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Abstract: Substrate bias voltage is one of the most influential deposition parameter for 

physical vapour deposition processes as it can directly control the adatom mobility during 

coating growth. It influences the hardness, roughness as well as the microstructure of the 

coatings. Thus, bias voltage could also affect the defect formation during the coating 

deposition. High Power Impulse Magnetron Sputtering (HIPIMS) has been proven useful in 

producing void free and arc droplet free dense coatings. However, such coatings can still 

suffer from some defects associated with external factors (independent of deposition 

technique), such as substrate irregularities and the flakes coming from the chamber 

components. In order to study the effects of bias voltage (Ub) on the defect formation during 

HIPIMS process, four sets of CrN/NbN coatings were deposited at Ub = - 40 V, - 65 V, - 100 

V and - 150 V. Microscopic studies revealed that with the increase in bias voltage the 

coatings morphology was altered and the percentage of surface area covered by optically 

visible defects was increased from 3.13 % to 4.30 %. The defects on the coatings deposited at 

Ub = - 100 V and - 150 V led to preferential corrosive attack resulting in a sharp increase in 

corrosion current density during Potentiodynamic polarisation experiments. Room 

temperature pin-on-disc tribological tests exhibited the influence of defects on the wear 

behaviour; however, the coefficient of friction (µ) values were mainly influenced by the 



nature of the oxides formed during the tests. Coating microstructure and bilayer thickness, 

along with the coating defects determined the coefficient of wear (Kc) values. This study 

revealed that the coating deposited at Ub = - 65 V had the highest wear resistance (Kc = 2.68 

× 10-15 m3N-1m-1) and the lowest friction (µ = 0.48).  



1. Introduction 

In recent years, the attention towards CrN/NbN multilayer coatings produced by physical 

vapour deposition (PVD) is growing rapidly due to their advanced barrier properties against 

corrosion and wear [1–6]. Moreover, use of the novel High Power Impulse Magnetron 

Sputtering (HIPIMS) deposition technique to deposit CrN/NbN coatings is found to be 

beneficial in improving those properties [7–9]. The enhancement in the coating properties can 

be attributed to superior microstructure due to the high ion to neutral ratio and the low 

average power during the HIPIMS process [10–12]. The trajectories of ions can be controlled 

by applying external electric and magnetic fields. Thus, using HIPIMS technique it is 

possible to produce homogeneous coatings, even on complex-shaped substrates [13,14]. 

However, higher ion content also has a disadvantage. The back attraction of the positively 

charged metal ions to the target reduces the deposition rate during the HIPIMS process. 

Combining HIPIMS with the Unbalanced Magnetron Sputtering (UBM) process can 

eradicate this problem and improve the deposition rate [15].  

Previous research showed that the coatings produced by HIPIMS technique are free from 

droplet related defects when operated under carefully selected parameters, such as the right 

frequency, pulse width and arc suppression settings [9–12,15]. However, HIPIMS deposited 

coatings can still suffer from surface imperfections, i.e. coating defects which are associated 

with external factors, such as substrate pits and the flakes generated from the chamber 

components [9,16] and are independent of deposition technique. Unlike arc droplets, these 

defects grow along with the coatings [9]. It is well known that the coating growth is 

influenced by the deposition parameters such as deposition time, substrate temperature and 

chamber pressure [9,14,16–19]. Thus, the defect growth gets influenced by these parameters 

indirectly [9,16]. The substrate bias voltage is another important deposition parameter 

because it controls the adatom mobility during coating growth [20–26]. Therefore, the study 



of the influence of bias voltage on the formation of morphological defects is the particular 

research interest. 

Coating defects are undesirable because they degrade the coating properties [1,6,9,16,27–30]. 

For example, metallic droplets can augment wear by acting as protruding asperities when 

intact with the coating or they can initiate three body abrasion if loose [31]. Coating 

imperfections like pores, holes and voids either present inherently or generated by the 

removal of droplet and nodular defects, can expose the substrate to the corrosive media and 

accelerate the corrosion process [1,6]. As the coating industries are continually growing and 

developing, there is a demand for improved and long lasting coatings for advanced 

applications such as coating on biomedical devices. Therefore, it is much needed to 

understand the formation of coating defects and their influence on coating performance in 

order to improve coating properties and�durability. 

The influence of HIPIMS on coating microstructure and mechanical properties has been 

studied recently [7–15,32,33]. Literature lists very few studies which describe defect 

generation in coating deposited by HIPIMS. Previous studies by the authors reported the 

effect of deposition time and the total chamber pressure on the external factors which lead to 

the generation of defects [9,16]. This study further investigates the effect of bias voltage on 

these influences in detail. 

  



2. Experimental details 

2.1. Coating deposition 

Nanostructured CrN/NbN multilayer coatings were deposited in an industrial sized (1 m3) 

Hauzer 1000 four cathode PVD machine which was facilitated with HIPIMS power supplies 

(Hüttinger Elektronik Sp. z o.o., Warsaw, Poland) and an advanced bias power supply with 

active arc suppression units. 304 stainless steel coupons, M2 high speed steel coupons and 

(100) Silicon wafer were used as substrates. All the substrates were mounted on a rotating 

substrate holder, located at the centre of the deposition chamber with a three-fold rotational 

motion of the substrate holder. Prior to coating deposition, the sample surfaces were pre-

treated by HIPIMS plasma discharge enriched with Cr ions to increase the adhesion of the 

coating with the substrate [34]. Then the coatings were deposited for 120 min using 

combined HIPIMS and UBM techniques [15] at a temperature of 200 °C. Four sets of 

coatings were produced by varying the bias voltage, namely - 40 V, - 65 V, - 100 V and - 150 

V. During the deposition processes, one Cr and one Nb target were operated in HIPIMS 

mode and the other two targets (1 Cr and 1 Nb) were operated in UBM mode. The applied 

power on an individual cathode was maintained at 8 kW irrespective of the technology (UBM 

or HIPIMS). Rectangular pulses of 200 µs at a frequency of 100 Hz, with a duty cycle of 1 % 

were employed to generate the HIPIMS plasma for coating deposition. Ar and N2 (1:1) were 

used as the process gas and the chamber pressure was maintained at 0.35 Pa. 

Note that the coating produced at Ub = - 65 V was used in our earlier reports also [9,16]. 

2.2. Coating characterisation 

In order to investigate the effect of bias voltage on defect generation, Scanning Electron 

Microscopy (FEI NOVA-NANOSEM 200) was employed as the primary characterization 



technique in this study. Using ETD (Everhart-Thornley detector) and TLD (Through the Lens 

Detector), the SEM images of planar and fractural cross-sectional view of the coatings were 

captured at low and high magnifications respectively. The surface area of the coating covered 

by the defects was determined from optical microscopic images (captured by Huvitz 3D 

Metallurgical Microscope). Then the relative area covered by defects (in percentage) was 

analysed from binary pictures using ImageJ software [9]. Surface roughness of the coatings 

was measured by a DEKTAK 150 stylus profilometer. For each scan, the probe travelled a 

length of 1000 � m and the surface roughness of the scanned profile was calculated by the 

associated software. 

Corrosion behaviour of the CrN/NbN coatings was examined using a Gill AC Potentiostat. 

Coated 304 stainless steel samples were polarized from �1000 to +1000 mV at a scan rate of 

0.5 mVsec-1 in a 3.5 % NaCl solution. The samples were masked using bee’s wax to expose 

only an area of 1 cm2 to the solution. 

A CSM room temperature pin-on-disc tribometer in dry sliding conditions was used to study 

the friction behaviour of the coatings deposited by varying the bias voltage. CrN/NbN coated 

M2 high speed steel samples were used for these experiments. Each test was run for 20000 

cycles. In order to measure friction rates, a 5 N static load was applied on the counterpart 

(Al 2O3 ball of 6 mm diameter). A Horiba-Jobin-Yvon LabRam HR800 integrated Raman 

spectrometer fitted with a green laser (wavelength, 532 nm) was used to study the chemistry 

of the tribolayer formed at the tribological contacts. In addition, X-ray Diffraction technique 

in high angle (2� , 20° - 100°) and low-angle (2� , 2° - 10°) geometry (LAXRD) was used to 

evaluate the crystallographic structure and the bilayer thickness of these coatings 

respectively. The coating hardness was determined from the loading-unloading curves 

obtained from a CSM nanoindentation tester. More details about coating deposition and 

characterisation techniques can be found elsewhere [9,16]. 



3. Results and discussion  

3.1. Coating morphology and microstructure 

Fig. 1 (a-h) shows the planar and cross-sectional SEM images of the coatings, which were 

used to study the coating morphology and microstructure. 

The coating deposited at - 40 V substrate bias exhibited a columnar structure with rounded 

columnar tops (Fig. 1a,b). With an increase of bias voltage from - 40 V to - 65 V, coalescence 

of adatoms increased leading to an increase in density of columnar grains (Fig. 1c); however, 

retaining the columnar morphology (Fig. 1d) as in the case of lower bias voltage. As the bias 

voltage was further increased to - 100 V, columnar grains appeared widened (Fig. 1e) due to 

the high adatom mobility leading to grain coarsening. Fig. 1f shows the cross-sectional view 

of this coating (Ub = - 100 V) which clearly exhibits the influence of increasing bias voltage 

on microstructure densification. The column microstructure in the case of the coating 

deposited at Ub = - 150 V was even harder to resolve giving an impression of a bulk material 

(Fig. 1g,h). The changes in the coating microstructure and surface morphology with the bias 

voltage can be attributed to the increased surface mobility of adatoms on the growing film 

[20–26]. 

Table 1 shows the thickness of the coating measured from the cross-sectional SEM images. 

As expected, deposition rate increased when bias voltage was increased from - 40 V to - 65 

V. However, further increase in the bias voltage led to re-sputtering of the depositing 

materials thereby resulting into a slight decrease in the coating thickness. For the coating 

deposited at Ub = - 150 V, strong re-sputtering process resulted in the lowest thickness of 

1.80 µm even though all other deposition parameters were kept constant. Fig. 1g shows this 

re-sputtering effect observed for - 150 V coating. The dome shaped feature usually observed 

for sputtered coating is completely absent here, rather the coatings surface exhibits dents 



resulted from the sputtering of materials from the coating surface. Moreover, densification of 

microstructure could also lead to a slight decrease in the coating thickness. As observed in the 

Fig. 1g,h this coating became densified due to the increase of adatom mobility with the 

increase of negative substrate bias voltage. 

3.2. Growth defects 

The SEM study on coating morphology and microstructure exhibited a number of 

morphological defects of various shapes and sizes. Depending on their origins, these defects 

were categorised into two groups; flakes related defects and defects associated with substrate 

pits (namely, pinhole defects). The types of defects identified in HIPIMS/UBM coatings were 

very similar in nature to those reported earlier for a conventional magnetron sputtering 

process [27]. 

Flakes related defects are found in most coatings deposited in a vacuum chamber. These 

flakes can be generated due to the thermal and structural stresses on the chamber components 

(shields, heaters) during coating deposition [27]. The bombardment of the chamber 

components by highly ionised flux and the rotation of the substrates holders during 

deposition can also produce some seed particles within the chamber[9]. Due to the deposition 

of coating materials on the flakes attached to the substrate, nodular shaped defects (Fig. 2a,b) 

are formed.  

During or after the deposition, thermal or mechanical stresses can deform and delaminate 

these defects from the coating and create voids. These voids are called open void defects 

(Fig. 2c). Fig. 2d shows a pinhole defect in the coating which is associated with the substrate 

surface imperfections, such as small craters, pits etc. Deposition of coating materials can 

cover most of the surface imperfections. However, larger cavities may not be closed fully and 

remain as pinholes within the coatings. 



In detail observation of the SEM images of a nodular shaped defect on HIPIMS/UBM coating 

(Fig. 2a,b) reveal that the columnar morphology of these defects and the surrounding coatings 

is similar; except for the interruption in the continuity caused by the contamination at the 

surface before/during deposition. This indicates that the growth mechanisms for the 

surrounding coatings and these defects are similar and they grow over the course of time just 

like the coating. Moreover, EDX analysis confirms (Fig. 3a,b) that the elemental 

compositions of the nodular defect are also same as coating. Atomic percentages of Cr, Nb 

and N were found to be 39 %, 14 % and 47 % respectively for both the coating and the 

nodular defect. This emphasises that defects in HIPIMS/UBM coatings are generated due to 

the deposition of coating materials on flakes and not due to arcs. 

For comparison, SEM image of a droplet on commercially available arc-PVD CrN/NbN 

coating has been included. Significant differences in morphologies and sizes between the arc 

droplet and the nodular defect can be seen from the Fig. 2a and 3a,c. The arc droplet is bigger 

in size and has a continuous solid structure whereas in comparison the grain boundaries and 

columnar coating growth on a nodular defect in the case of HIPIMS/UBM coating could be 

clearly observed from the higher magnification image of the nodular defect (Fig. 2a). 

Moreover, Fig. 3c also exhibits the morphological differences between the arc deposited 

coating surface and arc droplet which suggests that the growth steps of the coating and the 

droplet are different. Most likely, an instant solidification of cluster of materials ejected from 

the target leads to droplet formation in arc-PVD. EDX analysis (Fig. 3d) shows that the 

droplet is mostly made of Cr indicating that this droplet is generated due to the expulsion of 

molten Cr from Cr target at the cathode spot. 

 

 



3.3. Surface defect density calculation 

SEM images revealed that all the coatings had similar type of defects on them, but the 

number of defects increased with the increase of bias voltage. To quantify the defect 

population, statistical measurement of number of defects were carried out using optical 

microscopy and Image J software [9]. In this study, the percentage of surface area covered by 

optically visible defects was termed as surface defect density (Ad). Fig. 4a shows an image of 

the coating surface captured by an optical microscope and Fig. 4b represents the variation of 

surface defect density as a function of substrate bias voltage (& converted binary images of 

the coatings in the insets). 

The calculated defect densities (Ad) of the coatings deposited at bias voltages of - 40 V and -

65 V were similar (3.13 % and 3.18 % respectively). Whereas, a sudden increase in Ad value 

(4.14 %) was observed when a higher bias voltage (Ub = - 100 V) was applied to the 

substrate.  

The increase of the surface area coved by optically visible defects with the increase in 

substrate bias is believed to be associated with two factors. At higher bias voltages, the high-

energy flux bombardments on chamber components can increase the flakes generation. These 

flakes can produce more defects in the coating. Nevertheless, re-sputtering phenomena can 

also be responsible for raising the surface defect density. At high negative bias voltages, the 

high-energy bombardment on the growing coatings can expose the already formed defects 

and hence increase the area under the defects. Also, some loosely bound nodular defects can 

be expelled from the coatings leaving more visible voids.  

In the optical images, the surface imperfections, i.e., both the protrusions and pits are seen as 

dark features. Therefore, it was not possible to quantify the number of flakes related defects 

and the number of pinhole defects. However, extensive SEM studies of substrate and coating 

defects indicated that all the dark features observed on the substrate were substrate pits (Fig. 



4c) whereas along with some pinhole defects/voids, higher number of nodular shaped defects 

were observed on the surface of the coatings. The defect density calculation also revealed that 

Ad value of the substrate was only 0.39 ± 0.04 which was purely due to the presence of 

substrate pits. Thus, it could be concluded that most of the defects observed on the surface of 

the coatings were originated due to the deposition of coating materials on the flakes.  

Apparently, in this study the HIPIMS/UBM coating with highest number of defects had lesser 

defects as compared to that of commercially available arc-PVD CrN/NbN coating. Fig. 4d 

shows the surface of this arc-PVD CrN/NbN coating. The analytical calculation releveled that 

11 ± 0.48 % of its surface is covered by the defects, most of which are the droplet defects. 

 

3.4. Roughness 

The roughness values of the coatings are summarised in Table 2. As seen from the table, 

roughness values of the coatings deposited at bias voltages of - 40 V and - 65 V were similar. 

When the bias voltage increased from - 65 V to - 100 V, the roughness of the coating 

increased abruptly reaching the highest value (0.083 µm). Further increase in bias voltage to - 

150 V, decreased the roughness to 0.073 µm.  

This result shows consistency with the surface defect density values of the coatings. The 

increase in surface defect density with the increase of bias voltage resulted in rougher 

surfaces. Thus, the roughness value suddenly increased from 0.039 to 0.83 µm when the bias 

voltage was raised from - 65 V to - 100 V. However, there was a slight decrease in roughness 

value from 0.083 to 0.073 µm when bias voltage was increased from - 100 V to - 150 V. This 

could be attributed to the densification of the coating, as the dome shaped columnar tops 

disappeared (Fig. 1g). Thus, it can be concluded that the roughness of the coating was 

associated to the surface defect density as well as to the features of the coating morphology. 

 



3.5. Potentiodynamic polarisation experiment 

Fig. 5. shows the Potentiodynamic polarisation curves of the coatings deposited by varying 

bias voltage. It was clear from the curves that the increased substrate bias improved the 

corrosion resistance of the coatings. As observed from the SEM images (Fig. 1), increased 

negative bias densified the coating. Thus, the higher corrosion resistance of the coatings was 

attributed to the densification of coatings with the increase of substrate bias voltage.  

In the anodic potential ranging from - 250 mV to + 475 mV, the corrosion current density 

was notably higher (one order of magnitude) for the coating deposited at - 40 V bias voltage 

than the coatings deposited at higher bias voltages (- 100 V and - 150 V). Although surface 

defect density of this coating (Ub = - 40 V) was the lowest (Ad = 3.13%), the under-dense 

structure of the coating may deteriorate the corrosion resistance. The coatings deposited at 

higher substrate bias voltages (�  - 65 V) exhibited similar corrosion current values in the 

potential range of 0 mV to + 350 mV which suggested that - 65 V can be used as the 

optimum bias voltage to produce dense coatings for corrosion applications. 

Apparently, the effect of the higher number of defects on coating corrosion performance was 

also observed. The coating deposited at bias voltage of - 100 V and - 150 V had higher defect 

densities (4.14 % and 4.30 %) and the polarisation curves of both coatings evidenced the 

formation of metastable pits which are believed to be associated with the growth defects. The 

gaps between loosely bound defects and the coating act as solution-paths which initiate the 

galvanic and crevice corrosion between the coating and the substrate [6,35]. The dissolution 

of metals at the defect sites due to the galvanic effects could lead to the removal of defects 

and expose the fresh substrate surface to the corrosive media. As a result, electrochemical 

reaction kinetics was raised which was observed by the sharp increase in current densities in 

the anodic potential range, at around 300 mV and 50 mV for the coatings deposited at Ub = - 

100 V and - 150 V respectively.  



3.6 Tribological properties 

A Room Temperature Pin-on-disc tribometer was used to study the friction behaviour of the 

deposited coatings in dry sliding condition. Fig. 6 shows the dependence of friction 

coefficient on number of revolutions (friction cycles) for the coatings deposited by varying 

bias voltage. 

The influence of surface defect density on coefficient of friction, COF (µ) values was not 

apparent. The coating deposited at - 65 V had the lowest µ value of 0.48. There was a sudden 

drop in the value of µ around a friction cycle of 4000. This test was conducted three times. 

Each time, the coating exhibited similar behaviour. The surface defect density values of the 

coatings deposited at - 40 V, - 100 V and - 150 V were different, however, they all showed 

similar friction behaviour and had similar µ values. 

As suggested by the previous research [4,5,16], the friction values can depend on the oxides 

produced during the tribological tests. Thus, to better understand the friction behaviour of the 

coatings, Raman spectra from the wear tracks were obtained using a Raman spectrometer 

(Fig. 7). 

The Raman spectra from the wear tracks of the coatings deposited at Ub = - 100 V, - 150 V 

exhibited a pronounced peak at 790cm-1 which is a characteristic of CrNbO4 [5,36] and both 

the coatings had similar friction values (µ = 0.65 and 0.68 respectively). The coatings 

produced at Ub = - 40 V and - 65 V showed similar types of Raman spectra expect the 

intensity of the peaks were higher, especially the peak at around 835 cm-1 was much higher 

for the coating deposited at Ub = - 40 V. This could be due to the production of Nb2O5 , nH2O 

[5,36] which could also lead to an increase in µ value of the coating deposited at Ub = - 40 V. 

This study suggested that the friction values of these coatings were mainly controlled by the 

produced oxides.  



The difference in oxidation behaviour during the tribological tests could be associated with 

their stoichiometry and/or crystallographic orientation [37–40]. The change in the 

stoichiometry due to the preferential re-sputtering of coated flux at different bias voltages 

caused the variation between the chromium nitride and niobium nitride layers in the structure 

[41]. As a result, the crystallographic orientation of the coatings was changed (Fig. 8). The 

coating deposited at - 65 V, displayed a pronounced (111) orientation of nitride phase and 

this coating showed higher oxidation resistance during sliding (supported by Raman spectra). 

Whereas all other coatings (deposited at - 40 V, - 100 V, - 150 V) with (200) preferred 

orientation were easily oxidised. The reason for this differences in oxide growth rate was 

suggested to be associated with surface energy of the different grain structures [37]. 

In case of Titanium nitride coating (TiN) also (111) oriented grains showed higher oxidation 

resistance [42]. Whereas production of oxides was evident on (220) TiN orientated coatings. 

However, (220) orientated TiN coatings had lower µ values than the (111) orientated TiN 

coatings. This is because the oxide produced on (220) orientated coatings was TinO2n� 1  which 

belongs to Magnéli family [43], i.e., it has easily shearable atomic planes and therefore it is 

lubricious. 

In contrast, Nb-rich tribolayers were formed on (200) orientated coatings. CrNbO4 and 

Nb2O5 , nH2O are not luricious and especially Nb2O5 , nH2O is known as non-protective 

oxide [5]. For this reason higher µ values were observed for the coatings deposited at Ub = - 

40 V, - 100 V, - 150 V. The coating produced at Ub = - 65 V also showed several peaks 

which might correspond to Cr2O3, CrNbO4 and Nb2O5 , nH2O [5,36] but none of them was 

intense. Thus it could be concluded that the higher oxidation resistance during sliding led to 

lowest µ value of 0.48 in case of the coating deposited at Ub = - 65 V. 

However, CrN/NbN coating has multilayer structure which makes the oxidation behaviour 

during sliding progress more complex than any single layer coating, for example TiN coating. 



Thus, more systematic study about the oxidation properties of each grain orientation and 

individual layer is required to understand the friction behaviour of CrN/NbN coatings in 

detail, and can be a topic of future research. 

The coefficient of wear, COW (KC) of the coating was calculated using the profilometer data 

of the wear track (Fig. 9). KC was found to be the highest (4.19 × 10-15 m3N-1m-1) for the 

coating deposited at the lowest bias voltage of - 40 V. Due to the under-dense columnar 

structure, large amount of material was removed from this coating during sliding. Fig. 10a 

shows the debris in the wear track (dark contrast) generated due to the removal of coating 

materials. With the increase of bias voltage from - 40 V to - 65 V, a significant improvement 

in wear resistance was observed (KC = 2.68 × 10-15 m3N-1m-1 for - 65 V). This could be 

attributed to the strong interactions between the columns which provided effective protection 

against spalling and thus reducing the material removal rate of the coating [44].  

Further increase of the bias voltage was found to be ineffective in enhancing the wear 

resistance; rather, it degraded the wear properties. As discussed earlier, the application of 

higher bias voltage (�  - 100 V) increased the surface defect density. Due to the height of the 

nodular defects (nodular/cone-like), they are subjected to a full contact during sliding [28]. 

As a result, the nodular/cone-like defects experience high stresses which cause their fracture 

and spalling. The debris generated from the nodular defects creates tribological film within 

the wear tracks. Moreover, poorly attached nodular defects could be totally pulled out and 

increase the wear debris formation. Due to the generation of debris from the defects, wear 

rates of the coatings deposited at - 100 V and - 150 V substrate bias increased (KC = 3.36 × 

10-15 m3N-1m-1 and 3.85 × 10-15 m3N-1m-1 respectively).  

Fig. 10c,d represents the wear tracks of these coatings (- 100 V and - 150 V) which clearly 

shows that the number of voids (black dots) generated due to the removal of defects are 

higher compared to other two coatings ( - 40 V and - 65 V). 



The narrow grooves generated by the third body ploughing action [44] can be clearly 

observed for all the coatings.  The removal of loosely bound defects from all the coatings as 

well as removal of coating material from the coating deposited at Ub = - 40 V produced wear 

debris which subsequently damaged the surface of the coatings. 

Fig. 11a represents the SEM image of the wear track showing voids, generated due to the 

removal of coating defects during the test. High magnification SEM image of such void can 

be seen in Fig. 11b. 

Although the µ values were not directly influenced by the surface defect density, the study of 

coating surfaces at higher magnification indicated that it influenced the KC values of the 

coatings. 

In addition, the bilayer thickness (� ) of the coatings can also influence the wear resistance 

[45–53]. The earlier study indicated that the tribological properties, specifically coefficient of 

wear values depend on crystallographic orientation of the coatings [16]. However, deeper 

understanding recommends that the layer structure of multilayer coatings influences the wear 

properties more and crystallographic orientation does influence the tribological properties by 

influencing the oxidation behaviour during sliding.  

The bilayer thickness is a function of the deposition rate [41]. As discussed earlier (sec 3.1), 

the bias voltage applied to the substrate influenced the deposition rate. Subsequently, it 

caused similar variation in the bilayer thickness of the coatings. As seen from the Fig. 12, the 

bilayer thickness of the coating deposited at - 65 V substrate bias was higher (�  = 27.3 � ) 

than the other coatings. Interestingly, this coating (Ub = - 65 V) provided the best resistance 

against wear. While for the coatings deposited with Ub = - 40 V, -100 V, -150 V, the bilayer 

thicknesses were found to be lower (�  = 24.9 � , 25.4 �  and 21.9 �  respectively). Although, 

the coatings produced at Ub = - 40 V and - 100 V had similar coating thickness (2.02 µm and 

2.05 µm) as well as similar bilayer thickness (24.9 �  and 25.4 � ), a significant difference in 



their wear values was noticed (4.19 × 10-15 m3N-1m-1 and 3.63 × 10-15 m3N-1m-1 respectively). 

It could be due to the difference in hardness of the coatings. Table 3 presents the results from 

the nanoindentation tests of the coatings deposited by varying bias voltage. 

As seen from the table, the coating produced with the lowest bias voltage of - 40 V had the 

lowest hardness value (19.74 GPa). Further increase of bias voltage raised the bombarding 

energy which led to a higher adhesion between the sputtered atoms and substrate as well as 

within the columns. As a result, the hardness of the coatings was increased and reached the 

maximum value (27.39 GPa for Ub = - 100 V). The higher hardness of this coating positively 

influenced the wear behaviour when compared to the coating deposited at the lowest bias 

voltage of - 40 V. 

 

Conclusion 

CrN/NbN multilayer coatings were deposited by varying the bias voltage to study the effect 

of bias voltage on defect generation as well as to understand the influence of these defects on 

corrosion and tribological properties of HIPIMS/UBM coatings. Increase in the bias voltage 

from - 40 V to - 150 V resulted in an increase in surface defect density from 3.13 % to 4.30 

%. Nevertheless, as estimated the microstructure, coating thickness, roughness, bilayer 

thickness and hardness of the coatings were also influenced by the bias voltage applied to the 

substrates. The corrosion study confirmed the positive influence of dense microstructure on 

the barrier properties of the coatings. In the anodic potential range, the corrosion current 

density was significantly lower for the coatings produced at higher negative bias voltages (Ub 

�  - 65 V). However, the effect of coating defects was also apparent. Corrosion curves of the 

coatings with higher defects exhibited sharp increase in current densities due to the removal 

of loosely bound defects. The wear mechanism of the coatings was dominated by the removal 

of coating defects during the tests as well as by the bilayer thickness and coating hardness. 



The coating with the maximum bilayer thickness had the lowest wear rate. Raman study on 

wear tracks suggested that the tribological friction values of the coatings were dependant on 

the nature of oxides produced during the tests. In this study, - 65 V was found to be the 

optimum bias voltage to produce coatings with low friction, low wear rates and higher 

corrosion resistance. 
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Figure Caption 

Fig. 1. (a) Planar and (b) cross-sectional SEM image of coating deposited at - 40 V; (c) 

Planar and (d) cross-sectional SEM image of coating deposited at - 65 V; (e) Planar and (f) 

cross-sectional SEM image of coating deposited at - 100 V; (g) Planar and (h) cross-sectional 

SEM image of coating deposited at - 150 V bias voltage. 

Fig. 2. (a) Planar view of a nodular shaped defect, (b) Cross-sectional view of a nodular 

shaped defect, (c) Planar view of an open void defect and (d) Planar view of a pinhole defect. 

Fig. 3. (a) Flakes related defect in HIPIMS/UBM coating and (b) EDX spectra of the defect; 

(c) Droplet in Arc-deposited coating commercially available and (d) EDX spectra of the 

droplet. 

Fig. 4 (a). Optical microscopic image of the coating surface (Ub = - 40 V), (b) Variation of 

surface area coved by optically visible defects as a function of substrate bias voltage, (c) 

SEM image of a stainless steel substrate showing substrate pits, and (d) Optical microscopic 

image of the commercially available arc-PVD CrN/NbN coating. 

Fig. 5. Potentiodynamic polarisation curves of the coatings deposited by varying bias voltage. 

Fig. 6. Dependence of friction coefficient on the number of revolutions (friction cycles) for 

the coatings deposited by varying bias voltage. 

Fig. 7. Raman spectra obtained from the wear tracks of the coatings deposited at various bias 

voltages. 

Fig. 8. XRD patterns CrN/NbN nanoscale multilayer coatings by varying substrate bias 

voltage. 

Fig. 9. Wear track profiles of the coatings deposited by varying bias voltage. 

Fig. 10. Optical image of the wear track of the coating deposited at (a) - 40 V, (b) - 65 V, (c) -

100 V and (d) -150 V. 

Fig. 11. (a) SEM image of the wear track and (b) void within the wear track. 



Fig. 12. Low angle diffraction peak and corresponding bilayer thickness of the coatings 

deposited at various substrate bias. 

 

Table caption 

Table 1. Coatings thickness as a function of substrate bias voltage. 

Table 2. Roughness of the coatings deposited by varying substrate bias voltage. 

Table 3. Hardness of the coatings deposited by varying substrate bias voltage. 

  



 

Fig. 1. (a) Planar and (b) cross-sectional SEM image of coating deposited at - 40 V; (c) 

Planar and (d) cross-sectional SEM image of coating deposited at - 65 V; (e) Planar and (f) 

cross-sectional SEM image of coating deposited at - 100 V; (g) Planar and (h) cross-sectional 

SEM image of coating deposited at - 150 V bias voltage. 



 

 

Fig. 2. (a) Planar view of a nodular shaped defect, (b) Cross-sectional view of a nodular 

shaped defect, (c) Planar view of an open void defect and (d) Planar view of a pinhole defect. 

  



 

 

Fig. 3. (a) Flakes related defect in HIPIMS/UBM coating and (b) EDX spectra of the defect; 

(c) Droplet in Arc-deposited coating commercially available and (d) EDX spectra of the 

droplet. 

  

a b 

c d 



 

 

Fig. 4 (a). Optical microscopic image of the coating surface (Ub = - 40 V), (b) Variation of 

surface area coved by optically visible defects as a function of substrate bias voltage, (c) 

SEM image of a stainless steel substrate showing substrate pits, and (d) Optical microscopic 

image of the commercially available arc-PVD CrN/NbN coating. 
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Fig. 5. Potentiodynamic polarisation curves of the coatings deposited by varying bias voltage. 

 

 

Fig. 6. Dependence of friction coefficient on the number of revolutions (friction cycles) for 

the coatings deposited by varying bias voltage. 

 



 

Fig. 7. Raman spectra obtained from the wear tracks of the coatings deposited at various bias 

voltages. 

 

 

Fig. 8. XRD patterns CrN/NbN nanoscale multilayer coatings by varying substrate bias 

voltage. 



 

Fig. 9. Wear track profiles of the coatings deposited by varying bias voltage. 

 

 

  

Fig. 10. Optical image of the wear track of the coating deposited at (a) - 40 V, (b) - 65 V, (c) -

100 V and (d) -150 V. 
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Fig. 11. (a) SEM image of the wear track and (b) void within the wear track. 

 

  

Fig. 12. Low angle diffraction peak and corresponding bilayer thickness of the coatings 

deposited at various substrate bias. 
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Bias Voltage (V) Thickness (µm) 

- 40 2.02 ± 0.03 

- 65 2.15 ± 0.02 

- 100 2.05 ± 0.01 

- 150 1.80 ± 0.04 

Table 1. Coatings thickness as a function of substrate bias voltage. 

 

Bias Voltage (V) Roughness (µm) 

- 40 0.040 

- 65 0.039 

- 100 0.083 

- 150 0.073 

Table 2. Roughness of the coatings deposited by varying substrate bias voltage. 

 

Bias Voltage (V) Hardness (GPa) 

- 40 19.74± 2.4 

- 65 25.85± 3.2 

- 100 27.39± 3.8 

- 150 26.04± 3.9 

Table 3. Hardness of the coatings deposited by varying substrate bias voltage. 

 

 


