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Abstract

Electrical impedance tomography (EIT) is an imaging technique that aims to reconstruct 

the internal conductivity distribution of a body, based on the electrical measurements 

taken on its periphery. W hile relatively new it has received attention as a possible new 

medical imaging technique which offers non-hazardous applications and low-cost 

instrumentation.

To understand the full potential of this new mode of imaging, a numerical modelling 

method has been used in order to investigate the behaviour of an EIT system. Using this 

mode of analysis, it is possible to simulate many experiments that otherwise physically 

would be very time consuming and expensive. Such investigation will include the effect 

and quantification of various physical conditions which have effects on the obtained 

boundary voltages of an EIT system.

An aim of EIT is the ability to reconstruct accurate images of internal conductivity 

distributions from the measured boundary voltages. Image reconstruction in EIT using 

the sensitivity algorithm is generally based on the assumption that the initial 

conductivity distribution of the body being imaged is uniform. The technique of image 

reconstruction using the sensitivity algorithm is described and reconstructed images are 

presented. Improvements in image quality and accuracy are demonstrated when 

accurate a-priori ‘anatomical’ information, in the form of a model of the distribution of 

conductivity within the region to be imaged, are used. In practice correct a-priori 

information is not available, for example, the conductivity values within the various 

anatomical regions will not be known. An iterative algorithm is presented which allows 

the conductivity parameters of the a-priori model to be calculated during image 

reconstruction.

M ulti-frequency EIT is a modified approach of the single frequency method by which 

tissue characterisation has been proposed by imaging the internal conductivity o f region 

over a range of frequencies. However, due to instrumentation drawbacks, only the real 

parts of the boundary voltages are presently measured. These real only voltages have so



far (in practice) been used to reconstruct images of the changes in internal conductivity 

of a region with frequency. The penalty for ignoring the imaginary parts of the data are 

presented and results obtained show that to accurately image the internal conductivity 

of a region, not only complex data are needed, but also some a-priori information about 

the region may be necessary.
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Permittive

Permeable

Reciprocal conductivity

Glossary

A relative electrical permittivity which is greater than 1.

A relative magnetic permeability which is greater than 1.

A conductivity that is given by a new = —— , where a new is
G o ld

the new conductivity and a 0id is the original conductivity.



Chapter 1

1. Introduction

1.1 Medical Imaging techniques

Electrical impedance tomography (EIT) is an imaging technique which enables the 

internal conductivity distribution within a region to be calculated on the basis of 

electrical measurements taken on the region’s periphery. This imaging method has the 

great advantage of being non-invasive, inexpensive and free of the radiation hazards 

encountered with X-rays. It therefore has received attention in the field of medical 

imaging.

Several medical imaging techniques have been introduced and implemented over the 

last century. In medical imaging the aim is to obtain images that provide information 

about the internal anatomical or physiological condition of the region under 

investigation. Non-invasive methods are preferred over invasive imaging methods, 

which allow long-term monitoring of the patient as they present less risk. Of the many 

methods currently used in medicine, a few are discussed here.

1.1.1 X-ray

This is the most common imaging technique in medicine. Photographic films are placed 

behind the body which will darken with intensity dependent on the amount of X-rays 

getting through from the source on the other side of the body. X-rays travel in a straight 

line; X-rays are said to be hard field since they will travel in a straight line independent 

of the medium they propagate through. The principle interactions causing attenuation of 

the X-rays are absorption and scattering. The primary photons absorbed by the 

photographic film form the final image. M ost of the scattered photons are removed by 

the use of anti-scattering devices, which are placed between the patient and the 

photographic films. This anti-scatter device can simply be a grid formed from a series 

of parallel lead strips, which will transmit most of the primary radiation, but reject 

majority of the scatter.

1



X-rays travelling through the bones produce less darkening on the film because they are 

attenuated more by the bones, which have a higher attenuation factor than soft tissue. 

X-rays travelling through soft tissues are attenuated less and produce more darkening of 

the film. This contrast therefore makes this imaging technique very suitable for imaging 

and detecting broken bones.

The radiation energy range used in practice is typically 17 - 150 keV, with higher 

energies used to image thicker body sections. Also the amount of radiation used is a 

trade-off between suitable radiation dose and achievable image contrast. X-rays images 

have the advantage of having a good spatial resolution. However X-rays are hazardous 

and cause damage to tissues.

1.1.2 Computerised Tomography CT

A problem with conventional X-ray imaging is the loss of depth information: a three- 

dimensional section of the body is collapsed into a two-dimensional image. W ith CT a 

two-dimensional planar slice of the body is defined and X-rays are passed through in all 

directions within that plane and detected on the other side. The transmitted X-rays 

encounter no part of the body outside the defined plane, and therefore no depth (out of 

plane) information is seen. CT images are as though a thin slice of the body has been 

removed and a conventional X-ray has been used to image the slice.

Using a rotating fan beam X-ray source with a continuous ring of detectors, X-rays are 

projected through the defined plane of the body at many angles and are detected by an 

array of receivers (about 1000 detectors in total), Figure 1.1. A two dimensional image 

of a plane can be reconstructed from the detection of these attenuated beams of X-rays.
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360 d e g re e  s ta t io n a ry  d e te c to r  ring

Figure 1.1 Schematic representation of a CT scanner.

Since its introduction in 1970s, several new improved generations have been 

developed. Scanning time has over the years improved from 4 - 5  minutes to 4 - 5 

seconds. The reduced scanning time greatly reduced motion blur, since for example, the 

patient can hold his/her breath for a few seconds. More recently a new generation 

system is capable of acquiring data in no longer than a few milliseconds which makes 

this new mode of CT system very useful for cardiac imaging.

The reconstructed image has good spatial resolution but once again X-rays are 

damaging to biological tissues and also the imaging instrument is large and expensive.

1.1.3 Gamma Camera

Medical imaging using a Gamma camera is based upon the detection of decaying 

radionuclides. Radiopharmaceuticals such as radioactive iodine are injected into the 

body as tracers and will concentrated in the target organ (thyroid gland). As the 

radiopharmaceutical undergoes radioactive decay, it emits gamma-rays which are 

detected by scintillation crystals. These yield two-dimensional images of the 

concentration of the radiopharmaceuticals. Dosage is kept to a minimum amount to 

minimise damage to tissue and cells.

Gamma cameras are most routinely used for two-dimensional planar imaging, but they 

can also be used for tomographic reconstruction by rotating the gamma cam era around 

the body over the region of interest. More recently positron emission tomography (PET)
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has been developed, which makes use of isotopes where two gamma-rays (of 511 keV 

each) are emitted simultaneously when the radionuclide annihilates in the tissue.

By the right choice of radiopharmaceuticals, physiological images such as blood flow, 

blood volume as well as various metabolical processes are possible. Also other typical 

uses include the diagnosis and localisation of brain tumours, localisation of dead tissue 

as a result of strokes due to blood clots within the arteries and the monitoring of blood 

flow changes associated with local brain functions.

1.1.4 Ultrasound

A transducer is used to send ultrasonic waves of 1-15 M Hz into the body. The 

transmitted waves are reflected by structures within the body and detected at the surface 

(usually using the same transducer) and the delay in the echoes of the ultrasound waves 

are used to reconstruct images of internal organ distribution.

The transducer which converts electrical signals to ultrasonic waves and the reflected 

waves to electrical signals is made of one or more piezo-electric crystals. In the area of 

transducer contact with the body a medium matching gel is used to ensure good 

transmission of waves.

Doppler frequency shift can also be used to investigate blood flow within arteries and 

veins. M oving red blood cells cause a Doppler shift in the reflected wave frequency and 

the degree and direction of this shift is proportional to the velocity of the red blood 

cells.

There are widespread clinical uses of diagnostic ultrasound and these mostly include 

abdominal imaging and in particular monitoring the unborn foetus. Ultrasound is 

considered to be of very low risk provided the applied intensity and frequencies are 

sufficiently low.

1.1.5 Magnetic resonance imaging (MRI)

M RI is concerned with the imaging the distribution of the hydrogen atom in the water 

within tissues. The patient is placed in a strong magnetic field (1.5 - 3 Tesla) and the 

response of a transmitted radio wave by the hydrogen atoms are measured and imaged.
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A hydrogen atom in a medium placed within a strong magnetic field realigns its axis of 

rotation with the axis of the magnetic field it is under. The effect is to produce a 

resultant nuclear magnetisation along the direction of the applied field. This small 

nuclear magnetic field can be interrupted by applying a pulsed magnetic field 

perpendicular to the original field. This changes the direction of the nuclear magnetism 

through an angle dependent on the length of the applied pulse. Following the applied 

pulse, the interrupted nuclear magnetism slowly again realigns itself with the 

surrounding magnetic field. During this realignment period, energy is radiated from the 

nuclei in the form of radio waves of very high frequency. It is these signals that are 

detected from each small volumes of the body and used to form images.

The perpendicular magnetisation pulse is actually produced by applying radiofrequency 

(RF) to a coil. In fact the applied RF pulse is chosen so that it is equal to the frequency 

of the nuclei that are to be stimulated, so that resonant absorption of the RF pulse 

occurs. During the period following excitation the magnetic resonance signal decays 

with a time constant characteristic of the precise from of medium containing the nuclei. 

During this period the relaxation is characterised by two time constants Tj and T 2 . Ti is 

the time constant representing restoration of the bulk magnetisation of a given pixel to 

its equilibrium state aligned with the axis of the applied field. This is also referred to as 

longitudinal relaxation time or the spin-lattice decay constant. T 2  is usually faster than 

T 1 and is due to a loss in phase coherence between neighbouring nuclei, caused by local 

variation in the magnetic field.

Spatially resolved anatomical data sets are acquired by applying magnetic field 

gradients across the body being imaged, resulting in measurable gradients in the 

resonant frequency of the nuclide. Two-dimensional Fourier transformation yields a 

slice image of the plane of interest.

Instrumentation is very large and very expensive. There is no reported harm to tissue 

and the produced image has excellent spatial resolution. MRI can be used for the non- 

invasive diagnosis and treatment planning of a wide range of diseases, including cancer.
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1.1.6 Summary of other medical imaging techniques

The medical imaging techniques described above have all been successfully 

implemented in clinical use. While three of the techniques mentioned here are 

hazardous and most require expensive instrumentation there is a strong need in 

medicine for a fast, reliable, non-hazardous and inexpensive imaging technique that can 

provide information about the internal structure and physiological state of tissue being 

imaged. It has been because of this need that electrical impedance tomography has been 

developed as a possibility for fulfilling such requirements.

1.2 Electrical impedance tomography

The technique of electrical impedance tomography (EIT) has been developing for some 

years (Brown and Barber 1987). Electrodes are positioned with usually equal spacing 

around the body to be imaged thus defining a plane through a region within that body. 

A known constant current is injected into the region under investigation through a 

(drive) electrode pair. The resulting boundary voltages are measured as the differential 

voltages between two non-current carrying (receive) electrodes. Current flow through a 

region is a function of the conductivity distribution within that region. As well as the in­

plane conductivity distribution, the off-plane conductivity distribution can effect the 

path of the conduction current. The driven current is therefore not confined to two- 

dimension (2D). However most images are reconstructed as if the data were from a 2D 

object as computational and instrumentation complexities involved with three- 

dimensional (3D) imaging is much greater than 2D.

Commonly 16 electrodes are placed around a region but the maximum number of 

possible electrodes depends on a number of factors which include the geometry of the 

body, electrode size, electrode pair configuration as well as the acceptable level of 

measurement signal to noise ratio. In the arrangement used by most workers, current is 

driven into the region through two adjacent (drive) electrodes. For each of the 16 drive- 

electrode pairs, 13 voltage differences between the remaining adjacent non-current 

carrying (receive) electrodes are recorded. EIT images using this technique have usually 

been made at a single frequency typically 50 kHz (Webster 1989).
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M ore recently, the technique of electrical impedance tomographic spectroscopy (EITS) 

has been developed (Brown et al 1994a) in the view that tissue can be characterised in 

terms of how tissue conductivity varies with the applied frequency. This technique also 

uses an array of electrodes placed around the circumference of the body to produce an 

image of the frequency dependent changes in tissue resistivity within a region. These 

are produced from measurements made over a range of frequencies, typically 9.6 kHz to

1.2 MHz.

In a clinical environment, there are essentially two methods of imaging using EIT 

(Boone et al 1997):

1. Anatomical imaging. This is normally concerned with producing images of the 

distribution of different type of tissues within a body.

2. Physiological imaging. This imaging technique relies on the physiological state of the 

tissue within the region being imaged.

O f these two methods, the first can be used as an addition to other imaging techniques 

already available, such as X-rays, CT and MRI. This could provide information such as 

the internal conductivity distributions, which are not available from other imaging 

techniques. The second method may have applications which are not readily amenable 

to other imaging techniques, for example, imaging the physiological state of tissue with 

respect to the range of used excitation frequency. In some physiological conditions of 

tissue, some information seen at higher frequencies may reflect changes that are not 

seen at lower frequencies. EIT gives access to unique information which is related to 

the physiology of biological tissue.

1.2.1 The Forward problem

Given a region to be imaged when a known current is injected through electrodes on the 

surface a potential distribution throughout the system is generated. This potential 

distribution is dependent on the complex conductivity variation within the region. This 

potential distribution can be calculated mathematically for a given complex 

conductivity distribution and a relatively simple geometry and from these potential
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distributions one can readily calculate the potential at all points over the surface of the 

region.

These calculations are generally known as the Forward problem. But these calculations 

are difficult as either the internal distributions are unknown or the geometry of the 

region of interest is not simple.

1.3 Application of EIT in medicine

EIT offers some advantages over other medical imaging techniques. As well as 

providing non-invasive measurements and non-hazardous imaging methods it allows 

the possibility of long-term monitoring, portability, rapid data acquisition plus cheap 

and robust instrumentation. There are several areas of clinical medicine where EIT has 

been suggested for implementation. These have been reviewed and discussed (Brown 

1990 and Holder 1993).

1.3.1 Pulmonary ventilation

It has been shown that there is a high correlation between thoracic impedance change 

and volume of air breathed (Geddes and Baker 1989). EIT should therefore be an 

appropriate imaging technique for pulmonary ventilation since there is a large 

conductivity contrast between inflated and deflated lung tissue together with the fact 

that a large portion of the thorax is occupied by lung tissue. It has been demonstrated 

that there exist a strong correlation between inspired air and resistance change in some 

parts of an EIT reconstructed image for individual subjects (Harris et al 1987, Holder 

and Temple 1993). Also, Newell et al (1988) showed resistivity changes in the lung 

region during an induced oedema (accumulation of fluid within the extra-cellular region 

of tissue). It is therefore reasonable to expect that some lung disorders, such as 

pneumothorax (air in the pleural cavity) and pleural effusion, which compromise 

ventilation, may be detected and localised using EIT. This would be beneficial as it 

would provide an alternative to X-ray investigations.

However, although EIT shows a good measure of lung ventilation in a single individual, 

it does show large inter-subject variability. It is therefore concluded that EIT is only



practical at present for imaging the differences in ventilation over time on an individual 

basis (Boone et al 1997).

1.3.2 Swallowing disorders

There are a number of neurological disorders, such as stroke and Parkinson’s disease 

which may cause swallowing difficulties. The severity of disease may be monitored by 

the determination of the time taken for a bolus fluid to enter the oesophagus. Hughes et 

al (1994) compared the images of the neck obtained by EIT and X-ray videofluroscopy 

during swallowing, and found that all images showed a decrease in impedance 

regardless of the swallowed fluid conductivity. They also found that at points where the 

anterior and posterior walls of the pharynx were in closest contact produced the highest 

changes in the EIT images. The authors did however propose that this feature of the EIT 

images was due to the expulsion of air from the pharynx rather than being directly 

related to the bolus of fluid.

1.3.3 Stomach emptying

The rate of stomach emptying can be used to detect gastroesophagal reflux and pyloric 

stenosis. It can also be used for studying the influence of the component parts of various 

types of food on gastric emptying, such as the fat proportion (Murphy et al 1987). The 

present method of measuring stomach emptying are invasive, and therefore are not ideal 

for routine clinical use. They include: the Marker dilution technique and Scintigraphy 

(Gamma Camera). EIT can be used to image the profile of gastric emptying due to the 

change in resistivity which occurs as the food passes through the various stages of the 

stomach and the upper abdomen. Mangall et al (1987) showed that these changes can be 

imaged. They found that the profiles of stomach emptying were very similar to those 

found using the gamma camera and marker dilution technique.

As well as gastric emptying, it has been proposed that EIT can be used to measure 

gastro-intenstinal motility (Smallwood et al 1993), gastric transport (Smallwood et al 

1994, Kotre 1995) and oesophageal activity (Erol et al 1995). These studies have shown 

activity which correlates with other physiological measurements, but it is not clear that 

the technique is sufficiently accurate for clinical use.
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1.3.4 Perfusion changes

During the cardiac cycle there exists a change in thorax resistivity which is due to the 

redistribution of blood between the heart, great vessels and lungs. However these 

changes in resistivity are small compared to those due to ventilation and thus cardiac 

gating is used to separate the cardiac and ventilation information in the EIT recording.

McArdle et al (1993) showed that EIT could only resolve one atrial and one ventricular 

component in the region of the heart, and these may even overlap. If this was the case, 

the calculated conductivity would be underestimated, since an increase in one region 

may cancel a decrease in another. Also the heart movements during the respiratory 

cycle would cause a further blur in the reconstructed image.

1.3.5 Monitoring hyperthermia

Tumorous growth in normal tissue can be treated by artificially increasing its 

temperature by the use of microwave radiation or lasers. It is essential to m onitor tissue 

temperature so that normal tissue is not extensively heated and malignant tissue is 

heated to the desired temperature of about 43°C. The present techniques are invasive; 

thermocouples are implanted within the patient to obtain temperature profile within the 

body.

Conway et al (1992) imaged the temperature variation in a saline phantom and in 

abdomens of human volunteers whose stomachs were rapidly filled and em ptied with 

warm solutions. They showed a good correlation between temperature and EIT image 

changes. There are however issues that must be taken into account before this becomes 

clinically acceptable. Tissue conductivity during hyperthermia maybe affected by 

factors other than temperature. M oller et al (1993) have reported that the resistance of 

tissue continued to change even after the temperature has been stabilised, and did not 

return to pre-therapy values after treatment. Also temperatures may need to be 

monitored for periods as long as an hour. During this time tissue temperature may 

increase by about 6°C. Baseline drift in the EIT image must therefore be as low as 3% 

to detect these changes of temperature over long periods (Boone et al 1997). This 

degree of stability is very difficult to achieve at present.
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1.3.6 Breast cancer screening

The detection of soft tissue lesions such as cysts and tumours is of particular 

importance in tissue analysis, for the detection of malignancies in the breast. W hile X- 

ray mammography is a useful technique for the detection of these conditions, it is 

hazardous.

Jossinet and Risacher (1996) have showed that there is a significant difference in 

impedance between normal and diseased tissue. The procedure however needs static 

imaging (calculation of absolute values of conductivity, rather than a change from a 

given reference starting value), which may be possible by the use of multi-frequency 

EIT.

1.4 Electrical properties of biological tissue

The electrical conductivity of biological tissue has been under investigation for over a 

century. Along with the progress in the measurement technology, the usable frequency 

range for impedance measurements has been continuously extended.

Figure 1.2. At high frequency the current travels uniformly through the tissue (thin lines) and at 

low frequency, the current passes round the cell structures through extra-cellular fluid (bold lines).

Kanai et al (1987) suggested that by using different frequencies the distribution of 

extracellular to intracellular fluids can be measured. Rigaud et al (1994) have also 

shown that using this method it is possible to distinguish between various kinds of 

tissue and to assess the physiological state of a tissue.
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Figure 1.2 shows the basic structure of tissue, which consists of cells surrounded by 

extra-cellular fluid. Intra-cellular fluid is contained within the cells by cell membranes. 

At low frequency, due to the high resistance of cell membranes, current passes round 

the cells through the extra-cellular fluid. At high frequency, the capacitance of the cell 

membrane short circuits and current travels through the tissue structure. The overall 

impedance of tissue is therefore lower at higher frequencies than it is at lower 

frequencies.

1.5 Electrical model of physiological tissue impedance

Tissue impedance is complex (it has both magnitude and phase) and the impedance 

measured over a range of frequencies has a frequency dependent phase and magnitude 

component. This (complex) impedance of biological tissue can be expressed as a simple 

electrical model (Kanai et al 1987) as shown in Figure 1.3

Figure 1.3 A simple form of electrical equivalent circuit for tissue, where R is the extra-cellular 

fluid resistance, S is the intra-cellular fluid resistance and C is the cell capacitance.

In this model Figure 1.3, R represents the resistance of the extracellular fluid, S the 

resistance of the intracellular fluid and C the capacitance of the cell membranes.

The model in Figure 1.3 can be represented mathematically as (Schwan 1957):



where 2f  is the complex impedance, Rm is the very high frequency impedance, R0 is the 

low frequencies impedance, /  is the measurement frequency, f r is the relaxation 

frequency for the tissue and a  is a constant that is used to match the measured data to 

the model shown in Figure 1.3. For the diagram shown in Figure 1.3, R„ = RS/(R+S), 

Ro = R, fr  — 1/2ti(R+S)C and for a pure capacitance C, a  = 0.

As discussed biological tissue impedance is a complex impedance, and so both the 

magnitude and phase components of data are required for the determination of the total 

conductivity of tissue. However Brown et al (1994b) have found that due to cable 

capacitance and body capacitance to ground, the measurement of the quadrature 

component of the data is unreliable and so at present only the real part is measured over 

the range of applied frequencies. Some groups have however claimed to be able to 

measure both the real and imaginary parts of boundary data (Chauveau et al 1996).

1.6 Forward Numerical modelling

It is often necessary to calculate the forward problem for the region under investigation 

in order to enable image reconstruction from measured data. Of the possible methods 

available, techniques such as finite element methods have been over the years 

developed to solve the forward model numerically.

The majority of the reported numerical modelling studies have been restricted to two- 

dimensions, such as a 2D circular model by Kytomaa and W eselake (1994) and the 

symmetrical 2D homogenous and isotropic model by Basarab-Horwath et al (1995). 

Some work has been carried out using three dimensional models by Shahidi et al (1995) 

who modelled a three dimensional cylindrical tank and also a three dimensional thorax 

model built from 43 CT scans at 1 cm intervals. Kim (1994) also used a three 

dimensional model of the thorax consisting of 658 elements and 29 layers.

Many researchers have used various methods in solving the forward problem. The most 

common method, to date, has been by applying the finite element method to solve 

Laplace’s equation in the region of interest (Kytomaa and W eselake 1994, M eaney and 

M oskowitz 1993, Kim 1994, Basarab-Horwath et al 1995, Paulson et al 1992, Lin et al

1994). Other methods of numerical modelling includes the work of Griffiths (1995)
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who has used a finite difference model to investigate the non-invasive characterisation 

of tissue.

The forward model can be given as

V ' ( o W ) = 0 (1.2)

where a  and V are the conductivity and the electric potential distribution respectively 

where conductivity a  is known and

where n is a vector normal to the electric potential and Jn is the normal current density 

for a given point on the boundary.

For a unique solution of equation (1.2) to exist, sufficient boundary conditions must be 

specified. These may be Dirichlet conditions in the form of potentials on the boundary 

or Neumann conditions in the form of current densities crossing the boundary or a 

mixture of both. The potential must be specified at a minimum of one point for a 

unique solution of equation (1.2) to exist.

In the methods utilised for solving the forward problem by most researchers it has been 

widely assumed that the injected current is at zero frequency (dc). Lin et al (1994) have 

however specified the current density in their work to be:

where 0) is the angular frequency ( co= 27tf, where f  is the frequency), 8r is the relative 

permittivity of material within the region of interest and e0 is the permittivity of free 

space.

In equation (1.4) it is therefore possible to specify the current density as a function of 

frequency and permittivity as well as conductivity.

Other workers (Shahidi et al 1995) have used and solved a derivative of equation (1.2):

o V F - n  + T = 0
J  n

(1.3)

J  = - ( O - j 0 ) £ o£r)V V (1.4)

V(j(f).V0(^) + (j(^)V20(^) = 0 (1.5)
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where G ©  is the conductivity, <I>© is the electric potential distribution and £ is the 

spatial co-ordinates within the volume of interest Q.. In equation (1.5), conductivity and 

potential distribution are defined as a function of spatial co-ordinates.

The boundary condition in this case was (from equation (1.3)):

+ J on the source electrode 

—  = -  J on the sink electrode (1.6)
dn 0 elsewhere on the surface

<&>(<?)where ----- —  is the normal component of the potential gradient and J is the current
dn

density.

Using this method and equations (1.5) and (1.6) the scalar potential was computed 

throughout the model by the authors.

The present trend is advancing towards multi-frequency EIT with frequencies ranging 

from 9.6 kHz to 1.2 MHz (Brown et al, 1994b). Zero frequency simulation does not 

take into account the effect of frequency (by definition) and will not accurately predict 

the behaviour of a multi-frequency system.

Three-dimensional analysis is becoming popular and straight forward in the field of 

numerical modelling, and it therefore presents no restrictions in building a model which 

includes the third dimension. The differential equations will still apply to a three 

dimensional model.

Future improvements in numerical modelling in EIT requires an extension from dc 

analysis to multi-frequency ac analysis. When a multi-frequency EIT system is used, 

varying tissue conductivity with frequency will have an effect on the measured data. To 

gain maximum advantage from such a system the varying tissue conductivity m ust be 

considered in any forward modelling.
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1.7 Problems encountered in EIT

Calculation of the absolute distribution of tissue conductivity is hindered by the fact 

that it is difficult to calculate with sufficient accuracy the distribution of surface 

voltages developed when a current is passed through the object (the forward problem) 

as well as the measurement noise embedded in the obtained data in practice. Since these 

distributions are needed for image reconstruction it has not been possible to produce 

stable and reliable solutions to the impedance distribution from in-vivo data. The group 

at University of Sheffield was the first to show that images of relative changes can be 

produced which do not require explicit solution of the forward problem. These images 

were produced assuming a linearised problem, i.e. any changes from a uniform 

reference conductivity was assumed to be small enough to be neglected. However since 

these images are images of normalised changes they are often difficult to interpret. The 

only well established quantitative use of these images has been in the measurement of 

temporal changes in impedance, such as those observed in gastric emptying (Erol et al

1995). In addition EIT is strictly a three-dimensional imaging technique, and qualitative 

accuracy could only be expected from images constructed from three-dimensional data. 

As most images to date have been two-dimensional there has been little incentive to try 

and improve the quantitative accuracy of EIT although there is little doubt that 

quantitative measurements of tissue electrical properties could provide useful clinical 

information.

Image reconstruction in EIT is a non-linear reconstruction problem because the forward 

problem in EIT is itself non-linear (Brown and Barber 1984). Over the last 15 years, 

multi-electrode systems have been developed to collect sets of impedance data enabling 

the reconstruction of images of the distribution of electrical resistivity within objects. 

More recently, systems have been developed to collect impedance data over a range of 

frequencies, and also systems which collect data to enable three dimensional image 

reconstruction. Techniques also have been developed for the modelling of biological 

tissue impedance as a function of frequency of the applied current (Brown et al, 1994b).

Tissue impedance is a complex parameter and measured data is complex (Rigaud et al, 

1994). However, one key practical consideration with in-vivo data collection is that it is 

difficult to accurately measure the imaginary part of the signal because of the effects of
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stray capacitance (Brown et at, 1994b). In practice therefore only the real part is easily 

available. This may lead to some loss of quantitative accuracy in the images.

Another problem encountered with EIT is that impedance image reconstruction is ill- 

posed (Kytomaa and W eselake 1994) and therefore efforts are needed to ensure that the 

algorithm produces a useful solution. This problem arises largely from the fact that 

current does not flow in a straight path between electrodes placed on the surface of an 

object. In EIT the electrical flow path is a function of the unknown internal conductivity 

distribution of the object under investigation, and the reconstruction problem is itself 

non-linear. Also because the current flow cannot be confined to a plane, the images 

therefore reflect changes in conductivity occurring in a broad region of the body.

1.8 Aims and objectives

Numerical modelling has already been shown to be useful in EIT (Basarab-Horwath et 

al 1995, Basarab-Horwath and Dehghani 1998, Kytomaa and W eselake 1994, Meaney 

and M oskowitz 1993, Kim 1994, Paulson et al 1992, Lin et al 1994, Shahidi et al 1995, 

Griffiths 1995). The data generated using numerical methods is used to assess the 

accuracy of image reconstruction. The first aim of this study was to identify and 

successfully implement a commercially available finite element modelling software 

package. Once a suitable software package had been chosen, a number of problems 

encountered in electrical impedance tomography were investigated.

Physical phantoms of the human thorax are not available. That is to say that we can not 

presently image a human thorax and then observe what is contained within that thorax 

(we can not simply cut it up) to compare with the reconstructed image. Thus the 

accuracy of an EIT image of the human thorax is at present purely judgm ental. A two- 

dimensional (2D) finite element model of the thorax is needed, to allow the simulation 

of an idealised human thorax. This can be used to assess the accuracy of presently 

available EIT systems, and particularly the image reconstruction method used.

At present the group at the University of Sheffield are able to collect data from objects 

using a range of applied frequencies (Brown et al 1994a) and they have shown that in 

principle reasonably accurate images of derived tissue electrical parameters can be 

produced. This group has also completed the construction of a data collection system
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which can collect three-dimensional data (Metherall et al 1996). These developments 

offer the possibility of producing, for the first time, quantitatively accurate images. 

However accuracy will also be determined by other factors such as the reconstruction 

algorithm used and noise on the measured data and the effects of these need to be 

explored. Models of tissue impedance as a function of frequency of applied current are 

well established (Brown et al 1994b). Part of this thesis is concerned with the 

development of modelling techniques which can incorporate these models to generate 

complex data from a variety of idealised and realistic simulations.

Image reconstruction in multi-frequency EIT is investigated in this work when real only 

data is used and these are compared to images when complex (real and imaginary) data 

are used. The importance of ignoring the imaginary part of the data is explored.

The initial part of this project involved the construction of some simple numerical 

models, essentially one geometrically simple object of various sizes and impedance 

contrast in a ’uniform’ background. In the first instance a two dimensional model was 

constructed to investigate EIT system performance. The visibility of the system was 

studied as a function of its conductivity, permittivity and permeability over a range of 

excitation frequencies. Also, the visibility of an anomaly within a three dimensional 

model was investigated to demonstrate the modelling capability in three dimensions. 

However most of this thesis, except section 3.5.2.1, will only concentrate on 2D.

At the second stage of the study, image reconstruction in single frequency EIT was 

investigated using the sensitivity algorithm. The accuracy of this method is studied, and 

improvements in image quality using a-priori information and implementation of an 

iterative method are also investigated. A finite element model of an idealised human 

thorax was therefore developed to allow simulation of realistic data. This model is used 

to solve the forward problem and generate boundary data.

Finally, the effect of frequency in multi-frequency EIT is studied. The importance of 

complex conductivity as well as complex data is highlighted and improvements are 

suggested. The already developed model will then represent tissue impedance as a 

function of the frequency of the applied current and will generate complex data from  a
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variety of idealised and realistic simulations. This will enable the assessment of the 

accuracy of present image reconstruction algorithms in multi-frequency EIT.

1.9 Chapter description

Chapter 1 introduces the concept of medical imaging. Electrical impedance tomography 

is described and some applications to medicine are introduced. Previous work in 

numerical modelling is discussed and the problems encountered in EIT are also given.

Chapter 2 introduces and discusses the forward and inverse problem. Numerical 

methods are discussed in more detail together with the approach taken in this thesis.

Chapter 3 details the forward modelling together with initial findings for measures of 

performance in an ideal EIT system.

Chapter 4 introduces the concept of image reconstruction in single frequency EIT. 

Methods of image reconstruction are discussed together with problems encountered. 

Quality of reconstructed images are presented and a new iterative reconstruction 

algorithm is presented.

Chapter 5 discusses multi-frequency image reconstruction. Limitations in the present 

methods are shown and the effects of ignoring complexity of the data are presented. 

Full complex reconstructed images are presented.

In the last chapter, the overall results are discussed and a conclusion to the study is 

given together with suggestions for future work.
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Chapter 2

2. The solution of the Forward problem

2.1 Introduction

In electrical impedance tomography, we are concerned with the calculation of the 

internal conductivity distribution from given boundary voltage measurements. Now 

consider the case where the calculation of the boundary voltages from a given internal 

conductivity distribution is required. That is

d = G c  (2.1)

where d is a vector of the boundary voltages, c is a vector of the internal conductivity 

distribution and G is a transform function. This relationship is known as the Forward 

problem, Figure 2.1.

Unknown Forward Known
boundaiy ^ "" Tiansfoimalion ^ conductivity
voltages distribution

d G c
Figure 2.1. The Forward problem in EIT. This corresponds to the calculation of boundary voltages 

from a given known internal conductivity distribution.

The Forward problem involves the determination of the electric potential distribution 

throughout a region, given the conductivity distribution of the system. There are a 

number of methods available for the calculation of the Forward problem. These are 

discussed in the following sections of this chapter.

The Inverse problem is the determination of the internal conductivity distribution of a 

system given the boundary voltage measurements; this is shown in Figure 2.2. Here

c = G~ld

where G '1 is the Inverse transform function.

(2.2)



Known
boundary
voltages

Inverse
Transformation

Unknown
^conductivity

distribution
d G '1 c

Figure 2.2. The inverse problem in EIT. This corresponds to the calculation of the internal

conductivity distribution from a given known set of boundary voltages.

2.2 The Forward problem

In order to obtain the electric potential throughout a given region of known conductivity 

distribution and hence obtain the boundary voltages on the periphery, the Forward 

problem for the given conductivity distribution and shape must be solved. The Forward 

problem can be represented as a set of partial differential equations that can be solved to 

obtain the solutions for a given system.

There are two techniques available which can be utilised for the solution to the partial 

differential equations, numerical and analytical. In the analytical method, the solution 

takes the form of an algebraic function into which the values of parameters defining the 

particular system can be substituted. Generally speaking, analytical solutions are most 

likely to be successful in the case of fields which are, or can be treated, as two- 

dimensional (Binn et al, 1992). Otherwise, numerical solutions which take a set of 

values of the function describing the system, becomes appropriate.

For the purpose of this work, the numerical approach has been used for the calculation

and the solution of the Forward problem. Numerical methods are a process whereby a

model of a system or physical situation is described as a set of equations which are then

solved numerically, usually with the use of a computer. A numerical method has many

advantages: it allows the performance of experiments numerically, in situations where

they are not otherwise physically possible or would not be cost effective. The advantage

of numerical methods over analytical is simply that numerical solutions are possible

where analytical solutions are not. As an example, no analytical solution has been

published to date for the electric potential distribution within an EIT system containing

multiple anomalies (Basarab-Horwath and Dehghani 1998). Analytical solutions do

however exist for the electric potential distribution on the boundary of a uniform

circular plane (Bland 1961, Seagar 1983) and throughout a uniform circular plane
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(Pidcock et al 1995a, 1995b). Seagar (1983) has also produced the analytical solution 

for a single anomaly within a uniform region. He has also presented a solution for 

simple multi-anomaly system, but this takes the form of a combined numerical and 

analytical solution.

The Forward problem concerned in EIT is essentially an electromagnetic problem. That 

is to say, given a system of conductivity, permittivity and permeability distribution and 

the pattern of a given current injection at a point on the boundary, the solution is the 

resultant electric and magnetic field throughout the system, and from this the resulting 

current and voltage distribution. The problem is therefore best given as an 

electromagnetic problem, and using numerical methods, it hence becomes a 

computational problem.

2.3 The computational Forward problem

For the computational Forward problem, the electromagnetic field for a given system is 

solved by the use of numerical methods. Numerical analysis is a particular approach for 

solving mathematical problems. In numerical analysis, the differential equations are 

converted to a set of algebraic equations by using certain mathematical techniques. The 

solution of the system of algebraic equations is a set of the values of physical variables 

on the nodes of the grid used to discretise the problem.

The development of the numerical computation of electromagnetic fields is assisted by 

modern computer technology. The most commonly used numerical methods are the 

finite element method (FEM), the finite difference method (FDM) and the boundary 

element method (BEM). Of these three methods, each has its advantages and 

disadvantages.

FDM  has been widely used in fluid dynamics and semi-conductor modelling as well as 

a limited cases of EIT simulations (Griffiths 1995). It has however been replaced by 

FEM in many other branches of engineering modelling (Silvester and Ferrari 1990). 

The main drawbacks of FDM are (Hua and W oo 1990):

1. There are considerable difficulties in modelling problems of complex boundaries 

since the discretization scheme has a fixed topology.

2 2



2. FDM gives point wise approximation to the governing equation (1.2), whereas FEM 

gives a piecewise approximation to the solution.

Both of these problems are overcome by the FEM.

In BEM only the boundary surfaces must be discretised. Because the computational 

mesh is simpler in BEM, it requires less computation. In general FEM is preferred for 

problems where the region of interest is highly heterogeneous, whereas BEM method is 

preferred for highly homogenous regions.

The FEM has in recent years become by far the most popular technique in 

computational electromagnetic analysis. Many general purpose computer packages have 

been developed which provide the basis for computer aided design (CAD) systems. The 

technique is not suitable for hand calculations and the algorithm is somewhat 

complicated.

In FEM the solution domain can be discretised into a number of uniform or non- 

uniform finite elements that are connected via nodes. The change of the dependent 

variables with regard to location is approximated within each element by an 

interpolation function. The interpolation function can be of 1st or 2nd order 

polynomials (implying the existence 1st or 2nd order elements), however, a higher 

order polynomial provides a greater accuracy. The interpolation function is defined 

relative to the values of the variables at the nodes associated with each element. The 

original boundary value problem is then replaced with an equivalent integral 

formulation. The interpolation functions are then substituted into the original equation, 

integrated, and combined with the results from all other elements in the solution 

domain. The result of this procedure can be reformulated into a matrix equation of the 

form

aV = b (2.3)

which is a re-written form of Laplace’s equation with

a = V.oV (2.4)
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FEM  is a powerful method of calculating the Forward solution by determining the field 

distribution based on the tissue properties. The element sizes and shapes can be

1. Designed to accurately model the contours of the body being studied.

2. M ade relatively small in areas where the field varies rapidly and relatively large in 

areas where the field is relatively uniform.

In this manner the problem can be discretised with a minimum number of nodes which 

directly influences the size of the matrix that will have to be inverted and hence reduce 

computation time.

FEM also provides a fast, quick and reliable method for examining the various effects 

of EIT system construction and image reconstruction methods. Researchers have used 

this technique to validate their method, and to find solutions to problems which 

otherwise would have been difficult. Shahidi et al (1995) have for example used this 

method to examine the effect of electrode configurations, the sensitivity to off-plane 

objects and to noise in measured data. They have also used this method to validate the 

modelling procedures by comparison of numerical results with experimental data 

acquired from a similar physical model.

Kytomaa and Weselake (1994) have used an iterative finite element approach to look at 

accuracy and speed of image reconstruction using a combined choice of current 

projection and mesh geometry. Others have also used this method to look at various 

reconstruction algorithms (Shahidi et al 1995, Lin et al 1994, Ruan et al 1994).

More recently Kolehmainen et al (1997) used FEM to study the effect of boundary 

shape of an object, electrode size and localisation and electrode contact im pedance in 

resulting reconstructed images. This study was however confined to 2D, and the 

problem was treated as a dc problem.

The modelling of current flow through a region being imaged is an essential component 

in EIT since frequent solution of the Forward problem is often required. In an iterative 

image reconstruction method for example, boundary voltages are calculated for an 

‘approximated’ conductivity distribution and these calculated boundary voltages are 

compared to the actual measured voltages. The final image is a conductivity distribution
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for which the difference between the measured boundary voltages and the calculated 

boundary voltages is at a minimum. Accurate Forward modelling is therefore a major 

component in such an iterative image reconstruction method. In general due to ill- 

conditioning of the problem, errors in the voltages measured on the electrodes are 

translated into large errors in the calculated conductivity distribution.

As shown majority of previous studies concerning the modelling of EIT have restricted 

themselves to dc analysis. It is assumed for this work that dc analysis of an EIT system 

will not be accurate since biological tissues have properties which will respond 

differently to different excitation frequencies. To further investigate this assumption full 

multi-frequency modelling and analysis will be needed.

FEM has been developed and improved over many years, and it is the numerical 

method which is utilised for this work.

2.4 Finite element analysis

There are several effects as a result of ac current which need to be considered in any 

multi-frequency analysis. Such effects are best described by M axw ell’s equations:

(2.5)

(2 .6)

V-D = p (2.7)

V B  = 0 (2 .8)

D = £E (2.9)

(2 .10)

where H is the Magnetic field intensity vector (A m '1), B is the Magnetic flux density 

vector (T, Tesla), E is the Electric field intensity vector (V m '1), D is the Electric flux



density vector (Cm '2), J  is the electric current density vector (Am'2), £ is the absolute 

permittivity, jI is the absolute permeability, and p is the electric charge density (Cm' ).

In order to investigate the effect of varying frequency and its contribution to the 

resulting displacement and eddy currents, both the dielectric constant and permeability 

of the tissue must be incorporated into the model as well as tissue conductivity.

Equations (2.5) - (2.10) can be used in conjunction with Coulomb’s gauge to produce a 

complete set of coupled equations that define the EIT model accurately (Appendix A).

It can be shown that the full set of coupled equations that represent a full 3D 

electromagnetic fields model can be given as (Appendix A):

is imposed on the external boundaries to all conductors, where A is the vector potential 

and n is a vector normal to A. In addition, for ac problems which approach the dc limit, 

the gauge condition becomes weaker as the frequency decreases.

There are instances where in a model of interest both displacement current and 

conduction current are significant, whilst eddy currents are not. In this case the equation 

to be solved is (Appendix A):

(2 . 12)

and in regions with zero conductivity

A-n = 0 (2.13)

V.(oV V + e V — ) = 0 
dt

(2.14)
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2.4.1 Modelling stages in finite elements

There are essentially 5 stages in any given single modelling problem. These stages are 

discussed below and a flow chart showing a complete modelling procedure is shown in 

Figure 2.3.

Level 1. The Physical Model:

The physical model is defined. This includes physical geometry information, material 

identification and property and also charge density throughout the model.

Level 2. The Mathematical Model:

In this stage the partial differential equations to be solved are identified, boundary 

conditions and values are assigned (e.g. fixed boundary currents and voltages), and also 

the symmetry of the problem may be exploited (if the model is symmetrical, only part 

of the model may need to be solved as the solution may also be symmetrical).

Level 3. The Finite Element Model:

The physical model is divided into smaller sections (triangular or brick elements) and 

element matrices are formed using, for example, the Galerkin method (Silvester and 

Ferrari 1994).

Level 4. The Algebraic Model:

The Element matrices are merged together to obtain a banded symmetric system matrix 

with boundary conditions included.

Level 5. The Computer Model:

The system is solved by, for example, Gaussian Elimination (Mitchell and Griffiths 

1977).
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Figure 2.3. FEM, A diagrammatic presentation



In general there are three main sections in any single model. The first is the pre­

processor stage for data and mesh, second is the solution processor stage and third the 

post-processor stage where solutions are extracted.

The physical, mathematical, finite element and the algebraic model are all defined in 

the pre-processor. The physical geometry, material property and identification, 

boundary conditions, symmetry identification, problem specification and element 

matrix formation are also defined at this stage. The model is then saved as a file or a 

combination of files, and solved using the software’s solver. If any errors are 

encountered during this stage, it will be necessary to return to the pre-processor and re- 

inspect and redefine the model. Such errors would be errors encountered if the model 

has not been constructed accurately as discussed earlier in this section. Once the model 

has been successfully solved, numerical results can be viewed in the post-processor. It 

is at this stage that the user can define the desired output variables, in a chosen format 

i.e. graphical display and / or ASCII output file. Any required data processing can then 

be performed on the obtained results.

2.4.2 Finite Element software for Electromagnetic simulation

Various commercially available software packages for solving electromagnetic 

problems have been evaluated in order to seek the best software that matched the needs 

of finite element analysis in EIT. Some were found to meet only part o f the 

requirements of EIT, and software that fully satisfies all requirements was found to be 

difficult to obtain. In this section, the evaluated software will be briefly discussed, and 

the limitations of each will be presented.

2.4.2.1 ELEKTRA by Vector Fields (version 7)1

ELEKTRA can use a combination of vector and scalar potentials to model time varying 

electromagnetic fields. Vector potentials have to be used in conducting media, and 

scalar potentials can be used in free space and zero conductivity media.

Various analyses were performed in order to determine the limitations of the package. 

An important limitation is that the software does not allow the specification of a

1 V e c to r  F ie ld s  L td , 2 4  B a n k s id e , K id lin g to n , O x o n , 0 X 5  1JE , U K
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constant current as a boundary condition. This meant that a constant potential had to be 

defined instead, and the current flowing through the model had then to be measured to 

enable the re-scaling of the potential to provide the required value of constant current.

Another limitation of the software is that an analogy had to be used between the 

electrical problem at hand and the magnetic problem that the software is designed to 

analyse. This can lead to complications.

The main limitation of the software is that it does not allow for displacement currents 

within the model. For the purpose of this study displacement currents are thought to be 

of importance in EIT, and hence should not be ignored. Biological tissue have a very 

high dielectric constant, and at high frequencies, displacement currents will become 

significant. As the software does not solve for the full set of M axw ell’s equations, it 

would not allow for the effects of eddy currents.

ELEKTRA from Vector Fields is a reliable FEM software for electromagnetic 

problems. It is not however very user friendly and it was found that ELEKTRA was not 

a suitable FE analysis package for finite element modelling of EIT.

2.4.2.2 Maxwell 2D Field Simulator by Ansoft (version 3.0.12)2

M axwell’s field simulator comes with various solvers, including the 2D eddy current 

solver, and 2D ac conduction solver.

The ac conduction field simulator solves for the current flow due to a boundary 

potential value, but it does not, however, solve for the magnetic and electric field 

effects due to the displacement current. The effects of eddy currents in conductors and 

time-varying currents is simulated by the Eddy Current 2D Field Simulator.

The Eddy current 2D field simulator assumes a current flowing into the plane of the 

geometry, which is not the case in EIT, where the current is flowing through the plane. 

Therefore the 2D simulator was found not to be suitable for EIT.

2 A n s o f t  E u r o p e , R e g a l H o u s e , 9 th  F lo o r , 7 0  L o n d o n  R o a d , T w ic k e n h a m , M id d le s e x ,  T W 1  3 Q S , U K
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2.4.2.3 Maxwell 3D Eddy Current Field Simulator by Ansoft (version 3.0.12)3

The eddy current field simulator computes time varying magnetic fields that arise from 

either ac currents and/or External time-varying magnetic fields.

The solver, however, ignores all effects of displacement current. Another restriction is 

that the solver only looks at effects caused by the eddy current (Ansoft manuals). This 

is to say that the ac current flow can not be simulated using this solver. Also the solver 

does not calculate voltages, rather, it deals only with currents.

2.4.2.4 Electromagnetic solver by Ansvs (version 5.0a)4

The electromagnetic solver by Ansys implements the Vector potential method both for 

2D and 3D electromagnetic fields.

The displacement current is again ignored. In this solver, only the eddy currents are 

investigated, and effects from conduction currents are ignored. Again the solver does 

not calculate voltages, it only deals with current.

Ansys also provides a steady state current analysis, which is used to determine the 

current density and electric potential distribution due to direct current (dc) or potential 

drop. If this solver had been for ac current conduction, it would have provided an 

adequate tool for the analysis to be carried out in this project. The two solvers 

(electromagnetic and AC current conduction) then could have been coupled for the 

following purpose: the time varying current can be calculated using the steady state ac 

conduction solver, and its results can be used to stimulate eddy current effects using the 

electromagnetic solver. The effects of the Eddy currents can be therefore com pensated 

using the ac conduction solver, once they are known (providing the displacement 

current effects could have been allowed for). So it becomes apparent that to solve for all 

of M axwell’s equations, to obtain the ac conduction solution which would include the 

effects of eddy currents, and hence skin effect, it is necessary to solve for ac conduction 

and eddy currents simultaneously.

3 A n s o f t  E u r o p e , R e g a l H o u s e , 9 th  F lo o r , 7 0  L o n d o n  R o a d , T w ic k e n h a m , M id d le s e x ,  T W 1  3 Q S , U K

4 A N S Y S  E u r o p e , W y v o ls  C ou rt, S w a llo w f ie ld , R e a d in g  R G 7  1 P Y , U K
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However, this was not found to be possible since the required ac conduction current 

solver was not available and hence further investigations using Ansys were abandoned.

2.4.2.5 Three dimensional Electromagnetic Analysis by MEGA (version 6.24)5

MEGA is a fully integrated software package for solving 2D and 3D electromagnetic 

problems using the FEM. It solves for steady-state ac with eddy currents.

M EGA can solve for equations (2.11) - (2.13) and therefore does not ignore eddy 

currents or displacement currents. It is capable of both 2D and 3D modelling. A 

constant current can be set at an electrode face, and boundary voltages can be obtained 

throughout the system. If eddy currents can be neglected, it is possible to solve only for 

conduction and displacement current, equation (2.14).

2.5 Conclusion

The idea of the Forward modelling to solve for the potential distribution within a given 

region has been presented. The underlying equations that describe such a system are 

given and from the number of numerical methods available for solving these equations, 

FEM has been discussed and chosen.

The underlying method for finite element analysis is discussed and basic modelling 

stages using this method are also stated. A number of FEM software packages have 

been reviewed for the purpose of solving the Forward model in EIT and M EGA was 

chosen as it solved the equations that best described an EIT system.

5 A p p lie d  E le c tr o m a g n e t ic s  R e se a r c h  C en tre , U n iv e r s ity  o f  B a th , B a th , B A 2  7 A Y , U K
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Chapter 3

3. Modelling of the Forward problem

3.1 Introduction

To obtain the solution of the Forward problem, that is the electric potential distribution 

within an EIT model for a given system, the numerical method based on FEM has been 

chosen. The FEM software is a commercially available software package, MEGA, and 

in this section basic modelling stages are described for this software. A detailed 

description of modelling procedures can be found in Appendix B.

3.2 Modelling method and model construction

The procedures described here are the basic steps taken to construct an EIT model using 

the available FEM package, MEGA.

Initially, the physical geometry of the problem is defined. For the work described here 

(except where stated for eddy current formulations where the model needs to be 3D), 

the modelled phantom is a 2D circular disk of radius 5 cm, Figure 3.1. A total of 16 

electrodes are also modelled and are constructed on the outermost circumference of the 

circular phantom. The electrodes are placed equidistant from each other. A total of 2048 

brick and triangular elements are used, with 1920 elements making up the circular 

phantom and 8 elements for each of the 16 electrodes on the periphery.
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Figure 3.1. The FEM of the circular phantom.
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Figure 3.2. Central radius of Figure 3.1 enlarged to display the small triangular elements placed at

the centre.
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The elements used in this model are second order elements which allows for a more 

accurate solution. First order elements may be used for a coarse approximation to the 

solutions, after which the user has the option of either increasing the number of 

elements used, or increasing the order of elements for a more accurate solution. The 

latter option is more desirable, since it only involves the setting of a flag in the software 

for the same distribution of the elements, rather than having to re-define the element 

distribution to increase element number.

The central elements shown in Figure 3.1 are of small sizes, and these are magnified 

and shown in Figure 3.2. Generally, such a large number of elements are not crucial and 

it is preferred to use large regular elements within central regions. However, the 

software package only allowed semi-auto mesh generation and a limited freedom was 

available for mesh alterations. However for the work described here and in the 

following sections, this large number of elements within the mesh presented no 

disadvantage and all proposed methods will be applicable to any mesh definition.

The material properties are next assigned, the values of which are shown in Table 3.1. 

The modelled phantom was considered to contain a uniform distribution of saline, into 

which objects of various electrical properties and sizes would be placed. The electrodes 

are considered to be much more conductive than the saline.

Table 3.1. Electrical properties of material in modelled phantom

C o n d u c tiv ity  (S m '1)

S a lin e 1

E le c tr o d e s 1 0 0 0 0

The material property used for the uniform model are considered to be neither magnetic 

nor capacitive. The permeability and permittivity value were therefore not defined.

The problem type chosen for this model is the formulation needed where conduction 

current and displacement current both have significant effects and no eddy currents are 

present Equations (2.14). W here permeable material are present, eddy currents will also
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be significant. For such studies the formulation needs to be adjusted to account for this 

effect.

The geometry of the physical model has so far been designed and a finite element 

model constructed. The material property has been specified and the type of problem 

has been set. Next, a current source must be specified at the face of one electrode and a 

ground reference point at face of another electrode. In this study an adjacent drive / 

receive electrode combination was used. That is, the current is injected through one 

electrode and extracted through the neighbouring electrode, Figure 3.3.

Current Source

Grounded electrode

Figure 3.3. Diagram showing points along two adjacent electrodes where current is injected and

extracted.
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The frequency o f excitation can also be set. For the purpose o f this particular model, 

the excitation frequency was set at zero Hertz. If  displacement current analysis is to be 

performed a non-zero excitation frequency must be specified.

The constructed model is now complete. Once the solution to the model has been 

calculated a number o f variables can be extracted from this solution. The simplest 

extractable parameter, and also the most useful for our studies is the electric potential 

distribution throughout the model. Figure 3.4 shows the equipotential for the modelled 

uniform phantom.

Electric potential throughout the model, at each nodal positions o f all elements are 

available. We are concerned with calculating voltages underneath or at the electrode / 

main body contact region, where in practice, this voltage would be measured using 

instrumentation. These values can be extracted from the model, and an example o f 

such is shown in Figure 3.5. This plot shows the boundary voltage distribution for a

1*3571
1*3006
1*2440
1*1875
1 .1 3 0 9
1*0744
1*0179
0*9613
0*9048
0 .8 4 8 2
0*7917
0 .7 3 5 1
0 .6 7 8 6
0*6220
0*5655
0*5089
0*4524
0*3958
0*3393
0 .2 8 2 7
0 .2 2 6 2
0 .1 6 9 6
0 .1 1 3 1
0 .0 5 6 5 5
0 .0 0

Figure 3.4. Equipotential plots for a uniform model.

uniform model solved as described above.

38



B oundary  V oltages

1.0

1.6

1.4

1.2

1

>
0.8

0.6

0.4

0.2

0

Figure 3.5. Boundary voltage distribution for a uniform model.

The minimum voltage value corresponds to the ground electrode, Figure 3.3, and the 

maximum voltage corresponds to the source electrode. Since a constant current source 

is used, the voltage value at the source electrode depends on the total conductivity of 

the system. For a higher conductivity, a smaller voltage would be developed and for a 

smaller total conductivity, a larger potential will be seen at the source electrode.

As well as the voltages that are obtained, other variables that are useful can be 

extracted. Current density throughout the model is useful, as it generates and displays 

the current pattern and paths within the model. The current density of the uniform 

model is shown in Figure 3.6. Information can be seen visually at this stage, in 

particular, the shorting effects that the electrodes have on the current flow. Such effects 

are discussed later. The second is the electric field distribution, Figure 3.7. It is also 

useful in understanding the effects that various anomalies of different electrical 

properties have on an EIT system. All vector quantities are given at the Gaussian 

(central) point within the element.

Plots shown in Figure 3.6 and 3.7 are for two quantities that are proportionally related. 

Current density is equal to the electric field multiplied by the conductivity for a given 

pixel. Therefore the two plots shown are virtually the same, except for the variable
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scaling depending on the conductivity o f the element. For example, the electrodes have 

a very high conductivity, and the current density within them are seen as more 

significant than the electric field.

Figure 3.6. Current density plot for a uniform phantom

Figure 3.7. Electric field plot for a uniform phantom
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3.3 The 3D model

The model shown so far has been a 2D model, describing a slice through a 3D object. 

For the purpose of any 3D model analysis, the same model can be extruded in the 3rd 

dimension, so that analysis can be more accurately defined. An example is shown in 

Figure 3.8. The dimensions of this 3D model are as for the 2D model, but the model 

now contains a 3rd dimension, its length. The length in this example has been set to 

twice its diameter.

After solving of the 3D model, the extractable variables are as they were discussed for 

the 2D model, with the addition that now, there are many planes to investigate, rather 

than just the previous single plane.

Figure 3.8. A 3D cylindrical model of phantom

41



3.4 Discussions of model construction

M odelling stages using the FEM software have been described. Extractable solutions of 

an EIT model have been presented and these solutions will next be used for analysis of 

the performance of an E U  system.

3.5 Measures of Performance

3.5.1 Introduction

In EIT we aim to visualise the internal regions of a system, the human body in case of 

medical EIT, by means of non-invasive external measurements. Current passes through 

the body in a path determined by the varying conductivity of internal organs, and this 

results in voltage changes measured on the surface. The performance of a single 

frequency EIT system can be measured in terms of spatial resolution, conductivity 

resolution and conductivity contrast. In this section, the concept of conductivity contrast 

and resolution will be defined and calculated for a given model.

In EIT we also aim to maximise the boundary voltage change due to a change in the 

internal conductivity distribution of a region within the body being imaged (for example 

an anomaly placed within a uniform region). This enables the conductivity change to be 

detected more easily in relation to its background. There are factors that a user can 

change to achieve this maximisation, for example the injected current pattern and the 

electrode configuration. There are however, three variables outside the users control 

that can influence this change in boundary voltages, the first being the actual change in 

conductivity (anomaly conductivity) the second being the size of the anomaly and the 

third being the actual position of the anomaly within the region of interest. The first two 

variables are compared to the size and conductivity of the uniform un-perturbed region 

to give an indication of their influence.
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Figure 3.9. Circular object with co-central circular anomaly

Seagar et al (1987) defined three parameters. From Figure 3.9:

1. The spatial resolution is defined as the smallest region of a medium in which the 

conductivity can be independently determined, equation (3.1).

r
Spatial resolution = — (3.1)

2. The conductivity contrast is the ratio between the conductivity of an anomaly to that 

of its surrounding (background) region, equation (3.2).

Conductivity contrast - a -  —  (3.2)

3. The conductivity resolution is defined as the fractional change in conductivity 

contrast, equation (3.3).

So
Conductivity resolution = — -  (3.3)

a
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Limits of the spatial and conductivity resolution are mainly determined by measurement 

errors such as movement artefacts and electrode location errors as well as 

instrumentation noise.

3.5.2 Visibility

The visibility of an anomaly is a measure of the departure of the boundary voltages 

from those of a uniform body. If a region is uniform, visibility is zero. Visibility Q 

for a single projection is defined by Seagar et al (1987) and Basarab-Horwath et al

(1995) as:

anomaly present, dVuj is the corresponding differential voltage for a uniform

phantom or model and N is the number of differential voltages for a given voltage 

profile.

In order to investigate the visibility in an EIT system, from equations (3.4) and (3.5), 

the differential boundary voltages for an un-perturbed uniform phantom, and the 

differential boundary voltages with the presence of an anomaly, (a perturbation in 

conductivity in a given region within a phantom) are needed. A numerical model, 

using FEM method already discussed, was used to calculate these voltages. The 

advantage of such method is that the results are free of measurement noise and error, 

however they may contain small computational errors dependent on the model used. 

This will therefore result in values which closely represent an ideal EIT system.

(3.4)

where:

_ [dV-dVm]  
q> [ d v ,+ d v j

(3.5)

dVj is the 'fi1 differential voltage between adjacent electrodes of the model with an
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The FEM model already described, a uniform circular model with a diameter of 10 

cm consisting of saline, was solved and boundary voltages were calculated for this 

uniform model, Figure 3.10(a). From this dVuj, the differential voltage for a uniform

model in equation (3.5) was calculated for the adjacent electrode configuration. Then 

circular anomalies of radius Ra = 1.5, 3.5, and 4.5 cm were modelled co-centrally in 

the uniform phantom, and they were each solved for conductivity ranging from 100 

S m '1 to 0.01 Sm '1. Figure 3.10(b) - (d) shows the geometrical properties of these

models that were then used to calculate the dVj, the i*h differential voltage of the 

model with an anomaly present for equation (3.5).

Rb = 5 cm

Saline 
o = 1 S/m

(a)

Anomaly

Ra=1 5

Saline

Rb = 5 cml

(b)

Anomaly

Rb = 5 cm

Saline

(c)

Ra = 4.5 cm

Anomaly

Rb = 5 c m \

Saline

(d)

Figure 3.10. (a) A uniform phantom together with 3 different sized centrally placed anomalies, 
(b) Ra = 1.5 cm, (c) Ra = 3.5 cm, (d) Ra = 4.5 cm.
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Figure 3.11, shows visibility, Q, calculated for these anomalies. These results are as 

expected and confirm the previous findings of Seagar et al (1987) and Basarab- 

Horwath et al (1995).

0.2 -

O

-0.4 -

- 0.6  -

Conductivity Contrast

-------Ra = 1.5
—■—Ra = 3.5
—X— Ra = 4.5

Figure 3.11. The visibility Q for anomalies of Ra = 1.5,3.5,4.5 cm, and o  = 100,10,1 ,0 .1 , and
0.01 Sm 1.

From Figure 3.11 several features are evident. First, when an anomaly of any size, 

has a conductivity that is equal to that of its background, its visibility is zero. This is 

expected, as when an anomaly’s conductivity is the same as background it would be 

as if no anomaly is present. Second, a conductive anomaly has negative visibility 

where as an insulating anomaly has a positive visibility. This is advantageous, since 

it is possible to determine from Q values, whether an anomaly is conductive or 

insulative, by just considering the sign of Q. Third, it is evident that a conductive 

anomaly of a given radius, is more visible than one of exactly the same radius but 

with reciprocal conductivity. Table 3.2 shows the visibility values that were 

calculated for the above models, which were also used in Figure 3.11.

46



Table 3.2. Visibility values Q for three anomalies of various conductivity values.
R a =  1 .5  c m R a =  3 .5  c m-a -  *>~ R a =  4 .5  c m

C o n d u c tiv ity  =  0 .0 1  Sm"*  

C o n d u c tiv ity  =  0 .1  S m ’ * 

C o n d u c tiv ity  =  1 S m  * 

C o n d u c tiv ity  = 1 0  S m  * 

C o n d u c tiv ity  = 1 0 0  S m  *

Q  =  0 .0 7 6 2 0 8  

Q  =  0 .0 6 5 2 7 8

Q = o

Q  =  0 .3 3 0 3 5 4  

Q  =  0 .2 9 6 1 3 3

Q  =  o

Q  =  0 .5 7 7 9 6 9  

Q  =  0 .5 3 2 1 7 9

Q = o
Q  = - 0 .0 8 7 1 1  

Q  = - 0 .1 0 7 8

Q  =  - 0 .4 6 0 9 4  

Q  =  - 0 .5 7 1 0 2

Q  =  - 0 .6 6 4 4 3  

Q  = - 0 .8 0 4 6 1

As an example, for an anomaly of radius Ra = 4.5 cm, of conductivity value of

conductivity a  = 1 Sm"1, Q = -0.80461, compared with an anomaly of the same size 

but with conductivity value of a = 0.01 Sm '1, where Q = 0.577969. This has been 

previously reported by Basarab-Horwath et al (1995) and Basarab-Horwath and 

Dehghani (1998).

Consider equation (3.5). If at a given boundary measurement point, the differential 

voltages are such that the term qj is negative, while at another measurement point it

is found to be positive, there will be some effects of cancellation when the calculated 

qj is summed for all points in equation (3.4) for the calculation of Q. It is for this

reason that a new measure of visibility G is proposed (Basarab-Horwath and 

Dehghani 1998), where G is given by:

a  = 100 S m '1, placed in a phantom of radius R^ = 5 cm filled with saline of

(3.6)

where:

[ d v - d v j
dV„

(3.7)

the i**1 fractional change in boundary voltage. G is the RMS value of the fractional 

change in differential voltage due to an anomaly and therefore has more physical 

significance than Q.



Table 3.3 shows the corresponding calculated G values which are also plotted in Figure 

3.12. It is observed now that all values of visibility G are positive. Also as with 

previous visibility factor, anomalies of any size with a conductivity same as background 

are found to have zero visibility. The major difference is now however, the insulative 

anomalies are found to be more visible than anomalies of same size, but with reciprocal 

conductivity. Larger anomalies are more visible than smaller anomalies.

Table 3.3. Visibility values G for three anomalies of various conductivity values.
R a =  1 .5  c m R a =  3 .5  c m R a =  4 .5  c m

C o n d u c tiv ity  =  0 .0 1  S m *
G  =  0 .0 4 1 1 4 6 G  =  0 .3 2 4 9 3 8 G =  1 .1 9 3 2 9 1

C o n d u c tiv ity  =  0 .1  S m ’ *
G  =  0 .0 3 3 8 6 5 G  =  0 .2 3 3 9 9 6 G  =  0 .6 3 8 5 0 7

C o n d u c tiv ity  =  1 S m *
G  =  0 G  =  0 O ll o

C o n d u c tiv ity  =  1 0  S m ’ *
G  =  0 .0 2 9 6 8 1 G  =  0 .1 0 2 1 5 9 G  =  0 .1 5 8 3 0 5

C o n d u c tiv ity  = 1 0 0  S m  *
G  =  0 .0 3 5 1 3 1 G  =  0 .1 1 6 4 5 2 G  =  0 .1 7 6 5 4 5

o

0.4

0.2

1 100.01 0.1 100

Conductivity Contrast

-------- Ra = 1.5
—■ — Ra = 3.5
—X — Ra = 4.5

Figure 3.12. The visibility G for anomalies of Ra = 1.5 cm, 3.5 cm, 4.5 cm, and c  = 100,10,1, 0.1,
and 0.01 Sm'1.

This new measure of visibility, G, is an RMS value and has a more physical meaning 

than the previously defined measure, Q. These results show, that at a single frequency, 

for a purely conductive anomaly, i.e. not permittive or permeable, an anomaly with a 

conductivity less than background is more visible than one with same geometry, but 

with reciprocal conductivity. Furthermore, it confirms previously findings that larger 

anomalies are more visible than smaller anomalies. However, some information is lost
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in this new measure. From the calculated Q values, it is possible to decide whether an 

anomaly is resistive or conductive, by just considering the sign of Q. Since G is an 

RMS value, and always positive, this information is lost.

It is not usually important to obtain information to see whether an anomaly is 

conductive or insulative, since in forward modelling these known anomalies are either 

physically placed in a phantom for measurement collection, or are modelled 

numerically as done here. It is more important to understand the behaviour of the 

system. It must be considered which measure of visibility is more accurate, since Q 

shows that a conductive anomaly is more visible than one with same size but with 

reciprocal conductivity G shows the opposite case.

There are possible situations where the presence of a conductive anomaly will produce 

differential boundary measurements which when used to calculate Q will produce zero 

visibility. This will be due to addition of equal but positive and negative in magnitude 

measurements. The same data used to calculate G, will however produce a non-zero 

visibility values. It is to this effect that Q is considered inaccurate, and the new 

proposed visibility G is considered as a more suitable replacement.

So far only the effect of conductivity on the visibility of anomalies within a single 

frequency has been studied. For purely conductive materials, frequency has no effect on 

the total impedance seen. The total voltage seen at the face of an electrode will depend 

on the total current applied, regardless of its frequency. M ost materials however, are not 

purely conductive. In process tomography, there maybe a situation where permeable 

metals are under investigation. In medical tomography, biological tissue have a very 

high permittivity. It is generally known that impedance of biological tissue decreases as 

frequency increases (Blad 1994, Osypka and Gersing 1995). This is due to the 

permittivity of biological tissue, as frequency increases more current penetrate intra­

cellular fluids of the cells and hence reduce impedance. At higher frequencies, 

displacement currents become significant. In a situation where metallic conductors are 

under investigation, eddy currents are present, which give rise to skin effect (Hammond
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and Sykulski 1994). The skin effect will cause the total impedance of a conductor to 

increase, by confining the current only to the outer skin of the conductor.

In order to investigate these effects, the numerical method must be able to account for 

both displacement current and eddy current as well as conduction current. As discussed 

earlier, the FEM software used for this work is capable of such requirements. In the 

following sections the effect of frequency on visibility of permittive and permeable 

material is investigated.

3.5.2.1 Frequency and permeability

Eddy currents are generated in a plane perpendicular to the plane of the conduction 

current. In order to study the effects due to eddy currents the use of a 3D model is 

necessary to allow for their consideration. In order to investigate the effect of frequency 

on the visibility of an EIT system, a 3D uniform model with a radius of 5 cm and 

thickness of 1 cm was constructed as shown in Figure 3.13. The material property 

within the uniform model were set as Gi = 1 Sm"1 and pi = 10 where Gi is the 

conductivity and gj is the relative permeability. A constant current of 1 mA was used in 

a adjacent drive/receive combination.

The equations set to be solved for this problem are now as discussed previously, 

equations (2.11) - (2.13) of section 2.4.

Boundary voltages were calculated over a range of frequencies, from 1 Hz to 1 MHz. 

Absolute amplitude of differential boundary voltages were obtained using FEM  and 

visibility Q and G were calculated for each frequency with reference to the lowest 

frequency measurement, i.e. in equations (3.5) and (3.7) the term dVuj is the

differential boundary voltage for a uniform phantom at 1 Hz.

Table 3.4 shows the calculated visibility values and a plot of these values are shown in 

Figure 3.14.
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Table 3.4. Visibility values Q and G for a uniform model over a range of frequency

V is ib i l i t y  Q V is ib i l i t y  G

1 H z 0 0

1 k H z 5 .7 4 E - 0 9 6 .3 4 E - 0 8

10  k H z 5 .0 3 E - 0 7 1 .1 5 E -0 6
2 0  k H z 2 E -0 6 4 .5 7 E - 0 6

4 0  k H z 7 .9 2 E - 0 6 1 .8 1 E -0 5
8 0  k H z 3 .0 6 E -0 5 6 .9 8 E - 0 5

1 6 0  k H z 0 .0 0 0 1 0 8 0 .0 0 0 2 4 8

3 2 0  k H z 0 .0 0 0 3 2 1 0 .0 0 0 7 3 8
6 4 0  k H z 0 .0 0 0 7 8 8 0 .0 0 1 8 3 4

1 M H z 0 .0 0 1 3 2 4 0 .0 0 3 1 2 8

Figure 3.13. Uniform model containing conductive, permittive permeable uniform material.
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Figure 3.14. Plot of visibility Q and G as a function of frequency for a permeable uniform model.

From Table 3.4 and Figure 3.14 it can be observed that, the visibility of the EFT system 

appears to increase with frequency, with effect seen initially at a frequency of 40 kHz. 

From values of Q it is evident that the system is appearing more insulative than it 

actually is. This is due to the skin effect mentioned earlier.

Induced eddy currents within a region are effected by the object’s conductivity, 

magnetic permeability and the applied frequency. W hen eddy currents are present the 

electric field will only penetrate a certain distance into the object, known as skin 

depth (8). The conduction current will be at a maximum in this skin depth 8 which is 

given by

S  = (3.8)
\ jicoa

Equation (3.8) expresses that, as frequency increases for a material with high 

conductivity and permeability, the skin depth decreases and conduction current 

penetrates less into the material. This would cause the material to appear more 

resistive.
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Using equation (3.8) at a frequency of 20 kHz, the skin depth of the uniform model is 

given by:

8  = J -----------------7--------------------------------- = 1.125m (3.9)
V 1.2566xlO"6 x l 0 x 2 x ; r x 2 0 0 0 0 x l

and at a frequency of 1 MHz:

8  = , -----------------7-------------------------- 7—  = 0.159m (3.10)
V 1.2566x10 x  1 0 x 2 x ^ x  1x10 x l

It can be observed that at a higher frequency, the skin depth has decreased to 

approximately 16 cm. The phantom has only a radius of 5 cm, but clearly the effect of 

skin depth can be seen. It is also evident from results in Table 3.4 that the visibility 

values are very small, compared to the values seen in pure conductors, Table 3.2 and 

3.3. It must be mentioned that the visibility values calculated here are not strictly 

comparable to those in earlier sections. Visibility values are those usually defined for 

anomalies within uniform phantoms. Here, we are comparing uniform phantom at one 

frequency with a like phantom at another frequency. The calculated visibility is 

therefore not for a given anomaly, but for the entire system. In differential imaging the 

changes seen here would result in a distributed ‘bow l’ shaped image of conductivity 

where the central region will appear more insulative.

The permeability values used here are smaller than that of anomalies which can be seen 

in a process tomography system, for example steel, but this thesis will concentrate on 

medical tomography applications only.

3.5.2.2 Frequency and permittivity

In order to investigate the effects of permittivity on visibility, a 2D uniform model of 

radius Rb = 5 cm was constructed with a central anomaly of radius Ra = 0.5 cm, as 

shown in Figure 3.15. The property of the material within the uniform model were set 

as a 2  = 1 Sm ' 1 , p2 = 10, and e2 = 200, where a is the conductivity, jx is the relative 

permeability and e is the relative permittivity.
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The equations to be solved for the solution of this problem are as previously stated for 

conduction and displacement currents, equations (2.14) in section 2.4.

For the anomaly, the material property were set equal to the background, except the 

permittivity value £j was changed so that the permittivity contrast given as:

£
Permittivity contrast = —  (3.11)

e2

was varied from 10 to 160, at 4 different frequencies of dc, 100 kHz, 500 kHz and 1 

MHz.

Boundary voltage measurements were obtained and from these visibility G and Q were 

calculated.

Rb

Figure 3.15. Model used to investigate effects of frequency and permittivity on visibility

Visibility Q and G were calculated with a uniform model at DC being used to calculate 

the term the term dVuj in equations (3.5) and (3.7). The calculated visibility is shown in

Figure 3.16 and a Table 3.5.
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Figure 3.16. Visibility as a function of permittivity and frequency.

Table 3.5. Values of visibility Q and G as a function of frequency and permittivity
V is ib i l i t y Q V is ib i l i t y G

D C 1 0 0  k H z 5 0 0  k H z 1 M H z D C 1 0 0 k H z 5 0 0 k H z 1 M H z

P e r m itt iv ity  

c o n tr a st  =  10

0 - 2 .6 E - 0 6 -6 .5 E -0 5 - 0 .0 0 0 2 6 0 6 .9 8 E - 0 6 0 .0 0 0 1 7 0 .0 0 0 7 0

P e r m itt iv ity  

c o n tr a st  =  2 0

0 -1 .1 E -0 5 - 0 .0 0 0 3 - 0 .0 0 1 0 5 0 2 .8 6 E -0 5 0 .0 0 0 7 1 0 .0 0 2 8 4

P e r m itt iv ity  

c o n tr a st  =  4 0

0 - 4 .3 E -0 5 -0 .0 0 1 1 - 0 .0 0 4 2 2 0 0 .0 0 0 1 1 6 0 .0 0 2 8 8 0 .0 1 1 3 3

P e r m itt iv ity  

c o n tr a st  =  8 0

0 - 0 .0 0 0 2 -0 .0 0 4 3 -0 .0 1 6 4 5 0 0 .0 0 0 4 6 4 0 .0 1 1 4 0 0 .0 4 3 1 0

P e r m itt iv ity  

c o n tr a st  = 1 6 0

0 -0 .0 0 0 7 - 0 .0 1 6 5 - 0 .0 5 8 6 5 0 0 .0 0 1 8 5 8 0 .0 4 3 2 3 0 .1 4 2 1 0

It is observed from the results shown in Figure 3.16 and Table 3.5 that as the 

permittivity contrast increases, for any given frequency, the visibility also increases. 

The exceptional case is dc, where at zero frequency, no displacement currents are 

present, and hence no effects due to material permittivity are seen. From Q values it can 

be noted that the more permittive the material is, the higher its conductivity appears. 

This is due to the large displacement currents present. Also, for a given permittivity

55



contrast, as frequency increases, the visibility increases, showing a more ‘conducting’ 

behaviour.

3.5.2.3 Discussions of effects of visibility with frequency

FEM has been used to investigate a measure of performance, visibility, in an EIT 

system. The FEM method used, has allowed for the first time the effects of 

displacement and eddy currents to be modelled as well as the conduction current. The 

initial study confirmed previous studies of visibility of conductive anomalies, but it has 

potential for misinterpretation. A new measure of visibility, G, has been proposed, 

where G is an RMS value, rather than the mean, and has therefore a more significant 

physical meaning. It was shown that unlike previous findings, an insulator is in fact 

more visible than a conductor of same size and reciprocal conductivity. One 

disadvantage of the new visibility measure, G, is the fact that insulators and conductors 

can no longer be separated by the calculated visibility value. Q is positive for all 

insulators, and negative for all conductors, where as G is always positive.

In medical EIT, biological tissues have a much higher permittivity than permeability 

(Weast 1989). Further experiments performed investigated the effect of permeability of 

a uniform model over a range of frequencies on the visibility of an EIT system. It was 

found that visibility G increased with frequency, and visibility Q indicated that this 

increase in visibility as showing the saline to appear more insulative than it actually is. 

This increase in visibility can be explained by the phenomenon known as the skin- 

effect, where at high frequencies in permeable material, the conducting current is 

confined to the outermost layer of the conductor, whose depth is given by equation 

(3.8). This skin-effect is a direct result of the eddy currents generated in the permeable 

material (Hammond and Sykulski 1994).

In the final study, the effect of permittivity of an anomaly over a range of frequency was 

investigated. An anomaly whose conductivity was equal to the background, but with 

varied permittivity was used over a range of frequencies. Calculated measures of 

visibility showed that the anomaly at higher frequencies appeared to be more
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conductive than the background. This change in visibility is due to the presence of 

displacement currents in permittive material at high frequencies.

Since biological tissues have a larger permittivity than permeability, and the change in 

visibility in permittive material is more significant than the change in permeable 

materials, it is therefore concluded that in medical tomography, the modelling of 

displacement currents is more significant than the modelling of eddy currents. 

Displacement currents have been taken into consideration, and have been shown here to 

be of importance. Modelling of eddy currents in an EIT system is therefore found to be 

non-essential, where as the modelling of displacement currents is shown to be 

necessary.

3.5.3 Visibility and electrode width

In EIT, boundary voltages are measured from the surface of an object by the use of 

electrodes. The electrodes usually are the conventional ECG electrodes used for 

monitoring the electrical activity of the heart. The size of the electrodes used is 

determined by the geometry of the region being imaged. If the region has a small 

circumference, small electrodes may needed. The effect of the size of the electrodes 

used will be discussed here, together with their effects on the visibility of an EIT 

system.

A uniform model containing saline of conductivity 1 S m '1 was used. The modelled 

electrodes were of conductivity 10000 Sm’1 and for each simulation their width was 

varied, from 1.875 degrees to 18.75 degrees of the outermost circumference of the 

circular model. The electrodes had a thickness of 2 mm, and the analysis was at zero 

frequency. A constant current of 1 mA was used.

Visibility (G) was calculated for each electrode width, Figure 3.17. The differential 

boundary voltages from the smallest electrode width (1.875 degrees) were used as the 

reference (dVui) for these calculations.
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Figure 3.17. Visibility of a uniform model with changing electrode width

Visibility is normally used to describe the behaviour due an anomaly. Here again, 

visibility is used to define the behaviour of a model with uniformly distributed 

conductivity. This again will not be strictly comparable to the case where visibility is 

calculated in the presence of an anomaly within the uniform conductivity distribution.

It is seen that with increasing electrode width, the visibility of the system is reduced. A 

simple explanation can be provided by Figure 3.18 and 3.19. In Figure 3.18, the 

equipotential plots of two uniform models with different electrode width are shown. 

The model with largest electrodes shows distorted equipotentials, whereas the model 

with smaller electrodes does not.
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(b)
Figure 3.18. Equipotential plots for two uniform models, with (a) electrodes of 18.75 degrees width,

and (b) electrodes of 3.75 degrees width.
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In Figure 3.19, the current density of a portion of the models seen in Figure 3.18 are 

shown. W hat can be seen here, is that the larger electrodes due to their high 

conductivity are shunting the current in the model. The larger the electrode width, the 

higher the shunting effect. For smaller electrodes, the shunting is much smaller, hence 

the calculated visibility is larger.

(a)

(b)
Figure 3.19. Current density plots for two uniform models, with (a) electrodes of 18.75 degrees 

width, and (b) electrodes of 3.75 degrees width.
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3.5.3.1 Discussion

Smaller electrodes provide a better performance in EIT than larger electrodes because 

of higher current density in area of electrode / body contact, lower contact impedance 

and less current shunting. This has been shown by the current shunting visible from 

current density plots of the models. It therefore, stresses the importance of modelling of 

electrodes in an EIT system.

3.6 Visibility in a 3D model

A 3D cylindrical model as shown in Figure 3.20, was constructed which consisted of a 

uniform region containing saline of conductivity 1 Sm '1. The model dimensions are as 

before, i.e. radius = 5 cm, and now the model has a length = 1 5  cm. An anomaly of 

radius = 2.5 cm and thickness of 1 cm was modelled co-centrally within the cylindrical 

tank and had a conductivity of 0.1 Sm '1.

Visibility was calculated, at each step, as the anomaly was displaced along the length of 

the cylinder. A plot of the calculated visibility, G, is shown in Figure 3.21.

/D irection of 
anomaly displacement

Figure 3.20. A 3D model showing the direction of anomaly displacement. This figure does not show
the actual mesh used in the modelling.
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Figure 3.21 Plot of the calculated visibility for an anomaly as it is displaced through the length of a
modelled cylinder.

From the results shown in Figure 3.21, it can be seen that the off-plane object clearly 

has an effect on the measured boundary voltages using a set of coplanar electrodes 

placed around a 3D body. Also it clearly indicates that an anomaly has a larger 

calculated visibility when it is placed under the measurement electrodes, than when it is 

in an off plane region. Similar results have been previously published by M etherall et al

(1996).

3.7 Conclusions

EIT model construction using FEM has been described for the forward model analysis 

of a system. Usefulness of solutions of the forward model have been presented in terms 

of the variables accessible using FEM analysis of an EFT system. M easures of 

performance in terms of visibility have been presented. Initials results of visibility show 

good comparison with previous published findings. New measures of visibility has been 

defined. Visibility due to conductivity, permeability and permittivity of anomalies have 

been investigated.

The use of an ac simulation, for the first time has demonstrated the effects of 

permeability and permittivity of materials on the calculated visibility of an EIT system.
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Permeable material at high frequency have a skin depth which is dependent on the 

applied frequency, material permeability and conductivity. It has been shown that 

permeable material appear more visible and more resistive at higher frequencies. 

Materials which are permittive, appear more visible and more conductive at higher 

frequencies, due to the generated displacement currents. However, the effect of 

permeable materials on visibility is much smaller than that of materials which are 

permittive. Also since permeable materials are unlikely to be encountered in medical 

applications of EIT, any such effects are considered insignificant. This will simplify the 

governing equations that are need to be solved for the system, and hence reduce 

computation time.

Also the effects of electrode width on the calculated visibility has been demonstrated. A 

higher visibility is calculated when electrodes with smaller width are used. This is due 

to the great current shunting effect that has been seen with larger electrodes.

The effect of an off-plane anomaly is shown when data are measured for a 3D model. 

Off-plane objects clearly can be detected when data are collected using electrodes 

placed around another section. Also, an anomaly is best detected when the electrodes 

are placed directly over the region that contains the plane with that anomaly.

The capability of numerical modelling using FEM has been demonstrated. Previous 

results have been confirmed using the available software package MEGA, and its 

capability in producing new results is demonstrated.

Finally it must be noted that only centrally placed anomalies were considered in these 

studies. EIT is point spread variant, i.e. an anomaly of the same size but in an other 

position within the system will have a different response to measures, and the resolution 

of the technique improves for increasing radially offset objects.
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Chapter 4

4. Single frequency EIT image reconstruction

4.1 Introduction

A typical single frequency EIT system will acquire voltage measurements from the 

boundary of an object. Although these boundary voltage measurements contain 

information regarding the internal conductivity distribution under investigation, they are 

more useful when converted to visual images. A reconstructed image can illustrate 

either the conductivity distribution within an object being imaged or the normalised 

conductivity changes from a known reference conductivity.

In this work 16 electrodes have been placed around a circular object. Current is driven 

into the object through two adjacent (drive) electrodes. For each of the 16 drive- 

electrode pairs, 13 voltage differences between the remaining adjacent non-current 

carrying (receive) electrodes are recorded. Within each drive electrode pair combination 

the current carrying electrode pair are not used for boundary voltage measurements 

because of the unknown contact impedance, hence allowing only 13 voltage difference 

measurements rather than the possible 15. In practice objects are three-dimensional 

(3D); current cannot be confined to one plane. However, the reconstruction algorithm 

usually assumes that the object is 2D. This work will only deal with proper 2D 

reconstruction as the processing time is much faster; the principles can be extended to 

full 3D imaging providing that the third dimension is taken into consideration.

The process of producing images from measured boundary voltage is referred to as 

image reconstruction. Many methods have been introduced, used and utilised for the 

purpose of image reconstruction in single frequency EIT. A number of these 

reconstruction methods will be discussed here.

4.2 Theory

It is reasonable to assume that there exists a relationship between the measured 

boundary voltages and internal conductivity distribution of the region being imaged 

since the boundary voltages are a function of the internal conductivity distribution. The
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calculation of the boundary voltages from the known conductivity distribution when a 

known current is injected at a given point in the boundary is known as a forward 

problem. The calculation of the conductivity distribution from the measured boundary 

voltages is referred to as an inverse problem. However, there is a non-linear relationship 

between these two physical quantities and also the problem is ill-posed.

The ill-posed problem arises in static imaging where it involves producing an image of 

the distribution of absolute resistivity. This form of imaging may also be referred to as 

anatomical imaging since we are differentiating different tissues by their conductivities. 

The term ill-posed or ill-conditioned means that the reconstructed images are very 

sensitive to the measured boundary voltage data. A small variation in boundary data 

may lead to very large changes in the reconstructed conductivity images. If the problem 

is constrained to dealing with imaging the changes in conductivity, calculated from a 

change in measured boundary voltage, the effects of geometric discrepancies and 

electrode placement can be reduced by normalisation of the data (Barber 1990). This 

form of imaging is known as dynamic or differential imaging. In differential imaging it 

is possible to reconstruct images of changes in conductivity, with respect to time or 

condition, for example, inspiration and expiration, or to image the changes in 

conductivity over a range of frequencies with reference to another frequency.

In practice there are two types of image reconstruction algorithms utilised in EIT. The 

first type of reconstruction algorithms are known as single-step techniques where 

images are reconstructed using a single set of mathematical operations. The second type 

are iterative techniques where by the use of repeated operations an estimate of the 

internal conductivity is made to closely match the true internal conductivity.

4.3 Single-step image reconstruction algorithms

Single-step methods provide a fast and robust image reconstruction technique in EIT 

but are only useful in differential imaging where conductivity changes are imaged rather 

than absolute conductivity. This is because the relationship described by this method 

only deals with changes with reference to a starting conductivity distribution. Single- 

step methods calculate internal conductivity changes from a change in the measured 

boundary voltages by the use of a set of mathematical expressions. If the change in the
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measured boundary voltage is represented as a vector, Ag, the multiplication of this 

vector with a matrix, G'1, which represents the reconstruction operator (the set of 

mathematical equations) will produce a vector containing the changes of conductivity 

within the model, Ac, equation (4.1).

Equation (4.1) has previously been discussed as the inverse solution in section 2.1.

4.3.1 Backprojection between equipotential lines

Backprojection between equipotential lines is so called because the normalised change 

in potential difference between two adjacent electrodes is backprojected along the 

equipotential lines over the surface of the body to display the conductivity value within 

that body between those equipotential lines. Blurred images are produced when this 

step is repeated for all electrode pairs. This method is the basis of image reconstruction 

in CT and was first described by Barber et al (1983).

Backprojection in EIT is far more complicated than that of CT because:

(1) The projection paths are not actually parallel or straight, which in turn complicates 

the design of a filter.

(2) The projection paths depend on the actual conductivity distribution (soft-field 

effect).

4.3.2 Sensitivity matrix method

The sensitivity matrix is a matrix of coefficients by which the change in conductivity 

values of discretised pixels or elements of a region or model can be multiplied to give 

an approximation of the differential boundary voltages. Referring back to Chapter 2, 

this idea was originally described as the solution to the forward model and from 

equation (2.1) is given as equation (4.2):

Ac = G -'A g (4.1)

Ag = SAc (4.2)
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where Ac is a vector of changes in the conductivity values of pixels in the model or 

region, Ag is a vector containing the corresponding changes in the differential boundary 

voltages and S is a matrix of sensitivity coefficients.

The inverse problem needs to be solved in order to produce images of changes in 

conductivity from changes in differential boundary voltages; this means that the inverse 

of matrix S needs to be calculated to give:

Ac = S-'&g (4.3)

The calculation of the inverse of the sensitivity matrix is conceptually very simple but 

has proved to be very difficult in practice. This technique of image reconstruction is the 

method utilised for this thesis and will be discussed in detail later in this chapter.

4.3.3 Iterative image reconstruction algorithms

Iterative techniques have been used to try and solve the static reconstruction problem, 

that is, images of the true conductivity are sought rather than images of change in 

conductivity from a given reference distribution.

The Newton-Raphson algorithm is an iterative reconstruction algorithm specifically 

developed for non-linear problems: Yorkey (1986) provide a good description.

The algorithm is best described by the flow chart shown in Figure 4.1. An initial 

estimate for the conductivity distribution within the region to be imaged is chosen. The 

forward model is solved for this initial guess of conductivity distribution and the 

differential boundary voltages are calculated. These boundary voltages are compared to 

the boundary voltages measured on the object and the error difference is calculated. The 

aim of this method is to iterate by adjusting the conductivity values in the forward 

model to minimise the error difference between the measured and the calculated 

boundary voltages.
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Figure 4.1. Flow chart of an iterative reconstruction algorithm

Problems associated with this technique include its sensitivy to noise and measurement 

error (Boone et al 1997). Also the reconstruction algorithm works best when including 

an accurate model of the system being imaged, that is, some a-priori information about 

the exact position of electrodes, the shape of electrodes and even the electrode-skin 

contact impedance. However, at present this iterative method can provide the most 

accurate and best spatial resolution of any reconstruction techniques.

4.4 Image reconstruction using the sensitivity matrix

The conductivity of a region, discretised into small areas or elements, can be written as 

a column matrix or vector. When the conductivity of a region within an object changes 

from a reference conductivity distribution cref (where each element has units of 

conductivity (Sm '1)) to a conductivity Cdat (where each element has units of S m '1) it 

represents a change in conductivity Ac = Cdat - cref, where Ac is a vector of the same size 

as both Cdat and cref. Images of this change in internal conductivity distribution can be



reconstructed from the resulting change in differential boundary voltages measured in 

volts (Ag = gd at - g re f)  from a uniform conductivity distribution, where g d a t , g re f  and Ag 

are column vectors, usually of a different size from the conductivity vectors; the actual 

size depending on the number of independent differential boundary voltage 

measurements. These images of conductivity change can be obtained using a 

relationship described by a sensitivity matrix S which is derived using a theorem by 

Geselowitz (1971). This relationship is given by:

where S is a sensitivity matrix (usually non-square), Ac is a vector containing the 

changes in conductivity and Ag is a vector containing the corresponding changes in 

voltage profiles. Matrix S relates the small conductivity change within each individual 

pixel of the image to the corresponding differential boundary voltage change for each 

and every pixel and each and every drive-receive electrode combination. The 

relationship between Ag and Ac is often assumed to be linear (Barber and Brown 1990) 

and thus the elements of S are independent of conductivity. The sensitivity matrix S is 

usually calculated by assuming that the initial conductivity distribution is uniform, i.e. 

all elements within a region to be imaged have the same conductivity value (Barber and 

Brown 1990) and then calculating the resulting boundary voltage changes due to small 

perturbations in the conductivity values for each and every element.

The sensitivity matrix S calculated and used here is a matrix of 208 by 1920 elements, 

the 208 rows being the 208 different voltage profiles (16 drive electrode pairs x  13 

receive electrode pairs) and 1920 columns of sensitivity coefficient for each 

independent pixel corresponding to the 1920 pixels in the model being imaged as 

shown in Figure 4.2. The sensitivity coefficient for each pixel is given by:

where i is the pixel number, m is the drive electrode pair, n is the receive electrode pair, 

the electrical field <Fm in pixel i is due to the current injected through electrode pair m

Ag = SAc (4.2)

(4.4)
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and the electrical field <E>n in pixel i is that produced when electrode pair n is carrying 

the same current. The integration is over the volume of the element. In EIT where 

constant current is used, Im = In = I, a constant which for this work will be taken as 

unity.

0 ,  04 J

0 . 0 2 -

0 , 0 0

- 0 , 0 2  -

- 0 . 0 4  n

%

x

bXfixT'
- 0 . 0 4 - 0 . 0 2 0 . 0 0 0 . 0 2 0 . 0 4

Figure 4.2. Circular model used for calculation of sensitivity matrix and hence image 
reconstruction. The axis show the geometrical dimensions of the model with units of metres.
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The electric field can be calculated for each pixel using the finite element package

combination, where i is the pixel number. These are the electric field components for 

pixel i.

The electric field (Exj and Eyi) was calculated at the Gaussian point of each second 

order element. It is therefore important to consider how accurate the calculated 

sensitivity matrix will be using these numerically derived electric fields. In theory the 

electric field for the model can be calculated at any point within an element or as an 

average of the total field over the whole element. In addition, elements can be of first, 

second or a higher order. The accuracy of the model, together with the calculated 

electric field and the derived sensitivity matrix will next be considered.

The sensitivity coefficient for pixel i is given by equation (4.5), where this coefficient is 

then integrated over the volume (area in the two dimensional case) to give the 

sensitivity coefficient for that pixel i for that given drive/receive pair. This was 

achieved using Matlab (The Mathworks Inc.), and the routines used, ‘proj.m ’ and 

‘dot_e.m ’, are given in Appendix C.

The sensitivity matrix S is therefore formed for a model consisting of 1920 discrete 

elements, Figure 4.2. To give a measure for the accuracy of this sensitivity matrix, it is 

possible to compare the voltage profile obtained from the FEM with the voltage profile 

calculated using equation (4.2). This is shown for a uniform model of unity uniform 

conductivity in Figure 4.3.

available. Two scalar values (Exi and Eyi) are exported for each pixel for each drive

(4.5)
u
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Figure 4.3 (a) Voltage profile of a uniform model obtained using FEM
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Figure 4.3(b) Voltage profile of a uniform model obtained using the sensitivity matrix
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Figure 4.3(c) Plot of the numerical difference of Figure 4.3 (a) and (b)
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There is a numerical difference between the two voltage profiles, Figure 4.3(c). 

However, the magnitude of this difference is very small compared to the actual value of 

voltages and is most likely due to numerical rounding errors.

A map of the sensitivity coefficient distributions for three various drive (m) and receive 

(n) pairs are shown in Figure 4.4. These visually correspond well with images produced 

by Kotre (1993).
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Figure 4.4 (a) Sensitivity plot for m=l and n=l
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Figure 4.4 (b) Sensitivity plot for m=l and n=4

Figure 4.4 (c) Sensitivity plot for m=1 and n=7
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In principle the calculated sensitivity matrix can now be used to reconstruct an image of 

the change in conductivity distribution from the boundary potential differences. This 

relationship can be derived from equation (4.2) to give:

Ac = S~lAg (4.3)

where S '1 is the inverse of S.

The calculation of S_1is not a straight forward problem. S is a non-square matrix. This 

implies that a square matrix must first be formed using S. This can be achieved using

the following steps:

Ag = SAc (4.2)

S TAg = [StS]Ac (4.6)

[StS T 1 S TAg = [STS T l [StS]Ac (4.7)

Ac = [STS]~1S TAg (4.8)

where (.)_1is the inverse operator and (.)T is the transpose operator.

Matrix [STS] is singular. It is a square matrix (1920 x  1920) and has only a rank of

104. This singularity means that the problem has (virtually) a zero determinant and no 

true inverse exists to the problem. It is however possible to calculate a pseudo-inverse 

using various techniques, two of which are discussed here:

1. Pseudo-inverse using Singular Value Decomposition (Press et al 1992).

All the calculations described here are performed in Matlab, and the routines 

‘Invsvd.m ’ used are given in Appendix C. All images are reconstructed in M atlab and 

the routines ‘plot_c.m’ are also given in Appendix C.

Singular Value Decomposition (SVD) breaks down a matrix M into three separate 

matrices such that

M = U K L t
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where U and L are orthogonal matrices of the eigenvectors and K is a diagonal matrix 

of singular values (ki, k2 , k3 , ki) of M. The elements of K are arranged in order such 

that (ki>k2>k3>...>ki.i>0 ).

The generalised matrix inverse defines the pseudo-inverse matrix M  ̂ to be the 

minimal least squares inverse of the matrix M such that

M~' = UK*lJ (4.10)

where K+ is a diagonal matrix whose non-zero entries are given by:

0 if i < p
(4.11)

where p is a the number of the singular values taken as the threshold level. The value of 

p can be chosen arbitrary. However, p is normally chosen based on a criteria defined to 

minimise error in the calculated conductivity from the true conductivity. In practical 

applications, p is usually determined by the signal to noise ratio of the measurement 

system. The smaller the threshold level, the more noise and error in the calculated 

pseudo inverse, but less blurring.

Zadehkoochack et al (1991) have presented images when the thresholding value p is 

varied. An example of this is shown in Figure 4.5.

Figure 4.5(a) shows the forward model of the distribution of conductivity used to 

generate boundary voltages using the FEM, together with the plot of each pixel 

conductivity values. Figure 4.5(b) - Figure 4.5(f) show the resultant reconstructed 

images for values of p = 10, 20, 30, 40 and 50, together with the plot of calculated pixel 

values. Absolute values are presented rather than differential by addition of known 

reference conductivity to the calculated change in conductivity.
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Figure 4.5(a). The forward model. Background conductivity is 7.4 Sm'1, the top anomaly has a

conductivity7 of 1.4 Sm'1, left anomaly a conductivity of 2 Sm 1 and right anomaly a conductivity of

3.7 Sm'1.

Conductivity  o f p ixe ls  in r e c o n s tru c te d  im age, P=10
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Figure 4.5(b) Reconstructed image when p=10

C onductiv ity  o f  p ix e ls  in  r e c o n s tru c te d  im age, P=20
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Figure 4.5(c) Reconstructed image when p=20
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C onductivity  o f p ixels in rec o n s tru c te d  im age, P=30

Figure 4.5(d) Reconstructed image when p=30

Conductivity  of p ixe ls in  rec o n stru cte d  im age, P=40

Figure 4.5(e) Reconstructed image when p=40

Figure 4.5(f) Reconstructed image when p=50

Conductivity of pixels in r econstructed  image, P=50
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2. Pseudo-inverse using diagonally dominant matrix (Menke 1989)

All the calculations described here are performed in Matlab, and the routines 

‘Invdamp.m’ used are given in Appendix C.

The term [S TS ] is a square matrix of size 1920 by 1920, rank of 104 and has a very 

large (infinite) condition number. The condition number can however be calculated
90using MATLAB as approximately 3x10 , which is considered as large. The condition 

number can be reduced by making the matrix diagonally dominant by

[ S ^  + A F ^ i r 1 (4.12)

where X is the regularisation factor, Fmax is the maximum main diagonal element value 

of matrix and I  is a unity diagonal matrix of the same size as .

[STS] is a square matrix but is regularised in order to reduce the condition number for 

the system and hence obtain a pseudo-inverse and hence an approximate solution. For a 

non-zero value of X an inverse can be calculated although its condition number, and 

hence the stability of the inversion, will depend on X. Generally speaking if X is large 

the reconstructed image will be too smooth and blurred but if X is too small the image 

will be dominated by noise.

The generalised matrix inverse defines the pseudo-inverse matrix [5'r 5']+ to be the 

damped least square inverse of the matrix [S7^] such that

(4 .i3)

Once the pseudo-inverse to [S7̂ ]  has been calculated, it will be possible to calculate 

an approximation to the distribution of the change in conductivity from a set of 

boundary differential profiles using equation (4.7).
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Figure 4.6(a). The forward model. Background conductivity is 7.4 Sm'1, the top anomaly has a

conductivity’ of 1.4 Sm'1, left anomaly a conductivity of 2 Sm 1 and right anomaly a conductivity of

3.7 Sm 1.

Conductivity of pixels in reconstructed image, 1=0.1

H,s

1 71 M1 211 281 351 421 491 561 631 701 771 641 911 981 1051 1121 1191 1261 1331 1401 1471 1511 16111681 1751 1821 1891

Figure 4.6(b) Reconstructed image when A.=0.1
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Figure 4.6(c) Reconstructed image when A,=0.01
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Figure 4.6(d) Reconstructed image when ^=0.001
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Figure 4.6(e) Reconstructed image when A,=0.0001
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Figure 4.6(f) Reconstructed image when A.=0.00001
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Figure 4.6(b) - Figure 4.6(g) shows the effect of varying X on the reconstructed images 

together with the actual distribution of the anomalies, Figure 4.6(a). In general terms, as 

X decreases, more singular values of matrix [STS] are included in the calculation of the

pseudo-inverse. It can be seen that this results in the image of the objects being pushed 

in towards the centre of the interrogated area and the image also contains more 

artefacts. For higher values of X the image of the objects looks more spread out and 

blurred.

These images are static images and are produced by adding the known reference 

conductivity (cref) to the calculated change in conductivity Ac.

4.4.1 Discussions and conclusions

Of the methods available for image reconstruction, differential imaging has been 

employed for this work. In differential imaging the images of changes in conductivity 

with reference to an initial conductivity are sought, which is also helpful since it 

assumes linearity for the problem. In this work, however, since the starting reference 

conductivity is known, from the forward model, images of the absolute conductivity 

distributions are presented. This is not possible in practice since the initial conductivity 

distribution is unknown for this mode of imaging.

The sensitivity algorithm has been used for image reconstruction. A finite element 

model is used to solve the forward problem to obtain a sensitivity matrix. To find a 

pseudo-inverse to the sensitivity matrix, two methods have been presented, using SVD 

and the damped least square method. Reconstructed images using both these methods 

have been presented and have been shown to produce an approximate solution to the 

internal conductivity distribution rather than an actual true distribution. The accuracy of 

the reconstructed image depends on the amount of regularisation used in both cases. No 

additional filtering of the final image has been carried out and the presented 

reconstructed images are ‘raw’ images.

O f the two pseudo-inversion methods described, the damped least square method is 

here considered as more accurate since the reconstructed images and values of 

conductivity are better calculated even at very high regularisation, as shown in figures
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4.5 and 4.6. Further more this method proved to be a computationally faster method 

than the SVD.

4.5 The calculation of conductivity using the reduced sensitivity matrix.

4.5.1 Introduction

The calculation of the sensitivity matrix has so far been discussed, however, its 

accuracy in calculating the internal conductivity distribution needs to be investigated so 

that measures of error can be calculated.

In a given forward model, where the internal conductivity distribution is known, it is 

possible to use this information as a-priori information and reduce the size of the 

sensitivity matrix from 1920 columns to only a few columns with each column 

corresponding to a known region rather than a pixel. That is to say, instead of each 

pixel having a sensitivity coefficient, only each region will have a sensitivity 

coefficient. In this manner, the size of the sensitivity matrix is reduced and therefore its 

condition number reduces. This new reduced sensitivity matrix will no longer be 

singular, and a true inverse to the matrix will exist. Using this new reduced sensitivity 

matrix, Seduced, conductivity values for separate regions in 18 different models of 

conductivity distributions will be calculated using the inverse solution. These calculated 

conductivity values will then be compared to the actual values to show errors of non- 

linearity.

Since all the work here is computational and the uniform reference conductivity is 

known, the absolute conductivity of regions will be calculated; that is, static imaging 

rather than differential imaging. These calculated absolute values for each region will 

be compared to the actual conductivity values for a given region in the forward model.

4.5.2 Method

A circular model was used with a uniform conductivity distribution for the calculation 

of the sensitivity matrix. The simulation was at zero frequency and the conductivity of 

the uniform model was 1 Sm '1.
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The sensitivity matrix S is non-square, near singular and badly conditioned, so the 

calculation of a true inverse is not possible. But for the following work the sensitivity 

matrix S can be reduced in size.

The body to be imaged shown in Figure 4.7 contains 3 regions:

i. background region

ii. first anomaly region

iii. second anomaly region.

It is therefore possible by knowing which pixels each region occupies in the forward 

model, to reduce the matrix S from a 208 by 1920 elements to a 208 by 3 element 

matrix, S reduced- In this manner, instead of having a sensitivity coefficient for each 

individual pixel, each region has a sensitivity coefficient.

Figure 4.7. Two off-centre anomalies in a uniform circular model.



The reduction is achieved by simply summing the sensitivity coefficient of all pixels in 

each separate region to give one overall sensitivity coefficient for that region. Consider 

one voltage profile for all pixels in a given region:

g = CiSj + cS2 + cS3 H \-cSj (4.14)

where g is the voltage profile, c is the conductivity value for the pixels which are from 

the same region and hence and have same conductivity values and Si is the sensitivity 

coefficient for pixel i.

Equation (4.14) can be reduced to:

It can be therefore seen that the addition of the sensitivity coefficients of pixels 

occupying the same region to give one sensitivity coefficient is valid.

The new reduced sensitivity matrix S r e d u c c d  is still a non-square matrix but it is now 

much simpler to calculate an inverse to the matrix. This is achieved using the following 

relationship:

S reduced = [S reduced $  reduced] ^  reduced (4-16)

where (.)T is the transpose of a matrix and (.)_1 is the inverse. The term [S^educedSreduced\ is 

a small square matrix (3 x  3) and is now better conditioned (in the case described in this 

section the condition number for the matrix was 16.77). A true inverse to this matrix 

exists.

The changes in conductivity can now be calculated for each of the 3 regions by:

However this is only a calculated change in conductivity. Since the change in 

conductivity is given by:

g -  c(S l + S 2 + S3 -1 h S.) (4.15)

=  S 're d u c ed ^ g (4.17)

(4.18)
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where the uniform conductivity, cref, is known, it is possible to calculate the 

conductivity of the perturbed region from:

C,U„ =  A c  +  Crcf (4.19)

A total of 18 models were solved to obtain 18 voltage measurements. The conductivity 

of the uniform background was kept at a constant at 1 Sm '1 and the conductivity of the 

anomalies were varied from 0.01 to 1 Sm '1.

To further show that this method for reduction of the sensitivity matrix is correct the 

following test provides a good validation. Both the full matrix S and the reduced matrix 

Sreduced were multiplied by a unity conductivity matrix with each in turn calculating the 

voltage profile for a unity conductivity distribution. Figure 4.8 shows the resultant 

calculated voltage profile. The graphs in Figure 4.8(a) and 4.8(b) are nearly identical. 

This shows that both methods give the same results and that use of the reduced 

sensitivity matrix is valid.

V v V l / u l / v u v v / v u V u
150

(a)

200 150 200 250

(b)

-10

-12
150100 200 250

(c)

Figure 4.8. Voltage profiles from a unity conductivity from (a) full (b) reduced matrix and (c) the 
difference between the full and reduced profiles
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The plot in Figure 4.8(c) shows the differences between the voltage profiles from the 

full and reduced matrix. The differences are in the order of 10'23 which are very small 

and are definitely due to computational error.

The differential boundary voltages calculated for the 18 separate models were used to 

calculate the conductivity for the anomaly regions. Only one region is shown since both 

regions are of the same size and properties (both anomalies were perturbed by the same 

amount). The results are shown in Figure 4.9 and Table 4.1.

Table 4.1. The actual and calculated values of conductivity using the reduced matrix
A c tu a l a n o m a ly  (S m '1) C a lc u la te d  B a c k g r o u n d  (S m '1) C a lc u la te d  A n o m a ly  (Sm *1)

0 .0 1 0 .9 9 9 6 - 1 .1 6 1 8

0 .0 2 0 .9 9 9 6 - 1 .1 1 1 4

0 .0 3 0 .9 9 9 6 - 1 .0 6 2 6
0 .0 4 0 .9 9 9 7 - 1 .0 1 5 2

0 .0 5 0 .9 9 9 7 - 0 .9 6 9 1
0 .0 6 0 .9 9 9 7 - 0 .9 2 4 3

0 .0 7 0 .9 9 9 7 - 0 .8 8 0 7
0 .0 8 0 .9 9 9 7 - 0 .8 3 8 3

0 .0 9 0 .9 9 9 8 - 0 .7 9 7

0 .1 0 .9 9 8 9 - 0 .7 6 6 1
0 .2 0 .9 9 9 4 - 0 .4 0 8

0 .3 0 .9 9 9 1 - 0 .1 2 5 3
0 .4 0 .9 9 9 6 0 .1 2 0 7

0 .5 0 .9 9 9 6 0 .3 2 2 4

0 .6 0 .9 9 9 7 0 .4 9 2 7

0 .7 0 .9 9 9 3 0 .6 4 3 4

0 .8 0 .9 9 9 3 0 .7 7 4 7
0 .9 0 .9 9 9 6 0 .8 9 5 1

0 .9 1 0 .9 9 9 5 0 .9 0 5 1
0 .9 2 0 .9 9 9 5 0 .9 1 6
0 .9 3 0 .9 9 9 5 0 .9 2 6 9
0 .9 4 0 .9 9 9 5 0 .9 3 7 6
0 .9 5 0 .9 9 9 5 0 .9 4 8 2
0 .9 6 0 .9 9 9 5 0 .9 5 8 7
0 .9 7 0 .9 9 9 5 0 .9 6 9 1
0 .9 8 0 .9 9 9 5 0 .9 7 9 4

0 .9 9 0 .9 9 9 5 0 .9 8 9 5
1 1 1
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Figure 4.9. The plot of calculated anomaly and background conductivity against actual.

4.5.3 Results

The calculated background conductivity changes slightly with changes in anomaly 

conductivity. This shows that there is some interference (rather than blurring) from the 

conductivity of anomalies to the uniform background. No blurring effects are present 

here as the sensitivity matrix was accurately inverted without the use of a pseudo­

inverse method.

The calculated anomaly conductivity is interesting. It shows high degrees of non- 

linearity. More clearly, it shows calculated negative conductivity for anomalies whose 

actual conductivity is greater than 65% of uniform reference conductivity (i.e. 1 S/m).

If the true conductivity of an anomaly is within 10% of the conductivity of the uniform 

background region, the conductivity calculated for that anomaly from calculated 

boundary voltages and using the reduced sensitivity matrix, is found to be accurate. For 

example, an anomaly whose true conductivity is 0.96 S m '1, the calculated conductivity 

is 0.958 Sm '1, which is considered accurate. This 10% limit is therefore referred to as 

the linear region. Other studies have however reported that for a small region, the linear 

approximation is valid for the conductivity changes of up to 300% of the background 

(Shaw et al 1993).

88



4.5.4 Discussion

The sensitivity matrix that was originally calculated has been used to investigate the 

effect of non-linearity in image reconstruction using the sensitivity theorem. This has 

been achieved by reducing the large original sensitivity matrix, which represents 

individual elements, into a smaller matrix, now representing individual regions only. 

This reduction method produced a sensitivity matrix which was no longer ill- 

conditioned. This allows an accurate inversion of the sensitivity matrix thus eliminating 

any blurring effects due to regularisation.

The sensitivity matrix is an accurate method for calculating conductivity, providing that 

the change in conductivity of an anomaly is small compared to the uniform reference 

conductivity. It has been shown in this work that if the conductivity of an anomaly is 

within 10% of the reference uniform anomaly the calculated conductivity is reasonably 

close to the actual conductivity of the model.

It has also been shown that if internal anatomical information about a region to be 

modelled is known then the sensitivity matrix can be reduced to enable a faster image 

reconstruction which is also free of blurring effects due to matrix regularisation.

It has also been shown that there is interference between the conductivity of one region 

with another. The calculated conductivity of the background in this work was found to 

vary slightly with the actual conductivity of the anomalies. This interference can be due 

to the fact that the conductivity of anomalies disturb the path of current through the 

unperturbed uniform background.

The method described in this section will constrain the imaging method to 3 

homogenous regions, so therefore details within each region can not be resolved.
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4.6. Incorporation of a-priori information into image reconstruction

4.6.1. Introduction

The methodology of EIT and image reconstruction have so far been presented and 

discussed. It has been shown that due to ill conditioning of the problem and the near 

singularity of the sensitivity matrix, image reconstruction using the sensitivity matrix 

only provides an approximation to the conductivity distribution within the region to be 

imaged. In the following section, the concept of a-priori information to be incorporated 

into the image reconstruction method will be discussed to show the amount of possible 

improvement in the reconstructed images when a-priori information in the form of the 

spatial internal conductivity distribution is considered.

Previous investigations of such an approach includes the incorporation of a-priori 

information into the Sheffield filtered backprojection image reconstruction algorithm, 

which showed some success (Avis and Barber 1995). Also, Zadehkoochak et al (1991) 

presented a reconstruction algorithm based on the inversion of the sensitivity matrix 

associated with a non-uniform conductivity distribution using the singular value 

decomposition (SVD) method. They did not present any reconstructed images. 

Zadehkoochak et al (1993) have also investigated the use of a-priori information 

associated with imaging the thorax and reported artefacts in the resulting images. The 

use of a universal model (a standard model of internal conductivity distribution within 

the human thorax) has been speculated by Zadehkoochak et al (1993) to be invalid; 

however, it will be shown that providing the assumed anatomical model is closely 

matched to the patient’s anatomy an improvement in the reconstructed image is 

achieved.

From equation (4.2):

A g = SAc (4.2)

the relationship between Ag and Ac in the above equation is often assumed to be linear 

(Barber and Brown 1990) and thus the elements of S are independent of conductivity. S 

is usually calculated by assuming that the initial conductivity distribution is uniform, 

i.e. all elements within a region to be imaged have the same conductivity value (Barber
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and Brown 1990) and then calculating the resulting boundary voltage changes due to 

small perturbations in the conductivity values for each and every element. The 

sensitivity matrix derived in this manner is, in this work, called the uniform sensitivity 

matrix, denoted by Sunif- However, the relationship between the conductivity changes 

and the corresponding differential boundary voltages is not linear and virtually no 

interrogated region is uniform. The applied current distribution and therefore the 

voltage distribution within a body depends on the conductivity distribution within that 

body and as a consequence this is also true of the sensitivity matrix. For example, a 

small change in conductivity next to a physically large conductive area will have a 

smaller effect on the boundary voltages than the same small change in conductivity next 

to a relatively small area. Thus the coefficients of the true sensitivity matrix vary with 

the conductivity distribution and this matrix is referred to in this work as the ideal 

sensitivity matrix, Sideai-

In general therefore, although the sensitivity matrix S changes with the conductivity 

distribution and equation (4.2) is therefore non-linear, it has been argued that for small 

changes in conductivity this non-linearity can be ignored (Barber and Brown 1990). 

Shaw et al (1993) have also reported a similar result, namely that for a small region, the 

linear approximation is valid for the conductivity changes of up to 300% of the 

background. This result does not however compare well with the findings of section 

4.5. This is because the region of interest used by Shaw et al (1993) was comparatively 

very small with respect to the region used in the study described in section 4.5.

Previous work (section 4.5) has shown that the assumption of linearity by Barber and

Brown (1990) is violated in conditions where there is a wide range of conductivity

values; this is also in accordance with findings by Seagar (1983). Given accurate spatial

and conductivity information about a region to be imaged, an accurate image of the

conductivity distribution can be reconstructed from the boundary voltage data.

Although this may be self-evident, it shows whether or not the relationship described by

equation (4.2) is valid. It also shows the extent of the blurring of the image due to the

algorithm and computational process. Also, it serves as a benchmark for images

obtained using less a-priori information and as such is the "best" image that can be

obtained. Recognising that in general complete anatomical information will not be

available, this section will address the degree of accuracy needed in the a-priori
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information in order to produce a useful reconstructed image. If the method is 

reasonably robust it may be possible to use anatomical information taken from a 

database rather than from the subject being imaged, contrary to previous speculations 

(Zadehkoochak et al 1993). It will be shown in the work presented here that providing 

the model is closely matched to that of the interrogated area an improvement in image 

quality is achieved. It also will be demonstrated how the present widely used sensitivity 

algorithm can be combined with an approximate knowledge of the spatial distribution 

of the tissues to provide a better estimate of the conductivity values.

4.6.2. Method

In order to generate the sensitivity matrix S, the area of interest, a 2D circular tank, is 

split into 1920 triangular and brick elements as previously shown in Figure 4.2. The 

elements representing the modelled electrodes are not shown in the reconstructed 

images and the central elements are not displayed well due to their small size.

The linearised sensitivity matrix Sunif is calculated (as discussed in section 4.4) 

assuming that the conductivity distribution is uniform before and after a change has 

occurred and this is the matrix which has been used to date even when the reference 

conductivity is not uniform (Barber and Brown 1990, Kotre 1989).

The sensitivity coefficient for each element i of Sunif was calculated using equation

(4.5), where for element i the electrical field (Exm, Eym) in element i is due to the 

current injected through electrode pair m and the electrical field (Exn, Eyn) is that 

produced when the same current is injected through electrode pair n.

The integration is over the area of the element u, i.e. multiplication of the dot product 

with the area of the element u.

In principle the calculated sensitivity matrix can now be used to reconstruct an image of 

the change in conductivity distribution calculated from the boundary potential 

differences. This relationship can be derived from equation (4.2) to give:

(4.5)
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Ac = S~lAg (4.3)

where S '1 is the inverse of S.

S is a non-square (208 x 1920) and ill-conditioned matrix. Using the damped least 

squares method (Menke 1989):

Ac = [ ^ 5  + ^ 1 ] - ^ ^  (4.20)

Figure 4.10 shows an example of the effect of varying X on the (resultant) reconstructed 

image. In this case the sensitivity matrix is that calculated for uniform conductivity 

distribution, Sunif. The model used to generate the boundary voltage data is also shown 

in Figure 4.10(a). The conductivity values used in the finite element model are shown 

in Table 4.2 (Weast, 1989). These conductivity values are different but not significantly 

different compared with the values used by other workers but note that the underlying 

principle described here will apply to any tissue conductivity value. Sunif was calculated 

by using a uniform conductivity distribution consisting of muscle tissue. X is 

represented as fraction of the maximum diagonal value of matrix [STS] ,  where 

Fmax = 2 .8653x l0 '15. In general terms, as X decreases, more singular values of matrix 

[S7̂ ]  are included in the calculation of the pseudo-inverse. It can be seen that this 

results in the image of the organs being pushed in towards the centre of the interrogated 

area and the image also contains more artefacts. For higher values of X the image of the 

organs looks more spread out and blurred.

The images in Figure 4.10 and all subsequent images are static images and are produced 

by adding the known reference conductivity (cref) to the calculated change in 

conductivity Ac.

Table 4.2. The conductivity values of biological tissue (Weast 1989).
M u sc le L u n g H ea rt

C o n d u c tiv ity  (S m '1) 0 .7 4 0 .1 1 1 .1 6

W e now replace the sensitivity matrix S„nif with the correct sensitivity matrix Sideai- The

calculation of the sensitivity coefficient for each element of Sideai is done by using

Geselowitz theorem and from equation (4.4) we have:
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s ,*„/(/) =  - \ ( Exn„Ey,„UHxn,HyJdu
It

(4.21)

where for element i the electrical field components (Exm, Eym) in element i are due to 

the current injected through electrode pair m for the uniform conductivity and the 

electrical field components (Hxn, Hyn) produced when the same current had been 

injected through electrode pair n after there has been a change in conductivity from cref 

to Cdat, for pixel i, where cref is the uniform conductivity, i.e. 0.74 Sm"1, and Cdat is the 

actual conductivity of pixel i for the thorax model used.

Figure 4.11(a) shows four 2D models of the human thorax. Each model was used for 

the calculation of its corresponding Sideai and differential boundary voltages. Figure 

4.11(b) shows the resulting reconstructed images using the calculated Sideai for each 

corresponding model, with X set at 0.01 for the calculation of each pseudo-inverse. Fmax 

for a typical ideal sensitivity matrix is 5 .9324xl0 '15. The conductivity values used are 

again as shown in Table 4.2.
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H e a rt

Figure 4.10. (a) Model of the human thorax with the reconstructed images for various X, where for 
diagrams (b - f), X -  0.1, 0.01, 0.001, 0.0001 and 0.00001 respectively. Reconstructed using S„nif.
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Figure 4.11. (a)i-iv The forward 2D problem models of human thorax and (b)i-iv the reconstructed 
images using their corresponding full Geselowitz sensitivity matrix, where X = 0.01
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Figure 4.12. Plots of the first 220 singular values of the square matrices [S1S] calculated using 
either Sunif (lower curve) or a typical SWeai for a chest model (upper curve).
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The sensitivity matrix Sideai for each model has a rank of 208 and is better conditioned 

than the corresponding square matrix formed from Sunif, a result which has not been 

commented on before.

The rank of 208 for a sensitivity matrix calculated from two non-equal electric fields is 

not surprising as the reciprocity in this ideal sensitivity matrix will no longer be valid. 

But reciprocity in the differential boundary voltage data still holds and therefore the 

maximum possible rank of the data set will be 104 and therefore the overall underlying 

problem of reconstruction will have only a rank of 104.

Figure 4.12 shows a plot of the singular values of two square matrices [STS] ,  

calculated using Sunif and a typical Sideai- Initially, the differences between the singular 

values of the two different matrices are small. After the first 30 values, the singular 

values from the square matrix [S TS ] formed using Sunif decay more rapidly than those 

of the square matrix [STS] formed using Sideai- This means that for a given level of 

regularisation more singular values are used in image reconstruction when using Sideai 

resulting in a better image resolution. The reconstructed image of the ideal human 

model obtained using Sideai, Figure 4.11 (b)i, is more accurate than the corresponding 

image obtained using Sunif, Figure 4.10, because Sideai incorporates the correct full 

anatomical and conductivity information. However, in clinical practice, the information 

used in the calculation of Sideai is not available.

In a clinical case where no information about the internal conductivity distribution is 

available it may be possible to estimate the conductivity distribution. For example, if  an 

anatomical image from another high resolution modality, such as MRI, were available it 

should be possible to use this data, plus published values of tissue conductivity, to 

construct an initial Sideai which should certainly be an improvement on Sunif- However, 

a more economical approach might be to use an M R image taken from a data base of 

images. In this case the image would not be a perfect match to the patients’ anatomy but 

could be sufficiently close to provide a useful Sideai-

To test this approach, a total of six different a-priori models, Figure 4.13, were 

constructed, whose spatial conductivity distributions were varied from an over­
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estimation to an under-estimation of the patient model of Figure 4.10(a), the ideal 

model. The conductivity values for the regions within the six models were calculated by 

superimposing each model onto the ideal patient model and averaging the conductivity 

values of each element within the area covered by each non-ideal patient region. The 

total conductivity of each model is hence kept constant and equal both to each other and 

to the ideal model. This method of calculating the conductivity values was chosen 

rather than using a typical set of published values, to allow for a wider range of possible 

conductivity values. In this manner, the model is not restricted to a fixed geometry, but 

also the regional conductivity values are allowed to vary within a considerable range. 

The conductivity values used for each model are shown in Table 4.3.

Table 4.3. The conductivity values used for the non-ideal patient models shown in Figure 4.13.
___________________ Muscle (Sm'1)__________Lung (Sm'1) Heart (Sm'1)
Model (a) - 0.07 0.64
Model (b) 1.5 0.08 0.8
Model (c) 0.75 0.11 1.06
Model (d) 0.5 0.17 1.6
Model (e) 0.38 0.33 3.19
Model (f)_______________ 03___________________ -____________________ -

These new models shown in Figure 4.13 were used as the a-priori information and a 

new ideal sensitivity matrix was calculated for each of the six different a-priori models 

using the same method as described for the previous example. Two regularisation 

factors, A, of 0.1 and 0.01, were chosen for the reconstruction for each case. These 

values have been selected a-posteriori by visual examination. The regularisation 

parameter could also be chosen by some objective method but according to 

Kolehmainen et al (1997) these do not always give (visually) meaningful results. In 

practice, where there is noise in the data, a high value of X such as 0.1 must be used to 

minimise the reconstruction error by damping out the noise with a consequent loss in 

spatial resolution. This is visually evident from the reconstructed images shown in 

Figure 4.10.
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Figure 4.13. A set of pre-deflned regions of interest, which over-estimates the size and position or 
under-estimates the size and positions of organs, (a) is the most over-estimated with no muscle 

tissue region, and (f) is the most under-estimated with only muscle tissue region.
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The boundary voltage data taken from the ideal patient model was used to reconstruct a 

set of images using each of these six new ideal sensitivity matrices for each of the two 

values of X; Figure 4.14(b) (X = 0.1) and Figure 4.14(c) (^  = 0.01). As a measure of the 

accuracy of the new reconstructed images, the Arms, on a pixel by pixel basis, was 

calculated with respect to the ideal reconstructed image of the same value of X, as 

shown in Figure 4.14(a)(ii-iii). The Arms values for the six images in Figure 4.14 are 

shown in Table 4.4. The Arms is given by:

I 1 1920

ArmS = - £ VXfe.()2 x «, (4-22)

where c ( i ) caiCuiated is the calculated conductivity for pixel (i), c ( i ) ideai is the ’ideal’ or best

reconstructed conductivity for the same pixel (i)and Ui is the area of the pixel (i).

Table 4.4. The Arms of the new reconstructed images shown in Figure 4.14(b and c) with respect to 
___________ the ideal reconstructed image, Figure 4.14(a)i-ii._______
 Arms (/l=0.1)_________Arms (A^O.Ol)

Model (a) 1.36 x 10'6 2.06 x 10’6
Model (b) 9.97 x 10'7 1.56 x 10'6
Model (c) 6.40 x 10'7 9.03 x 10'7
Model (d) 1.15 x 1 O'6 1.70x1 O'6
Model (e) 1.42 x 10'6 2.52 x 10‘6
Model (f) 1.30 x 10‘6 3.34 x 10'6

The smallest value of the Arms is seen when the model in Figure 4.13(c) is used for the 

a-priori information. The Arms increases as the differences between the a-priori model 

and the ideal patient model increases; it is worth noting that the value of X=0.1 

reconstructs the more accurate image.
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Figure 4.14. (a)i The ideal patient model. (a)ii ideal image reconstructed with A,=0.1 and (a)iii the 
ideal image reconstructed with A,=0.01. Images (b) and (c): The reconstructed images using the 

sensitivity matrices calculated from the anatomical models shown in figure 4.13. Images (b and c)i - 
vi correspond to the models shown in figure 4.13 (a) to (f). A,=0.1 for images (b) i -  vi and A.=0.01

for images (b) i -  vi.
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4.6.3 An iterative algorithm based on the sensitivity matrix

The models described so far all contain some estimates of the conductivity values of the 

tissues. In practice these may not be known with any accuracy; indeed, the 

determination of the conductivity values is an important aim of EIT imaging. It has 

been shown that using a close approximation of the internal conductivity distribution 

improves the quality of the reconstructed images. It will now be shown how the 

anatomical information can be used, without making any prior assumptions about tissue 

conductivity values, in order to determine these conductivities.

Initially, all the conductivity values are assumed the same. The boundary voltage data 

from the ideal patient model is used together with the uniform sensitivity matrix S Um f  to 

reconstruct an initial image of the internal conductivity distribution for the ideal patient. 

The ideal structural information as shown in Figure 4.15(a)i was super-imposed over 

the reconstructed image Figure 4.15(b)i for (X = 0.1) and Figure 4.15(c)i for (X = 0.01), 

and the reconstructed conductivity values of the initial image in each segment of the 

superimposed image were averaged. These conductivity values were used to calculate a 

new electric field distribution and hence a new sensitivity matrix which was then used 

to produce another new reconstructed image. This step was repeated until no further 

improvement to the reconstructed images was found; in this case after 9 iterations. Two 

regularisation factors ^=0.1, Figure 4.15(b), and X=0.01, Figure 4.15(c), were used. To 

measure the accuracy, the ideal image was reconstructed for each value o f X, Figure 

4.15(a)ii and 4.15(a)iii, and the Arms was calculated for each image with respect to its 

ideal image reconstructed with the same value of X. The reconstructed images at 

iteration step 9 of both values of A, are shown in Figure 4.15(b)ii and Figure 4.15(c)ii.

If the sensitivity matrix is not correct it is possible, due to high non-linearity of the 

problem, for negative conductivity values to be calculated from boundary voltage data 

- a physical impossibility. W here this occurred the conductivity was set to the small 

value of 0.01 S m '1 (a small non-zero value). The conductivity values for each region 

calculated at iteration steps 1 and 9 are shown in Table 4.5.
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Table 4.5. The conductivity values for each region of images found in Figure 4.15(b) and 4.15(c)
M u s c le  R ig h t  lu n g  L e ft  lu n g  H ea rt

(S m '1)____________(S m '1)____________ (S m '1)____________ ( S m '1)

^ = 0 .1 :  Itera tio n  s tep  1 0 .6 7 -0 .0 4 -0 .0 1 0 .6 2

? i= 0 .1: Itera tio n  s tep  9 0 .6 9 0 .2 6 0 .2 7 0 .6 9

A ,=0.01: Itera tio n  s te p  1 0 .5 5 -0 .7 8 -0 .7 1 0 .7 3

? t= 0 .0 1 : Itera tio n  s te p  9 0 .7 1 0 .4 8 0 .4 7 0 .7 9

Figure 4.16 shows the plot of the Arms calculated for each of the two regularisation 

factors at each step of the iteration process.

It can be seen that after the 1st iteration the Arms is reduced and in spite of the 

oscillatory behaviour some further improvement in the image quality measure seems 

possible although the image does not converge exactly to the ideal image. It can be seen 

that due to non-linearity the calculated conductivity values, shown in Table 4.5, the 

values at iteration step 1 are inaccurate, and in some cases negative; by iteration step 9, 

although the calculated conductivity values do not accurately match the actual values, 

they are no longer negative and are closer to their true value.

The aim of the next set of experiments was to investigate how close the estimated 

anatomical structure must be to the actual patient anatomy for a successful iteration, i.e. 

an improved reconstructed image. In this part of the study boundary data was calculated 

from three patient models using the models shown in Figure 4.17(a)i-iii. These data sets 

were used together with a pre-defined set of internal conductivity distribution, Figure 

4.17(b), in the iterative method already described. In this case we simulate the situation 

where the a-priori model for the anatomy was the same for all patients. The 

reconstructed images using the uniform sensitivity matrix are shown in Figure 4.17(c)i, 

Figure 4.17(d)i and Figure 4.17(e)i for each the patient models shown in Figure 

4.17(a)i-iii respectively. The reconstructed images at iteration step 9 is shown in Figure 

4.17(c-e)ii. The regularisation factor of 7,=0.1 was used for all cases. The conductivity 

values for each region calculated at iteration steps 1 and 9 are shown in Table 4.6.
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Figure 4.15. (a)i The ideal patient model. (a)ii Ideal image reconstructed with A,=0.1 and (a)iii the 
ideal image reconstructed with A,=0.01. (b) and (c) Images reconstructed using A,=0.1 and A,=0.01 

respectively, (b)i and (c)i using uniform sensitivity matrix. (b)ii and (c)ii at iteration step 9.
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Figure 4.16. Graph showing the Arms with respect to ideal reconstructed image of same A,,
calculated at each iteration step.
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Table 4.6. The conductivity values for each region of images found in Figure 4.17(c) - 4.17(e)

M u s c le
(S m '1)

R ig h t  lu n g  

(S m '1)

L e ft  lu n g  

( S m '1)
H ea rt (Sm" 

')
Im a g e  4 .1 7 ( c ) :  Itera tio n  s te p  1 0 .3 5 -0 .5 1 -0 .4 8 0 .7 0

Im a g e  4 .1 7 ( c ) :  Itera tio n  s te p  9 0 .5 8 0 .5 0 0 .4 9 0 .7 7

Im a g e  4 .1 7 (d ) :  Itera tio n  s te p  1 0 .6 6 -0 .0 5 -0 .0 3 0 .6 0

Im a g e  4 .1 7 (d ) :  Itera tio n  s te p  9 0 .6 8 0 .2 7 0 .2 7 0 .6 8

Im a g e  4 .1 7 ( e ) :  I tera tio n  s te p  1 0 .7 5 0 .2 6 0 .2 7 0 .6 1

Im a g e  4 .1 7 ( e ) :  Itera tio n  s te p  9 0 .7 5 0 .3 4 0 .3 5 0 .6 5

Figure 4.18 shows the plot of the Arms calculated for each of the images in Figure 

4 .17(c-e) with respect to their ideal image reconstructed at the same value of ^=0.1.

It can be seen that once again after the 1st iteration the Arms is reduced and again 

although the behaviour is oscillatory some further improvement seems possible. The 

best improvement is seen in the images reconstructed when the patient data comes from 

a model which closely approximates the a-priori model used for the iteration. It can be 

seen from the calculated conductivity values that due to the non-linear nature of the 

problem, negative conductivity were calculated at iteration step 1. By step 9, however, 

using the technique for handling negative calculated conductivity values previously 

described, the final conductivity values were generally closer to the actual conductivity. 

The image in Figure 4 .17(d)ii is the closest to its ideal reconstructed image, 

demonstrating that the use of a-priori anatomical information close to the true 

anatomical information produces better calculated conductivity values.
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reconstructed image of same A,, calculated at each iteration step.

4.6.4. Discussion

Three cases have been presented where the inclusion of anatomical a-priori information 

into the reconstruction algorithm has been tested. In the first case, a complete set of a- 

priori information was used. This included not only the internal conductivity 

distribution (geometrical positions of organs) but also the true conductivity values of 

each region. The resulting reconstructed image showed a great im provement in 

comparison with an image reconstructed where no a-priori information had been 

included. This shows, as expected, that given all the a-priori information a much more 

accurate image can be reconstructed from the boundary data. Of course, if  such 

information were available no imaging would be required but this work does show the 

best reconstructable image possible. In the second case, an a-priori approximation was 

made as to the internal anatomy (six approximate cases, from over-estimation to under­

estimation), together with an estimate of the conductivity values for the interrogated 

area. The results show an improvement in the (resulting) reconstructed image compared 

to the images obtained using only the standard sensitivity matrix Sunif- The best 

improvement is seen when the approximation to the internal structure is a close match 

to the actual anatomy.
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This work has shown that a high value of regularisation factor works well compared to 

smaller values where computational noise is present. Also, it has been shown that it is 

possible to iterate from the initial reconstructed image to a more accurate image using a 

sensitivity matrix which has been calculated initially from a uniform conductivity 

distribution together with the anatomy of the region to be imaged. Using this method, 

improvements are seen after the first iteration. No visible improvements were found 

after the ninth iteration. Finally, the boundary data from three patient models have been 

used to reconstruct images using a sensitivity matrix which was initially calculated 

from a uniform conductivity distribution. Using a model of the estimated anatomy, it 

has been found that there is an improvement in the reconstructed images using the 

iterative method proposed here. The best improvement were seen when the a-priori 

anatomy closely matched the patient’s anatomy. Traces of the anatomical model used to 

estimate the a-priori information can be clearly seen in all the final images 

reconstructed using this iterative method. These images may not be anatomically more 

accurate but the calculated conductivity values are more accurate than those where the 

reconstructed images are obtained as a single pass from the uniform sensitivity matrix.

Future work on this imaging reconstruction method could include the ability to adjust 

the shape of the anatomical information, within appropriate constraints, to more closely 

represent the anatomy of the patient. This could be done by defining an appropriate 

warping function whose parameters are treated as unknowns in the reconstruction 

process. Chest expansion has been shown to create an additional artefact in EIT 

measurements of the thorax (Alder et al 1994). Further considerations may be needed to 

include more accurate a-priori information where any chest expansion maybe 

considered.

4.6.5. Conclusion

A considerable improvement in the reconstructed image can be obtained by using 

accurate a-priori information about a region to be imaged. It has also been shown that a 

close approximation of such a-priori information also produces an improved 

reconstructed image. Finally, it has been demonstrated that given the present widely 

used sensitivity matrix which is calculated from a uniform conductivity distribution, 

together w ith a good approximation of the internal anatomy, it is possible to reconstruct



a much improved image of the internal conductivity distribution using an iterative 

method. This improved image is more accurate in a quantitative manner, where the 

calculated conductivity values are nearer to the actual tissue conductivity values.
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Chapter 5

5 Multi-frequency EIT image reconstruction

5.1 Introduction

The methodology of two-dimensional electrical impedance tomography and single 

frequency image reconstruction has so far been discussed. In the work described 

previously in chapter 4, measurements are in practice taken at one single frequency, 

typically at 50 kHz and images are reconstructed assuming zero frequency. This 

assumption is valid if:

1. Quasi-static conditions are held. This assumption can be justified providing that the 

wavelength of the potential distribution within the bounded region under investigation 

is large compared with the maximum dimension of the volume. This allows the current 

present everywhere within this volume to vary in synchrony.

2. The current flow in the conductive distribution is only due to pure conductors and 

has no displacement component.

Techniques in the instrumentation have improved over the years since EIT was first 

proposed and consequently the range of usable frequencies over which measurements 

can be taken has also increased to cover a range of about 10 kHz to 1 MHz.

It has already been shown that tissue has a complex impedance. By the term complex it 

is meant that the impedance has both magnitude and phase. This complex impedance 

can be modelled by equation (1.3) as (Schwan 1957):

z*  = + ----- R °  ~  R " ----- (1.3)
(l + O y ) 0'"’)

J  r

where Z* is the complex impedance, is the very high frequency impedance, Ro is the 

low frequency im pedance,/is  the measurement frequency,/- is the relaxation frequency 

for the tissue and a  is a constant that characterises the Cole-Cole distribution function 

for a particular tissue of interest.
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From Chapter 1, at low frequencies, the measured impedance contains information 

about structures within both extracellular spaces and cell membranes. This information 

can be used to provide insight into tissue structure and changes in tissue structure under 

various pathological and physiological conditions. Above 100 kHz, the changes in 

permittivity of tissue will ’show’ tumours (Fricke and Morse 1926, Surowiec et al 

1988). Some EIT research groups have already published results using multi-frequency 

EIT (Riu et al 1992a, 1992b, Zhang and Griffiths 1990). Brown et al (1994b) are now 

making measurements over a range of frequencies with a view to reducing the effects of 

body geometry on the reconstructed images and are also in the hope that tissue can be 

characterised in terms of how the impedance varies with frequency.

In order to take advantage of all the information contained in complex tissue 

impedance, it is important to consider for the purpose of reconstruction, not only the 

real part of the complex measured boundary voltage but also the imaginary part. From 

multi-frequency impedance measurements of various tissues it should be possible to 

distinguish between various kinds of tissue and also assess the physiological state of a 

tissue under investigation.

Researchers have used multi-frequency EIT to look at tissue characterisation by 

reconstructing images of changes of conductivity at one frequency with respect to a 

reference frequency, usually the lowest measured frequency (Brown et al 1994a, 1994b, 

Lu et al 1995, Hampshire et al 1995). The used frequency range by these researchers is 

between 9.6 kHz and 1.2 MHz and images of differential conductivity changes are 

reconstructed with respect to data measured at 9.6 kHz.

Brown et al (1994a, b) have argued that due to stray capacitance the imaginary part of 

boundary voltage can not be accurately measured. These researchers have therefore only 

measured the real part of the boundary voltages for the purpose of image reconstruction. 

From these “real” (in-phase) measurements, they have reconstructed images of tissue 

conductivity (real part of conductivity only) changes with respect to frequency and from 

these images they have calculated tissue dependent characteristics (from Cole-Cole 

model) for a chosen region of interest. The images obtained using the above method 

have shown some reasonable success, as far as visual qualities of images are concerned. 

However, no quantitative analysis of this method has so far been performed to assess its
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accuracy. This chapter will address the validity of this assumption by the use of FEM  to 

assess the accuracy of reconstructed images when calculated complex boundary data are 

considered.

5.2 Method

The idealised 2D finite element model of the thorax is used for all of the following 

work, figure 5.1. The assumed conductivity and permittivity values used for each region 

within the model are shown in table 5.1 (Weast 1989).

Table 5.1. Conductivity of permittivity values used in model of Figure 5.1.
C o n d u c tiv ity  (Sm *1) R e la t iv e  P e r m itt iv ity

M u s c le 0 .7 4 1 8 0 9 5
L u n g 0 .1 1 5 0 0 0

H ea rt 1 .1 6 1 8 0 9 5

The procedure for modelling has already been described (Chapter 3) except that the 

analysis is now at 8 various frequencies over a range of 9.6 kHz to 1.2 MHz. A total of 

16 electrodes have been placed around the phantom. Current is driven into the object 

through two adjacent (drive) electrodes. For each of the 16 drive-electrode pairs, 13 

voltage differences between the remaining adjacent non-current carrying (receive) 

electrodes are recorded.

Muscle

Electrode

Figure 5.1. The finite element model used. The central elements are not clear due to their small
size.
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In the work described here the concept and method of image reconstruction using multi­

frequency data will be given together with some reconstructed images using this 

technique. Also, the effects and importance of ignoring complex data by Brown et al 

(1994a, 1994b) will be investigated and highlighted.

5.2.1 Complex sensitivity matrix

For a given frequency, the differential complex boundary voltage, Ag*, is given by a 

modification of equation (4.2):

where Ac* is now the change in the complex conductivity or admittance from a 

reference complex conductivity and S* is the complex sensitivity matrix for the given 

frequency. The complex boundary voltage can be expressed as:

where co is the angular frequency of the applied current, a  is the conductivity for the 

given frequency and s the permittivity of the region.

It was seen from FEM analysis that the imaginary part of the calculated boundary 

voltage is negative in magnitude. This is important to note since most EIT 

instrumentation measure the absolute voltage difference between two receive electrodes 

rather than actual electrode voltages.

For a complex system, i.e. complex conductivity, an injected current at a given 

frequency will generate a complex electric field E*, and hence a complex voltage, g*,

Ag* = S  * Ac* (5.1)

(5.2)

and complex conductivity is given as:

c* = c , + ic.real J imag (5.3)

or

c* = o  + j m (5.4)
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throughout the system. The complex sensitivity coefficient for a given pixel (i), Si*, is 

given by modifying equation (4.5):

=  - J  (E xm*,E ym*).(Exn*,E yn*)du (5.6)
u

where for element i the electrical field (Exm*, Eym*) in element i is due to the current 

injected through electrode pair m and the electrical field (Exn*, Eyn*) is that produced 

when the same current is injected through electrode pair n. (*) denotes a complex (real 

and imaginary) variable.

Using a multi-frequency system (for example, the Sheffield M K3b system) where data 

is measured at eight different frequencies, from 9.2 kHz to 1228.8 kHz, there is a 

complex sensitivity matrix S* for each of the measurement frequencies. This matrix 

relates the measured boundary voltages for a given frequency to the internal 

conductivity distribution. However, the boundary voltages are no longer a function of 

the internal conductivity distribution but also a function of the internal permittivity 

distribution and therefore a function of frequency.

The calculation of an inverse to the sensitivity matrix for the purpose of image 

reconstruction is as previously described for the single frequency case, and is given by 

modifying equation (4.20) to give:

Ac* = [S *T S * +AFma}(I]“l S *T Ag * (5.7)

In equation (5.7), S* denotes the conjugate transpose of S*. This results in X and Fmax 

being real only variables (no imaginary part) since the main diagonal of square matrix 

[S*T S*] is also real only.

S* has been calculated assuming the relationship in equation (5.2) is linear, i.e. any 

change in conductivity from a reference uniform conductivity (muscle tissue) is small. 

S* calculated using this assumption will be referred to as Sunif5i\  where the initial 

complex uniform conductivity is that of muscle, Table 5.1.
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5.2.2 Reconstructed images of complex conductivity

For 8 frequencies, from 9.8 kHz to 1228.8 kHz, complex boundary data, g*, have been 

calculated using FEM using methods described in chapter 3. Sunif* has also been 

calculated for each frequency for a uniform reference complex conductivity of muscle 

tissue (Table 5.1), and images of internal conductivity distribution can be calculated 

using equation (5.7). Figure 5.2 shows the reconstructed images of real and imaginary 

part of the conductivity for each frequency, when A,=0.1.

It is observed from reconstructed images in figure 5.2 that the reconstructed images at 

each frequency are blurred as they were in the single frequency images and are similar 

to the images presented in Figure 4.10(b). This again is due to the fact that the matrix is 

near singular, and some regularisation is used. Since the conductivity was set to be 

constant over the range of frequency, the real part of the calculated conductivity is seen 

also to be constant over the range of frequency. The imaginary part of the calculated 

conductivity however, increases in proportion to the increasing frequency since from 

equation (5.4) the imaginary part of the conductivity is proportional to frequency.

In section 4.6.2 the idea of an ideal sensitivity matrix was introduced, Sideai- By the term 

ideal, it is meant that full a-priori information about the internal conductivity 

distribution is taken into account in the calculation of the sensitivity matrix Sideai- In this 

sense, by modifying equation (4.21) we can calculate the complex ideal sensitivity 

matrix Sideai*:

where for element i the complex electrical field components (Exm*, Eym*) in element i 

are due to the current injected through electrode pair m for the uniform conductivity. 

The electrical field components (Hxn*, Hy„*) are produced when the same current had 

been injected through electrode pair n after there has been a change in complex 

conductivity. That is from cref* to Cdat*, for pixel i, where cref* is the uniform complex 

conductivity, and Cdat* is the actual conductivity of pixel i for the thorax model used.

(5.8)
it
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Figure 5.2(a) Reconstructed images of complex conductivity, real and imaginary parts, at 9.6 kHz,
19.2 kHz, 38.4 kHz and 76.8 kHz using S^f.
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Figure 5.2(b) Reconstructed images of complex conductivity, real and imaginary parts, at 153.6 
kHz, 307.2 kHz, 614.4 kHz and 1228.8 kHz using S^f.
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Figure 5.3(a) Reconstructed images of complex conductivity, real and imaginary parts, at 9.6 kHz,
19.2 kHz, 38.4 kHz and 76.8 kHz, using the ideal sensitivity matrix.
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Figure 5.3 shows reconstructed images when the complex ideal sensitivity matrix is 

used together with complex boundary data. The regularisation factor X used in this case 

is also 0.1.

In Figure 5.3, the calculated conductivity is constant over a range of frequency. The 

imaginary part of the conductivity is again seen to be a function of frequency. The 

reconstructed images using Sideai* are sharper than those seen in Figure 5.2 when no a- 

priori information is used. This was also seen in single frequency image reconstruction 

(section 4.6.2).

5.3 Frequency dependence of the complex sensitivity matrix

In the calculation of the complex sensitivity coefficient Sunif* for pixel i equation (5.6) 

can be simplified by only considering the electric field in a given pixel:

where for pixel i, Si* is the complex sensitivity coefficient, E m* is the electric field due 

to current injected through electrode pair m, and E n* is the electric field due to current 

injected through electrode pair n.

(5.9)

Since

J  = E * o  * (5.10)

where J is the total current density, then for pixel i

(5.11)

^  real J ^ i m a g

where Jm and Jn are the total current density due to the current injected through 

electrode pair m and due to the current injected through electrode pair n respectively.



and thus

7-' J  ,n real J  ^  imag ^ n S ^  real J  ®  im ag )
= ----------------; X ----------------;---------- = ------------ -̂-----------------------

^ r e a l  J ^ im a g  ® rea l J ^ im a g  real ® im ag') 1 2 ,)

t-i J n . . ®  real J  ^ im a g  ^ n  real J  ̂ im a g  )
xi = ------------------------ X ------------------------— --------------------- ----------

<7 , +  7(7. <7 i<J (<7 i +  <T )real J imag real J imag ^ real im ag'

hence

£  *  _  J 7  *  J ?  *  — J  J  ^  real ~  &  imag ~  f t* ? r e a l® im a g  )  ^

frLi+vLg)2

However, in pixel i the sensitivity coefficient calculated at zero frequency in equation 

(4.5), can be written as

Si = E m- E „ = ^ - ^ -  = ± 4 JL (5-14)
^ r e a l  ® rea l ^ r e a l

and therefore

S j    2  real ® im ag r e a l^ im a g )  , r  i  c \
r- ~  &  real ,  2 , 2  7 2  P . 1 D ;
^ i  y a real +  ° im a g  )

For a sensitivity matrix where linearity is assumed, Sunif*, there is a uniform 

conductivity throughout the region of interest. Then the relationship for any pixel can 

be expressed as:

^ r  = f t  + j y  (5.16)
U

where

M = , 2 °"° '2 (5-17)
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and

— 4 O / j

r = ~ , 2 2 ,7 -— ^  (5.18)

The relationship described by equation (5.16) was previously described by Shallof 

(1997). However, the formula for y  presented by Shallof in his thesis is incorrect and 

the corrected version is shown in equation (5.18).

For a sensitivity matrix at any given frequency which has been calculated using electric 

fields from a uniform conductivity distribution, the complex scalar (ji+jy) will be found 

to be equal for each and every pixel.

The complex scalars for eight different frequencies have been calculated using two 

methods:

1. Analytical : from equations (5.17) and (5.18). The values for the reference complex 

conductivity has been chosen from the assumed conductivity and permittivity of 

uniform conductivity consisting of muscle tissue (Table 5.1) and equation (5.4).

2. Numerical: from equation (5.16) where the complex sensitivity matrix has been 

calculated using the FEM.

Table 5.2 shows the calculated complex scalars using these two methods with Figure 

5.4 showing a plot of these values for each frequency.

N u m e r ic a l F r e q u e n c y  (k H z ) A n a ly t ic a l

P Y P Y
0 .9 9 9 3 -0 .0 2 6 1 9 .6 0 .9 9 9 5 -0 .0 2 6 1

0 .9 9 8 -0 .0 5 2 2 1 9 .2 0 .9 9 8 - 0 .0 5 2 2

0 .9 9 1 7 -0 .1 0 3 9 3 8 .4 0 .9 9 1 9 - 0 .1 0 3 9

0 .9 6 7 9 - 0 .2 0 4 4 7 6 .8 0 .9 6 7 8 - 0 .2 0 4 5

0 .8 7 7 6 - 0 .3 8 3 6 1 5 3 .6 0 .8 7 8 - 0 .3 8 3 7

0 .5 9 8 1 - 0 .6 0 5 7 3 0 7 .2 0 .5 9 8 2 - 0 .6 0 5 8

0 .1 0 4 5 - 0 .5 7 9 4 6 1 4 .4 0 .1 0 4 5 - 0 .5 7 9 4

- 0 .1 2 4 6 - 0 .2 3 2 1 1 2 2 8 .8 - 0 .1 2 4 6 - 0 .2 3 2 7
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Figure 5.4 Plot of the complex scalar (|i and y) with frequency

From the results shown in Table 5.2 and Figure 5.4, it is evident that there exists a 

relationship between the complex sensitivity matrix at any given frequency and the 

sensitivity matrix calculated at zero frequency. Both methods used to calculate this 

relationship, numerical and analytical, produce the same results. The real part of the 

complex scalar p  decreases with frequency, and is negative in magnitude at the highest 

frequency. The imaginary part y  is negative with a peak in magnitude at 307.2 kHz.

It is possible, therefore, that given a sensitivity matrix calculated from the uniform 

reference conductivity distribution at zero frequency, and the complex conductivity 

coefficients Greai and Gimag, a complex sensitivity matrix can be calculated for any 

frequency from equation (5.16). This calculated complex sensitivity matrix can then be 

used with complex boundary voltages for the calculation of internal conductivity 

distribution.

5.4 Complex boundary voltages: importance of the imaginary part

W e have earlier shown that images of the complex conductivity can be reconstructed 

using the complex boundary voltages and complex sensitivity matrix for a given 

frequency. Brown et al (1994a, 1994b) have argued that due to stray capacitance the 

imaginary part of boundary voltage cannot be accurately be measured. They have 

therefore used only the real part of the measured boundary voltage and a real only 

sensitivity matrix (one calculated assuming zero frequency) for the purpose of image
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reconstruction. The importance of ignoring the imaginary part of the voltage will be 

investigated next.

As an initial comparison, images were reconstructed for each measurement frequency 

using the complex sensitivity matrix for each given frequency and only the real part of 

the calculated boundary voltages for that given frequency, rather than complex 

boundary voltages and the complex sensitivity matrix which were shown in Figure 5.2. 

The reconstructed images are shown in Figure 5.5.

It can be seen from the reconstructed images that the imaginary part of the calculated 

conductivity is no longer accurate. Also the real part of the calculated conductivity is no 

longer constant over the range of the used frequency.

In Figure 5.5 imaginary components of the conductivity are also shown. These are 

calculated since the complex sensitivity matrix used at each frequency itself has a real 

and imaginary component and using a real only boundary voltages with these complex 

sensitivity matrices will result in both real and imaginary calculated conductivity. The 

imaginary part of the calculated conductivity is however inaccurate.

Next, images have been reconstructed for two different cases in three different 

categories. The three categories are when:

1. full a-priori knowledge about the conductivity distribution is known and the 

corresponding complex sensitivity matrix, Sideai*, is used,

2. no a-priori knowledge is used and the complex sensitivity matrix, Sunif*, is used,

3. no a-priori knowledge is used and a real only (zero frequency) sensitivity matrix, S, 

is used for all frequencies.
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9.6 kHz real
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38.4 kHz real
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Figure 5.5(a) Reconstructed images of complex conductivity, real and imaginary parts, at 9.6 kHz, 
19.2 kHz, 38.4 kHz and 76.8 kHz, using complex sensitivity matrix and the real only boundary

voltage at the given frequency.
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imaginary

imaginary

614.4 kHz real imaginary

1228.8 kHz real imaginary

I
Figure 5.5(b) Reconstructed images of complex conductivity, real and imaginary parts, at 153.6 
kHz, 307.2 kHz, 614.4 kHz and 1228.8 kHz, using complex sensitivity matrix and the real only

boundary voltage at the given frequency.
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The two cases are:

a. real only boundary voltage, greai, is used.

b. complex voltage, g*, is used.

The a-priori information used for the calculation of the complex sensitivity matrix 

Sideai* are the anatomical information of the model being imaged together with the 

complex conductivity for each pixel in the model. It is self evident that, given the full a- 

priori information about the model being imaged, no imaging is needed as discussed in 

section 4.6. However, this will serve as a useful benchmark for the best results possible 

and will show the effects of regularisation in the calculation of an inverse to the 

problem.

Two sets of boundary data have been calculated using FEM for use in this work. The 

first is when lungs are modelled as being inflated, where the conductivity is chosen as 

0.11 S m '1, and when the lungs are modelled as being deflated where the conductivity is 

chosen as 0.33 S m '1. All other tissue properties are as previously stated in Table 5.1. 

Two regularisation factors of X = 0.1 and X = 0.01 are used in the image reconstruction.

From the forward model, pixels occupied by each region within the thorax model are 

known. From this and the reconstructed images, it is possible to calculate an average 

value of conductivity for each region for the purpose of comparison with actual values 

in the forward model used in FEM. Figures 5.6 - 5.15 show the calculated conductivity 

within each region of the reconstructed images for each of the two cases and three 

categories. Note that only figures 5.6, 5.7, 5.10 and 5.11 contain data from the modelled 

deflated lungs.
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Figure 5.6 Complex sensitivity matrix, a-priori information and g*, ^=0.1.
Lung Inflated = 0.11 Sm'1. Lung Deflated = 0.33 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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Figure 5.7 Complex sensitivity matrix, a-priori information and g*, A,=0.01 
Lung Inflated = 0.11 Sm'1. Lung Deflated = 0.33 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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Figure 5.8 Complex sensitivity matrix, a-priori information and greai, X=0.1 
Lung Inflated = 0.11 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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Figure 5.9 Complex sensitivity matrix, a-priori information and grea|, ,̂=0.01 
Lung Inflated = 0.11 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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Figure 5.10 Complex sensitivity matrix, no a-priori information and g*, ta=0.1 
Lung Inflated = 0.11 Sm'1. Lung Deflated = 0.33 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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Figure 5.11 Complex sensitivity matrix, no a-priori information and g*, A,=0.01 
Lung Inflated = 0.11 Sm'1. Lung Deflated = 0.33 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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Figure 5.12 Complex sensitivity matrix, no a-priori information and greaI, ?i=0.1 
Lung Inflated = 0.11 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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Figure 5.13 Complex sensitivity matrix, no a-priori information and grcai, A,=0.01 
Lung Inflated = 0.11 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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Figure 5.14 Real only sensitivity matrix, no a-priori information and g*, 1=0.1 and Real only 
sensitivity matrix, no a-priori information and greal, 1=0.1. Note both real and complex data give

same results.
Lung Inflated = 0.11 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm*1.
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Lung Inflated = 0.11 Sm'1. Muscle = 0.74 Sm'1. Heart = 1.16 Sm'1.
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From Figures 5.6 - 5.9 when a-priori information is used, it is clearly evident that for a 

constant conductivity over a range of frequency, if the imaginary part of the complex 

boundary voltages is ignored then the calculated conductivity is no longer constant over 

the range of used frequency. For the full a-priori information sensitivity matrix and 

complex data, Figures 5.6 and 5.7, the calculated actual conductivity appears more 

accurate if a smaller value of regularisation is used. W hen a change in conductivity of 

the lungs is modelled, that is from inflated to deflated, representing an actual 

conductivity change of 0.22 Sm '1, the calculated change of conductivity is reconstructed 

with a good degree of accuracy (calculated as 0.2 Sm '1 when X = 0.1 and as 0.22 S m '1 

when X = 0.01) when using the a-priori information for both values of X.

From Figures 5.10 - 5.13 where no a-priori information is used, it is again clearly 

evident that for a constant actual conductivity over a range of frequency, if the 

imaginary part of the complex boundary voltages is ignored, the calculated conductivity 

is no longer constant over the range of used frequency. Also when no a-priori 

information is used, the calculated conductivity value for each region of the model is 

further away from the actual conductivity values used in the forward model. This 

inaccuracy increases with decreasing value of X. More importantly, when a change in 

conductivity of the lungs is modelled, that is from inflated to deflated, representing an 

actual conductivity change of 0.22 Sm '1, the calculated change of conductivity is not 

reconstructed with any degree of accuracy (calculated as 0.48 S m '1 when X = 0.1 and as 

0.97 S m '1 when X = 0.01) when using no a-priori information for both values of X.

Finally from Figures 5.14 and 5.15, it can be seen that with or without ignoring the 

imaginary part of the complex boundary voltage, when a real only sensitivity matrix 

(sensitivity matrix calculated at zero frequency) is used for the purpose of image 

reconstruction, for any given value of X, the calculated actual conductivity for the lungs 

is no longer constant over a range of frequencies.
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5.4.1 Discussion

In multi-frequency EIT, when measurements are made over a range of frequencies, both 

the real and imaginary parts of the boundary voltages are needed together with the 

complex sensitivity matrices for each measurement frequency for accurate image 

reconstruction. The degree of accuracy is greatly increased when a-priori information 

about the region under investigation is utilised.

5.5 Image reconstruction and the Cole-Cole model

The work described so far in this chapter has only concentrated on imaging the internal 

conductivity of regions whose true conductivity is not a function of frequency. This 

maybe true for industrial tomography applications, where material conductivity is 

constant irrespective of the used frequency. However, in medical applications, 

biological tissue have a conductivity which is a function of the measurement frequency 

(section 1.5). The work therefore requires investigation of the calculated conductivity of 

biological tissue whose actual true conductivity is not constant over the range of applied 

frequency.

In section 1.5, the mathematical model based on the Cole-Cole model of biological 

tissue was given as:

Z* = R „ +  R° ~ R~  (1.3)
( ^ ( i y r 1)

J r

where Z* is the complex impedance, Rm is the very high frequency impedance, Ro is the 

low frequency im pedance ,/is  the measurement frequency,/- is the relaxation frequency 

for the tissue and a  is the constant that characterises the Cole-Cole distribution 

function.

Brown et al (1994a, 1994b) and Lu et al (1995) have used this equation and the

measurements made over a range of frequency to calculate the ratio of extracellular to

intracellular fluid and also the characteristic frequency for a region of interest in a

reconstructed image of conductivity. They have however, stated that only the real part

of the impedance is measured as the imaginary part cannot be accurately measured due
1 3 4



to stray and body capacitance. Not only do they ignore the imaginary data but they also 

only use a sensitivity matrix calculated at zero frequency (real only matrix) for image 

reconstruction. Their method of imaging is differential where images of the normalised 

changes of conductivity are calculated with respect to the lowest frequency of 

measurement.

In the following section of this chapter the validity of the assumptions by Brown et al 

(1994a, 1994b) and Lu et al (1995) will be investigated with respect to the parametric 

images they have presented.

5.5.1 Method

It has already been demonstrated that both the real and imaginary part of the voltage are 

crucial for accurate image reconstruction together with a sensitivity matrix for the 

measurement frequency. In the previous section a conductivity value for lungs were 

chosen which was constant over the range of frequency, however, from equation (1.3) it 

is evident that the conductivity of tissue changes with frequency.

From equation (1.3) and from published data (Brown et al 1994b) it is possible to 

calculate typical conductivity and permittivity of lung tissue for each measurement

frequency, Table 5.3.

________ Table 5.3 Conductivity and permittivity of lung tissue as a function of frequency
F r e q u e n c y  k H z C o n d u c tiv ity  S m '1 R e la t iv e  p e r m itt iv ity

9 .6 0 .1 1 7 7 2 0 7 0 0
1 9 .2 0 .1 2 3 0 1 5 1 0 0
3 8 .4 0 .1 3 1 4 1 0 3 0 0
7 6 .8 0 .1 4 3 8 6 3 2 0
1 5 3 .6 0 .1 5 8 9 3 3 8 0
3 0 7 .2 0 .1 7 3 8 1 5 5 0
6 1 4 .4 0 .1 8 5 7 6 2 3
1 2 2 8 .8 0 .1 9 3 7 2 2 6

From Table 5.3 it can be seen that the conductivity of lung tissue increases slightly with 

frequency while its permittivity decreases rapidly. These values were used together with 

the values shown in Table 5.1 for the other tissues in the thorax model to generate 

complex data for each of the measurement frequencies. These boundary voltages were 

then used to calculate the change in conductivity of lung region with reference to the
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lowest frequency conductivity value of the lungs, using the method employed by Brown 

et al (1994b). These images of change in conductivity are given by:

"" * * 

C (i) ~  C (D
( s  ' Iunif

- 1

8  real(i) 8  real( 1 )

C ( l )  ̂ 8 real{ 1 ) j 8 real{1 )

where represents the real part only, g rea i ( i )  is the real part of the boundary voltage 

measured at the lowest frequency (9.6 kHz), g reai ( i )  is the real part of the voltage 

measured at the ith measurement frequency, c(i)* is the complex conductivity at the 

lowest frequency, c(i)* is the complex conductivity at the measurement frequency and 

Sunif is the real only (zero frequency) sensitivity matrix.

The data are normalised with respect to the lowest frequency measurements to allow for 

unknown electrode placement and geometry.

Figure 5.16 shows the calculated change in real part of the conductivity as well as the 

actual change in conductivity with reference to the lowest frequency.
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38.4 76.8 153.6 307.2 614.49.6 19.2 1228.8
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------♦ —— Actual
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Figure 5.16 Graph showing the calculated real part of the normalised change in conductivity and 
the real part of the actual change in conductivity.
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From Figure 5.16 it can be seen that even though the calculated change in conductivity 

is not very far from the actual change, the shape of the response itself is different. In 

practice parameters to the Cole-Cole model, for example the characteristic frequency f r, 

are calculated from the reconstructed changes of conductivity for a chosen region of 

interest or pixel (Brown et al 1994a, 1994b, Lu et al 1995). The characteristic frequency 

by itself is the favoured extractable parameter from the reconstructed images, since it is 

the only parameter that can be independently calculated and it is not a relative 

parameter, i.e. it has units (Hz). It is evident from the results shown in Figure 5.16 that 

if the characteristic frequency is calculated for the reconstructed images using the 

method of Brown et al (1994a), (1994b) and Lu et al (1995) it will be significantly 

different to the actual characteristic frequency of the tissue under investigation.

It has been argued that complex data will be needed for a more accurate parametric 

imaging (section 5.4). If the imaginary part of the boundary voltage can be accurately 

measured, complex sensitivity matrices are needed for each measurement frequency. It 

has already been demonstrated in section (5.3) that the complex sensitivity matrix Sunif* 

can be given by:

Equation (5.20) together with complex boundary voltage g* can be used to modify 

equation (5.19) to give:

where (i) represents measurement frequency, and (1) the lowest frequency 

measurements.

In equation (5.21), not only are the complex voltages considered but the complexity of 

the sensitivity matrix will also be taken into account.

Equation (5.21) is used to calculate the change in complex conductivity with respect to 

lowest frequency, and the real part is then compared to the real part of the true actual 

change in conductivity of the forward model. These are shown in Figure 5.17.

(5.20)

( s  \
unif (5.21)

Q * 
6 ( 1)
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Figure 5.17 Graph of the real part of the calculated change in conductivity of the lung regions 
using complex data and sensitivity matrix, and the real part of the actual change in conductivity in 

the forward model, both referenced to the lowest frequency value.

From Figure 5.17 it again can be seen that the calculated change in conductivity is 

different to the actual change. This again would result in the wrong calculation of 

parameters such as the characteristic frequency of the regions.

5.6 Conclusions

In multi-frequency EIT, due to the complex tissue conductivity, any resultant boundary 

voltage due to a constant magnitude modulated current will also be complex in nature 

(magnitude and phase). To gain maximum advantage from such a system, not only are 

the magnitude of these boundary voltages needed but the phase is also crucial. For 

image reconstruction, as well as the complex boundary voltages, a complex sensitivity 

matrix for each frequency is also needed. This has been shown in cases where a 

constant conductivity over a range of frequency is imaged. Images reconstructed from 

real only components have shown to be inaccurate. Images reconstructed from complex 

data and sensitivity matrices have shown a far better accuracy. If a-priori information 

about the region to be imaged is considered, the degree of accuracy in reconstructed 

conductivity distribution increases.
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Recognising the fact that complex boundary voltages may perhaps be obtained by the 

use of improved instrumentation, the calculation of a complex sensitivity matrix for any 

given frequency will also be needed. A simple analytical formulation for the calculation 

of complex sensitivity matrix has been presented. This calculation uses the commonly 

used real (only) sensitivity matrix, SdC, together with the reference uniform complex 

conductivity distribution (assuming that linearity holds).

Finally, it is known that biological tissue possesses a complex conductivity that varies 

with frequency. It has been shown that reconstructed images of this changing 

conductivity with frequency produce results that vary in a different manner to the actual 

variation with frequency. This difference in variation with frequency is present when 

complex data is used with or without the complex sensitivity matrices. However, the 

sensitivity matrices used here are the ones referred to in this work as uniform sensitivity 

matrices, where no a-priori information about the region being imaged is considered. 

These matrices are calculated on the assumption that for a uniform reference 

conductivity distribution, any change in conductivity seen will be small.

It is therefore concluded that to image varying conductivity within a region of interest 

with respect to frequency, to gain any accurate information about its frequency 

dependent behaviour, not only the complex components of measured data and 

sensitivity matrices are needed but almost certainly some a-priori information about the 

region being imaged is also necessary. This will improve the quality of the 

reconstructed images of internal conductivity distribution, as seen for the single 

frequency case in section 4.6.3, and hence allow a more accurate quantitative 

measurement of complex impedance.
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Chapter 6

6. Conclusions

6.1 Introduction

In this work, a finite element modelling software package has been identified and used 

to solve the forward problem in electrical impedance tomography (EIT). The results 

from this numerical method have been used to investigate the behaviour of single and 

multi-frequency EIT. Limiting assumptions have been investigated in image 

reconstruction and an iterative algorithm based on the sensitivity matrix and a-priori 

information has been proposed. The new proposed algorithm greatly improves 

quantitative accuracy of reconstructed images. Image reconstruction in multi-frequency 

EIT has also been investigated. It has been shown that not only is complex (real and 

imaginary) data required, but that some a-priori information about the region being 

imaged will be vital to produce accurate reconstruction.

6.2 Summary of key results

In Chapter 2 the need for forward modelling in EIT was discussed together with 

modelling methods. The advantages of finite element modelling over other numerical as 

well as analytical methods were given together with the need for improvements in 

previous modelling techniques. Governing equations that accurately describe a m ulti­

frequency EIT system were given, which allow for variation of measurement frequency, 

permeability, permittivity as well as conductivity.

From the many commercially available FEM software packages, five have been 

reviewed and all but one were found to be unsuitable for accurately modelling an EIT 

system. This software package, MEGA, solves the derived equations (equations 2.11 - 

2.13 and 2.14) which allowed accurate modelling of conduction current, displacement 

current and if desired allowed for effects of eddy currents in a system to be considered.

In Chapter 3 the basic modelling steps in FEM were given, together with some initial 

results of measures of performance in EIT. This chapter highlighted the capability of



FEM in modelling the behaviour of an EIT system under various conditions. A new 

measure of visibility, G, (an RMS measure) was introduced and it was shown to have a 

more physically meaningful interpretation than the previously proposed measure of 

visibility Q. Visibility G shows that an insulator is more visible than a conductor of the 

same size but of reciprocal conductivity.

Eddy currents in an EIT system were, for the first time, modelled in addition to 

conduction currents with respect to various applied excitation frequencies in order to 

investigate the possible effect on the measured boundary voltages due to skin-effect 

within the regions being imaged. Because biological tissues have negligible magnetic 

properties (permeability), it was found that eddy currents can in fact be neglected in the 

modelling of a multi-frequency EIT system for biomedical applications. However, 

similar experiments allowing for displacement currents have shown that since 

biological tissues have a high relative permittivity, displacement currents can not be 

neglected in the modelling of multi-frequency EIT.

In Chapter 4 the concept, needs and benefits of image reconstruction were given. O f the 

many methods available, the single pass sensitivity algorithm was used since it is a 

widely used method of image reconstruction in EIT and is ideal for differential imaging. 

Images reconstructed using this technique also showed the ill-conditioned problem 

faced in EIT. The assumption of linearity taken by most researchers for the purpose of 

image reconstruction was investigated and shown to be invalid. Images reconstructed 

using this method certainly look visually acceptable, but their quantitative information 

was found to be highly inaccurate. An iterative algorithm based on the sensitivity 

matrix was presented which incorporates a-priori information in the form of 

geometrical knowledge about the internal conductivity distribution of the region being 

imaged. This method showed an improvement in the quantitative information 

extractable from the reconstructed images of conductivity distribution.

In Chapter 5 reconstructed images of the complex (real and imaginary) conductivity 

over a range of frequencies were presented. It was shown that to accurately reconstruct 

images at various frequencies, not only are the real and imaginary boundary voltages
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required but also a complex (real and imaginary) sensitivity matrix at each 

measurement frequency is needed.

It was shown that uniform complex sensitivity matrices (calculated assuming linearity) 

can be calculated from a uniform real (only) sensitivity. Finally, it was demonstrated, 

for the first time, that using complex boundary voltages and uniform complex 

sensitivity matrices does not provide accurate results for comparisons with a Cole-Cole 

model of biological tissue.

6.3 Suggestions for future developments

A number of suggestions for future work in numerical modelling and image 

reconstruction in EIT can be identified. These will in turn assist in understanding the 

overall behaviour of an EIT system and provide new methods in making EIT more 

successful in clinical applications.

In general, EIT is a 3 dimensional (3D) imaging method. It has been demonstrated that 

3D modelling of EIT is possible. To allow more accurate modelling of EIT, it is 

therefore suggested that further numerical modelling of the forward problem in EIT 

should concentrate its work on 3D analysis. This will show the effect of objects which 

are not in the imaging plane and hence possibly provide a method to incorporate their 

presence. The proposed iterative algorithm which incorporates a-priori information 

about the region being imaged has been developed for the 2D problem. It has been 

proposed that this method will also be valid for 3D image reconstruction. This 

assumption can further be investigated by 3D modelling.

Image reconstruction in multi-frequency EIT has been demonstrated in chapter 5. It has 

been suggested that to accurately reconstruct images from multi-frequency 

measurements not only is a complex sensitivity matrix for each frequency vital but also 

a-priori information about the region being imaged will be needed. A-priori 

information was shown to be useful in single-frequency EIT and this approach will 

need further investigation in multi-frequency EIT.

142



Although the reconstruction algorithms suggested in this work have only used modelled 

data, it will be necessary to test the accuracy with actual measured data from human 

volunteers and patients. This will allow for the necessary further investigation of the 

accuracy of the methods and to explore how the proposed algorithm will cope with 

measurement errors.

6.4 Conclusions

EIT has been under development for over a decade. Its application in a clinical 

environment has yet to be justified and made widespread. Numerical modelling has 

shown its benefits to understanding the underlying behaviour of an EIT system and 

shown its application in image reconstruction in EIT. A proposed image reconstruction 

algorithm has suggested that EIT may be beneficial in accurately imaging the internal 

conductivity distribution within a region of interest, providing that a-prior information 

about the region is also taken into account. Numerical modelling has further shown that 

for accurate quantitative image reconstruction in multi-frequency EIT the imaginary 

part of the measured data is crucial as is the use of the complex (real and imaginary) 

sensitivity matrix at each measurement frequency. This finding should direct any future 

instrumentation work in EIT towards improving systems that can accurately measure 

the quadrature component of the boundary voltages as well as the magnitude of the in- 

phase component.
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Appendix A

In section 2.4 M axwell’s equations were presented and from those the three 

fundamental equations describing an EIT system were presented. In this appendix, 

those fundamental equations will be derived.

A l. Full 3D electromagnetic field eddy current problem

In this section the basic defining equations, uniqueness conditions and the preliminary 

steps that define the equations 2.11 and 2.12 are shown.

Since field vector B satisfies a zero divergence condition

and since the ’divergence’ of the ’curl’ of any vector is equal to zero, equation (2.8) can 

be expressed in terms of a vector potential A as:

V.B = 0 (2 .8)

B = V x A (A.1)

and then from equation (2.6)

V x £  = -
dB_
3t

(2 .6)

and equation (A .l) it follows that

(A.2)

Hence by integration of equation (A.2)

E  = - ( —  + V V )  
dt

(A.3)

where V is a scalar potential.

In equation (A.3), neither A nor V is completely defined since the gradient of an 

arbitrary function can be added to A, and the time derivative of the same function can



be subtracted from V without affecting the physical quantities E and B. Changes such 

as these to A and V are known as gauge transformations and the uniqueness of any 

solution is usually ensured by specifying the divergence (or gauge) of A together with 

the necessary boundary conditions. Thus in a region of interest, using the complete set 

of M axwell’s equations, the governing equation in terms of A and V is given as:

where (I and £ are the absolute magnetic permeability and electric permittivity 

respectively.

And a further condition to be satisfied is the current continuity condition:

Next equation (A.4) needs to be gauged to ensure uniqueness to the solution. One 

method is to assign Coulomb gauge explicitly into equation (A.4). In this case 

Coulomb gauge is given by:

(A.4)

(A.5)

which can be expressed as:

(2.12)

V.A = 0 (A.6)

which is imposed directly into equation (A.4), which leads to:

(2 . 11)

A2. Electric scalar formulation with no eddy currents

There are classes of problems where both displacement currents and conduction 

currents are significant whilst eddy currents are not. In this case the governing 

equations for the region of interest can be derived.



From the current continuity equation:

V .( (c r + jc o e )E + ^ -)  = 0 (A.7)
dt

The electric field can be represented as

E  = -V V  (A.8)

substituted into equation (A.7) to give:

V.((o- + 7 « a e )V V + e ^ - )  = 0 (2.14)
3t
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Appendix B

B l. Finite element modelling using MEGA: A brief guide

The software package used for finite element modelling of EIT in this thesis is MEGA, 

a software package supplied by the Electromagnetic Research Group of Bath 

University.

Each software package has its own unique modelling stages and user commands and in 

this appendix details will be provided for the user on how a typical model was 

constructed and used to obtain solutions to the problem. Users are however advised on 

referring to user manual and command reference booklet supplied by the software 

package.

The software is used under the X-windows of UNIX and is semi-menu driven. All 

commands are in UPPERCASE, and all input commands by the user will here be 

displayed as a BOLD UPPERCASE COMMANDS.

To initial the pre and post processor, use VIEW DP. The option DP indicated Double 

Precision being used for calculations.

The EIT model used is a circular phantom of radius 5 cm with 16 electrodes of 2 mm 

thickness, placed equidistant on the periphery of the circular model. A 2D model will 

be constructed for modelling of conduction and displacement currents only. Since the 

model is highly symmetrical, it is possible and easier to only build one part of the 

model and then use this part to copy and complete the whole of the circular model. 

Here, only one sixteenth of the model will be initial built.

By the use of AE (Arc Edit) command, construct a section of the circular phantom. 

Choosing the arcs to start from 0.0° to 22.5° and having arcs of radii of 5.2, 5.1, 5.0, 

4.5, 4.0, 3.5, 3.0, 2.5, 2.0, 1.5, 1.0 and 0.5 m, the user should obtain the diagram shown 

in Figure B l. Note that initially the units are SI units and will be in meters. These will 

later be scaled to appropriate units.
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Figure B l. Building one sixteenth of the model, with arcs of various radii.

The central elements can then be constructed. Using EN  (Edit Nodes) command, it is 

possible to edit nodes and add additional elements. By clicking the mouse on K  (Key 

Node) nodes at co-ordinates defined by the user can be specified. Place a node at co­

ordinate 0.0 0.0. Then click on S (Super Element) to add a 3 sided region. Create a 

side from central co-ordinate 0.0 0.0, to co-ordinate 0.5 0.0 and then stitch a side on the 

inner arc, and then create a final straight side back to central co-ordinate.

Using command E E  (Edit Element) it is possible to edit elements. Elements on the two 

outer arcs of the arc need deleting to provide spacing between electrodes. Delete 

element by clicking on 0 and then clicking on elements as shown in figure B2.

Now, one sixteenth part of the circular model is completed. It is now possible to select 

various regions and provide them with region id’s to allow material property 

specification at a later stage. Still in the E E  (Edit Element) menu, select M  (Mark 

element) for marking elements. In the new displayed sub-menu, select C (Circle) to

within this defined circle. On quitting this sub menu the user is prompted to input a 

region id. Chose 3. This is the lowest region id number the user can have. Then using

Figure B2. Showing marked elements to provide spacing between electrodes.

define a circle of radius 5.0 0.0 and a centre of 0.0 .0.0. This will select all elements
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M  (Mark element) again, but this time use P  (Point with cursor) command to click on 

the electrode elements, mark all electrode elements. On quitting the sub menu once 

again, the user is prompted for a region id and region id 4 should be used.

Now the defined segment will have coloured elements indicating the region id they 

possess, Figure B3.

Figure B3. Completed one sixteenth section of circular model after region id specification.

The segment can now be copied and flipped a number of time to give a full circular 

model. Using EN  (Edit Nodes) command, chose F  (Copy utility) to copy elements, 

marking all elements and flip about a line. The user is prompted to give co-ordinates of 

a line about which the copied elements can be flipped. If instead of numbers for co­

ordinates, N (cursor input) is typed, the user can click on a chosen co-ordinate instead 

of giving numerical co-ordinates. Click on bottom left hand corner for first co-ordinate, 

and then the top right hand corner for the second, to give one eighth of the model, 

Figure B4.

Figure B4 After the first copy, one eighth of model is complete.

Repeat as above again, to copy all elements and flip along the line defined by bottom 

left hand and top right hand corner, to give one quarter of the model, Figure B5.
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Figure B5 One quarter of model completed.

Once again repeat, but now flip along line defined by bottom left comer, and top left 

corner, to give half of model, Figure B6,

Figure B6 One half of the model completed.

and finally copy and flip along line from bottom left corner to bottom right corner to 

give a complete model, Figure B7.

Figure B7 The complete model.

At any stage if the user needs to view the complete model, click on W  (W indow) at the 

bottom of the menu to re-size window, and select default value D (Default). On quitting
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the user is prompted to ’kill’ (delete) all duplicate nodes. All duplicate nodes M UST be 

killed.

Now since all dimensions are in metres, the model can be scaled down to user defined 

units. Type M N (Move Nodes) to move nodes. Then select all nodes by typing NM  

(Node Mark) and clicking on all nodes. Then Q (Quit) to return to first menu, and type 

G T (General Transformation) for general transformation, and then SC (Scaling) for 

scaling. The user can now scale all marked nodes. Use 0.01 0.01 0.01 to scale nodes 

down by a factor of 0.01 in x, y, and z direction. On quitting for this menu, type Q 

(Quit) and then display elements by selecting window SW  (Set W indow) and choosing 

default value D (Default). Then type DG (Draw Grid) to draw a grid, and the grid 

values are displayed as metres.

The user now needs to specify problem type and material property. Use SP  (Set 

Problem) to set problem type. For the 2D conduction and displacement current 

problem, use CD (Conduction Displacement), then on quitting the user is prompted to 

define material name and property, conductivity and permittivity. It is suggested that as 

a first model, chose simple values as 1 S m '1 and relative permittivity of 1.0 for uniform 

region, and lOOOOSm'1 and the default value of permittivity for non-permittive material.

Next, define the boundary conditions using EB (Edit Boundary). To set a boundary 

attribute to a node or nodes type SA (Set Attributes). The variable that needs assigning 

is V (Voltage) and the user can accept the default id number for this variable for the 

boundary. As each material region has a region id number as well as name, all boundary 

conditions also have an id number for identification. To assign a constant current, the 

variable type to chose is T R  (Constant Current) and the value of which is suggested at 

this stage as -1.0e-3 0.0. The negative value assigns a current flowing into the face of 

the electrode. Chose command P  (point) to point and click on the central 3 nodes of one 

electrode, Figure B8.
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Figure B8 Assigning boundary voltages on electrodes.

Next to set the ground electrode, repeat all above, but now assigning a fixed variable, 

FX (Fixed) instead o f the previous T R  on the face o f an adjacent electrode, Figure B8.

Now the model is ready to be saved and solved. To save model use W R  (Write) 

command.

To solve model the user must exit from MEGA software, and submit the file to be 

solved using SUBM IT command. The user is then prompted to input file name. It is 

essential that the user specifies for the solver to use DP (Double precision) when 

prompted.

Once solved enter pre-post processor by typing V IE W  DP. To read model, type RE 

(Read) and to read answer to a solved model type RA (Read Answer).

To View potential distribution, type CC (Calculate Contour) and then NV (Nodal 

Variable). The user is prompted for various options, and should chose to look at V 

(Voltage), no subset o f elements, both colour and line contours, 26 contour levels, and 

accept default calculated values. Then the user should type DC (Display Contour) to 

draw contours and C K  (Colour Key) for a colour bar, Figure B9.

CAL c ut ̂ "coffrougs

0.05448
0.00

Figure B9 Colour Contour of uniform model with colour key
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To plot boundary voltages, the user must define a surface on the outer most 

circumference of the model, that is, the electrode / phantom contact region. The 

command to use is ES (Edit surface) and the surface should be given a name, for 

example Boundary, and surface type should be accepted as a default TEST. Mark 

nodes on circumference by clicking on Z (Mark nodes on circumference) and define a 

circle by typing co-ordinates of 0.0 0.0 for centre and 5e-2 0.0 for radius. To display 

boundary voltages, first type dv (developers mode), and then NI (Nodal Information). 

Click on M  (Mark Elements) and chose A (Angle) to give out readings as a function of 

angular distance. Then from menu chose S (Defined Surface) for defined surface and 

type the id for displayed surface name, chose Q (Quit) and when prompted type V 

(Voltage) for voltage. The user can then define real, or imaginary (when problem is ac). 

To display graph chose window 0, and type yes to save graph in a user defined name. 

The graph is saved as an ASCII file with two columns, one co-ordinates of nodes on 

circumference, and the other voltage values.

The electric fields and current densities can be view and saved in an ASCII file using 

GV (Gaussian Vector). For ac problems, the electric field is best viewed and saved 

using command GS (Gaussian Scalar).
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Appendix C

C l List of all Matlab files

In this Appendix, a number of typical files used in Matlab for the calculation of the 

sensitivity matrices and image reconstruction is given.

Proi.m

%This file reads the electric field for the 16 projections. The files that are read, are ASCII files named E-%Field_l, . . ., E- 
Field_16. Each file is then assigned a variable name corresponding to the projection it %is from, i.e. projetcion 1, . . ., projection 
16.
format long E
fid=fopen(E-Field_l .gv’,’r’);
proj_ 1 =fscanf(fid,’%lf %lf,[2 640]);
proj_l=proj_l’;
fid=fopen(E-Field_2.gv’,’r’);
proj_2=fscanf(fid,’%lf %lf,[2 640]);
proj_2=proj_2’;
fid=fopen(E-Field_3.gv’,’r’);
proj_3=fscanf(fid,’%lf %lf,[2 640]);
proj_3=proj_3’;
fid=fopen(E-Field_4.gv’,’rT);
proj_4=fscanf(fid,’%If %lf,[2 640]);
proj_4=proj_4’;
fid=fopen(E-Field_5.gv’,’r ’);
proj_5=fscanf(fid,’%lf %lf,[2 640]);
proj_5=proj_5’;
fid=fopen(E-Field_6.gv’,’r’);
proj_6=fscanf(fid,’%lf %lf,[2 640]);
proj_6=proj_6’;
fid=fopen(E-Field_7.gv’,VT);
proj_7=fscanf(fid,’%lf %lf,[2 640]);
proj_7=proj_7’;
fid=fopen(E-Field_8.gv’,’r ’);
proj_8=fscanf(fid,’%lf %lf,[2 640]);
proj_8=proj_8’;
fid=fopen( E-Field_9 .gv’.’r ”);
proj_9=fscanf(fid,’%lf %lf,[2 640]);
proj_9=proj_9’;
fid=fopen(E-Field_10.gv’,’r’);
proj_ 10=fscanf(fid,’%lf %lf,[2 640]);
proj_10=proj_10’;
fid=fopen(E-Field_l 1 .gv’,’r’);
proj_l l=fscanf(fid,’%lf %lf,[2 640]);
proj_l l=proj_l 1’;
fid=fopen(E-Field_12.gv’,’r’);
proj_ 12=fscanf(fid,’%lf %lf,[2 640]);
proj_12=proj_12’;
fid=fopen(E-Field_13.gv’,’r ’);
proj_ 13=fscanf(fid,’%lf %lf,[2 640]);
proj_13=proj_13’;
fid=fopen(E-Field_ 14.gv Vr7);
proj_14=fscanf(fid,’%lf %lf,[2 640]);
proj_14=proj_14’;
fid=fopen(E-Field_15.gv’,’r’);
proj_ 15=fscanf(fid,’%lf %ir,[2 640]);
proj_15=proj_15’;
fid=fopen(E-Field_16.gv’,’r’);
proj_ 16=fscanf(fid,’%lf %lf,[2 640]);
proj_16=proj_16’;
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Dot e.m

%This file, calculated the sensitivity coefficient for each pixel for every drive/recieve combination. It %uses the variables (electric 
fields) obtained from file proj.m  and uses the DOT PRODUCT operator to %calculate the sensitivity matrix, saved as the variable 
S..

for n= 1:640
D 1R 1 (n)=dot((proj_l (n,:)),(proj_3(n,:))); 
end
for n= 1:640
DlR2(n)=dot((proj_l(n,:)),(proj_4(n,:)));
end
for n=1:640
D 1R3 (n)=dot((proj_ 1 (n, :)),(proj_5 (n,:))); 
end
for n= 1:640
DlR4(n)=dot((proj_l(n,:)),(proj_6(n,:)));
end
for n= 1:640
DlR5(n)=dot((proj_l(n,:)),(proj_7(n,:)));
end
for n=l :640
DlR6(n)=dot((proj_l(n,:)),(proj_8(n,:)));
end
for n= 1:640
DlR7(n)=dot((proj_l(n,:)),(proj_9(n,:)));
end
for n=l:640
DlR8(n)=dot((proj_l(n,:)),(proj_10(n,:)));
end
for n= 1:640
D 1 R9(n)=dot((proj_l (n,:)),(proj_ 11 (n,:»); 
end
for n= 1:640
D 1R 10(n)=dot((proj_l (n,:)),(proj_ 12(n,:))); 
end
for n= 1:640
D 1R 11 (n)=dot((proj_ 1 (n, :)),(proj_ 13(n,:))); 
end
for n= 1:640
D 1R 12(n)=dot((proj_l (n,:)),(proj_14(n,:))); 
end
for n=l:640
D 1R 13(n)=dot((proj_l (n,:)),(proj_l 5(n,:))); 
end
% Drive two
for n= 1:640
D2R1 (n)=dot((proj_2(n,:)),(proj_4(n,:))); 
end
for n= 1:640
D2R2(n)=dot((proj_2(n,:)),(proj_5(n,:)));
end
for n=1:640
D2R3(n)=dot((proj_2(n,:)),(proj_6(n,:)));
end
for n= 1:640
D2R4(n)=dot((proj_2(n,:)),(proj_7 (n,:))); 
end
for n= 1:640
D2R5(n)=dot((proj_2(n,:)),(proj_8(n,:)));
end
for n= 1:640
D2R6(n)=dot((proj_2(n,:)),(proj_9(n,:»);
end
for n=l :640
D2R7(n)=dot((proj_2(n,:)),(proj_10(n,:)));
end
for n= 1:640
D2R8(n)=dot((proj_2(n,:)),(proj_l l(n,:))); 
end
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for n= 1:640
D2R9(n)=dot((proj_2(n,:)),(proj_12(n,:)));
end
for n=l :640
D2R10(n)=dot((proj_2(n,:)),(proj_13(n,:)));
end
for n= 1:640
D2R1 l(n)=dot((proj_2(n,:)),(proj_14(n,:))); 
end
for n=l :640
D2R12(n)=dot((proj_2(n, :)),(proj_ 15(n,:))); 
end
for n= 1:640
D2R13(n)=dot((proj_2(n,:)),(proj_l 6(n,:))); 
end
% Drive three
for n= 1:640
D3 R 1 (n)=dot((proj_3 (n,: )),(proj_5 (n,:))); 
end
for n= 1:640
D3R2(n)=dot((proj_3(n,:)),(proj_6(n,:)));
end
for n= 1:640
D3R3(n)=dot((proj_3(n,:)),(proj_7(n,:)));
end
for n= 1:640
D3R4(n)=dot((proj_3(n,:)),(proj_8(n,:)));
end
for n= 1:640
D3R5(n)=dot((proj_3(n,:)),(proj_9(n,:)));
end
for n= 1:640
D3R6(n)=dot((proj_3(n,:)),(proj_I0(n,:)));
end
for n=l :640
D3R7(n)=dot((proj_3(n,:)),(proj_l l(n,:»); 
end
for n= 1:640
D3R8(n)=dot((proj_3(n,:)),(proj_12(n,:)));
end
for n=l :640
D3R9(n)=dot((proj_3(n,:)),(proj_13(n,:»);
end
for n= 1:640
D3R10(n)=dot((proj_3 (n, :)),(proj_ 14(n,:»); 
end
for n=l:640
D3R11 (n)=dot((proj_3 (n, :)),(proj_ 15(n,:))); 
end
for n= 1:640
D3R12(n)=dot((proj_3(n,:)),(proj_16(n,:)));
end
for n= 1:640
D3R13(n)=dot((proj_3(n,:)),(proj_l(n,:)));
end
% Drive four
for n= 1:640
D4R1 (n)=dot((proj_4(n,:)),(proj_6(n,:))); 
end
for n= 1:640
D4R2(n)=dot((proj_4(n,:)),(proj_7(n,:)));
end
for n= 1:640
D4R3(n)=dot((proj_4(n,:)),(proj_8(n,:)));
end
for n= 1:640
D4R4(n)=dot((proj_4(n,:)),(proj_9(n,:)));
end
for n= 1:640
D4R5(n)=dot((proj_4(n,:)),(proj_10(n,:)));



end
for n=l:640
D4R6(n)=dot((proj_4(n,:)),(proj_l l(n,:))); 
end
for n= 1:640
D4R7(n)=dot((proj_4(n,:)),(proj_12(n,:)));
end
for n=l :640
D4R8(n)=dot((proj_4(n,:)),(proj_13(n,:)));
end
for n= 1:640
D4R9(n)=dot((proj_4(n,:)),(proj_14(n,:)));
end
for n=l :640
D4R10(n)=dot((proj_4(n,:)),(proj_15(n,:)));
end
for n=l :640
D4R11 (n)=dot((proj_4(n, :)),(proj_ 16(n,:))); 
end
for n= 1:640
D4R12(n)=dot((proj_4(n,:)),(proj_ 1 (n,:))); 
end
for n= 1:640
D4R13(n)=dot((proj_4(n,:)),(proj_2(n,:)));
end
% Drive five
for n= 1:640
D5Rl(n)=dot((proj_5(n,:)),(proj_7(n,:)));
end
for n= 1:640
D5R2(n)=dot((proj_5(n,:)),(proj_8(n,:)));
end
for n= 1:640
D5R3(n)=dot((proj_5(n,:)),(proj_9(n,:)));
end
for n= 1:640
D5R4(n)=dot((proj_5(n,:)),(proj_10(n,:)));
end
for n= 1:640
D5R5(n)=dot((proj_5(n,:)),(proj_l l(n,:))); 
end
for n= 1:640
D5R6(n)=dot((proj_5(n,:)),(proj_12(n,:)));
end
for n=1:640
D5R7(n)=dot((proj_5(n,:)),(proj_13(n,:)));
end
for n= 1:640
D5R8(n)=dot((proj_5(n,:)),(proj_14(n,:)));
end
for n=1:640
D5R9(n)=dot((proj_5(n,:)),(proj_15(n,:)));
end
for n=l:640
D5R10(n)=dot((proj_5(n,:)),(proj_16(n,:)));
end
for n= 1:640
D5R1 l(n)=dot((proj_5(n,:)),(proj_l(n,:))); 
end
for n= 1:640
D5R12(n)=dot((proj_5(n,:)),(proj_2(n,:)));
end
for n=l:640
D5R13(n)=dot((proj_5(n,:)),(proj_3(n,:)));
end
% Drive six
for n= 1:640
D6R 1 (n)=dot((proj_6(n,:)),(proj_8(n,:))); 
end
for n= 1:640
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D6R2(n)=dot((proj_6(n,:)),(proj_9(n,:)));
end
for n=l :640
D6R3(n)=dot((proj_6(n,:)),(proj_10(n,:)));
end
for n=l :640
D6R4(n)=dot((proj_6(n,:)),(proj_l l(n,:))); 
end
for n= 1:640
D6R5(n)=dot((proj_6(n,:)),(proj_12(n,:)));
end
for n= 1:640
D6R6(n)=dot((proj_6(n,:)),(proj_13(n,:)));
end
for n= 1:640
D6R7 (n)=dot((proj_6(n, :)),(proj_ 14(n,:))); 
end
for n= 1:640
D6R8(n)=dot((proj_6(n,:)),(proj_15(n,:)));
end
for n= 1:640
D6R9(n)=dot((proj_6(n,:)),(proj_16(n,:)));
end
for n=l:640
D6R10(n)=dot((proj_6(n, :)),(proj_ 1 (n,:))); 
end
for n= 1:640
D6R1 l(n)=dot((proj_6(n,:)),(proj_2(n,:))); 
end
for n= 1:640
D6R12(n)=dot((proj_6(n,:)),(proj_3(n,:))); 
end
for n= 1:640
D6R13(n)=dot((proj_6(n,:)),(proj_4(n,:)));
end
% Drive seven
for n= 1:640
D7Rl(n)=dot((proj_7(n,:)),(proj_9(n,:)));
end
for n=1:640
D7R2(n)=dot((proj_7(n,:)),(proj_10(n,:)));
end
for n=l :640
D7R3(n)=dot((proj_7(n,:)),(proj_ll(n,:)));
end
for n= 1:640
D7R4(n)=dot((proj_7(n,:)),(proj_12(n,:)));
end
for n= 1:640
D7R5(n)=dot((proj_7(n, :)),(proj_ 13(n,:))); 
end
for n= 1:640
D7R6(n)=dot((proj_7(n,:)),(proj_14(n,:)));
end
for n= 1:640
D7R7(n)=dot((proj_7(n,:)),(proj_15(n,:)));
end
for n= 1:640
D7R8(n)=dot((proj_7(n,:)),(proj_16(n,:)));
end
for n= 1:640
D7R9(n)=dot((proj_7(n,:)),(proj_l(n,:)));
end
for n= 1:640
D7R10(n)=dot((proj_7(n,:)),(proj_2(n,:)));
end
for n=l :640
D7R1 l(n)=dot((proj_7(n,:)),(proj_3(n,:))); 
end
for n= 1:640
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D7R12(n)=dot((proj_7(n,:)),(proj_4(n,:))); 
end
for n=l :640
D7R13(n)=dot((proj_7(n,:)),(proj_5(n,:))); 
end
% Drive eight
for n=l :640
D8Rl(n)=dot((proj_8(n,:)),(proj_10(n,:)));
end
for n=l :640
D8R2(n)=dot((proj_8(n,:)),(proj_ll(n,:)));
end
for n= 1:640
D8R3(n)=dot((proj_8(n,:)),(proj_12(n,:)));
end
for n= 1:640
D8R4(n)=dot((proj_8(n,:)),(proj_13(n,:)));
end
for n=l:640
D8R5(n)=dot((proj_8(n,:)),(proj_14(n,:)));
end
for n= 1:640
D8R6(n)=dot((proj_8(n,:))>(proj_15(n,:)));
end
for n=1:640
D8R7(n)=dot((proj_8(n,:)),(proj_16(n,:)));
end
for n= 1:640
D8R8(n)=dot((proj_8(n,:)),(proj_l(n,:)));
end
for n=l:640
D8R9(n)=dot((proj_8(n,:)),(proj_2(n,:)));
end
for n=1:640
D8R10(n)=dot((proj_8(n,:)),(proj_3(n,:))); 
end
for n=l :640
D8R1 l(n)=dot((proj_8(n,:)),(proj_4(n,:))); 
end
for n= 1:640
D8R12(n)=dot((proj_8(n,:)),(proj_5(n,:)));
end
for n=1:640
D8R13(n)=dot((proj_8(n,:)),(proj_6(n,:)));
end
% Drive nine
for n= 1:640
D9R1 (n)=dot((proj_9(n,:)),(proj_ 11 (n,:))); 
end
for n= 1:640
D9R2(n)=dot((proj_9(n,:)),(proj_12(n,:)));
end
for n= 1:640
D9R3(n)=dot((proj_9(n,:)),(proj_13(n,:)));
end
for n= 1:640
D9R4(n)=dot((proj_9(n,:)),(proj_14(n,:)));
end
for n= 1:640
D9R5(n)=dot((proj_9(n,:)),(proj_15(n,:)));
end
for n= 1:640
D9R6(n)=dot((proj_9(n,:)),(proj_16(n,:)));
end
for n= 1:640
D9R7(n)=dot((proj_9(n,:)),(proj_l(n,:)));
end
for n= 1:640
D9R8(n)=dot((proj_9(n,:)),(proj_2(n,:)));
end



for n= 1:640
D9R9(n)=dot((proj_9(n,:)),(proj_3(n,:)));
end
for n=1:640
D9R10(n)=dot((proj_9(n,:)),(proj_4(n,:))); 
end
for n=l :640
D9R11 (n)=dot((proj_9(n,:)),(proj_5(n,:))); 
end
for n= 1:640
D9R12(n)=dot((proj_9(n,:)),(proj_6(n,:)));
end
for n= 1:640
D9R13(n)=dot((proj_9(n,:)),(proj_7(n,:)));
end
% Drive ten
for n=1:640
D 1 OR 1 (n)=dot((proj_ 10(n, :)),(proj_ 12(n,:))); 
end
for n= 1:640
D 10R2(n)=dot((proj_10(n,:)),(proj_13(n,:))); 
end
for n= 1:640
D 10R3 (n)=dot((proj_ 10(n,:)),(proj_ 14(n,:))); 
end
for n= 1:640
D10R4(n)=dot((proj_10(n,:)),(proj_15(n,:)));
end
for n= 1:640
D10R5(n)=dot((proj_10(n,:)),(proj_16(n,:)));
end
for n=l :640
D 10R6(n)=dot((proj_ 10(n,:)),(proj_l (n,:))); 
end
for n= 1:640
D10R7(n)=dot((proj_10(n,:)),(proj_2(n,:)));
end
for n= 1:640
D10R8(n)=dot((proj_10(n,:)),(proj_3(n,:)));
end
for n= 1:640
D 10R9(n)=dot((proj_ 10(n,:)), (proj_4(n,:))); 
end
for n= 1:640
D 1 OR 10(n)=dot((proj_l 0(n,:)),(proj_5(n,:))); 
end
for n= 1:640
D 1 OR 11 (n)=dot((proj_10(n,:)),(proj_6(n,:))); 
end
for n= 1:640
D 1 OR 12(n)=dot((proj_ 10(n, :)),(proj_7(n,:))); 
end
for n= 1:640
D 1 OR 13(n)=dot((proj_ 10(n, :)),(proj_8(n,:))); 
end
% Drive eleven
for n= 1:640
D 11R 1 (n)=dot((proj_ 11 (n, :)),(proj_ 13 (n,:))); 
end
for n= 1:640
D11 R2(n)=dot((proj_ 11 (n,:)),(proj_ 14(n,:))); 
end
for n= 1:640
D1 lR3(n)=dot((proj_l I(n,:)),(proj_15(n,:))); 
end
for n=l :640
D1 lR4(n)=dot((proj_l l(n,:)),(proj_16(n,:))); 
end
for n=l :640
D1 lR5(n)=dot((proj_l l(n,:)),(proj_l(n,:)));
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end
for n=l :640
D1 lR6(n)=dot((proj_l l(n,:)),(proj_2(n,:))); 
end
for n= 1:640
D1 lR7(n)=dot((proj_l l(n,:)),(proj_3(n,:)»; 
end
for n= 1:640
D1 lR8(n)=dot((proj_l l(n,:)),(proj_4(n,:))); 
end
for n=l :640
D1 lR9(n)=dot((proj_l l(n,:)),(proj_5(n,:))); 
end
for n= 1:640
D1 lR10(n)=dot((proj_l l(n,:)),(proj_6(n,:))); 
end
for n= 1:640
D11R1 l(n)=dot((proj_l l(n,:)),(proj_7(n,:))); 
end
for n= 1:640
D1 lR12(n)=dot((proj_l l(n,:)),(proj_8(n,:))); 
end
for n= 1:640
D1 lR13(n)=dot((proj_l l(n,:)),(proj_9(n,:))); 
end
% Drive twelve
for n= 1:640
D 12R1 (n)=dot((proj_ 12(n, :)),(proj_ 14(n,:))); 
end
for n= 1:640
D12R2(n)=dot((proj_12(n,:)),(proj_15(n,:»);
end
for n=l :640
D12R3(n)=dot((proj_12(n,:)),(proj_16(n,:)));
end
for n=l:640
D 12R4(n)=dot((proj_ 12(n,:)),(proj_ 1 (n,:))); 
end
for n= 1:640
D12R5(n)=dot((proj_12(n,:)),(proj_2(n,:)));
end
for n=l :640
D12R6(n)=dot((proj_12(n,:)),(proj_3(n,:)));
end
for n= 1:640
D12R7(n)=dot((proj_12(n,:)),(proj_4(n,:)));
end
for n= 1:640
D12R8(n)=dot((proj_12(n,:)),(proj_5(n,:)));
end
for n= 1:640
D12R9(n)=dot((proj_12(n,:)),(proj_6(n,:)));
end
for n= 1:640
D 12R10(n)=dot((proj_l 2(n,:)),(proj_7(n,:))); 
end
for n= 1:640
D 12R 11 (n)=dot((proj_l 2(n,:)),(proj_8(n,:)));
end
for n=l :640
D 12R12(n)=dot((proj_ 12(n, :)),(proj_9(n,:))); 
end
for n=l :640
D12R13(n)=dot((proj_12(n,:)),(proj_10(n,:)));
end
% Drive thirteen
for n=l :640
D 13R 1 (n)=dot((proj_l 3(n,:)),(proj_15(n,:))); 
end
for n= 1:640
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D13R2(n)=dot((proj_13(n,:)),(proj_16(n,:)));
end
for n= 1:640
D13R3(n)=dot((proj_l 3(n,:)),(proj_l (n,:))); 
end
for n= 1:640
D13R4(n)=dot((proj_13(n,:)),(proj_2(n,:)));
end
for n= 1:640
D13R5(n)=dot((proj_13(n,:)),(proj_3(n,:)));
end
for n= 1:640
D13R6(n)=dot((proj_13(n,:)),(proj_4(n,:)));
end
for n= 1:640
D13R7(n)=dot((proj_13(n,:)),(proj_5(n,:)));
end
for n= 1:640
D13R8(n)=dot((proj_13(n,:)),(proj_6(n,:)));
end
for n= 1:640
DI3R9(n)=dot((proj_13(n,:)),(proj_7(n,:))):
end
for n= 1:640
D 13R 10(n)=dot((proj_ 13(n, :)),(proj_8(n,:))); 
end
for n= 1:640
D13R11 (n)=dot((proj_ 13(n,:)),(proj_9(n,:))); 
end
for n=l :640
D 13R 12(n)=dot((proj_13(n,:)),(proj_10(n,:))); 
end
for n=l :640
D13R13(n)=dot((proj_13(n,:)),(proj_ll(n,:)));
end
% Drive fourteen
for n= 1:640
D 14R 1 (n)=do t((proj_ 14(n, :)),(proj_ 16(n,:))); 
end
for n= 1:640
D 14R2(n)=dot((proj_ 14(n,:)),(proj_l (n,:))); 
end
for n= 1:640
D14R3(n)=dot((proj_14(n,:)),(proj_2(n,:))); ' 
end
for n=l :640
D14R4(n)=dot((proj_14(n,:)),(proj_3(n,:)));
end
for n=l :640
D14R5(n)=dot((proj_14(n,:)),(proj_4(n,:)));
end
for n= 1:640
D14R6(n)=dot((proj_14(n,:)),(proj_5(n,:)));
end
for n= 1:640
D14R7(n)=dot((proj_14(n,:)),(proj_6(n,:)));
end
for n=1:640
D 14R8(n)=dot((proj_ 14(n,:)),(proj_7 (n,:))); 
end
for n= 1:640
D 14R9(n)=dot((proj_ 14(n, :)),(proj_8(n,:))); 
end
for n= 1:640
D 14R 10(n)=dot((proj_ 14(n, :)),(proj_9(n,:))); 
end
for n= 1:640
D14R11 (n)=dot((proj_14(n,:)),(proj_10(n,:))); 
end
for n= 1:640
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D14R12(n)=clot((proj_14(n,:)),(proj_l l(n,:))); 
end
for n= 1:640
D 14R 13 (n)=dot((proj_ 14(n, :)),(proj_ 12(n,:))); 
end
% Drive fifteen
for n=l :640
D 15R 1 (n)=dot((proj_l 5(n,:)),(proj_l (n,:))); 
end
for n=l :640
D15R2(n)=dot((proj_15(n,:)),(proj_2(n,:)));
end
for n=l:640
D 15R3 (n)=dot((proj_ 15(n, :)),(proj_3 (n,:))); 
end
for n= 1:640
D 15R4(n)=dot((proj_ 15 (n,:)),(proj_4(n,:))); 
end
for n= 1:640
D15R5(n)=dot((proj_15(n,:)).(proj_5(n,:)));
end
for n= 1:640
D15R6(n)=dot((proj_15(n,:)),(proj_6(n,:)));
end
for n= 1:640
D15R7(n)=dot((proj_15(n,:)),(proj_7(n,:)));
end
for n=l :640
D 15R8(n)=dot((proj_15(n,:)),(proj_8(n,:))); 
end
for n=l :640
D15R9(n)=dot((proj_15(n,:)),(proj_9(n,:)));
end
for n= 1:640
D 15R 10(n)=dot((proj_l 5(n,:)),(proj_l 0(n,:))); 
end
for n= 1:640
D15R1 l(n)=dot((proj_15(n,:)),(proj_l l(n,:))); 
end
for n= 1:640
D15R12(n)=dot((proj_15(n,:)),(proj_12(n,:)));
end
for n= 1:640
D 15R 13(n)=dot((proj_15(n,:)),(proj_13(n,:)));
end
% Drive sixteen
for n= 1:640
D 16R 1 (n)=dot((proj_ 16(n,:)),(proj_2(n,:))); 
end
for n= 1:640
D16R2(n)=dot((proj_16(n,:)),(proj_3(n,:)));
end
for n= 1:640
D 16R3(n)=dot((proj_ 16(n,:)),(proj_4(n,:))); 
end
for n= 1:640
D16R4(n)=dot((proj_16(n,:)),(proj_5(n,:)));
end
for n= 1:640
D16R5(n)=dot((proj_16(n,:)),(proj_6(n,:)));
end
for n= 1:640
D16R6(n)=dot((proj_16(n,:)),(proj_7(n,:)));
end
for n= 1:640
D16R7(n)=dot((proj_16(n,:)),(proj_8(n,:)));
end
for n= 1:640
D16R8(n)=dot((proj_16(n,:)),(proj_9(n,:)));
end



for n=l :640
D 16R9(n)=dot((proj_l 6(n,:)),(proj_l 0(n,:))); 
end
for n= 1:640
D 16R 10(n)=dot((proj_l 6(n,:)),(proj_l 1 (n,:))); 
end
for n=l:640
D 16R 11 (n)=dot((proj_l 6(n,:)),(proj_12(n,:))); 
end
for n= 1:640
D 16R 12(n)=dot((proj_l 6(n,:)),(proj_l 3(n,:))); 
end
for n=1:640
D 16R 13 (n)=dot((proj_ 16(n, :)),(proj_ 14(n,:))); 
end
%constructing S matrix from all unweighted sensitivity coefficient values for all pixels for all %drive/recieve electrodes. 
S=[D1R1;D1R2;D1R3;D1R4;D1R5;D1R6;D1R7;D1R8;D1R9;D1R10;D1R11;D1R12;D1R13;D2R1;D2R2;D2R3;D2R4;D2R5;D 
2R6;D2R7;D2R8;D2R9;D2R10;D2R11;D2R12;D2R13;D3R1;D3R2;D3R3;D3R4;D3R5;D3R6;D3R7;D3R8;D3R9;D3R10;D3R 
11;D3R12;D3R13;D4R1;D4R2;D4R3;D4R4;D4R5;D4R6;D4R7;D4R8;D4R9;D4R10;D4R11;D4R12;D4R13;D5R1;D5R2;D5R3 
;D5R4;D5R5;D5R6;D5R7;D5R8;D5R9;D5R10;D5R11;D5R12;D5R13;D6R1;D6R2;D6R3;D6R4;D6R5;D6R6;D6R7;D6R8;D6R 
9;D6R10;D6R11;D6R12;D6R13;D7R1;D7R2;D7R3;D7R4;D7R5;D7R6;D7R7;D7R8;D7R9;D7R10;D7R11;D7R12;D7R13;D8R 
1;D8R2;D8R3;D8R4;D8R5;D8R6;D8R7;D8R8;D8R9;D8R10;D8R11;D8R12;D8R13;D9R1;D9R2;D9R3;D9R4;D9R5;D9R6;D9 
R7;D9R8;D9R9;D9R10;D9R11;D9R12;D9R13;D10R1;D10R2;D10R3;D10R4;D10R5;D10R6;D10R7;D10R8;D10R9;D10R10; 
D10R11;D10R12;D10R13;D11R1;D11R2;D11R3;D11R4;D11R5;D11R6;D11R7;D11R8;D11R9;D11R10;D11R11;D11R12;D1 
1R13;D12R1;D12R2;D12R3;D12R4;D12R5;D12R6;D12R7;D12R8;D12R9;D12R10;D12R11;D12R12;D12R13;D13R1;D13R2; 
D13R3;DI3R4;DI3R5;D13R6;DI3R7;D13R8;D13R9;D13R10;D13R11;D13R12;D13R13;D14R1;D14R2;D14R3;D14R4;D14R 
5;D14R6;D14R7;D14R8;D14R9;D14R10;D14R11;D14R12;D14R13;D15R1;D15R2;D15R3;D15R4;D15R5;D15R6;D15R7;D15 
R8;D15R9;D15R10;D15R11;D15R12;D15R13;D16R1;D16R2;D16R3;D16R4;D16R5;D16R6;D16R7;D16R8;D16R9;D16R10; 
D16R11;D16R12;D16R13;];
S=S’;
%Taking the mean for sensitivity coefficient for every three adjacent pixel.
S=reshape(S,[3 133120]);
S=mean(S);
S=reshape(S,[640 208]);
S=S’;
%Multiplying by the area of each element to give sensitivity coefficient
ele_area=[0.232791e-4 0.232791e-4 0.232791e-4 0.232791e-4 0.208286e-4 0.208286e-4 0.208286e-4 0.208286e-4 0.183782e-4 
0 .183782e-4 0.183782e-4 0.183782e-4 0.159278e-4 0.159278e-4 0.159278e-4 0.159278e-4 0.134774e-4 0.134774e-4 0.134774e-
4 0 .134774e-4 0.110269e-4 0.110269e-4 0.110269e-4 0.110269e-4 0.857650e-5 0.857650e-5 0.857650e-5 0.857650e-5 
0.612607e-5 0.612607e-5 0.612607e-5 0.612607e-5 0.367564e-5 0.367564e-5 0.367564e-5 0.367564e-5 0.122521e-5 0.122521e-
5 0.12252le-5 0.122521e-5]; 
ele_area=ele_area’; 
ele_area=reshape(ele_area, 1,40);
ele_area=[ele_area ele_area ele_area ele_area ele_area ele_area ele_area ele_area ele_area ele_area ele_area ele_area ele_area 
ele_area ele_area ele_area]; 
for i= 1:208
S(i,:)=S(i,:).*ele_area(l,:);
end
%Saving sensitivity coefficient as matlab file S.mat 
save S.mat S;

Invsvd.m

%Calculates the inverse of the sensitivity matrix S, using singular value decomposition.
load S.mat
sts=S’*S;
[U,K,L]=svd(sts);
K=diag(K)’;
K=l./K;
nevvK=zeros( 1,640);
%setting the truncation level, in this case 50 
for n=l:50

newK(l,n)=K(l,n);
end
K=diag(newK,0);
invsts=(U*K*L’)’;
invs=invsts*S’;
%saving the inverse as svdinvs.mat 
save svdinvs.mat invs

164



Invdamp.m

% Calculates the inverse of the sensitivity matrix S, using Damped least square method
load S.mat
sts=S’*S;
lamda=ones([640,1 ]);
%setting the regularisation factor, in this case 0.1 
k=0.1
lainda=lamda*(max(diag(sts)).*k);
lamda=diag(lamda,0);
stslamda=sts+lamda;
stslamdainv=inv(stslamda);
invs=stslamdainv*S’;
%saving the inverse as dampinvs.mat 
save dampinvs.mat invs;

plot c.m
function [cond]=plot_c(data,reference);
% plot_c(’datafilename’,’referencefilename’)
% PLOTS concentration map for model. Mesh co-ordinates from MEGA.
% MODEL of 640 elements.
% Input is data = 208 voltages inputed as ’filename.dat’
% Reference = 208 uniform voltages, one available as ’unif.dat’

%loads inverse matrix here 
load dampinvs.mat

%loads node data from ASCII file 
fid=fopen(’c:\recon\nodedata\node_640.nod’,’r’); 
coord=fscanf(fid,’%f %f %f %f %f %f,[3 1921]); 
coord=coord’;

%loads elements numbering from ASCII file 
fid=fopen(’c:\recon\nodedata\elem_640.ele’,’r’); 
elem=fscanf(fid,’%f %f %f % f,[4 1921]); 
elem=elem’;

fid=fopen(reference,’r’);
vunif=fscanf(fid,’%f %f %f %f %f %f %f %f %f %f %f %f %f,[208 I ]); 

fid=fopen(data,’rT);
vanom=fscanf(ftd,’%f %f %f %f %f %f %f %f %f %f %f %f %f,[208 1 ]);

%calculating differential boundary voltages 
voltage=(vanom-vunif);

%calculating conductivity from inverse problem 
cond=invs*voltage;

%scaling appropriately 
cond=(cond./1000);

%plotting conductivity change
figure;
hold on

for n = 1:640
for p = 1:4

x(p)=coord((elem(n,p)), 1); 
y(p)=coord((elem(n,p)),2); 
z(p)=coord((elem(n,p)),3);

end
colormap(pink)
c=cond(n,l);
patch(x,y,c)

end
colormap(pink) 
shading flat 
colorbar 
vvhitebg
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