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We present a challenging validation of phase field multicomponent lattice Boltzmann equation (MCLBE)
simulation against the Re = 0 Stokes flow regime Taylor-Einstein theory of dilute suspension viscosity. By
applying a number of recent advances in the understanding and the elimination of the interfacial microcurrent
artefact, extending to a three-dimensional class of stability-enhancing multiple relaxation time collision models
(which require no explicit collision matrix, note) and developing new interfacial interpolation schemes, we are
able to obtain data that show that MCLBE may be applied in new flow regimes. Our data represent one of the most
stringent tests yet attempted on LBE—one which received wisdom would preclude on grounds of overwhelming
artefact flow.

DOI: 10.1103/PhysRevE.96.053308

I. INTRODUCTION

The past two decades have seen steady growth in interest in
multirelaxation time (MRT) lattice Boltzmann (LB) schemes,
which offer enhanced simulation stability [1–8], etc. We
extend to D3Q19 a recent D2Q9 variant [9], in which the
usual collision matrix is only implicit, being represented by
a carefully chosen, modal eigenbasis, which is subject to
forced, scalar relaxation. As well as the usual advantages, the
new method has transparent analytic properties: its orthogonal
modes are defined as polynomials in the lattice basis, as
are the elements of the transformation matrix between the
distribution function and the mode space. This uniquely allows
for the direct reconstruction of a post-collision distribution
function, which is effectively parameterized by the eigenvalue
spectrum. Our purpose in developing a new model is to
stabilize multicomponent LBE (MCLBE) so as to attempt
the challenge of recovering the Taylor-Einstein theory of
suspension viscosity [10,11].

The structure of this paper is as follows. In Sec. II, we
provide background material of the proposed 3D MRT scheme.
In Sec. III, we present relevant methodological advances, in
particular, the discovery of 19 polynomial expressions for the
inverse transformation matrix, and the analysis of different
viscosity interpolation methods. In Sec. IV, we illustrate and
discuss the theoretical and simulation results achieved and
finally, in Sec. V, we conclude on the significant findings of
this work.

II. BACKGROUND

First, consider the base model. Our three-dimensional (3D)
MRT LBE with body force, F, may be written

fi(x + ciδt,t + δt)

= fi(x,t) +
∑

j

Aij

[
f

(0)
j (x,t) − fj (x,t)

] + δtFi, (1)

*Author to whom all correspondence should be addressed:
xu.xu@shu.ac.uk

where

Fi = ti

[
3F · ci + 9

2

(
1 − λ3

2

)
(Fαuβ + Fβuα)

]
, (2)

and

f
(0)
j = ρtj

(
1 + 3uαcjα + 9

2uαuβcjαcjβ − 3
2uγ uγ

)
. (3)

To recover hydrodynamics, Fi , collision matrix A, and its
eigenvalues λi , must preserve the following properties:∑

i

Fi = 0,
∑

i

ciFi = nF,
∑

i

ciciFi = 1

2
[C + CT],

∑
i

1iAij = 0,
∑

i

ciαAij = 0,
∑

i

giAij = λ10gj ,

∑
i

ciαciβAij = λ4cjαcjβ,
∑

i

giciαAij = λ11gjcjα,

∑
i

c2
iαciβAij = λ14c

2
jαcjβ,

∑
i

gic
2
iαAij = λ17gjc

2
jα, (4)

where α and β represent the x, y, or z directions, λp denotes
the pth eigenvalue of Aij , and Cαβ ≡ 1

2 (uαFβ + uβFα) [9]. For
eigenvalues, their corresponding left-row eigenvectors, h(p),
p ∈ [0,18], and the modes they project, see Table I(a). A is
defined by its eigenspectrum (h(p),λp), which project modes
with scalar relaxation.

III. METHODOLOGY

A. Explicit algebraic 3D MRT scheme

For D3Q19, we extend the set developed for D2Q9 [9],
using Gram-Schmidt orthogonalization to which in Table I(a).
Four degenerate eigenvectors necessarily project hydrody-
namic modes ρ ≡ ∑

i fi and ρu ≡ ∑
i fici [9] with λi = 0,

six project components of stress Pαβ , four “ghosts” are
chosen to project N , J (following Refs. [2–4]) and five new
eigenvectors are denoted E1, E2, E3, Xx , and Xy . Left-row
eigenvectors h(p)s define projection matrix

M ≡ (h(0),h(1), . . . ,h(18))T , (5)
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TABLE I. (a) Collision matrix left-row eigenvector notation and properties, with eigenvalues and the corresponding equilibria and sources
used in Eq. (9). Here, ρuα , Pαβ , and �

(0)
αβ represent the α and αβ components of momentum, viscous stress tensor, and momentum flux tensor,

respectively. (b) The lattice basis or unit cell set for the D3Q19 model developed in this paper.

(a) (b)

Mode Component λp Projection Modal source, S(p) Equilibrium, s(p) Direction, i cix ciy ciz

h(0) h
(0)
i = 1i 0 ρ 0 ρ 0 0 0 0

h(1) h
(1)
i = cix 0 ρux nFxδt ρux 1 1 0 0

h(2) h
(2)
i = ciy 0 ρuy nFyδt ρuy 2 1 −1 0

h(3) h
(3)
i = ciz 0 ρuz nFzδt ρuz 3 0 −1 0

h(4) h
(4)
i = c2

ix λ4 Pxx
1
2 (Cxx + Cxx) �(0)

xx 4 −1 −1 0

h(5) h
(5)
i = c2

iy λ4 Pyy
1
2 (Cyy + Cyy) �(0)

yy 5 −1 0 0

h(6) h
(6)
i = c2

iz λ4 Pzz
1
2 (Czz + Czz) �(0)

zz 6 −1 1 0

h(7) h
(7)
i = cixciy λ4 Pxy

1
2 (Cxy + Cyx) �(0)

xy 7 0 1 0

h(8) h
(8)
i = cixciz λ4 Pxz

1
2 (Cxz + Czx) �(0)

xz 8 1 1 0

h(9) h
(9)
i = ciyciz λ4 Pyz

1
2 (Cyz + Czy) �(0)

yz 9 0 0 1

h(10) h
(10)
i = gi λ10 N 0 0 10 1 0 1

h(11) h
(11)
i = gicix λ11 Jx 0 0 11 0 1 1

h(12) h
(12)
i = giciy λ11 Jy 0 0 12 −1 0 1

h(13) h
(13)
i = giciz λ11 Jz 0 0 13 −1 0 1

h(14) h
(14)
i = c2

ixciy λ14 E1
1
3 Fy E

(0)
1 = 1

3 ρuy 14 0 0 −1

h(15) h
(15)
i = c2

ixciz λ14 E2
1
3 Fz E

(0)
2 = 1

3 ρuz 15 1 0 −1

h(16) h
(16)
i = cixc

2
iy λ14 E3

1
3 Fx E

(0)
3 = 1

3 ρux 16 0 1 −1

h(17) h
(17)
i = gic

2
ix λ17 Xx

(
1 − λ4

2

)
(Fyuy + Fzuz) X(0)

x = ρ

2

(
u2

y + u2
z

)
17 −1 0 −1

h(18) h
(18)
i = gic

2
iy λ17 Xy

(
1 − λ4

2

)
(Fxux + Fzuz) X(0)

y = ρ

2

(
u2

x + u2
z

)
18 0 −1 −1

such that

M f = (ρ,ρux,ρuy,ρuz,Pxx,Pyy,Pzz,Pxy,Pxz,Pyz,

N,Jx,Jy,Jz,E1,E2,E3,Xx,Xy)T , (6)

where f ≡ (f0,f1,f2, . . . ,f18)T . Using M, Eq. (1) may be
transformed to

M f+ = M f + M A M−1(M f(0) − M f) + MF̃, (7)

where F̃ denotes a column vector with elements Fi and f, f+
and f(0) are now column vectors. Since the h(p) are left row
eigenvectors of A, it follows

M A = 	 M ⇔ 	 = M A M−1, (8)

where 	 = diag(λ0, λ1, . . . ,λ18). Therefore, Eq. (1) may be
written in mode space as

h(p)+ = h(p) + λp(s(p) − h(p)) + S(p), (9)

where S(p) ≡ M · F̃ and s(p) ≡ M · f(0). The inverse transfor-
mation matrix,

M−1 ≡ (k(0),k(1),k(2), . . . ,k(18)), (10)

may be constructed from column vectors k(p), exactly defined
as polynomials of the lattice basis, such that

6k
(0)
i = ti

[
12gic

2
iθ − 15c2

iθ − 21c2
iz + 23 − 8gi

]
, (11)

k
(1)
i = ti[6cixciy(2cix − ciy) + cix(5 + gi) − 2ciy(2 − gi)],

(12)

k
(2,3)
i = ticiγ

[
5 + gi − 6c2

ix

]
, (13)

2k
(4,5)
i = ti

[−2gi

(
c2
iζ +2c2

iξ

)+11c2
iζ + c2

iξ + 3c2
iz − 5 + 2gi

]
,

(14)

2k
(6)
i = ti

[−6gic
2
iθ + 3c2

iθ + 15c2
iz − 7 + 4gi

]
,

k
(7,...,9)
i = 3ticiαciβ, (15)

2k
(10)
i = ti

[
6c2

iθ − 12gic
2
iθ + 12c2

iz − 8 + 11gi

]
, (16)

k
(11)
i = ti[3cixciy(2cix − ciy) + cix(1 + 2gi) − ciy(2 + gi)],

(17)

k
(12,13)
i = 2tigiciγ

[
2 + 4gi − 6c2

ix

]
, (18)

k
(14,15)
i = 3ticiγ

[
6c2

ix − 2 − gi

]
, (19)

k
(16)
i = 3ti[6cixciy(ciy − 2cix) − (2 + gi)(cix − 2ciy)], (20)

k
(17)
i = ti

[−gi

(
4c2

ix + c2
iy

) − c2
ix − 2c2

iy − 3c2
iz + 2 − 2gi

]
,

(21)
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FIG. 1. Viscous stress field σ ′
xy in the equatorial plane of a spherical red drop, radius R = 20, suspended in a blue fluid which is sheared,

at Re = 0 for two viscosity ratios, 	, with ηB = 1
3 (continuous component) and R

L
= 1

6 . Case 1, 	 = 1
16 : (a) Taylor’s theory, (b) interfacial

interpolation based upon a density-weighted harmonic mean of separated fluids’ parameter τ = 1
λ4

[see Eq. (27)], (c) interfacial interpolation
based upon a density-weighted harmonic mean of shear viscosity [see Eq. (28)], and (d) interfacial interpolation based upon a density-weighted
arithmetic mean of shear viscosity [see Eq. (29)]. Case 2, 	 = 12: (e) Taylor’s theory, (f) interfacial interpolation based upon a density-weighted
harmonic mean of separated fluids’ parameter τ = 1

λ4
[see Eq. (27)], (g) interfacial interpolation based upon a density-weighted harmonic

mean of shear viscosity [see Eq. (28)], and (h) interfacial interpolation based upon a density-weighted arithmetic mean of shear viscosity
[see Eq. (29)].

k
(18)
i = ti

[
2gi

(
c2
ix + 2c2

iy

) − 2c2
ix − c2

iy − 3c2
iz + 2 − 2gi

]
,

(22)

where c2
iθ = c2

ix + c2
iy , γ ∈ [y,z] and is taken in alphabetical

order, (ζ,ξ ) are taken in order as (x,y) and (y,x), and
α,β ∈ [x,y,z] are denoted in the pair order of (x,y), (x,z),
and (y,z). Using the methodology developed for the D2Q9
case [9], we invert M to construct a post-collision distribution
function vector f+, describing flow in the presence of force
distribution, F:

f+ = M−1(ρ+,ρu+
x ,ρu+

y ,ρu+
z ,P +

xx,P
+
yy,P

+
zz ,P

+
xy,P

+
xz,

P +
yz,N

+,J+
x ,J+

y ,J+
z ,E+

1 ,E+
2 ,E+

3 ,X+
x ,X+

y )T , (23)

which may be written in explicit form after Ref. [9]. MRT
LBE is more computationally expensive than LBGK [12]
but is more stable [1–3]. The scheme we extend here from
Ref. [9] includes the existence of polynomial expressions
k(p), which allow (i) algebraic inversion from the mode space
[Eq. (10)], (ii) an exact expression for f+, (iii) removal of
explicit collision and inversion matrices, and hence some
computational overhead.

B. Interfacial viscosity interpolation

Here we are motivated by a need to extend the viscosity con-
trast available in simulations of multicomponent flow using a
phase-field MCLBE [9,13,14], to facilitate a validation against

the stress field Taylor predicted in 1932, for steady, shear
flow past a spherical drop at Re = 0 [10] and the consequent
prediction of effective viscosity in a dilute suspension of small
drops, after Einstein [11]. Accordingly,

F = σκ

2
∇ρN (24)

is an immersed boundary force, where according to Ref. [15],
the phase field is

ρN ≡ ρR − ρB

ρR + ρB

, (25)

and the local interfacial curvature is

κ ≡ ∇s

∇ρN

|∇ρN | . (26)

Here, ρR and ρB are densities of two immiscible fluid
components, which are segregated, post collision, using the
methodology of d’Ortona [16] (see Refs. [9,13,14]) and ∇s is
a surface gradient operator.

The above force field is localized but clearly continuously
distributed. In fact, in all MCLBE an interface is defined by a
phase field or order parameter, which varies continuously, over
a small distance, between constant bulk fluids values, with a
continuum interface commonly taken to be ρN = 0 surface.
The finite width of the resulting interface calls into question
the representation of target continuum-scale kinematic and
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FIG. 2. Effective suspension viscosity, ηeff, as a function of
concentration, c (discrete crosses linearly interpolated by dotted
lines), for the indicated range of drop/background fluid viscosity ratio,
	 = ηR

ηB
, together with the variation predicted by the Taylor-Einstein

result, η
(T )
eff = ηB [1 + (

5
2 ηR+ηB

ηR+ηB
)c] (continuous line of corresponding

color). These data were obtained using the interpolation defined in
Eq. (27).

dynamic conditions. In the present context, we are concerned
with the no-traction condition [17].

Take a steady, planar, red-blue interface x = x0, constant,
sheared in y direction, after Liu et al. [18]. Phase field MCLBE
is described by a weakly compressible Navier-Stokes equation
with F, for what is a single, effective fluid (the role of F
is to insert Laplace law physics). For a flat interface, F = 0
and the lattice fluid is described by d

dx
σ ′

xy = 0, ∀x. Applying
system symmetries, we obtain σ ′

xy = K , a constant ∀x. This
prefigures the continuum no-traction (continuity of viscous
flux) condition. Apparently, LBE’s dynamics automatically
ensure shear stress is continuous through the interface region.
Clearly, choice exists in the interpolation of viscosity or,
equivalently, λ4. Liu and coworkers impose a requirement
on the velocity gradient, which it varies like ρN [18], in
this situation and in applications to contact angle hysteresis
[19]. This assumption yields an interpolation of λ4 derived
from the harmonic mean of viscosity with weights ρR

ρ
and

ρB

ρ
. Liu et al. [18] state their approach is equivalent to

Ginzburg’s, when projecting the sharp interface limit [20]
(see Fig. 3 of Ref. [20]). Zu et al. [21] assume the interfacial
velocity gradient follows an order parameter and argue for
an interpolation based on a weighted arithmetic average of
reciprocal viscosity. There are more involved approaches,
including that of Grunau et al. [22]. For the data presented
in the next section, optimum agreement with Taylor-Einstein
theory is obtained using an alternative method.

In our MCLBE, interfacial effects are carried by a force
with weight |∇ρN |, which may be approximated by 4ρRρB

ρ2 =
(1 − ρN2) [23]. Self-consistency argues for an interpolation of
λ4, between bulk values λR

4 and λB
4 , such that source term, Fi ,

has a consistent variation. Hence, we choose (1 − λ4
2 ) ∼ ρN or

(1 − λ̄4
2 ) = ρR

ρ
(1 − λR

4
2 ) + ρB

ρ
(1 − λB

4
2 ), and noting ρR

ρ
+ ρB

ρ
=

1, our interpolation may be written

λ̄4 = ρR

ρ
λR

4 + ρB

ρ
λB

4 = 1 + ρN

2
λR

4 + 1 − ρN

2
λB

4 . (27)

In Sec. IV we will consider data derived from the above
interpolation alongside that obtained using other methods. The
different interpolations used for reference in Sec. IV are based
on taking a relative density weighted harmonic mean of shear
viscosity η = ρ

ρR
ηR

+ ρB
ηB

, which may be expressed as follows:

λ̄4

2 − λ̄4
= ρR

ρ

(
λR

4

2 − λR
4

)
+ ρB

ρ

(
λB

4

2 − λB
4

)
, (28)

and also an interpolation based on the arithmetic mean of shear
viscosity η = ρR

ρ
ηR + ρB

ρ
ηB , which may be expressed as

1

λ̄4
= ρR

ρ

1

λR
4

+ ρB

ρ

1

λB
4

. (29)

IV. RESULTS AND DISCUSSION

Experimental studies of suspension viscosity emphasize
concentration values outside the Re = 0 theory but do identify
certain emulsions that behave in agreement with the Taylor-
Einstein result, certainly for concentrations c < 5% (see, e.g.,
Nawab et al. [24], Hur et al. [25], and Mason et al. [26]).
Notably, a comparison of MCLBE with Re = 0 theory is not
obstructed by MCLBE’s notorious interfacial microcurrent
(see Ref. [27] and references therein). For phase-field MCLBE
variants, this artefact has recently been argued to arise from
superposable solutions to the field equations, attributable, in
increasing significance, to the stencil used for force weight
∇ρN , discrete lattice effects, and (most significantly) the
calculation of κ [27]. At Re = 0, hydrodynamic signals cannot
be assumed to overwhelm artefacts, but this regime may still
be addressed by subtracting independent microcurrent fields,
to expose a hydrodynamic response. (Micro-current fields are
easily determined for a red drop in stationary blue fluid.)

Figure 1 compares stresses between theory and microcur-
rent adjusted simulation. We show viscous stress σ ′

xy measured
in the projected equatorial plane, z = 0, of a three-dimensional
red drop, initial radius R = 20 lattice units, contained within a
cubic box, side L lattice units, with the continuous component
(blue) fluid subject to a Lees-Edwards shear [28]. This
boundary condition eliminates finite-size effects but allows
periodic drop replicas to interact [9]. The resulting suspension
concentration is controlled by L, i.e.,

c = 4πR3

3L3
. (30)

The applied shear corresponds to approximately constant
boundary flow parallel to êy in box faces x = x0, constant.
Taylor calculated σ

′(T )
αβ , α,β ∈ [x,y,z] due to an inclined,

applied shear, superposed with a constant body rotation
around êz [10]. Accordingly, to compare with our simu-
lation, it is necessary to rotate coordinates and Fig. 1(a)
shows a combination of Taylor’s stresses (σ ′(T )

xx − σ ′(T )
yy ).

Figures 1(b)–1(d) show the corresponding simulation data for

053308-4



BENCHMARKING OF THREE-DIMENSIONAL . . . PHYSICAL REVIEW E 96, 053308 (2017)

FIG. 3. Data equivalent to that shown in Fig. 2 using different
interfacial interpolation methods. Effective suspension viscosity, ηeff,
as a function of concentration, c (discrete crosses linearly interpolated
by dotted lines), for the indicated range of drop/background fluid
viscosity ratio, 	 = ηR

ηB
, together with the variation predicted by the

Taylor-Einstein result, η
(T )
eff = ηB [1 + (

5
2 ηR+ηB

ηR+ηB
)c] (continuous line of

corresponding color). These data were obtained using an interpolation
based upon (a) the harmonic mean of the separated fluids’ shear
viscosity defined in Eq. (28) and (b) the arithmetic mean of shear
viscosity defined in Eq. (29).

L = 128, viscosity contrast:

	 ≡ ηR

ηB

, (31)

where ηC is the shear viscosity of the C fluid. In Fig. 1 we show
the significant difference between stress fields measured using
existing and alternative interfacial interpolations of viscosity,
or equivalently, λ4. These are given in Eqs. (27), (28), and (29).
Furthermore, the viscous stress field, σ ′

xy , is shown in Fig. 1
for two 	. For this data, ηB = 1

3 (the continuous component)
is fixed and R

L
= 1

6 . For the images in the upper row, 	 = 1
16 .

Figure 1(a) shows Taylor-Einstein theory; Fig. 1(b) shows

FIG. 4. Relative error of interfacial interpolation method, ε, for
a range of 	, expressed in percentage. For all data in Fig. 2,

ε ≡ η
(T )
eff −ηeff

η
(T )
eff

× 100% was computed for each of the three interfacial

interpolation methods considered, as identified in the key.

the stress field obtained using the interfacial interpolation
based upon a density-weighted harmonic mean of separated
fluids’ parameter τ = 1

λ4
[see Eq. (27)]; Fig. 1(c) shows

stress obtained with the interfacial interpolation based upon
a density-weighted harmonic mean of shear viscosity [see
Eq. (28); and Fig. 1(d) shows results from our method of
interfacial interpolation shear viscosity, based upon a density-
weighted arithmetic mean of shear viscosity [see Eq. (29)].
In the top row, it is clear that Figs. 1(b) and 1(d) are most
representative of Fig. 1(a). The bottom row in Fig. 1 shows
equivalent data for 	 = 12 and it clearly shows that Figs. 1(f)
and 1(g) are most representative of Fig. 1(e).

We next consider a range of crystalline suspension concen-
trations, each of fixed viscosity ratio, 	, inferring effective
suspension viscosity, ηeff, from plots of system-averaged 〈σxy〉
against c, fitted using unconstrained regression (see, e.g.,
Fig. 2). For microcurrent flow alone, 〈σxy〉 ≈ 0 (though viscous
dissipation is affected—see Ref. [9]) but it is still necessary to
correct system 〈σxy〉 for the presence of immersed boundary
force, F [9]. Agreement with Taylor-Einstein theory is affected
by the method used to interpolate λ4, or alternatively viscosity,
η, in the interfacial region, as we now discuss. All data in
Figs. 2, 3, and 4 correspond to

Re ≡ γ̇ R2ρ

η
= 0.0198, (32)

Ca ≡ ηγ̇R

σ
= 0.0110, (33)

which are held constant throughout.
Figure 2 shows 11 sets of measured ηeff for a wide range

of 	 such that 1
32 � 	 � 12 (crosses interpolated by dotted

lines), and the appropriate Taylor-Einstein predictions (solid
lines of same color):

η
(T )
eff = ηB

[
1 +

(
5
2	 + 1

	 + 1

)
c

]
. (34)

Data presented in Fig. 3 are equivalent to that shown in
Fig. 2, but using different interfacial interpolation methods.
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Figure 3(a) shows effective suspension viscosity data based
upon the interpolation of interfacial viscosity in Eq. (28);
Fig. 3(b) shows equivalent data based upon Eq. (29). The qual-
ity of the fit to theory with the different interpolation methods
is different over different part over the domain of 	. This is
clearly shown in Fig. 4, where we show the relative error,

ε ≡
(

η
(T )
eff − ηeff

η
(T )
eff

)
×100%, (35)

plotted over the range of 	. It is apparent that for 	 > 1,
the agreement with theory using arithmetic mean method is
significantly worse, whereas for 	 < 1, the agreement using
harmonic mean method is much worse. Our interpolation in
Eq. (27) represents an optimum over the whole range of 	.
This point is further summarized in Sec. V.

V. CONCLUSIONS

Taken together, Figs. 1–4 underscore the significance of
the interfacial interpolation. The fit produced by Eq. (27)
represents an optimum over the range of 	 studied and is
best when the exterior fluid is more viscous. For 	 < 1, the fit
is improved by using an interpolation based upon an arithmetic
mean of viscosities however the fit at 	 > 1 then degrades.
Over the range of 	, the scheme in Eq. (27) produced most
consistent agreement.

Comparison with the Taylor-Einstein represents a stringent
test of phase field MCLBE (and thereby the approximations

within the theory [10], which, here, has been extended to fluid
subject to an immersed boundary force [9]). It is facilitated
by our development of an inverse MRT methodology—a
generic scheme which circumvents the need for a calculation
of collision matrix and allows direct construction of a post-
collision LBE distribution function.

The conditions of our validation (Re, Ca small) mean
the microcurrent is significant with respect of physical flow
(possibly the reason for previous neglect of this validation).
Our results achieve a paradoxical accuracy resolved by
appealing to recent work on the hydrodynamic nature of
microcurrent flow [27], the accuracy of the Taylor-Einstein
result recovered herein may be understood by observing that
Re = 0 regime is linear and microcurrent stresses (themselves
a solution of the Stokes equation) therefore superpose with
flow induced by the applied shear. Once identified, they may
be subtracted. Furthermore, this work points to the importance
of the method of interpolation of viscosity eigenvalue, λ4,
across the interfacial region, with our data producing a
optimum for the interpolation in Eq. (27).
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