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Abstract 7 

Fine particles of glass cullet (fines) arising during glass recycling cannot presently 8 

be recycled into glass manufacture due to the potential for bubble formation and 9 

foaming. Consolidation of glass fines into briquettes could enable their 10 

re-introduction into furnaces, reducing waste and glass melting energies. Properties of 11 

briquetted cullet fines and briquette melting behaviour in soda-lime-silica glass 12 

batches are presented. Morphology and density of glass fines and briquettes; and 13 

briquette mass and mechanical properties as functions of time after formation were 14 

analyzed. Compressive strength increases linearly with time after briquette formation. 15 

With slight batch modifications to maintain the same final glass composition, up to 15 16 

wt % briquettes were successfully added to a representative container glass batch and 17 

melted. Results confirm that briquette batch additions can provide equivalent final 18 

glass composition, optical absorption characteristics and redox to briquette-free 19 

batches, supporting their industrial uptake. 20 
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1. Introduction 22 

It is well known that the introduction of recycled glass (cullet) into commercial 23 

industrial glass batches can significantly reduce glass melting energy requirements 24 

and CO2 emissions.[1-3] Cullet can act as a fluxing agent and decreases the glass 25 

melting energy and thus Specific Energy Consumption (SEC). Compared to virgin 26 

(mined and man-made) glass batch raw materials, the melting energy consumption of 27 

cullet is approximately 70-75 % [4]. However, collection, recycling and transportation 28 

of cullet produces a significant fraction of fine particles which cannot be directly 29 

re-introduced into glass furnaces and are thus currently treated as a waste and 30 

discarded. The glass industry has strict requirements for the particle size distribution 31 

of batch components [5]. Specifically, very small particles (typically 6mm diameter or 32 

less and cannot be sorted using existing optical technology) of glass cullet or batch 33 

raw materials can cause dust formation prior to and after entry to the furnace [5]; 34 

entrainment of many tiny bubbles or “seed” in the glass melt; and foaming of the melt 35 

in furnace [6]. Moreover, fine particles can have both corrosive and erosive effects on 36 

furnace refractories [6, 7] and they can block or foul the checkers in furnace 37 

regenerators [7]. Typically 20% of recycled cullet is rejected on account of its fine 38 

particle size, and in the UK most of this is currently sent to landfill [8] or into 39 

aggregates. If the rejected cullet fines can be reclaimed or consolidated in such a way 40 

that they can be re-melted as glass batch constituents, the growing shortages of 41 

landfill sites and high-quality recycled cullet for glass manufacture could be alleviated, 42 

whilst at the same time replacing virgin (mined) raw materials, reducing batch CO2 43 
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emissions, and reducing the SEC of glass manufacture (and therefore fuel CO2 44 

emissions as most glass furnaces are gas-fired). 45 

 In the present study a briquetting technology, utilizing a novel binder has been 46 

applied to the problem of glass cullet fines, with the aim of enabling their recycling 47 

and re-melting in industrial glass manufacture. The research described in this paper is 48 

the result of an ongoing project with the aim of gaining a clearer understanding of the 49 

effects of introducing briquetted glass fines into full-scale glass manufacture in terms 50 

of melting rates, refining, redox, colour and energy saving. 51 

In addition to controlling the particle size distribution, granulation of virgin glass 52 

batch raw materials to avoid dust formation and evolution during melting has 53 

previously been attempted [9]. More widely, granulation (very small, < ca. 10 mm 54 

diameter), pelletisation (small, < ca. 20 mm diameter) and briquetting (larger, < ca. 50 55 

mm diameter) processes have all been researched in the glass industry [9-11]. 56 

However, these methods have hitherto been applied only to virgin glass batch 57 

materials (i.e. sand, sodium carbonate, limestone, dolomite, etc.) and not to glass 58 

cullet fines [9, 11]. Different inorganic and organic chemicals and minerals have been 59 

considered as binder materials in the production of consolidated glass batches. These 60 

binders have included paper pulp, cellulose, bentonite and carbonates [12, 13]. 61 

Potentially, briquetting can give greater advantages in terms of formation and strength 62 

than pelletisation or granulation, since briquettes are formed with the application of 63 

external pressure, whereas granules and pellets are gravity-formed with no external 64 

pressure applied. Consequently, granules and pellets exhibit greater friability and 65 
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lower mechanical strength and cohesion. Consolidated batch and / or cullet can also 66 

provide advantages in the furnace such as decreased melting and refining times [5, 9, 67 

13], increased batch thermal conductivity compared with unconsolidated batch 68 

materials, shorter batch blankets on the surface of the melt [9] and higher output of 69 

glass or “pull rate” [14]. All of these can contribute to lower SEC and fuel 70 

consumption and hence lower CO2 emissions from glass manufacture. 71 

As a reusable raw material, glass fines will have their own characteristic effects 72 

on the final glass quality. Bulk glass cullet can have a moderately reducing effect on 73 

redox conditions during melting due to organic contamination such as residual 74 

foodstuffs, labels and glue, particularly from cullet collected from public bottle banks. 75 

This reductive contamination affects the partial pressure of oxygen (pO2) in and above 76 

the glass melt in the furnace, and can in some circumstances lead to problems with 77 

final glass colour and refining. Most importantly, glass colour will be affected, as the 78 

Fe
2+

/Fe
3+

 ratio varies with pO2 [15] and under strongly reducing conditions the 79 

well-known Fe
3+

-S
2-

 amber chromophore can form [16-18]. Under less reducing 80 

conditions than those required to form full amber colour, an olive-green colour can 81 

form [17, 18]. Such colours may be undesirable if the aim is to manufacture a 82 

colourless or green glass. To provide the correct redox balance, oxidizing agents such 83 

as sulphates, nitrates and oxides of manganese, cerium, arsenic or antimony can be 84 

added to the batch [16-19]. However, a preferable solution is to control the levels of 85 

organic cullet contamination, rather than attempt to offset its effects through adding 86 

other dopants or oxidizing agents. Compared to bulk cullet, the specific surface area 87 
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of glass fines is relatively high and coupled with this, glass fines contain more 88 

contamination such as ceramics and organics. Modifying the batch to adapt to these 89 

effects, if necessary, is thus a consideration. 90 

In this study, briquetted glass fines were manufactured and tested. A mixture of 91 

glass fines with appropriate additions of a binder material and water was formed as 92 

briquettes using the application of a mould and pressure. The density, compressive 93 

strength and weight loss of the resulting briquettes were investigated as a function of 94 

time after briquette formation. For comparative glass melting and property 95 

assessments, a representative green container glass batch with 87 wt % cullet was 96 

chosen as a benchmark. With compensation of the batch to maintain the same final 97 

glass composition with and without briquette additions, glass batches containing 98 

different amounts of briquettes were melted, wherein the briquettes partially replaced 99 

the regular cullet so as to maintain the same overall recycled glass (briquettes + cullet) 100 

percentage. UV-Vis-IR absorption spectroscopy was used to determine the optical 101 

absorption spectra, and hence the colour and redox (Fe
2+

/Fe) ratio estimation of all 102 

glasses. 103 

2. Experimental Procedures 104 

Glass fines, which were originally destined to be sent to landfill, were collected 105 

from a German recycled glass supplier. An Olympus BX 51 optical microscope was 106 

used to characterize the appearance and constituents (amber, green or colourless glass; 107 

ceramics, organics) of received glass fines, prior to briquetting. To enable comparison 108 

of as-received glass fines with clean fines, the as-received glass fines were cleaned 109 
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using acetone in an ultrasonic bath for 2 minutes. Very thin specimens (about 2mm 110 

thick) were prepared for optical microscope. The sieving method was used for glass 111 

fines particle sizes distribution measurement, and the particle sizes of the glass fines 112 

are given in Figure 1. 113 

Briquettes were manufactured by mixing sodium silicate (Na2O∙2SiO2), sodium 114 

carbonate (Na2CO3), glass fines and water. Briquettes were produced using a 115 

proprietary mechanical mixing and forming method which consistently produced 116 

briquettes of typical dimensions 20 x 30 x 40 mm. After thorough mixing of the 117 

briquette constituents, the mixture was fed into a roller press with moulds on a double 118 

roll to compress the mixture into a briquette at applied pressures of approx, 50 MPa. 119 

After formation, briquettes then passed along a conveyor belt with heating to partially 120 

dry them, and after 2 minutes were deposited from the end of the conveyor into large 121 

bags. Briquettes were then collected for analysis. 122 

Measured densities of briquettes, glass and glass fines are shown in Table 2. The 123 

bulk density of glass fines was measured 3 times for each sample using a standard 124 

density apparatus according to BS EN 459-2:2010. The true density of container glass 125 

cullet and glass fines have been measured by the Archimedes method using distilled 126 

water as the suspension medium. Densities were calculated using (1): 127 

 128 

                                         (1) 129 

 130 

where ρ= density in g cm
-3

; WA= weight in air; WW= weight in water and δW = water 131 
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density with temperature correction. Bulk density of briquettes was measured by the 132 

Archimedes method. To prevent interactions with the measurement medium (water), 133 

samples were embedded in paraffin. Briquette densities were calculated using (2): 134 

                                           (2) 135 

 136 

where ρB= density of briquette in g cm
-3

; WB= weight of briquette in air; WA= weight 137 

of paraffin-embedded briquette in air; ρA= density of paraffin-embedded briquette, 138 

which can be calculated by Archimedes method; Wp= weight of paraffin, which is the 139 

weight difference before and after the embedded process and ρp= density of paraffin. 140 

Weight loss as a function of time after manufacture was measured for 20 briquettes at 141 

room temperature (ca. 20 
o
C) using a high-precision 2 decimal place balance. The 142 

results are shown in Figure 4. Under identical conditions, the compressive strength of 143 

briquettes was measured using an INSTRON 2530-445 (capacity: 50kN) as a function 144 

of time since briquette formation, the values provided here being determined as 145 

averages value of at least 3 measurements. Results are shown in Figure 5. To 146 

characterize the morphology, microstructure and composition of briquettes, samples 147 

were coated by ~20 nm carbon film for SEM (FEI Quanta 650) and EDS (Oxford 148 

Instruments/line scan mode) characterization. 149 

The representative (benchmark) green container glass batch and modified batches 150 

containing briquettes replacing standard cullet that were melted under laboratory 151 

conditions, are presented in Table 3. Series One batches were produced, wherein 152 
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briquettes partially replaced standard cullet at several levels from 0 to 20 wt %. 153 

Sample naming is of the form B-#, where # denotes the amount of briquettes added in 154 

weight %. Series Two batches were variants of the Series One B-15 batch, wherein 155 

the levels of added colourants were varied in order to provide colouration comparable 156 

to the benchmark glass. These samples are denoted B-15a, b, c and d. In addition, 157 

samples of as-received glass fines, briquettes and general glass cullet were each 158 

re-melted to enable comparative optical absorption measurements. Industrial raw 159 

materials and cullet were obtained from a UK container glass manufacturer, and 160 

batches were weighed out using a 2 decimal place balance to provide batches 161 

weighing 200g. Batches were thoroughly mixed and were then placed in recrystallized 162 

Al2O3 crucibles. Crucibles were heated in an electric furnace at a rate of 4
o
C / minute 163 

to 1450
o
C and then held at this temperature for 4h. Crucibles were then removed from 164 

the furnace and the molten glass poured into a stainless steel mould and allowed to 165 

cool until sufficiently rigid to remove the mould. The glass was then annealed at 166 

520
o
C for 1h, then cooled slowly to room temperature. Resulting glass compositions 167 

were determined using X-ray fluorescence spectroscopy (wavelength dispersive 168 

Philips PW2440 sequential X-ray fluorescence spectrometer) and results are presented 169 

in Table 3. Uncertainties associated with the XRF analyses are estimated at ±2% of 170 

measured concentrations. 171 

 Glass samples were prepared for optical spectroscopy measurement by grinding 172 

using successively finer SiC grinding pads from 60 to 1200 grit size, then polished 173 

using a suspension of CeO2 powder in water to provide a highly polished (< 1µm) 174 
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surface finish. Optical absorption spectra were measured using a Varian 50Scan 175 

UV-Visible-near-IR spectrophotometer over the wavelength range 300-1000 nm. The 176 

repeatability of measured absorbance data was confirmed by measuring each sample 3 177 

times. 178 

 179 

3. Results  180 

The glass batch compositions used in this research are given in Table 1 (a) and (b). 181 

Owing to the presence of binder materials in briquettes, and in order to keep the final 182 

target glass composition unchanged, briquette-containing glass batches were modified 183 

slightly. For Series One batches, sample B-15 is close to the upper limit for achieving 184 

an unchanged nominal final glass composition, whilst sample B-20X presents a 185 

slightly elevated Na2O content in the final glass, despite removing all Na2CO3 from 186 

the raw materials, due to the binders present in the briquettes used. Series Two 187 

batches B-15a, b, c, d, with modification of colourant and oxidant constituents are 188 

shown in Table 1 (b). Manganese ore and chromite contents were varied. XRF 189 

analyses of final glasses are shown in Table 2. This confirms, within experimental 190 

uncertainties, that the chemical composition of the benchmark glass was largely 191 

maintained for B-9 and B-15 glasses, however, small increases in SiO2 content are 192 

likely to have resulted from corresponding small differences in SiO2 and CaO content 193 

of glass fines compared with cullet. Further batch modification would be required to 194 

fine-tune this, for example by slightly increasing the limestone contents of 195 

briquette-containing batches. Such modifications are regularly carried out in the glass 196 
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industry. 197 

The particle size distribution (PSD) of the glass fines is given in Figure 1. There were 198 

no particles larger than 2 mm diameter; 37.8 wt % were between 0.5 and 2 mm; 46.8 199 

wt % between 0.25 and 0.5 mm; 11 wt % between 0.125 and 0.25 mm; 3.2 wt % 200 

between 0.125 and 0.062 mm, and the balance (1.6 wt%) smaller than 0.062mm. 201 

Figure 2 shows optical micrographs of glass fines before and after cleaning in acetone. 202 

Under optical microscopy, fines are shown to be a mixture of amber, flint and green 203 

glass particles. For the as-received samples, considerable levels of contaminants are 204 

observed. A simple loss-on-ignition (LOI) analysis of raw glass fines was carried out 205 

by heating 10 g of glass fines at 100 
o
C and 700 

o
C each for 3h, and showed a 206 

moisture loss of 0.13 ± 0.04 wt % at 100
o
C and a total weight loss of 0.75 ± 0.07 wt% 207 

at 700
o
C. Considering their relatively low density, these organic contaminants impact 208 

on redox and are discussed in Section 4. The optical and secondary electron SEM 209 

micrographs of briquette cross-sections are presented in Fig. 3a and Fig. 3b. 210 

Briquettes exhibit a dense and compact microstructure. The EDS line scan shows a 211 

continuous phase - glass particle interface in briquettes (Fig. 3c and 3d). 212 

Note from Richard. Should we mention something here about the fines needing to be 213 

at 1 mm or less because of CSP inclusions. During residence time in glass melting 214 

these can dilute into the bath causing no reduction in final quality 215 

The bulk and true densities of standard cullet, glass fines and briquettes are shown in 216 

Table 3. The true density of glass fines (2.513 g/cm
3
) is close to that of standard cullet 217 

(2.544 g/cm
3
), as would be expected. For the porous and powder form, glass fines 218 
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contain a lot of air, the bulk density of glass fines is, however, very low as would be 219 

expected. Yet bulk density increased from 1.311 to 2.105 g/cm
3
 after briquetting. This 220 

is consistent with the optical microscopy results in Fig. 2, which confirm that the 221 

contact area of glass fines in briquettes is greatly increased, and thus the voids / 222 

porosity are substantially decreased. This suggests that thermal conductivity of 223 

briquettes should be substantially greater than unconsolidated glass fines. The thermal 224 

conductivity of glass batch was measured over the range 100
o
C to 1250

o
C by Kröger 225 

and Eligehausen [20]. More recently, further data on thermal conductivity of glass 226 

batches were reported by Verheijen et al. [21], Schill [22] and Hrma et al. [23]. Their 227 

studies focused on the precise measurement of effective thermal conductivities in 228 

different glass batches. A gradually linear increase of thermal conductivity was 229 

observed from ~100
o
C to ~650

o
C, before a sudden rapid increase above 700~750

o
C 230 

which may be due to liquid phase formation [21, 23]. The thermal conductivity of 231 

loose (unconsolidated) glass batch at room temperature is 0.273 W/m·°C. It was 232 

increased to 0.430 W/m·°C as the bulk density increased from 1.291 g/cm
3
 to 2.124 233 

g/cm
3
 by compression (consolidation) of the batch [24]. Meanwhile, the thermal 234 

diffusivity of cullet is always higher than that of virgin glass batch during heating [25]. 235 

Thus, as a consolidation method, briquetting of glass fines can provide a net increase 236 

in thermal conductivity compared with loose glass fines. 237 

 In Figure 4, weight loss curves of 20 briquettes at room temperature are presented. 238 

They show that, although the briquettes have the same nominal composition and are 239 

produced under essentially the same conditions, weight loss rates vary somewhat for 240 
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different briquettes. 241 

 Figure 5 shows the measured compressive strength of briquettes as a function of 242 

time from formation. The initial strength of briquettes is relatively low and not more 243 

than 5 MPa in the first 5 days, rising to ~60 MPa after 30 days. 244 

 UV-Vis-IR absorption spectra of benchmark glass, melted glass fines, melted 245 

briquettes and melted standard cullet within the wavelength range of 300-1000 nm are 246 

presented in Figure 6a. For every curve, the UV absorption edge is near 370 nm, and 247 

spectra contain one narrow absorption band at 380 nm and two wider absorption 248 

bands centered at ca. 450 nm and 660 – 700 nm. Compared to the benchmark glass, 249 

the absorbance of melted glass fines, briquettes and standard cullet in the visible 250 

region (ca. 400 – 650 nm) is lower. A broad optical absorption band centered at a 251 

wavelength of ~1100 nm was also observed in melted glass fines, melted briquette 252 

and melted general cullet samples. As shown in Figure 6b, the absorption spectrum of 253 

samples B-0, B-9, B-15 and B-20X are almost the same. In Figure 6c, the absorption 254 

spectra of samples B-15a, b, c and d, produced with varying amount of manganese ore 255 

and chrome premix additions, are presented. The strength of the absorption bands 256 

centered at 450 nm and 660-700 nm in samples B-15a and B-15b are lower than that 257 

of sample B-15, and the broad absorption band centered at ~1100 nm in sample B-15a 258 

is present. Meanwhile, the absorption spectrum of sample B-15c is similar to sample 259 

B-15 at < 700 nm, however, at wavelengths above 700 nm, the absorption strength of 260 

sample B-15c increases. For the sample B-15d spectrum, the absorbance below ~700 261 

nm is relatively low and above 700 nm it is relatively high compared to sample B-15. 262 
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 263 

4. Discussion 264 

4.1. Briquettes 265 

As described in Sections 1 and 2, a small particle size is the biggest obstacle for 266 

the recycling of glass cullet fines into glass furnaces. A screen classification method 267 

was used to investigate the particle size distribution of the glass fines studied here. 268 

From Figure 1, the particle size distribution of glass fines is not a normal distribution: 269 

this can be explained because larger particles are routinely separated and extracted by 270 

cullet suppliers. No particle is larger than 2mm. These glass fines will carry entrained 271 

air into the glass furnace and hence into the melt, not only increasing furnace dusting 272 

[5] and reducing the thermal conductivity of the batch blanket [5], but also causing 273 

melt foaming and making satisfactory melt refining more difficult [5-7]. 274 

As a glass batch raw material, the components of glass fines need to be 275 

understood. For standard bulk glass cullet, the proportions of amber, green and 276 

colourless cullet and organic contamination can now be closely controlled [9]. The 277 

chemical composition of different colours of bulk cullet is similar, except for the 278 

colorants and, in certain cases, SO3 contents. To investigate cullet composition, we 279 

re-melted standard bulk cullet and compared it with re-melted glass fines using XRF. 280 

As shown in Table 3, XRF analyses of remelted cullet and remelted glass fines are 281 

similar, especially for colouring agents Cr2O3, MnO and Fe2O3. This supports the 282 

view that re-introduction of glass fines into glass batches can be achieved without the 283 

need for substantial modification of batch composition. 284 
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In Figure 2, the morphology of glass fines, studied by optical microscopy, is 285 

demonstrated. For the raw glass fines in Fig.2a, ultra-fine particles and contaminants 286 

also accompany the glass fines. The ultra-fine particles cause dispersion and make the 287 

luminous environment, observed under white light, complex. However, it is still 288 

possible to distinguish individual amber, green and colourless glass fine particles. 289 

After washing in acetone, the cleaned glass fines are presented in Fig.2b. The ultrafine 290 

particles and contaminants have been removed and very clean glass particles can be 291 

observed, again highlighting the presence of colourless, green and amber glass 292 

particles. This is expected at some level for all bottle bank cullet, which may be sorted 293 

or unsorted by colour. 294 

From Table 3, the bulk density of briquettes is obviously higher than that of glass 295 

fines and close to the real density of bulk glass. The compressive process of briquette 296 

manufacture removes voids and entrained air between glass particles effectively and 297 

also introduces the binder constituents into some of the existing void space. The 298 

briquette cross-section is characterized by optical microscopy and SEM in Fig. 3a and 299 

3b. Glass fine particles are encased in a continuous, dense structure, with binder 300 

materials effectively holding the fine glass particles together whilst removing porosity. 301 

To demonstrate the interface between the binder phase and glass particles, an SEM 302 

image is shown in Fig. 3c. An EDS line scan was performed and the quantitative 303 

result is shown in Fig. 3d. The Na and C contents in the binder phase are higher than 304 

the surrounding glass fines; and the Si content is higher in the glass fines than in the 305 

binder phase. This is fully consistent with the binder phase ingredients (Na2O.2SiO2 306 
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and Na2CO3). There is no evidence of extensive chemical interaction between binder 307 

and glass fines phases, however, the “pore-filling” action of the binder phase can be 308 

clearly seen. 309 

 It has long been known that sodium silicate can be used in sand casting processes 310 

as a highly effective inorganic binder to provide high strength performance [26, 27]. 311 

Here, briquettes required a binder that provide this function but also require strength 312 

after forming to enable problem-free transport into the furnace without fragmentation 313 

or excessive friability. Thus, sodium silicate was introduced as binder component here. 314 

Theoretically, the chemical reaction of sodium silicate-bonded, CO2 hardened sand 315 

system, or the so called “silicate-CO2 process” [27] can be expressed as (3): 316 

 317 

Na2SiO3 + CO2 + H2O → H2SiO3 + Na2CO3          (3) 318 

 319 

 The formation of amorphous silica gel from sodium silicate as in (3) requires 320 

water and CO2 from air, but also time for solidification. As a batch component here, 321 

water was introduced into the briquetting process to improve the rheology of glass 322 

fines and binder mixtures during the briquetting process. However, too much residual 323 

water may delay the solidification time, reduce the strength, or even make the 324 

briquette thixotropic. Therefore it had to be carefully controlled to ensure 325 

problem-free briquette manufacture. 326 

Figure 4 shows the weight loss of 20 briquettes as a function of time after 327 

formation, to understand drying and hydration reactions with time. After storage at 328 
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room temperature (ca. 20 
o
C) for approximately 150 hours, weight loss reaches a 329 

steady state and further weight loss becomes very slow. In Fig.7 a), the instant weight 330 

loss rates (RI) of different briquettes are presented and calculated with weight 331 

difference between adjacent measurements divided by time. The initial rates are 332 

relatively fast in the first 75 hours, then the loss rates fluctuate around +/-0.005 wt% / 333 

h. Interestingly, some variability is observed in weight loss curves for different 334 

briquettes. In Fig.7 b), the average weight loss rates (Ra) of 20 briquettes after 187 335 

hours are demonstrated as the function of briquettes initial weight, and calculated with 336 

weight difference between the current and initial measurement divided by the time. 337 

Weight loss rates decreased with increasing of initial weight. This shows that water 338 

removal from a heavy briquette is slower than for a lighter briquette. Briquette sizes 339 

did vary, owing to the method of formation, with some being thicker and others 340 

thinner. This result strongly suggests that weight loss differences are due to 341 

differences in surface area to volume (SA/V) ratio, i.e. lighter briquettes have a larger 342 

SA/V ratio and therefore water removal (drying) is more rapid compared to heavier 343 

briquettes. In Fig.7 c), the relationships between initial weight of briquettes and 344 

average weight loss rate at different time are presented. The average weight loss rates 345 

are similar to one another and the influence of initial weight on the weight loss rate is 346 

gradually reduced. Clearly water evaporation plays a primary role on the weight loss 347 

during this period. However, the reaction of sodium silicate in the binder with CO2 348 

from air, carbonation [27], also needs to be considered because this process will 349 

slightly increase the weight of briquette. 350 
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 Compressive strength of briquettes increases linearly as a function of time after 351 

formation, as shown in Figure 5. The carbonation of sodium silicate needs time to 352 

form silica gel similarly to hydration of concrete from a dynamic viewpoint [28]. 353 

 354 

4.2. Composition, colour and redox of glass 355 

 Since the composition of recycled glass cullet is similar to the composition of the 356 

glass fines (Table 3b), briquettes can be added into the batch whilst changes in the 357 

accompanying glass batch can compensate for the extra Na2O and SiO2 arising from 358 

the binders. With precise design, the chemical composition of Base line, B-9 and B-15 359 

glasses are closely similar, with those differences that do arise being attributable to 360 

cullet and glass fines impurities and compositional differences, and to uncertainties 361 

associated with the XRF analyses. For sample B-20X, it was not possible to fully 362 

balance the additional Na2O and Na2CO3 from the briquette binder by removing batch 363 

Na2CO3, and consequently the Na2O content of this glass is higher than the 364 

benchmark. However, the other ingredients in B-20X are as same as in the Base Line 365 

sample. 366 

 As described in Section 1, batch redox plays an important role in glass 367 

manufacture, particularly in the preparation of homogeneous glass free from bubbles 368 

and in making colored glasses containing transition metal ions [29]. For some 369 

transition metal ions UV-Vis absorption spectra can not only characterize the colour 370 

properties of glass in the visible light region, but also the redox of different glasses 371 

can be deduced and compared from the relative intensity of optical absorption spectra. 372 



18 

 

It is well known that glass redox status can be estimated through the Fe
2+

/Fe
3+

 or 373 

Fe
2+

/ΣFe ratio [30-32]. As a colourant ion, Fe
2+

 gives a stronger blue colour in silicate 374 

glass whilst Fe
3+

 gives a weaker yellow-green colour [33]. The Fe
2+

/ΣFe
 
ratio gives an 375 

indication of the oxidation state of the glass [15]. According to ligand field theory, the 376 

absorbance peaks due to d-d transitions of Fe
2+

 and Fe
3+

 were summarized previously 377 

[30, 34]. In Fig.6 a), the absorption spectra of Base Line, remelted briquette, remelted 378 

cullet and remelted glass fines samples are presented. The optical absorption band 379 

centred at~380 nm is attributable to the 
6
A1(S)→

4
E(D) transition of tetrahedrally 380 

coordinated Fe
3+

 cations. The intensity of this band is positively associated with the 381 

concentration of Fe
3+

. For remelted briquette, cullet and glass fine samples, a broad 382 

optical absorption band centered at a wavelength of slightly higher than 1000 nm is 383 

attributable to the 
5
A2(S)→

5
E(D) transition of octahedrally coordinated Fe

2+
 cations. 384 

The increase in intensity of this band for the remelted briquette, cullet and glass fines 385 

samples compared with the Base Line glass, coupled with the opposing trend of 386 

decreasing intensity of the Fe
3+

 band at 380nm, confirms that the Fe
2+

/ΣFe ratio is 387 

higher in the remelted briquette, cullet and cullet fines samples than the Base Line 388 

glass. In the UV edge part of spectrum, there are strong UV peaks from Fe
2+

 (centered 389 

~214 nm) and Fe
3+

 (centered ~254 nm), which are caused by the charge transfer of 3d 390 

to 4s[30]. The UV edge intensity increases and moves towards longer wavelengths 391 

with decreasing Fe
2+

/∑Fe ratio, i.e. with increasing oxidation of the melt. Organic 392 

contamination in recycled cullet or glass fines shifts the redox equilibrium Fe
2+

↔ 393 

Fe
3+

 to the left in the glass melting furnace, increasing the Fe
2+

/∑ Fe ratio.  394 
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 For chromium, Cr
3+

 exhibits a distinctive absorption spectrum with a split, broad 395 

band centred at 660-700nm attributable to the A2g(F)→
4
E2g(F) transition; and another 396 

band with similar intensity occurring at ~450 nm, attributable to the A2g(F)→
4
E1g(F) 397 

transition [35]. If these recycled cullet/fines or briquettes are reused in glass batch, the 398 

compensation of chromium must be set up for the glass colour correction in visible 399 

wavelength range. 400 

 In industrial production, colour and redox state of commercial glasses are usually 401 

controlled by the use of oxidizing/ reducing batch constituents, furnace atmosphere 402 

and colorants. The redox and colour of glass batches with different amount of 403 

briquette studied here was controlled by modification of the manganese ore and 404 

chrome premix batch components. In Fig.6b, the absorption spectra of sample 405 

Base-line, B-9, B-15 and B-20X are presented. After careful modification, the glasses 406 

produced from batches with increasing briquette contents (B-9, B-15 and B-20X) 407 

show the same spectral features as the Base line sample and, crucially, the absorption 408 

profiles of all samples closely match that of the base line glass, in terms of both 409 

spectral profile and quantitatively in terms of absorbance. This is consistent with the 410 

colourant (Fe, Cr, Mn) contents of these glasses, which also show no variation within 411 

uncertainties of analysis. Consequently, it can be surmised that samples B-9, B-15 and 412 

B-20X all have closely similar Fe
2+

/ΣFe redox ratios to the base line glass, and all 413 

show low Fe
2+

/ΣFe, indicating oxidized glasses. The effects of the manganese ore and 414 

chrome premix batch additions were also studied for Series Two glasses, B-15a to 415 

B-15d. The main colourant / redox-active components of these raw materials are 416 
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MnO2 from manganese ore, and both Cr2O3 and Fe2O3 from chrome premix. The 417 

compositions of B-15a to B-15d are listed in Table 3 and their absorption spectra are 418 

shown in Fig.6c. With no manganese ore of chrome premix added, sample B-15a 419 

shows the same spectral features as the remelted cullet or remelted glass fines samples 420 

in Fig. 6a, which shows that B-15a has a higher Fe
2+

/ΣFe ratio (i.e. more reduced). 421 

With insufficient compensation of colorant agents (Manganese ore and Chrome 422 

premix), the spectrum characteristic of B-15b between B-15 and B-15a.  423 

 Manganese in silicate glass normally distributes into Mn
2+

 and Mn
3+

 and 424 

generates the absorption band centred at ~500 nm (purple colour) due to Mn
3+

 [36], 425 

which undergoes mutual redox interactions with Fe
2+

, thereby reducing to the 426 

colourless Mn
2+

 whilst oxidising iron to the weakly yellow/green-coloured Fe
3+

. 427 

Small amounts of manganese were introduced because of this oxidising ability. For 428 

sample B-15c, the visible absorption spectrum is almost the same as sample B-15. 429 

However, due to the absence of Mn ore in the batch for this sample, the broad optical 430 

absorption band centered at ~1100 nm (Fe
2+

) is stronger, hence the glass is more 431 

reduced and the IR absorption greater. For sample B-15d, the low Cr not only causes 432 

the low absorption at 660 - 700 nm and ~450 nm, but also higher absorption at ~1100 433 

nm (Fe
2+

). 434 

 435 

5. Conclusions 436 

Briquettes consisting of 82 wt % recycled glass fines were made with additions of 437 

sodium silicate, sodium carbonate and water. Briquette bulk density (2.105 g/cm
3
) is 438 
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higher than that of the glass fines (1.311 g/cm
3
), as expected. There is faster mass loss 439 

(~-0.06 wt%/h) due to evaporation in the 24 hours following briquette production, and 440 

further mass loss due to evaporation is considerably slower (~-0.005 wt%/h) thereafter. 441 

There is also a negative correlation between the initial briquette mass and moisture 442 

evaporation rate. The compressive strength of briquettes increases linearly with time, 443 

increasing from 2 MPa to 60-65 MPa after 33 days at room temperature (ca. 20
o
C) 444 

and ambient humidity. With compensation of the glass batch materials to maintain a 445 

consistent nominal final glass composition, up to 15 wt % briquettes can be added to 446 

the batch. These batches rapidly melted to form glasses with comparable properties to 447 

briquette-free benchmark glasses. UV-Vis-near IR absorption spectra confirmed that 448 

the colour and redox state of resulting glasses can be maintained for different 449 

briquette additions. It is thus demonstrated that commercial SLS glasses produced 450 

using up to 15 wt% briquetted glass cullet fines exhibit comparable compositions and 451 

properties to SLS glasses produced using briquette-free batches, supporting the 452 

potential use of this technology for enhanced energy and resource efficiency, and 453 

lower CO2 emissions, from commercial glass manufacture. 454 
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Table 1. Batch compositions of sample glasses 

a) 

 Baseline 

Wt % 

B-9 

Wt % 

B-15 

Wt % 

B-20X 

Wt % 

Other ingredients (sand, limestone, 

dolomite etc.)  
12.53 11.37 10.63 10.35 

Cullet 87.47 79.54 74.47 69.75 

Briquette 0 9.09 14.9 19.9 

SUM 100 100 100 100 

b) 

 B-15a 

Wt % 

B-15b 

Wt % 

B-15c 

Wt % 

B-15d 

Wt % 

 No 

colorant 

No colorant 

for briquette 

No Mn No Cr 

Other ingredients 9.51 9.51 9.51 9.51 

Chrome premix 0 0.81 0.94 / 

Manganese ore  0 0.15 / 0.18 

Cullet 74.47 74.47 74.47 74.47 

Briquette 14.9 14.9 14.9 14.9 

SUM 98.88 99.84 99.82 99.06 

 

Table 2. Bulk and true densities of container glass, glass fine and briquette. 

 

 Container glass Glass fines Briquette 

Bulk density (g/cm
3
) 2.544 1.311 2.105 

True density (g/cm
3
) 2.544 2.513 n/m * 

* The true density of briquette cannot be measured as the binder is water soluble. 
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Table 3. a) Series One XRF analysed glass compositions in wt % (the nominal 

composition of B-9, 15, 20x should be the same as Base line) 

 Baseline  B-9 B-15 B-20X Cullet  Glass 

fines 

Briquettes 

Na2O 13.24  13.63 13.53 14.71 13.64 13.18 16.54 

MgO 1.97  1.85 1.98 1.91 1.31 1.84 1.76 

Al2O3 2.78  2.89 2.85 2.71 2.99 2.57 1.73 

SiO2 69.53  69.58 70.09 69.01 71.09 71.56 69.18 

K2O 1.10  0.88 0.85 0.81 0.82 0.89 0.72 

CaO 9.92  9.63 9.32 9.34 9.31 9.13 9.48 

Cr2O3 0.38  0.39 0.38 0.39 0.10 0.10 0.12 

MnO 0.18  0.19 0.18 0.19 0.07 0.05 \ 

Fe2O3 0.57  0.59 0.53 0.57 0.40 0.34 0.34 

SO3 0.09  0.17 0.08 0.12 0.06 0.04 0.04 

P2O5 \  \ \ \ 0.03 0.03 \ 

TiO2 0.09  \ \ \ \ 0.07 \ 

SrO 0.08  0.10 0.10 0.10 0.02 0.03 \ 

BaO 0.07  0.07 0.07 0.08 0.10 0.13 0.07 

Cl \  0.03 0.04 0.06 0.03 \ \ 

PbO \  \ \ \ \ 0.04 0.02 

SUM 100  100 100 100 100 100 100 

Table 3. b) Series Two XRF analysed glass compositions in wt % 

 B-15a B-15b B-15c B-15d 

Na2O 13.54  13.46  13.51  13.45  

MgO 1.87  1.87  1.86  1.84  

Al2O3 3.19  3.18  3.13  3.14  

SiO2 70.12  70.05  70.00  70.20  

K2O 0.87  0.86  0.83  0.87  

CaO 9.39  9.36  9.32  9.27  

Cr2O3 0.11  0.23  0.37  0.15  

MnO 0.06  0.14  0.07  0.19  

Fe2O3 0.48  0.49  0.50  0.48  

SO3 0.09  0.09  0.10  0.09  

P2O5 \ \ \ \ 

TiO2 0.07 0.07 0.07 0.07 

SrO 0.09 0.08 0.08 0.10 

BaO 0.07 0.08 0.09 0.09 

Cl 0.03 0.02 0.04 0.03 

PbO 0.02 0.02 0.03 0.03 

TOTAL 100  100  100  100  
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Figure 1. Analyzed particle size distribution of glass fines 
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Figure 2. a) Optical micrographs of recycled glass fines; b) Optical micrographs of 

recycled glass fines washed by acetone in ultrasonic bath for 2mins and then dried. 
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Figure 3.a) Optical and b) Secondary electron SEM images of briquette surface x 200. 
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Figure 3.c) Secondary electron SEM image of briquette cross-section x 500. 

 

Line Scan 
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Figure 3.d) EDS line scan result of continuous phase / glass particle interface in 

briquette.  
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Figure 4. Briquette weight loss as fn. (time after forming) for 20 briquettes at room 

temperature. 

 

Figure 5. Compressive strength of briquettes as fn., line shown as visual guide (time after 

forming). 
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Fig.6 a) UV-Vis-Near IR absorption spectra of baseline, melted briquette, melted 

cullet and melted glass fines samples. 

 
Fig.6 b) UV-Vis-Near IR absorption spectra of samples baseline, B-9, B-15 and 

B-20X. 
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Fig.6 c) UV-Vis-Near IR absorption spectra of samples B-15, B-15a, B-15b, B-15c 

and B-15d. 
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Fig.7 a) Weight loss rates for different briquettes as fn. (time) at 20 
o
C. 

 
Fig.7 b) Average weight loss rate of 20 briquettes after 187 hours vs. initial weight of 

briquettes. 
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Fig.7 c) Average weight loss rate of 20 briquettes in different time vs. initial weight of 

briquettes. 

 

 


