _,s ]:=
Module[ {k, kpri, cga},
k = (s/h)/(s/h + 2*w/h);
kpri = Sqrt[1-k*k];
cga = E0*EllipticK [kpri)/EllipticK[k]/2;
cga
] (* Gap capacitance through the air interface *)

Cet[t_,s_]:=
Module[ {cgt},
cgt = 2*EQ*t/s;
cgt
] (* Capacitance due to the thickness of the line *)

Cm[Er ,t ,w _,h ,s ]:=

Module[ {cgd, cga, cgt, cfpri, cm},
cgd = Cgd[Er, t, w, h, s];
cga = Cga[w, h, s];
cgt = Cgtlt, s];
cfpri = Cfpri[Er, t, w, h, s];
cm = N[(cgd + cga + cgt - cfpri)/2];

cm

J(* Calculates the mutual capacitance beween two lines *)

CiO[Er_,t ,w_,h ]:=
Modulef {ci0, cp, cf},
cf = Cf[Er, t, w, h];
cp = Cp[Er, w, h];
ci0 = cp + 2*cf;,
ci0
]J(* Calculates the total capacitance of a single line *)

Carray[Er_,t_.,w_,h ,s ,totln_]:=
Module[ {ctemp, ctemp2, diff, seff, carray, i, j},
Do[

ctemp = 0;

Do[If [!(i ===}),
{diff = Abs[N[i-j]];
seff = diff * (s + w) - w;
ctemp2 = Cm[Er, t, w, h, seff];
carray[i,j] = N[- ctemp2];
ctemp = N[ctemp + ctemp2]}

8
{j, 1, totln}

carray[i,i] = N[CiO[Er, t, w, h] + ctemp],
{i, 1, totln}

Arrayicarray, {totln, totln}]
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for the given dielectric and line dimensions *)

Carray[Er_,t ,w_,h ,s List, totln | := '
Module[ {ctemp, ctemp2, seff, carray, i, j, k},

Dol
ctemp = 0;
Do[If [!(i === ),
{seff = -w;

Do [seff = seff + s[[k]] + w, {k. ], i-1}];
Do [seff = seff + s[[k]] + w, {k, 1, j-1}];
ctemp2 = Cm[Er, t, w, h, seff];
carray[i,j] = N[- ctemp2];

ctemp = N[ctemp + ctemp2]}

1,
j, 1, totln}

|5
carray[i,i] = N[CiO[Er, t. w, h] + ctemp],
{i, 1, totln}
Array,[carray, {totln, totln}]
(* Constructs the capacitance per unit length matrix
for the given dielectric and line dimensions *)

b

Tline[Er ,t ,w_,h ,s ,totln_]:=
Module[ {L, LC, Mv, Cd, Ld, Wd, Zd, CEQ},
CEOQ = Carray([1, t, w, h, s, totln];
(* Capacitance Matrix without dielectric substrate *)
L =EO0 * mu0 * Inverse[CEO0];
(* Inductance per unit length matrix *)
(*Print[N[Inverse[CE0].CE0]];*)
CEr = Carray[Er, t, w, h, s, totln];
(* Capacitance per unit length matrix *)
LC=L.CEr;
(*Chop[LC, 107-30];*)
Mv = Transpose[Eigenvectors[LC]];
(* Transformation matrix obtained from right
eigenvectors of
LC matrix *)
Cd = Transpose[Mv].CEr.Mv;
(* Diagonalised capacitance matrix *)
Ld = Inverse[Mv].L.Transpose[Inverse[Mv]];
(* Diagonalised inductance matrix *)
(*Print[N[Inverse[Mv].Mv]];*)
Wd = Sqrt[Abs[Ld.Cd]];
(* Time delay matrix *)
Zd = Sqrt[Abs[Ld.Cd]].Inverse[Cd];
(* Impedance matrix *)
Print[CEr];
Print[L];
(*Print[N[Inverse[Cd].Cd]];
Print[N[Mv]];
Print[N[Wd]];
Print[N[Zd]];*)
{Mv, Wd, Zd}
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Codd[Er ,t ,w_,h_,s ]:=
Module[ {codd cf cp, cgd, cga, cgt},
cf = Cf[Er, t, w, h];
cp = Cp[Er, w, h];
cgd = Cgd[Er, t, w, h, s];
cga = Cga[w, h, s];
cgt = Cgt[t, s];
codd = cf + cp + cgd + cga + cgt;
N{codd]
] (* Odd mode capacitance of the lines *)

Ceven[Er ,t ,w_.h ,s ]:=

Module[ {ceven cf cfpn cp},
cp=Cp[Er,w, h
cf=CA[Er, t, w, h];
cfpri = Cfpri[Er, t, w, h, s];
ceven = cp + cf + cfpri;

N[ceven]

] (* Even mode capacitance of the lines *)

Zoe[Er_,t ,w_,h ,s ]:=
Module[ {zoe cea ceer},
cea = Ceven[l, t, w, h, s];
ceer = Ceven[Er, t, w, h, s];
zoe = Sqrt[mu0*E0/cea/ceer];
N[zoe]
] (* Even mode impedance of the lines *)

Zoo[Er ,t ,w_,h_,s ]:=
Module[ {zoo, coa, coer},
coa= Codd[l1,t, w, h, s];
coer = Codd[Er, t, w, h, s];
zoo = Sqrt{mu0*E0/coa/coer];
N[zo0]
1  (* Odd mode impedance of the lines *)

Z0[Er_,t ,w_h _,s ]:=
Module[ {zO Zoe, Z00},
zoe—Zoe[Er t, w,h, s];
200 = Zoo[Er, t, w, h ,S];
z0 = Sqrt[zoe*zoo];
N[z0]
] (* Overall impedance of the pair of lines *)

EndPackage[]
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SaisirCurve[]:=

Module[{rep},

rep =

Input["Wich Curve do you want\r

1Cga 5Ci\r

2 Cgd\r

3 Cgt\r

4 Cfpri\r"];

rep

] (* Choice of the curve you want to draw *)

% *)
SaisirVariable[]:=
Module[{choice},
choice =
Input["According to which variable 2\r

w (Width)\r

2 t (Thickness)\r
3 s (Spacing)\r
4 h (Height above substract)\r"];
choice
] (* Choice of the variable according to which you want to draw the curve *)

*

Fr: Saisie des valeurs des variables
Les valeurs doivent etre des valeurs entieres ou reelles
Uk : Seize of the values of the variables
Values must be > 0 and must be Numbers (Except complex Numbers)

)

MyNumberQ[number_]:=

Module[ {retour},

If[NumberQ[number] == True && Im[number] == 0, retour = True, retour = False];
retour

] (* Return True if the value is a number (NOT a complex) *)
(* *)
Saisirw[]:=

Module[{w},

w=Input["Value for w :

Whlle[MyNurnberQ[w] = False [w<=0
w=Input["Value for w: "]];

w

]

* *)
Test[repcurve ,t_,er_,w_,h_J:=
Module[{retour},
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retour = Goodt[t,er,w,h], retour = True];

retour
] (* If the curve to display can give complex result, there is a verification on the t

value.
else, return TRUE *)

(* *)

OktVal[t ,h ,w_,er |:=

Module[ {retour, tmax},

Ift<(tmax=N[((2.3 Sqrt[h w]/(er-1))*( er (1+CalcF[w,h])+(1- CalcF[w,h])))]),

retour = True, retour = False];

If[retour == False, Print["-- OktVal (Er Constraint) -- t must be <", tmax]];

retour

] (* Test if t<value, which is calculated to avoid the gain of a complex number
with Sqrt(Ere) *)

% *)
VerifOft[t ,h ,w_,er ]:=
Module[ { retour },
I VerifLn[t, w, h] == True && OktVal[t, h, w, er] == True,
retour = True, retour = False];
retour
] (* Test all the constraints on t - Ln and range - *)

(* *)
Goodt[t ,er ,w_,h ]:=
Module[{retour, passe=False},
If [ Length[w] =2,
passe = True;
If [ VerifOft[t, h, w[[1]], er] = True &&
VerifOft[t, h, w[[2]], er] = True,
retour = True, retour = False]

5
If [ Length[h] == 2,
passe = True;
If [ VerifOft[t, h[[1]], w, er] == True &&
VerifOft[t, h[[2]], w, er] == True,
retour = True, retour = False]

I;
If [ Length[t] = 2,
passe = True;
I VerifOft[t[[2]], h, w, er] = True,
retour = True, retour = False]

If f passe != True,
If[VerifOft[t, h, w, er] = True,
retour = True, retour = False]

I;
(*Print["Retour de Goodt : " retour];*)
retour
] (* Return True if t is Less than the values which give a complex value*)
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(* )
Saisirt[repcurve_,er ,w_,h ]:=
Module[{t},
t=Input["Value for t : "];
While[MyNumberQ[t] == False ||

t<=0||

Test[repcurve, t, er, w, h]==False,

t=Input["Value for t : "]];

t
] (* seize of't, test if t have a good value = we can't have a complex value later *)

(* *)
Saisirs[}:=
Module[{s},
s=Input["Value fors : "];
While[MyNumberQ[s] == False | s <=0,
s=Input["Value for s : "]];
S

]

* *)
Saisirh[]:=
Module[{h},
h=Input["Value for h : "];
While[MyNumberQ[h] == False || h <=0,
h=Input["Value for h : "]];
h

]

* *)

ValErFalse[er_, repcurve_, repvar_] :=

Module[{retour},

If [ (repcurve = 2 || repcurve == 4 || repcurve ==5 || repvar == 2) && er<= 1,

retour = False, retour = True];

retour

] (* False if er <= 1, when we are displaying the curves Cgd, Cfpri and Cm
and if the variable is t ... because we have to test a constraint
where we have 1/(Er-1)*)

(* *)

SaisirEr[repcurve_, repvar_J:=

Module[{Er},

Er=Input["Value for Er : "];

While[MyNumberQ[Er] == False || Er <= 0 || ValErFalse[Er, repcurve, repvar]== False,
Er=Input["Value for Er : "]];

Er

]

(*
*)
VerificationInt[ val _]:=
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If Length[val] I=2 !
MyNumberQ[ val[[1]] ] == False ||
MyNumberQ[ val[[2]] ] == False ||
val[[1]] <=0 | val[[2]] <=0 ||
val[[1]] == val[[2]] ,
retour = False,
retour =True];
retour
] (* Test if the range given in parameter is correct *)

* *)
SaisirRangew[]:=
Module[{w},
w=Input["Value for w : give an interval {min, max} : "];
While[ VerificationInt[w] !=True,
w=Input["Value for w : give an interval {min, max} : "]];
W .

]

* *)
VerifLn[t ,w_,h =
Module[{retour, tmax},
If [ wh<=N[1/(2 Pi)], If[ t < (tmax=N[4 Pi w]/ 0.367879), retour = True, retour = False
’ Ifl t < (tmax=N][2 h / 0.367879]), retour = True, retour = False ] ];
If[retour == False,Print["-- VerifLn (Ln Constraint) -- t must be <", tmax];

Print[ll t’ w, h = ",t,",", w," "’ h];

5

retour
] (* Verification of the t value to avoid to have Log of a negative value, which give

a complex number *)

* *)
Intervallet[tl ,t2 ,er ,w_h ]:=
Module[{m},
Iff t1 > 0 && VerifOft[t2, h, w, er] = True,
m = True,
m = False
I
m
] (* test of the t value, when t is the variable according to which the curve will be
displayed *)

* *)
SaisirRanget[ er ,w_,h_]:==
Module[{t},
t=Input["Value for t : give an interval {min, max} "];
While[VerificationInt[t] != True || ,
Intervallet[t[[1]], t[[2]], er, W, h] == False,
t=Input["Value for t : give an interval {min, max} "]];
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* *)
SaisirRanges[]:=
Module[{s},
s=Input["Value for s : give an interval {min, max} : "];
While[VerificationInt([s] = True ,

s=Input["Value for s : give an interval {min, max} : "]];

S
]

% *)
SaisirRangeh[]:=
Module[{h},
h=Input["Value for h : give an interval {min, max} : "];
While[VerificationInt[h] != True ,
h=Input["Value for h : give an interval {min, max} : "]];

(*

AfficheVal[repcurve , repvar_,er ,t ,w_,h ,s ,min_, max_]:=
Module[{i, inter},
inter = Input["Value of the increment"];
I repcurve =1,

Print[" Curve : Cga "];

If[repvar =1, For[i=min, i<=max, i=i+inter, Print["w=" i, " Cga = ",N[Cga]
1,h,s]]]], (*Nothing*) ];

If[repvar ==2, For[i=min, i<=max, i=i+inter, Print["t=",," Cga=",
N[Cga[w,h,s]]]], (*Nothing*) ];

Iffrepvar ==3, For[i=min, i<=max, i=i+inter, Print["s=" ,i," Cga=", N[Cga[
w,h,i]]]], (*Nothing*) ];

If[repvar ==4, For[i=min, i<=max, i=i+inter, Print["h="i, " Cga =", N[Cga[
w,1,s]]]], (*Nothing*) J;

» (*Nothing*)];

If[ repcurve =2,

Iffrepvar = 1, For[i=min, i<=max, i=i+inter, Print["w=" i, " Cgd =
",N[Cgd[er, t, i, h, s]]I] I;
. If[repvar = 2, For[i=min, i<=max, i=i+inter, Print["t=",i," Cgd = ",N[Cgd[er,
Lw,hs[Ill 1 . . .

Iffrepvar == 3, For[i=min, i<=max, i=i+inter, Print["s=" i, " Cgd = ",N[Cgd[er,
t,w,hi]]]] I; . e , :

. Ufrepvar == 4, For[i=min, i<=max, i=i+inter, Print["h="i," Cgd = ",N[Cgdler,

t,w, i, s]]l] 1;
» (*Nothing*)];

If] repcurve =3,
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If[repvar ==2, For[i=min, i<=max, i=i+inter, Print["t=",i," Cgt= " N[Cgt[i,
s]11]. (*Nothing*) ];

If[repvar ==3, For[i=min, i<=max, i=i+inter, Print["s=" i, " Cgt=",N[Cgt[t,
i]11], (*Nothing*) ];

If[repvar ==4, For{i=min, i<=max, i=i+inter, Print["h=",i," Cgt=",N[Cgt[t,
s]]]], (*Nothing*) J;
, (*Nothing*)];

If] repcurve == 4,

If[repvar =1, For[ i=min, i<=max, i=i+inter, Print["w=" i, " Cfpri =
" N[Cfpriler, t. i, h, s]]1]]:

If[repvar ==2, For[i=min, i<=max, i=i+inter, Print["t="i, " Cfpri=
" N[Cfpri[er, i, w, h, s]]1]1;

If[repvar ==3, For[i=min, i<=max, i=i+inter, Print{"s=" i, " Cfpri=
" N[Cfpri[er, t, w, h, i]]]]];

If[repvar ==4, For[i=min, i<=max, i=i+inter, Print["h="i, " Cfpri =
" N[Cfpri[er, t, w, i, s]]]]};
» (*Nothing*)];

If] repcurve == 5,

If[repvar ==1, For[i=min, i<=max, i=i+inter, Print["w=" i, " Cm = ",N[Cm[er.t,
i, h, s]11L;

If[repvar ==2, For[i=min, i<=max, i=i+inter, Print["t=",i," Cm = ",N[Cm([er,i,
w, h, s]1]]); L L . .

If[repvar ==3, For[i=min, i<=max, i=i+inter, Print["s=" ,i, " Cm =",N[Cmler,t,
w, h, i]1]11;

__Iffrepvar ==4, For[i=min, i<=max, i=i+inter, Print["h="i," Cm=",N[Cml[er,

w, 1, s]I]1};
» (*Nothing*)];

] (* Display the values of the calculus, from a start value to an end value, each

increment value.
(cij(1)= 2, Cij(6) =27 *)

(*

Lect[]:=
Module[{repcurve, repvar, fini=False, er, min, max, rep },

While[fini = False,

*
Fr : Selection de la courbe que je souhaite
Uk : Choice of the curve you want

*)
repcurve = SaisirCurve[];

While[IntegerQ[repcurve] = False || (repcurve>5) || (repcurve<1),
repcurve = SaisirCurve[]];

(*
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Fr: Selection de la variable qui va varier (w, t, h, s)
Uk : Choice of the variable according to which, you
want to display the curve.

*)
repvar = SaisirVariable[];
While[IntegerQ[repvar] = False || repvar >4 || repvar < 1,
repvar = SaisirVariable[]];

*

Fr : Saisie des valeurs des variables fixes
et de l'intervalle de la variable (qui varie)
Uk : Seize of the values of the fix values
and the range for the value which will change

*)
er = SaisirEr[repcurve, repvar];
If repvar != 1, w = Saisirw[], w = SaisirRangew[]; min = w[[1]]; max=w[[2]]];
If] repvar != 3, s = Saisirs[], s = SaisirRanges[]; min = s[[1]]; max=s[[2]]];
If] repvar != 4 , h = Saisirh[], h = SaisirRangeh[]; min = h[[1]]; max=h[[2]]];
If] repvar !=2 , t = Saisirt[repcurve,er,w,h], t = SaisirRanget[er,w,h ]; min = t[[1]];
max=t[[2]]];

Print["----=asemeeuem- "Ts
Print["er =", er];
Print["w =", w];
Print["t=", t];
Print["s =", s];
Print["h =", h];

*

Fr : Dessin de la courbe choisie
Uk : Drawing of the curve choosen

)
AfficheVal[repcurve, repvar, er,t,w,h,s,min,max]; (* Display of the values*)

If repcurve = 1, If[repvar ==1, Plot[Cga[ w,h,s], {w, min, max}, PlotLabel->"Cga/w"
], (*Nothing*) ;

Iffrepvar =2, Plot[Cga[ w,h,s], {t, min, max}, PlotLabel->"Cga/t"],
(*Nothing*) ];

Iffrepvar ==3, Plot[Cga[ w,h,s], {s, min, max}, PlotLabel->"Cga/s"],
(*Nothing*) J;

Iffrepvar =4, Plot[Cga[ w,h,s], {h, min, max}, PlotLabel->"Cga/h"],
(*Nothing*) ];

» (*Nothing*)];

If[ repcurve == 2, If[repvar == 1, Plot[Cgd[er, t, w, h, s], {w, min, max},
PlotLabel->"Cgd/w"], (*Nothing*) ];

If[repvar == 2, Plot[Cgd[er, t, W, h, s], {t, min, max}, PlotLabel->"Cgd/t"],
(*Nothing*) ];

If[repvar == 3, Plot[Cgd[er, t, w, h, s], {s, min, max}, PlotLabel->"Cgd/s"],
(*Nothing*) J;

If[repvar == 4, Plot[Cgd[er, t, W, h, s], {h, min, max}, PlotLabel->"Cgd/h"],
(*Nothing*) ];
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If] repcurve == 3, If[repvar ==1, Plot[Cgt[t, s], {w, min, max}, PlotLabel->"Cgt/w"],
(*Nothing*) ];

If[repvar ==2, Plot[Cgt[t, s], {t, min, max}, PlotLabel->"Cgt/t"],
(*Nothing*) ];

If[repvar ==3, Plot[Cgt[t, s], {s, min, max}, PlotLabel->"Cgt/s"],
(*Nothing*) ];

If[repvar ==4, Plot[Cgt[t, s], {h, min, max}, PlotLabel->"Cgt/h"],
(*Nothing*) ];
, (*Nothing*)];

I repcurve == 4, If[repvar ==1, Plot[Cfpri[er, t, w, h, s], {w, min, max},
PlotLabel->"Cfpri/w"], (*Nothing*) ];

If[repvar ==2, Plot[Cfpri[er, t, w, h, s], {t, min, max}, PlotLabel->"Cfpri/t"],
(*Nothing*) ];

[f[repvar ==3, Plot[Cfpri[er, t, W, h, s], {s, min, max}, PlotLabel->"Cfpri/s"],
(*Nothing*) ];

If[repvar ==4, Plot[Cfpri[er, t, w, h, s], {h, min, max},
PlotLabel->"Cfpri/h"], (*Nothing*) ;
, (*Nothing*)];

If] repcurve == 5, If[repvar ==1, Plot[Cmler,t, w, h, s], {w, min, max} ,
PlotLabel->"Cm/w"], (*Nothing*) ];

Iffrepvar ==2, Plot[Cml[er,t, w, h, s], {t, min, max} , PlotLabel->"Cm/t"],
(*Nothing*) ];

Iffrepvar ==3, Plot[Cm/[er.t, w, h, s], {s, min, max} , PlotLabel->"Cm/s"],
(*Nothing*) ];

If[repvar ==4, Plot[Cm{[er,t, w, h, s], {h, min, max} , PlotLabel->"Cm/h"],
(*Nothing*) ];
» (*Nothing*)];

rep = Input["Another Curve ?? (y(es) / anything for No"J;
fini = Which([rep ==y, False, rep !=y, True];
]
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************************************************************)

*

Cij Matrix (Capacitance) For non uniform coupled lines:
CarrayMin : to have the minimum Cij, using the following method:

Calculation of the Cij like if the 2 lines studied are the same.

We consider first that they have the same characteristic as the line i,
and that they have the same characteristics than the line j.

We get a cij min and a cij max. (cij min < cij max)

We create 2 matrices. (min et Max)

The comparisons min max are upon Cij = -cij

( CorrectL[t_] : Predicat qui teste tous les elements qui lui sont passes
en parametres, pour savoir si se sont des NUMBER.
Retourne True ou False selon le resultat.
I1! On doit passer une liste, meme pour 1 element
Uk : Test all the elements passed as parameters to see if they
are numbers

MyNumberQ[number_] : Predicat qui teste que si les nombres sont
corrects = non complexes.

Uk : Test if the numbers are correct (non complex)
*)
CorrectL[t_]:=
Module[{i, result},

For[ i=1, i<=Length[t] && MyNumberQ[ t[[i]] ], i=i+1, ];
If i1>Length[t] || MyNumberQ[ t[[i]] ], result = True, result = False];
result

]

(* *)
MyNumberQ[number_]:=

Module[ {retour},
If[]NumberQ[number] == True && Im[number] == 0, retour = True, retour = False];

retour
] (* Return True if the value is a number (NOT a complex) *)

* *)

CarrayMin[Er_, t_List, w_List, h_List, s_List, totln_] :=
Module[ {ctemp, ctempl, ctempJ, ctempMin,
bornelnf, borneMax, seff, carrayMin, i, j, k, cijMin},
Do[
ctemp = 0;
Do[If [!(i ===})),
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If] i<j, bornelnf = i; borneMax = J,
bornelnf = j; borneMax =1 |;

(* Calcul de l'espacement effectif entre la ligne i et j *)

seff = -w[[bornelnf]];
Do [seff = seff + w[[k]] + s[[k]], {k, bornelnf, borneMax-1}];

ctempl = Cm[Er, t[[i]], w{[i]], h{[i]], seff];
ctemp] = CmlEr, t{[j]], w{[j]], h([i]], seff];

ctempMin = Min[ {ctempl, ctempJ} ];
cijMin = Min[ N[-ctempl], N[-ctemp]] ];
carrayMin(i,j] = cijMin;

ctemp = N[ctemp + ctempMin]

{,] 1, totln}

c’arrayMin[i,i] = N[CiO[Er, t[[i]], W[[i]], h[[i]]] + ctemp],
{1, 1, totln}

Array[carrayMin, {totln, totln}]
] (* Constructs the capacitance per unit length matrix
for the given dielectric and line dimensions *)

(* *)

CarrayMax[Er_, t List, w_List, h_List, s_List, totln_] :=
Module| {ctemp ctempI ctempJ ctempMax
bornelnf, borneMax, seff, carrayMax, i, j, k, cijMax},
Do[
ctemp = 0;
Do[If [ ===}),

If] i<j, bornelnf = i; borneMax = j,
bornelnf = j; borneMax =1 ];
(* Calcul de I'espacement effectif entre la ligne i et j *)

seff = -w[[bomelnf]];
Do [seff = seff + w[[k]] + s[[k]], {k, bornelnf, borneMax-1}];

ctempl = Cm(Er, t[[i]], w[[i]], h([i]], seff];
ctempJ = Cm(Er, t[[j]], wi[j]}, h[[j]], seff];

ctempMax = Max[ {ctemplI, ctempJ} ];
cijMax = Max[ N[-ctempl], N[-ctempJ] ];
carrayMax[i,j] =cijMax;

ctemp = N[ctemp + ctempMax]

l;
{j, 1, totln}
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carrayMax[i,i] = N[CiO[Er, t[[i]], w[[i]], h[[i]]] + ctemp],
{i, 1, totln}

Array[canayMax {totln, totln}]
1  (* Constructs the capacitance per unit length matrix
for the given dielectric and line dimensions *)

3k 3K 3k sk sk sk sk ok ol ok ok ok 3k 3k ok sk sk ol sk ok sk sk sk ok sk sk ok sk sk ok sk sk sk e sk sk sk sk sk sk ok ok sk sk sk ok sk sk sk ok ok sk sk sk sksk sk skeok

Second Method of calcul of the Cij when the parameters are not the sames
************************************************************)

*
Cij matrix (capacitance for non uniform coupled lines:
CarrayMin to have the Cij minimum, using the following method.
Calculate w = min(wl, w2 ...)
t=min(tl,t2 ...)
calculate Cij min, same thing for the max.

*)

CarrayMin2[Er ,t List, w_List, h_List, s _List, totln_] :=
Module[ {ctemp, ctempZ ctempMm
bornelnf, borneMax, seff, carrayMin, i, j, k, myt, myw, myh },

Do[
ctemp = 0;
Do[If [!(1 ===}),

If] i<j, bornelnf = i; borneMax = j,
bornelnf = J, borneMax =1 J;
(*Print["i: ", 1. "j: ", j, "Bornelnf : ", bornelnf,
"BorneMax " , borneMax];*)

(* Calcul de l'espacement effectif entre la ligne i et j *)

seff = -w[[bomelnf]];
Do [seff = seff + w[[k]] + s[[k]], {k, borneInf, borneMax-1}];
(*Print["Seff : ", ;)

myt = Min[ {{[i]], 451} J;

myw = Min] {wiil], wlGil] } J

myh = Min[ {h[[i]], h[[]] } J;

ctemp2 = Cm|[Er, myt, myw, myh, seff];
carrayMin[i,j] = N[- ctemp2];

ctemp = N[ctemp + ctemp2]

Ik
{j, 1, totln}

c,girrayMin[i,i] = N[CiO[Er, t[[i]], w{[il], h[[i]]] + ctemp], (* ok or not for cii 7?7 *)
{i, 1, totln}

Array[carrayMin, {totln, totln}]
] (* Constructs the capacitance per unit length matrix
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CarrayMax2[Er_, t_List, w_List, h_List, s_List, totln_] :=
Module[ {ctemp, ctemp2, ctempMax, o
bornelnf, borneMax, seff, carrayMax, i, j, k. myt, myw, myh},
Do[
ctemp = 0;
Do[If [I(i ===})),
{

If] i<j, bornelnf = i; borneMax =,
bornelnf = j; borneMax =1 |;
(*Print["i: ", 1, "): ", j, "Bornelnf : ", bornelnf,
"BorneMax : ", borneMax];*)

(* Calcul de I'espacement effectif entre la ligne i et j *)

seff = -w[[bornelnf]];

Do [seff = seff + w[[k]] + s[[k]], {k, borneInf, borneMax-1}];
(*Print["Seff : ", seff];*)

myt = Max[ ([T, t[l) ) J

myw = Max[ {w{[i]], wilil] } J;

myh = Max[ {h[[i]], h{[j]] } ];

ctemp2 = Cm[Er, myt, myw, myh, seff];

carrayMax([i,j] = N[- ctemp2];

ctemp = N[ctemp + ctemp2]

1
{j. 1, totln}

3:’arrayMax[i,i] = N[CiO[Er, t[[i]], w[[i]], h[[i]]] + ctemp],
{i, 1, totln}

Airray[carrayMax, {totln, totin}]

] (* Constructs the capacitance per unit length matrix
for the given dielectric and line dimensions *)

*

Saisie des caracteristiques des lignes
Affichage des caracteristiques.
Selection de la matrice que I'on souhaite afficher.

Uk: input of the parameters of the lines
display of the parameters
choice of the matrix to display

*)

Main[]:=
Module[{rep, nb},

nb = Input["Number of lines"];
While[ IntegerQ[nb] ==False ||nb<1,
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er = Input["Dielectric constant\n\nvalue for er (!=1)"];
While[ MyNumberQ[er] == False ||
er==1, <
er = Input["Dielectric constant\n\nvalue for er (<1)"] ];

w = Input["Width of the lines\n\nvalues for w {w1, w2, ...}"];
While[ CorrectL[w] == False || Length{w]<nb ,
w = Input["Width of the lines\n\nvalues for w {wl, w2, ...}"] ];

h = Input["Height above the ground plane\n\nvalues for h {hl, h2, ...}"];
While[ CorrectL[h] = False || Length[h]<nb,
h = Input["Height above the ground plane\n\nvalues for h {h1, h2, ...}"] ];

s = Input["Spacing between the lines\n\nvalues for s {s1, s2, ...}"];
While[ CorrectL[s] == False || Length[s]<nb,
s = Input["Spacing between the lines\n\nvalues for s {s1, s2, ...}"] ];

t = Input["Thickness of the lines\n\nvalues for t {t1, t2, ...}"];
While[ CorrectL[t] == False || Length[t]<nb,
t = Input["Thickness of the lines\n\nvalues for t {t1, t2,...}"] ];

(* Re-seize of the values of t if it doesn't respect the constraints *)

For[i=1, i<nb+1, i++,
If] VerifOft[ t[[i]], h{[i]], w[[il], er] != True,
Print["<",t[[i]],"> Valeur pour t[",i,"]"];
t[[1]] = Input["Value for t"];

Whil
fel CorrectL[ t[[i]] ] = False || (* On veut un nombre *)
VerifOft[ t[[1]], h[[i]], w[[i]],er] ==False,
t[[i]] = Input["Value for t"];
I; ’
5

Print["t = ".t];

Print["w =", w];

Print["h =" h];

Print["s =",s];

Print["number of lines = ",nb];

rep = Input["Which Matrix do you want N\r

1 Min-Method 1 (Cmin <= Cij <= Cmax)\r

2 Max-Method 1\r

3 Min-Method 2 (Cmin(min{w1,w2}, ..))\r
4 Max-Method 2\r"];

Switch[rep, 1, Print[CarrayMin[er,t,w,h,s,nb]],
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3, Print[CarrayMin2[er,t,w,h,s,nb]],
4, Print[CarrayMax2[er,t,w,h,s,nb]],
5, Print["Bye"]; ];

VerifOft[t ,h ,w_,er |:=

Module[ { retour },

If[ VerifLn[t. w, h] == True && OktVall[t, h, w, er] == True,
retour = True, retour = False];
retour

] (* Test all the constraints on t - Ln and range - *)

OktVal[t ,h_,w_,er ]:==

Module[ {retour, tmax},

Ifft<(tmax=N[((2.3 Sqrt[h w]/(er-1))*( er (1+CalcF[w,h])+(1- CalcF[w,h])))]),

retour = True, retour = False];

If[retour == False, Print["tokt< ", tmax]];

retour

] (* Test if t<value, which is calculated to avoid the gain of a complex number
with Sqrt(Ere) *)

VerifLn[t ,w_,h _]:=
Module[ {retour, tmax},
If [ wh<=N[1/(2 Pi)], If t < (tmax=N[4 Pi w]/ 0.367879), retour = True, retour = False
I] t < (tmax=N[2 h/ 0.367879]), retour = True, retour = False ] ];
If[retour == False,Print["tverifln< ", tmax];

Print[" t, w, h= ",t,",", W," n’ h],
I;

retour
1 (* Verification of the t value to avoid to have Log of a negative value, which give

a complex number *)

* )

(* Main without test of the values seized : they have to be correct
MainWithoutTest*)

MainWTJ[]:=
Module[{rep, nb},

nb = Input["Number of lines"];
While[ IntegerQ[nb] = False ||nb<1,
nb = Input["Number of lines"] ];
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t = Input["values for t {t1. t2, ...}"];
While[ CorrectL[t] = False || Length[ ]<nb,
t = Input["values for t {t1,t2, ..}"]];

w = Input["values for w {wl, w2, .
While[ CorrectL[w] == False || Length[w]<nb
w = Input["values for w {wl, w2, ..}"1];

h = Input["values for h {hl, h2, ...}"];

While[ CorrectL[h] == False || Length[h]<nb,

h = Input["values for h {h1, h2, ...}"] ];

s = Input["values for s {sl, s2, ...}"];
While[ CorrectL[s] == False || Length[s]<nb,
s = Input["values for s {s1, 2, ...}"] ];

Print["t =",t];

Print["w =",w];

Print["h =",h];

Print["s =",s];

Print["nb de lignes = ",nb];

rep = Input["Which Matrix do you want ?\r

1 Min-Method 1 (Cmin <= Cij <= Cmax)\r

2 Max-Method 1\r

3 Min-Method 2 (Cmin(min{w1,w2}, ..)\r

4 Max-Method 2\r"];

Switch[rep, 1, Print[CarrayMin[1,t,w,h,s,nb]],
2, Print[CarrayMax[1,t,w,h,s,nb]],
3, Print[CarrayMin2[1,t,w,h,s,nb]],
4, Print[CarrayMax2[1,t,w,h,s,nb]] ];
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%
Val[i_.j_, totln_, cm_]

on donne la hgne et la colonne de la valeur dans la matrice,
totln le nombre de lignes de la matrice

cm le tableau correspondant a la matrice.

Si on est dans les limites de la matrice,
- retourne la valeur qui se trouve a la position demandee,

- sinon, retourne 0

*)

Val[i ,j ,totln ,cm ]:=
Module[ {retour},

If] i<=0 || j<=0 || i>totln || j>totln,

retour = 0,
retour = Abs[cm([i,j]]

I;
retour
]

* *

(* :

Transfo, retourne la matrice calculee grace a l'algorithme
Seule 3 colonnes sont differentes de O :
colonnes avant diagonale, diagonale, apres diagonale

*

Transfo[Er ,t ,w_,h ,s List, totln_]:=
Module[{cma mf mf2 tet},
cm = Carray[Er,t,w,h,s,totln];
Print["cm = ",cm];
For[i=1, i<= totln, i=i+1,
For[j=1, j<= totln, j=j+1,
If] j!=1 && jl=i-1 &&_]'_1+l
mfli,j] = 0; mf2[i,j] =
mfIl,J] = Cm[[lll[D]],mﬁ[l,J] = cm([[i]]{[]]

1;

5
mf[1,1] = N[CiO[Er, t, w, h]] + Val[1,2,totln, mf];
For[i=2, i<= totln, i++,
mf[i,i] = Val[i-1, i-1, totln, mf]
- Val[i-2, i-1, totln, mf]
+ Val[i , i+1, totln, mf];

I
tet = Array[mf, {totln, totln}];
tet

JK

Transfo[12,.01,2,20,{3,4},3]
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Meme chose que transfo, mais on calcule
L=E0*mu0*CEO0.
*
TransfoL[Er ,t ,w ,h ,s List, totln_J]:=
Module[{CEO L a, mf mf2 tet}
CEO = Carray[l,t,w,h,s,totln];
L = EO*mu0*Inverse[CEO];
Print["L =",L];
For[i=1, i<= totln, i=i+1,
For[j=1, j<=totln, j=j+1,
I j!=i && jl=i-1 &&]"'1+1
mf]i,j] = 0; mf2[i,j] =
mﬂlJ] L[[l]][D]] mfZ[l,J] LIGIG1

I

I
mi[1,1] = N[CiO[Er, t, w, h]] + Val[1,2,totln, mf];
For[i=2, i<= totln, i++,
mf[i,i] = Val[i-1, i-1, totln, mf]
- Val[i-2, i-1, totln, mf]
+ Val[i , i+1, totln, mf];

|5
tet = Array[mf, {totln, totln}];
tet

K

266



*
Val[i ,j ,totln ,cm_]

on donne la hgne et la colonne de la valeur dans la matrice,
totln le nombre de lignes de la matrice

cm le tableau correspondant a la matrice.

Si on est dans les limites de la matrice,
- retourne la valeur qui se trouve a la position demandee,

- sinon, retourne 0

*)

Val[i ,j ,totln ,cm_J:=
Module[ {retour},

I] i<=0 || j<=0 || i>totln || j>totIn,

retour =0,
retour = Abs[cm[i,j]]

l; |
retour
]
(* *)

*

Transfo, retourne la matrice calculee grace a I'algorithme
Seule 3 colonnes sont differentes de O :
colonnes avant diagonale, diagonale, apres diagonale

Uk : Transfo, give the matrix computed with the algorithm
only 3 rows are different from 0.
the diagonal, just before, and just after.
*
Transfo[Er_, t List, w_List, h_List, s_List, totln_]:=
Module[{cm cm2, mf mf2, tet, tetZ},
cm Carrame[Er t,w, h ] totln],
cm2 = CarrayMax[Er,t,w,h,s,totln];
Print["cm =",cm];
Print["cm2 =",cm2];
For[i=1, i<= totln, i=i+1,
For[j=1, j<=totln, j=j+1,
I jl=i && jl=i-1 &&J'—1+1
mi[i,j] = 0; mf2[i,j] =
] = o Fant2(id] = em2 (GG

I;

5;

mi[1,1] = N[CiO[Er, t[[1]], W[[1]], h[[1]]]] + Val[1,2,totln, mf];
mi2[1,1] = N[CiO[Er, t{[1]], w{[1]], h{[1]]]] + Val[1,2,totln, mf2];
For[i=2, i<= totln, i++,

mf[i,i] = Val[i-1, i-1, totln, mf]
- Val[i-2, i-1, totin, mf]
+ Val[i , i+, totln, mf];
mf2[i,i] = Val[i-1, i-1, totln, mf2]
- Val[i-2, i-1, totln, mf2]
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l;
tet = Array[mf, {totln, totln}];
tet2 = Array[mf2, {totln, totln}];

{tet, tet2}

(*F----- SAMPLES

Transfo[12,.01,2,20,{3,4},3]

Transfo[12,.01,2,20,{.3, 4.114, 5.002, 6, 4.7, 8, 9.2, 5.0343, .004},10]

Fr : Meme chose que transfo, mais on calcule
Uk : Same thing as Transfo, but we calculate
L= E0*mu0*CEO.
*
TransfoL[Er_,t List, w_List, h_List, s_List, totln_J:=
Module[{CEO CE02 L,L2, a, mf, mf2 tet}
CE0 = CarrayMln[l t,w,h,s totln]
L= EO*muO*Inverse[CEO];
CEO02 = CarrayMax[1,t,w,h,s,totln];
L2 = E0*mu0*Inverse[CE02];
Print["L =",L];
For[i=1, i<=totln, i=i+1,
For[j=1, j<=totln, j=j+1,
If j=1 && jl=i-1 &&_]'—1+1
mfi,j] = 0; mf2[ij] =
mi[i] = LGG1; mf2[ld] L2[[1061]

L

I
mi[1,1] = N[CiO[Er, t[[1]], w[[1]], h[[1]]]] + Val[1,2,totln, mf];
mf2[1,1] = N[CiO[Er, t[[1]], w[[1]], h[[1]]]] + Val[1,2,totln, mf2];
For[i=2, i<= totln, i++,
mf[i,i] = Val[i-1, i-1, totln, mf]
- Val[i-2, i-1, totln, mf]
+ Val[i , i+, totln, mf];
mf2[i,i] = Val[i-1, i-1, totln, mf2]
- Val[i-2, i-1, totln, mf2]
+ Val[i , i+, totln, mf2];

I .
tet = Array[mf, {totln, totin}];

tet2 = Array[mf2, {totln, totln}];
{tet, tet2}

.
>

*

Same thing with the second Method of calculation of the Cij matrices
*)
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* *)
(*

Transfo, retourne la matrice calculee grace a I'algorithme
Seule 3 colonnes sont differentes de 0 : '

colonnes avant diagonale, diagonale, apres dlagonale

Transfo2[Er_, t List, w_List, h_List, s_List, totln_J:=
Module[{cm, cm2 mf mf2, tet, tet2},
cm CarrayM1n2[Er t,w,h,s,totln];
cm2 = CarrayMax2 [Er,t,w,h,s,totln];
Print["cm =",cm];
Print["cm2 = ",cm2];
For[i=1, i<= totln, i=i+1,
For[j=1, j<=totln, j=j+1,
Il j!=i && jl=i-1 &&_]'—H'l
mf[i,j] = 0; mf2[i,j] =
mfi,j] = Cm[[I]][D]] mfZ[I,J] = cm2([[i]]{[j]]

I

I;
mi]1,1] =N[CiO[Er, t[[1]], w[[1]], h[[1]]] + Val[1,2,totln, mf];
mif2[1,1] = N[CiO[Er, t[[1]], w[[1]}, h[[1]]]] + Val[1,2,totln, m{2];
For[i=2, i<= totln, i++,
mf[i,i] = Val[i-1, i-1, totln, mf]
- Val[i-2, i-1, totln, mf]
+ Val[i , i+1, totln, mf];
mf2[i,i] = Val[i-1, i-1, totln, mf2]
- Val[i-2, i-1, totln, mf2]
+ Val[i , i+, totln, mf2];

I3
tet = Array[mf, {totln, totln}];
tet2 = Array[mf2, {totln, totin}];
{tet, tet2}

b

(*----- SAMPLES

Transfo[12,.01,2,20,{3,4},3]
Transfo[12,.01,2,20,{.3, 4.114, 5.002, 6, 4.7, 8, 9.2, 5.0343, .004},10]

-;._.._*)

Meme chose que transfo, mais on calcule
L=E0*mu0*CEO.

*

" TransfoL2[Er_, t List, w_List, h_List, s_List, totln_]:=
Module[{CEO, CE02 L 12, a,mf mf2 tet),

CE0 = Carra M1n2[1 t,w,h,s totln]

L= EO*muO*Inverse[CEO];

CE02 = CarrayMax2[1,t,w,h,s,totln];

L2 = E0*mu(0*Inverse[CE02];

Print["L =",L];
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iviauuiis

For[j=1, j<= totln, j=j+1,
1] jl=i && jl=i-1 && jl=i+1,
mflij] = 0; m2[ij]=0,
mfli.j] = L{[i]1[[j]};mf2[1j] = L2[[i]][[;]]

IR

I
mf]1,1] = N[CiO[Er, t[[1]], w[[1]], h[[1]]]] + Val[1,2,totln, mf];
mf2[1,1] = N[CiO[Er, t[[1]], w[[1]], h{[1]]]] + Val[1,2,totln, mf2];
For[i=2, i<= totln, i++,
mf[i,i] = Val[i-1, i-1, totln, mf]
- Val[i-2, i-1, totln, mf]
+ Val[i , i+, totln, mf];
mf2[i,i] = Val[i-1, i-1, totln, mf2]
- Val[i-2, i-1, totln, mf2]
+ Val[i , i+1, totln, mf2];

I;
tet = Array[mf, {totln, totln}];
tet2 = Array[mif2, {totln, totln}];
{tet, tet2}

b
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APPENDIX B

List of mathematical calculations using Mathematica:

B1. Nusl

Calculation of the time delay and characteristic impedance for the set of 3-

coupled nonuniformly spaced microstrip lines.

B2. Nus2

Calculation of the time delay and characteristic impedance for the set of 3-

coupled non-optimised (suggested) microstrip lines in Sect. 8.5.

B3. Final

Calculation of the time delay and characteristic impedance for the set of 3-

coupled optimised microstrip lines in Sect. 8.5, see Fig. 8.18
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