
Exploring, Reasoning with and Validating Directed Graphs 
by Applying Formal Concept Analysis to Conceptual 
Graphs

ANDREWS, Simon <http://orcid.org/0000-0003-2094-7456> and POLOVINA, 
Simon <http://orcid.org/0000-0003-2961-6207>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/19112/

This document is the Accepted Version [AM]

Citation:

ANDREWS, Simon and POLOVINA, Simon (2018). Exploring, Reasoning with and 
Validating Directed Graphs by Applying Formal Concept Analysis to Conceptual 
Graphs. In: CROITORU, Madalina, MARQUIS, Peter, RUDOLPH, Sebastian and 
STAPLETON, Gem, (eds.) Graph Structures for Knowledge Representation and 
Reasoning : 5th International Workshop, GKR 2017, Melbourne, VIC, Australia, 
August 21, 2017, Revised Selected Papers. Lecture Notes in Artificial Intelligence 
(10775). Springer, 3-28. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Metadata of the chapter that will be visualized in
SpringerLink

Book Title Graph Structures for Knowledge Representation and Reasoning
Series Title

Chapter Title Exploring, Reasoning with and Validating Directed Graphs by Applying Formal Concept Analysis to
Conceptual Graphs

Copyright Year 2018

Copyright HolderName Springer International Publishing AG, part of Springer Nature

Author Family Name Andrews
Particle

Given Name Simon
Prefix

Suffix

Role

Division Conceptual Structures Research Group, Department of Computing,
Communication and Computing Research Centre

Organization Sheffield Hallam University

Address Sheffield, UK

Email s.andrews@shu.ac.uk

ORCID http://orcid.org/0000-0003-2094-7456

Corresponding Author Family Name Polovina
Particle

Given Name Simon
Prefix

Suffix

Role

Division Conceptual Structures Research Group, Department of Computing,
Communication and Computing Research Centre

Organization Sheffield Hallam University

Address Sheffield, UK

Email s.polovina@shu.ac.uk

ORCID http://orcid.org/0000-0003-2961-6207

Abstract Although tools exist to aid practitioners in the construction of directed graphs typified by Conceptual
Graphs (CGs), it is still quite possible for them to draw the wrong model, mistakenly or otherwise. In
larger or more complex CGs it is furthermore often difficult–without close inspection–to see clearly the
key features of the model. This paper thereby presents a formal method, based on the exploitation of CGs
as directed graphs and the application of Formal Concept Analysis (FCA). FCA elucidates key features of
CGs such as pathways and dependencies, inputs and outputs, cycles, and joins. The practitioner is
consequently empowered in exploring, reasoning with and validating their real-world models.



Exploring, Reasoning with and Validating
Directed Graphs by Applying Formal

Concept Analysis to Conceptual Graphs

Simon Andrews and Simon Polovina(B)

Conceptual Structures Research Group, Department of Computing, Communication
and Computing Research Centre, Sheffield Hallam University, Sheffield, UK

{s.andrews,s.polovina}@shu.ac.uk

Abstract. Although tools exist to aid practitioners in the construction
of directed graphs typified by Conceptual Graphs (CGs), it is still quite
possible for them to draw the wrong model, mistakenly or otherwise.
In larger or more complex CGs it is furthermore often difficult–without
close inspection–to see clearly the key features of the model. This paper
thereby presents a formal method, based on the exploitation of CGs as
directed graphs and the application of Formal Concept Analysis (FCA).
FCA elucidates key features of CGs such as pathways and dependencies,
inputs and outputs, cycles, and joins. The practitioner is consequently
empowered in exploring, reasoning with and validating their real-world
models. AQ1

1 Introduction

A directed graph–or “digraph”–is a graph whose edges have direction and are
called arcs [9,11]. Arrows on the arcs are used to encode the directional infor-
mation: an arc from vertex A to vertex B indicates that one may move from A
to B but not from B to A. Such graphs for example are used in computer science
as a representation of the paths that might be traversed through a program, or
in higher-level conceptual models where concepts are related to each other by
relations that gain additional semantics (i.e. meaning) by defining the direction
between the source and target concepts. A classic illustration is a cat that sits
on a mat [18]. In this simple example ‘sits-on’ is the semantic relation where the
direction goes from cat to mat and not vice versa.

CGs (Conceptual Graphs) are digraphs that enable modellers to express
meaning in a form that is logically precise whilst being humanly readable, and
serve as an intermediate language for translating between computer-oriented
formalisms and natural languages [14,19]. CGs graphical representation thereby
serve as a readable, but formal specification language for systems design or other
practitioners using this approach [10]. CGs are however drawn by hand. Tools
such as CoGui and CharGer already exist to assist the practitioner in creating
a well-formed CG (Conceptual Graph) that adheres to the prescribed grammar
and syntax [1,2]. However there is no guarantee that a model created using CGs
c© Springer International Publishing AG, part of Springer Nature 2018
M. Croitoru et al. (Eds.): GKR 2017, LNAI 10775, pp. 1–26, 2018.
https://doi.org/10.1007/978-3-319-78102-0_1

A
u

th
o

r 
P

ro
o

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78102-0_1&domain=pdf
http://orcid.org/0000-0003-2094-7456
http://orcid.org/0000-0003-2961-6207


2 S. Andrews and S. Polovina

is correct in terms of its validity. The modeller may have a misconception of the
system being modelled or may simply make mistakes in its construction–things
that still conform to the syntax and grammar but result in an invalid model.

It can be difficult to explore and validate a large and complex CG by inspec-
tion. It is this problem that this paper addresses by providing an automated
method whereby key features of CGs are captured, reported and visualised. The
modeller would thus be assisted in exploring and validating their CGs. The
method makes use of the inherent direction of Concept-relation-Concept triples
in CGs to transform these triples into binary relations and thus expose them to
Formal Concept Analysis (FCA) [8]. The process is automated in a tool called
CGFCA and has two stages; firstly parsing a CG file (in the ISO common logic
cgif format [19]) to extract the CG triples and secondly, converting these triples
into corresponding binary relations that accentuate the directed pathways in the
original CG, as described next in Sect. 2. The triples-to-binaries function is car-
ried out using an implementation of the Triples2Binaries algorithm, specifically
described in Subsect. 2.2.

2 Transforming CG Digraphs: Triples into Binary
Relations

If triples are extracted from a CG in the form Source Concept → relation →
Target Concept, each such triple can easily be represented as a corresponding
binary relation i.e. Source Concept-relation, Target Concept. Where the Tar-
get Concept then becomes a Source Concept for a following relation, this can
be captured in additional binary relations, where the original Source Concept-
relation is paired with subsequent Target Concepts. To illustrate the source-
target structure, Fig. 1 shows a simple CG with the CG Concepts, [Cat], [Mat]
and [Colour: Grey]. [Cat] and [Mat] are linked by the CG relation (sits-on)
and [Mat], [Colour: Grey] are linked by (has-attribute). (In simple English,
the CG describes a cat that sits on a grey mat.) We can say that the

Fig. 1. Simple CG Fig. 2. FCL for simple CG

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 3

target Concept [Mat] is dependent on the source Concept-relation pair [Cat] →
(sits-on) and the target Concept [Colour:Grey] is dependent on its source
Concept-relation pair [Mat] → (has-attribute) (or alternatively, the source
Concept-relation pair [Cat] → (sits-on) results in the target Concept [Mat]
and the source Concept-relation pair [Mat] → (hasattribute) results in the tar-
get Concept [Colour: Grey]). The CG triple ([Cat], (sits-on), [Mat]) can
be converted into the binary relation ([Cat]-(sits-on), [Mat]). Likewise the
CG triple ([Mat], (hasattribute), [Colour: Grey]) can be converted into the
binary relation ([Mat](has-attribute), [Colour: Grey]).

There is also a binary relation between [Cat] and [Colour: Grey] indirectly
through [Cat]-(sits-on). Hence [Colour: Grey] also depends (indirectly) on
[Cat], which is of course sitting on that mat.

Simple CG Cat sits-on Mat has-attribute
Cat
Mat ×
Colour : Grey × ×

Fig. 3. The simple CG as a cross-table

The set of binary relations can be simply represented in a cross-table and
Fig. 3 shows the corresponding cross-table for this simple example, with rows
representing CG Concepts and columns CG Source Concept-relations. The cross-
table is known as a Formal Context in FCA, so by converting CGs into these
binary relations, FCA can then be applied. Figure 2 displays the resulting Formal
Concept Lattice (FCL). This approach was derived after we compared it with
Wille’s mapping of CGs to FCA (‘Concept Graphs’) in an earlier study [5,20].
Figures 4, 5, and 6 show the CG, FCL and cross-table (Formal Context) for a
larger CG using the same Cat on Mat example. Figures 7, 8, and 9 show the CG,
FCL and cross-table for a further extended version of this example. This time it
has two input CG Concepts, [Cat: Gwyn] and [Cat: Bumbles] thus depicting
the specific cats Gwyn and Bumbles as the respective CG referent for each CG
Concept as shown.

2.1 Obtaining Triples from a Conceptual Graph: A Parser for cgif

To automate this process, a parser was created that operates on the standard
CG file format, cgif. To illustrate the format, below is the cgif for the ‘Cats on
the Mat’ CG in Fig. 7:

[Material: Fleece] [Cat: Gwyn] [Mat: *x1] [Cat: Bumbles] [Colour: Grey]
(sits-on Bumbles Gwyn ?x1)(has-attribute Fleece Grey)(made-from ?x1 Fleece)

The first line in the cgif defines the CG Concepts and the second line defines
the CG relations. In line with CGs theory where the referent is unknown, cgif

A
u

th
o

r 
P

ro
o

f



4 S. Andrews and S. Polovina

Fig. 4. CG with 4 concepts Fig. 5. FCL for CG with 4 concepts

With 4 Concepts Cat sits-on Mat made-from Material: Fleece has-attribute
Cat
Mat ×
Material : Fleece × ×
Colour : Grey × × ×

Fig. 6. The 4 concept CG as a cross-table

Fig. 7. CG with 2 input concepts Fig. 8. FCL for 2 input concepts

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 5

2 Input Concepts

C
at

:
B

um
bl

es
si

ts
-o

n
C

at
:
G

w
yn

si
ts

-o
n

M
at

m
ad

e-
fr

om
M

at
er

ia
l:

F
le

ec
e

ha
s-

at
tr

ib
ut

e

Cat : Bumbles
Cat : Gwyn
Mat × ×
Material : Fleece × × ×
Colour : Grey × × × ×

Fig. 9. The 2 input CG as a cross-table

uses generic referents such as x1 and x2, with a preceding * (in CG Concepts)
or ? (in CG relations). Each relation is defined in the cgif with a list of referents
comprising one or more source CG Concept referents and a target CG Concept
referent. The final referent in the list is always the target referent. Thus, in the
relation made-from, x1 is the source and Fleece is the target, and in the relation
sits-on, Bumbles and Gywn are sources and x1 is the target.

The parser first extracts the CG Concepts from the cgif, creating an integer
index for each CG Concept and separating the type labels and referents (see
Table 1a). The parser then extracts the CG relations from the cgif, creating an
integer index for each CG relation and separating the type labels and lists of
referents (see Table 1b).

Table 1. Information extracted by parser from Cats on the Mat cgif

No. Label Referent
1 Material Fleece
2 Cat Gwyn
3 Mat x1
4 Cat Bumbles
5 Colour Grey

(a) CG Concepts

No. Label Referents
1 sits-on Bumbles Gwyn x1
2 has-attribute Fleece Grey
3 made-from x1 Fleece

(b) CG relations

If there are co-referent CG Concepts or relations, the parser will form the
corresponding joins. For CG Concepts, as each Concept label and referent is
extracted from the cgif, the referent is compared to the list of Concept referents

A
u

th
o

r 
P

ro
o

f



6 S. Andrews and S. Polovina

already extracted. If a match is found, instead of adding a new Concept, the
parser compares the two Concept labels. If they are different, it concatenates
the new label with the existing label in the list, if not the parser simply moves
on to the next Concept in the cgif. A similar process is carried when parsing the
CG relations in the cgif, but here it is the list of referents associated with the
relation that is compared: for two CG relations to be co-referent they must have
the same sources and target. For examples of joining co-referents see Sect. 4.8.

Once the CG Concepts and relations have been extracted (and any co-referent
joins made), the parser then uses the referents for each relation to create cor-
responding triples by looking up the index number of the relation’s source and
target CG Concepts corresponding to the relation’s referents. Table 2 contains
the triples created from Table 1. The triples thus created are now ready for the
process of converting them to corresponding binary relations.

Table 2. Cats on the Mat triples

Source Relation Target

4 1 3

2 1 3

1 2 5

3 3 1

2.2 A Triples-to-Binaries Algorithm

Figure 10 is an algorithm, Triples2Binaries, that along with its subroutine
AddBinary (Fig. 11), converts a set of triples, T , into a corresponding set of bina-
ries, B , exploiting the direction in the triples as explained above. It is a gener-
alised form of the CGtoFCA algorithm previously presented [5]. Whilst its appli-
cation to CGs is the focus of this paper, the more general form makes it applicable
to directed triples obtained from any source, including UML, RDF, OWL, the
Entity-Relation Diagram and linked data. Triples2Binaries also includes some
refinements not present in CGtoFCA, namely; the ability to detect ‘direct path-
ways’ and cycles in a CG. A direct pathway through a CG is a path from an
input CG Concept to an output CG Concept, where an input CG Concept is one
with no edges entering it and an output CG Concept is one with no edges leaving
it. Features such as direct pathways and cycles often have significant meaning in
a CG but are not always easily apparent (particularly in large CGs). The main
algorithm, Triples2Binaries, simply iterates through the set of triples, T , send-
ing each triple, (s, r , t) to the subroutine AddBinary. In (s, r , t), s denotes the
source, r denotes the relation and t denotes the target. Each triple enumerated
in Triples2Binaries will be the start of a new pathway. A pathway is recorded
by AddBinary as a set of (source, relation) pairs in path.

AddBinary takes each triple (s, r , t), adds (s, r) to the current path (line
2) and then adds the corresponding binary ((s, r), t) to the set of binaries, B
(line 3).

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 7

Line 4 is a test for detecting a direct pathway in the CG: if the current source,
s, is an input CG Concept and the current target, t , is an output CG Concept,
then there is a direct pathway from s to t . In which case, the current path along
with t is recorded as a direct pathway.

Line 6 is the condition for detecting a cycle in the CG: if the current source,
s, is the same as the current target, t , there is a cycle, recorded in line 7 as the
current path along with the current target.

Line 8 defines the terminating condition for recursion (thus preventing infinite
loops around cycles): if the current target, t , is already in the current path then
AddBinary terminates. Otherwise, line 9 iterates through the set of triples, T ,
to test for links (line 10): if the current target, t , also appears as a source, i , in
the set of triples, AddBinary is called recursively (line 11), passing the current
source, s, the current relation, r , and the new target, k .

Note that the condition for a cycle (line 6) cannot be used as the terminating
condition for recursion. This is because the starting point for a cycle can occur at
any point in a pathway. A pathway begins with the source, s, and if the starting
point of a cycle begins later than s, then s will never equal t and we would have
an infinite loop around that cycle.

begin1

path ← ∅2

foreach (s, r , t) ∈ T do3

AddBinary(s, r , t , path)4

end5

Fig. 10. Triples2Binaries(T )

3 The CGFCA Tool

The cgif parser and Triples2Binaries algorithm were implemented together to
form a software tool called CGFCA. The architecture of CGFCA is shown in
Fig. 12. The cgif parser inputs a CG in the form of a cgif file and creates a
corresponding set of CG (source Concept, relation, target Concept) triples as
described in Sect. 2.1. The triples are then passed to Triples to Binaries which
converts them into ((source Concept, relation), target Concept) binaries, includ-
ing the computation of all binaries with indirect target Concepts, as described in
Sect. 2.2. Triples to Binaries also carries out an analysis of the CG and reports
the following features: input Concepts, output Concepts, direct pathways (from
an input Concept to an output Concept), cycles and pathways with multiple
routes (these are multiple pathways from the same input Concept-relation to the
same output Concept). These multiple routes were considered worth detecting
and reporting as they may indicate redundant pathways in a CG. The ((source
Concept, relation), target Concept) binaries computed by Triples to Binaries

A
u

th
o

r 
P

ro
o

f



8 S. Andrews and S. Polovina

begin1

path ← path ∪ {(s, r)}2

B ← B ∪ {((s, r), t)}3

if IsInput(s) and IsOutput(t) then4

RecordDirectPathway(path, t)5

if s = t then6

RecordCycle(path, t)7

if ¬ ∃(x , y) ∈ path | t = x then8

foreach (i , j , k) ∈ T do9

if t = i then10

AddBinary(s, r , k , path)11

end12

Fig. 11. AddBinary(s, r , t , path)

are then passed to a simple Formal Context Creator where the (source Concept,
relation) in each binary is treated as a formal attribute and each target Concept
is treated as a formal object. The formal context is output in the standard cxt
format for FCA.

Fig. 12. CGFCA architecture

The formal context output by CGFCA can then be visualised as a Formal
Concept Lattice (FCL) using an appropriate tool, such as ConceptExplorer (Con-
Exp)1 or as a Formal Concept Tree using In-Close [3,4]. Such visualisations
clearly highlight further CG features such as cycles and co-referent joins.

1 http://conexp.sourceforge.net/.

A
u

th
o

r 
P

ro
o

f

http://conexp.sourceforge.net/


Exploring, Reasoning with and Validating Directed Graphs 9

4 Highlighting Key Features of a CG Using CGFCA

This Section uses simple CG examples to illustrate the use of the GCFCA tool
in detecting and highlighting features of CGs and how corresponding FCLs allow
a GC to be explored in a formal, hierarchical, visualisation.

4.1 Paths and Dependencies

Figures 13 and 14 respectively illustrate the CG and FCL for the dependen-
cies described earlier in a larger example–as well as two paths–between the
source Concept [Person: Simon] and the target Concept [City: London]. As
well as the intermediate target Concepts that in turn become source Concepts
(i.e. [Coach: #564] and [Hotel: OpenSky]), this example shows CG referents,
namely Simon, #564, OpenSky and London. ([Colour: Grey] from Fig. 2 was
also a CG Concept with a referent.) The referents are instances of their respec-
tive type label in the CG Concept e.g. London is a referent of the type label
City, and #564 the numeric identifier for a Coach that in the context of Fig. 13
could be read as the number of the coach that goes to London. In addition to the
direct dependencies such as [Hotel: OpenSky]) on [Person: Simon]-(books)
there are indirect dependencies detected in accordance with AddBinary line 4
described earlier in Subsect. 2.2. These are: (a) [City: London]) on [Person:
Simon]-(books), and (b) [Person: Simon]-(travels-to) through the other
path that has the intermediate Concept [Coach: #564]. The starting (or input)
Concepts and ending (or output) Concepts are usefully reported by the CGFCA
software i.e. Inputs: “Person: Simon”. Outputs: “City: London”. The output also
states: Direct Pathway: Person: Simon - books - Hotel: OpenSky - location - City:
London and Direct Pathway: Person: Simon - travels-by - Coach: #564 - destina-
tion - City: London.

Fig. 13. Paths and dependencies CG Fig. 14. Paths and dependencies FCL

A
u

th
o

r 
P

ro
o

f



10 S. Andrews and S. Polovina

In simple terms, Simon’s trip to London depends on travelling there by coach
and booking into the OpenSky hotel. Of course in this still-simple example this
knowledge can be gleaned from the CG alone thereby obviating the need for
CGFCA. However it is more likely that these patterns will appear in larger CGs
where it is not so evident, perhaps unknowingly as they are drawn by hand
and obfuscated by the size of the larger model. CGFCA and the consequent
computer-generated FCL will highlight within such digraphs the ‘diamond’ look-
ing patterns that represent multiple pathways thus alerting their existence–hence
validity–to the modeller.

4.2 Cycles

It is natural that digraphs may contain one or more cycles. Figures 15 and 16
respectively illustrate an example of a CG and FCL that is a cycle. Note that this
example is similar to the previous paths and dependencies example in Figs. 13
and 14. This time the direction of the hotel booking path goes in the opposite
direction, thus creating the cycle. The renaming of the relations i.e. location
to location-of and books to booked-by correctly reflect the new direction. It
is common however to name or use relations that cause cycles to occur inad-
vertently such as possibly in this example. A cycle may of course be desired,
but the modeller will in any event be alerted to its validity by the FCL (here
Fig. 16) in accordance with AddBinary line 7 described earlier in Subsect. 2.2.
The CGFCA output highlights why the Fig. 16 lattice looks as it does: There are
no inputs. There are no outputs. Cycle: City: London - location-of - Hotel: OpenSky -
booked-by - Person: Simon - travels-by - Coach: #564 - destination - City: London.
Every Concept is dependent on all the other Concepts with no hierarchy, thus
they become grouped together in the FCL.

Fig. 15. CG that is a cycle Fig. 16. FCL of cycle

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 11

4.3 Joins

Figures 17 and 18 respectively illustrate the CG and FCL for Concepts that are
co-referent. Co-referents occur when Concepts have the same referent, which
in this case is Gywn in Pet and Cat. Where a source and target Concept are
directly linked by more than one relation, the associated relations are in effect
co-referent. This behaviour is highlighted by Figs. 19 and 20.

Fig. 17. CG with co-referent concept Fig. 18. FCL with co-referent concept

Fig. 19. CG with co-referent relations Fig. 20. FCL with co-referent relations

Before the Triples2Binaries algorithm in CGFCA is called, the CGFCA cgif
parser detects co-referent CG Concepts and co-referent CG relations and because
they refer to the same object or instance it joins the Concepts and relations
automatically (see Sect. 2.1). Furthermore it concatenates the Concept type or
relation labels, using ‘;’ as the delimiter.

The outcome is evident in the FCL for Figs. 18 (i.e. Pet;Cat) and 20 (i.e.
sleeps-on;sits-on;prefers). This approach is akin to the maximal common
subtype in CGs (or intersection); thus Gywn is (a) a Pet Cat, and (b) sleeps,
sits on, and likes the Mat2.

A common error (particularly in larger or more complex models) is to give
different types the same referent by mistake. Take for example the CG Fig. 19.
2 Note Mat here has a latent referent, in accordance with CGs theory; hence we can

simply refer to it through the definite article ‘the’.

A
u

th
o

r 
P

ro
o

f



12 S. Andrews and S. Polovina

In that Figure let’s change [Mat: Gwyn’s] to [Mat: Gwyn], assuming that it
was mistyped by the modeller in the first place. As a result, [Mat: Gwyn] will
inadvertently join with the [Cat: Gwyn] and [Pet: Gwyn] CGs from Fig. 17.
Figure 21 shows the CGs for this scenario including the mistake, and Fig. 22
demonstrates the result. Now Gwyn is not only a Pet Cat but a Mat too! And
Bumbles sleeps-on, sits-on and prefers Gwyn as a Mat (rather than Gwyn’s Mat)
while Gwyn sits on another Mat, all of which is nonsensical as the FCL reveals.
Like the previous pathways and cycles examples, the practitioner is immediately
presented with a need to reason with and validate their models.

Fig. 21. CG with co-referents Fig. 22. Mistakenly joined CGs FCL

4.4 n-adic

Apart from Fig. 7 earlier, the CG relations so far have been 2-adic i.e. only one
source CG Concept pointing to the relation. 2-adic CG relations are also known
as dyadic CG relations. A CG relation may however have more than one source
CG Concept; hence an n-adic CG relation has n source CG Concepts. The CG
relation sits-on in Fig. 7 is 3-adic, or triadic.

Figures 23 and 25 highlights the relation sits-on being stated as being
dyadic or triadic respectively. CG relations may any number of source CG

Fig. 23. CG with 2-adic relation Fig. 24. FCL with 2-adic relation

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 13

Fig. 25. CG with 3-adic relation Fig. 26. FCL with 3-adic relation

Concepts pointing to them3. Figures 24 and 26 reveal that the FCL for Figs. 23
and 25 turn out to be identical, thus two representations of the same meaning.
Unsurprisingly, the CGFCA output is identical for both the 2-adic and the 3-
adic: Inputs:“Cat: Gwyn” “Cat: Bumbles” Outputs: “Mat: Gwyn’s” Direct Pathway:
Cat: Gwyn - sits-on - Mat: Gwyn’s Direct Pathway: Cat: Bumbles - sits-on - Mat:
Gwyn’s.

Certain CG relations such as ‘(share)’ inherently can only have certain n-
adic values. For the share case, there need to be two or more things to have
something shared between them, hence share has to be at least triadic i.e. ≥
3-adic. As CGFCA would provide the same outcome even if the share CG rela-
tion was modelled as dyadic accidentally by the modeller, it would still be cor-
rectly depicted in the FCL. For completeness, Figs. 27, 28, 29 and 30 respectively
demonstrate this outcome.

Fig. 27. CG, ‘wrong’ 2-adic share Fig. 28. FCL, ‘corrected’ share

Fig. 29. CG, ‘correct’ 3-adic share Fig. 30. FCL, ‘correct’ 3-adic share

3 CG relations may however have only one target CG Concept [17].

A
u

th
o

r 
P

ro
o

f



14 S. Andrews and S. Polovina

4.5 Formal Concepts Without Their Own Attributes or Objects

Unlike the examples shown thus far where it has only occurred at the bottommost
(or infimum) Formal Concept in an FCL, CGs may generate an FCL that has
Formal Concepts without their own attributes (i.e. Source Concept-relation) or
objects (i.e. Target Concept) in the middle of the FCL. Figure 31 has generated
such a formal concept as evident in Fig. 32.

Essentially this is because [Cat: Bumbles] and [Cat: Gywn] both sit-on
the [Mat: Gwyn’s] and have the heritage of [Pedigree: British Blue].
This pattern can be gleaned from the corresponding CGFCA output for Figs. 31
and 32:
Inputs: “Cat: Bessie” Outputs: “Mat” “Pedigree: British Blue”
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - heritage - Pedigree:
British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - sits-on - Mat
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - sits-on - Mat
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - heritage - Pedigree:
British Blue

Fig. 31. CG leading to unlabelled FC Fig. 32. FCL with unlabelled FC

Fig. 33. Larger CG, unlabelled FC Fig. 34. Larger FCL, unlabelled FC

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 15

The only way to traverse the FCL to capture these relations is through the
unlabelled Formal Concept in between.

Figures 33 and 34 evidence the pattern in a larger example where, essen-
tially, [Cat: Bumbles] and [Cat: Gywn] both sit-on the [Mat: Gwyn’s] and
have the heritage of [Pedigree: British Blue], and have as their owner the
[Person: Simon]. The CGFCA output underpins the pattern:
Inputs: “Cat: Bessie” Outputs: “Person: Simon” “Mat: Gwyn’s” “Pedigree:
British Blue”
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - owner - Person: Simon
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - heritage - Pedigree:
British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Bumbles - sits-on - Mat: Gwyn’s
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - heritage - Pedigree:
British Blue
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - owner - Person: Simon
Direct Pathway: Cat: Bessie - offspring-of - Cat: Gwyn - sits-on - Mat: Gwyn’s.

4.6 Further Exploring n-adity

For Fig. 33 we can also identify the presence of 3-adic (triadic) relations, as CG
Fig. 35 reveals. Note once more that the FCL Fig. 36 is identical to Fig. 34.

Figure 37 has a CG with heritage as a 4 -adic relation, essentially adding
that [Cat: Bessie] has the heritage of [Pedigree: British Blue] too,
along with [Cat: Bumbles] and [Cat: Gywn]. Through the unlabelled Formal
Concept the 4th adic is highlighted by Fig. 38.

4.7 Further Exploring Co-Referent Links

Figure 37’s CG can be restated using a co-referent link as shown by Fig. 39. In
this Figure, the CG Concept [Pedigree: British Blue] appears twice. Note
also that the 4-adic heritage relation has disappeared, or so it would appear?

Fig. 35. Same CG, 3-adic Fig. 36. Resulting same FCL

A
u

th
o

r 
P

ro
o

f



16 S. Andrews and S. Polovina

Fig. 37. CG, with 4-adic Fig. 38. FCL, with 4-adic

Fig. 39. Same CG, but co-referent Fig. 40. Resulting same FCL

Note that Fig. 40, which is the FCL for Fig. 39 is identical to the FCL Fig. 38.
The CGFCA parser applies the CG join operation as before thus causing the
co-referents–as they are the same CG referent–to be joined [14,17,19]. The sig-
nificance of this example is that it reminds us that CGs may be hand-drawn
in different ways (e.g. different adity, or using co-referents advertently–or inad-
vertently as we saw with [Mat: Gwyn] in CG Fig. 21 and the corresponding
FCL Fig. 22). However the FCL will represent them in one way, thus potentially
removing multiple, and potentially confusing ways of stating the same thing
differently.

4.8 Larger Joins

Lastly to illustrate the wider behaviour of digraphs through CGs the above-
discussed examples are essentially joined into one CG. Figure 41 shows the result
of joining the other CGs (except Fig. 15) with Fig. 13, which showed the depen-
dency from [Person: Simon] to [City: London] without the cycle, whereas
Fig. 42 shows the result of joining the other CGs (except Fig. 13) to Fig. 15,
which showed [Person: Simon] to (and from) [City: London] with the cycle.

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 17

Fig. 41. Joined FCL no cycle Fig. 42. Joined FCL with cycle

5 A Realistic Example

The simple but expressive examples presented thus far demonstrate how digraphs
can be explored and validated through Triples2Binaries as exemplified by
CGFCA. Previous work has indicated CGFCA’s value in the business infor-
mation systems modelling domain [15]. Based on an example from that work,
a more comprehensive example is now presented from that real-world domain.
Whilst the example uses the terminology of that domain, this example will be
explained such that it can be more widely understood.

Fig. 43. Application module CG

A
u

th
o

r 
P

ro
o

f



18 S. Andrews and S. Polovina

Fig. 44. Application module FCL

5.1 The Current Situation

As explained from the outset, human modellers draw diagrams to elicit the
dimensions of some problem that becomes too difficult to understand through
discursive narrative alone. We have seen that through CGs, the directed graph
(digraph) offers the significant advantage of capturing the directional informa-
tion i.e. an arc from vertex A to vertex B indicates that one may move from A
to B but not from B to A. As well as their use in computer science as a repre-
sentation of the paths that might be traversed through a program, the examples
demonstrate digraphs’ applicability in higher-level conceptual models where con-
cepts are related to each other by relations that gain additional semantics (i.e.
meaning) by defining the direction between the source and target concepts.

CGs (Conceptual Graphs) are an expressive form of digraphs that enable
modellers to express meaning in a form that is logically precise whilst being
humanly readable. As such, they provide a conceptual structure that can for-
mally describe the given problem being modelled. CGs, in common with many
other forms of diagraphs are however drawn by hand, even with the assistance

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 19

of software tools such as CoGui suggested earlier [2]. Currently, the modeller
enters the digraphs–in this case CGs–into the tool manually and relies on the
tool to work with the potentially erroneous CGs entered into it. In effect the
tool is as only as good as the fool that uses it, so “a fool with a tool is still a
fool”–a common criticism from industry [12]. While a business (or other) mod-
eller may be no fool, there is no guarantee that a model created using CGs is
correct in terms of its validity. In their exploration of the given problem using
CGs, the modeller may have a misconception of the system being modelled or
may simply make mistakes in its construction–things that still conform to the
syntax and grammar but result in an invalid model. The current situation is too
complicated, and presents an unwarranted burden on the modeller.

Formal Concept Analysis (FCA) claims to add mathematical rigour to the
logical rigour captured in CGs [10]. CGFCA reveals FCA’s effectiveness in this
respect, thereby moving away from the current situation with its unnecessary
complications as described above. We now further test this effectiveness using
business modelling as the more comprehensive illustration.

5.2 Understanding the Complications

The CG Fig. 43 describes the components of a software application module that
is part of an information system in an organisation. Applying CGFCA as above,
Fig. 44 is the corresponding FCL for this CG Figure. The human business mod-
eller draws this CG to capture the entities as CG Concepts and the CG relations
between them. The detailed meaning of each entity and relation is discussed else-
where [15], but for the purposes of our understanding the application module
is denoted by the CG Concept: [Application Module: am1A]. The referent
‘am1A’ uniquely identifies the application module. The remaining CG Concepts
and relations flow down from [Application Module: am1A]. This is validated
by Application Module: am1A being at the supremum (topmost) Formal Con-
cept of the lattice, Fig. 44. The modeller requires each referent throughout this
CG to be unique and have no cycles in it. Figure 44 evidences that the Applica-
tion Module as a CG is accurately captured. In practice this is unlikely to be the
case. What are the complications in drawing the model that can undermine its
validity, and how are these complications revealed by CGFCA and the lattice?

Arrow Direction. A common mistake or misconception that a modeller can
make is to draw the arrows the wrong way round. This is a complication that
may seem obvious on close inspection of the CG but nonetheless easily occurs
even in introductory CGs despite proof-checking [14]. The syntax of the CG is
correct–i.e. it is still a digraph (directed graph)–but this act results a semantic
error. Figure 46, which is an extract of the lattice for the CG Fig. 45 shows
that Application Module: am1A is not at the supremum; its place is taken
by Organizational Unit: ou1A. This change of input is also shown by the
CGFCA report: Inputs:“Organizational Unit: ou1A”. The modeller is alerted to
this deficiency because the arrows between [Application Module: am1A] and

A
u

th
o

r 
P

ro
o

f



20 S. Andrews and S. Polovina

Fig. 45. Application module CG, wrong arrow direction

Fig. 46. Application module FCL extract, wrong arrow direction

[Organizational Unit: ou1A] in CG Fig. 45 were accidentally drawn the other
way, unlike in the correctly-drawn previous CG Fig. 43. The modeller can then
correct the model. The modeller may want to manually record the mistake for
future reference, by shading the ‘offending’ (assigned to) CG relation as shown
in Fig. 45.

Mispointed Arrows. The CG Fig. 47 highlights another common mistake (or
misconception) where a CG relation is pointed to the wrong CG Concept. In this
case it’s [Transaction Code: tc3A] → (assigned to) → [IT Governance:
itg4A]. It should be [Transaction Code: tc3A] → (assigned to) → [Data
Entity: de3A]. For convenience the offending relation is highlighted in Fig. 47.
In practice the modeller would run CGFCA then generate the FCL (of
which Fig. 48 is an extract) before highlighting the incorrect CG. From
FCL Fig. 47 the modeller notices that assigned to;measured by is incor-
rectly concatenated in Transaction Code: tc3A assigned to;measured by.

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 21

Fig. 47. Application module CG extract, assigned to mispointed

Fig. 48. Application module FCL extract, assigned to mispointed

Such concatenations were demonstrated earlier by the FCL Fig. 20 (i.e. Cat:
Bumbles sleeps-on;sits-on;prefers), which was correct in CG Fig. 19 but
incorrect in CG Fig. 47. Again a close inspection of CG Fig. 47 would reveal this
complication, but it can easily happen in practice.

Unwanted Cycles. While cycles may be deliberate, in many cases including
this business modelling scenario they point to a mistake or misconception. That
is the case of the CG Fig. 49 that emerges in the FCL of which Fig. 50 is an
extract. The cycle is still rather subtle however as the FCA attributes Business
Object: bo3A assigned to, Event: e3A assigned to and Application Task:
at3A assigned to are spread across two Formal Concepts before the FCA objects

A
u

th
o

r 
P

ro
o

f



22 S. Andrews and S. Polovina

Fig. 49. Application module CG, cycle

Fig. 50. Application module FCL extract, cycle

Business Object: bo3A, Event: e3A assigned to and Application Task: at3A
are reached showing that the CG Concepts in the attributes (eventually) point to
themselves as the CG Concept denoted by the FCA object. The CGFCA report
brings it most easily to light:

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 23

Cycle: Application Task: at3A - assigned to - Event: e3A -
assigned to - Business Object: bo3A - assigned to - Application
Task: at3A.

The FCL is nonetheless of value as the Formal Concept that has the three
attributes listed above (i.e. Business Object: bo3A assigned to, Event:
e3A assigned to and Application Task: at3A assigned to) doesn’t have
its own object (i.e. target CG Concept). This is highlighted by the bottom half
of this Formal Concept’s circle being transparent due to the other dependencies
in the FCL. The modeller sets those other dependencies aside, as (s)he has iden-
tified that the unwanted cycle is the issue and its correction may also resolve any
other suspect dependencies (which it does). The cause? That common error of
a relation with the arrows pointing the wrong way i.e. the (assigned to) CG
relation that points to [Application Task: at3A] from [Business Object:
bo3A] when the CG relation should be the other way round. This time it causes
a cycle as a revisit to the CG Fig. 49 and following this CG relation–using the
CGFCA report as our guide–brings the cycle to light. For the record, the offend-
ing (assigned to) is shaded in the CG Fig. 49. The cycle in the FCL Fig. 50 is
also highlighted by the rectangles with thick black borders.

Invalid CG Referents. Remember in Fig. 22 i.e. Cat;Mat;Pet: Gwyn, Gwyn
became not only a Pet Cat but a Mat too! This common error appears in the
CG Fig. 51 and becomes evident in FCL Fig. 52, where [Application Roles:
ar3A] and [Application Rules: ar3A] accidentally share the same referent
(ar3A); an easy error to make especially as the CG Type Labels Application

Fig. 51. Application module CG, ar3A referent

A
u

th
o

r 
P

ro
o

f



24 S. Andrews and S. Polovina

Fig. 52. Application module FCL, ar3A referent

Rules and Application Roles look so similar too! In the FCL Fig. 52 they
are shown as Application Rules;Application Roles and, for emphasis, high-
lighted in thick black border rectangles. Likewise, and as before, the modeller in
CG Fig. 51 shades these offending CG Concepts.

5.3 Resolving the Complications

While the above complications are not exhaustive, and not accounting for com-
binations of complications that could be further highlighted by the approach
described, we have evidenced through the real-world scenario of business mod-
elling how the human modeller as a practitioner (business or otherwise) is
empowered by CGFCA and the FCL. In the course of this approach the mod-
eller was able to explore the CG models, apply his/her reasoning from identifying
issues in the models, thus leading to their correction. Through resolving the com-
plications, the modeller acts as a human co-creator with the computer-generated
CGFCA reports and FCLs (Formal Concept Lattices) thereby being empowered
to produce useful, validated models.

A
u

th
o

r 
P

ro
o

f



Exploring, Reasoning with and Validating Directed Graphs 25

6 Related Work

CGFCA originated with a comparative study to Wille’s Concept Graphs as
stated earlier, revealing the comparative advantages of CGFCA [5,20]. CGFCA–
hence Triples2Binaries–is however now at a level of maturity that it can play a
useful role whilst recognising the existence of other FCA approaches to triple-
based structures, such as Relational Concept Analysis (RCA), EL-Implications
and Graph-FCA [6,7,16]. Extensive comparative studies in this arena already
exist, pre-CGFCA [13]. While CGFCA fulfills the scope of our study, there is
value in a up-to-date comparative study that includes CGFCA. Such work may
help to identify how all the approaches may best work together for directed
graphs and FCA.

7 Concluding Remarks and Further Work

As well as providing the capability to explore, reason with and validate directed
graphs (digraphs), the FCL representation of CGs are arguably more readable.
As we have seen, the arcs (the arrows) in a CG can lead in any direction. In a
large, complex CG it can be difficult to trace and compare pathways through it,
even more so where there are co-referent links. All FCL pathways are aligned in
a top-to-bottom (inputs to outputs), hierarchical manner and co-referents can
be automatically joined to make more apparent their connections and place in
the graph.

Future work will continue to develop representative exemplars; a worthwhile
endeavour given the value demonstrated by this paper. Furthermore since we
have set the context as exploring and validating digraphs through triples to
binaries rather than just CGs, the further work intends to include directed triples
modelled by practitioners in UML, RDF, OWL, the Entity-Relation Diagram
and linked data as alluded to earlier.

Meanwhile we have demonstrated that CGFCA–hence Triples2Binaries–
presents a formal method that exploits CGs as digraphs through the application
of Formal Concept Analysis (FCA). FCA elucidates key features of CGs such
as pathways and dependencies, inputs and outputs, cycles, and joins. Given the
prevalence of digraphs, the practitioner is consequently empowered in explor-
ing, reasoning with and validating their models in understanding real-world
phenomena.

References

1. Charger - a conceptual graph editor. http://charger.sourceforge.net/. Accessed 02
Jan 2018

2. Cogui. http://www.lirmm.fr/cogui/. Accessed 02 Jan 2018
3. Andrews, S.: In-Close2, a high performance formal concept miner. In: Andrews, S.,

Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp.
50–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22688-5 4

A
u

th
o

r 
P

ro
o

f

http://charger.sourceforge.net/
http://www.lirmm.fr/cogui/
https://doi.org/10.1007/978-3-642-22688-5_4


26 S. Andrews and S. Polovina

4. Andrews, S., Hirsch, L.: A tool for creating and visualising formal concept trees.
In: CEUR Workshop Proceedings, vol. 1637, pp. 1–9 (2016)

5. Andrews, S., Polovina, S.: A mapping from conceptual graphs to formal concept
analysis. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011.
LNCS (LNAI), vol. 6828, pp. 63–76. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22688-5 5

6. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a
finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol.
4933, pp. 46–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78137-0 4

7. Ferré, S., Cellier, P.: Graph-FCA in practice. In: Haemmerlé, O., Stapleton, G.,
Faron Zucker, C. (eds.) ICCS 2016. LNCS (LNAI), vol. 9717, pp. 107–121. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40985-6 9

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-59830-2

9. Harary, F.: Structural Models: An Introduction to the Theory of Directed Graphs.
Wiley, New York (1965)

10. Hitzler, P., Scharfe, H.: Conceptual Structures in Practice. CRC Press, Boca Raton
(2009)

11. Koehler, K.R.: Directed graphs (2012). http://kias.dyndns.org/comath/33.html
12. Parker, L., HP OpenView Business Unit: A fool with a tool is still a fool! HP Open

View (2001)
13. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Review: formal concept

analysis in knowledge processing: a survey on applications. Expert Syst. Appl.
40(16), 6538–6560 (2013)

14. Polovina, S.: An introduction to conceptual graphs. In: Priss, U., Polovina, S., Hill,
R. (eds.) ICCS-ConceptStruct 2007. LNCS (LNAI), vol. 4604, pp. 1–14. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73681-3 1

15. Polovina, S., Scheruhn, H.-J., von Rosing, M.: Modularising the complex meta-
models in enterprise systems using conceptual structures. In: Developments and
Trends in Intelligent Technologies and Smart Systems, pp. 261–283. IGI Global,
Hershey (2018). ID: 189437

16. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept
analysis: mining concept lattices from multi-relational data. Ann. Math. Artif.
Intell. 67(1), 81–108 (2013)

17. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley Publishing, Reading (1983)

18. Sowa, J.F.: Conceptual graph examples. http://www.jfsowa.com/cg/cgexampw.
htm

19. Sowa, J.F.: Conceptual graphs. In: Handbook of Knowledge Representation, Foun-
dations of Artificial Intelligence, vol. 3, pp. 213–237. Elsevier, Amsterdam (2008)

20. Wille, R.: Conceptual graphs and formal concept analysis. In: Lukose, D., Del-
ugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS-ConceptStruct 1997.
LNCS, vol. 1257, pp. 290–303. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0027878

A
u

th
o

r 
P

ro
o

f

https://doi.org/10.1007/978-3-642-22688-5_5
https://doi.org/10.1007/978-3-642-22688-5_5
https://doi.org/10.1007/978-3-540-78137-0_4
https://doi.org/10.1007/978-3-540-78137-0_4
https://doi.org/10.1007/978-3-319-40985-6_9
https://doi.org/10.1007/978-3-642-59830-2
http://kias.dyndns.org/comath/33.html
https://doi.org/10.1007/978-3-540-73681-3_1
http://www.jfsowa.com/cg/cgexampw.htm
http://www.jfsowa.com/cg/cgexampw.htm
https://doi.org/10.1007/BFb0027878
https://doi.org/10.1007/BFb0027878


Author Queries

Chapter 1

Query
Refs.

Details Required Author’s
response

AQ1 This is to inform you that corresponding author has been
identified as per the information available in the Copy-
right form.

A
u

th
o

r 
P

ro
o

f


