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Abstract. Development and assessment of techniques that allow inertia measurement units 

consisting of an accelerometer and a gyroscope to be used for monitoring human joints' 
movements are presented. A new wavelet packet decomposition technique was developed 

that denoised the accelerometer signals. Investigations on the use of accelerometers to 

analyse legs’ movements are described. 
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1. Introduction 

Assessment of human joints' movements has been of great interest to many researchers 

and medical practitioners due to its importance for diagnosing and monitoring several 

medical conditions [1][2]. Movement analysis is important in assessing disabilities 

such as those affecting balance that increase the likelihood of fall and associated 

injuries. Many of these conditions are directly related to mobility-impaired or mobility 

reducing disorders such as arthritis, obesity, stroke, chronic pulmonary disease, 

multiple sclerosis and Parkinson’s disease [2]. 

The gold standard for movement analysis utilises a complex camera (vision) based 

aparatus. Although the method can be accurate, it has shortcomings that include its 

high cost, its restriction to being available primarily at some specialised gait 

laboratories and its complex procedures for data recording and analysis [3]. Recent 

technological developments in areas of nano and microprocessor technologies, 

computing and digital signal processing have resulted in major technological advances 

for measuring, monitoring and quantifying human movements [4] using 

Microelectromechanical Systems (MEMS) based on powerful integrated circuits called 

Inertia Measurement Units (IMUs). A typical IMU consists of a three-axis 

accelerometer, a three-axis gyroscope and a three-axis magnetometer and can be used 

to measure acceleration, angular rate of rotation and magnetic field vector respectively 

in their three-dimensional local coordinate systems [5]. 

In theory, the movements’ measurements obtained using IMUs once processed 

using suitably designed algorithms can estimate important information such as rotation, 

acceleration, orientation and distance. There are however some challenges in deploying 

IMUs for measuring and analysing patterns of human movements in practical scenarios. 

The data obtained from the IMUs are prone to various errors that reduce their accuracy 
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of analysis. Also, interpreting and relating the outputs from an IMU (accelerometer, 

gyroscope and magnetometer) to actual movement patterns require carefully designed 

models. In some studies, to improve the IMUs' effectiveness, the movement related 

information is estimated by combining (for fusing) the signals from an accelerometer 

and a gyroscope using a variety of algorithms such as the Kalman and complementary 

filters so that they complement each other’s abilities [6].  

Accelerometers have been reported to be very effective in posture and motion 

analysis, for detecting cyclical movements and conditions of daily living [7]. 

Accelerometer data were used to develop an efficient system for assessing static and 

dynamic balance and postural sway [8]. Mayagoitia et al. [9] used a tri-axial 

accelerometer to measure and monitor human balance. Luinge and Veltink [10] 

attached 3D accelerometers to the back of the trunk at the T4/T5 level and the pelvis to 

estimate the inclination of the body segments for monitoring daily life tasks, focusing 

on lifting and stacking objects. Kavanagh and Menz [11] reviewed the literature that 

used this technique for quantifying human movement and concluded that accelerometry 

techniques are accurate and reliable for providing information related to walking and 

gait patterns. 

A gyroscope indicates the rate a body's rotation and so to obtain the actual angle of 

rotation, the gyroscope’s signal needs to be integrated. Therefore an initial offset in the 

gyroscope's output results in a gradually increasing amplitude drift that obscures the 

movement information. An accelerometer on the other hand suffers from noise during a 

movement's initiation or when there is a sudden change in the movement's direction. 

By combining the outputs from the gyroscope and accelerometer, these two 

shortcomings can to an extent be resolved. A number of approaches for combining the 

gyroscope and accelerometer signals were reported. Hong [12] developed a fuzzy logic 

based complementary filter for determining attitude reference. Shen et al. [13] took this 

research further and designed an SPSA (simultaneous stochastic approximation 

algorithm) based on fuzzy complementary filter. Calusdian et al. [14] designed an 

adaptive-gain quaternion-based complementary filter algorithm that could accurately 

track orientation during dynamic and slow motion for tracking foot orientation during 

standing and swing phase. Tseng et.al [15] proposed a method to combine passive 

complementary filter and observer estimation methods to improve attitude estimation. 

Tian et al. [16] proposed an adaptive-gain complementary filter.  

However, despite extensive progress in utlising IMUs for movement analysis, 

there remain significant challenges in applying them for practical problem solving 

situations. For example in real-time clinical assessments and monitoring activities of 

daily living, problems such as heavy computational demands need careful 

consideration. Hence, there is a need for further research and development to enhance 

ways IMUs are employed and their data are processed and interpreted. 

In this study, a novel wavelet packet decomposition based technique to denoise 

accelerometer signals using the gyroscope as a guide was developed and its 

effectiveness was compared with the well-known complementary filter method. The 

study also includes an investigation of accelerometer based techniques to measure the 

legs’ movement angle, velocity, acceleration and displacement to assist in clinical 

diagnosis and rehabilitation purposes. 



2. Methods 

In this section initially a method devised to denoise accelerometer signals is described 

then accelerometer based experiments to analyse legs' movements are explained. 

2.1.  Wavelet packet based method to denoise accelerometer signals 

A technique based on wavelet packet decomposition (a generalisation of wavelet 

decomposition) was developed to denoise accelerometer signal using the gyroscope 

signal as a guide. This part of the study was based on simulated accelerometer and 

gyroscope signals (Figure 1) to facilitate an evaluation of the effectiveness of the 

methods.  The simulated accelerometer signal shown in Figure 1 (top figure) represents 

a leg's movements in a simplified form. Gaussian noise was added to this signal to 

represent the effect of measurement noise (shown in Figure 1, middle). The simulated 

gyroscope signal (shown in Figure 1, bottom) had an amplitude drift that increases with 

time.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Simulated accelerometer signal (top), noisy accelerometer signal (middle) and gyroscope 

signal with drift (bottom). 

 

In wavelet packet, a signal is successively decomposed by suitably chosen lowpass 

and highpass filters and at each stage of decomposition, the resulting signals are down 

sampled by a factor of 2. The outputs of the lowpass filter and highpass filters represent 

the coarse and detail information of the signal respectively. The decomposition is 

successively repeated in the similar manner for the required number of stages (called 

levels). The noisy accelerometer and drifting gyroscope signals were both decomposed 

separately using Matlab
©

 to 8 levels using the Daubechies 20 wavelet family (filter). 

The coefficients of the terminal nodes were expressed as nodes 255 to 510. The values 

of these nodes for both the decomposed noisy accelerometer and drifting gyroscope 

signals were compared for similarity by performing correlation. Two nodes with the 

largest correlation magnitude (i.e. closest similarity) were chosen and the values of the 

nodes that were not selected were set to zero. The accelerometer signal was then 

reconstructed based on the new wavelet packet coefficients for the noisy accelerometer.   

The reconstructed accelerometer signal obtained using the above method was 

compared with the complementary filter approach for combining the noisy 

accelerometer and drifting gyroscope signals. The movement angle from the 

complementary filter was obtained from Eq. (1) as 

                        𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝛼(𝜃𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑡 + ∆𝑡𝜃𝑔) + (1 − 𝛼)𝜃𝑎                                 (1) 

 
 

 



The complementary filter algorithm was designed using the filter parameter α= 

0.98, making the design rely more heavily on the gyroscope's based angle (𝜃𝑔) than the  

accelerometer angle (𝜃𝑎). The sampling interval ∆𝑡= 0.018 seconds (corresponding to 

sample rate of 55 samples per second). 

2.2. Accelerometry techniques for measuring legs' movements 

In this part of the study, four tri-axial accelerometer boards (ADXL335 from Sparkfun) 

with dimensions 4 mm × 4 mm × 1.45 mm were used for the experiments. The 

ADXL335 measures a minimum full-scale range of ±3 g [17] [18]. These boards were 

connected to an Arduino Mega 2560 microcontroller board, that in turn was connected 

up to a computer via a USB cable. The microcontroller board digitised the analogue x, 

y and z accelerometer signals for display, storage and processing by the computer. The 

data recording sample rate was 244 samples/second [18], which was sufficient to avoid 

aliasing.  The accelerometers were attached to the left and right thighs and shanks of a 

healthy adult subject as he performed the following movements: 

 Sleeping on his back on the floor and fully stretched one of his legs to touch the 

floor and then bent it fully toward his chest, repeating 30 times. This was repeated 

for the other leg.  

 Walking normally the length of a long (about 20 m) corridor.  

The movement angles were calculated from the accelerometer signals using [18] 

                                                          𝛼𝑡ℎ𝑖𝑔ℎ = 𝑡𝑎𝑛−1 𝑎𝑥1

𝑎𝑧1
           (2) 

                                                           𝛽𝑠ℎ𝑎𝑛𝑘 = 𝑡𝑎𝑛−1 𝑎𝑥2

𝑎𝑧2
                                            (3) 

                                                     ∅𝑗𝑜𝑖𝑛𝑡 =  𝑎𝑡ℎ𝑖𝑔ℎ +  𝛽𝑠ℎ𝑎𝑛𝑘                                       (4) 

Where αthigh, βshank and Øjoint are the tilt angles of the thigh and shank, and the relative 

joint angle respectively; αx1 and αz1 are the acceleration measures for the x and z axes of 

the accelerometer attached to the thigh and αx2 and αz2 are the acceleration measures for 

the x and z axes of the accelerometer attached to the shank. Once the legs' joint angle 

was determined, the angular velocity (v), angular acceleration (a) total angular 

displacement (d) were obtained from it using [18]   
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where T is the signal recording duration. 

 



3. Results and discussion 

3.1. Wavelet packet based method to denoise accelerometer signal 

The correlation between the terminal nodes of the wavelet packet for the noisy 

accelerometer and time drifting gyroscope signals indicated that the nodes with the two 

highest similarities were nodes 255 and 258 (Figure 2). These nodes were then selected 

with the values of the remaining nodes set to zero to re-construct the accelerometer 

signal as shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

   

 

 

Figure 3 shows the original simulated accelerometer signal, the denoised 

accelerometer signal obtained using the wavelet packet decomposition technique and 

the signal obtained from the complementary filter. The denoised accelerometer signal 

obtained using the wavelet packet method is significantly more similar to the original 

signal as compared with the signal obtained using the complementary filter. Wavelet 

packet processes a signal at different frequency bands and thus can be more effective in 

representing the characteristics of the signal and noise than the complementary filter. 

The method is thus valuable in denoising accelerometer signals. 

3.2. Accelerometry techniques for measuring legs' movements 

The accelerometer derived information data obtained from the legs while the subject 

slept on his back and moved his legs in turn from fully stretched on the ground to fully 

bent close to the chest are shown in Figures 4 and 5 and the related data are 

summarised in Table 1. Table 2 shows the angular velocity, acceleration and total 

displacement results for the legs' movements when the subject slept on his back. The 

results indicate that the right leg moved faster than the left leg and had a total 

displacement of 89.2 radians (over the duration of the recording) as compared with the 

left leg that had total a total displacement of 79.2 radians. 

 

 
 

 

 

 

Figure 2. Wavelet packet correlation plot.   

 
Figure 3.  The original accelerometer signal 

(blue), those from the complementary filter      
(black) and the wavelet packet (red). 

  

 



In the walking scenario shown (results summarized in Tables 3 and 4 and shown 

in Figures 6 and 7), the angular range of movement was wider for the left leg than the 

right leg. The angular velocity, acceleration and total displacement values were also 

higher for the left than the right leg. The largest peaks present in the magnitude 

frequency spectrum of the legs' angular movements were at 0.77 Hz, 1.55 Hz and 2.33 

Hz with the dominant frequency appearing at 1.55Hz. 

 

 

 

 

 

 

 

 

 

 

 

 

  Table 1. Legs' movement range and frequency when subject slept on his back  

             Leg             Movement Range        

(degrees) 

Movement  Frequency 

(Hz) 

Left  52.9 - 167.9 0.26 

Right  43.9 - 163.1 0.26 

 

Table 2. Legs' movement angular velocity, acceleration and total displacement when subject slept on his 

back 

              

Leg 

Angular Velocity 

(rad/s) 

Acceleration 

(rad/s2) 

Total Displacement 

(rad) 

Left  2.85 27.09 79.15 

Right  3.50 38.34 85.19 

 

 Table 3. Legs' movement range and frequency when the subject walked 

      Legs Movement 

Range(degree) 

Frequency (Hz) 

associated with the three 

largest peaks in the 

magnitude spectrum   

Left leg 101.7 - 274.5 0.77, 1.55, 2.33 

Right leg 115.2 - 284.1 0.77, 1.55, 2.33 

 

  Table 4. Velocity, acceleration and total displacement when the subject walked 

          Leg Angular Velocity 

(rad/s) 

Acceleration 

(rad/s2) 

Total Displacement 

(radians) 

Left   24.63 436 216.4 

Right  23.75 411 196.3 

  
 

 
Figure 4. Angle measurement for the left leg 

while subject slept on his back. 

Figure 5. Angle measurement for the right 
leg while subject slept on his back. 

while subject slept on his back 



 

 

 

 

 

 

 

 

 

 

 

 

The short-time Fourier transforms plots of the legs' angular rotation angular when 

the subject walked and slept on his back are displayed in Figures 8 and 9 respectively. 

Figure 8 shows three main frequency components that slightly vary in their values over 

time.  Figure 9 indicates that the main frequency of the movement for both legs was 

0.26 Hz (i.e. 3.8 seconds per cycle) that also varies slightly over time during walking.  

Short-time Fourier transform is valuable in visualising consistency in movement and in 

associating time and frequency of the movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The findings of this study highlight some of the technological challenges and 

opportunities that inertia measurement units (accelerometers and gyroscope) can 

provide in health care. More research and developments are needed to deal with these 

challenges and explore the opportunities they provide. Medical conditions involving 

movement dysfunctions such balance problems will be obvious application areas for 

IMUs. We are also currently exploring IMUs to help monitoring and diagnosis 

arthrosis by quantifying joint movement information. 

4. Conclusions 

A wavelet packet decomposition technique for denoising a simulated accelerometer 

signal was developed and its performance was compared with that for the 

complementary filter. The wavelet packet approach was more effective in representing 

the original reference accelerometer signal than the complementary filter.  

A system to measure the legs' movement using two pairs of accelerometers was 

also developed. Accelerometer signals recorded from the legs of a healthy adult subject 

 
 

 

 

 

  
 

 

 

 

 

 

 

 

 

Figure 6. Angle measurements for left leg when the 

subject walked. 

  

 

Figure 7. Angle measurements for the right leg 

when the subject walked. 

 

  

 

Figure 8. Short-time Fourier transform of the 
legs' angular rotation signal when the subject 

walked. 

  

 

Figure 9. Short-time Fourier transform of legs' 

angular rotation when the subject slept on his 

back. 
 



who slept on his back and moved his legs in turn from fully stretched on the ground to 

fully bent close to his chest and while he walked were analysed. The results obtained 

indicated differences between angular rotation, angular velocity, angular velocity and 

total angular displacement for the legs for the related scenarios.  The approaches can be 

valuable for investigating movement related disorders. 
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