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Abstract Realizing the automated and online detection of crowd anomalies from 
surveillance CCTVs is a research-intensive and application-demanding task. This 
research proposes a novel technique for detecting crowd abnormalities through 
analyzing the spatial and temporal features of input video signals. This integrated 
solution defines an image descriptor (named spatio-temporal feature descriptor – 
STFD) that reflects the global motion information of crowds over time. A CNN has 
then been adopted to classify dominant or large-scale crowd abnormal behaviors. 
The work reported has focused on: 1) detecting moving objects in online (or near 
real-time) manner through spatio-temporal segmentations of crowds that is defined 
by the similarity of group trajectory structures in temporal space and the foreground 
blocks based on Gaussian Mixture Model (GMM) in spatial space; 2) dividing 
multiple clustered groups based on the spectral clustering method by considering 
image pixels from spatio-temporal segmentation regions as dynamic particles; 3) 
generating the STFD descriptor instances by calculating the attributes (i.e., 
collectiveness, stability, conflict and crowd density) of particles in the 
corresponding groups; 4) inputting generated STFD descriptor instances into the 
devised convolutional neural network (CNN) to detect suspicious crowd behaviors. 
The test and evaluation of the devised models and techniques have selected the 
PETS database as the primary experimental data sets. Results against benchmarking 
models and systems have shown promising advancements of this novel approach in 
terms of accuracy and efficiency for detecting crowd anomalies. 
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1 Introduction 

Large and high-density crowds in confined spaces may lead to serious situations, 

especially when exposed to unwanted disturbances such as panicking and affray. In 

order to economize on manpower and resources for monitoring, managing, and 

protecting people’s lives and properties in these situations, an intelligent, efficient 

and cost-effective technology is of the paramount importance for both of its 

academic and social values. Among current popular approaches to tackle the 

challenges, computer vision-based models offer the most promising direction (and 

some maturing solutions) due to its non- (or more likely less-) invasive, (sometimes) 

fast, and (relatively) cheap solutions.  

At present, vision-based approaches for crowd behavior analysis can be 

classified into two general categories, i.e., object-based methods and holistic 

methods[1]. The former can infer both the behaviors and their associated 

individuals, which have been frequently applied to analyze and monitor behaviors 

of the low to medium density crowds. Crowd behaviors can be analyzed through 

operational processes such as detection, segmentation, tracking and recognition. For 

example, Zhou et al. proposed a mixture model of dynamic pedestrian-agents 

(MDA) to learn the collective behavior patterns of pedestrians in crowded scenes[2]. 

However, this method has some limitations, e.g., the MDA assumes affine 

transform, such that it has difficulty in representations of some complex shapes of 

crowd regions. More importantly, monitoring individual behaviors is quite different 

from studying crowd behaviors. It is inherently difficult to acquire accurate 

individual information in a crowded scene due to occlusions and shadowing. In 

many real world applications, over-simplifying the crowd as a linear aggregation of 

multiple individuals leads to failure in identifying the true nature of crowd 

anomalies. 

Compared with the object-based cases, the holistic approach treats the crowd as a 

single entity, which is more suitable for analyzing structured scenes and crowds of 

medium or high density[3]. It is based on the assumption that individual objects in a 

crowded scene are often too small to be identified or of any major values for crowd 

monitoring purpose. For example, Mousavi proposed the HOT (Histogram of 

Oriented Tracklets) descriptor that merges orientation and magnitude of mid-level 

features[4]. These mid-level features are acquired by Kanade-Lucas-Tomasi 

Tracking (KLT) algorithm that can re-initialize the detection of salient points for 

augmenting the target features of crowd behaviors. Mehran extracted optical flows 

calculated based on the social-force theory, and then K-means clustering has been 

applied on the flow area to obtain several clusters[5]. With a corpus of clusters, 

Latent Dirichlet Allocation (LDA) was then deployed to discover the topics in the 

normal crowd behaviors, and the modified Expectation Maximization (EM) 

algorithm with the Bag of Words (BoW) model were later used to maximize the 

likelihood of a corpus[6]. Both the LDA training and EM approximation algorithms 

need a great deal of computation, which is challenging for the process to be 

deployed for real-time and automated monitoring[6]. In holistic approaches, crowd 

dynamic models are often adopted to estimate the behavior patterns as a whole, 

such that local behaviors in unstructured scenes cannot be handled well. 

Another taxonomy for classifying crowd behaviors follows a more classical 



 

 

image processing route through studying the pixel-value-based crowd trajectories 

and motion features. Motion features in a video can be divided into global features 

and local features. The global features are extracted using background removal and 

target tracking methods. Local features are interest points of individual video 

frames that are combined to describe crowd information. Although the relevant 

processes often require high volume preprocessing, local features contribute to the 

forming of the so-called image descriptors that are the core technique for object 

recognition, e.g. Dalal applied the HOG (Histograms of Oriented Gradient) 

descriptor that is computed by the gradients of an image[7]. These methods have 

been successfully applied in individual action recognition. The optimization of 

image descriptors based on automatic partitions of intra-group and inter-groups of 

crowd behavioral patterns and the corresponding feature extraction is a challenging 

task for detecting abnormal crowd behaviors in complicated scenes (e.g. high-

density crowds, occlusion and shadowing, and low resolutions). Recently, Yuan et 

al. proposed a structural context descriptor (SCD) for describing a crowd and its 

individuals[8]. Shao et al. proposed a scene-independent group descriptor to 

quantify human behavior intensities [9]. 

Compared with existing algorithms, the main improvements of the proposed 

integrated solution in this study are summarized in the following: 

1) Spatio-temporal segmentation is applied to divide crowd areas according to the 

similarity of group trajectories and structures rather than the single index of 

optical flow velocity. The adjacent spatial distance of the foreground images 

based on LBP is calculated in spatial space to form graphs. 

2) A novel image descriptor - spatio-temporal feature descriptor (STFD) is 

defined by calculating the attributes (i.e., collectiveness, stability, conflict and 

crowd density) of particles in the corresponding groups that has been devised 

in this study for extracting feature information of sub-crowd movement. 

3) The STFD and a CNN (Convolutional Neural Network) have been integrated 

to explore a deep learning model for detecting crowd abnormality types. 

Compared with conventional machine learning techniques, this CNN 

integrated model can improve 18.9 percent of the accuracy of crowd 

abnormalities (see Table 5). The STFD instances drawn from a crowd video 

can form an action map (2D image) that holds all extracted information of 

global movements of a crowd, and the generated maps will be inputted into the 

devised CNN model for recognizing abnormal crowd behaviors.  

The rest of this paper is organized as follows: Section 2 introduces the related 

studies on group segmentation and crowd feature extractions that are key techniques 

to define image descriptors. It also aids a deeper insight of feature vectors and the 

CNN training and prediction mechanisms. A novel technique for generating the 

STFD descriptor based on spatio-temporal segmentation is demonstrated in Section 

3. Section 4 provides detailed discussions and explanations of the proposed crowd 

abnormality detection model. Experimental results on performance on real-world 

video scenes are analyzed and evaluated in Section 5. Section 6 concludes the 

proposed method with merits and areas to improve for future study. 

 

 

 



 
 

 

2 Related Studies 

2.1 Optical Flow 

Particle based methods have been widely applied to analyze crowd movements 

[10,5]. An improved particle method based on Brox’s work has been applied in our 

research[11]. In 2004, Brox et al. proposed an algorithm based on a theory of 

“warping” to estimate optical flows with high accuracy[11]. This algorithm contains 

three assumptions, i.e., grey value constancy, gradient constancy and smoothness. 

The assumption of grey value constancy with nonlinearity is usually applied in 

cases of large displacements. This approach combines concepts of optical flow 

estimation from several previous methods, e.g. works of Horn-Schunck[12] and 

Lucas Kanade[13]. It is robust when being exposed to parameter variations. 

Moreover, it is resilient to noise and light variations. Thus, it has been applied in 

our study to extract optical flows. As shown below, the optical flow can be 

formulated as a global energy function: 
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where u and v represent image pixels corresponding to optical flows in the 

horizontal and vertical orientation respectively, and a represents the weight of 

regularization term. E(u, v) is the total energy that is the weighted sum between the 

data term and the smooth term (Esmooth). The minimize energy is found by u and v 

functions. In this study, we added the HSV (Hue, Saturation, Value) item (Ehsv) to 

solve optical flow aperture problem that is a kind of pixel matching error caused by 

the luminance similarity. 

2.2 Group Segmentation 

As a common practice, a large crowd is often classified into several groups 

according to attributes of their movement patterns, i.e., subject distances, average 

velocity and dominant directions. Group segmentation is  vital importance for the 

understanding of crowded scenes. It can be categorized based on 3 idealisms: flow 

field model based segmentation, similarity based clustering, and probability model 

based clustering[1]. The first category uses continuous segments in an image spatial 

region, and the other two utilize clustering algorithms to make segments in context 

of unstructured scenes with various complex motions. For example, according to 

the basic fact that the crowd motion patterns have the similar speeds and coherent 

neighbors in spatio-temporal regions of a target scene, Zhou et al. proposed a 

general method based on the coherent filtering (CF) technique that can get segments 



 

 

of spatio-temporal regions with noisy time series data[14]. Davies et al. proposed 

the Discrete Fourier Transform (DFT) algorithm that can divide moving objects into 

groups [15]. It can define a group cluster by calculating the movement trend (i.e., 

velocity and orientation) of an image, but it leads to increased computational load. 

Later, Velastin et al. integrated movement vectors and filters to identify the 

movement trend of crowds in surveillance CCTVs[16]. After groups have been 

acquired during the process of group segmentation, Li built up a uniform 

probability framework to produce the so-called probability graphs based on 

extracted features and interactions of intra- and inter-groups. To strike a balance 

between the accuracy and efficiency of group segmentation, an improved CF 

algorithm has been devised in this study, which considers both the similarity of 

group trajectory structure in temporal space and the foreground block based on 

GMM in spatial space rather than the inadequate velocity based calculation of 

traditional CF. 

Fig. 1. The trajectories from the frame z to z+15 

2.3 Group Trajectory Tracking 

This study analyzes group behaviors based on motion features (i.e., velocity, 

direction, acceleration) extracted from the trajectories of every pixels in the same 

group since typical crowd motions are normally regular and repetitive in their sub-

groups[1]. The trajectories are more semantic-oriented than low spatio-temporal 

features and motion histograms. However, traditional KLT algorithms have failed 

to track movements of pedestrians over a long period of time, especially in high 

density situations. The difficulty on obtaining complete trajectories can be 

alleviated by putting together a set of fragments of motion features (named tracklets) 

tracked within a short period of time continuously to form a longer trajectory. In 

order to optimize the tracing time and computational performance of traditional 

KLT operation, Shao et al. explored a collective transition (CT) prior to group 

movement detections[9]. It uses the Markov chain to quantify the coherent motions 

of all particles (individual members of a group) of a group in a video clip. In these 

previous works of group trajectory tracking, tracklets are usually extracted from 

dense feature points, and specific mechanisms should be implemented to enforce 

the spatio-temporal coherence between tracklets [17]. 
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2.4 Group Motion Feature Extraction 

Some holistic attributes (e.g. crowd density and movement flow) can be extracted 

from the modelled trajectories in temporal space and represented by particle 

movements in spatial space, such that these attributes can be used to quantify the 

crowd behaviors. For instance, Zhang et al. defined the social attribute-aware force 

model (SAFM) to extract crowd motion features, such as  disorder, congestion, 

interaction force and scale, etc[18]. Dahrendorf et al. indicated that social conflict 

was one of the central themes in social research[19], and Wheelan et al. stated that 

conflict can be caused by the competitions for resources[20]. However, there 

features (e.g. disorder and social conflict) representing interaction information 

among individuals are very difficult to be extracted from high density crowds, so 

the group segmentation is served as an indicator to measure the crowd density (low 

or high) in this study. Moreover, a robust image descriptor (named STFD) by 

calculating the attributes (i.e., collectiveness, stability, conflict and group density) 

of particles in the corresponding groups has been devised in this study for 

representing and analyzing crowd states. These attributes (group motion features) 

define interactions among intra- and inter-group elements.  

3 The Devised Integrated Model 

3.1 The Improved Spatio-Temporal Segmentation 

(1) In temporal space 

As Fig. 1 shown, suppose that the particle tracking finds n trajectories in the period 

of fnum (fnum=15) frames by using KLT, and the trajectory length less than 15 frames 

will be deleted. One of the trajectories on the frame z is defined as tro={(x1, y 1, 

v1)…(xn, yn,, vn)}. The velocity and orientation of each pixel (x, y) (a particle) can be 

quantized in the frame z, and their formulas are defined as the following: 

 

2 2(x, y) ( , ) ( , )

( , )
( , ) arctan( )

( , )

x y

x

y

v v x y v x y

v x y
x y

v x y


  






  (2) 

where u(x, y) and  (x, y) are corresponding to the motion speed and motion 

orientation of a pixel (x, y) respectively. 

The similarity of trajectory structures (S) between pixel dots l and k in the period 

of fnum frames in temporal space can be calculated by the following formula: 
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where the direction (Dire), speed (Speed), angle (Ang), and location (Loc) of k and l 

should be calculated with the corresponding weights (Wd, Ws, Wa, Wl).  

(2)  In spatial space 

In order to obtain spatial information of the target crowd, it is required to extract 

the location information of particles in the spatial regions, e.g. the foreground image 

of a pixel dot l by using GMM. Within GMM, the background subtraction and 

temporal differencing results are combined by applying a binary “OR” function to 

get the foreground blocks that can recognize the foreground objects. Thus, the 



 

 

devised integrated model combines GMM and three-frame temporal differencing to 

isolate the foreground blocks, such that the foreground regions can be formed for 

the subsequent process of group segmentation. The three-frame temporal 

differencing is defined as: 
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where It-1(x), It(x), It+1(x) represent any three consecutive frames,  is a local add 

operate, x is an image pixel. To obtain an ideal foreground image, the threshold 

function median (t) is used to remove the noise pixels, and it also determines the 

pixels pt of moving targets.  

(3)  Multi-groups clustering 

The particles in the corresponding foreground blocks are required to be further 

divided into multiple groups according to the combination of both similarity of 

trajectory structures and their adjacent distances in the period of fnum frames. This 

segmentation process is summarized as following: 

Inputs: n pixel dots and m groups. 

1) The adjacent distances (dlk) between two particles (l and k) is defined as:  

 2 2( ) (y )lk l k l kd x x y      (5) 

2) the RBF function is applied here to define the weights (dlk) of two particles 

(l and k) respectively as the following: 
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where  is the bandwidth of 2D Gaussian kernel.  

3) The Wlk of any two particles can form a matrix (W) that is a symmetric 

positive definite matrix, so a matrix of laplacian is defined as the following: 

 L D W   (7) 

where D denotes a Stiffness matrix of W, and it is formed through the sum 

of every row of W respectively. 

4) The matrix (U, URnm) is constructed by the feature vectors {u1, u2,…,um} 

of L. 

5) The row vectors (yiRm) are grouped by K-means algorithm, such that 

particles are organized by the spectral clustering graph, see  

6) Fig. 2. The divided groups will form a K-NN graph with interactions among 

both intra- and inter-groups. 

Outputs: groups (C1…Cm). 
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Fig. 2. The generated multi-groups in a K-NN graph 

3.2 The STFD Descriptor 

At this stage, the generated groups C = (C1…Cm) will be quantified using attributes 

such as collectiveness, stability, conflict and density, and then a set of instances of 

STFD descriptors can be calculated by a nonlinear function. These instances are 

comprehensive spatio-temporal features with pre-defined semantics, serving as 

inputs for training and testing on the devised CNN structure. The selected attributes 

can provide quantified expressions of various interactions of particles among intra-

groups and inter-groups semantically, see Table 1. 
Table 1 The attributes of intra- and inter-group interactions 

Attributes Descriptions Equations 

collectiveness Coll(Ci) equation (8) 

stability stab(Ci) equation (9) 

conflict   conf(Ci) equation (12) 

group density density(Ci) equation (13) 

(1) Collectiveness 

The collectiveness attribute indicates the degree of individuals (i.e., particles in a 

group) acting as a union in coherent motions. In continuous fnum frames, the 

movement trend ( flow ) of each group (Ci) can be obtained through calculating the 

average coordinates and displacements of every particle in this group. Thus, the 

collectiveness of a group can be defined as the following: 

 1 1 ,
( )i

p C

p flow
coll C

N N p flow

 
    (8) 

where p denotes a particle in a group Ci and p is the motion vector of p. 

(2) Stability 

1) The first indication of stability is the number of the invariant neighbors of 

each particle in a group of the corresponding K-NN graph, and the change 

means that a particle has moved from one group to another. Thus, the first part 

of stability definition (stab1) for the intra-group can be given as the following : 
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i

1
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stab K change
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    (9) 

where N indicates the number of particles in a group, and, K indicates the 



 

 

number of K-NN particles connecting with the target particle. 

2) The second indication of stability is that each group keeps the consistent 

topological distance in the corresponding K-NN graph with its neighbors, so 

the second part of stability definition (stab2) for intra-groups can be given as 

the following : 

 
1

i

2 p

p C
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    (10) 

where dp represents the average value of the Euclidean distances between a 

particle and its K number of adjacent particles in the same group. The overall 

stability definition can be given as the following: 

  ( )i 1 2

p ci

stab C stab stab


    (11) 

(3) conflict   

The conflict attribute characterizes interactions among between groups when 

they are approaching to each other. The conflict (conf) is defined as: 
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where vp represents the velocity of a particle. 

(4) density 

The density attribute (density) is the spatial distribution of particles in a frame, 

which is the measure of the local density only in the spatial space. 
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where pi, pj represents the neighbor particle in a frame, and  is the bandwidth of 

2D Gaussian kernel. 

This solution integrates the collectiveness, stability, conflict and group density 

into a new spatial and temporal feature descriptor (STFD), such that it can hold not 

only the similarity of group trajectory structures but also spatial adjacent distances. 

Thus, this comprehensive descriptor merges the spatial differences between 

particles and its neighbors as well as the global movement information of any video 

frame, hence it can preserve both local and global features, so as to improve the 

detection rate of crowd anomaly behaviors. 

Multiple spatial and temporal features are combined into the STFD represention 

depicting crowd characteristics in a video sequence. Thereby an instance of the 

STFD descriptor (stfd) becomes a spatio-temporal feature vector: 
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3.3 CNN Recognition 

Fig. 3. The structure of the devised CNN 
The instances of STFD descriptor are 4 (4 is the number of STFD attributes) 

dimensional spatio-temporal feature vector by using the equation (14), and some 

instances of STFD become training samples labeled with normal or abnormal. The 

labeled training data sets are inputs of the devised CNN model to determine 

whether the current frame is abnormal or not in the online detection phase. CNN 

model based anomaly behavior detection methods include two phases, i.e., training 

and testing: 

1. During the training phase: 

 The instances of the STFD descriptor from the 1 to zth frame are calculated for 

serving as a training data set (Dtain). 

 Every data element in the training data set (Dtain) will be marked with a label 

(normal behavior is ‘1’ and abnormal behavior is "-1"). 

 The labeled training data can serve as input training vectors for CNN model. The 

structure of the devised CNN is illustrated in Fig. 3, which has upper (appearance) 

and lower (motion) levels. The upper network level has a data layer, five 

convolution layers, two pooling layers, two normal layers and two full layers. 

The upper level can use the ImageNet model to recognize different scenes[21]. 

The STFD instances are inputs for the lower level. Both upper and lower levels 

have the similar network structure, but they have different parameter setups (e.g. 

different layers, the size of kernels and steps of convolutions): 

1) Data layer: STFD instances are adjusted by RGB image (Irgb) to get a set of 

(m4)/3 dimensional vectors. In this process, every value of STFD is equal to 

a value of image channel (R, G or B) respectively. Irgb are used to remove the 

mean value (mean) and the M is the outputs for the subsequent convolution 

layer, see the equation (15): 

 RGBM I mean    (15) 

2) Convolution layer: Neurons of the upper level neural network use the 

convolution kernels to extract various image characteristics (color, texture, 

contour et.al) on both global and local regions of the target video clip. This 

layer multiplies the jth neuron of the current layer by the weight (Wij) of the 

previous layer and adds the corresponding bias, and then a sigmoid function is 

applied to get the jth feature map (cj) through the nonlinear mapping, see 

equation (16): 

conv normal pool fullconv poolnormal conv full

conv normal pool conv poolnormal conv
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3) Pooling layer: The convoluted features from convolution layer are inputted 

into the pooling layer to reduce their dimensions since max-pooling values 

may cause overfitting and mean-pooling values may cause underfitting. In 

order to improve the recognition rate of abnormal behaviors, the adaptive 

threshold method has been applied to avoid the overfitting and underfitting. 

The main idea of this method is to find a suitable threshold on the target 

window area to remove values less than this threshold in the pooling layer, 

and calculate a mean value ui,j from the values that is bigger than the threshold. 

The probability values pi,j of active values ai,j can be obtained based on  ai,j  

from pooling area ym,n, and then a threshold em,n can be obtained through 

weighted statistics of ai,j and the corresponding pi,j. The equations for 

calculations of ui,j , pi,j and em,n are given as the following: 
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4) Full layer: All sampling features from pooling layer are inputted into the full 

layer where different crowd abnormal behaviors (e.g. panics and gathers) will 

be classified by using the in-built softmax classifier. The loss function of 

entity CNN can be defined as the following: 

 
1

1
log (1 ) log(1 )

N

n n n n

n

E lab o t o
N 

       (19) 

where N denotes the number of classification, labn denotes labels of 

classification, and on is the predicted values of the probability. 

2. The testing phase: after the CNN model with the optimum parameters has been 

trained during the training phase, it can classify a test video frame into the normal 

or abnormal frames. 

4 Detection of Crowd Events  

The overall workflow of the proposed integrated model for real-time and 

effective detection of crowd anomaly events, especially for the computation and 

application of STFD is summarized in this section, see Fig. 4. 

1) Feature extraction: the target spatio-temporal space is divided into several 

crowd motion regions based on the similarity of trajectories and foreground 

blocks, and these motion regions should further be divided into groups by using 

the spectral clustering method.  

2) Event Model: Based on these groups, instances of STFD can be obtained, which 



 
 

 

merge spatio-temporal features with semantics. The attributes of each group are 

quantified and integrated into instances of STFD, such that these instances 

integrate both global and local movement features of every fnum video frame. 

3) Event recognition: Taking STFD as the feature vector of every fnum frame, and 

feature vectors are labeled as normal or abnormal samples serving as the input of 

the devised CNN algorithm to obtain the CNN model that can determine whether 

the current frame is normal or not in the online detection phase. 

4) State change: If the classification results are changed from ‘normal’ to 

‘abnormal’ or from ‘abnormal’ to ‘normal’ among consecutive several frames, 

and the crowd state can be considered as the state change.  

 Video

Abnormal

Normal

Classfication

Feature Vector Dataset (STFD)

Crowd DensityCollectiveness  

Event Model

Feature Extraction

Convolutional Neural 

Network Model

Event recognition

Stability Conflict

 
Fig. 4. The workflow of the devised integrated model 

5 Applications and Experimental Results 

The PETS database was selected to test and evaluate the devised solution. It has 

four video clips for each crowd activity on outdoor scenes of resolution 640480, 

e.g., group fighting, aggregation, walking and running[22].  

The experiments were implemented by using Visual Studio 2013 and MATLAB 

software running on pure CPU (i7, 4 threads). In these experiments, human walking 

or loitering are defined as normal events while crowd running or fighting on 

sidewalks are considered as abnormalities.  

The accuracy and recall ratio are used in these experiments to evaluate and 

analyze efficiency and validity of the integrated solution. In Equation(20): 



 

 

 True Positive (TP) is an abnormal sample that is correctly classified as an 

abnormal one by the CNN; 

 True Negative (TN) is a normal sample that is correctly classified as a normal 

one by the CNN model; 

 False Positive (FP) is a normal sample that is improperly classified as an 

abnormal one; 

 False Negative (FN) is an abnormal sample that is improperly classified as 

normal one.  

 Precision is the proportion of TP in the abnormal samples which are classified.  

 Recall is the proportion of TP in real abnormal samples. 
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1) Case 1: Group segmentation 

Compared with CF algorithm [14], this research conducts group segmentations 

by using the similarity of trajectory structures and adjacent spatial distances on 

foreground blocks. The results of group segmentation experiments are shown in Fig. 

5: (a) is the result of CF group segmentation, and (b) is the result of the proposed 

method in this study. In order to evaluate the accuracy of these two methods, F1 is 

constructed in the experiments through integration of indicators of accuracy and 

recall ratio in equation (20). In Table 2, F1 value of our method is 0.83 that is better 

than CF based on the testing of 3 video clips from PETS. 

  
Fig. 5. (a) CF segmentation of a crowd.  (b) The devised segmentation. 

 

Table 2 The F1 comparison between CF and our method 

Methods F1 

CF 0.8 

Our method 0.83 



 
 

 

2) Case 2: Crowd anomaly detection 

In these experiments, video frames of three scenes in PETS database from 1 to 

20000 were used as normal testing samples, and from 20001 to 25000 are used as 

abnormal testing samples. In the paper, we evaluated our experiments by equation 

(20), and each scene were assessed separately. For each scene, some videos are 

randomly selected for training and testing in our experiments. For example, Fig. 6(a) 

and (b) shows the 235 normal frame and the 421 normal frame respectively. Fig. 6 

(c) and (d) shows the 20101 abnormal frame and the 20501 abnormal frame 

respectively (i.e., crowd abnormal panic, aggregation).   

  
(a)                                                                                             (b) 

 
(c)                                                                                              (d) 

Fig. 6. (a) and (b) two normal frames from a scene, (c) the crowd panic information on the 7540 frame, (d) 

the crowd fighting information on the 10049 frame. 

Three scenes of PETS database were selected to conduct our experiments. Table 

3 presents the experimental results of the proposed model for the selected three 

scenes. The Scene0, Scene1 and Scene2 had been selected to serve as input samples 

(i.e., normal and abnormal data sets). In Table 3, the area under the ROC (Receiver 

Operating Characteristic Curve, ROC) curve (AUC) of the three scenes is 0.97, 0.99 



 

 

and 0.90 respectively, which denotes the classification recognition rate, i.e. the 

larger area of AUC, the better classification recognition rate, and the error rate of 

recognition for all the three scenes are low by using this integrated model.  

The STFD is a combination of attributes of groups to integrate spatio-temporal 

features covering both local and global aspects, so the rationale of this combination 

should be justified through designed experiments, see Table 4. The experimental 

results on AUC are shown the STFD can get larger AUC values than any other 

single attribute. 

Table 3 Experimental results for the integrated model 

clips 

Actual Normal 

/Abnormal 

frames 

Recognized 

Normal 

/abnormal frames 

Total 

Accuracy 
AUC 

Scene0 163/160 37/37 0.985 0.97 

Scene1 128/123 72/70 0.965 0.99 

Scene2 154/150 46/45 0.975 0.90 

Table 4 The rationale of STFD 

Attributes AUC 

collectiveness  0.75 

stability 0.81 

conflict   0.85 

group density 0.83 

combined features 0.93 

The STFD descriptors extracted from three clips (i.e., three different scenes) of 

PETS (25000 frames) were inputted in CNN and other Machine Learning models to 

conduct training (10000 frames) and testing (15000 frames). The Experimental 

results in terms of accuracy, training time and testing time are compared in Table 5. 

The accuracy of CNN is higher than the SVM and RF based models. In the time 

space, the CNN spent a little more testing time (20ms) than SVM as the devised 

CNN needs to update  the corresponding weights of the neural network,. 

Table 5 A comparison of the devised CNN, SVM and RF 

Models CNN 
Support Vector 

Machine (SVM) 
Random Forest(RF) 

Accuracy of classification (%) 88.9 69.8 70.1 

Training time (min) 110 80 89 

Testing  time (ms) 145 125 153 

Experiments have been designed for crowd abnormality detection by using the 

devised model, Optical flow, social force and histogram of optical flow orientation 

(HOFO) with testing data from Scene0. Table 6 shows the comparisons between the 

proposed model and other three traditional methods. It can be found that this model 

is better than other classic methods in terms of accuracy and time consumption. For 

example, although the accuracy of the proposed model is equal to the Social Force 

method，the corresponding time consuming is two seconds faster than Social Force 

model under current setting. The ROC curves of all algorithms are illustrated in Fig. 

7. The AUC of the proposed solution is superior to other traditional methods，i.e. 

the proposed solution has both higher detection rate and higher computational speed. 

Table 6 The accuracy comparison among different methods 

Method AUC Time consuming 

Optical Flow [23] 0.84 35s 

Social Force [23] 0.96 23.5s 

HOFO [11]. 0.956 22s 

The proposed model 0.96 21.3s 



 
 

 

 
Fig. 7. The Roc curves of corresponding experiments 

6 Conclusions 

In this paper, an integrated solution for crowd analysis and the early detection of 

crowd abnormality through generating instances of STFD image descriptor based 

on spatio-temporal group segmentations is presented. The STFD descriptor not only 

considers image pixels as dynamic particles to preserve interactions among groups 

but also integrates both local and global features of an image frame recording a 

crowd, which significantly improves the detection rate of crowd abnormal 

behaviors during online operations. In the event recognition phase, the trained CNN 

model with optimum parameters supports to recognize the abnormal behaviors 

automatically with higher accuracy and computational performance. The 

experimental results show that this solution has good performance and can be 

readily transferred to the actual scenes of real world application conditions. The 

effectiveness of the extracted crowd properties is validated with two application 

cases, i.e., the group segmentation and crowd anomaly detection. This integrated 

model has obtained promising results from the rigorously designed experiments. 

The accuracy and computational performance of the group segmentation still have 

room for improvements (e.g. the self-organizing maps − SOM neural network based 

group classification may improve the computational performance). Moreover, the 

weights of attributes in the STFD feature vector should be elaborated through 

extensive experiments in the future work.  
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