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ABSTRACT
Microservice Architectures (MA) have the potential to increase the
agility of software development. In an era where businesses require
software applications to evolve to support emerging software re-
quirements, particularly for Internet of Things (IoT) applications,
we examine the issue of microservice granularity and explore its
effect upon application latency. Two approaches to microservice
deployment are simulated; the first with microservices in a single
container, and the second with microservices partitioned across
separate containers. We observed a negligible increase in service
latency for the multiple container deployment over a single con-
tainer.

CCS CONCEPTS
•Computer systems organization→Cloud computing; • Soft-
ware and its engineering → Software creation and manage-
ment;

KEYWORDS
Microservice Architecture, software engineering, Internet of Things,
performance

1 INTRODUCTION
Whilst the availability of utility clouds reduces the costs and as-
sociated responsibilities for physical infrastructure for business
IT functions, it also presents new opportunities for application
development teams to exploit. Providers of utility cloud comput-
ing endeavour to deliver seamless computing and storage services
that are elastic in nature, meaning that software development for
cloud computing can focus more on flexibility, reuse and improved
Quality of Service (QoS).

Service Oriented Architecture (SOA, and subsequently “web
services”[3, 6]), is a natural fit for “everything-as-a-service”, but it
is also practical to decompose software applications into discrete
services as it can help bridge the comprehension gap between
users’ requirements and design specifications, whilst also improving
software design by moving away from more inflexible, monolithic
architectures[14, 25].
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As service orientation thinking matures, there is now the con-
struct of Microservice Architecures (MSA)[20], which have gained
popularity with software development teams who have a need to be
able to provide applications that can scale in response to emerging
requirements[23]. An MSA consists of discrete services that are
interconnected to deliver a workflow[11][10].

In general, an MSA can be thought of as containing services
that satisfy more focused areas of an application’s functionalities,
though this is not always the case. Further discussion of this can
be found in Shadija et al[22].

The need to consider applications that can support future expan-
sion in functionality is a logical progression as computational and
communication capabilities become embedded in more devices[7].
Specifically, the Internet of Things (IoT) presents many new and in
some cases unforeseen ways for users to interact with systems, as
well as systems being able to sense their environment in a multitude
of different scenarios through IoT devices[18].

This article explores one particular aspect of MSA - service gran-
ularity - as this has considerable potential to have an impact upon
application latency[8]. We examine the deployment of an enter-
prise software application using two MS architectures, and suggest
some indicative guidelines for application architects to consider
when designing or migrating to cloud-based applications that utilise
microservices. We then discuss the findings in the context of IoT
application architectures.

The article is organised as follows. First we introduce the key
concepts and qualitative issues surrounding MS granularity. We
then apply MSA principles to the cloud deployment of a university
admissions system and simulate service invocation response times.
Finally, we discuss MSA deployment in the context of IoT and
identify some open questions for the research community.

2 GRANULARITY
Microservices can be declared with varying levels of capability, and
the size of this functionality is typically referred to as its granularity,
that is, the functional complexity coded in a service or number of
use cases implemented by a microservice[21].

Since microservices are discrete and must be composed into
greater functional entities to support business workflows, it follows
that message passing between microservices (as a result of method
invocation) increases as the microservices become finer-grained.

The ‘building-block’ approach to service composition is attrac-
tive from an architectural perspective; arguments for service re-
use can be made, and the gap between application design and the
user requirements documentation can be reduced. However, the
increase in communication between services (manifesting as out-of-
process calls and the number of service calls made) also increases
the response time of an application, particularly when many small
increases in latency are compounded together[26].

Session: UCIoT 2017 Workshop Presentation UCC Companion’17, December 5–8, 2017, Austin, Texas, USA

215

https://doi.org/http://dx.doi.org/10.1145/3147234.3148093


Achieving an optimum level of granularity is therefore of interest
to application developers who want to explore MSA for deployment,
and the key factors that contribute to this can be summarised as
follows:

• Driven by business need or capability. The needs of a business
may be changing rapidly and demanding new functionality
from an application. This growth may not be manageable
within the existing application architecture and therefore
a granular approach is adopted. It is typical for application
developers to use the functionality itself to set the scope that
determines the size of a microservice.

• Size of application. For smaller applications the level of gran-
ularity could be fine-grained. For enterprise (larger) sized
applications, the granularity is likely to be at a higher level
(coarser) with each microservice built up from smaller mi-
croservices. However, as we discuss later, for smaller applica-
tions there may stiil need to be an aggregation of services to
facilitate simpler communication and reduced latency over
IoT network connections.

• Size of development team.The number of developers in a team,
together with their skills capability should be considered.
Conway (http://www.melconway.com/Home/Conways_Law.
html) says “organizations which design systems ... are con-
strained to produce designs which are copies of the commu-
nication structures of these organizations”. In the context of
MSA, but more specifically Domain Driven Design [12], the
degree of success of functional decomposition, and its subse-
quent implementation as a successful service, is dependent
upon the organisational structure of the development teams.

• Database design. The design of a database may have an im-
pact on granularity. For example, in a retail scenario if there
is a product service and an order service, the functional de-
composition is likely to have led to the implementation of
separate data repositories for each service. Any association
of the data between the databases will be implemented at
code level, leading to more coarse-grained microservices.

• Reuse.MSA promotion of reuse in the architecture is a con-
cern for enterprise applications. If the services are fine-
grained then reuse is possible but there is the additional
overhead of wiring the services together. If the services are
too coarse-grained then it is difficult to reuse the services.

One of the main concerns for application developers to consider
is that of user experience, which is influenced by the perceived
performance of an application. Developers seek to minimise latency
within an application as far as is practicable, in order to maximise
software responsiveness[21, 24].

It follows that whilst architectural concerns may lead designers
towards finer-grained functional decomposition[12, 13], any po-
tential increase in the number of methods invoked, either within
a container or between physical servers via a network, will have
an increased contribution towards latency, particularly when virtu-
alised. Containers are one means of addressing the latency to some
extent when the microservices exist in cloud environments[9, 19].
Figure1 illustrates the message request and response between two
microservices, A and B. The overall latency is determined by a
number of factors, including the following:

Figure 1: Method invocation between microservices.

• Number of calls;
• Network latency and availability;
• Availability of microservice;
• Processing time;
• Variability in demand/load;

While considering latency there are two other factors to consider.
First, the criticality of the service being called and second, the
number of times it is called. For example, although calling a “qualifi-
cationmapping” service is important, it is not critical to the function
of the system. If it is not working the system can still accept new
applications.

An additional factor to be considered is whether the application
under consideration is a new application or an existing application
that is being migrated to MSA. For a new application, database
design will have less influence as there will not be a database in
place already. For an existing application, the organisation and
design of existing data and their structures is an important factor
to consider.

This article uses an evolutionary case study to propose guiding
principles for granularity within MSA. As MSA has an affinity with
systematic growth in an application, we have chosen a case study
that depicts expansion in functionality and user load over time,
making it an ideal candidate for MSA.

3 CASE STUDY: UNIVERSITY ADMISSIONS
SYSTEM

UK universities each administer their own applications to receive
and process applications from potential students. In the UK, the
overall process is governed by a Central Admissions Authority
(CAA), the Universities and Colleges Admissions Service (UCAS),
with each higher education institution deploying local systems to
interface with the national UCAS system.

CAA systems are examples of applications that traditionally had
stable requirements in terms of specification, and it was rare that
additional functionality needed to be added. However, changes in
the UK national policies for students obtaining funding for uni-
versity study have led to a shift in behaviour in relation to how
applicants choose their institution.

Such a change has led to universities seeking to reach out to their
applicants in new ways, requiring closer integration between pre-
viously disparate systems such as marketing, as well as developing
new capabilities to engage applicants.

Additionally, university admissions systems are examples of
large scale applications that are now being migrated to clouds, with
an associated degree of effort being invested into the translation of
traditional monolithic structures into service-oriented models.

Therefore, changes in the higher education environment are
placing demands upon the providers of CAA systems.

Session: UCIoT 2017 Workshop Presentation UCC Companion’17, December 5–8, 2017, Austin, Texas, USA

216

http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html


The proliferation of mobile devices being used as interfaces to
larger systems is leading to a desire to enable tighter integration of
a greater range of devices, including RFID personal identification
cards, location sensing and mobility tracking technology. This po-
tential rich environment of technology-facilitated interaction lends
itself, at least conceptually, to an MSA.

As such, we consider the case whereby an existing CAA admis-
sions system is to be re-engineered using an MSA.We also illustrate
the expansion and growth in requirements of the application over
time, summarised by the following four stages.

3.1 Stage One
Intial motivations for the application are:

(1) Accurately recording applicant information.
(2) Recording the offer received from each university.

3.1.1 System workflow. Each applicant completes a paper form
which is posted to the CAA together with any required documen-
tation. An Admissions Officer (AO) at the CAA enters details from
the form into their system. Forms are then printed by the AO and
posted to the relevant universities. Universities assess individual ap-
plications and make offers. Universities communicate offers directly
to students.

3.2 Stage Two
Students search for course information on the CAA system. Cur-
rently this information is supplied by each university to the CAA on
an annual basis. One of the flaws of this system is that information
could be out of date due to new courses being introduced or some
courses being deleted from the prospectus.

• In addition to functionality from Stage One, the CAA system
should also display up to date course information.

3.2.1 System workflow. In this case, the application workflow
from a student perspective remains the same. There is a change
in how course information is displayed to potential students; the
system now accesses course information in real time using REST
services.

3.3 Stage Three
Due to the success of the CAA application it was decided that college
admissions should also be undertaken using the CAA system.

3.3.1 System workflow. Again, the application workflow re-
mains the same from the perspective of a student, with the addition
that they now have the option of applying for college (Further
Education) admission as well as university (Higher Education).

3.4 Stage Four
The CAA System will now process applications from international
(overseas) students. This also integrates functionality from the
qualification mapping services in external organisations, during
the application handling process. The REST API calls to achieve
the above functionality are summarised in Table 1. An overview of
the MSA deployed onto one container is illustrated in Figure 2.

4 SIMULATION
From the application scenario described in section 3, we have sim-
ulated two MSA deployments. The first uses a single container for
all of the microservices as per Figure 2. Figure 3 illustrates the par-
titioning of microservices onto two containers, thereby introducing
method invocation across containers.

4.1 Test environment
For the simulation, we deployed Microsoft ASP.Net REST APIs
programmed using C# onto a Microsoft IIS v7 webserver. The web
application was also hosted on an IIS webserver. Activity monitor-
ing was provided by the Dynatrace (https://www.dynatrace.com/)
tool.

4.2 Results
The results are summarised in Figure 4. In the first case, all of
the microservices identified were implemented and hosted on the
same server, and requests of varying volume were made through
the web application. The roundtrip time of service invocation was
recorded using Dynatrace. This was repeated for the dual container
implementation, where the microservices were distributed across
the web servers.

Figure 4 quantifies the latency for each case, showing how la-
tency increases for a given volume of requests from the user inter-
face. The graph shows the total time taken for a request originating
from the browser to a response being displayed in the browser.
In the second case services were implemented on separate servers.
Since a network component had been inserted between the services
an increase in latency was expected.

However the relative difference between each deployment re-
mains small at less than 1%, though this is for a single workflow
with no dependencies upon other supplying services. Since MSAs
promote re-use, nested dependencies have the potential to introduce
significant delays even if the origins of the latency are relatively
small.

5 DISCUSSION
Finer-grained microservices result in a potential increase in the
number of in-process method invocations. This is tolerable when
the microservices lie within the same container, as the message
passing is rapid and the probability that the service request is
completed is high and wholly dependent upon the application in
the container.

Once the messages broach the boundaries of containers to make
requests to externalmicroservices, additional vulnerabilities threaten
the successful completion of the request, not least the variables
introduced by a network connection.

As such, the issue of performance is not wholly restricted by
latency through increased network traffic, but it is also influenced
by additional risks from external communication mechanisms.

An application designer who does not have to consider dis-
tributed applications can then adopt the MSA approach within
one container, or at least use containers to scale an application but
have those containers hosted on the same cloud.

However, this is not the case for applications that require the
integration of IoT devices, whereby it is expected that there will be
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Table 1: REST API call URLs

Method URL Description Database action
GET /CAA Entry point to CAA Application READ
GET /CAA/Application/ Reads application(s) from Database READ
GET /CAA/Application/{applicationId} Reads application from Database based on applicationId READ
POST /CAA/Application/{applicationId} Updates an application in the database UPDATE
PUT /CAA/Application/ Adds a new application into the database. INSERT
DELETE /CAA/Application/{applicationId} Deletes an application from database DELETE
GET /CAA/Application/PrintApplication Prints application for delivery to university READ
POST /CAA/Application/ShipApplication Delivers application to university POST

Figure 2: Application architecture with microservices deployed into a single container.

a distribution of services across entities, and that there will be at
least two containers on at least two hosts.

This suggests that the issue of microservice granularity has to be
treated differently depending upon the future requirements that are
envisaged, which is the underpinning challenge and therefore the
motivation for this work. Microservices that co-exist in the same
container can benefit from finer-grained deployments, whereas
microservices distributed across networks have a more resilient
architecture when they are exposed as courser-grained services.

5.1 Implications for IoT applications
Approaches to IT delivery such as cloud computing have enabled
application development to be somewhat simplified, which in turn

has facilitated more complex solutions to challenging business
problems. The Internet of Things does provide far more challenging
complexity to deal with.

The constraints of device capability are rapidly dwindling as
the miniaturisation of hardware continues to reduce costs and
increase capabilities. One such example is edge computing, where
computational power is located at the edge of a network as opposed
to being centralised as per the client-server or n-tier architectures.

Edge computing utilises cloudlets to simplify collections of con-
strained hardware (such as embedded systems, FPGA, etc.) so that
applications can be deployed in a platform and technology agnostic
fashion [15].
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Figure 3: Application architecture with microservices deployed into two containers.

Figure 4: Round-trip service requests/responses and latency
for single and dual container deployment.

Figure 5 describes an edge computing architecture whereby dig-
ital camera images are pre-processed on an edge device, before
being mined for patterns on a cloudlet. The cloudlet is one or more
devices local to the camera, and therefore in close proximity to the
edge of the network.

Microservice messaging deployed within the cloudlet will be
a combination of in-container and container-to-container calls,
as well as communicating with services hosted in the destina-
tion cloud. ZeroMQ is one example of a protocol for inter-service

Figure 5: Using cloudlets to simplify streaming analytics at
the edge of a network.

communication[1]. Similar examples exist in other domains such as
the delivery of community healthcare services[4, 16], where there is
the added complexity of restricted bandwidth in Low Power Wide
Area Networks (LPWAN)[17], used as an effective way of ensuring
reliable network coverage that is independent of telecommunica-
tions or WiFi networks (see Figure 6). Data collected via IoT devices
is analysed locally within the home environment, providing a fast
response for visualisation, whilst also maintaining patient privacy.
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Figure 6: An IoT architecture for the delivery of community
healthcare services.

Analytics functions then produce insight that is stored in a central
remote cloud, upon which intelligence functions can be performed
over the collective dataset[2] of the community. These domains are
challenging to model so that the interactions can be authentically
captured[5].

MSA seems to be particularly suited to these emerging situations
as it is feasible that services may be decomposed and distributed in
one setting, and then bundled together in fewer (or single) contain-
ers in another scenario.

This implies that the deployment domain might influence the
orchestration of the granularity of microservices; this is an interest-
ing open challenge for the research community, particularly with
regard to the autonomous orchestration, packaging and deployment
of microservices as a result of sensing the local IoT environment.

6 CONCLUSIONS
Microservices appear to enable a more detailed ‘finer-grained’ ap-
proach to service declaration, and as a consequence can permit
greater reuse of functionality when they co-exist within a con-
tainer, or alongside separate containers on the same host. Whilst
this traditionally would have been a server, this also holds true
for cloud-based environments where the platform is abstracted
away from the hardware via virtualisation. This level of granularity
is much finer than that experienced with more established web
services.

However, once the requirement for service invocation requires
a call to a container or host via a network link, there is a reduction
in performance both as a result of network data transfer rates, as
well as the potential for a communication link to fail.

The decision process for microservice granularity is therefore
influenced by a number of environmental factors, irrespective of the
potential to rely purely upon functional decomposition to specify
microservices at the “correct” size. In heterogeneous environments
such as clouds, abstraction from the disparate hardware is provided
by the platform. As yet, this concept of abstraction is not apparent in
IoT scenarios, and therefore, with the implied reliance upon network
links (and those links may have limited bandwidth), granularity

must be considered from the standpoint of its eventual impact upon
application performance when deploying MSA.
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