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ABSTRACT 46 
 47 

Guidelines from the American National Comprehensive Cancer Network (NCCN) 48 

recommend neoadjuvant chemotherapy (NAC) to patients with locally advanced breast 49 

cancer (LABC) to downstage tumors before surgery.  However, only a small fraction 50 

(15-17%) of LABC patients achieve complete pathologic response (pCR), i.e. no 51 

residual tumor in the breast, after treatment.  Measuring tumor response during 52 

neoadjuvant chemotherapy can potentially help physicians adapt treatment thus, 53 

potentially improving the pCR rate.   54 

Recently, imaging biomarkers that are used to measure the tumor’s functional 55 

and biological features have been studied as pre-treatment markers for pCR or as an 56 

indicator for intra-treatment tumor response.  Also, imaging biomarkers have been the 57 

focus of intense research to characterize tumor heterogeneity as well as to advance our 58 

understanding of the principle mechanisms behind chemoresistance.  Advances in 59 

investigational radiology are moving rapidly to high-resolution imaging, capturing 60 

metabolic data, performing tissue characterization and statistical modelling of imaging 61 

biomarkers, with an endpoint of personalized medicine in breast cancer treatment.  In 62 

this commentary, we present studies within the framework of imaging biomarkers used 63 

to measure breast tumor response to chemotherapy.  Current studies are showing that 64 

significant progress has been made in the accuracy of measuring tumor response either 65 

before or during chemotherapy, yet the challenges at the forefront of these works 66 

include translational gaps such as needing large-scale clinical trials for validation, and 67 

standardization of imaging methods.  However, the ongoing research is showing that 68 

imaging biomarkers may play an important role in personalized treatments for LABC.          69 



 3 

    INTRODUCTION AND BACKGROUND 70 
 71 

Recent guidelines by the National Comprehensive Cancer Network (NCCN) 72 

define locally advanced breast cancer (LABC) as stage 3 breast cancer [1].  Thus, large 73 

tumors greater than 5 cm with regional lymph node involvement or inoperable breast 74 

cancer, defined as having skin and/or chest wall involvement are locally advanced [1, 75 

2]. Incidence rates of LABC in the United States accounted for 12.4% of new breast 76 

cancer cases in 2015 and 8.5% of cases in the United Kingdom [3, 4].    Survival data 77 

from the SEER registry (Statistics, Epidemiology, and End-Results Program) in the 78 

United States have indicated poor survival outcomes  [5, 6]; mortality rates were 52% 79 

for stage 3A breast cancer and 48% for stage 3B disease [5].   Similarly, data from the 80 

United Kingdom showed that between 2002-2006, only 55.1% of women with stage 3 81 

breast cancer survived beyond 5-years (recent data unavailable) [7].  Poor survival 82 

outcomes are caused by factors associated with genetics, tumor heterogeneity, 83 

vascularity, oxygenation and some intrinsic molecular features such as estrogen 84 

receptor (ER) and human epidermal growth factor receptor-2 (Her2) expression.     85 

The recommended treatment course for LABC is neoadjuvant chemotherapy 86 

(NAC), followed by surgery, then radiation [1, 8].  Studies emerged in the 1970s 87 

demonstrating the benefit of pre-operative chemotherapy to downstage tumors before 88 

surgery, since reducing the tumor size and extent can make surgical excision possible 89 

[9] .   The additional benefit of using NAC includes enabling lumpectomy rather than 90 

total mastectomy, if for example there are clinical indications (tumor size and margins, 91 

nodal status and patient preference after NAC) [1, 9-12].  Neoadjuvant chemotherapy is 92 

also desirable since monitoring tumor response during therapy would allow potentially 93 
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adapting therapies based on clinical response [13, 14].  It has been shown that 94 

pathological complete response (pCR), defined as having no residual tumor after NAC 95 

can serve as a prognostic indicator for survival and is supported by work from the 96 

German Breast Group (GBG) who reported improved disease-free survival for luminal 97 

B/Her2-, Her2+ (non-luminal), and triple negative (ER-/PR-/Her2-) breast cancers that 98 

achieve pCR [15].  Furthermore, a meta-analysis of 3,182 locally advanced breast 99 

cancer patients demonstrated improved survival in patients who achieved pCR after 100 

neoadjuvant chemotherapy (overall survival=2.3-7.6 years) [16]. In another study, 87% 101 

of pCR patients survived beyond 5 years, in comparison to patients who demonstrated 102 

partial or no response [17].  The results of these studies suggest that pathology 103 

endpoints after neoadjuvant chemotherapy can provide vital information on survival 104 

outcomes and thus, pCR is in part, the desired clinical outcome for administering NAC.  105 

However, despite the significant improvements in treatment strategies over past 106 

decades, only a small fraction of patients will achieve pCR.   Previous studies have 107 

reported pCR rates of only 15.2%-17.4% following neoadjuvant chemotherapy [16, 18].  108 

With less than a quarter of treated patients achieving a complete pathological response, 109 

new ways of improving outcome and survival for patients with LABC are a real clinical 110 

challenge for the future.   111 

To address these challenges, there has been research interests in exploring new 112 

ways to assess intra-treatment responses to NAC as well in finding ways to predict the 113 

treatment response even before the use of chemotherapy; in other words, to make a 114 

prognosis for the presumed efficacy of the treatment.  A deeper understanding of tumor 115 

behavior and customizing treatments based on genetic, patient and other biological 116 
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information are referred to as precision medicine.  The tailoring of treatments is also 117 

termed personalized medicine.    118 

To help achieve this, a greater understanding is needed of tumor biology; the 119 

way the tumor influences for example, angiogenesis, drives cell proliferation and 120 

ultimately how the tumor cells die from chemotherapy are important considerations for 121 

precision medicine in oncology.  In this commentary, we present past and current 122 

studies focusing on imaging biomarkers in breast cancer.  123 

 124 

HALLMARKS OF CHEMORESISTANCE AND 125 
CHEMOEFFICACY 126 
 127 
 128 
Intertumor and Intratumor Heterogeneity Contributes to Chemoresistance 129 

 130 

Intertumor heterogeneity is, in part, caused by intrinsic variances in molecular 131 

features such as estrogen receptor (ER), progesterone receptor (PR) and human 132 

epidermal growth factor-2 receptor (Her2).  Data from 50,571 women in the United 133 

States indicated that 72.7% of women exhibit luminal A-like breast cancer; while 12.2% 134 

express basal-like breast cancers.  A smaller portion of patients exhibit luminal B-like 135 

breast cancer (10.3%); whereas only 4.6% of all breast cancer patients have Her2 136 

overexpressed (Her2+) breast cancer. [19].  These differences in tumor profiles can 137 

require different targeted therapies, such as Trastuzumab in the case of Her2 138 

overexpressed tumors.  Breast cancer subtypes also demonstrate variable responses to 139 

neoadjuvant chemotherapy [15, 20, 21].  Reports from over 6,000 patients have 140 

indicated that basal-type, and HER2+ breast cancers have the highest rate of pCR to 141 
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anthracycline- and taxane-based chemotherapies. In contrast, luminal A and luminal B 142 

breast cancers (i.e. ER+, PR+) are highly resistant to chemotherapy [15].  Rodent 143 

models have demonstrated that luminal breast cancer cells exhibit stem-cell-like 144 

behaviors that are genetically driven for tumor cell immortality, higher rates of 145 

differentiation, and rapid proliferation [22].  Some studies have also suggested that 146 

basal-type tumors have dysfunctional cell-repair mechanisms in comparison to luminal 147 

A and luminal B tumors that make it more susceptible to chemotherapy-induced DNA 148 

damage [23].          149 

Intratumor heterogeneity is another treatment resistance challenge.  It is 150 

characterized as a mixture of cells and stromal features that constitute tumor 151 

composition.  Tumors are also constructed from a variety of other cell-types such as 152 

fibroblasts, immune cells, adipocytes and normal breast epithelial cells [24, 25].    The 153 

complexity of intratumor heterogeneity is confounded by morphological differences such 154 

as enlarged or shrunken cell sizes from tumor cell proliferation and cycling.  These 155 

events also cause substructural alterations that result in condensed nuclear bodies and 156 

organelle reorganization [26]. Taken together, tumors are composed of disorganized 157 

and aberrant cells, and circulating biomolecules that are “woven” into a turbulent 158 

vascular scaffold and environment.  Other physiological conditions that lead to 159 

intratumor heterogeneity include fluctuating interstitial fluid, variable vascular perfusion 160 

and circulating biomolecules [27].  These aberrations inhibit effective delivery of 161 

chemotherapies and, thus, result in variable treatment response.   Taken together, the 162 

heterogeneous and tortuous tumor matrix is a significant treatment challenge in breast 163 

cancer [28]. 164 
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 165 

Mechanisms of Chemoefficacy 166 

 167 

One mechanism by which chemotherapy agents exert their therapeutic effect is 168 

by committing tumor cells to apoptosis [29, 30].  In comparison to other forms of cell 169 

death, such as necrosis, apoptotic cell death is energy dependent, genetically controlled 170 

and morphologically distinct (i.e., developing apoptotic bodies, cell shrinking and 171 

nuclear condensation) (Figure 1) [31].   Apoptosis has been identified in primary breast 172 

tumors treated with neoadjuvant chemotherapy in situ.  Studies by Chang et al. (2000) 173 

and Ellis et al. (1997) demonstrated that there was an increase in apoptosis in 174 

responsive tumors and detected as early as 24 hours after the administration of 175 

chemotherapy [32, 33].  Chang et al. (2000) showed that increased apoptosis was 176 

linked to complete pathologic response where there was no residual or palpable 177 

disease after therapy [32].  Buchholz et al. (2003) also measured the apoptotic activity 178 

in breast tumors after 48 hours of chemotherapy.  Patients who had a 25% increase in 179 

the apoptotic activity had gone on to achieve pCR.  The apoptotic activity was 180 

significantly different to patients who did not achieve pCR (P<0.015)  [34].   Although 181 

only a small number of clinical studies have examined serial breast tumor biopsies to 182 

measure apoptosis in situ, the findings to date have indicated agreement with 183 

laboratory-based experiments for other tumor types in vitro [35-37].   184 

Alterations in the tumor’s vascular organization are also important hallmarks of 185 

chemoefficacy.   An important property of malignancies is the abnormal vascular 186 

architecture, which contributes to a spatially heterogeneous environment [38].   The 187 
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vascular morphology and layout have been well studied; blood vessels are 188 

disorganized, distributed unevenly, immature and leaky, which also affects the tumor’s 189 

response to treatment [39].  The tortuous vessel formations have been shown 190 

previously to inhibit drug efficacy by secreting cell-protective factors against 191 

chemotherapy insult [40, 41] .  Additionally, abnormal morphologies such as variable 192 

vessel diameters and weak junctions in the vessel walls have been demonstrated to 193 

inhibit efficacious drug delivery since leaky vessels mitigate drug concentrations in 194 

tumors for effective therapeutic effect [42, 43].  Additionally, the uneven vascular 195 

scaffold creates areas with variable and high interstitial fluid pressure, which resists the 196 

transport of cytotoxic agents into the stroma [28, 41, 44].    Solid tumors that respond to 197 

chemotherapy exhibit characteristic patterns in their vessel reorganization  [38].  Jain et 198 

al. (2005) described these patterns as vascular “normalization” by which the vascular 199 

architecture is reconfigured to eliminate inefficient, saccular, leaky and immature vessel 200 

formations (Figure 2) [38].  This results in improved oxygen delivery and cytotoxic 201 

efficacy.   In highly responsive tumors, the vasculature eventually regresses and limits 202 

the nutrient supply to tumor cells [45].  The net effect is a regression in the vascular 203 

density in tumors.  Consequently, this leads to spatial and structural changes in the 204 

tumor. 205 

Taken together, the important characteristics of tumor response to chemotherapy 206 

include vascular normalization and regression, cell death and changes in the tissue 207 

composition. These characteristics are the focus of detection using imaging biomarkers.   208 

 209 
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IMAGING BIOMARKERS AS INDICATORS FOR 210 
CHEMORESPONSE 211 
 212 

Conventional Imaging Methods 213 

Conventional imaging from magnetic resonance imaging (MRI), computed 214 

tomography (CT) and B-mode ultrasound (US) are used to measure tumor size changes 215 

during NAC.  Radiological response criteria are graded using RECIST 1.1 (Response 216 

Criteria in Solid Tumors) guidelines [46].  However, major limitations for measuring 217 

tumor size changes include: 1) dependency on user expertise to identify the lesion; 2) 218 

distinguishing tumor boundaries on multiple scan planes in the case of MRI and CT; 3) 219 

a change in the tumor’s size may take several weeks before it is detectable, which limits 220 

early detection and; 4) size measurements may be conflated with fibrosis, collagen, fatty 221 

tissue and inflammation in the breast.   222 

Quantitative imaging biomarkers addresses the limitations associated with 223 

conventional imaging.  Quantitative imaging biomarker techniques measure the 224 

biological and functional tumor features previously outlined such as cell metabolism, cell 225 

death and vascular reorganization. The overall purpose of investigating imaging 226 

biomarkers in oncological studies is to achieve optimal accuracy of imaging biomarker 227 

features with pathology endpoints such as pCR.   Recent imaging methods are 228 

described below and biomarker measurements are outlined in Table 1.     229 

Magnetic Resonance Imaging Biomarkers 230 

 MRI-based imaging biomarkers can be extracted from diffusion-weighted imaging 231 

(DWI-MRI), dynamic contrast enhanced imaging (DCE-MRI), blood-oxygen level 232 

dependent imaging (BOLD-MRI) and MRI-spectroscopy (MRI-SPEC).    These 233 
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techniques are capable of mapping tumor oxygenation, vascularization, metabolism and 234 

the extracellular matrix as response markers to neoadjuvant chemotherapy in breast 235 

cancer (Table 1).  Diffusion-weighted MR measures the diffusion of water molecules 236 

(i.e. Brownian motion) in tissue [47, 48].  Tissue contrast can be displayed in DW-MRI 237 

imaging based on areas of high and low water diffusion; where areas of low water 238 

motion (i.e. tumors) demonstrate an enhanced signal.  Previous studies have 239 

demonstrated that areas with low water motion are associated with malignant tissue due 240 

to densely arranged cells which limit the motion of water in the extracellular space [48].   241 

Extrinsic contrast imaging techniques include dynamic contrast enhanced imaging 242 

(DCE-MRI) which detects the concentration of an injected contrast agent (gadolinium 243 

chelate) in the intravascular and extravascular space using primarily T1-weighted 244 

signals [47].  DCE-MRI images provide information on tumor vascularity and blood flow 245 

and measure the gadolinium “wash-in” and “wash-out”.   Tumors preferentially 246 

accumulate gadolinium from an increased vascular supply compared to normal tissue, 247 

and therefore demonstrate an enhanced signal in MRI [49].  Blood-oxygen level 248 

dependent (BOLD-MRI) imaging is also used to measure the tumor vascularity, and 249 

tumor oxygenation.  This is accomplished by detecting deoxyhemoglobin, which is 250 

paramagnetic and therefore results in signal loss in T2-weighted images [50].   251 

 252 

     Positron-Emission Tomography (PET) 253 

 PET imaging monitors metabolic activity by tracking the cellular uptake of a 254 

glucose analogue, [18F]-fluorodeoxyglucose (FDG).  FDG is injected intravenously, 255 

transported into cells like glucose, and is labelled with a radioactive tracer that 256 
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demonstrates radioactive decay, permitting PET imaging to map metabolic activity in 257 

tissue.  Increased FDG-uptake (standard uptake value, SUV) has been demonstrated in 258 

tumors since tumor metabolism is greater compared to normal tissue. PET imaging can, 259 

therefore, serve to identify the extent of malignancies [51].  PET imaging is achieved 260 

with the release of a gamma-ray photon that is detected by a photon-detection device 261 

during radioactive decay, known as positron-electron annihilation.  Another radiotracer 262 

used in PET is the radionuclide 15O-H2O, which is used to measure tumor blood flow; 263 

where the distribution of water can be equated to blood activity in blood vessels [52].   264 

Previous work from Duch et al. (2009) showed that the intratreatment change in SUV 265 

(DSUV, 2 cycles of chemotherapy) differentiated between pathologic response groups 266 

(responders vs. non-responders) with a sensitivity of 77% and specificity of 80%, using 267 

a cut-off value of 40% [53].  268 

 269 

Diffuse Optical Spectroscopy (DOS)  270 

 Diffuse optical spectroscopy (DOS) imaging can measure tumor response to 271 

chemotherapy by focusing on changes in tissue composition [54-56].  Maps of tumor 272 

physiological features, such as hemoglobin, are computed from tissue-optical properties 273 

that are based on near-infrared optical scattering and absorption within the near-infrared 274 

spectrum (600-1100 nm) [57].  For breast tissue, significant optical absorbers include 275 

oxy-hemoglobin (HbO2), deoxy-hemoglobin (Hb), water (H2O) and lipids (Li) [57].   276 

Chromophore concentrations can be estimated by measuring the absorption co-efficient 277 

[µa] and using Beer’s law equation [58].  Also, tissue optical parameters such as the 278 

reduced scattering co-efficient [µ¢s] can provide additional information on tissue 279 
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microstructure (~0.2 µm); corresponding to optical scattering effects from mitochondria 280 

and the cell nucleus [57, 59].   Other DOS parameters, such as the scatter power and 281 

scatter amplitude, calculated by using the power-law function, are representative of the 282 

tissue’s substructure, which is related to cellularity, cell arrangement, and light-scatterer 283 

spatial distributions [60].  As a result, DOS imaging can demonstrate a good sensitivity 284 

to the biochemical characteristics of breast tumors that undergo changes from 285 

neoadjuvant chemotherapy.  Previous work by Cerussi et al. (2011) indicated that 286 

hemoglobin-based parameters demonstrated significant differences between pCR vs. 287 

non-pCR patients (p<0.05) [58].  Early indicators of treatment response were reported 288 

by Robyler et al. (2011) and showed an “oxy-hemoglobin flare” in responders after one 289 

week of treatment [54].  In another study by Ueda et al. (2012), the baseline oxygen 290 

saturation demonstrated significant differences between pCR and non-pCR patients 291 

(p<0.01), and corresponded to a sensitivity and specificity of 75.0% and 73.3%, 292 

respectively [61].      293 

 294 

Ultrasound Imaging Biomarkers 295 

 Ultrasound imaging biomarkers are obtained by mechanical imaging such as 296 

elastography (which is considered semi-quantitative), or functional imaging such as 297 

power-Doppler ultrasound and quantitative ultrasound spectroscopy (QUS). Ultrasound 298 

elastography measures tissue stiffness, which characterizes tissue biomechanical 299 

properties.  Tumors are “stiffer” than the surrounding normal parenchyma because they 300 

are comprised of densely populated and rapidly dividing cells, as well as increased 301 

vasculature and fibroglandular components that alter its mechanical properties [62-64].  302 
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Tissue stiffness can be measured in terms of tissue stress and strain using shear-wave 303 

elastography or compression-based elastography.  Evans et al. (2013) reported that 304 

stiffer tumors were significantly correlated to a higher residual cancer burden index 305 

(RCBI), which indicates poor pathologic response at the end of chemotherapy (Pearson 306 

correlation coefficient=0.23, P<0.004) [65].  307 

Functional US-based imaging techniques include power Doppler imaging that 308 

assess tumor vasculature from the frequency shift and amplitude (power) of the 309 

ultrasound backscatter signal from scatterers in the blood vessels [66].  An emerging 310 

field includes quantitative ultrasound spectroscopy, which uses the spectral information 311 

of the ultrasound radiofrequency (RF) signals to characterize morphological changes in 312 

tumor cells associated with apoptosis caused by chemotherapy [37, 67].  To date, QUS 313 

has been used to measure intratreatment response; showing significant changes in the 314 

spectral parameters for chemoresponding patients as early as one week after treatment 315 

initiation [68].  Also, recent results have demonstrated that pre-treatment QUS 316 

parameters can predict NAC response in patients with an accuracy of 88%; while 317 

demonstrating a high correlation to survival outcomes [69].   318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 
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Technique Biomarker Measurements Treatment Points Studied Ref. 
Magnetic Resonance Imaging  

DWI-MRI 

• Extracellular water motion 
• Tumor-cell density 
• Tissue micro-structure 
• Cell membrane integrity 
• Cell membrane permeability 

• Pre-treatment  
• Intratreatment 
• Post-chemotherapy 

[48] 
[47] 
[47] 
[70] 
[71] 
[50] 
[72] 
[73] 
[74] 

DCE-MRI • Vascular permeability 
• Dynamic blood flow 

BOLD 

• Tumor oxygenation 
• Tumor vascularity 
• Angiogenesis 
• Blood Volume 
• Blood Flow 

SPECT 

• Reduction in mitotic count 
• Tumor cellularity 
• Cell membrane integrity 
• Tumor metabolism 
• Tissue composition (lipid) 

 
Positron-Emission Tomography  
18F-FDG • Tumor metabolism • Pre-treatment 

• Intratreatment 
• Post-chemotherapy 

[75] 
[52] 
[75] 

15O-H2O • Tumor blood flow 

Diffuse Optical Spectroscopy  

DOS 

• Metabolism 
• Cell activity 
• Vascular Density 
• Edema 
• Breast tissue composition 
• Cellularity 
• Cell death and Morphology 
• Tissue contrast 
• Hypoxia 

• Pre-treatment 
• Intratreatment 
• Post-chemotherapy 

[57] 
[76] 
[58] 
[77] 
[60] 
[57] 
[60] 
[60] 

Ultrasound  

Elastography 

• Tumor progression 
• Extracellular matrix 
• Collagen crosslinking 
• Tissue composition (fibrosis) 

• Pre-treatment 
• Intratreatment 
• Post-chemotherapy 

[64] 
[62] 
[65] 
[78] 
[79] 
[79] 
[80] 

Power Doppler 
• Vascular blood flow 
• Blood perfusion 
• Vascularity 

QUS 
• Tumor Cell Death (Apoptosis) 
• Cell Morphology and 

Distribution 
Table 1.  Imaging biomarker studies have included MRI, PET imaging, DOS, and 326 
ultrasound based imaging.  The studies have included response assessment using 327 
various biological features at various stages of chemotherapy treatment: before 328 
treatment (pre-treatment), intratreatment, and post-treatment 329 
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IMAGE TEXTURE ANALYSIS AND MACHINE LEARNING 330 
 331 
 332 

Other imaging biomarker features can be extracted from image-texture analysis.  333 

Texture analysis refers to mathematical methods that can apply second-order statistical 334 

methods to yield texture features of an image. Feature-extraction methods, such as 335 

those based on grey-level co-occurrence matrices (GLCM), can be applied to compute 336 

the probabilities of relative pixel intensities of images from the spatial distribution of their 337 

voxels [81].    This is useful for quantifying image heterogeneities and their application 338 

has extended to discriminating benign vs. malignant breast lesions in breast 339 

radiographs [82].  Texture analysis has also been useful in X-ray mammography [83], 340 

MRI [84, 85], positron-emission tomography (PET) [86], and ultrasound [87] to identify 341 

malignant lesions and for discriminating and characterizing various tissue types [88].  In 342 

other breast studies, GLCM analysis has been under investigation for utility to classify 343 

benign and malignant lesions using planar (2D) and volumetric (3D) MRI images [84, 344 

89].  Additionally, GLCM analysis has been used to segment lesion borders of stellate 345 

(malignant) breast masses [90].  346 

For therapy evaluation, texture analysis has also been used to discriminate 347 

breast tumor response to NAC from various imaging modalities [82, 91, 92]. Texture 348 

features of the image carry important information about the tumor’s properties, 349 

corresponding to heterogeneity within the tumor itself [90].  Such techniques have been 350 

applied with computer-aided, machine-learning techniques for statistical modelling [93].  351 

Machine learning classification algorithms include support vector machines (SVM), k-352 

nearest neighbor (k-NN), naïve Bayes, and artificial neural networks (ANN) that can be 353 

used to classify response groups by pattern recognition and spatial probabilities within a 354 
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feature space.  These methods have recently been applied to quantitative ultrasound 355 

(QUS) imaging and have demonstrated high classification accuracy in responders and 356 

non-responders at early phases of NAC treatment [68].  These previous findings 357 

suggested that textural features can provide information on the microstructural 358 

biological characteristics carried in the parametric layout, not otherwise detected using 359 

the mean parametric measurements [68].    360 

 361 

STATUS OF IMAGING BIOMARKERS FOR PERSONALIZED 362 
MEDICINE IN BREAST CANCER 363 
 364 

 Adopting imaging biomarkers as a decision-making tool in the clinic involves 365 

several steps that originate with laboratory investigations and, following the translational 366 

research pathway progress to clinical trials.  Here, it is pertinent to discuss the current 367 

demand from patients and clinicians for imaging biomarkers in the clinic, the 368 

translational obstacles and how generalizable imaging biomarker models are for 369 

measuring breast cancer response to NAC.  The demand for imaging biomarkers has 370 

been highlighted recently by a UK-based working group that identified critical research 371 

gaps and translational priorities for breast cancer.  Their report highlighted the 372 

importance of exploiting both biospecimen-based markers and imaging for guiding 373 

breast cancer treatment.  Below are the major considerations outlined by their group 374 

[94]: 375 

 376 

1. Selection of therapies should be offered on an individual basis and using level-377 

one evidence.  Personalized treatments are the best approach.   Important 378 
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considerations include optimizing the treatment time-course from individual 379 

tumor and patient data.  Currently, overtreatment is a clinical challenge. 380 

2. An assessment of the tumor’s underlying biology is essential.  Tumor metrics 381 

may help assess the patient’s metastatic risk and predict drug resistance. The 382 

tumor’s behaviors from its cellular characteristics, molecular features, 383 

angiogenic pathways and stromal conditions (i.e. hypoxia, altered metabolism) 384 

may aid in understanding the impact on therapeutic interventions.  This may be 385 

achieved by using functional and metabolic medical imaging modalities.   386 

3.  Clinical decision-making tools will be integral in the management and treatment 387 

of breast cancer patients.  For example, imaging biomarkers could be used to 388 

predict prognosis and response to chemotherapy.  Imaging modalities will 389 

permit potentially non-invasive, serial measurements that monitor the dynamic 390 

tumor changes over time.          391 

4. High risk populations include triple negative breast cancer patients and 392 

research needs to address prognostic and predictive biomarkers for this patient 393 

population.  In general, tumor heterogeneity is a treatment challenge and 394 

stratification of patients is needed in future studies for better treatment 395 

strategies.  396 

5. Both clinical and financial effectiveness should be considered while 397 

implementing new decision-making tools for clinical use.  398 

 399 

The need for biomarkers in medicine has been identified for decades.  In the early 400 

2000s, the human genome project was completed to identify and map out thousands of 401 
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genes in human cells [95, 96].   Since then, great efforts have been made in cataloguing 402 

and identifying gene signatures involved in disease progression, drug metabolism and 403 

treatment resistance across several disorders like cardiovascular disease, infectious 404 

diseases and cancer [97].  A major focus in genomic oncology has been to identify 405 

predictors for chemotherapy-resistance in breast cancer [97, 98].  Indeed, thousands of 406 

gene markers have been studied as predictors to therapy response in cancer.  Yet, one 407 

of the most notable works include the validation of a 21-gene assay (Oncotype-DX) that 408 

predicts the probability that patients would benefit from adjuvant chemotherapy.  The 409 

assay includes genes that have been shown to potentiate higher prognostic risk factors 410 

[98].  The 21-gene signatures have undergone validation in over 10,000 patients.  The 411 

NSABP study B-14 trial demonstrated that Oncotype DX was shown to predict 412 

recurrence in patients treated with Tamoxifen [99]; while a parallel study (NSABP study 413 

B-20) showed the benefit of the assay for predicting chemotherapy response [100].   414 

The benefits from Oncotype DX biomarker testing are recognized as useful for a subset 415 

of breast patients; namely, in hormone-receptor-positive, Her2-negative, axillary node-416 

negative breast cancer [101, 102].  The Oncotype-DX assay is one example of how 417 

specimen-derived biomarker discoveries have been adopted by clinicians to guide 418 

treatment and enhance personalized medicine.  It also demonstrates the several 419 

validation hurdles that biomarker studies undergo before clinical acceptance and that 420 

biomarkers themselves may not be generalizable for all breast cancer subtypes. In 421 

comparison to imaging biomarkers, no such imaging biomarkers have reached the 422 

clinical adoption stage comparable to biospecimen biomarkers to guide treatment 423 

decisions like Oncotype DX for breast cancer.  424 
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Despite the significant efforts to investigate imaging biomarkers for clinical use, 425 

many of the identified biomarkers have not surpassed initial research hypothesis 426 

testing; thus, never having reached large-scale clinical trials for robust clinical validation.  427 

In fact, emerging research that could potentially guide treatments often falls through two 428 

major translational gaps [103].  These gaps were previously outlined by Cancer 429 

Research UK (CRUK) and the European Organization for Research and Treatment of 430 

Cancer (EORTC) working group; specifically: 1) validation of the biomarkers through 431 

initial scientific testing (i.e. are the imaging biomarkers robustly tested and capable of 432 

answering the scientific or medical hypothesis?) and; 2) validation of the imaging 433 

biomarkers as a clinical-decision tool (i.e. have the imaging biomarkers undergone the 434 

appropriate clinical trial to be used and generalized for patients?). Integrating and using 435 

imaging biomarkers in practice necessitates marker validation, generalizability and cost-436 

benefit analysis [94, 103].  To date, imaging biomarkers have surpassed the first 437 

translational gap to address scientific hypothesis testing, but have yet to succeed in the 438 

subsequent clinical research testing stage for robust validation.  Major limitations 439 

include repeatability and reproducibility of results and the standardization of assessing 440 

tumor response, i.e., imaging parameters and protocols, time intervals and establishing 441 

test cut-off points. 442 

Taken together, imaging biomarkers are proving to have great potential for use in 443 

locally advanced breast cancer treatment.  The limitations for routine clinical use 444 

involves the need for multicenter trials for validation and improvements on study design 445 

and laying out a standard imaging protocol.  To address these, this will involve 446 

determining the optimal imaging time-points to assess intratreatment response and 447 
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establishing the appropriate test cut-off points that classify patients into the responder 448 

vs. non-responder category. The aim, nevertheless, is to develop imaging biomarkers to 449 

permit response-predictive or response-adaptive therapy to move away from a one-size 450 

fits all approach towards personalized cancer care. 451 

 452 
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 Figure 1 716 
 717 
 718 

 719 

Figure 1:  Apoptosis in cancer cells.  Apoptosis is characterized as an energy 720 
dependent mechanism where cells undergo programmed morphological changes.  721 
Chemotherapies induce apoptosis in tumor cells and this results in cell shrinking and 722 
nuclear restructuring such as karyolysis, pyknosis and karyorhexis. 723 
  724 
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Figure 2 735 

 736 

 737 

Figure 2:   A comparison of the vascular organization. A.  Normal tissue exhibits well-738 
organized vasculature, which permit exchange of biomolecules and gas (arrows).  B.  739 
Untreated tumors show high density vasculature and do not permit free exchange of 740 
biomolecules and gasses.  C.  Normalized tumors demonstrate greater organization 741 
closer to that of normal tissue.  D.  In regressed tumors, the vasculature may be absent, 742 
or minimal. (Figure adapted from Jain et al., 2005 [45]).   743 
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