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a b s t r a c t 

For a considerable time, it has been the goal of computational neuroscientists to understand biologi- 

cal nervous systems. However, the vast complexity of such systems has made it very difficult to fully 

understand even basic functions such as movement. Because of its small neuron count, the C. elegans 

nematode offers the opportunity to study a fully described connectome and attempt to link neural net- 

work activity to behaviour. In this paper a simulation of the neural network in C. elegans that responds to 

chemical stimulus is presented and a consequent realistic head movement demonstrated. An evolution- 

ary algorithm (EA) has been utilised to search for estimates of the values of the synaptic conductances 

and also to determine whether each synapse is excitatory or inhibitory in nature. The chemotaxis neural 

network was designed and implemented, using the parameterisation obtained with the EA, on the Si ele- 

gans platform a state-of-the-art hardware emulation platform specially designed to emulate the C. elegans 

nematode. 

© 2018 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Caenorhabditis elegans ( C. elegans ), is a 1 mm long, soil-dwelling

ematode that is widely used as a model system in animal biol-

gy. The popularity of C. elegans is a consequence of it being the

est characterised living entity [1] (including its nervous system

nd genome) and its development being understood at the single-

ell level [2] . It also shares many of the essential biological char-

cteristics that inform central problems of human biology [3] . This

ematode has one of the simplest nervous and locomotor systems

omposed of 302 neurons, about 80 0 0 synapses and 95 body wall

uscles [3] . 

The aim of this paper is to simulate the behaviour produced by

hemotaxis. Chemotaxis is the ability to move up or down a gradi-

nt of chemical attractants or repellents, to find food, avoid nox-
∗ Corresponding author. 
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ous conditions, develop appropriately, and mate [4] . To achieve

his, the nervous system generates motor commands which bias

he movement and direct the animal toward higher attractant

oncentration or away from repellent concentration. In particular,

. elegans detects the presence of chemicals with a pair of sen-

ory organs (amphids) at the tip of the nose, each containing mul-

iple chemosensory neurons. The sensory neurons responsible for

hemosensation, in C. elegans , are ASEL and ASER [3] , situated at

ach side of the head. The C. elegans worm is attracted to NaCl

hen it is conditioned with food [5] ; in this paper a NaCl concen-

ration gradient is simulated. 

Computational modelling and analysis are able to provide use-

ul biological insights and predictions, as well as to explore other

uestions which are not easily accessible through experimentation

6] . The simulation of locomotion in C. elegans has been a com-

on topic of research in recent years. The most common models

re those based either on central pattern generators [7] , oscillators

8] or artificial neural networks [9–12] . Previous research has

onsidered chemosensory locomotion and behaviour, by either
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Si elegans platform architecture. 
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training a dynamic neural network to control muscle contraction in

response to a chemical gradient [9,11] or training an artificial neu-

ral network to produce the probability of forward motion, pirou-

ette or rest [10] . 

The neurons ASEL and ASER are able to perceive the NaCl

concentration changes and are typically used in the modelling of

chemotaxis, providing inputs to the model [7,9,13] . 

One of the usual modelling assumptions is that the worm

has the ability to sense the spatial gradient by ASEL and ASER.

ASEL responds to positive changes in NaCl concentration and ASER

responds to both positive and negative concentrations [14] . The

network described in [7] used neuron pairs represented as single

neurons, with ASE as the input and AVA and AVB, which regulate

forward versus pirouette behaviour [15] , as outputs (ASEL, ASER,

AVA and AVB are neurons identified in the fully characterised neu-

ral connectome in [3] – see Fig. 4 ) This network was modelled as

a fully connected network with recurrent self-connections. A dif-

ferent approach used a similar network [13] , with ASER and ASEL

as inputs, a series of interneurons, and the motor neurons DA and

RMD as outputs. This network was built using the known connec-

tome [4] , with the sensory neurons responding to NaCl concentra-

tion changes. The network used in [13] is a simplification of [5] ,

with only RMD neurons as motor neurons and the inclusion of

muscles in the head and neck of the worm, and well established

neuron and muscle models. Another network, [9] , was built us-

ing ASEL and ASER as input neurons for food attraction, and motor

neurons (RMD, SMB and SMD) as output neurons for head move-

ments. The head movement is used here to achieve the decision

making function and is used as control of the oscillation. The rest

of the undulation is achieved with a different network, although

a pattern generator can generate the rhythm of the locomotion in

the rest of the body [16] . 

The success of such models [10,13] , however, is limited by the

many unknown parameters, variables and simplifications of the

model system, including the variety of neurotransmitters and mod-

ulation pathways or the extra synaptic circuit mechanisms [17] .

Furthermore, nervous systems have the ability to perform the same

function even if they are structurally different or have different pa-

rameters [18] . 

Other research has attempted to devise a neural network model

for C. elegans ’ behaviour by considering the physical behaviour of

its body [17,19–21] . In these papers the simulated neural networks

have some motor-neurons that activate the muscles, making the

worm move. The simplest methods use a row of segments, each

one acting as a muscle [19,22] . Others use reproductions of the ne-

matode in 2D, where two rows of muscles enclose the whole body

of the worm [20,21] . In recent years, 3D simulation has been used

in order to obtain a more realistic anatomical reproduction of the

animal [23,24] , taking into account the C. elegans’ muscles’ small

asymmetry, not implemented in simpler models. 

In this paper, we report on the results of simulations of the

neural network in C. elegans that responds to chemical stimulus,

and show how such stimuli result in realistic head movement. To

address the problem of unknown parameters, variables and mod-

ulation pathways, an evolutionary algorithm (EA) has been de-

veloped to estimate the values of the synaptic conductances and

whether they produce an excitatory or inhibitory synapse. Al-

though there are and have been previous attempts to use EAs

to train the entire connectome to respond to specific stimuli

[12] there is still no definitive answer into what are the param-

eters, and what might be missing, to fully simulate C. elegans be-

haviour. 

The results presented in Section 3 were obtained by running

experiments on the Si elegans open-access platform for the accu-

rate emulation of the C. elegans nervous system [25] . This platform

provides a sophisticated emulation environment, exploiting an
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
dvanced design environment where users can design their own

ustom neuron models, or use models from a model library, to run

nd visualise the results on a unique 3D Virtual Arena (VA). The

mulation runs on a parallel hardware architecture based on Field

rogrammable Gate Arrays (FPGAs) [26] . 

The remainder of this paper is structured as follows.

ection 2 describes the methodology and approach, including mus-

le and synaptic models, the genetic algorithm, the physics engine

nd force calculations, and the hardware implementation on the

i elegans platform. Section 3 presents the results and discussion of

etwork optimisations, the simulations and the FPGA performance.

ection 4 presents the conclusion of the work. 

. Materials and methods 

The chemosensory network was initially designed and tested in

oftware and later implemented and tested on the Si elegans plat-

orm. A brief overview of the Si elegans platform, the models, the

enetic algorithm used, the physics engine, forces calculations, and

etails of the FPGA implementation are given below. 

.1. The Si elegans platform 

The Si elegans platform is open access and provides a unique

nvironment, specifically designed to accurately emulate the

. elegans nematode, where users (such as neuroscientists and

odellers) can design and run their own experiments [27] . The

latform ( Fig. 1 ) provides an advanced design environment, includ-

ng a User Interface (UI) for selecting pre-designed neuron models

rom the model library or designing custom neuron models, defin-

ng network topology, parameterising neuron and muscle models

r controlling the experiment and readback results [28,29] . 

The platform is supported by a cloud-based server providing

torage space (for simulation related data) and the functionality

f sharing experimental results and/or neuron models within the

i elegans community. Different types of interactions between the

irtual worm and the surrounding environment can be designed
mical stimulus triggered head movement in the C. elegans nema- 
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Fig. 2. Front and side view of the HPC FPGA cluster. 

Table 1 

Stratix 5SGXAB FPGA overview [31] . The features 

below are required for describing complex neural, 

muscles and synapses models as the ones fond in 

the C. elegans . 

Features 5SGXAB 

Equivalent LEs 952,0 0 0 

Adaptive logic modules (ALMs) 359,200 

Registers 1,436,800 

14.1-Gbps transceivers 36 or 48 

M20K memory (Mb) 52 

Memory logic array blocks (Mb) 10.96 

18 × 18 multipliers 704 

27 × 27 DSP blocks 352 
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n a web-based 3D VA. Simulation information set by the user in

he VA is transferred to the Physics Engine (PE) that is located in

 Lab Server (LS). The PE is responsible for computing the virtual

orm’s locomotion, creation of runtime stimuli and management

f the muscle results, based on data communicated from the core

omputing facility ( Fig. 1 ). Section 2.4 explains in more detail the

peration of the PE. Finally, once the results of the experiment are

ollected, they are transferred to the VA, where they can be visu-

lised. 

The Si elegans platform runs on top of a High Performance Com-

uting (HPC) facility based on FPGA technology, utilised as neuro-

orphic hardware that can be freely reconfigured by users [26] .

his HPC FPGA cluster facility is composed of 375 Terasic TR5 FPGA

evelopment kit [30] ( Figs. 2 and 3 ) equipped with a powerful In-

el (formerly Altera) Stratix 5SGXAB FPGA device ( Table 1 lists the

ost important features available on the Stratix 5SGXAB device). 

For the emulation of the C. elegans 302 FPGAs were used acting

s neurons (Hardware Neural Network, HNN), 27 FPGAs acting as

uscles (Hardware Muscle Network, HMN) and an Interface Man-

ger (IM), used as the gateway between the Software and Hard-

are Layers [26,25] . 

.2. Models used in the represented network 

In this section the models utilised in the simulations are briefly

iscussed. 

.2.1. Neural model 

To model the sensory neurons, interneurons and motor neu-

ons, an Izhikevich spiking neural model was implemented [32] .

n this particular case, it is assumed that all neurons share the

ame spiking model. Even though C. elegans is thought to have no

piking neurons [33] , if the output current that reaches the mus-

les is comparable to that produced by non-spiking models, the as-

umption of simpler neuron models is valid, as has been shown in
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
imilar work [12] . The Izhikevich neural model combines the bi-

logically plausibility of Hodgkin-Huxley type dynamics and the

omputational efficiency of integrate-and-fire neurons [32] . It may

e described by a system of differential equations of the form: 

 

′ = 0 . 04 v 2 + 5 v + 140 + I ( t ) (1)

 

′ = a · ( b · v − u ) (2) 

f v ≥ 30 mV , then 

{
v = c 

u = u + d 
(3) 

In these equations, the variables v and u represent the mem-

rane potential and the recovery variable respectively, I is the in-

ected direct current, a is the time scale of the recovery variable, b

s the sensitivity of the recovery variable, c is the after-spike reset

alue of the membrane potential caused by high-threshold potas-

ium conductance and d is the after-spike reset value of the mem-

rane potential caused by low-threshold potassium conductance. 

The equations of the Izhikevich model were first implemented

n software using Python and then using the Very Large Scale In-

egration (VLSI) Hardware Description Language (VHDL) for hard-

are (FPGA) implementation. Further details about the FPGA im-

lementations are presented in Section 2.5 . 

.2.2. Muscle model 

A second order linear model (LMM) was used to model the iso-

etric force, since linear models are attractive due to their sim-

licity and ease of analysis for muscle force modelling [34] . How-

ver, such models have to be considered carefully, as they may lead

o loss of information and may not provide a good description of

uscle force [35] . A second order ordinary differential equation

ODE) describes the linear model of the muscle force in Eq. (4) .

3 ̈F ( t ) + θ2 
˙ F ( t ) + θ1 F ( t ) = θ0 u ( t ) (4) 

Where F ( t ) is the muscle force as a function of time, θ i are the

odel parameters and u ( t ) is the input spike train coming from

he motor neurons. 

.2.3. Synapse model 

An instantaneous rise and single-exponential decay [36] model

as used to simulate the synapses. This is a simple model that

ssumes an instantaneous rise of the synaptic conductance g syn (t)

rom 0 to ḡ syn at time t 0 followed by an exponential decay with

onstant τ ( 5 ). 

 syn ( t ) = ḡ syn e 

−t + t0 

τ (5) 

The synapse was then modelled as follows: 

 syn = g syn ( t ) [ V ( t ) − E syn ] (6) 

here I syn is the postsynaptic current, V(t) is the voltage potential

f the postsynaptic current, E syn is the postsynaptic neuron reverse

otential or 0 depending whether it’s an inhibitory or excitatory

ynapse, ḡ syn is the channel conductance (measured in Siemens, S),

 and t 0 the current time and the time from the last spike (both in

econds) and τ is the time constant [36] . In this implementation,

= 0 . 017 s for all synapses [36] . 

.3. Genetic algorithm to train the network 

Knowledge of the connectivity of the neurons in the nervous

ystem of C. elegans ( Fig. 4 ) is insufficient to enable accurate

imulations of how the system behaves under varying circum-

tances. This is because the specific details of all the synapses
mical stimulus triggered head movement in the C. elegans nema- 
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Fig. 3. Terasic TR5 development kit overview [30] . 

Fig. 4. Network used to represent the chemotaxis response in C. elegans [13] . The strength of the connections is shown as the width of the links. 
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are not known, i.e. the strength of the transmitter release, the

type of transmitter used or, even, its directionality (inhibitory or

excitatory). One is thus required to explore a large search space to

determine suitable combinations of parameter values to obtain ob-

servable, realistic behaviour in the worm. To expedite this, a
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
ell-known computational intelligence search optimisation

ethod, an evolutionary algorithm (EA), was used to tune the

alues of the synapses, simulating the training of the weights of an

rtificial neural network (ANN). To achieve this, the connectivity

f the network was set as specified in the worm connectome [37] ,
mical stimulus triggered head movement in the C. elegans nema- 
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Fig. 5. The cuticle and the muscles of our 3D reproduction of C. elegans. 
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ut optimal conductance values of the synapses, along with E syn ,

ndicating an excitatory or inhibitory connection, were sought

sing the EA. Values of the conductance’s range were constrained

o lie between zero and one, while E syn was determined to be

ither 0 or −80 mV, indicating either excitatory or inhibitory

onnections. The parameters of the neuron models are set as

efault to tonic spiking conditions ( a = 0.02, b = 0.2, c = −65 mV

nd d = 6), while the muscle model parameters were set after the

etwork was trained. 

Evolutionary Algorithms create a set of different solutions to a

roblem (through a representation) and varies them (via mutation

nd recombination) to create new ones iteratively (generations).

he process of eliminating the worst solutions (competition) and

reserving the best ones (evaluation and parent selection) con-

erges into an optimal solution. A particular type of evolutionary

lgorithm is used, Evolutionary Programming [38] , where all the

omponents are present with the exception of recombination (rep-

esentation, evaluation, population, parent selection, mutation and

ompetition), since it has been indicated that recombination does

mprove the performance of the algorithm in neural networks [39] .

he details of this algorithm are described as follows. 

A population of random neural networks is created and their

utputs, described here as the currents feeding the muscles, are

alculated. The stimulus added is based on the concentration of

he chemical NaCl, although in this simulation it is represented as

n input current in mA. This stimulus is added to either the left

r right ASE. In the real behaviour of the neurons [14] , ASEL is

nown activate only with positive NaCl gradients and ASER with

oth positive and negative. In our model, we have made the sim-

lifying assumption that the stimulus is added to either the left or

ight ASE, where the left ASE is assumed to activate with a NaCl

radient towards the left and the right ASE with a rightward gra-

ient. This type of assumption has been made in previous works

9,13,15] . Since the worm is lying on its side, to turn left or right

he dorsal or ventral muscles need to be contracted. The conven-

ion is that to turn left the dorsal muscles are contracted and to

urn right the ventral muscles are contracted. 

The chromosome of the C. elegans is a table of two columns

nd as many rows as synapses eachneuron has. The values it con-

ains, for each synapse, are the value of theconductance and a 1

r a 0 to indicate whether it is an excitatory orinhibitory synapse.

or this particular algorithm, no crossover has been included since

heir application tends to destroy features found during the evolu-

ionary process [39] . 

Using the Izhikevich and synapse models the, currents and

oltages across the network were calculated from the stimulus

n the sensory neurons to generate the input currents reaching

he muscles. These currents are used to calculate a simple point-

asedfitness function, where for each individual, the fitness is the

um of positivepoints for each of the currents that reaches the

orrect muscles and thenegative points for those that reaches the

rong muscles or if it’s zero in thecorrect muscles. The best per-

orming network will be the one with the higher score in their

tness function. 

With the exception of the network with the highest fitness

alue, all networks were mutated at the end of each generation.

he mutation function adds a random value to the conductance

f the connections, which can be positive or negative. There is a

0% chance of mutation. If the conductance value is mutated, it is

dded a random value from a uniform distribution between −0.1

nd 0.1. The type of the synapse was also mutated in the EA, with

 50% chance of reversing from inhibitory to excitatory and vice

ersa. This process was repeated for all networks iteratively for

0 0 0 generations. At that point it was assumed that the optimal

etwork (relative to computational efficiency) had been found; this

hould be a network where, given the right stimulus, the ventral
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
uscles contract and with a left stimulus the dorsal muscles con-

ract and vice versa. 

The currents feeding the muscles were then used to calculate

he muscle forces using the linear muscle model (LMM) (described

n Section 2.2.2 ). This way the parameters of the muscles can be

uned independently of the EA. It is assumed that all muscles have

he same dynamics and therefore the same parameterisation is

sed in all the muscles, since all the body wall muscle cells are

he same [40] . 

Having determined the optimal parameters, using these muscle

orces, the emulated movement was run in the simulation arena

computed in the physics engine and visualised in the virtual arena

esults GUI). This showed the behaviour of the worm in the plat-

orm. More details on the physics engine are presented in the fol-

owing section. 

.4. Physics engine and forces calculation in the VA 

C. elegans is composed of 95 body wall muscles divided in 4

ongitudinal bundles located in 4 quadrants: dorsal left (DL), dor-

al right (DR), ventral left (VL) and ventral right (VR). All 4 bun-

les have 24 muscles except for VL that has 23 [40] . Each quad-

ant is divided in two rows, medial and lateral. One of the main

oals of the work described in this paper is to improve upon the

idespread symmetric model (with 96 muscles) to a more realistic

odel with 95 muscles. 

The simulation is based in a Finite Element Method (FEM)

odel. The method uses a set of tetrahedra that represent the

uscles and the rest of the body of the worm, enclosed by its

uticle (shown in Fig. 5 ). The 3D representation of C. elegans that

as created within the Virtual Worm Project [40] has been tetra-

edralised. The nodes that compose tetrahedral were transformed

y internal and external forces to obtain locomotion. The cuticle

semi-transparent in Fig. 5 ) has 330 nodes; each individual mus-

le is defined by 24 inner nodes and contains 32 tetrahedra; the

est of the body that fills the space between the muscles and the

uticle is composed of 7340 tetrahedra. 

The material of the muscles and the interior part of the cuti-

le has been modelled by the Saint Venant-Kirchhoff model [41] . It

escribes the behaviour of a simple hyperelastic material by con-

idering the following equation: 

 = λtr ( E ) 1 + 2 μE (7)

Where S is the second Piola-Kirchhoff stress, E is the Lagrangian

reen strain, λ and μ are the Lamé constants and 1 is the second

rder unit tensor. These constants are obtained from the Young’s
mical stimulus triggered head movement in the C. elegans nema- 
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Fig. 6. Forces exerted in the simulation nodes of a muscle. 
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modulus and Poisson’s ratio of the specific material and, in our

case, they were obtained from [42] for both materials (body and

muscles). 

The motion in three dimensions of the nodes that compose the

body of C. elegans is controlled by Newton’s second law of motion:

Mu 

′′ ( t ) + Cu 

′ ( t ) + Ku ( t ) = F ( t ) (8)

Where u ( t ) describes the deformation of the nodes of the worm,

M represents the mass matrix, C is the damping matrix, K is the

stiffness matrix and F ( t ) are the external forces applied to the

nodes of the worm. 

The forces that are used for the simulation of the locomotion of

C. elegans are the internal pressure of the worm, elasticity of the

cuticle, external and muscle induced forces. The first two are sim-

ulated as part of the simulation of the material of different parts

of the body, since the body is stiff enough to impede the collapse

of the body structure (internal pressure) and is strong enough to

recover the rest position after a transformation (elasticity of cuti-

cle). The rest position is the straight position of the worm. At the

moment, apart from forces that come from collisions with objects

of the environment and gravity, friction is the only external force

applied. This is the key force that allows the nematode to move

forward. 

The last force, the activation of muscles, is guided by the sig-

nals that come from the motor neurons as described in previous

sections. At each time step, each muscle receives from the neural

network a signal between 0 and 1 and consequently applies forces

in every simulation node of the muscle. 

F i j = δk λi F ( p i +1 , j − p i, j ) (9)

The magnitude of the force exerted in the node located in the

i th ring and in row j ( Fig. 6 ) of the muscle k depends on the sig-

nal that comes from the neural network, δk , a parameter that de-

pends on the ring where the node is located and increases when

moving away from the centre of the muscle, λi , and a constant

that regulates the forces in the whole simulation, F . The direc-

tion of the force F ij is given by the following node in the j th row,

( p i +1 , j − p i, j ) . Note that, in order to obtain contraction in all nodes

of the muscle, once the middle of the muscle is passed, the direc-

tion is the opposite, ( p i −1 , j − p i, j ). 

Since the neural network described above only activates the

muscles of the head and the worm needs activation in its whole

body to obtain proper locomotion, a central pattern generator

(CPG) has been created in the Physics Engine to control the body

movements of the worm. This way, a combination of normal loco-

motion obtained via the CPG and the head steering using the neu-

ral network is obtained. In other words, the CPG makes the worm

move forward and the neural network fixes the forward direction

of the worm, going towards the attractant or going away from a

repellent. 
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
Thus, another activation signal is added to the activation signal

f the muscle in Eq. (9) δk , : 

k = 

sin 

(
3 πm 

24 

+ θr 
π

2 

+ 

2 πt 

P 

)
+ 1 

10 

(10)

Where m is the number of the muscle in its row of muscles,

r is −1 for muscles in ventral rows and 1 for dorsal ones, t is

he current time and P the period of activation. Note that in Eq.

9) i and j refer to the row and the ring of nodes inside a specific

uscle ( Fig. 6 ) and in Eq. (10 ), m and r refer to the position and

he row of a whole muscle in the body ( Fig. 5 ). The first summand

nside the sinusoidal function makes the wave propagate through

he body of the worm. The second summand makes the muscles

n one side of the body (ventral) contract while the opposite mus-

les (dorsal) relax and vice versa. The third summand contains the

hape change through time, representing the period P . 

.5. Hardware implementation of models 

FPGAs are advanced computational devices with a substantial

mount of uncommitted hardware resources, which can be freely

eprogrammed by the user after manufacture. Theoretically, any

lectronic circuit can be implemented on an FPGA as long there are

vailable resources [43] . At the present time, FPGAs exhibit signif-

cant speed, lower power consumption, built-in Intellectual Prop-

rty (IP) blocks, a substantial number of Digital Signal Processing

DSP) blocks, increased built-in memory and large numbers of dig-

tal Inputs/Outputs (I/Os). Each model neuron was implemented on

n individual Terasic TR5 development board, equipped with an Al-

era Stratix V GX FPGA, with one neuron per FPGA. This allowed

or the implementation of models of massive complexity, while re-

aining the high computational speed of an FPGA based computing

luster and the re-programmability of FPGAs, mimicking biologi-

al plasticity. This approach presents major improvements over a

onventional computing cluster in terms of retention of true par-

llelism. Each model was described in VHDL, simulated in Mentor

raphics QuestaSim v1.04 and then tested using a test bench in

ython, prior to generating a configuration bitfile for each FPGA.

he test bench configured the model described on the FPGA, ran

he simulation and collected the results via the serial port. The

ardware results were then compared with the software results. 

.5.1. Neuron model 

The results from the simulation of VHDL in QuestaSim obtained

or the Izhikevich model are presented in Fig. 7 . For this partic-

lar behaviour, the Izhikevich parameters were set to: a = 0.02,

 = 0.238, c = −50.0 and d = 2.2. 

Once the VHDL code has been tested in QuestaSim, a configu-

ation bitfile for each FPGA is generated. The experimental results
mical stimulus triggered head movement in the C. elegans nema- 
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Fig. 7. Simulation results of the Izhikevich in QuestaSim. Starting from the top, the first row shows the clock, second row the reset signal, third row the action potential and 

the fourth row shows the spikes. The reset signal is used as a synchronisation signal that sets all the logic elements to a defined initial state. 

Fig. 8. Experimental results of the Izhikevich neuron model running on the FPGA. (For interpretation of the references to colour in this figure, the reader is referred to the 

web version of this article.) 
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btained from the implementation of the Izhikevich models on an

PGA are depicted in Fig. 6 . 

The first plot (in red) shows the membrane potential (in mV)

ersus time (in ms), the second plot (in green) shows the spikes (0

f no spike otherwise 1) versus time (in ms) (see Fig. 8 ). For this

articular behaviour (the tonic bursting) the Izhikevich parameters

ere set to: a = 0.02, b = 0.238, c = −50.0, d = 2.2 and constant in-

ut current of 2 mA. 

.5.2. Muscle model 

The same procedure was adopted to implement, simulate and

est the Linear Muscle Model. In Fig. 9 the simulation results ob-

ained in QuestaSim are presented. 

Starting from the top, the first row shows the clock, the second

ow shows the reset signal and the third row shows the contrac-

ion force (in a scale of 0% to 100%). 

The results obtained from the implementation of the LMM on

he FPGA are depicted in Fig. 10 . The plot (in red) is the contraction

orce (in a scale of 0 to 100%) versus time (ms). 
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
.5.3. Synapse model 

The synapse implementation was performed using the same

rocedure described in Section 2.5.1 . In Fig. 11 the simulation re-

ults obtained in QuestaSim are presented. The first row shows

he clock, the second row shows the reset signal, the third row

hows the spikes and the fourth shows the current generated by

he synapse in mA. 

The synapse model was part of each neuron/muscle model.

ynapses can be configured as inhibitory/excitatory depending

n the parameterisation used. The exponential decay was imple-

ented in hardware using look-up tables (LUT) to reduce the on-

hip resource utilisation. 

. Results and discussion 

This description of results is divided into three sections, namely

he network simulation; muscle, force and movements simulation,

nd FPGA performance. 
mical stimulus triggered head movement in the C. elegans nema- 
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Fig. 9. Simulation results of the LMM in QuestaSim. 

Fig. 10. Experimental results of the LMM running on the FPGA. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this 

article.) 
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Fig. 11. Simulation results of the synapse model in QuestaSim. 

Fig. 12. Spiking activity (spikes per neuron over the time in ms) of the network after training with the EA in response to a stimulus on the left (a) and on the right (b) ASE 

neuron. 
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r  Fig. 13. Histogram of the conductance values in the network calculated using the 
.1. Network simulation 

The EA was run for 10 0 0 generations to obtain the gain and the

ctivation on the right motor neurons with a stimulus applied on

he right side and vice versa, gain and activation on the left motor

eurons in response to a stimulus on the left side. 

When the stimulus is applied in ASEL, the signal is propagated

hroughout the network until it activates the left RMD motor neu-

ons ( Fig. 12 ), which are connected to the neck muscles on the left

ide, causing them to contract and activate a turn to the left side.

hen the stimulus is applied in ASER, the right RMD neurons are

ctivated, producing a contraction towards the right side. 

As the results show, the neurons activated following each of the

timulus are different, with different spiking rates. This behaviour

s obtained through a combination of the different conductance

alues found using the EA ( Fig. 4 ) and the value of the synapse

urrent E syn (see Fig. 13 ). 

Most of the conductance values are below 0.08 mS/cm 

2 , with

ome strong connections up to 0.16 mS/cm 

2 (strength of the arrow

n Fig. 14 ). The synaptic current E syn also indicates that most of

he synapses in the network are excitatory, with a few inhibitory

onnections that cause the network to respond to either left or

ight stimulus, applying the current into the correct motor neurons

hat innervate the neck muscles (red and blue colour of the ar-

ows in Fig. 14 ). This figure therefore extends the data of Fig. 4 by
EA method. 

Please cite this article as: A. Costalago-Meruelo et al., Emulation of chemical stimulus triggered head movement in the C. elegans nema- 
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Fig. 14. Graph of the chemosensory network showing in blue the excitatory connections and in red the inhibitory connections determined following EA optimisation. The 

width of the connection lines indicates the strength of the conductance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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incorporating the inhibitory or excitatory detail determined in this

research, including the strength of the connections. 

One of the main issues in modelling biological systems is the

need to know all the involved parameters; frequently these data

are not available. For this particular reason, search algorithms such

as EA are becoming very popular. Nevertheless, there are several

important points to consider when using such algorithms [12] . The

first is that just because the parameters obtained reproduce the

behaviour to be modelled does not mean that the parameters cho-

sen are a representation of the actual parameters in the system

[18] . The second is that, usually, such simulations are simplifi-

cations, since many other stimuli and connections are not taken

into account, and therefore, the overall system functionality is not

represented. Finally, from the computational perspective, there are

limits imposed on the search space, including the range of values

of the parameters, the assumptions made of the system and of the

correctness of the model chosen. There are a few methods to test

the validity of the assumptions, starting with comparison with ex-

perimental observations [6,13] . 

3.2. Muscles, forces and movements 

This section shows the results with respect to muscles, forces

and movements. 
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
.2.1. Muscle simulation 

With the parameters for the network already obtained, the cur-

ents supplied to the muscles are known and their contraction can

e calculated. Using the values obtained in the EA, a stimulus in

SEL produces a contraction of the dorsal muscles (which reflect

 left turn), and no contraction in the ventral muscles. Vice versa,

 stimulus in the neuron ASER produces contractions in the ven-

ral muscles but not in the dorsal muscles (right turn) ( Fig. 15 ).

his distribution of conductance values and synaptic currents in a

etwork, with this diversity of connections, is able to produce dif-

erent behaviours. In this case, it is able to produce two different

ovements, exciting different muscles, in response to two differ-

nt stimuli. The muscles that respond with higher intensity to the

timulus are those in the neck area, rather than the ones in the

ead area. 

.2.2. Force and movement 

A validation of the method described in Section 2.4 was per-

ormed in two stages. Firstly, the neural activation of the muscles

as tested. Once it was confirmed that the defined neural circuit

ade the worm steer towards its goal, a CPG was added to the

eural activation to test that the worm definitely moved forward

owards the attractant. In the first step, the emulated worm stands

till on the plate until the attractant stimuli activates its neural cir-

uit and consequently muscles are activated, as shown in the pre-

ious section. Since the neural circuit implemented is connected
mical stimulus triggered head movement in the C. elegans nema- 
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Fig. 15. Muscle contraction of the head and neck muscles in C. elegans (in proportion, where 1 is the maximum muscle contraction due to a stimulus applied to the right 

side (a) and to the left side (b) left side. Right muscles are drawn in blue and the left muscles in red. Not all the muscles are activated during the excitation phase, which is 

seen by the zero muscle contraction in both figures for some of the muscles, depending on where the stimulus is received. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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Table 2 

Resources usage of each model described in the FPGA. 

FPGA resource Izhikevich LMM Synapses FPGA available resources 

ALUTs 15,053 44,092 0 359,200 

Registers 1108 1006 236 8927 

BRAM 57,344 57,344 0 54,067,200 

DSP block 40 68 1 352 
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ith the muscles in the anterior part of the worm, a reaction in

he head of the nematode was expected. 

Two tests were carried out, where in each experiment an at-

ractant was placed on a different side of the animal. It was found

hat the neural circuit exclusively activated the muscles on the

orrect side of the neck, corresponding to the attractant location.

pecifically, the neural circuit contracts those muscles (see param-

ter δk in Eq. (9 )). As a result of this activation, the worm steered

ts head to the attractant side. Fig. 16 (a) shows a VA screenshot of

he movements obtained in each of these tests. In the left image

he head of the worm is bent to the left (where the attractant is)

nd the opposite activation happens in theright image (with the

ttractant in the right side of the worm). 

In the second step of these tests, a CPG is added to the acti-

ation that comes from the neural circuit (see Eq. (10 )). The CPG

akes the C. elegans move forward with a sinusoidal pattern and

eural activation changes this signal slightly, so that the contrac-

ion is bigger to the attractant side than to the other side ( Fig.

6 (b)). This change leads to a forward movement of the nematode,

ut steering towards the attractant. Starting from the same point,

eft and right image show the difference between finishing points

ue to the attractant location. 

This work is aligned with the recent trend of 3D simulations of

he locomotion of C. elegans . In this case, in contrast to [23] , the

D model used for the simulation mimics the number of muscles

nd the asymmetry of the muscular structure of the nematode, en-

bling a realistic matching among motor neurons and muscles. The

EM simulation that has been implemented is able to simulate the

ovements of the worm fast enough to follow the performance of

he neurons in the FPGAs, in contrast to the work in [44] . 

.2.3. FPGA performance 

The simulation was designed on the Si elegans platform and the

esulting initialisation/configuration files were automatically up-

oaded into the Si elegans hardware via the Interface Manager (IM).

imulation starts when a start command is asserted in the GUI and

ent to the IM, which issues a new timestamp packet that is broad-

asted to all the neurons and muscles. The timestamp packet also

ncludes the spikes generated in the previous time window. Each

imestamp has a length of 1 ms. On receipt of a timestamp sig-

al, neurons compute the membrane potential accordingly to pre-

ynaptic spikes, stimulus (stimulus preconfigured by the user) and

untime stimulus (stimulus generated by the physics engine). If

he resulting potential is above the threshold a spike is generated.

eurons generate the logical value “1” when a spike is generated

nd “0” otherwise. Calculated values are sent to the IM by the end

f the timestamp. 
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
Muscles have slower responses than neurons and therefore

ach muscle only computes the muscle forces every 50 ms. Mus-

les compute forces based on the spike trains buffered during the

revious 50 ms (timestamps). These forces are transmitted to the

hysics engine via the IM by the end of the muscle computation.

he process of spike (neurons) and forces (muscles) transmissions

epeats until the end of the simulation. The results can then be

isualised on the Virtual Arena. 

The (Stratix 5) FPGA resource usage of the neurons, muscles and

ynapses implementation is listed in Table 2 . 

The logic elements are used for describing the muscle equa-

ions, the adaptive look-up-tables (ALUTs) are used to temporar-

ly store the computation results, the block memory bits are used

s first-in-first-out (FIFOs) to store temporarily the results in the

PGA and the DSP block are mainly used to perform mathematical

perations that require multiplications/divisions. 

The combined computation and transmission times were ap-

roximately 300 ms using the 1 Gb Ethernet connection; this tim-

ng was kept stable during the simulation period. There was a time

verhead on the IM because the results from the FPGA have to

e converted from Hexadecimal to XML and vice-versa every time

hat the IM synchronises with the physics engine. The processes

f exchanging the muscle force and stimuli packets (between the

M and physics engine), over the HTTP protocol and performing the

ata conversion (by the IM) from Hex to XML and vice-versa, takes

p to 2 min utes. 

The results obtained from the simulation using Python and the

esults obtained on the FPGA were similar and the models had

 similar dynamic response. However, the parameters values have

mall differences which are related to the differing data represen-

ations in software vs hardware and the approximations required

o make the implementations more hardware efficient. Full net-

ork simulations will have better performance because both the

ransmission and calculation timings will remain almost constant

s a consequence of the parallel architecture. 

The FPGA emulation environment was crucial for performing

 bio-inspired emulation of the C. elegans ’ muscles and neurons

n a fully parallel, interconnected, hardware neuron and muscle
mical stimulus triggered head movement in the C. elegans nema- 
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Fig. 16. (a) Resulting movements to an attractant on both sides of the virtual worm. The head of the worm is bent to the left in the left image and to the right in the right 

image. (b) Locomotion of the worm when combining CPG with an attractant in the right (right) and with an attractant in the left (left). 
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network. This parallelism was only possible because unlike central

processing units (CPUs) and graphical processing units (GPUs) that

have their unique serial architecture. In contrast, FPGAs allow re-

configuration after fabrication, making it possible to describe par-

allel hardware architectures and therefore each FPGAs was used

as an element of neuromorphic hardware specially designed for

emulating each one of the neurons and muscles in the C. elegans

chemosensory network. 

4. Conclusions 

In this work, the authors report on the emulation of head

movement in a neuron-based model of the C. elegans nematode,

utilising aspects of the published connectome. A realistic set of

model parameter values appropriate to chemotaxis was identified

by an EA, and the EA results were used to design and build a

chemotaxis neural network. Neuron, synapse and muscle models

have been implemented, and a locomotion system configured. It

has been demonstrated that a contraction of the muscles induced

by a chemical stimulant made the worm move its head towards

the chemical attractant, irrespective of whether the stimulant was

on the worm’s right or left side. Moreover, the incorporation of a
Please cite this article as: A. Costalago-Meruelo et al., Emulation of che

tode, Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.02.
entral pattern generator showed the worm activates locomotion

owards the chemical attractant. 

The network presented, although it contains assumptions and

implifications, is a step forward into modelling nervous systems.

he algorithm was able to provide a realistic explanation of the

onnectivity of the network and muscle contractions, which pro-

uced a natural movement observed under such stimulus. Up to

ow, most of the locomotion simulation that has been achieved

as been based purely on Central Pattern Generators [7] , oscilla-

ors [8] or artificial neural networks [9,11–13] ; this is the first time

hat it is based on a combination of artificial neural networks and

 3D physics engine [45] . 

Moreover, despite the complexity of such an emulation environ-

ent and differences between the software and hardware simula-

ions, it has been shown in this paper that the FPGA technology is

n excellent choice for emulating bio-inspired neuron/muscle net-

orks. 

Further work will include using this technique to study the be-

aviour of C. elegans under more realistic model and assumptions,

uch as the actual functionality of ASE. Also, it will be used to

tudy the response of other subsets of the C. elegans connectome

nd compare them with experimental data to try to understand
mical stimulus triggered head movement in the C. elegans nema- 
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he behaviour of the worm better and to validate the methodology

nd the platform more extensively. 

Furthermore, we will seek to replace the central pattern gen-

rator with a more biologically compatible locomotion model.

owever, optimising the full connectome to obtained a realistic

ehaviour even for a single stimulus response is a herculean task,

hat so far has not been achieved [12] . 

The Si elegans platform has proven to be a suitable simulation

nvironment for emulation of C. elegans behaviours. The unique

arallel architecture, with a dedicated physics engine and easy-to-

se design environment provides users with appropriate tools to

tudy and replicate the nematode behaviours. This infrastructure

hould help with the more complex in-silico experiments defined

or the exploration of this nematode’s functional behaviour. 
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