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Abstract—Yaw moment control systems improve vehicle stability and handling in severe driving manoeuvres. Nevertheless, the control 

system performance is limited by the unmodelled dynamics and parameter uncertainties. To guarantee robustness of the control system 

against system uncertainties, this paper proposes a gain scheduling Robust Linear Quadratic Regulator (RLQR), in which an extra 

control term is added to the feedback of a conventional LQR to limit the closed-loop tracking error in a neighbourhood of the origin of 

its state-space, despite of the uncertainties and persistent disturbances acting on the plant. In addition, the intrinsic parameter-varying 

nature of the vehicle dynamics model with respect to the longitudinal vehicle velocity can jeopardize the closed-loop performance of 

fixed-gain control algorithms in different driving conditions. Therefore, the control gains optimally vary based on the actual 

longitudinal vehicle velocity to adapt the closed-loop system to the variations of this parameter. The effectiveness of the proposed RLQR 

in improving the robustness of classical LQR against model uncertainties and parameter variations is proven analytically, numerically 

and experimentally. The numerical and experimental results are consistent with the analytical analysis proving that the proposed RLQR 

reduces the ultimate bound of error dynamics.  

I. INTRODUCTION 

Modern vehicle safety control systems are critical to the enhancement of lateral vehicle stability and the reduction of fatal 

accidents. Safety control systems based on direct yaw moment control (DYC) enhance vehicle stability during cornering. In such 

systems, the yaw moment adjustment is obtained from the difference of traction/braking forces between the left and right wheels. A 

DYC can be actuated through the friction brakes, mechanical differentials, or individually controlled electric motors. The 

implementation of DYC through the friction brakes is not desirable, as it causes vehicle velocity reduction, and consequently 

degrades driving comfort. On the other hand, mechanical differentials are characterized by significant mechanical complexity and 

actuation delays. However, DYC actuation through individually controlled motors is less complex and more effective, because of 

the precise torque controllability of electric machines [1]–[4]. 

Typically, a DYC system adopts a hierarchical control structure, consisting of three separate control layers, namely the high-level 

controller, the mid-level controller, and the low-level controller. The high-level controller is responsible for the reference 
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generation and usually outputs the reference yaw moment for the mid-level controller which distributes the reference yaw moment 

signals to the available actuators (e.g. electric motors, friction brakes, etc.). The low-level controller is responsible for the actuation 

of each actuator based on the distributed signals by mid-level controller [5].  

For high-level controller, different control techniques, such as model predictive control [6], [7], robust control [8]–[10] and sliding 

mode control [11], [12], have been proposed in the technical literature. However, Linear Quadratic Regulators (LQR) is one of the 

most commonly used control method for reference yaw moment generation. To enhance tracking performance for a wide range of 

longitudinal velocities, the solution of the Jacobi-Riccati equation of the LQR optimisation was exploited by Refs. [13]–[15] to 

formulate variable feedback and feedforward gains as functions of vehicle longitudinal velocity. However, closed-loop stability of 

the resulting control systems were not systematically investigated for time varying longitudinal velocities, and represent a concern 

for such methods. Furthermore, LQR algorithms suffer from a limited gain margin against parameter perturbation and external 

disturbances [16], [17]. The robustness of LQR methods depend on the selection of the weights in the cost function to be minimized 

which also affect the closed-loop response [16]. Usually, such weights are the result of time-consuming trial and error numerical 

procedures aiming to find a satisfactory trade-off between robustness and performance [18]. Alternatively, to increase system 

robustness against disturbances and uncertainties without increasing the complexity of the design, LQR methods have been 

augmented with Variable Structure Control (VSC) actions. For example, a robust optimal sliding-mode yaw rate controller was 

proposed in [15] to address the tracking problem under uncertain conditions. A sliding mode controller with time-varying sliding 

surfaces to solve the optimal control problem for both linear and nonlinear systems was presented in Ref. [19]. Furthermore, a 

LQR/VSC method based on the Planes Cluster Approaching Mode (PCAM) to guarantee global asymptotic stability in the 

presence of parameter perturbation and unmodelled dynamics was developed in [20]. However, despite their theoretical 

effectiveness to suppress bounded disturbances, discontinuous control terms, typically embedded in sliding mode control solutions, 

induce chattering on the control action. In automotive applications, chattering may results either in stress and wear of mechanical 

or electrical parts, with a consequence damage of the system in short time, or  vibrations during implementation [21]. In addition, 

when the discontinuous control action is smoothed to mitigate chattering, often it is not possible to prove the asymptotic 

convergence to zero of the tracking error but only its boundedness [21].  

Considering the abovementioned challenges, this paper proposes a novel approach to improve robustness of LQR against model 

uncertainties, real-time system parameter variations, and disturbances for DYC applications, which allows to confine the tracking 

error in a pre-assigned neighbourhood of the origin despite the time-varying nature of the longitudinal velocity and without adding 

discontinuous actions. More specifically, the proposed control action consists of three terms, i.e., (i) a feedback action whose gain 

is derived by solving the algebraic Riccati equation; (ii) a feedforward action based on the reference trajectory; and (iii) a feedback 

robust control action to improve closed-loop robustness to unmodelled dynamics and parameter uncertainties. The all control gains 
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are a function of the longitudinal velocity to optimally tune the gains for wider range of speeds. Therefore, the controller belongs to 

the class of gain scheduling Robust Linear Quadratic Regulator (RLQR). It is noted that, the proposed RLQR method also allows 

the decoupled design of the LQR control action and the robust action, thus avoiding the use of time-consuming tuning for the 

selection of the LQ weights. The LQ weights can be chosen without considering model imperfects and disturbances. Then, based 

on the Riccati solution, the robust term can be designed to suppress uncertainties. The closed-loop tracking error dynamics are 

analytically proven to be globally uniformly ultimately bounded and an upper-bound for the ultimate bound (i.e., the maximum 

residual error when time goes to infinity [22]) is formulated, where, the proof is carried out by considering the plant dynamics as a 

parameter-varying system [23]. Hence, unwanted dynamics, which can be induced by gain scheduling strategies [24], cannot 

emerge. In addition, the ultimate bound is inversely proportional to the gain of the robust action, confirming the advantage 

provided by the proposed feedback control action. For the numerical validation, the novel RLQR is embedded in IPG CarMaker in 

which a prototype electric Range Rover Evoque is modelled. A quantitative comparison clearly shows that the novel RLQR 

outperforms gain-scheduling LQR control solutions proposed by [13], in terms of residual tracking error, peak yaw rate error and 

absolute value of the control action. Finally, experimental results on the same prototype electric Range Rover Evoque with 

individually controlled motors on front and rear axles confirm the applicability and the effectiveness of the proposed control 

strategy to real scenarios. Furthermore, an additional detailed comparative analysis, carried out with experimental data, points out 

that superior close-loop tracking performance can be achieved when the RLQR replaces gain-scheduling LQRs available in the 

literature [13].  

The rest of the paper is organized as follow. Section II describes the vehicle models for control system design and reference 

generation. Section III focuses on the control problem definition and control law formulation, while Section IV is dedicated to the 

analysis of the closed-loop tracking error dynamics by using a Lyapunov approach. The numerical analysis for different relevant 

manoeuvres is carried out in Section V by means of co-simulations, while Section VI discusses the implementation of the controller 

on the electric vehicle demonstrator as well as the analysis of the experimental results. Conclusions are summarised in Section VII 

together with possible future extensions. 

II. VEHICLE SYSTEM MODELLING AND REFERENCE SIGNAL DESIGN 

The first step to design control systems for vehicle lateral stability enhancement is to formulate a proper set of reference signals 

based on the vehicle handling and stability characteristics. To this aim, the bicycle vehicle model, shown in Figure 1, is used. 

Despite its simplicity, the model reproduces well the main handling and stability characteristics of a vehicle during cornering. 

Hence, it is often used in the technical literature at the control design stage.  
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Figure 1. A two-degree-of-freedom bicycle model. 

By denoting as � the steering angle, �� and �� the longitudinal and lateral components of vehicle velocity, respectively, and with 

��� and ���  the lateral forces of the front and rear tyres, the equations of motion are:  

�	��
� + ��
� = ���	 + ��� , (1) 

��
� = ����� − ����� + �, (2) 

where 
 is the vehicle sideslip angle, �� 	and �� are the front and rear semi-wheelbases, 
 is vehicle yaw rate, �� is the yaw moment 

of inertia about the vehicle yaw axis, and � is the vehicle mass and � is the torque which is generated to turn the vehicle around the 

axis and it is used as the vehicle control input. It is noted that, the actuator bandwidth is often much larger than that of the 

closed-loop system, thus, according to the recent literature [1], [13], [15], its dynamics are neglected in the controller design. 

For the system in Eqs. (1) and (2) a linear approximation of the lateral forces has been adopted, thus ���  and ���  are expressed in 

accordance with [13], [14] as:  

��� = �����, 
(3) 

��� = �����, 
(4) 

where ���  and ���  are the cornering stiffness of the front and rear axles, respectively, while �� and ��	represent the slip angles of 

front and rear axles, respectively. Moreover, �� and ��	can be computed as: 

�� = � − 
 − ���� !"�#$ ≈ � − 
 − !"�#$ , (5) 

�� = −
 + ���� ��
�� ≈ −
 + ��
�� , (6) 

where the approximation in Eqs. (5) and (6) have been obtained by assuming small slip angles.  Considering Eqs. (1) to (6), the 

state-space formulation of the vehicle model can be expressed as: 

&� = '& + 	(� + )�, (7) 

where � is the control yaw moment, & = *
 
+, is the system state, while the system matrices are: 
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' =
-.
..
/ −��� + ������ ����� − ��������0 − 1
����� − ������� −��0��� + ��0������� 23

33
4 ,					( = 501��7 ,							) =

-.
..
/ ������������� 23

33
4. (8) 

The reference yaw rate is calculated as the yaw rate of the passive bicycle model in steady-state conditions which provides 

consistently linear reference vehicle behaviour. After algebraic manipulations, the steady-state yaw rate, 
99, is:  


99 = ���(1 + ;<9��0) �, (9) 

where L is the wheelbase and ;<9 is the understeering gradient or stability factor [5]:  

;<9 = �	����� − �������0������ . (10) 

Equation (9) shows that in steady-state conditions the yaw rate is a linear function of the steering angle. However, in practice the 

maximum achievable yaw rate is limited by the tyre-road friction coefficient. By imposing steady-state cornering conditions and 

re-arranging Eq. (1), the maximum absolute value of the reference yaw rate is given by 
>?#$   [1], where @ is the tyre-road friction 

coefficient and A is the gravity. Considering this bound, the steady-state reference yaw rate, 
�, is: 


� = �B� C|
99|, E @A�� F GA�(�), (11) 

where E is a constant coefficient that can be used as a safety factor [13]. In practice, significant inaccuracy in the @-estimation can 

occur and therefore a value of E < 1 ensures that the reference yaw rate is within the achievable limits. Usually, the value of the 

parameter E  is chosen as a trade-off between cornering performance and safety. The value of the parameter E  is chosen in the 

range of 0.8 to 0.95 which provides a satisfactory cornering performance without being too conservative. Hence, the absolute value 

of 
� coincides with the smaller value between |
99| and E >?#$ . The sign of the steering angle, i.e., GA�(�), is introduced in Eq. (11) 

to obtain the correct direction of the reference yaw rate. Since the reference signal (11) may not be smooth, a modified yaw rate 

reference, denoted as 
�I�, is considered by applying a first order lag filter to 
� [13]. 


�I� = 1,1 + J�G 
� , (12) 

with J� being the time constant of the filter. 

In this paper, the reference sideslip angle is set to be zero to ensure vehicle stability in any condition. Alternatively, the sideslip 

reference can be calculated with the same method proposed for the reference yaw rate, i.e., based on the steady-state lateral 

response of the bicycle vehicle model. 
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III. PROBLEM DEFINITION AND CONTROL FORMULATION  

In this section, the problem of controlling the vehicle yaw rate is reformulated as a model reference problem and a robust LQ-based 

algorithm is proposed to impose the reference dynamics to system (7) despite possible parameter uncertainties and disturbances. As 

previously mentioned, the resulting control action is composed of three terms: (i) a feedback action, �!K, whose gain is derived by 

solving the algebraic Riccati equation; (ii) a feedforward action, �LL , based on the reference trajectory; and (iii) an extra feedback 

term, �MN, to improve closed-loop robustness to disturbances.   

The main parameter uncertainty in system (7) is the tyre cornering stiffness. In general, the variations of cornering stiffness are 

caused by tyre nonlinearities with slip angle, camber angle and vertical load [26]. To consider such uncertainties, the front and rear 

cornering stiffness are modelled as 

��� = ���O + ∆��� , 
(13) 

��� = ���O + ∆��� , 
(14) 

with ���Oand ���O  being the nominal front and rear cornering stiffness values, respectively, while ∆��� and ∆��� represent the 

uncertain terms, which are bounded. Consequently, system (7) can be rewritten as: 

&� = ('Q(��) + R')& + 	(� + ()Q + R))� 
(15) 

where  'Q and )Q are the nominal matrices of the system, with 'Q(��) being defined as 

'Q(��) =
-.
..
/ −���O + ���O���

���O�� − ���O�����0 − 1
�����O − �����O�� −��0���O + ��0���O���� 23

33
4, (16) 

where R' = ' − 'Q and R) = ) − )Q are the parameter uncertainties. 

Notice that the dynamic matrix 'Q and )Q depend on the longitudinal velocity �� where such dependency makes the plant model a 

parameter varying system [23]. 

The control objective is to impose the reference trajectories, &S(�) = *

TU(�), 

TU(�)+V, with 
�I�(�) = 0,	to the state of system 

(15). The reference dynamics are: 

&�W = 'W&W +	)W�, (17) 

where the system matrices are  

'W = 50 0
0 − 1J�7,				)W = 5 0XJ�7, 

(18) 
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with X = �B� YZ #$!( [\]^#$_)Z , E >?#$|`|a. 
In this paper, the model reference control problem is solved by selecting � as 

�(�; ��) = �LL(�; ��) + �!K(�; ��) + �MN(�; ��), (19) 

where 

�LL(�; ��) = −�� c 1J� 
�I� −
��0���O + ��0���O���� 
�I� − dXJ� −

�����O�� e �f, (20) 

�!K(�; ��) = g!K(��)T(�) = h� (,i(��)T(�), (21) 

�MN(�; ��) = gjMN(��)T(�) = ;MN(,i(��)T(�), (22) 

where T(�) is the tracking error defined as T(�) = &W(�) − &(�), h ∈ ℝ  and ;MN ∈ ℝ are positive constants, and i(��) ∈ ℝ0×0  is 

the solution of the algebraic Riccati equation  

'Q,(��)i(��) + i(��)'Q(��) + n − i(��)(h� (,i(��) = 0, (23) 

which is solved as function of the longitudinal vehicle speed �� ∈ *��opq , 	��o��+, with ��opq and  ��o�� being the minimum and 

the maximum longitudinal velocities of the vehicle, respectively, and  n ∈ ℝ0×0  is a symmetric strictly positive definite matrix. 

Besides, it is assumed that there exists rs ∈ (0, 1) such that the following condition holds 

−	1 − rs�n − i(h� (,i + tit�� �� ≤ 0	,			∀	�� 	 ∈ 	 *��opq , 	��o��+, (24) 

where �� is the longitudinal vehicle acceleration and ��opq and 	��o��  are the minimum and maximum possible longitudinal 

accelerations such that (24) is verified. 

Figure 2 shows a schematic representation of the control action (19)-(23) together with the velocity based gain scheduling 

mechanism for the online tuning of the control gains (i.e. g!K(��) and gjMN(��)) and the plant (i.e. the vehicle and the low level 

controllers for imposing the required control yaw moment [5]). 

 

Figure 2. Robust Linear Quadratic Regulator control scheme. 
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Remarks 

1) As indicated in Eqs. (20), (21) and (22), the control gains (g!K	and	gjMN) are chosen as a function of the longitudinal velocity. 

Hence, the proposed control algorithm is a gain-scheduling strategy. 

2) The feedforward control action, i.e.,  �LL  in Eq. (20), is that proposed in [13] and it is used to compensate the mismatch 

between the reference matrices ('W, )W) with respect to the nominal matrices  ('Q, )Q) . It is noted that, if ��(�) is known a 

priori (i.e. before the manoeuvre starts) for the entire manoeuvre and if the linear time varying system with dynamic matrix 

'Q(��(�)) and input matrix )Q(��(�)) provides desirable dynamics for the reference yaw rate (e.g. absence of overshoots and a 

satisfactory settling time), it can be used as reference model in Eq. (17), thus simplifying the control design as �LL is set to zero. 

3) The feedback control action �!K  is the solution of the optimal LQ-problem with constant longitudinal vehicle speed and  

infinite control horizon [16], when the cost function to be minimized is  

4) Since, the matrix −	1 − rs�n − i(h� (,i is strictly negative, it is not restrictive to assume that there exists a range of 

longitudinal accelerations so that the term  
z{z#$ ��	 which is generated by the time-varying nature of the parameter ��, does not 

make the left-hand side of (24) positive.  

5) As shown in the next section, the control gain ;MN  in (22) is used to confine the closed-loop tracking error within a 

neighbourhood of the origin when the time goes to infinity. Specifically, it is proven that the closed-loop system is globally 

uniformly ultimately bounded and the ultimate bound is inversely proportional to the root-square of ;MN. Furthermore, it is 

shown that the design of ;MN to provide a given ultimate bound can be carried out systematically and for any a priory choose of 

the LQ weights, i.e. matrices n and h in (25). 

IV. ANALYSIS OF THE CLOSED-LOOP SYSTEM DYNAMICS  

This section studies the closed-loop error dynamics resulted from applying control action (19) into system (15). Due to existence of 

persistent disturbances acting on the closed-loop plant, the convergence to zero of the tracking error cannot be always assured. 

Hence, the focus of this paper is to compute an upper bound of the tracking error. Specifically, in the following, we prove that if the 

control input	� is chosen as in Eq. (19) , then the tracking error, T ≜ &W − &, is  globally uniformly ultimately bounded [22], i.e., 

there exists a time interval V (dependent on T(�Q)) and  a KL-class function }:ℝ[ × ℝ[ → ℝ[ such that  

‖T(�)‖ ≤ }(‖T(�Q)‖, � − �Q)					∀	� ∈ *�Q, �Q + V), (26) 

and  

� = 12� *T,nT + �,h�+S�.�
�O  (25) 
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‖T(�)‖ ≤ �			∀	� ∈ *	�Q + V, +	∞). (27) 

The positive constant ρ is the ultimate bound for the closed-loop error dynamics, and it is computed as 

� = � �0� (1 − r�)rs�opq(n) So���;MN , (28) 

where  

� = inf#$∈*#$���,	#$�"$+��opq(i(��))�	    and     �0 =	 sup#$∈*#$���,	#$�"$+��o��(i(��))�	, (29) 

with �opq(Υ) and �o��(Υ) being the minimum and the maximum eigenvalues of a generic positive definite matrix Υ, respectively, 

while r� is a constant chosen in the open interval (0, 1), and So�� ∈ ℝ[ is an upper bound of the norm of the disturbance acting on 

the closed-loop dynamics. 

The analytical proof of (26) and (27) is based on the following steps: (a) derivation of the tracking error dynamics; (b) selection of 

a Lyapunov function  �(T) such that  � (||T||) ≤ �(T) ≤ �0(||T||), with � (⋅) and �0(⋅) being g� functions; and (c) proving that 

the derivative of �(T) satisfies the condition  �� (T) ≤ −�(T)  ∀	T ∈ ℝ0: ||T|| ≥ �,  where �:ℝ0 → ℝ[ is a positive function and 

� is strictly positive constant. Then the global uniform ultimate boundedness of T follows from Theorem 1 (see Appendix A), 

which also allows to compute the ultimate bound as ρ = 	� � 	�0(�)�.  
a) Tracking error dynamics: 

Considering Eqs. (15) and (17), the closed-loop tracking error is given by  

T� = &�W − &� = 	 'QT − (� + ('W − 'Q)&W + ()W − )Q)� − R'& − R)� 
(30) 

Notice that in Eq. (30) the dependency with respect to the time and the longitudinal velocity is omitted for the sake of readability. 

By applying the control action (19), the feedforward control action �LL 	 compensates the mismatch on the second row between the 

reference matrices ('W , )W) with respect to the nominal matrices ('Q, )Q). Hence, the closed-loop dynamics can be rewritten as   

T� = 'QT + (�� + �(�) (31) 

where the equivalent control ��  and the disturbance � are defined as 

�� = −�!K − �MN 
(32) 

and 

�(�) = ( ( ,('W −'Q)&W(�) + ( ( ,()W − )Q)�(�) − R'&(�) − R)�(�)  and   ( , =	 *1 0+. (33) 
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As a technical assumption, the disturbance is assumed to be bounded such that	�(�) = (S(�), with |S(�)| < So�� , where So�� is 

a known upper bound. Consequently, the closed loop system dynamics is given by   

T� = 'QT + ((�� + S(�)) (34) 

b) Selection of the Lyapunov Function: 

As Lyapunov function for system (34), the following quadratic form is chosen  

�(T) = T,	i(��)T. (35) 

where i(��) is the solution of the Riccati equation (23).  

From Eq. (35), it can be proved that  

� (||T||) ≤ �(T) ≤ �0(||T||) (36) 

with  � 	and �0 being  g� functions defined as 

� (||T||) = � ||T||0	  and  �0(||T||) = �0||T||0 (37) 

where  �  and �0 are those given in Eq. (29).  

c) Derivative of the Lyapunov Function and its upper bound: 

The derivative of the Lyapunov function (35) can be computed as  

�� = T�,iT + T,iT� + T,i�T 
(38) 

Considering Eqs. (33) and (34), equality (38) can be rewritten as  

�� = T,('Q,i + i'Q − i(h� (,i)T−T,i(h� (,iT + ���T, tit�� T + 2T,i((−;MN(,iT + S) = 

= T,('Q,i + i'Q − i(h� (,i + n)T + T,  −	1 − rs�n − i(h� (, + z{z#$ ��¡ T − rsT,nT +
+2T,i((−;MN(,iT + S), 

 

(39) 

where the second equality has been obtained by adding and subtracting to the first equality the term T, 	nT, 	and rewriting such term 

as  T, 	nT − T, 	nT = 	 T, 	nT − 	1 − rs�n − rsn.  

By using (23) and (24), the derivative of the Lypunov function can be upper-bounded as	
�� ≤ −rsT,nT + 2T,i((−;MN(,iT + S) ≤ 	−rs�opq(n)‖T‖0 − ;MN‖(,iT‖0 − ;MN‖(,iT‖0 + 2T,i(S. (40) 

Since the following quadratic expansion is valid,  
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¢�;MN	T,i( − S�;MN	£
0 = ;MN‖(,iT‖0 − 2T,i(S + S0;MN 	 (41) 

It is possible to complete the square in Eq. (40) to get  

�� ≤ 	−rs�opq(n)‖T‖0 − ;MN‖(,iT‖0 − ;MN‖(,iT‖0 + 2T,i(S = 

=−rs�opq(n)‖T‖0 − ;MN‖(,iT‖0 − d�;MN 	T,i( − W�\¤¥	e0 + W_\¤¥	 ≤ 

≤ −rs�opq(n)‖T‖0 + So��0;MN	 = −Φ§(T) 
(42) 

with  

Φ§(T) = ϑ ‖T‖0 − ϑ0 ,       ϑ = rs�opq(n),    
ϑ0 = So��0;MN	  

(43) 

 

which can be rewritten, for a generic r� ∈ (0, 1), as 

Φ§(T) = Φ(T) + (1 − r�)ϑ ‖T‖0 − ϑ0 ,       

 Φ(T) = r�ϑ ‖T‖0, 

(44) 

with Φ(T) being a positive function of T. 

When ‖T‖ ≥ �, with 

� = � ϑ0(1 − r�)ϑ = 1©(1 − r�)rs�opq(n)
So���;MN (45) 

then (1 − r�)ϑ ||T||0 − ϑ0 ≥ 0, and therefore Φ§(T) ≥ Φ(T), or equivalently −Φ§(T) ≤ −Φ(T). Hence, the derivative of the 

Lyapunov function in (42)  can be upper-bounded as,  

�� (T) ≤ 	−Φ(T), ∀	‖T‖ ≥ �. (46) 

As confirmed in Eqs. (36) and (46), all the hypothesis required by Theorem 1 in Appendix A are fulfilled and therefore the tracking 

error system is globally uniformly ultimately bounded and the ultimate bound is computed as given in Eq. (28): 

ρ = � � 	�0(�)� = ��0� 	� = ��0� � ϑ0(1 − r�))ϑ = � �0� (1 − r�)rs�opq(n) So���;MN 
(47) 

Remarks 

1) The ultimate bound for the closed-loop dynamics in Eq. (28) is inversely proportional to the root-square of ;MN. For this 

reason, the control action (22) can be used to modulate the residual tracking error when the time goes to infinity. Hence, the 
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proposed extra control action provides robustness to the closed-loop system dynamics with respect to unmodelled dynamics 

and parameter uncertainties. It is shown in Section V (by numerical analysis) and in Section VI  (by experiments) that this term 

plays a key role to reduce the residual tracking error of the gain-scheduling LQ strategy proposed in [13].   

2) The tuning of the gain ;MN can be done by using Eq. (47) to provide an ultimate bound below a given threshold, say �ªpo.	 It is 

noted that, for any choice of the LQ weights that satisfy (24) it is possible to find ;MN so that � < �ªpo. 
3) The control action �MN 	linearly scales with ;MN. Consequently, according to [27], large ;MNvalues can negatively affect the 

closed-loop response during transients in terms of larger overshoots with respect to the reference trajectory and/or larger control 

actions. Hence, a trade-off between the residual error (28) and transient closed-loop dynamics should be adopted for the tuning 

of the  ;MN  gain. 

4) Conditions (23)-(24) has been used in the analysis of closed-loop dynamics to compute an upper bound of the derivative of the 

Lyapunov function as shown Eq. (40). This upper bound is valid despite possible variations of the parameter-dependent matrix 

i(��) which are generated the time varying nature of the vehicle speed and the gain-scheduling mechanism for the online 

adaptation the feedback gains (21) and (22). It is noted that, if ��(�) is known a priori (i.e. before the manoeuvre starts and for 

the entire manoeuvre), than it is possible to replace (23) with a Differential Riccati Equation (DRE) which has to be solved 

backward [16]. By using the DRE the time-varying nature of the matrix i is considered explicitly considered, thus condition 

(24) can be removed. However, the assumption of having the preliminary knowledge of  ��(�) is restrictive as the longitudinal 

speed is decided by the driver. On the contrary, condition (24) can be easily verified a priori and, as shown in Section V, it is not 

restrictive as it might appear at first because it is always verified for common driving conditions (i.e. for a large range of 

longitudinal vehicle velocity and accelerations). 

5) Assuming that the control input is bounded, i.e., � ∈ *�opq, �o��+ is imposed for example by the actuation system, and that 

R' does not alter the asymptotic stability of the open-loop system (7), then the boundedness of the disturbance � in Eq. (31) 

can be guaranteed. Indeed, under these conditions, & remains bounded, as � and �	in Eq. (7) are bounded and the system is 

asymptotically stable, while the &W is bounded as its first entry is fixed to zero and the second entry is the output of an 

asymptotically stable first order system. Notice that a similar analysis for assuring the boundedness of the disturbance acting on 

the vehicle dynamics has been carried out in [15]. 

6) Matching conditions of the form �(�) = (S(�), which imply that the � is in the direction of the input matrix ( in (8),are often 

assumed in order to solve model reference control problems in presence of disturbances [28]–[30]. In Appendix B, it is shown 

that the direction of the disturbance � in (31) depends on a set of positive dimensionless functions, named as disturbance 

functions. These disturbance functions are denoted as S«¬ ,	S«� , S«` and  S«`o and they are expressed as 
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S«¬ = ­¬�®� ,			S«� = ­��®� ,			S«` =	S«`s + S«`o ,			 (48) 

and 

S«`s = ­`s�®� ,			S«`o = ­`o�®� ¯¢�«��O�°� − �«��O�°��±�®�0 − 1£ 1�°	1/�®�0 + 	;°<9� − �«��O¯	, (49) 

where �®�, �«��O , �«��O ,	�°�, �°�, �±  and 	;°<9 are the corresponding dimensionless values of quantities defined in Section II, and 

­¬, ­�, ­`s and ­`o are dimensionless coefficients (see Appendix B for further details). In Appendix B, it is shown that the 

disturbance is approximately in the direction of the input matrix when S«¬ ≪ 1, S«� ≪ 1, and S«` ≪ 1. Moreover it is shown that 

the magnitude of S«`o  is a measurement of the mismatch between the system (7) with nominal parameters and the reference 

model (17) that cannot be compensated by the feed-forward control action (20), thus, when the condition S«`o ≪ 1 holds then 

such mismatch can be neglected. Finally, it is remarked that, the disturbance functions scales as the inverse of the dimensionless 

longitudinal vehicle speed �®�. In Section V the disturbance functions in Eqs. (48) and (49)  are studied and it is numerically 

showed that S«¬ ≪ 1, S«� ≪ 1, and S«` ≪ 1 for all the simulated maneuvers.  

A. Analytical comparison with the gain-scheduling LQR 

Under the same assumptions made in Section III, this subsection analyses the closed-loop tracking error dynamics, when �MN = 0 

is applied to system (15). In other words, a control law with only the gain-scheduling LQR control action and the feedforward term 

is considered. The aim of this analysis is twofold, (i) to study from an analytical viewpoint how the control action �MN in Eq. (22) 

modifies the closed-loop system dynamics, and (ii) to find for what values of the gain ;MN, the RLQR algorithm provides better 

performance with respect to the LQR strategy in terms of residual tracking error. Consequently, an analytical rule for the tuning of 

;MN is provided. This analysis is performed as follow. First it is proven that when �MN = 0, the tracking error is still globally 

uniformly ultimately bounded. Then the ultimate bound in this condition, denoted as �!K, is computed and compared to that 

provided by the RLQR, i.e., �  in Eq. (28). Finally, values of ;MN  such that � < �!K  are computed. Notice that this set of 

;MN-values are those that allow improving the ultimate bound of the closed-loop system, and therefore, they can be used by 

practitioners for the design of �MN	(see Eq. (22)).  

To prove the global uniform ultimate boundedness when �MN = 0, the same steps in the previous section can be followed. Indeed, 

the tracking error dynamics are still described as in Eq. (31) with the only exception �� = −�!K. By selecting the Lyapunov 

function as in Eq. (35), inequalities (36) are still fulfilled. On the other hand, the derivative of the Lyapunov function computed 

along the solution of system (31) can be upper-bounded as follows:    

�� ≤ 	−rs�opq(n)‖T‖0 + 2T,i(S ≤ −rs�opq(n)‖T‖0 + 2‖T‖´o��So�� = −Φ§!K(T) (50) 
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with  

´o�� = sup#$∈*#$���,	#$�"$+�‖i(��)(‖�, (51) 

and  

Φ§!K(T) = Φ!K(T) + (1 − r�)rs�opq(n)‖T‖0 − 2‖T‖´o��So�� 
(52) 

Φ!K(T) = r�rs�opq(n)‖T‖0,				r� ∈ (0, 1).	 (53) 

When ‖T‖ ≥ �!K, with  

�!K = 0s�"$W�"$( �µ¶)µ·¸���(K), (54) 

then (1 − r�)rs�opq(n)‖T‖0 − 2‖T‖´o��So�� ≥ 0, and therefore −Φ§!K(T) ≤ −Φ!K(T), which implies   

�� (T) ≤ 	−Φ(T), 		∀	‖T‖ ≥ �!K, 
(55) 

As confirmed in Eqs. (36) and (55), all the hypothesis required by Theorem 1 in Appendix A are fulfilled and therefore the tracking 

error system is globally uniformly ultimately bounded and the ultimate bound is  

ρ!K = � �  �0	�!K�¡ = ©¸_¸¹ 	 0s�"$( �µ¶)µ·¸���(K) So��. 
(56) 

From the analysis, above, it is possible to point out that the control action �MN in Eq. (22) can be used: 

1) To enlarge the region of the state space where the closed-loop error trajectories are attracted toward the origin. Precisely, by 

choosing ;MN large enough, it is possible to have � in Eq. (45) smaller than �!K in Eq. (54). Consequently, the Lyapunov 

derivative is negative definite in a larger set of state space when RLQR is used. 

2) To reduce the ultimate bound of the closed-loop system, or equivalently the residual tracking error.  Indeed, by choosing ;MN 

large enough, ρ in Eq. (47) can be made smaller than ρ!K in Eq. (56).  Therefore, it is possible to prove that,  

ρ ≤ ρ!K ⇔	;MN ≥	;MNªpo ≜ 14 	1 − r��rs�opq(n)´o��0 	 (57) 

 

Remarks 

1) The proof of the globally uniformly ultimately boundedness in the case of �MN = 0 and the computation of the ultimate bound 

in Eq. (56) improve the result in [13] for the case vehicle dynamics are affected by disturbances and parameter uncertainties.  

2) Compared to the gain-scheduling LQR, the RLQR introduces an additional degree-of-freedom, i.e., ;MN, which is shown to be 

fundamental to modulate the residual tracking error. In addition, Eq. (57) provides a tuning method for ;MN to reduce the 
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residual tracking error when the RLQR algorithm replaces the LQR strategy. This tracking error reduction will be extensively 

confirmed numerically and experimentally in Sections V and VI, respectively. 

3) Despite the LQ control action makes the closed-loop system globally uniformly ultimately bound, the tuning of the LQ action to 

provide an ultimate bound below a given threshold, say �ªpo, might not be trivial. The terms  ´o��, � , and �0 in Eq. (56) 

depend on the LQ weights nonlinearly.  Hence, LQ weighs so that �!K < �ªpo might not exist, thus time-consuming trial and 

error numerical procedures should be adopted to provide an adequate closed-loop ultimate bound. 

V. NUMERICAL RESULTS 

In this section, numerical results are analysed for a set of representative case studies to show the effectiveness of the proposed 

control method, by imposing required yaw rete references despite disturbances and parameter uncertainty. In addition, in order to 

confirm the superior performance achieved via the RLQR in terms of vehicle stability and handling, the closed-loop results are 

compared to those provided by a passive vehicle and an LQR controller with variable feedforward and feedback control gains 

proposed in [13] but not equipped with the additional control action (22) which characterizes the RLQR algorithm. To this aim, a 

quantitative comparison, by means of performance indexes, is carried out.   

The numerical analysis is performed by using both MATLAB and IPG CarMaker integrated in one co-simulation tool. In IPG 

CarMaker an accurate model of an electric Range Rover Evoque with individually controlled motors on front and rear axles has 

been implemented. To ensure the validity of the results, the vehicle model also represents the characteristics of the vehicle used for 

experiments (see Section VI). Moreover, in the high-level control, the yaw rate feedback information is measured from IPG 

CarMaker, which mimics the yaw rate sensor in practice. The entire control system is instead developed in Matlab/Simulink. The 

middle level controller algorithm can be found in previous research [3].  

 

 

Figure 3. ��� as function of ��� during a ramp steer (continuous line) and a step steer (dashed line), and selected nominal values (Point 1) 
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Figure 3 represents the variations of the cornering stiffness during a ramp steer test and a step steer test. The nominal values for  

���O  and ���O  are selected such that they are within the region limited by both manoeuvres, i.e., Point 1 in Figure 3. It is noted that 

the nominal values of the cornering stiffness correspond to the actual ones during manoeuvres requiring large lateral accelerations, 

thus reducing the magnitude of the disturbance due to parameter uncertainties during these more dangerous driving conditions. 

These two values were obtained through simulations with the IPG CarMaker model of the case study vehicle, including a Magic 

Formula tyre model with variable relaxation.  

For control validation, two scenarios are considered where they are denoted as Test 1 and Test 2, respectively. For Test 1 the 

characteristics of cornering stiffness shown in Table 1 are used in IPG CarMaker and for the control design. Instead, in the case of 

Test 2, to further test the robustness of different control methods with respect to more severe parameter mismatches, the tyre model 

is changed in IPG CarMaker while the cornering stiffness values used for the control design are still those in Table 1.  

TABLE 1 - VEHICLE PARAMETERS 

Parameter Value Description �� 1.36 m Front distance from CG �� 1.30 m Rear distance from CG ���O 1.4∙105 N/rad Front cornering stiffness ���O 1.6∙105 N/rad Rear cornering stiffness �� 2761 kgm2 Yaw moment of inertia � 2025 kg Vehicle mass 

 

For each Test, three manoeuvres are carried out, namely: (i) sine-with-dwell, (ii) ramp steer, and (iii) step steer. The tracking 

performance provided by controllers are compared in terms of the resulting Root Mean Square Error (RMSE) value of the yaw rate 

during each manoeuvre, i.e.: 

RMSE = Á 1�� − �p �(
�I�(�) − 
(�))0�Â
��

S� (58) 

where �� and �p are the initial and final time instants of the steering input for the test, respectively. In addition, the control effort � 

is measured by computing the Integral of the Absolute value of the Control Action (IACA) during each manoeuvre as:  

IACA = Á 1�� − �p �|�(�)|�Â
��

S�. (59) 

Hence, RMSE and IACA represent the performance indexes to concisely evaluate quantitatively closed-loop performance. 

The weights for the LQ controller have been chosen as n = diag(1.5, 80) and h = 9 ∙ 10� Q. Figure 4 shows the entries of the 

matrix i(��)	 in (23) and those of the term (,i(��)	which is used for the computation of the feedback gain-scheduling LQ and 

robust control actions in (21) and (22), respectively. Furthermore, as (,i(��)	is bounded, the feedback control gains g!K(��) and 
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gjMN(��) are bounded and converge to constant values for longitudinal vehicle speed larger than 80 km/h. Notice that in Figure 4a  

the entry i0  is not depicted  as the solution of (23) is a symmetric matrix. 

  
(a) (b) 

Figure 4. a) Entries of the Riccati solution (23) and b) entries of the term (,i(��), with Ê  and Ê0, being the first and second entry of (,i(��), respectively. 

By defining Ë = −	1 − rs�n − i(��)(h� (,i(��) + �� z{z#$ (��), condition (24) is equivalent to require that the maximum 

eigenvalue of this matrix is negative
1
, i.e.  

�o��(Ë) ≤ 0 , ∀	�� 	 ∈ 	 *��opq , 	��o��+.   (60) 

It is noted that, as the ti/t�� is strictly positive definite for �� 	 ∈ 	 *0, 120+ km/h (see Figure 5, where the �opq(ti/t��) is 

depicted), then negative longitudinal vehicle accelerations cannot change the sign of Eq. (60). On the other hand, for each speed ��, 

there exists a maximum positive longitudinal vehicle acceleration �� that changes the sign of Eq. (60). However, for each velocity 

�� 	 ∈ 	 *0, 120+ km/h this critical acceleration is greater than 40 m/s
2
, thus condition (60) is not restrictive for common driving 

conditions as it might appear at first.  This is confirmed in Figure 6a where �o��(Ë) is depicted as a function of �� ∈ 	 *0, 120+ 
km/h and �� ∈ 	 *−20, 40+ m/s

2
. Furthermore, for any ��, �o��(Ë) increases for increasing positive ��-values while decreases for 

negative decreasing ��-values (see Figure 6b), thus confirming the aforementioned qualitative analysis.  

 
1 The matrixes ti/t�� and Ë are symmetric, thus their eigenvalues are real [31]. Consequently, the quantities ���&(Ë) and ��B�(ti/t�&) are well-posed.  
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Figure 5. Minimum eigenvalue of the matrix  ti/t��  as function of the vehicle speed. 

  
(a) (b) 

Figure 6. a) �o��(Ë) as function of the longitudinal vehicle speed, ��, and acceleration, ��, and b) planar representation of the function �o��(Ë(�� , ��)). 
 

A. Sine-with-Dwell 

It is obligatory that all commercial vehicles pass the sine with dwell test (FMVSS126) defined by the National Highway Traffic 

Safety Administration (NHTSA) in the United State to become road legal. For control validation, the sine with dwell test is used to 

verify the transient response of the vehicle. The manoeuvre consists of different stages with increasing steering wheel angle input. 

To validate the controller performance, only the most extreme manoeuvre is conducted since a vehicle passes all previous stages if 

the most extreme stage is passed. The simulation is set at �9Ì = 270 deg at �� = 80	km/h. The controller performance is measured 

through the maximum yaw rate at time 2.5s at which the yaw rate is required to be zero for the vehicle to pass the test. The yaw rate 

and sideslip responses of a passive vehicle, a vehicle controlled by LQR and a vehicle controlled by RLQR are plotted and 

compared in Figure 7a and Figure 7b. As the figures indicate, both LQR and RLQR demonstrate their capabilities to pass the test. 
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In Figure 7a, at time 0.8s, when the steering input returns to zero, the passive vehicle has lost its stability and failed the test. The 

RLQR controlled vehicle has followed the reference yaw rate closer with less overshoot compared to LQR controller.  

  
(a) (b) 

Figure 7. Sine-with-dwell test simulation results. a) yaw rate comparison, b) side slip angle comparison. 

Aa Figure 7b indicates, RLQR controller demonstrates a lower sideslip angle, which shows its capability to improve stability over 

the conventional LQR controller. 

The yaw rate and sideslip responses of Test 2 are shown in Figure 8a and Figure 8b. The RLQR-controlled vehicle passes the 

sine-with-dwell test, while the LQR-controlled vehicle fails the test. The passive vehicle loses its stability and fails the test. The 

LQR lost track of the yaw rate reference from the beginning, representing the lack of robustness of LQR controller against 

parameter uncertainties.  

  
(a) (b) 

Figure 8. Sine with dwell robustness test simulation results. a) yaw rate comparison, b) side slip angle comparison. 

Table 2 shows the objective performance indicators calculated by the data obtained through simulations for both test cases. For 

Test 1, the RMSE values for the LQR controlled vehicle is within 18% of the passive vehicle, which is considerably lower than the 

passive vehicle. For the vehicle equipped with the RLQR controller, the RMSE value is within 9% of the passive vehicle and 50% 

improvement compared to the LQR controlled vehicle. The IACA values show that the control effort of the RLQR is slightly 
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higher than the LQR controlled vehicle. The LQR controlled vehicle has reduced the peak yaw rate error by 57% compared with 

the passive vehicle, whereas the RLQR has reduced the yaw rate error by 76% compared with the passive vehicle, and 44% 

compared to the LQR controlled vehicle. For the robustness test, the RMSE values for the RLQR controlled vehicle achieves 50% 

reduction over the LQR controlled vehicle. The IACA values show that the control effort of the RLQR is lower than the LQR 

controlled vehicle by 38%.  

The LQR controlled vehicle has reduced the peak yaw rate error by 54% compared with the passive vehicle, whereas the RLQR has 

reduced the yaw rate error by 72% compared with the passive vehicle, and 38% compared to the LQR controlled vehicle. 

TABLE 2 - OBJECTIVE PERFORMANCE INDICATORS FOR THE SINE-WITH-DWELL TESTS WITH DIFFERENT TYRES 

 RMSE (rad/s) IACA (Nm) Peak Error (rad/s) 

 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Passive N/A N/A N/A N/A 1.264  1.42  

LQR 0.162  0.278  1361  2921  0.541  0.652  

RLQR 0.082  0.112  1505  1824  0.305  0.405  

 

B. Ramp Steer 

The ramp steer test is used to investigate the robustness against unmodelled dynamics and parameter uncertainties. The 

understeering characteristics of the controlled vehicles are also investigated. In this test, the vehicle steering increases at a rate of 

���9Ì = 10 deg/s starting at �9Ì = 0	deg at �� = 80 km/h. Figure 9a shows the yaw rate comparison between the passive vehicle, 

LQR controlled vehicle and the RLQR controlled vehicle with nominal tyres. The vehicle controlled by RLQR has improved the 

steady state error of the yaw rate to zero, which shows that the controller is more robust against unmodelled dynamics of the 

system. It also can be seen that the transient state response of the RLQR has been improved.  

  
(a) (b) 

Figure 9. Ramp steer test simulation results. a) yaw rate comparison, b) understeering characteristic comparison. 

The RLQR closely tracks the reference, a 10% improvement over the conventional LQR controller during its transient state. As 

shown in Figure 9b, both RLQR and LQR controllers have increased the linear section of the steering wheel angle against lateral 

acceleration from 8.5 m/s
2
. The RLQR has extended the maximum lateral acceleration to 8.8 m/s

2
. 
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Figure 10 illustrates the ramp steer robustness test results. Figure 10a shows the RLQR proves its robustness against parameter 

uncertainties, as it closely tracks the reference yaw rate with zero steady state error. LQR during the robustness test does not reduce 

the steady state error. During the transient state, the performance of both LQR and RLQR is close to that of a standard ramp steer 

test. RLQR demonstrates its capability to extend the maximum lateral acceleration from 8 m/s
2
 to 8.5 m/s

2
 of the passive vehicle. 

Table 3 illustrates the objective performance indicators for the simulation results. The RMSE value for the proposed RLQR 

controller is within 43% of the passive vehicle and 50% of the LQR controlled vehicle. During the robustness test the RLQR is 

within 73% of the passive vehicle and 58% of the LQR controlled vehicle. This RMSE values suggest that the RLQR has a much 

superior tracking performance and its robustness against parameter uncertainties. The IACA values show that the RLQR utilises 

more control effort within a reasonable range to achieve better tracking performance and robustness. The RLQR controller has 

reduced the steady state error to near zero this is 90% and 88% better than the passive vehicle and the LQR controlled vehicle 

respectively. During the robustness test the RLQR has improved steady state tracking by 94% and 89% compared with passive and 

LQR controlled vehicle respectively, which is a significant improvement over the passive vehicle and the LQR controlled vehicle.  

  
(a) (b) 

Figure 10. Ramp steer robustness test simulation results a) yaw rate comparison, b) understeering characteristic comparison. 

TABLE 3 - OBJECTIVE PERFORMANCE INDICATORS FOR RAMP STEER TESTS WITH DIFFERENT TYRES 

 RMSE (rad/s) IACA (Nm) Peak Error (rad/s) 

 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Passive 0.023  0.019  N/A N/A 0.011  0.031  

LQR 0.008  0.012  732  907  0.008  0.017  

RLQR 0.004  0.005  1051  1541  0.001  0.002  
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C. Step Steer 

The step steer test consists of a sharp steering with ��9Ì = 150	 deg/s at �� = 80	km/h, verifying the controller performance during 

transient and steady states. As Figure 11 indicates, the passive vehicle significantly overshot the reference yaw rate. The LQR 

controlled vehicle has reduced the overshoot level by 16% with a steady state error. On the other hand, the RLQR reduced the 

overshoot by 32% and reduced the steady state error to near zero. The RLQR also improves the stability of the vehicle, as 

demonstrated by the sideslip angle.  

Figure 11. Step steer test simulation results a) yaw rate comparison, b) understeering characteristic comparison 

Figure 12 shows test result of the robustness test. In Figure 12a, the passive vehicle overshoot the reference yaw rate by 75%, where 

the LQR’s performance degrades by 10% in terms of its peak overshoot. The RLQR demonstrated a similar result to the previous 

test during both transient and steady state periods. The sideslip angle of the RLQR controlled vehicle shows its robustness against 

parameter uncertainties. On the other hand, the LQR controlled vehicle shows 25% increase in sideslip angle at 0.6s. 

Table 4 shows the objective performance indicators results for the tests. The RMSE of the RLQR controlled vehicle is within only 

15% of the passive vehicle, whereas the LQR controlled vehicle is within 46%. This RMSE suggest that the RLQR has improved 

the tracking performance significantly over the LQR controller with 30% more control IACA value. These indicators also show 

that the peak yaw rate error for LQR and RLQR has been reduced by 38% and 72% respectively. For the robustness tests, the LQR 

is within 32% of the passive vehicle and the RLQR is within 13%. RLQR again shows significant improvement in tracking the 

reference yaw rate under both circumstances.  

  
(a) (b) 
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Figure 12. Step steer robustness test simulation results. a) yaw rate comparison, b) understeering characteristic comparison 
 

TABLE 4 - OBJECTIVE PERFORMANCE INDICATORS FOR STEP STEER TESTS WITH DIFFERENT TYRES 

 RMSE (rad/s) IACA (Nm) Peak Error (rad/s) 

 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 

Passive 0.052  0.076  N/A N/A 0.234  0.295  

LQR 0.024  0.025  102  105  0.145  0.182  

RLQR 0.008  0.010  131  211  0.064  0.078  

 

D. Numerical analysis of the disturbances 

As an additional analysis of the closed-loop system dynamics, in this section the direction of the disturbance (33) for all the 

manoeuvres (i.e. sine with dwell, ramp steer and step steer) is numerically analysed through the use of the dimensionless 

disturbance functions	S«¬ , S«� , S«`  and S«`o  defined in Appendix B. As shown in Appendix B, the disturbance term (33) is a linear 

combination of three dimensionless disturbance vectors, i.e. �§¬, �§� and �§` where the scalar coefficients of the linear combination 

are the dimensionless sideslip angle, yaw rate and steer angle, respectively. Consequently, if all the disturbance vectors are in the 

direction of the input matrix ( in (8), then also the disturbance (33) is in that direction. In Appendix B is shown that a disturbance 

vector �§Î is approximately in the direction of the input matrix if the corresponding disturbance function is such that  S«Î ≪ 1, 

Ï ∈ �
, 
, �� as this function is the ratio between the components of  �§Î orthogonal and parallel to the (-matrix. Moreover, in 

Appendix B it is also shown that the magnitude of S«`o  is a measurement of the mismatch between the system (7) with nominal 

parameters and the reference model (17) that cannot be compensated by the feed-forward control action (20), thus when S«`o ≪ 1 

such mismatch can be neglected.  

Table 5 shows for all the maneuvers examined in the previous sections three statistic indices (i.e. the mean value, the variance and 

the maximum value) for the disturbance functions. It is noted that the mean of the disturbance functions range from 0.009 to 

0.0787, thus the component of the disturbance vectors parallel to the direction of the input matrix are, on the average, at least one 

  
(a) (b) 
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order of magnitude larger than the corresponding orthogonal component. Furthermore, also the maximum value for each 

disturbance function is smaller than one and never exceeds 0.15.  

TABLE 5 – STATISTICS OF THE DISTURBANCE FUNCTIONS 

 S«¬ S«� S«` S«`o 

 Mean Variance Maximum Mean Variance Maximum Mean Variance Maximum Mean Variance Maximum 

Step Steer 0.0412 0.0003     0.0616 0.0149 0.0005    0.1310 0.0207 0.0007    0.1354 0.0198 0.0007    0.1346 

Ramp Steer 0.0565 0.0012     0.1130 0.0220 0.0014 0.1366 0.0422 0.0017    0.1339 0.0414 0.0017 0.1331 

Sin-with-Dwell 0.0787 0.0019     0.1450 0.0090 0.0002    0.1316 0.0168 0.0004    0.1355 0.0159 0.0004    0.1347 

 

As the variance of the disturbance functions are small and their mean values never exceed 0.1, it is expected that most of the time 

the disturbance functions are below such a threshold. This is well confirmed by Table 6 which shows the percentage of the time the 

disturbance functions are below 0.1 with respect to the duration of the corresponding maneuver (i.e. ∆V°Î(%) = 100∆VÎ/	V,  where 

Ï ∈ �
, 
, �, �o�,  and with ∆VÎ  being the time interval where S«Î < 0.1	 and V is the duration of the manoeuvre). 

TABLE 6 – PERCENTAGE OF THE TIME WHERE THE DISTURBANCE FUNCTIONS ARE SMALLER THAN 0.1. 

 ∆V°¬(%) ∆V°�(%) ∆V°̀ (%) ∆V°̀ o(%) 

Step Steer 100 96.50 95.00 95.00 

Ramp Steer 90.00 90.78 84.11 84.27 

Sin-with-Dwell 68.05 98.60 98.09 98.09 

 

The numerical analysis summarised in Table 5 and Table 6 confirms that for all the simulated maneuvers the component of the 

disturbance vectors orthogonal with respect to the input matrix can be neglected with respect to the parallel component, thus the 

disturbance vector is approximately in the direction of the ( -matrix. Finally, for all the manoeuvres S«` ≈ S«`o   (see the 

corresponding performance indices Table 5 and Table 6). Consequently, the first row of  �§` is mainly due to the mismatch between 

the system (7) with nominal parameters and the reference model (17) that cannot be compensated by the feed-forward action (20) 

(see also Appendix B where the analytical expression of �§` is provided). However, as S«`o ≪ 1, such mismatch can be neglected.  

VI. EXPERIMENTAL RESULTS 

For experimental validation of the proposed RLQR controller, a prototype 2011 electric Range Rover Evoque with individually 

controlled motors on front and rear axles is used. The experimental tests were performed at the Lommel proving ground in Belgium 

under dry road surface conditions during summer, a schematic and an exterior of the test vehicle can be found in Figure 13.  
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Figure 13. Electric vehicles with individually controlled motors during an experimental test and a schematic of the vehicle layout. M1, M2, M3 and M4: electric 

motors; I1, I2, I3 and I4: inverters: SCB: Slip Control Boost unit (electro-hydraulic braking system). 

Skidpad test was conducted to validate the performance and robustness against unmodelled dynamics of the proposed controller. 

The skidpad test consists of the vehicle travel along a circular trajectory (30 m radius) at increasing speed up to �� = 80	km/h. The 

steering wheel angle � is progressively corrected by the test driver to follow the desired trajectory. This test validates the yaw rate 

tracking performance, robustness of the controller against unmodelled dynamics of the system and the understeering characteristic.  

Figure 14 shows the experimental yaw rate and the understeering characteristic of the vehicle. In Figure 14c, the proposed RLQR 

controller shows better tracking performance than the conventional LQR controller during the steady state. According to Figure 

14d, the passive vehicle can only achieve 7 degs2/m, whereas LQR achieves 6.6 deg.s2/m and RLQR achieves 6 degs2/m. Both 

controlled vehicles can achieve more lateral acceleration from a smaller steering input which means that the controlled vehicle is 

more responsive than the uncontrolled vehicle. The RLQR also extends to the maximum lateral acceleration from 8.6 m/s2 

(passive), 8.7 m/s2 (LQR) to 9.2 m/s2, meaning that the vehicle handling performance is enhanced and safety margin during 

emergency transient manoeuvres is increased [8]. The RLQR also demonstrated its tracking performance and its capacity in 

reducing steady state error. Table 7 demonstrates the performance improvement of the RLQR controller. The LQR controlled 

vehicle’s yaw rate is within 44% of the passive vehicle, and the RLQR is within 66% of the passive vehicle.  

The RLQR reduces the 22% of the RMSE value compared to the conventional LQR controller, while using only 16% more control 

effort. The RLQR also demonstrates better robustness against modelled uncertainties by reducing the steady state error by 60%, 

where LQR only reduces 40%.  

  
(a) (b) 
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(c) (d) 

Figure 14. Experimental skidpad test result comparison. 

TABLE 7 - OBJECTIVE PERFORMANCE INDICATORS FOR SKIDPAD TESTS 

 RMSE IACA Peak Error 

Passive 0.068 rad/s N/A 0.089 rad/s 

LQR 0.038 rad/s 356 Nm 0.052 rad/s 

RLQR 0.023 rad/s 413 Nm 0.037 rad/s 

 

VII. CONCLUSION 

This paper proposed a robust LQR controller, named RLQR, with variable gains to enhance both stability and handling 

performance of vehicle dynamics under system uncertainties and time-varying vehicle longitudinal velocity. The controller is 

composed of a feedforward action, an LQR feedback control action and a robust control action. 

As the vehicle dynamics strongly depends on the vehicle longitudinal velocity, the control gains are scheduled as function of speed 

to adapt the close-loop system to speed variations. The RLQR augmented with the gain-scheduling mechanism was extensively 

validated numerically and experimentally. Both simulation and experimental results confirmed the superior performance of the 

RLQR with respect to a gain-scheduling LQR not equipped with the robust control action both in terms of reference yaw rate 

tracking and closed-loop robustness to parameter uncertainties, unmodelled dynamics, and disturbances. The effectiveness of the 

proposed control algorithm to tackle bounded disturbances was proven also analytically. Specifically, the analysis of the 

closed-loop system has shown that the RLQR guarantees that the tracking error is globally uniformly ultimately bounded. The 

bound is inversely proportional to the root-square of the gain of the additional control action. This explains the tracking error 

reduction when the RLQR algorithm replaces the LQR strategy. Future work will cover the experimental assessment of controller 

performance with different tyre characteristics, as well as low road friction conditions for additional robustness tests.  
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APPENDIX A 

This appendix provides details about the theorem used in Section IV to derive the upper-bound of the closed-loop tracking error 

which is available in the technical literature of nonlinear system dynamics [22]. This theorem can be applied to nonlinear 

time-varying systems of the form  

&� = U(�, &) (61) 

where & ∈ ℝq is the state of the system, U:ℝ × ℝq → ℝq is the system vector field, and � the dimension of the state-space, and it 

can be exploited to bound the system solutions when the time goes to infinity. Notice that, the notion used to formulate the next 

theorem are consistent with those used in [22]. 

Theorem 1 (Theorem 4.18 page 172 in [22]).  

Let � ⊂ ℝq be a domain that contains the origin and �: *0, +∞) × � → ℝq be a continuously differentiable function such that  

� (||&||) ≤ �(�, &) ≤ �0(||&||) (62) 

�� (�, &) = zÑz� + zÑz� U(�, &) ≤ 	−ÒÓ(&), 
∀	‖&‖ ≥ @ > 0. 

(63) 

∀	� ≥ �Q and  ∀	& ∈ � ⊂ ℝq, where �  and �0 are class g functions and ÒÓ(&) is a continuous positive definite function. Take 


 >0 such that (� ≜ �& ∈ ℝq: Õ|&|Õ ≤ 
� ⊂ � and suppose that  

@ < � � 	�0(
)�. (64) 

Then, there exists a class g� function 
:ℝ[ × ℝ[ → ℝ[ and for every initial state &(�Q), satisfying ‖&(�Q)‖ < � � 	�0(
)�, there 

is V ≥ 0 (dependent on &(�Q) and @) such that the solution of (61) satisfies  

‖&(�)‖ ≤ 
(‖&(�Q)‖, � − �Q)					∀	� ∈ *�Q, �Q + V) (65) 

and 

‖&(�)‖ ≤ � � 	�0(@)�			∀	� ∈ *	�Q + V,+	∞). (66) 

Moreover, if � = ℝq and �  belongs to class g�, then (65) and (66) hold for any initial state &(�Q), with no restriction on how 

large @ is. The reader is referred to [22] for its proof. 

APPENDIX B 

This appendix is devoted to the computation of the disturbance functions discussed in Section IV and their use to determine when 

the disturbance (33) is approximately in the direction of the input matrix ( in (8), i.e. when the component of the disturbance 
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orthogonal to ( can be neglected with respect to the component parallel to (.  As the components of the disturbance orthogonal 

and parallel to the input matrix have different unit of dimensions, the first step for computing the dominant disturbance component 

is to make the dynamics of the error system (31) dimensionless, thus allowing to compare quantitatively the entries of the 

disturbance term.  To this aim, the variables and parameters of system (31) are scaled as  

	�̃ = �/J,			�± = �/×,				�° = �/Ø, 		�«� = ��/B�, 	�°� = ��/Ø, 	�°� = ��/Ø, 	�®� = ��/��, 	;°<9 = ;<9��0, 

 	�«��O = ���O/�, 	�«��O = ���O/�, 	∆�«�� = ∆���/�, 	∆�«�� = ∆���/�, 

(67) 

where J*s+, ×*;A+, Ø*�+, ��*�/G+, B�*;A�0+, and �*Ù+ are the scaling factors with suitable dimensions such that the quantities in 

(67) are dimensionless. By choosing J  as the largest time constant of the matrix 'Q(��)	in (16) for a vehicle speed ranging for 

5km/h to 120km/h, Ø = � and ×=	�, as independent scaling factors and the remaining scaling factors as �� = Ø/J,  B� = ×Ø0, 

� = ×Ø/J0, the dimensionless tracking error system is  

ST̃S�̃ = '«QT̃ + (°�® + �§ 
(68) 

where T̃, �® , �§ are the dimensionless tracking error, control input and disturbance, respectively, while the dimensionless input 

matrix (°  and the dimensionless dynamic matrix '«Q have the same structure as those in Eqs. (8) and (16), respectively, i.e.,  

'«Q(�®�) = -..
./ −�«��O + �«��O�±�®� �«��O�°� − �«��O�°��±�®�0 − 1�°��«��O − �°��«��O�«� −�°�0�«��O + �°�0�«��O�«��®� 233

34 ,					(° = 501�«�7,						 (69) 

but with parameters in Eq.  (67). 

After simple algebraic manipulations, it is possible to prove that the disturbance depends linearly on the dimensionless sideslip 

angle 
°, dimensionless vehicle yaw rate 
̃, and dimensionless steering angle  �«,  and it can be expressed as  

�§ = �§¬
° + �§�
̃ + �§`�« (70) 

where the corresponding disturbance vectors �§¬, �§� and �§` are defined as 

�§¬ = -..
./ Δ�«�� + Δ�«���±�®��°�Δ�«�� − �°�Δ�«���«� 233

34 , �§� = -..
./�°�Δ�«�� − �°�Δ�«���±�®�0�°�0Δ�«�� + �°�0Δ�«���«��®� 233

34 		,					�§` = �§`s+�§`o,		 

�§`s = − -..
./ Δ�«���±�®��°�Δ�«���«� 233

34 ,				�§`o = −Û¢�«��O�°� − �«��O�°��±�®�0 − 1£ �®�	�°	1 + 	;°<9�®�0� + �«��O�±�®�0 Ü.	 
(71) 

It is noted that �§¬, �§�  and  �§`s are the disturbance vectors generated by parameter uncertainties. Furthermore, the term  �§`o  is the 

disturbance vector due to mismatch between the system (7) with nominal parameters and the reference model (17) that cannot be 
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compensated by the feed-forward control action (20) and it is obtained under the assumption that the reference yaw rate is that 

provided by Eq. (9) and the dynamics of the filter (12) can be neglected with respect to the dynamics of the steering angle.  

From (70), the disturbance �§	is approximately in the direction of the input matrix under the condition that each vector �§¬, �§� and 

�§` is approximately in the direction of the input matrix. From and engineering viewpoint, this condition can be guaranteed if for 

each disturbance vector the  ratio between its component orthogonal and parallel to the direction of the input matrix is much smaller 

than one.   

As the unit vectors orthogonal and parallel to the input matrix are ( , =	 *1 0+ and (0, =	 *0 1+, respectively, and considering 

that the component of a vector Ζ ∈ ℝ0 in the direction of (Î , Ï = 1,2 , is  (Î,Ζ, the aforementioned ratios are  

S«¬(�®�) ≜ Õ( ,�§¬ÕÕ(0,�§¬Õ = ­¬�®� , 			­¬ ≜ �«�ÕΔ�«�� + Δ�«��Õ�±Õ�°�Δ�«�� − �°�Δ�«��Õ 	 , S«�(�®�) ≜ Õ( ,�§�ÕÕ(0,�§¬Õ = ­��®� , 			­� ≜ �«�Õ�°�Δ�«�� − �°�Δ�«��Õ�±Õ�°�0Δ�«�� + �°�0Δ�«��Õ		 
S«`(�®�) ≥ Õ( ,�§`ÕÕ(0,�§`Õ ,			S«`(�®�) ≜ 	S«`s(�®�) + S«`o(�®�),				S«`s(�®�) ≜ ­`s�®� ,			­`s ≜ �«��±�°� 	, 

S«`o(�®�) ≜ ­`o�®� ¯¢�«��O�°� − �«��O�°��±�®�0 − 1£ 1�°	1/�®�0 + 	;°<9� − �«��O¯,				­`s ≜ �«��±�°� 			­`o ≜ �«� 

(72) 

where the dimensionless functions of the longitudinal speed, i.e. S«¬ ,  S«�, S«` ,  S«`s and  S«`o, are defined as disturbance functions. It 

is noted that from a geometric viewpoint the disturbance functions are also the absolute value of the sine of the angle between the 

corresponding disturbance vector and the input matrix.   

Eqs. (72) implies that (i)  the disturbance functions are inversely proportional to the vehicle longitudinal speed and (ii) the 

disturbance is in the direction of the input matrix with a good approximation when S«¬ ≪ 1, S«� ≪ 1, and S«` ≪ 1.  Furthermore, the 

disturbance function  S«`o  is equal to  Õ( ,�§`oÕ/Õ(0,�§`Õ, thus it is generated by the mismatch between the system (7) with nominal 

parameters and the reference model (17) that cannot be compensated by the feed-forward control action (20) proposed in [13]. 

When the condition S«`o ≪ 1 holds this mismatch does not affect the direction of �§, thus it can be neglected.  It is noted that the 

condition S«`o ≪ 1 can be used as an alternative condition to that proposed in [13] for enabling the approximation of the equivalent 

input matrix to the plant input matrix (i.e. the approximation (′ ≈ ( in [13],  page 1101, with (′  being the equivalent input matrix) 

in the case the reference sideslip angle is set to zero and parameter variations are considered. 

Notice that, in Section V it has been numerically proven that for all the simulated maneuvers the condition	S«¬ ≪ 1, S«� ≪ 1, and 

S«` ≪ 1 holds. 
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