
SAHA-induced TRAIL-sensitisation of Multiple Myeloma 
cells is enhanced in 3D cell culture

ARHOMA, A., CHANTRY, A. D., HAYWOOD-SMALL, Sarah 
<http://orcid.org/0000-0002-8374-9783> and CROSS, Neil 
<http://orcid.org/0000-0003-2055-5815>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/16826/

This document is the Accepted Version [AM]

Citation:

ARHOMA, A., CHANTRY, A. D., HAYWOOD-SMALL, Sarah and CROSS, Neil 
(2017). SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 
3D cell culture. Experimental cell research. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell 

culture.  

 

Arhoma, A, Chantry, AD
#
, Haywood-Small, SL, Cross, NA* 

Biomolecular Sciences Research centre, Sheffield Hallam University 

#
Mellanby Centre for Bone Research, University of Sheffield 

*Corresponding author 

 

Abstract 

Background:  Multiple Myeloma (MM) is currently incurable despite many novel therapies. 

Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-

tumour agent although effects as a single agent are limited. In this study, we investigated 

whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced 

apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a 

model of solid disseminated MM lesions that form in bone. 

 

Methods: The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were 

assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The 

effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear 

morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was 

assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by 

Caspase-Glo
TM

 assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and 

NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. 

 

Results: TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, 

RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. 

SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL 

responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that 

further increased in the combination treatment with TRAIL in MM cells. The co-treatment of 

TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further 

potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL 

+ SAHA doses than in suspension culture. However TRAIL responses in cells that had been 

selected for TRAIL resistance were not further enhanced by SAHA treatment. 

 



Conclusions: SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and 

resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise 

TRAIL-sensitive cell populations that had been selected for TRAIL-resistance from initially 

TRAIL-sensitive populations. SAHA may increase TRAIL sensitivity in insensitive cells, but 

not in cells that have specifically been selected for acquired TRAIL-resistance. 
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1. Introduction 

Multiple Myeloma (MM) is considered the most common blood malignancy in the USA after 

non-Hodgkin lymphoma [1] accounting for 1% of the malignant diseases [2] and 

approximately 10% of all blood cancers. It is characterized by a proliferation of malignant B 

cells in the bone marrow [3]. The common clinical manifestations of disease are lytic bone 

disease, renal impairment, haematological abnormalities, peripheral neuropathy and 

pathological fractures and recurrent infection [3]. 

Despite the considerable improvements of the available chemotherapeutic agents, MM 

remains an incurable disease with a high mortality rate due to the persistence of drug-resistant 

tumour cells. Therefore, an urgent need arises to find alternative therapeutic strategies that 

eradicate all tumour cells [4].  

Binding of TRAIL to Death Receptor-4 or -5 (DR4 and -5) triggers apoptosis by activation of 

caspase-8, resulting in activation of executioner caspase-3, -6 or -7 (extrinsic pathway) [5] 

Caspase-8 may also cleave BID to tBid to activate the intrinsic pathway, facilitating release 

of pro-apoptotic cytochrome c from the mitochondria and activating pro-Caspase-9, thus 

linking the extrinsic to the intrinsic apoptotic signalling pathways [6]. 

Clinical trials to assess the safety and anti-cancer activity of Tumour Necrosis Factor-Related 

Apoptosis-Inducing Ligand (TRAIL) and agonistic Death Receptor antibodies have been 

completed in several tumour types [7-9] including MM [10]. Unfortunately, TRAIL 

resistance develops in vitro [11] and in clinical trials, TRAIL insensitivity may be present in 

most tumours [12]. Consequently combined therapy of TRAIL with other anti-tumour agents 

is required to restore the TRAIL sensitivity [9].  

 

Growing evidence suggests that epigenetic alterations play an essential role in the down-

regulation of tumour suppressor genes and up-regulation of oncogenes in the initiation and 

progression of many types of cancers as reported by a number of studies [13]. The chromatin 

acetylation is controlled by histone acetyltransferases (HAT) and histone deacetylases 

(HDAC) [14]. These regulate the histone acetylation status, resulting in altering the 

chromatin structure and altered gene expression. HDAC inhibitors (HDAC
i
) inhibit HDACs, 

resulting in histone hyper-acetylation status that facilitate the DNA accessibility and binding 

to transcriptionally co-activating factors and consequent in regulating gene expression 

involved in regulating growth, differentiation, and apoptosis [15].  



HDAC
i
 have been recently proposed as potential therapeutics for MM [16,17]. However it is 

well known that HDAC
i
 are potential TRAIL-sensitizers with the ability to overcome 

TRAIL-resistance in other tumour types [18]. Previous studies on SAHA have previously 

been shown to enhance TRAIL-responses in Lymphoma [19] and T-cell lymphoblastic 

leukaemia [20]. A single study has previously demonstrated enhanced TRAIL-induced 

apoptosis by combination treatment with SAHA in MM 2 cell lines, showing up-regulation of 

pro-apoptotic proteins, including Bak, Bim, Bax, PUMA and Noxa and down-regulation anti-

apoptotic proteins such as Bcl-2 and Bcl-xL [21].  

 

The development of experimental tools to facilitate the study of myeloma cell biology and 

susceptibility to therapeutic agent is considerably limited due to the lack of in vitro model 

systems that permits myeloma cells reproducible growth as well as the putative cancer stem 

cell compartment. The development of a 3-dimensional (3D) model systems have recently 

been proposed to support in vitro myeloma cells expansion, facilitating modelling of in vivo 

responses [22]. In this study, we investigated the effect of the HDAC
i
 SAHA with TRAIL on 

5 established human multiple myeloma cell lines and one primary plasma cell leukaemia cell 

culture in both suspension conditions and 3D cell culture, using the Alginate bead assay.  

 

  



2. Materials and methods 

2.1. MM Cell Lines  

Five Human Multiple Myeloma cell lines (NCI-H929, RPMI 8226, OPM-2, JJN-3, and 

U266) and one primary cell culture generated from a case of plasma cell leukaemia (ADC-1). 

NCI-H929 was originally obtained from the pleural fluid of a 67 year old Caucasian female 

with an IgA-producing plasmacytoma (European Collection of Cell Cultures (ECACC), 

Salisbury, UK; cat no 95050415). RPMI 8226 was originally obtained from the peripheral 

blood of a 61year old man with multiple myeloma at diagnosis (ECACC, Salisbury, UK; cat 

no 87012702). OPM-2 was originally obtained from the peripheral blood of a 56 year old 

woman with multiple myeloma in terminal leukaemic phase (Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH (DSMZ), Braunschweig, Germany; DSMZ no 

ACC 50). JJN-3 was originally obtained from a plasma cell leukaemia (kind gift from 

Professor I. Franklin, University of Glasgow, UK). U266 was originally derived from the 

peripheral blood of a 53-year-old man with MM) and purchased from LGC Standards (UK). 

ADC-1 was obtained from the peripheral blood of a patient with plasma cell leukaemia 

presenting to the Dept. of Haematology, Sheffield Teaching Hospitals. Patient cells were 

acquired with appropriate ethical permission (REC reference: 05/Q2305/96). This consent 

procedure was approved by the South Sheffield Research Ethics Committee. 

 

2.2. Culture Conditions 

MM cell lines were cultured in the RPMI-1640 medium + L-Glutamine supplemented with 

10% foetal calf serum, 1% penicillin–streptomycin and 1% non-essential amino acid and 

incubated under standard cell culture conditions at 37ºC with 5% CO2 atmosphere.  

2.3. CellTiter-Glo® Luminescent Cell Viability Assay 

The CellTiter-Glo® Luminescent Cell Viability Assay Kit (Promega, Southampton, UK) was 

used to assess the relative number of live cells based on the quantification of ATP levels. 

MM Cells were plated at 350,000 cells/ml in a 96-well plate and treated with SAHA (Sigma, 

Poole, UK) at 0-10 µM in the presence or absence of  0-50ng/ml TRAIL (PeproTech EC Ltd 

(London, UK) for 24h. All treatments were performed in triplicate, in three independent 

experiments. Following treatments, cellular proliferation was measured as per manufacturer’s 

instructions using Wallac Victor 2 1420 luminometer. 

 



2.4. Assessment of the apoptosis  

2.4.1. Hoechst 33342 and Propidium Iodide (PI) Nuclear Morphological Analysis by 

Fluorescence Microscopy 

Following treatment with SAHA and/or TRAIL, induction of apoptosis was assessed using 

Hoechst 33342 and Propidium Iodide (PI) staining (Sigma-Aldrich, Dorset, England). Cell 

were stained with 10µg/ml Hoechst 33342 and 10µg/ml PI for 30 min at 37ºC and examined 

using an IX81 fluorescence microscope (Olympus) and images captured using Cell-F 

software (Olympus). In some experiments, 10µM of the caspase-3 inhibitor Z-DEVD-FMK 

was co-incubated with TRAIL treatments. Apoptotic cells were counted manually and 

percent apoptosis calculated based on duplicate representative fields of view each containing 

at least 100 cells for three independent experiments. 

 

2.4.2 NucView Caspase 3 Activity Assay by Flow Cytometry 

To confirm apoptotic responses of SAHA and TRAIL at doses that exhibited synergistic 

induction of apoptosis with Hoechst 33342/Propidium Iodide staining, NucView Caspase-3 

activity assay (Biotium, Cambridge Biosciences, Cambridge, UK) was used. As a negative 

control, 10µM of caspase-3 inhibitor Z-DEVD-FMK was added (R&D systems).  Following 

treatment, 200µl of each cell suspension was transferred to a flow cytometry tube and 2.5µL 

of Nucview Caspase-3 substrate (0.2mM) was added to the sample (including inhibitor 

sample) except 'unstained control' and incubated cells at room temperature for 20 minutes. 

Finally, the samples were analysed on the flow cytometer using a Beckman Coulter Gallios 

flow cytometer. Ten thousand events were acquired per sample.  

 

2.4.3 Assessment of Caspase-8 and -9 activities  

 

Caspase-8 and -9 activities in MM cells were determined using the Caspase-Glo® 8/9 Assay 

(Promega, Southampton, UK) according to manufacturer’s instructions. Cells were lysed as 

Caspase-Glo reagent added, followed by detection of luminescent signals due to caspase 

cleavage of the substrate. Briefly, MM cell lines were treated with SAHA, TRAIL or both, in 

white 96 well-plates (Fisher Scientific). Following 24 hours incubation, 50µl of Caspase-Glo 

8 Reagent or Caspase-Glo 9 Reagent (Promega) with the proteasome Inhibitor MG-132 to 

reduce nonspecific background activity were added to each well. After incubation for 90 

minutes at RT luminescence was measured using Wallac Victor 2 1420 luminometer.  

 



2.5 Induction of 3D tumour spheroid formation using Alginate bead culture 

To establish 3D alginate cultures, MM at a density of 1x10
6 

cells/ml were re-suspended in a 

final concentration of 1.2% (w/v) medium-viscosity sodium alginate dissolved in 0.15M 

saline (Sigma, Poole, UK). The alginate-cell suspension was extruded through a 19-gauge 

needle into 200mM CaCl2 and incubated at 37°C for 15 minutes to polymerise the alginate 

spheres. Following incubation, beads were washed twice in 0.15M NaCl, then washed in 

growth medium [23]. Alginate beads were cultured in growth medium as per suspension cells 

and medium changed every 3-4 days. After 10 days culture in alginate beads, MM cells were 

treated with SAHA or 0.1% DMSO (vehicle control) in the presence or absence of TRAIL for 

24 hours, as described earlier. Colonies of MM cells were released from the alginate by 

incubation with 150mM NaCl, 55mM sodium citrate and 20mM EDTA, which chelates the 

Ca2+ ions. Apoptotic morphology of cells within released colonies was assessed by staining 

with Hoechst 33342/PI staining (10µg/ml of each for 30mins). All treatments were performed 

in triplicate and in each experiment, assessment of apoptosis in at least 10 individual colonies 

assessed. In some experiments, 10µM of the caspase-3 inhibitor Z-DEVD-FMK was co-

incubated with combination treatments. Images were taken on an Olympus IX81 inverted 

microscope running Cell-F software.  

 

2.6. Generation of TRAIL-resistant Multiple Myeloma cells in vitro 

In order to generate TRAIL-insensitive cells NCIH-929, RPMI 8226, and OPM2 were seeded 

into T25cm
2
 flasks (Invitrogen, Paisley, UK) and grown in in escalating doses of TRAIL for 

1 year. Cell viability in response to TRAIL was checked every week and the dose of TRAIL 

is increased depending on cell viability. TRAIL-resistant cells were generated by culture of 

RPMI 8226 and NCI-H929 in escalating doses of TRAIL for 1 year, and also by acute 

exposure of the TRAIL sensitive cells with a high/lethal dose of TRAIL followed by 

selection of TRAIL-resistant cells. The cytotoxic activity of TRAIL was determined on 

NCIH-929, RPMI 8226, and OPM2 and compared to cell isolated from parental TRAIL-

sensitive NCIH-929 and RPMI 8226 culture. Live cells  counts were determined using a Cell 

Countless system (Invitrogen, Paisley, UK) and cell viability was determined using trypan 

blue staining (Invitrogen, Paisley, UK). Growth inhibition response to anti-tumour agents was 

assessed and apoptosis was assessed using CellTiter-Glo® luminescent assay and Hoechst 

33342 staining of nuclear morphology. 

 



2.9. Statistical Analysis 

Data are expressed as the mean ± SD. Shapiro Wilke test using Stats Direct software (Stats 

Direct Ltd, England) was used for analysis whether data followed a normal distribution. Data 

which did not follow a normal distribution, Kruskal–Wallis one-way analysis of variance and 

Connover-Inman post hoc was using to investigate significant differences.  P < 0.05 was 

considered statistically significant.  The SAHA-mediated potentiation of TRAIL-induced 

apoptosis was determined by showing that apoptosis was induced by a combined treatment 

which was significantly greater than additive (i.e., apoptosis resulting from co-treatment with 

TRAIL and SAHA was significantly greater than the sum of apoptosis induced by TRAIL 

alone along with apoptosis induced by SAHA alone, after removal of background apoptosis 

from all values). 

 

 

 

 

 

 

 

  



3. Results 

3.1. Assessment of apoptosis using Hoechst 33342 and PI nuclear staining 

3.1.1 Effect of TRAIL Treatments on MM cell lines 

MM cell lines (NCI-H929, RPMI 8226, OPM-2, JJN-3, U266 and ADC-cells) were treated 

with TRAIL (0–50 ng/ml) for 24h. OPM-2 MM cells were most sensitive to TRAIL (50 

ng/ml) followed by RPMI 8226, NCI-H929, and ADC-1 cell lines which also showed 

significant apoptotic responses. In contrast U266 and JJN-3 were less sensitive to TRAIL but 

showed significant induction of apoptosis although observed apoptosis was less than 20% at 

50 ng/ml (P ≤ 0. 05) (Figure 1). NCI-H929, RPMI 8226, U266 and JJN-3 showed dose-

dependent increases in apoptosis up to 250ng/ml TRAIL, which was almost completely 

inhibited by the caspase-3 inhibitor Z-DEVD-FMK (Supplementary Fig 1). 

 

 

3.2. The effect of SAHA in combination with TRAIL on apoptosis in MM cell lines  

MM cells were treated with TRAIL at the lowest dose that induced significant apoptosis as a 

single treatment, combined with SAHA. Hoechst 33342 and PI staining of nuclear 

morphology confirm that SAHA enhances the apoptotic activities of TRAIL in MM cell lines 

(Figure 2a). SAHA significantly induced apoptosis of MM cells in a dose-dependent manner 

in all MM cell lines at though effect sizes were smallest in JJN-3 and OPM-2 (Fig 2b). SAHA 

combined with TRAIL synergistically induced apoptosis in RPMI 8226 (10M SAHA), NCI-

H929 (5 and 10M SAHA), U266 (5 and 10M SAHA), JJN-3 (5 and 10M SAHA) and 

ADC-1 (10M SAHA),when using sub-toxic doses of TRAIL in each cell line (Figure 2b), 

however the size of these effects was modest except for JJN-3 in suspension culture. 

 

3.3. Effects of SAHA in combination with TRAIL on the viability in MM cell lines 

The cytotoxic effects of SAHA on myeloma cell lines NCI H929, RPMI 8226, OPM-2, JJN-

3, U266 and ADC-1 cells following treating with increasing concentrations of SAHA for 24 

hours were studied using CellTiter-Glo® Luminescent Cell Viability Assay. Viability assays 

identified that treatment with SAHA for 24h resulted in reduced viable cells in MM cell lines 

in a dose dependent manner (Fig. 3) consistent with observed induction of apoptosis as 

shown in figure 2. SAHA alone significantly reduced cell numbers in all cell lines. TRAIL 

was used at the lowest dose that resulted in significant apoptosis by Hoechst 33342/PI 



staining, and as such, weak effects seen with TRAIL alone are expected. Combination 

treatment with SAHA + TRAIL resulted in a significant reduction in viable cells, consistent 

with observations of apoptotic morphology shown in figure 2.  

 

3.4. Effect of HDAC
i
 SAHA on Caspase activity in MM cells  

To confirm morphological assessment of apoptosis by Hoechst 33342/PI staining, caspase-3 

activity assays using flow cytometry was used. Combination treatment doses which 

synergistically enhanced apoptosis as determined by Hoechst 33342/PI staining showed 

significant induction of apoptosis as shown by increased caspase-3 activation (Figure 4a) in 

NCIH 929, U266 and RPMI 8226. Moreover, to determine which apoptotic pathway was 

responsible for SAHA-mediated enhanced TRAIL-signalling, the activity of Caspase-8 (early 

initiator caspase of the extrinsic pathway), caspase-9 (early initiator caspase of the intrinsic 

pathway) was measured with cell-based homogenous Caspase-Glo kit assay after exposure of 

NCIH 929, U266 and RPMI cells to SAHA for 24 hours and compared with vehicle control. 

As expected, TRAIL alone (2ng/ml) enhanced caspase-8 and caspase-9 activity. SAHA also 

enhanced both Caspase-8 and -9 activities, and combination treatment further elevated 

caspase-8 and -9 consistent with morphological observations. The results confirm that both 

TRAIL and SAHA significantly increased both cellular caspase 8/9 activities and that 

enhanced apoptosis from dual treatment is in part via the intrinsic pathway.  

 

3.5 SAHA does not enhance TRAIL-sensitivity in TRAIL-resistant cell lines 

In order to facilitate the development of TRAIL-resistant culture, we intentionally chose 

growth conditions which support the appearance of resistant clones by long-term culture in 

TRAIL following exposure of cells to acutely toxic doses of TRAIL and sub-culture of 

surviving cells. Measurement of cell number and viability confirmed the TRAIL-insensitive 

phenotype in NCI-H-929, and RPMI 8226 with highly significant increase of cell viability of 

TRAIL-resistant cells compared to parental TRAIL sensitive cells in response to high-dose 

TRAIL  (Fig 5a-b, p<0.0001). Treatment of TRAIL-resistant NCI-H929 with 250ng/ml 

TRAIL induced <10% apoptosis vs. >90% apoptosis in unselected cells (Supplementary 

figure 2). Moreover, treatment of  the TRAIL-resistant cells with 10 µM SAHA either alone 

or in combination with TRAIL result in significant reduction of apoptosis in TRAIL resistant 

cells compared to parental TRAIL sensitive cells or vehicle control (Figure 5 (b)).  

      



    

 

3.6. SAHA-induced TRAIL-sensitisation is enhanced in 3D cell culture 

 

The effect of SAHA on TRAIL-induced apoptosis in 3D cell culture vs. suspension culture 

was studied using Hoechst 33342 staining of nuclear morphology. MM cells line were treated 

with 1 μM SAHA or 0.1% DMSO vehicle control either alone or in combination with TRAIL 

(50ng/ml for U266 and 2ng/ml for NCI-H929) for 24 hours. We observed that MM were 

more sensitive to SAHA alone in 3D culture conditions compared to suspension cultures and 

there was significant increase in TRAIL-induced apoptosis by SAHA treatment in U266 and 

NCIH-929 cell lines (P≤0.0001) (Figure 6). However, SAHA (1 μM) has no significant effect 

on apoptosis of U266 and NCIH929 cells in suspension cultures. Co-treatment of TRAIL + 

SAHA-treated 3D cultures with the caspase-3 inhibitor Z-DEVD-FMK completely inhibited 

apoptosis to control levels (Supplementary figure 3). 

 

 

 

 

 

 

 

4. Discussion 

In spite of the successful introduction of a number of novel agents, MM still remains a 

predominantly incurable disease. Relapse occurs due to the eventual emergence of plasma 

cell clones resistant to the currently used chemotherapeutic agents. Therefore, an urgent need 

arises to find therapies that eradicate all tumour cells [24]. Recently, the therapeutic potential 

of TRAIL-based therapy both in vivo and in vitro against various tumour cells including MM 

cells suggests that it may be a promising anti-myeloma therapeutic candidate. However, the 

susceptibility of MM cells to TRAIL-based therapy has been established to be low in most of 

the MM cells line, which limits TRAIL clinical applications [25]. This study aimed to 

investigate the susceptibility and resistance of the MM cells line to apoptosis mediated by 

TRAIL-based therapies in addition to the combined treatment of TRAIL with other 

chemotherapeutic therapeutic agents in order to overcome the TRAIL resistance. As a result, 



we have demonstrated that TRAIL induces apoptosis in some myeloma cells lines. 

Importantly we have shown that TRAIL treatment in combination with SAHA results in 

sensitising some Multiple Myeloma cell lines to TRAIL. Moreover, SAHA induces more 

apoptosis of MM cells with more potent synergistic effect in 3D culture conditions, even in 

cells that do not respond to either agent in suspension culture.  

SAHA enhances TRAIL-Induced Apoptosis and Cytotoxicity in Multiple Myeloma cell 

lines 

HDAC inhibitors are a class of anti-tumour agents that are able to induce apoptosis and/or 

cell cycle arrest in tumour cells although the under lying anti-tumour effects of molecular 

mechanisms are not fully understood. Due to its low toxicity SAHA activity is currently 

evaluated in clinical trials [21]. In this study, we have evaluated the effect of the HDAC 

inhibitor SAHA on human multiple myeloma cell lines. The findings established that together 

with the SAHA induced apoptosis and growth arrest, the enhanced apoptotic and the 

cytotoxic effects of TRAIL on U266 and NCI H929 (10 ng/ml TRAIL+ 5 or 10 µM SAHA) 

cell lines (Figures 2, 3). Additionally, the co-treatment with SAHA with TRAIL enhanced 

cytotoxicity as determined by CellTitre-Glo assay (Figure3). 

 

Despite considerable interest in HDAC
i
 for MM therapy, few studies have addressed their 

role in combination with TRAIL-based therapies, and only one previous study has addressed 

any HDAC
i
 with TRAIL in MM cells [18]. The  results here are consistent with a study 

carried out previously whereby two HDAC inhibitors SAHA and TSA induced growth arrest 

and apoptosis in human multiple myeloma cell lines and that the augmented apoptotic and 

cytotoxic effects of TRAIL, albeit not in this cell panel [18]. SAHA and TSA induced the 

transcription and the expression of surface TRAIL DR4/DR5 death receptors, up-regulated 

the expression of pro-apoptotic protein and down-regulated the expression of other anti-

apoptotic proteins Bcl-2 and IAPs. Moreover, the cytotoxic effect of SAHA on MM cell lines 

may be in part caspase-independent and was mediated via the release of mitochondrial AIF 

[21]. 

Consistent with these findings, Rosato et al (2015) [26] demonstrated that that co-

administration of TRAIL with HDAC inhibitors SAHA or  the HDAC
i
 sodium butyrate 

synergistically induces apoptosis in human myeloid leukemia cells and provide further 

evidence that TRAIL/HDAC Inhibitor activate both the extrinsic and intrinsic pathways  of 



apoptosis by activation of Caspase-3 and -8. Moreover, TRAIL/HDAC
i
 mediated apoptosis in 

leukemic cells is associated with cleavage of Bid and Bcl-2, down-regulation of XIAP, 

moderate reduction on Bcl-XL, and cytosolic depletion of pro apoptotic Bax as well as 

cytoplasmic release of cytochrome c, AIF, and Smac/DIABLO [26]. The mechanisms by 

which SAHA enhances apoptosis in these cells are still largely unclear. This study examined 

the relation SAHA and the activities of cellular caspase-3, -8 and -9 in three MM cell l lines. 

It was found that HDAC inhibitors SAHA can activate caspases-3, -8 and -9 in these cell 

lines independently of TRAIL stimulation (Figure 4). Although it is acknowledged that 

caspase-3 in particular may cleave other caspases [27], caspase-8 and -9 were induced at 

doses of SAHA where caspase-3 positivity was low NCI-H929, and differential responses 

were seen in, in that caspase-9 was induced in NCI-H929, but not U266. 

 

 

Prolonged incubation of TRAIL sensitive MM cells with TRAIL reduced their sensitivity to 

SAHA 

The anti-tumour potential of TRAIL either alone or in combination has been established in 

various in vivo models of tumour growth. However, the reported treatment efficacies are 

variable from tumour to tumour. This may reflect many factors however the presence of pre-

existing TRAIL-resistant cells and the emergence of TRAIL-resistance during therapy both 

contribute to treatment failure. To address the latter cause of TRAIL-insensitivity, we 

specifically aimed to develop TRAIL-resistant cell lines with the aim of determining whether 

TRAIL-sensitizers, such as SAHA are able to enhance TRAIL sensitivity in these cells, since 

it is known that SAHA can enhance TRAIL sensitivity on cells with pre-existing TRAIL 

insensitivity.  

 

In the current study, we incubated the TRAIL sensitive cells (NCI-H929, RPMI 8226) with 

an acutely toxic dose of TRAIL and sub-cultured surviving cells long term. Surviving cell 

populations predictably demonstrated increased TRAIL-insensitivity (Figure 5 a-b). NCI-

H929 showed decreased SAHA sensitivity after selection for TRAIL-resistance, and both cell 

lines demonstrated a loss of SAHA-mediated sensitisation to TRAIL (Figure 5 cd). 

Consistent with these observations, Vitovski et al. (2012) [24], demonstrated that the 

prolonged incubation with TRAIL in MM cells results in the emergence of TRAIL-resistant 

CD138-negative cells and reduce the cell toxicity in TRAIL resistant cells compared to the 

parental, TRAIL-sensitive culture. TRAIL-resistant cells were not necessarily more 



apoptosis-resistant per se, and indeed, TRAIL-resistant cells showed increased sensitivity to 

selected small molecule inhibitors including histone methyltransferase suggesting that these 

cells showed attenuated responses for death receptor-mediated apoptosis (data not shown). 

Analysis of gene expression profiling of TRAIL resistant cells did show significantly reduced 

DR4 and DR5 transcriptional expression in NCI-H929 TRAIL-resistant cell lines (9- and 5-

fold respectively), however counter-intuitively, this was not observed in RPMI 8226, where 

DcR1 was significantly increased (10-fold) (data not shown). 

 

3D cell culture enhances responses to both TRAIL and SAHA 

Micro-environmental conditions, such as hypoxia within solid tumours are known to regulate 

tumorigenesis. Biomimetic culture systems may allow for in vitro tumour modelling to 

exploit cancer cells' dependency on these conditions [28]. Although MM is a haematological 

malignancy, it forms solid lesions in bone which are chronically hypoxic. Here we used 3D 

tumor models based on alginate gel to in-part mimic the hypoxic nature of solid MM lesions 

in vitro, although hypoxic chambers may mimic part of the tumour microenvironment. Our 

result show significantly higher sensitivity of MM cells grown as 3D spheroids in alginate gel 

scaffolds compared to suspension cell culture.  TRAIL-sensitive RPMI 8226 and TRAIL-

insensitive U266 were challenged with SAHA+/- TRAIL with more potent synergistic effects 

observed compared to suspension cultures (Fig 6). These results are consistent with a study 

carried out by Amatangelo et al., [29] that showed that the EZH2 methyltransferase inhibitors 

GSK343 significantly inhibited the growth and induces apoptosis of Epithelial ovarian cancer 

(EOC) cells cultured in 3D Matrigel extracellular matrix (ECM), which more closely mimics 

the tumour microenvironment in vivo but not standard 2D culture model. These results 

suggest that agents which display little effectiveness in conventional 2D or suspension culture 

models may still have therapeutic value within the solid ECM tumour microenvironment.   

 

Other studies reported that spheroids cancer stem cell (CSC) in 3D alginate beads display 

increased resistance to anti-cancer agents due to enhance the tumour metastatic potency by 

increasing the expression of a number of matrix metalloproteinases (MMPs) including 

MMP2 and MT1-MMP in 3D-algenate cultured cells as well as the improvement of hypoxia 

through enhance the expression of hypoxia-inducible factors (HIFs) [30]. Together, these 

findings suggest that targeting the cell spheroids in 3D culture system is a novel approach to 

assessing the anti-tumour therapeutics, which are urgently needed.  

 



 

In conclusion, we have shown that MM cells were more sensitive to anti-tumour agents in 3D 

alginate model with a synergistic effect with TRAIL. Importantly, our findings suggest that 

these anti-tumour agents may potentially enhance the action of TRAIL and that the combined 

treatment could possibly result in reducing the treatment doses, avoiding toxicity and using a 

novel anti-cancer agent for multiple myeloma. Toward this goal, future studies will 

investigate in more detail how the 3D alginate beads enhance the anti-tumour effect of 

HDAC-inhibitor SAHA in MM  cells cultured in 3D vs. suspension conditions.  
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Figures 

Figure 1: Six MM cell lines were treated with 0-50 ng/ml TRAIL for 24 h. The treatment with 

TRAIL potently induces apoptosis of MM cells in a dose-dependent manner. U266 and JJN3 

were less sensitive to TRAIL treatment compared to other MM cell lines. Data are expressed 

as the median and standard deviation of 3 independent experiments. Statistical significance 

was determined by comparison treatment with the control, statistical significance was set at 

p<0.05=* and determined by ANOVA  

  



 

Figure 2: The effect of apoptosis on the MM cell lines after the treatment with SAHA +/- 

TRAIL for 24h. (a) Morphological assessment of apoptosis using Hoechst 33342 /PI nuclear 

staining, after treatment shows SAHA synergistically enhances TRAIL apoptosis in U266 cell 

line. Apoptotic cells were identified by condensation and or fragmentation of the nucleus and 

intense staining while live cells were clear-edged, round, regular and uniformly stained 

nuclei. The white arrow indicates selected apoptotic cells. Red cells are permeabilised 

(necrotic) or late apoptotic if nucleus condensed. (b) The percentage of apoptotic MM cells 

treatment with SAHA for 24h was increased in a concentration-dependent manner (p < 0.05, 

ANOVA).   Synergistic response was defined as comparison of combination treatment group 

with the sum of the effects of TRAIL alone + SAHA alone and significance determined by 

using by the ANOVA test (*=p<0.05).  
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Figure 3: The effects of SAHA on myeloma cell viability, as evaluated by CellTiter-Glo® 

assay (i) OPM-2, (ii) RPMI 8226, (iii) NCI H929, (iv) U266, (v), JJN-3 and (vi) ADC- 1. The 

cells were treated as indicated for24 hours. Data was normalized to the vehicle control which 

was assigned 100% cell viability. The data is expressed as mean ± SD (three independent 

experiments, each in triplicate). Significance of combination treatment versus control is 

shown (ANOVA) where *=p<0.05. 

  

 

 

 

 

 

 

 

 

 



 

Figure 4a. Effect of SAHA+/- TRAIL on apoptosis of MM cell lines. Apoptosis was assessed 

using a Caspase-3 activity assay and analysed by flow cytometry. MM Cells were treated 

with the lowest doses of SAHA that appeared to enhance TRAIL-induced apoptosis as 

determined by Hoechst 33342 and PI staining (NCI-H929: 5M SAHA, 10ng/ml TRAIL, 

RPMI 8226: 1M SAHA, 2ng/ml TRAIL, U266: 5M SAHA, 50ng/ml TRAIL). The data is 

expressed as average +/- standard deviation from three independent experiments, each in 

triplicate). Significance determined by using by the ANOVA test (*=p<0.05). Results 

confirmed the patterns of apoptosis induction seen by nuclear morphological assessment of 

apoptosis by Hoechst 33342 and PI staining in U266 and NCI-H929 and RPM 8226. B) 

Determination of caspase-8 and -9 activity in NCI-H929, RPMI 8226 and U266 cells treated 

with SAHA +/- TRAIL. TRAIL-sensitive cells show caspase-8 activation (NCI-H 929 

(10ng/ml TRAIL and RPMI 8226 2ng/ml TRAIL) whereas U266 did not show TRAIL-

induction at 50ng/ml. c RPMI activated caspase-9 after dual treatment whilst NCI-H929 

potently activated Caspase-9 by SAHA alone. Results shown are mean of two independent 

analyses.  

 





Figure 5: Generation of TRAIL 
R  

population. a) Generation of TRAIL-resistant NCI-H929 

and RPMI 8226 cells by stimulating the TRAIL sensitive cells with a high/lethal dose of 

TRAIL (50 ng/ ml) and sub-culturing of surviving cells results in an increase in cell viability 

and significant reduction of the percentage of apoptosis in TRAIL resistant cells compared to 

parental TRAIL sensitive cells. b) SAHA does not synergistically enhance TRAIL responses in 

TRAIL-insensitive cell lines. Cells were treated with SAHA in the presence and absence of 

TRAIL resulting in significant reduction of the percentage of apoptosis in NCIH929 and 

RPMI 8226 TRAIL-resistant cells compared to  parental TRAIL-sensitive cells (ANOVA 

*=p<0.05,). 

 

  



Figure 6: Effect of SAHA +/- TRAIL on apoptosis of MM cell lines in suspension vs. 3D 

culture conditions. MM Cells were treated with SAHA +/- TRAIL determined by Hoechst 

33342 and PI staining for24 h. The data is expressed as average and median (three 

independent experiments, each in triplicate). The statistical significance was determined by 

comparison with the vehicle control; P < 0.05 was considered statistically significant and 

determined by ANOVA test. b: Induction of apoptosis in U266 cell lines following treatment 

with SAHA for 24hr in the 3D alginate model. Hoechst 33342 stain was used to demonstrate 

apoptosis cells fragmentation of the nucleus, intense staining, and chromatin condensation 

while live cells were clear-edged, round, regular and uniformly stained. White arrow 

indicates examples of apoptotic cells. Red Propidium iodide-stained cells with permeabilised 

membranes and condensed nuclei are late apoptotic. 

 

 

 



Supplementary figure 1. Cells were treated TRAIL (50ng/ml and 250ng/ml) and apoptosis 

determined by Hoechst 33342 staining and assessment of nuclear morphology. Cells treated 

with 250ng/ml TRAIL were co-incubated with 10µM of caspase-3 inhibitor Z-DEVD-FMK 

for 24 hours. All cells lines showed a dose-dependent increase in apoptosis up to 250ng/ml, 

and Z-DEVD-FMK partially reversed apoptosis levels to below those observed with 50ng/ml. 

 

Supplementary figure 2. Parental and TRAIL-resistant NCI-H929 cells wer treated with 

TRAIL for 24 hours and apoptosis determined by Hoechst 33342 staining and assessment of 

nuclear morphology. TRAIL-resistant cells responded very weakly to 250ng/ml TRAIl 

(<10% apoptosis), however this was reversed by inclusion of 10µM the caspase-3 inhibitor 

Z-DEVD-FMK. 

 



Supplementary figure 3. NCI-H929 cells were cultured in aginate beads fo 10 days followed 

by challenge with TRAIL, SAHA or combination treatment. 3D cell cultures were stained 

with Hoechst 33342 nuclear morphology assessed. Combination treatment induced apoptosis 

in the majority of cells, whereas cells co-incubated with the caspase-3 inhibitor Z-DEVD-

FMK showed a complete inhibition of apoptosis.  
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