

Interactions of periodontal pathogens with megakaryocytic cells and platelets

ANDREWS, A. M., HAYWOOD-SMALL, Sarah http://orcid.org/0000-0002-4246-5020 and STAFFORD, Prachi http://orcid.org/0000-0002-9184-6049

Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/16258/

This document is the Published Version [VoR]

Citation:

ANDREWS, A. M., HAYWOOD-SMALL, Sarah, SMITH, Thomas and STAFFORD, Prachi (2017). Interactions of periodontal pathogens with megakaryocytic cells and platelets. Journal of Oral Microbiology, 9 (sup1), p. 1325245. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Journal of Oral Microbiology

Date: 20 July 2017, At: 01:29

ISSN: (Print) 2000-2297 (Online) Journal homepage: http://www.tandfonline.com/loi/zjom20

Interactions of periodontal pathogens with megakaryocytic cells and platelets

A.M. Andrews, S. Haywood-Small, T. Smith & P. Stafford

To cite this article: A.M. Andrews, S. Haywood-Small, T. Smith & P. Stafford (2017) Interactions of periodontal pathogens with megakaryocytic cells and platelets, Journal of Oral Microbiology, 9:sup1, 1325245, DOI: 10.1080/20002297.2017.1325245

To link to this article: http://dx.doi.org/10.1080/20002297.2017.1325245

9	© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
	Published online: 09 Jun 2017.
	Submit your article to this journal $oldsymbol{\mathbb{Z}}$
hh	Article views: 5
a a	View related articles 🗗
CrossMark	View Crossmark data ☑

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=zjom20

EOMW Stockholm 2017 – 12th European Oral Microbiology Workshop

Interactions of periodontal pathogens with megakaryocytic cells and platelets

A.M. Andrews, S. Haywood-Small, T. Smith and P. Stafford

Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK

ABSTRACT

Introduction: Cardiovascular disease (CVD) is a leading cause of morbidity, accounting for around 17.3 million deaths worldwide. Recent studies have linked periodontitis to CVD with the periodonto-pathogens Porphyromonas gingivalis and Tannerella forsythia thought to contribute and exacerbate atherosclerosis through interactions with platelets. To date, while platelet activation following challenge with periodonto-pathogens has been reported, the underlying mechanisms of these interactions are yet to be elucidated. The aim of this study is to determine how periodonto-pathogens interact with platelets using both megakaryocytic cells and isolated platelets.

Methods: To characterise expression levels of surface markers including ubiquitously expressed platelet-specific markers (CD41, CD42b) and platelet activation markers (CD62P, PAC-1), a multi-colour flow cytometry panel was developed using undifferentiated megakaryocytic cells CHRF-288-11 before validation using platelets isolated from healthy donors. Changes in levels of surface markers following bacterial challenge both with megakaryocytic cells and isolated platelets were determined using flow cytometry. Interaction with pathogens was visualised by platelet aggregometry and fluorescence microscopy using pathogenspecific antibodies.

Results and conclusions: Both pathogens invaded megakaryocytic cells as visualised by immunofluorescence microscopy. The pathogens also bound platelets causing increased levels of aggregation and upregulated expression of activation markers including in CD62P in flow cytometric assays.