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A Method for Detecting Abnormal Program
Behavior on Embedded Devices

Xiaojun Zhai, Kofi Appiah, Member, IEEE, Shoaib Ehsan, Gareth Howells, Huosheng Hu, Senior Member, IEEE,
Dongbing Gu, and Klaus D. McDonald-Maier, Senior Member, IEEE

Abstract— A potential threat to embedded systems is the
execution of unknown or malicious software capable of
triggering harmful system behavior, aimed at theft of sensitive
data or causing damage to the system. Commercial off-the-shelf
embedded devices, such as embedded medical equipment, are
more vulnerable as these type of products cannot be amended
conventionally or have limited resources to implement protec-
tion mechanisms. In this paper, we present a self-organizing
map (SOM)-based approach to enhance embedded system
security by detecting abnormal program behavior. The proposed
method extracts features derived from processor’s program
counter and cycles per instruction, and then utilises the features
to identify abnormal behavior using the SOM. Results achieved
in our experiment show that the proposed method can identify
unknown program behaviors not included in the training set with
over 98.4% accuracy.

Index Terms— Embedded system security, abnormal behaviour
detection, intrusion detection, self-organising map.

I. INTRODUCTION

THE widespread use of embedded systems today has
significantly changed the way we create, destroy, share,

process and manage information. For instance, an embedded
medical device often processes sensitive information or
performs critical functions for multiple patients. Consequently,
security of embedded systems is emerging as an important
concern in embedded system design [1], [2]. Although security
has been extensively explored in the context of general
purpose computing and communications systems, for example
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via cryptographic algorithms and security protocols [3],
such security solutions usually are often incompatible with
particular embedded architectures. The reason for this is, that
embedded architectures use custom firmware or operating
systems, and are normally specific to a certain function with
limited cost and resource, which makes e.g. conventional
antivirus (AV) programs difficult to implement. Generally, the
protection of embedded systems can be developed either at
hardware or/and at software level.

From hardware perspective, Physical Unclonable
Function (PUF) [4] or hardware intrinsic security [5],
has been proposed to secure embedded devices physically.
The manufacturing process variation is first used to identify
the integrated circuits, and then the identifications are
subsequently used for cryptography. There are also works
focusing on detecting software failure, tampering and
malicious codes in embedded architectures [1], [6]. The main
disadvantage of these approaches is that they require storing
sensitive data in the system as “valid” samples or templates.
For example, a basic-block control-flow graph (CFG) is
usually stored and used to exam the running program.

Embedded devices that are used in the medical and
industrial domains usually perform a small number of repet-
itive functions or operate in a simplified state space. The
execution space may include activities such as actuating
an electrical relay, controlling a pump, or collecting sensor
readings [7]. This intrinsic behaviour makes them unsuitable
for conventional AV and exposes deviation in normal program
execution as a means of detecting compromised activities.
There are currently alternative solutions that may secure
vulnerable embedded architectures [8], [9], where machine
learning and pattern recognition algorithms are employed
on human-machine interaction. ICMetrics (Integrated Circuit
metrics) [10], is one of the on-going research areas
into embedded security, which relies on the unique trace
generated on the embedded architecture by its regular user or
environment. The concept of ICMetrics is akin to biometrics
in humans. Fig. 1 exhibits a typical embedded system and
ICMetrics system.

The ICMetrics based system can offer multiple advantages
over traditional static AV approach like scanning executable,
instruction sequences and CFG of an application, which does
not need to store user data or template and supports from
operating systems. Our approach is suitable for embedded
devices predominantly used in the medical and automation
industry, which have limited cost and resource in the systems.

1556-6013 © 2015 British Crown Copyright
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Fig. 1. A typical embedded system and ICMetrics system.

In this paper, we use Cycle per Instruction (CPI) to extract
corresponding Program Counter (PC) values, and use it as
ICMetrics features for correct program identification allowable
to execute on the embedded architecture, and an unsupervised
Self-Organising Map (SOM) is used to classify the behaviour
of the embedded system. Results achieved in our experiment
show that the proposed method can identify unknown
program behaviours not included in the training set with great
accuracy.

The remainder of the paper is structured as follows:
Section II discusses the related work in this domain. The
threat model utilized for this work is introduced in Section III.
A SOM-based abnormal behaviour detection algorithm is
presented in Section IV. To demonstrate the usefulness of the
presented technique, Section V details the experimental design
and results performed on an ARM Cortex-M3 embedded
processor. Finally, the conclusions are presented in Section VI.

II. RELATED WORK

This section provides a brief overview of the previous
work related to embedded systems security. As mentioned in
Section I, information digitization to facilitate quick access
has rendered digital privacy an important issue in protecting
personal data [11]. While we believe our work to be the first
demonstration of how on-chip debug information [12] can
be used to identify anomalies in embedded system program
execution, previous research has investigated the behaviour
and prevalence of code modified with the intent of harming a
system or its user. Arora et al. [1] addressed secure program
execution by focusing on the specific problem of ensuring that
the program does not deviate from its intended behaviour. In
their work, properties of an embedded program is extracted
and used as the basis for enforcing permissible program
behaviour.

Software piracy has enormous economic impact [13],
making it important to protect software intellectual property
rights. Software watermarks, a unique identifier embedded
in a protected software to discourage intellectual property
theft is presented by Collberg and Thomborson [14].
In [15], Kolbitsch et al. proposed a malware detection
system to complement conventional AV software by match-
ing automatically generated behaviour models against the

runtime behaviour of unknown programs. Similar to [1],
Handschuh et al. [5] used a CFG to detect intrusion for
secured embedded systems by detecting behavioural differ-
ences between the correct system and malware. In their
system, each executing process is associated with a finite
state machine (FSM) that recognizes the sequences of sys-
tem calls generated by the correct program. Attacks are
detected if the system call sequence deviates from the known
sequence. The system promises the ability to detect attacks
in most application-specific embedded processors. Maier [12]
proposed a system call dependence graph (SCDG) birthmark
software theft detection system. Software birthmarks have
been defined as unique characteristics that a program possesses
and can be used to identify the program. Without the need
for source code, a dynamic analysis tool is used in [16]
to generate system call trace and SCDGs to detect software
component theft.

Yang et al. [17] presented an interesting approach for
detecting digital audio forgeries mainly in MP3. Using a
passive approach, they are able to detect doctored MP3 audio
by checking frame offsets. Their work proves that frame
offsets detected by the identification of quantization charac-
teristics are good indication for locating forgeries. Experiment
conducted on 128 MP3 speech and music clips shows 94% rate
of correctly detecting deletion and insertion using frame offset.
Panagakis and Kotropoulos [18] proposed the random spectral
features (RSFs) and the labelled spectral features (LSFs)
as intrinsic fingerprints suitable for device identification.
The unsupervised RSFs reduce the dimensionality of the
mean spectrogram of recorded speech, whiles the supervised
LSFs derives a mapping between the feature space where
the mean spectrograms lie onto the label space. Experimental
result shows that RSFs and LSFs are able to identify a
telephone handset with up to 97.58% accuracy.

Information hiding can be used in authentication,
copyright management as well as digital forensics [19].
Swaminathan et al. [19] proposed an enhanced computer
system performance with information hiding in the compiled
program binaries. The system-wide performance is improved
by providing additional information to the processor without
changing the instruction set architecture. The proposed system
employs look-up-tables for data embedding and extraction,
which is subsequently stored in the program header and
loaded into run-time memory at the beginning of program
execution. In [20], Boufounos and Rane demonstrate with the
use of signal processing and machine learning techniques,
how to securely determine whether two signals are similar
to each other. They also show how to utilize an embed-
ding scheme for privacy-preserving nearest neighbour search
by presenting protocols for clustering and authenticating
applications.

As indicated above, software birthmarks are unique charac-
teristic that a program possesses and can be used to identify
the program [12]. Similarly, ICMetrics can be defined as a
unique characteristic that a program possesses when running
on a particular embedded device and can be used to identify
the program and hardware. Let p, q be programs. Let f (p)
be a set of characteristics extracted from p when running on
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hardware f . We say f (p) is the ICMetrics of p, only if the
following two conditions are satisfied:

1) f (p) is obtained from p running on f .
2) Program q is a copy of p => f (p) = f (q).

The limitations with the use of system calls for program
identification [1], [5] have been pointed out in [12] and are
more prevalent in embedded systems settings, which typically
have no operating system. The mentioned limitations are:

1) Programs with little or no system calls such as programs
solely based on arithmetic operation and

2) Programs which do not have unique system call
behaviours may fail to exhibit a birthmark.

Using an unsupervised SOM to reduce the dimensionality of
PC values, we introduce an offset rule similar to that presented
in [17] to detect compromised programs. Thus using machine
learning techniques [20] we are able to determine whether
two PC values are similar to each other, with the use of the
program binaries [19] and no prior knowledge of the source
code. Our main contributions of this paper can be summarised
as follows:

1) We introduce a novel SOM based anomaly detection
system, which can be used to combine with an ICMetrics
system in the embedded devices predominantly adopted
in the medical and automation industry.

2) Our approach introduces a way to extract and analyse the
useful low level hardware information, and used them
as a feature to identify an embedded system’s abnormal
behaviour, which allows our system to be used in a wider
range of embedded systems, as it is independent to the
high level software environments (e.g. Operating system,
source programs).

3) In terms of performance, the results achieved in our
experiment show that our approach also outperforms
other existing SOM based anomaly detection systems
that utilise the high level software information.

III. THREAT MODEL

Embedded systems are used in a variety of applications
in our daily life and enable sophisticated features for their
users. However, these sophisticated features increase system
complexity, which in turn results in a higher occurrence
of bugs that require software updates to fix. Embedded
systems with network access and code update support are
therefore becoming increasingly mainstream. Unfortunately,
this flexibility substantially increases the risk of malicious
code injection in embedded systems. For example, there is
a steady increase in the number and complexity of embed-
ded processors in vehicular embedded networks (GPS, in-car
entertainment, safety systems, car communication systems).
This in turn has raised major software integrity issues, and it
is critical to ensure that the executing instructions have not
been changed by an attack.

Attacks that are harming software integrity are generally
known as code injection attacks, since they inject and execute
malicious code instead of correct programs. A well-known
code injection attack is stack smashing. If a function does not
validate whether the length of the input exceeds the buffer size,

an attacker can easily overflow the buffer. By overflowing the
buffer, any location on the stack in the address space after
the start of the buffer can be overwritten, including the return
address of the susceptible function. Using this technique, an
attacker can insert malicious code sequence, and overwrite the
return address to point to the malicious code. Other attacks
may overflow buffers stored on the heap, or exploit integer
errors, dangling pointers, or format string vulnerabilities. Most
programs with these vulnerabilities are also susceptible to
so-called return-into-libc attacks, where an attacker modifies a
code pointer to point to the existing code, usually the library
code. Return-into-libc attacks are also called arc injection,
since they inject an arc in a control flow graph of a program.

The proposed system is designed to protect against the
execution of malicious code that the system designer does not
intend to execute. Our interest is to ensure that the software
running continuously on an embedded device has essentially
the same behaviour as the original program for the purposes
of security and detect any possible changes on the trusted
software. The basis of our proposed system of ICMetrics is
akin to dynamic systems analysis, which analyse the execution
of a program on an embedded architecture. Thus the system
presented is mainly for flagging rather than directly stopping
execution of untrusted code.

A common theme among many security attacks is hijacking
the trusted code at run-time, so even if the original code is not
malicious by intent, it can be manipulated by the attacker [6].
As mentioned above, a very common method is the
exploitation of a buffer overflow to overwrite a return address,
altering program control flow to a malicious code. We assume
that the unexpected software running on the embedded device
will result in a significant behavioural difference compared
to the original program. The proposed system monitors the
executing program continuously, while constructing its behav-
iour to detect any changes. It is observed that any behavioural
difference in the program execution trace, for example in
medical devices can be detrimental and must be flagged in
real-time by monitoring the system behaviour. The proposed
intrusion detection method will not prevent buffer overflow,
but it could detect the abnormal behaviour caused by buffer
overflow by monitoring system behaviour.

IV. ALGORITHM FOR ABNORMAL PROGRAM

BEHAVIOUR DETECTION

Generally, from a software architecture point of view, there
are three structural levels in a program: (a) function call
level, as represented by function call relationship; (b) internal
control flow for each function, represented by a basic-block
CFG; and (c) instruction stream within each CFG [1]. From
a hardware point of view, the processor’s architecture and
performance can affect the execution of instructions. For
instance, multi-cycle function calls or condition branches
could decrease the performance of a processor. On the other
hand, as the PC register indicates where a program is in its
code sequence, it can be used to represent the instruction
sequence within the CFG. Consequently, we could first detect
the function call and CFG based on the variance of the
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Fig. 2. Overall block diagram of the proposed abnormal program behaviour
detection algorithm.

processor’s performance, then analyse the PC values within
each CFG. Finally, an overall evaluation could indicate
whether the system is compromised or not. In the proposed
work, we measure the average CPI as a parameter of the
processor’s performance. A block diagram of the architecture
of the proposed abnormal program behaviour detection system
is shown in Fig. 2.

The average CPI calculator in Fig. 2 is first used to calculate
average CPI value, and it continually reads clock cycle and
PC data from the time counter and PC register. Sequentially,
the average CPI values are used to obtain phase and peak
information in the Phase and Peak Point Detector module
respectively, and the information indicates where function calls
or the conditional branch occur in the executing program.
Afterwards, the obtained locations and their corresponding
PC sequence are used in a SOM based similarity analyser for
abnormal program behaviour detection. If the phase’s infor-
mation and the PC sequences deviate from a known program,
the SOM based classifier asserts the intrusion detected output.
In the last stage, the results of SOM are validated by
comparing with their expected property table (i.e. number of
peak within each phase and associated network node).

A. Average CPI Calculator Module

CPI is one of the most commonly used parameter
for measuring processor’s performance, which indicates the
complexity of instructions executed within a particular period
of time. Average CPI of a processor can be calculated
based on (1):

C P I = C

I
(1)

where I is the total number of executed instructions, C is the
number of cycles for executing I instructions. As number of
cycles can be calculated by time elapsed and maximum clock
frequency of a processor, the CPI can easily be accessed by
modern debug facilities. In Fig. 3, an average CPI profile is
generated while a program is running in an ARM cortex-M3
processor, where I and the maximum frequency are set to
211 and 120 MHz respectively.

In Fig. 3, the program consists of five different functions,
and each function is called in a sequence. While a new
function is called, the CPI value is significantly increased,
which means the performance of the processor is decreased
accordingly. The main reason for that is that the PC jumps to
other memory location in order to execute the newly called

Fig. 3. Example of average CPI profile.

function (as illustrated in Fig. 7 (a)), where it usually involves
many multi-clock cycles instructions. As a result, the average
CPI value is significantly changed. Similarly, the CPI values
vary within each function, and the number of executed instruc-
tions I decides the resolution of the average CPI profile, the
value of I varies from [1 n], where n is the total length of
programme. The larger number of I used in the CPI profile, the
less details of the CPI profile, which means some of potential
abnormal behaviour of the monitored programme may not
be detected. However, although with smaller number of I ,
we could have more sensitive of the detection mechanism,
it would significantly increase the computational cost of the
detection system. For instance, if I uses ‘1’, which means that
every single instruction in the programme will be examined
and it does not contain any continuous pattern that can be used
to identify the characteristics of the monitored programme
Therefore, in this paper, the value of I is set to 211, which
gives a gives the best balance of the accuracy and compu-
tational complexity of the proposed system. In the following
sub-sections, we introduce a method to automatically obtain
the position information of the phases (i.e. function calls) and
peaks (i.e. branch conditions).

B. Phase and Peak Point Detector Module

The main task of this module is to obtain the locations of
the phase and peak within the average CPI profile. There are
two sub-blocks: local and global critical point localisers are
used to localise the peak and phase positions.

1) Local Critical Point Localiser: The local critical point
localiser is used to localise the local significant variance
points from the average CPI profile. The proposed method
first calculates absolute differences between adjacent elements
in the average CPI profile, and then localises the peak value
within a 1×3 rectangular range.

Let fmean denotes averaged CPI, absolute differences
between adjacent elements of fmean can then be calculated by:

d(n) = | fmean(n + 1) − fmean(n)| (2)

where 1 ≤ n < N, N is the total numbers of elements in array
fmean , d(n) is nth element in an array of absolute differences
between adjacent elements of fmean(n).

After obtained d(n), a 1×3 rectangular window is used as
a mask to scan all the elements in d(n). Let d(n−1) d(n) and
d(n+1) denote the three elements within the 1×3 rectangular
window respectively, and the locations of the detected peaks
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Fig. 4. Resulting diagram after applying the local critical point localiser.

can be calculated by:

p(n′) = n for d(n) > d(n − 1) and d(n) > d(n + 1) (3)

where p(n′) is nth element in an array of detected peak
locations.

The main advantage of the proposed local critical point
localiser is adaptively detecting the peaks without the need of
setting any fixed threshold, hence the proposed local critical
point localiser would not be limited on any particular scenario,
and it can also detect the peaks that have minor variance.
Fig. 4 shows resulting diagram after applying the local critical
point localiser on the points in Fig. 3.

2) Global Critical Point Localiser: The global critical point
localiser is used to localise the global significant variance
points from the average CPI profile, which indicate the
locations of each phase.

Step 1: Localising the elements in d(n) that are greater than
(max(d)+min(d)) / 2. These elements represent the boundary
points at each adjacent phase. The selected elements are stored
in array p′.

Step 2: Calculating absolute differences between adjacent
elements of array p′, if the absolute differences between
kth and (k+1)th elements are greater than t , then store
p′(k) and p′(k+1) into array ph , where t is the number
of CPI samples in a phase. The value of t depends on the
minimum accepted phase length of the training programme.
The smaller the value of t is, the more details of the average
CPI profile can be obtained. On the other hand, in consequence
the complexity of the proposed algorithm would be increased.
In this paper, t is set to 50 in order to balance the complexity
and performance of the proposed algorithm.

Step 3: Checking absolute difference between every adja-
cent phase ph(2k ′) and ph(2k ′+1), if the difference is greater
than ‘2’ or equal to ‘0’, then ph(2k ′ + 1) = ph(2k ′)+1. The
main purpose of this step is to make sure that the adjacent
phases do not include the overlapped boundaries.

Fig. 5 shows resulting diagram after applying the global
critical points localiser on Fig. 3.

The obtained peak and phase locations are first converted
into their corresponding locations in PC profile by (4):

ps = I × p(n′) + 1

pe = I × p(n′) + I

phs = I × ph(k
′) + 1

phe = I × ph(k
′ + 1) (4)

Fig. 5. Resulting diagram after applying the global critical point localiser.

where ps and pe are the start and end locations in PC profile
for the n′th peak respectively. phs and phe are the start and end
locations in PC profile for the k ′th phase respectively. I is the
total number of executed instructions used to calculate average
CPI profile.

The converted locations are used to select appropriate
PC patterns for training and testing of the similarity analyser.

C. SOM Based Similarity Analyser Module

The designed similarity analyser is capable of classifying
and recognising between known and unknown programs while
the programs are running. There are two major levels of
the classification and recognition process: the function call
level and the PC pattern level, where each phase and peak
is measured to ascertain the originality of the program in
execution. Any significant difference shows that the numbers
of function calls differ, characteristic of function call and
PC signature are different to the original program, and an
abnormal behaviour notification could be signified. The main
advantage of the proposed similarity analyser is that it governs
the classification and recognition at two different levels:
1) phase and peak level, and 2) the PC pattern level. Phase
and peak level are statistically analysed, and the corresponding
PC patterns are classified in SOM. Consequently, even if the
malicious codes have similar information of the phase and
peak, it is very difficult to have the exactly same PC pattern
as the original code.

Kohonen’s SOM [21] is a common pattern recognition
and clustering process, where intrinsic inter- and intra-pattern
relationships among the stimuli and responses are learnt
without the presence of a potentially biased or subjective
external influence is presented, and would be adopted in this
work as the basis for our classifier. We utilize the k−means
nature of the SOM, to partition the extracted PC signatures
into a user-specified number of clusters, k (number of groups).
In the proposed work, the analyser uses SOM to measure
similarity between known and executing programs in terms of
PC pattern. The value of k should at minimum be equal
to the total number of programs intended to run on the
embedded hardware. The value of k used in this work is set
to two times (2×) the number of known programs that can
legitimately run on the embedded processor. This value of k
is to handle the linear separating boundaries between known
program behaviours as defined in K-means clustering;
avoiding the computational overheads associated with a
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nonlinear kernel K-means. Specifically, we extract static
properties of an embedded program to enforce permissible
program behaviour at run time. The PC patterns are a set of
N-dimensional vectors, where the size of the vectors N is
equal to number of executed instructions I . The size N of
the vector, if set too large will add significant performance
overhead to the application that it represents. Similarly, if it
is set too small, it will not be robust enough to distinguish
between applications. Thus choosing the right size of N is
very important.

The best value of N is the minimum number of
PC values that offers the best analyser performance. The value
of N should define the permissible behaviour of a program by
identifying suitable properties or invariants that are indicators
of untampered execution, thus very unlikely to be violated
when program is compromised. After a number of empirical
experiments, the value of N in this work has been set to 211

following an examination of the test data.
To enable continuous analysis, the system presented here

requires just 211 PC values at a time to infer its correspond-
ing application. Because the system is based on a SOM,
a variant of the k−means algorithm, the value of k should
also be set. The value of k is set depending on the total
number of algorithms or programs under investigation, and
the number of distinct phases in any particular application.
At minimum, the value of k should be equal or greater to the
number of algorithms under investigation. The value of k in
this work has been set to 20 as the testing database has
10 different programs. However, this can naturally be adapted
to requirement of different usage scenarios according to the
above given guidelines.

PC values extracted from the PC profile, corresponding to
the peaks in the CPI profile are used as inputs to the SOM
during training and testing. For a given network with k neurons
and N-dimensional input vector Ki, the distance from the
j th neuron with weight vector wj( j < k) is given by

D2
j =

N∑

l=1

(
K i

l − w jl

)2
(5)

where wjl is the l th component of weight vector wJ. The vector
components of the winning neuron wk with minimum distance
Dk are updated as follows, where η ∈ (0, 1) is the learning
rate.

�wk = η
(

K i − wk

)
(6)

The update is done only at the training phase. Additionally,
for every neuron in the network we maintain four extra para-
meters: the minimum maximum, mean and standard deviation
of distances of all input vectors associated with any particular
neuron.

After training, the next step is to associate each of the
network neurons with the corresponding program or sub-
program. In this work, we use Vector Quantization (VQ) [21]
to assign labels to neurons in the network as follows:

1) Assign labels to all training data. The label is an
identifier for the program from which the training data
has been extracted.

2) Find the neuron in the network with the minimum
distance to the labelled input data.

3) For each input data maintain the application label, the
corresponding neuron and the distance measured. The
distance is maintained as a tie breaker for applications
that share similar address space.

In each phase of the original training program, we first count
a group of input vectors that are associated with each neuron,
and then calculate mean value and standard deviation of the
group of distances, alongside the minimum and maximum
distances (Dmin and Dmax ) by:

μ = 1

n

n∑

i=1

Di (7)

Dmin = μ − (1 + α) ×
√√√√ 1

n − 1

n∑

i=1

(Di − μ)2 (8)

Dmax = μ + (1 + α) ×
√√√√ 1

n − 1

n∑

i=1

(Di − μ)2 (9)

where D denotes the group of distances, α denotes errors of
the standard deviation to accommodate any quantization errors
in the calculation process. The value of α in this work has been
set to 2.5%.

Sequentially, a statistical table Tk is generated for the
kth phase, where detailed attribute information (e.g. minimum
and maximum distances, number of input vectors that are
associated with each neuron and their standard deviation) are
recorded for the phase. On the same principle, each phase is
associated with its corresponding statistical table.

In the testing stage, each input vector is assigned to a neuron
that has the shortest distance. Let Ki denotes the input vector
and it is assigned to the j th neuron with distance Di , the
proposed algorithm first compares the distance Di with the
minimum and maximum distances of the j th neuron from all
the statistical tables, and then decides whether the input vector
belongs to the phase. Generally, the successful input vector
should meet the following two conditions:

1) The distance Di should meet the condition Dmin <
Di < Dmax , where Dmin and Dmax are minimum and
maximum distance of the j th neuron at the kth phase.

2) The j th neuron is a dominant neuron in the kth phase,
which means the occupancy of the neuron in the original
statistical table is greater than 3% of total numbers of
input vectors.

The successful candidate neurons are labelled to reflect their
corresponding phase numbers. Otherwise, the candidate is
marked as ‘−1’, which indicates the input vector is unknown.
Consequently, the known program’s phase should consist of
a set of known phase number; the dominant phase number to
indicate the result of the phase. After obtaining the results of
each phase, another statistical table T ′

k is generated, which
contains the same type of information as Tk . A validation
process is performed in the next stage to examine the similarity
of these tables.
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Fig. 6. Overall Flow Chart of the Validation Module

D. Validation Module

The validation module is designed to validate the results
from the SOM analyser. Usually, most of the input vectors
can be classified using the SOM analyser. However, due to
the variance of circumstances, the trace of program cannot
always be exactly the same as the original training program,
thus a global validation stage becomes necessary to improve
the overall classification results.

In general, the results from the SOM analyser could consist
of two categories: known and unknown samples. For the
known samples, the SOM reports their potential phase number.
For the unknown samples, the SOM analyser marks the phase
number with ‘−1’. Thus, the validation module processes the
two cases separately. Fig. 6 shows flow chart of the validation
module.

As shown in Fig. 6, the main task is to validate the
similarity between the testing statistical table T ′ and the
original statistical table T . In order to examine the similarity
of two tables, histograms of the associated neurons from the
two tables are used. Pseudo-codes for calculating the similarity
of the statistical tables are summarised in Algorithm 1.

After comparing the statistical tables, the difference of the
number of peaks in the original phase k and testing phase k ′
is then calculated. If the difference is less than 10% of total
number of peaks in the original phase, it confirms the phase
number is k.

In general, the SOM analyser could locally calculate the
similarity for a pair of input vectors (i.e. peaks). However,
it has limitation on globally indicating a group of peaks
(i.e. phases). The validation stage can be used to remedy
this problem. In the experimental result section, we show the
improvement of the SOM results when the validation stage is
applied subsequently

V. EXPERIMENTAL SETUP AND RESULTS

An embedded system based on a Keil MCBSTM32F200
evaluation board equipped with an ARM 32-bit Cortex-M3

Algorithm 1 Calculating the Similarity of the Statistical
Tables
1: Input: Tk and T ′

k′ are statistical tables for the original phase
k and the testing phase k ′ respectively

2: Output: Similarity between phase k and k ′.
3: sort the Tk by descending order of neuron’s occupancy;
4: /∗ look-up the statistical table Tk

∗/
5: for all neuron nodes in Tk do
6: if occupancy of the j th neuron > 3% then
7: d(i) = j ; /∗ record the number of the neuron in array

d∗/
8: i + +;
9: end

10: end
11: /∗ look-up the statistical table Tk′ ‘ ∗/
12: for all neuron nodes in T ′

k′ do
13: if occupancy of the j th neuron > 3% then
14: d ′(i) = j ; /∗ record the number of the neuron in array

d ′∗/
15: i + +;
16: end
17: end
18: x ∈ d ∩ d ′; /∗ x is the intersection of d and d ′∗/
19: /∗ generate output ∗/
20: if length(x)/length(d) > 80% then
21: the phase k ′ is similar to the phase k;
22: else
23: the phase k ′ is not similar to the phase k;
24: end

processor-based microcontroller is used in the proposed
work [22], which consists of various peripheral interfaces
(e.g. touchscreen, Ethernet port, serial port, analogue volt-
age control for Analogue-to-digital converter (ADC) input
and debug interface). A combination of KEIL μVision IDE,
and ULINKpro Debug and Trace Unit [23] is used to
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TABLE I

DETAILS OF THE USED BENCHMARKS

download the program and trace the instructions executed
in the microcontroller. High-speed data and instruction trace
are streamed directly to the host computer allowing off-line
analysis of the program behaviour [23]. MATLAB is used
to implement the proposed method prior to hardware
implementation. It is worth noting that the experimental
platform is a typical low cost ARM-based embedded devel-
opment board, and it comes with only 128KB of on-chip
RAM and 2MB of external SRAM, for which only 1MB is
usable when the tracing port is enabled. Thus we can only
analyse a limited number of programs at a time, and the com-
plexity of the tested programs are also limited. These limita-
tions fall within the scope of our initial embedded architecture,
expected to have minimal memory, power and computational
resources. The concept presented here is naturally scalable; as
the available resources increase, the complexity of applications
can also be increased.

A. Benchmark Test Suite

In the proposed work, seven algorithms from the automotive
package of the widely recognised EEMBC benchmark
suite [24] are selected, in which five algorithms (i.e. the first
five benchmarks in Table I) are used to train and test the
SOM analyser and the other benchmarks are only used in
the testing. Details of the used benchmarks are presented
in Table I.

As can be seen from Table I, the seven benchmarks
are set with different parameters and performing various
functions. For instance, the benchmark “a2time” is used
to perform angle to time calculation, where “NUM_TEST”
indicates the number of sets of input test data stimuli, and
“TENTH_DEGREES” indicates the number of 1/10 degrees in

a circle. Overall, they do not only have different complexities
and characteristics, but also contain similar sub-functions,
which make them suitable test candidates for the proposed
experiments.

In order to train with all five benchmarks, they are mixed
together to form a new program, where each benchmark
is treated as a separate function call. The new program
is executed twice in order to generate enough training
samples. For testing, a random function call generator is used
to switch between benchmarks form the test samples. The
next section explains how the random function call switching
works.

B. Random Function Call Generator

In order to check the performance of the proposed
system for complex test samples in a variety of scenarios,
a random function call generator is used to randomly select
the benchmarks and form a new program. Thus, the function
call sequence of the new program is varied at every run.
Consequently, a set of unique test programs can be generated.
In addition, since the testing program is combined with
different function calls and randomly mixed during the
run-time of the embedded system, the testing methodology
could be used to verify the performance of the proposed
system in the scenarios that have dynamic variance
(e.g. different program flow, interrupt, inputs, etc.).

The random function call generator mainly consists of
two components: a true random number generator and a switch
statement. In order to generate true random numbers, an ADC
and a potentiometer are used to generate a random seed, which
is subsequently used as an input seed for a pseudo-random
number generator. In general, the ADC reads the voltage from
the potentiometer and converts it into a 12-bit digital number.
As the voltage of the potentiometer is adjustable and sensitive,
the voltage value is not constant, even without turning the
potentiometer. Thus, after the conversion, the digital number
is always different, which allows the pseudorandom number
generator to create a true random number. For instance, if a
program consists of n different function calls, a random
number x is first generated, where 1 < x < n. Subsequently,
the random number x is used to select which benchmark
will be called. The generated random number is used in a
switch statement, which actives the corresponding function
call (e.g. if x = 1, “a2time” will be called). In this experiment,
the potentiometer is manually adjusted for every run, which
further ensures the voltage is completely different from the
previous one.

In addition, the random function call generator can also
record the function call sequence for every execution, which
means a complete reference table can be generated at the end
of testing. With comparing the test output of the SOM with the
expected output from reference table, an accurate and complete
evaluation result can be generated.

C. Program Database

A total of 104 programs are generated using the random
function call generator presented in the previous section.
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Fig. 7. Examples of PC profiles from the used program database. (a) Program used for training; (b) Program from category 1; (c) and (d) Programs from
category 2; (e) and (f) Programs from category 3.

The 104 programs used for testing can further be divided into
the following three subcategories:

1) Programs with original function call sequence:
Programs in this category consist of fixed function
call sequence, which are the same as the one used in
training. There are 21 programs, out of the 104, which
are taken from this category.

2) Programs with random generated function call sequence
(known): Programs in this category consist of randomly
generated function calls in the sequence, with all the
functions drawn from the training samples. The number
of samples in this category is 42.

3) Programs with randomly generated function call
sequence (unknown): Programs in this category consist
of randomly generated function calls in the sequence
with two unknown functions included. The number of
samples in this category is 41.

In the experiment, the first category is used to simulate
instances where the embedded system is not modified, such
as programs running with factory setting. The second cate-
gory is used to simulate the circumstances of an embedded
system with normal behaviour; for instance, the programs
with legitimate credentials to run on the embedded system.
Finally, the last category is used to simulate tampered systems
with unknown programs; for example, the system may launch
some unknown programs, triggered by buffer overflow attack.

Thus, our threat model is well covered by the three set
of categories. Fig. 7 shows some examples of PC profiles
extracted from test programs.

In Fig. 7, numbers inside the red cycles are labels for the
different benchmarks, where ‘1’, ‘2’, ‘3’, ‘4’, and ‘5’ represent
the five known benchmarks respectively with ‘x’ and ‘y’
representing the two unknown benchmarks. As can be seen
from Fig. 7 (a) and (b), although they contain exactly the same
benchmark codes and sequences, the PC addresses and outlines
of each benchmark are slightly different. Especially, when the
sequence of the benchmark is randomly mixed (for example,
Fig. 7 (c) and (d)), the resulting PC profiles are completely
different. This could help with examination of the trained
SOM analyser on false negative rate. In Fig. 7 (e) and (f),
the profile of the unknown programs ‘x’ and ‘y’ are quite
similar to the known programs ‘1’ and ‘2’ respectively, which
is used to simulate the possible attacks that try to model
their peaks and phase information like the genuine programme
Using the true/false positive and negative rates from the trained
SOM analyser, different programs with similar profiles can
further be examined.

D. System Implementation

The abnormal program behaviour detection system has
been successfully implemented in MATLAB for off-line



ZHAI et al.: METHOD FOR DETECTING ABNORMAL PROGRAM BEHAVIOR ON EMBEDDED DEVICES 1701

data analysis. The system implementation is divided into
three parts:

1) CPI-Related Module: This module is first used to extract
useful information from the program’s tracing file, and then
it calculates the average CPI for every run. The program’s
tracing file contains two types of information: PC address and
time tag for every executed instruction. The PC addresses are
only recorded in a file that will be used in the SOM-based
similarity analyser module. However, the corresponding time
tags are used to calculate CPI profile for the executed
programs. In this work, the number of instructions is set
to 2048. The frequency of the ARM cortex-M3 microcontroller
used runs at 120 MHz, thus, the average CPI for every
2048 instructions can then be calculated by (1). Subsequently,
the phase and peak point detector localises the peaks and
phases from the average CPI profile. The obtained peak and
phase locations are finally converted into their corresponding
locations in PC profile by (4).

2) SOM-Based Similarity Analyser Module: The start and
end locations of each peak can be used to select a serial
of PC addresses, and this forms an input vector with
1×2048 elements which is subsequently fed into the
SOM-based similarity analyser. The maximum number
of nodes and iterations for the SOM are set to
20 and 1000 respectively. A statistical table for each
phase and estimated outputs for each peak are generated after
the training process. The same process is repeated during the
testing. The generated results are then used in the validation
module.

3) Validation and Evaluation Module: The algorithm stated
in Section IV-D is implemented in this module. Based on the
validation results, the peaks and phases of each input program
are finally classified. The final evaluation result consists of two
levels: peak and phase levels. At the peak level, the final report
does not only include results for every single program, but
also the entire database. The measurements of the evaluation
mainly includes correct recognition rate (true positive (Tp)
and true negative (Tn)), rate of misclassified samples (false
positive (Fp)), and rate of samples incorrectly classified as
unknown (false negative (Fn)). Based on the measurements,
accuracy, precision and recall rates for the proposed system
can be calculated.

Accuracy: It is the rate of correctly labelled samples, which
can be calculated by (Tp + Tn)/total number of samples.

Precision: It is the rate of positively labelled samples
whose labels are correct, which measures the classifier’s
resistance to false positives and can be calculated by
Tp/(Tp + Fp).

Recall: It is the rate of samples that should have been
positively labelled that are correctly positively labelled, which
measures the classifier’s resistance to false negatives and can
be calculated by Tp/ (Tp + Fn).

A classifier’s precision and recall results provide insight into
what types of errors the classifier tends to make, rather than
only reporting the number of misclassified samples.

E. Experimental Results

In this experiment, the proposed system classifies the pro-
grams’ peaks and phases into different categories, where the

Fig. 8. Results of accuracy, precision and recall rates for category 1.

Fig. 9. Results of accuracy, precision and recall rates for category 2.

known peaks and phases will be assigned their corresponding
names and unknown ones will be labelled as ‘−1’. Overall,
the proposed system has 99.9% and 97.7% successful iden-
tification rates for 1040 program phases and 145763 peaks
respectively. Additionally, the proposed system identifies
unknown programs’ peaks that were not in the training set
with over 98.4% accuracy. In the following sub-sections,
the analyses of the experimental results are categorised by
program type.

1) Programs With Original Function Call Sequence:
In this category, there are total 21 programs, which include
31884 peak samples. Overall, the proposed system has
97.9% successful identification rates for the peaks. Results of
accuracy, precision and recall rates for each program are
illustrated in Fig. 8.

2) Programs With Random Generated Function Call
Sequence (Include Only Known Benchmarks): In this category,
there are 42 programs, which include 57242 peak samples.
Overall, the proposed system has 97.1% successful identifi-
cation rates for the peaks. Results of accuracy, precision and
recall rates for each program are illustrated in Fig. 9.

3) Programs With Random Generated Function Call
Sequence (Include Known and Unknown Benchmarks): In this
category, there are 41 programs, which include 56637 peak
samples. Overall, the proposed system has 97.5% successful
identification rates for the peaks. Results of accuracy, precision
and recall rates for each program are illustrated in Fig. 10.

In general, as the complexity of the test categories are
varied, the first category has the smoothest and best accuracy,
precision and recall rates. In contrast, the accuracy, precision
and recall rates of the second and third categories are relatively
lower, than the first one. Also, the types and the lengths of each
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TABLE II

PERFORMANCE RESULTS FOR THE USED BENCHMARKS

Fig. 10. Results of accuracy, precision and recall rates for category 3.

tested program in the last two categories are different, which
causes the resulting rates of each program have relatively
higher variance than the first one.

As indicated in Table I, the database employed mainly
consists of seven different benchmarks, where five of them are
in the training set and the remainder are not in the training set.
Table II summarises the results of each benchmark in terms
of accuracy, precision and recall rates.

As can be seen from Table II, the overall performance of the
proposed system with validation process is much higher than
without the validation process. The reason is that the extra
similarity comparisons between original and test statistical
tables help the proposed system to re-estimate the results
of the SOM analyser. Especially, when there is a unknown
benchmark with similar sample peaks to the known benchmark
that appears in the test program. The result of using validation
process is significant higher than without validation process in
the system, for example, the accuracy and recall rates of the
first benchmark ‘a2time’ is significantly lower than by using
validation process. The reason is that ‘a2time’ and ‘tblook’
have very similar distances to the sample SOM node, which
cause them to be classified into same cluster. For the known
benchmarks, as the test samples are not exactly the same as
the samples in the training set, the accuracy and recall rates
are also lower, than the result using the validation process.
For the unknown benchmarks, the results with and without

validation are constant, as there are no positive samples in the
sets, the precision and recall rates are zero.

It is worth noting that our work is independent of the
processor’s architecture or operating system’s kernel, thus
making it compatible with most modern embedded systems.
Hence, the proposed work is particularly suitable for providing
possible security solutions to commercial off-the-shelf (COTS)
products, where the products have many restrictions on mod-
ifying their internal programs or hardware architectures. The
proposed system can be run on a non-intrusive debug facility,
a non-intrusive infrastructure that is generally used during
device software development at present in all production
devices, that connects to the targeted embedded device through
a debug interface [25], [26], which means that the proposed
system would not affect the performance of the monitored
embedded system in terms of additional memory and processor
usage. When an end user downloads a new program in the
embedded device, a training process will start; the new trained
parameters of the SOM and the statistic information of moni-
tored program can then be generated and stored in the debug
facility, which can only be accessed by the debug facility. The
proposed system naturally combines the embedded system’s
hardware and software together, introducing a new potential
direction to secure an embedded device. In one of the authors’
previous works [27], an implementation of the conventional
SOM on a Xilinx Virtex-4 with 40 neurons required only
22.1% of the available 5,184 Kb Block RAM. The debug
facility targeted for our initial on-chip prototyping is utilising
a mid-range Xilinx Virtex-6 FPGA having 25,344 Kb (max.)
Block RAM; thus a similar implementation should utilise
approximately 5% of the available Block RAM. Again, the
Virtex-4 design implementation clocked at 25MHz could train
with approximately 10,000 patterns per second. As a result
of this, the hardware implementation of the SOM produces
a significant speed improvement, which is 30 times faster
than the original SOM implemented on a state-of-art PC [27].
Hence, the preferred implementation is to follow a hardware
acceleration approach that facilitated rapid SOM processing
suitable for real-time execution.
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VI. CONCLUSION

In this paper, a Self-Organising Map based approach is
proposed to enhance embedded system security by detecting
abnormal behaviour, in which features derived from internal
embedded processor are extracted and used in the SOM to
identify abnormal behaviour in embedded devices. The pro-
posed method can also be combined with ICMetrics system,
as different behaviours can be represented with different basic
numbers, hence, different encryption keys can be generated
by the key cryptography mechanism, using the recall phase.
Results achieved in our experiment show that the proposed
method can identify unknown behaviours not in the training
set with over 98.4% accuracy. The proposed work provides
protection at different levels for embedded architectures such
as function call sequence, internal control flow and instruction
stream within each function. Since the main aim of this
research work is to implement a real-time security solution for
complex embedded computer architectures, more evaluation
on realistic attacks for the proposed algorithms will further be
investigated. For evaluation of real-time detection system, the
proposed method can also be implemented with a soft-core
processor on FPGA as part of an on-line protection system,
and subsequently halting the program to prevent abnormal
behaviours in the system, or even alongside existing debug
IP in a direct Systems-on-Chip implementation.
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