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Abstract 
While business process automation is proliferating through industries and 

processes, operations such as job and crew scheduling are still performed 

manually in the majority of workplaces. The linear programming techniques are 

not capable of automated production of a job or crew schedule within a 

reasonable computation time due to the massive sizes of real-life scheduling 

problems. For this reason, AI solutions are becoming increasingly popular, 

specifically Evolutionary Algorithms (EAs).  

However, there are three key limitations of previous studies researching 

application of EAs for the solution of the scheduling problems. First of all, there 

is no justification for the selection of a particular genetic operator and conclusion 

about their effectiveness. Secondly, the practical efficiency of such algorithms is 

unknown due to the lack of comparison with manually produced schedules. 

Finally, the implications of real-life implementation of the algorithm are rarely 

considered.  

This research aims at addressing all three limitations. Collaborations with DB-

Schenker, the rail freight carrier, and Garnett-Dickinson, the printing company, 

have been established. Multi-disciplinary research methods including document 

analysis, focus group evaluations, and interviews with managers from different 

levels have been carried out. A standard EA has been enhanced with developed 

within research intelligent operators to efficiently solve the problems.  

Assessment of the developed algorithm in the context of real life crew scheduling 

problem showed that the automated schedule outperformed the manual one by 

3.7% in terms of its operating efficiency. In addition, the automatically produced 

schedule required less staff to complete all the jobs and might provide an 

additional revenue opportunity of £500 000.  

The research has also revealed a positive attitude expressed by the operational 

and IT managers towards the developed system. Investment analysis 

demonstrated a 41% return rate on investment in the automated scheduling 

system, while the strategic analysis suggests that this system can enable 

attainment of strategic priorities. The end users of the system, on the other hand, 

expressed some degree of scepticism and would prefer manual methods. 
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Chapter 1. Introduction 

In recent years technology has been developing at an exponential pace 

revolutionising business operations and re-shaping customer experience 

(Kurzweil 2006). Such products as Google Home and Amazon Echo are taking 

control of homes by being able to understand commands in natural language and 

remotely operate various appliances and devices (Brandon, 2016). Chatbots like 

Amelia can answer standard questions and handle a natural conversation with 

customers, while sophisticated algorithms are capable of predicting future 

purchases and making personalised product recommendations (Business Wire 

2014, Fang, Zhang and Chen 2016, Zhang and Song 2015, Da-Cheng Nie, et al. 

2014). 

These rapid advancements in AI and their proliferation in day-to-day life are 

beginning a new technological era. Researchers and practitioners mark this time 

as the fourth industrial revolution or industry 4.0 (Baur and Wee 2015).  

According to the Forrester research agency, $2.06 trillion have been invested 

globally in software, hardware, and IT services by enterprises and governments 

in 2013 (Lunden 2013). The number of supplied industrial robots is increasing 

every year. According to the International Federation of Robotics (2015), it 

reached 229,000 units in 2014 with eighty percent of executives believing that AI 

improves workers’ performance and creates jobs (Narrative Science 2015).  

 

Figure 1 Worldwide annual supply of industrial robots 

Source: International Federation of Robotics World Robotics (2015) 
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Von Rosing and Polovina (2015, p.196) state that “Business processes are the 

heart of an organization and the support of the business processes by application 

systems is central to each organization”. Moreover, in today’s rapidly changing 

business environment and increasing volumes of available information, it is 

impossible to make an adequate analysis and to take a rational decision without 

the aid of an information system. Baltzan (2009, p.60) describes this challenge 

as “Highly complex decisions involving far more information than the human brain 

can comprehend must be made in increasingly shorter time frames".  

However, to date, not all companies have a powerful information system, which 

can assist them with data analysis and decision making. From eighty to eighty-

five percent of information remain uncaptured by some of enterprise applications 

(Polovina 2013). Mckinsey’s global survey of 807 executives shows that a large 

number of respondents expressed dissatisfaction with their current IT solutions. 

Moreover, respondents claim that their IT is becoming less effective in helping 

them achieve strategic objectives (Khan and Sikes 2014).  

1.1 Planning and scheduling technologies 

An example of such analytical decisions are planning and scheduling operations. 

Planning and scheduling processes are the backbone operations in many 

organisations. Effective planning and scheduling enable successful assignment 

of limited resources to required jobs and often determine the overall cost for the 

project. As the number of regulations and tasks in the value chains of medium 

and large businesses increases, building an optimal manual schedule becomes 

an extremely hard, if not impossible task.  

While the automotive and electronics industries are relatively automated (Figure 

1), the railway and printing industries are lagging behind. For example, Withall, 

et al. (2011) and Clarke, et al. (2010) observe that such decisions as platform 

allocation and rolling stock scheduling are made by humans with very limited 

assistance from information systems. This research will also show that the 

complex train driver scheduling decisions in the rail-freight industry and job-

scheduling decisions in the printing industry are performed manually as well. 

Various existing commercial scheduling software such as ShiftPlanning, Appointy 

and WhenToWork provide only a visual representation for very complex 
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scheduling problems, so the assignment decision itself is still made by humans 

(WhenToWork 2016, Appointy 2016, ShiftPlanning 2016) . 

There are two key questions which one needs to answer when designing a 

scheduling system. First of all, what algorithm can be incorporated to produce 

and optimise the schedule? And, secondly, would it be possible to apply the same 

algorithm for different problems in order to achieve economies of scale and to 

reduce the development cost?  

Traditionally scheduling problems have been solved with linear programming 

techniques. Linear programmes were formulated during the Second World War 

by Kantorovich and in 1946-1947 Dantzing proposed a Simplex method for its 

solution (Wood 1965, Dantzing and Wolfe 1974). Although these methods 

provide an optimal solution, they are becoming less and less practical as their 

computation time grows exponentially with the increase in the size of the data. 

Onwubolu and Babu (200 p.1) state that “The days when researcher emphasised 

using deterministic search techniques to find optimal solutions are gone”. 

A new generation of algorithms, metaheuristic algorithms, emerged in the 1960s-

1970s, which are now becoming increasingly popular (Gogna and Tayal 2013, 

Kincaid 2008, Gendreau and Potvin 2005, Blum and Roli 2003). By mimicking 

various natural processes, they are able to tackle large volumes of data and arrive 

at a sub-optimal solution within an acceptable time frame. For example, 

Evolutionary Algorithms (EAs) are a class of metaheuristic algorithms, which 

replicate biological evolution and are guided by the Darwinian principle of “the 

fittest survives”.  

One of the algorithms belonging to this class is the Genetic Algorithm (GA) 

developed by John Henry Holland in 1975 (Holland 1975).  Unlike other EAs, a 

GA uses binary vectors in order to encode the solution. However, similar to many 

EAs, a GA is "an artificial intelligence system that mimics the evolutionary, 

survival-of-the-fittest process to generate increasingly better solutions to a 

problem. A GA essentially is an optimizing system: it finds a combination of inputs 

that gives the best outputs" (Baltzan 2015 p.62). He further states that a GA is 

best suited to decision making environments in which, thousands, or perhaps 

millions, of solutions are possible. This is because it can “find and evaluate 

possibilities faster and more thoughtfully than a human” (Baltzan 2015 p.62). 
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Examples of such environments and problems can include the driver scheduling 

problem in the rail-freight industry or job-shop scheduling problems in the printing 

industry. 

Several studies such as Azadeh et al. (2013), Shen et al. (2013), Zeren and Ozkol 

(2012), Ozdemir and Mohan (2001) and Levine (1996)  have proposed EAs for 

the solution of crew scheduling problems. Spanos et al. (2014), Zhang, Gao and 

Li (2013), Dong Hui (2012), Meeran and Morshed (2012), Qing-dao-er-ji and 

Wang (2012, Yang et al. (2012) and Jia et al. (2011)  have developed the 

algorithms for the solution of job scheduling problems.  

However, despite the popularity of EAs in operations research communities, 

there are four areas which are under-researched. These gaps are presented 

below. 

1. Most of the EAs have been devised to tackle a specific problem. Minimal 

research has been conducted regarding applicability of those algorithms 

across different domains. Moreover, none of the studies investigated the 

benefits and risks of application of the generalizable algorithm in real life. 

2. There is no conclusion amongst researchers regarding the efficiency of 

genetic operators across different domains. 

3. The majority of the developed algorithms have not been tested on real 

life sets of data and their practicability is not fully known. 

4. There is a lack of knowledge of what impact these algorithms would have 

on a broader business performance if they were built in to real 

information systems. 

 

This research approaches the problem in a different way. First of all, it works with 

real business problems rather than their simplified models. Secondly, it tests the 

effectiveness of standard genetic operations across two conceptually different 

problems. Finally, it examines the implications of potential utilisation of the 

devised algorithm in a real business environment.  

1.2 Research question and objectives 

The key objective of this research is getting an insight into EA capabilities for the 

solution of real life scheduling problems. An EA will be developed and tested on 
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two significantly different formulations of scheduling problems in different 

industries. Its potential impact on immediate and long term business performance 

will be studied. Given that, the research question and objectives are proposed 

below.  

RESEARCH QUESTION: Can an EA improve scheduling processes in different 

real-life situations?  

RESEARCH OBJECTIVES:  

1. To understand the complexity of scheduling operations in real life. 

2. To investigate the performance of standard EA operators against 

each other. 

3. To develop and evaluate problem-specific operators in the context 

of the Crew Scheduling Problem (CSP) and the Job Shop 

Scheduling Problem (JSSP). 

4. To understand the limitations and challenges in the design of a 

generalizable algorithm for different domains. 

5. To assess the impact of the automatic crew scheduling system on 

the operational and strategic performance in a real distribution 

organisation. 

In order to achieve the above-mentioned objectives, collaborations with two 

companies where scheduling operations play a crucial role have been 

established. The companies are briefly introduced below, but their operations are 

considered in greater detail in Chapter 4 and Chapter 6.  

1.3 DB-Schenker 

DB-Schenker is the largest freight rail operator in the UK (DB-Schenker 2014). 

Currently DB-Schenker accounts for 39 depots, 1240 drivers and operates 550 

trains across the country on a single day. The company transports a wide range 

of commodities: from coal and chemicals to consumer goods. One of the main 

challenges the company experiences is the efficient utilisation of train drivers 

(DB-Schenker Head of HR interviewed on 07/11/2012, DB-Schenker Head of 

Finance interviewed on 07/11/2012). The problem becomes very complicated in 

the light of agreements with trade unions, strict restrictions on working and rest 
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hours, a fixed-hour annual contract with drivers, railway regulations and demand 

uncertainty.  

Preliminary research has found that the current information system (IS) is only 

able to provide summative historical reports for the team of decision makers. All 

processes, in particular complex scheduling and rostering operations, are 

executed manually. IS has only a controlling function on these operations and 

gives a warning message if the created operation cannot be performed. There is 

a need of an optimisation engine for IS, which would automatically analyse a large 

amount of data and suggest an effective way of assignment of the train drivers to 

the train trips.  

1.4 Garnett-Dickinson 

Garnett-Dickinson is the second collaborator. This company offers various types 

of publications ranging from newspapers and catalogues to high quality 

magazines. The volume reaches hundreds of thousands of magazines, millions 

of catalogues and brochures a year (Garnett-Dickinson 2012).  

Each publication (job) consists of several operations (i.e. printing, folding, 

stitching). The task is to assign these operations to the relevant machines in the 

sequence which reduces the completion time and does not violate operational 

constraints (deadlines, relevance of machines). The effective scheduling 

processes can reduce the lead time and fully utilise the capacity (Garnett-

Dickinson Chief Executive interviewed on 16/10/2012, Garnett-Dickinson 

Managing Director interviewed on 16/10/2012).  

To date, the computer software enables only graphical representation of the job-

shop using "drag & drop" technology; however, all the assigning decisions sit on 

the scheduler (Garnett Dickinson Operations Manager interviewed on 

20/10/2012) . That makes the company highly dependent on the planners as well 

as on their expertise and experience.   

1.5 Justification of research collaborators 

These companies were chosen for the following reasons:  

1. Scheduling operations take a central place in their operational 

strategies. 
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2. They do not have an automated scheduling system, so it would be 

possible to carry out an evaluation of how the companies can 

leverage the IS solutions based on EAs. 

3. The large size of trips, depots, crew, and printing jobs is sufficient 

to build a credible model and to make generalisations. 

4. The companies are interested in the research and agree to 

cooperate 

5. They have granted access to documentation, data and permission 

to interview members of staff to obtain the required information. 

6. The scale of operations and operational conditions are extremely 

different. Testing the same algorithm on such diverse problems 

would provide reasonably accurate information with regard to its 

universal applicability and generalizability. 

7. The head offices of both companies are located in South Yorkshire. 

This offers an opportunity to make regular visits in order to collect 

a sufficient level of information. 

Elaborating on the sixth point, it is necessary to highlight the considerable 

difference between the problems. The first problem deals with the allocation of 

the workforce whereas the second deals with the allocation of jobs, thus both 

have very different scheduling rules and constraints (Pinedo 2009). Moreover, 

the amount of jobs which need to be allocated to machines in the second problem 

are significantly lower than the number of train trips in the first problem. As the 

first problem presents a greater optimisation challenge, this will be the focal 

example in the thesis.  

1.6 Research contributions 

This study has made six major academic and practical contributions.  

 

1. The performance of standard genetic operators for two significantly 

different scheduling problems has been investigated and the most efficient 

operators have been identified.   

2. Novel intelligent genetic operators which allow a practical solution to be 

found more quickly than conventional operators, while still satisfying all the 

problem constraints, have been developed.  
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3. A comprehensive evaluation framework encompassing operational and 

strategic factors has been developed and applied. 

4. The possibility and associated risk of using the same algorithm to reduce 

the software development costs have been examined.  

5. The suitability of an EA for real life scheduling operations has been 

examined and the operational and economic effect on overall organisation 

performance has been assessed.  

6. A complex research methodology has been designed for combining 

document analysis, interviews, focus groups, and computational 

experiments, in order to achieve the above contributions. 

1.7 Publications resulting from this thesis 

In addition to the aforementioned contributions, the author has produced a 

conference paper, which has won the Best Refereed Paper Written by a Student 

award in the application stream at 34th Annual International Conference of BCS 

Charted Institute for IT in Specialist Group on Artificial Intelligence: 

Khmeleva, E., Hopgood, A.A., Tipi, L. and Shahidan, M. 

"Rail-Freight Crew Scheduling with a Genetic Algorithm" 

Proc. AI-2014, Research and Development in Intelligent Systems XXXI, 

M.Bramer and M.Petridis (eds.), Springer, December 2014.   

The full text of the publication and the awarded certificate are presented in 

Appendix 12.  

1.8 Organisation of the thesis 

Broadly the structure of the thesis can be divided into three parts. The first part 

concerns the design of an appropriate methodology for the research. The second 

part provides an insight into real life scheduling operations and devises a model 

describing the processes. Finally, the third part deals with the design of the 

effective EA and assesses its applicability in a real business environment. The 

summary of each chapter is presented below.    
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Chapter 1  

Introduction 

 

This chapter introduces the research question 

and research objectives. It also provides an 

overview of the organisations participating in 

this research and their scheduling operations.  

 

Chapter 2 

Overview of optimisation 

methods 

The key objective of the chapter is to select and 

justify the algorithm which will be incorporated 

into the automatic scheduler. In order to 

accomplish this, several algorithms will be 

critically reviewed and discussed.  

 

Chapter 3 

Multi-disciplinary methods for 

real life problems 

The aim of this chapter is to design an 

appropriate methodology which would enable 

the capture of complex real life processes as 

well as supporting the development of the EA 

and its evaluation in real life settings.  

 

Chapter 4 

Job-shop scheduling in the 

printing industry 

This chapter presents the context of job-shop 

scheduling in the printing industry and 

identifies the challenges that schedulers face 

when assigning jobs to printing presses. The 

output of this chapter is the model describing 

the job shop scheduling process.  

 

Chapter 5 

Approaches to job-shop 

scheduling problem 

 

This chapter discusses the approaches 

developed in the literature for the solution of 

job-shop scheduling problems and analyses 

their advantages and disadvantages. 

 

Chapter 6 

Crew scheduling problems in 

the rail-freight industry 

This chapter outlines scheduling and planning 

operations in the rail-freight transportation 

industry. It focuses on the driver scheduling 

problems and related health and safety 

regulations and contractual conditions, which 
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must be taken into account when constructing 

a driver working plan.  

 

 

Chapter 7 

Approaches to crew 

scheduling problems 

This chapter reviews existing approaches to 

the solution of crew scheduling problems and 

analyses their effectiveness in relation to real-

life scheduling operations. 

 

Chapter 8 

EA design 

This chapter sets the main principles for 

effective EA design and proposes two novel 

operators specifically developed in this 

research to solve crew scheduling and job-

shop scheduling problems 

 

Chapter 9 

Comparison of evolutionary 

operators and strategies: 

experimental results 

This chapter experimentally compares 

traditional genetic operators and intelligent 

operators devised within this research. It also 

empirically validates the joint application of 

multiple genetic operators within the same 

algorithm and compares the results obtained 

for CSP and JSSP. 

 

Chapter 10 

Adaptation of the EA to the 

CSP problem 

This chapter establishes the limitations of the 

application of the same algorithm for 

conceptually different problems. It enhances 

the complexity of the chromosome 

representation for CSP to drive the efficiency 

of the algorithm. After examination and tests of 

various decoding procedures, it selects the 

configuration of the algorithm which provides 

the most cost-efficient schedule to be applied 

on the real data set.  
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Chapter 11 

Implication of the research 

for an organisation 

Discusses the adaptation of real life data and 

EA objective function to real life CSP. It then 

reports the results of the expert evaluation of 

the EA produced schedule and analyses the 

results. The analysis considers the quality and 

practicability of the schedule, the impact on 

operational performance and the alignment 

with organisation strategy. 

 

Chapter 12 

Conclusions and future 

research directions 

Provides an overall summary of the conducted 

research and obtained results. It also outlines 

some of the research limitations and suggests 

future research directions. 

 

1.9 Chapter summary 

This chapter has demonstrated that despite significant technological progression 

and increased supply of industrial robots in recent years, complex planning and 

scheduling operations are still performed manually. The traditional linear 

programming algorithms struggle to handle a large of amount of data and are 

becoming replaced by various AI optimisation algorithms. However, the way the 

companies in the rail-freight industry can leverage AI based on automated 

planning technologies and their impact on their performance is a significantly 

under-researched area. The main research question of this study is to devise a 

proof of concept of such software and conduct a detailed assessment of its 

effectiveness in a real organisation.  

The next chapter introduces and closely examines metaheuristic algorithms, 

which can be applied to assist companies in solving their crew and job-shop 

scheduling problems.  
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Chapter 2. Overview of optimisation 
methods 

2.1 Introduction  

The purpose of this chapter is to identify the technique, which can be incorporated 

into CSP and JSSP automatic schedule builders. In order to accomplish this, 

several optimisation methods for the solution of combinatorial problems will be 

reviewed. Their general logic as well as strengths and weaknesses in relation to 

the solution of the scheduling problems will be discussed. More importantly, 

because this thesis considers their real-life application and business impact, the 

development efforts for each algorithm will also be taken into account when 

selecting an algorithm. Development efforts will be measured on the basis of two 

dimensions: the algorithm complexity (i.e. how long and sophisticated the code 

should be) and generalizability (i.e. the possibility to transfer the code to other 

problems).  

This chapter is focused only on the AI algorithms and does not present exact 

techniques. This is because the majority of real-life optimisation problems have 

an immense number of constraints and variables and belong to the class of NP-

hard combinatorial problems (Hart, Ross and Nelson (1998), Gogna and Tayal 

(2013)). The exact methods usually struggle with such a large number of 

variables because they are based on techniques which require generation of all 

possible combinations. Since it is almost impossible to produce and evaluate all 

possible solutions for NP-hard problems, they have been rejected due to their 

impracticability for this research.  

2.2 Heuristic methods 

Reeves (1993,p.6) provides a definition of heuristic methods.  

Definition 1 

Heuristic is "a technique which seeks good (i.e. near optimal) solution at a 

reasonable computation cost without being able to guarantee either feasibility or 
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optimality, or even in many cases to state how close to optimality a particular 

feasible solution is”. 

Unlike exact integer programming (IP) techniques, heuristic methods exploit the 

nature of combinatorial problems rather than their IP formulation (Gendreau and 

Potvin 2005). Since they do not rely on objective function derivatives they have 

more chances to escape local optimum as well as handle non-continuous 

functions and discrete parameters (Haupt 1998). The downside of this is heuristic 

methods are usually tailored to a particular problem and have a limited 

applicability to other problems. Design of an effective heuristic method requires 

substantial knowledge regarding the domain. One of the examples of heuristic 

methods is greedy randomised adaptive search procedure (GRASP), which is 

described below.  

2.2.1 GRASP (greedy randomized adaptive search procedure) 

GRASP is a simple heuristic which consists of two operators: constructive 

heuristic and local search (Blum et al. 2011). Construction operator assembles a 

solution element by element with a certain degree of randomization. After that the 

solution is enhanced with a tailored improvement technique. This is a multi-start 

method, which means that the described process repeats a certain number of 

times. The memory preserves all final solutions and at the final iteration the best 

solution is regarded as a final result (Gendreau and Potvin 2005).   

GRASP can provide a solution for a relatively short period of time and can be 

incorporated into various algorithmic frameworks (Blum et al. 2011). One of the 

drawbacks of GRASP is that it does not rely on the history of the previously 

obtained solutions in order to direct the search (Gendreau and Potvin 2005, Blum 

et al. 2011). Furthermore, the heuristic technique must be specifically designed 

for a particular domain, which reduces the level of generalizability of the algorithm 

and requires ample knowledge about the problem.  

2.3 Metaheuristic methods 

Unlike simple heuristic methods, meta-heuristics are less problem-dependent 

and are based on a specific algorithm that manages low-level heuristics. 
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Definition 2 

A metaheuristic is "an iterative generation process which guides subordinate 

heuristics by combining intelligently different concepts for exploring and exploiting 

the search space, and learning strategies are used to structure information in 

order to find efficiently near-optimal solutions" (Osman and Laporte 1996, p.1).  

In general, heuristic techniques are more flexible and adaptable to real-world 

situations than exact methods (Gogna and Tayal 2013). Due to having a variety 

of tools for productive exploration and exploitation of search space, they are more 

likely to reach the global optima of the function than heuristics methods. Moreover, 

these techniques, in many cases, allow the algorithm to escape local optimuma. 

As to their disadvantages, the tuning and design of a low level heuristic might be 

time-consuming.   

Despite the fact that meta-heuristics do not guarantee finding the mathematical 

optimum, they are highly capable of finding a reasonable solution for a much 

shorter period of time than exact methods.  This fact makes meta-heuristics highly 

attractive for real life applications (Reeves 1993, Gendreau and Potvin 2005, 

Gogna and Tayal 2013).  

The summary of the benefits and limitations of metaheuristic methods are 

displayed in Table 1.   

Table 1 Advantages and disadvantages of metaheuristic methods 

Advantages Limitations 

• More general applicability than 

heuristic alone 

• Find global optima 

• Deal with local optimums 

• Reasonable computation time 

• Find global optima 

• Handle complicating constraints 

• Do not guarantee finding the 

optimum solutions 

• Not easy to prove efficiency of the 

algorithm 

• Requires a significant amount of 

time to be developed 

• Analysis and selection of the 

algorithm for a particular problem 

is a very challenging task 

• Requires extensive knowledge 

about the problem 

Adapted from Gogna and Tayal (2013), Gendreau and Potvin (2005) 

The majority of metaheuristic methods were inspired by real life processes. For 

instance, Simulated Annealing mimics thermodynamic processes; Tabu-Search 
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resembles the brain memory; GA is based on biological evolution and Ant Colony 

Optimisation imitates ants’ behaviour. These methods as well as their 

advantages and limitations will be discussed below.  

2.3.1 Simulated Annealing 

The logic of Simulated Annealing (SA) algorithm is derived from the Metropolis's 

algorithm defining annealing process. Annealing is the chemical transformation 

occurring in metals when they undergo temperature changes (Reeves 1993). 

Usually the metal is first heated at a very high temperature till the point when it 

starts to melt. After that, the temperature starts to drop according to a certain 

schedule altering the internal energy and making the structure of metal rigid and 

fixed. The process is often applied in metallurgy in order to produce materials of 

a high quality with a minimum number of defects (Elhaddad 2012). 

Application of annealing principles as an optimisation technique was proposed 

by Kirkpatrick et al. (1983). In the optimisation context, the energy of the system 

is equivalent to objective function, state of the physical system is represented by 

solution and temperature is a control parameter regulating exploitation and 

exploration phases (Reeves 1993, Gendreau and Potvin 2005, Gogna and Tayal 

2013).  

The SA algorithm starts from initialisation of the first candidate and selecting a 

temperature. At the beginning, the temperature should be set reasonably high 

(Gogna and Tayal 2013). Too low temperature might force the algorithm to 

converge around a local optimum. However, if the temperature is set too high the 

convergence of the algorithm can be relatively slow. At the next step, the 

candidate solution, lying in the neighbourhood of the existing one, is produced. If 

the formed solution is more cost effective, then it immediately substitutes the 

existing one. Otherwise it can only be accepted with a certain probability 

determined by temperature and degree of worsening the solution. In the classic 

SA algorithm, the probability is computed according to Formula 1. According to 

this formula the worse solution is more likely to be accepted when the 

temperature is high and cost increase is low (Gendreau and Potvin 2005).   
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Formula 1 

𝑃 =
1

1 + 𝑒−
∆𝐸
𝑡

 

The temperature reduces at a certain rate 𝑎  corresponding to the speed of 

desirable convergence of the algorithm and required completion time. There are 

several variations of the cooling schedules, which are presented in Table 2.  

Table 2 Cooling Schedule 

Cooling Schedule Formula Comments 

Exponential  𝑇𝑡+1 = 𝛼𝑡𝑇𝑡 Keeps the system close to 

equilibrium 

Linear 𝑇𝑡+1 = 𝑇0 − 𝜂𝑡 

 

 

One of the most popular 

strategies to use  (Nourani 

and Andresen 1998) 

Logarithmic  𝑇𝑡+1 = 𝑎𝑇0/ln⁡(𝑑 + 𝑡) Proven to be able to 

converge to the global 

minimum, but very slow 

and is rarely used in 

practice  

Geometric 𝑇𝑡+1 = 𝑎𝑇𝑡 

 

One of the most popular 

strategies to use  (Nourani 

and Andresen 1998) 

𝑇0-initial temperature 

𝑇𝑡-temperature at the iteration t 

𝑎-cooling speed, (0 <α< 1) 

d-is usually set to one  (Nourani and Andresen 1998) 

 

Adapted from:  Nourani and Andresen (1998), Gogna and Tayal (2013) 

SA has a number of benefits which make it a useful optimisation tool. Firstly, 

acceptance of the worse solution allows the algorithm to avoid being trapped into 

a local optimum (Blum and Roli 2003). Secondly, owning to a neighbourhood 

construction strategy, SA thoroughly investigates the search region and can 

arrive at precise global optimum given that it is located in that region.  

However, it would be impossible if the step is too wide as it would be bouncing 

between different regions rather than between the solutions in the promising 

region (Nolle, et al. 2001). On the other hand, with too small steps SA might fail 

in reaching other regions within the allocated timeframe.  This challenge is 

partially caused by the availability of only a single operator which is responsible 

for the construction of the new solution. Another shortcoming of the algorithm is 
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that a good solution can be irreversibly overridden by a worse solution as there 

is no mechanism which stores search history. 

2.3.2 Tabu search  

Tabu search (TS) was proposed by Glover (1986).  The distinctive feature of TS 

is the memory, which keeps a record of the history of the search (Hopgood 2012).  

Like in previously discussed methods, TS starts from building the first candidate. 

However, unlike SA and GRASP, at the next step it constructs not only one, but 

several solutions from the neighbourhood of the first candidate. Furthermore, the 

new solution is only accepted if it has not appeared before (Reeves 1993). This 

is controlled by tabu lists which stores the information about the previously 

generated candidates. The size of tabu list is called tenure. When the tenure 

exceeds the limit, some of the candidates, usually using a first-in-first out rule are 

released from the tabu list.  

Too small tenure would restrict the algorithm to the exploitation of smaller regions, 

whereas too large would encourage the search to explore other regions without 

appropriate examination of each region (Blum and Roli 2003). Since storage of 

the entire set of solutions requires substantial memory resources, usually only 

solution parts or movement attributes are saved. However, this might prohibit 

acceptance of good solution which has some of the forbidden properties unless 

it possesses some of the aspiration criteria. One such criterion is the candidate 

exibiting the lowest value of the objective function recorded in the process (Blum 

et al. 2011, Hopgood 2012).  Once a group of allowed candidates has been 

generated, the strongest solution with the minimum cost is selected to become a 

new current solution and the process repeats.  

By preserving the information regarding previous trials, it becomes possible to 

avoid cycling between the same solutions and thus to save computation time 

(Gogna and Tayal 2013, Hopgood 2012). Moreover, existence of the long term 

memory provides the opportunity to recover the best discovered solution even if 

it was replaced by the worse one (Hopgood 2012).  



32 
 

2.3.3 Ant colony optimisation 

Ant colony optimisation (ACO) algorithm imitates ants’ behaviour (Dorigo 1992). 

Searching for the food source and the best direction to reach it, ants leave a 

chemical compound called pheromone. Once they have reached the foraging 

area of food, they return back to the nest. As pheromone tends to evaporate over 

time from the shortest paths, the concentration of the pheromone on the shortest 

paths becomes higher. Thus other ants, deciding which way to go, are more likely 

to follow the path with more intense pheromone concentration. Because they also 

leave pheromone as they walk, the shortest paths get reinforced and the longest 

are forgotten. It continues until eventually all the ants follow the same route to the 

food source (Jargen and Guntsch 2005).  

Inspired by the ants' skill to find the shortest path, Dorigo (1992) used this 

mechanism as the logic of optimisation algorithm for the travelling salesman 

problem. The algorithm begins with initialisation of the set of ants. Then the 

artificial ants start to construct a partial solution (in terms of what city they will visit 

next). The decision relies on the previous experience of other ants (pheromone 

concentration) and the immediate benefits of arriving at the next city. In the 

classic ACO, the probability is calculated based on the formula below: 

Formula 2 

𝑝(𝑐𝑟⃓𝑠𝑎[𝑐𝑙]) = {

[𝑛𝑟]
𝑎[𝜏𝑟]

𝑏

∑ [𝑛𝑢]𝑎[𝜏𝑢]𝑏𝑐𝑢∈𝐽(𝑠𝑎[𝑐𝑙])

⁡⁡⁡𝑖𝑓⁡𝑐𝑟∈𝐽(𝑠𝑎[𝑐𝑙])⁡

0⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where: 

a, b signify the relative importance of heuristic information and pheromone 

value; 

𝐽(𝑠𝑎[𝑐𝑙])-the set of a solution components that are allowed to be added to the 

partial solution 𝑠𝑎[𝑐𝑙], where 𝑐𝑙 is the last component which was added; 

Once all ants have selected their next moves, the pheromone trait increases on 

the low cost paths while a small fraction is removed from all the paths to mimic 

the effect of evaporation.  
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The pheromone mechanism regulates the direction of the search. Concentration 

of the pheromone increases on certain paths reinforcing the good solutions, 

whereas pheromone evaporation prevents the algorithm from being stuck in the 

local optimum. ACO can be very effective for the problems which could be 

presented in the form of a graph, however, it might be quite hard to fit this 

algorithm into other models (Gogna and Tayal 2013). 

2.3.4 Genetic Algorithm 

Genetic Algorithm (GA) mimics natural evolution processes, which is based on 

the “fittest survives” principle formulated by Darwin (Hopgood 2012). The 

strongest candidates have a higher probability to reproduce and pass on their 

good traits to the offspring than weak members of the population. Occasionally 

some individuals undergo mutation, which alters some of the properties in the 

organism. Nevertheless, the overall population continues to evolve becoming 

fitter and stronger. 

Despite the idea of application of evolutionary processes in the field of 

optimisation is being attributed to Holland (1975), the early works on adaptation 

of genetics concepts for solution of optimisation problems can be found in the 

studies of Rechenberg (evolutional strategies), Schwefel, Fogel, Owens and 

Walsh (evolution programming) (Mitchell 1996). The defining merit of Holland's 

works was the determination of the EA's working principles and formation of 

schemata and building blocks concept, which are described in greater detail in 

section 2.7.6.   

From the optimisation perspective, the analogy of the individual is the solution 

itself, the reproduction process is performed by a crossover operator, which 

recombines the elements of parent solutions according to a certain rule. Mutation 

operator randomly inverses one or more elements in the solution.   

GA is a population-based method that deals with various solutions within the 

same iteration. The distinctive feature of GA is a crossover operator, which 

provides an explicit exchange of the parts of good solutions to form a more 

superior one. In optimisation terms, it allows exploration of the search space and 

fast reach to previously unvisited regions.  At the same time the algorithm is 

equipped with a local search operator (mutation), which contributes to exploration 
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of a current region. Thus a well-tuned EA with effective operators is able to return 

a good solution at a reasonable computation cost (Gogna and Tayal 2013). 

2.4 Hyper-heuristic and multi-purpose algorithms 

The limitation of the above methods is that being effective for one problem, they 

might demonstrate opposite results on another one. This is due to their 

dependency on guiding parameters and domain specific operators. Their 

adjustment and development can consume a significant portion of time, and if 

they were to be use in commercial software, this might result in a higher 

development cost. This section provides an overview of the approaches which 

were created to be more flexible and easily transferable to new domains.  These 

methods include reconfigurable schedulers and hyper-heuristics.  

2.4.1 Reconfigurable Schedulers 

Montana,Talib and Gordon (2007) devised a reconfigurable scheduler named 

Vishnu. Vishnu is able to produce and optimise various schedules with different 

rules and objectives. It consists of an optimizer and problem representation 

framework. In the problem representation framework a user must define the 

optimization criteria and constraints using a language similar to that used in 

spreadsheets (Montana,Talib and Gordon 2007). Optimiser has embedded GA 

in its core. GA is based on order-based (permutation of integers) chromosome 

representation and utilised position-based crossover, which is discussed in great 

detail in section 2.7.7. Mutation employs the same principle as crossover but 

without second parent: randomly identified genes are copied from the first parent, 

and then the rest of the genes are shuffled and placed into unoccupied positions.  

The resulting offspring is compared against other individuals. If the same 

offspring already exists in the population, then it is simply deleted. Otherwise, its 

feasibility is verified and restored if necessary. The feasibility repair operator is 

applied after crossover and mutation processes. 

The advantage of reconfigurable schedulers is the significant reduction of time 

and cost required to develop the software (Montana, Talib and Gordon 2007). 

The software is capable of providing a feasible solution to such problems as 

Travelling Salesman, Job Shop Scheduling Problem, Vehicle Routing Problem 

with Time Window, but it does not guarantee the optimality of the produced 
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schedule (Montana,Talib and Gordon 2007). Furthermore, the optimisation 

method uses the same parameters for all problems and it is unlikely that they will 

be effective for various scheduling problems.  

2.4.2 Hyper-heuristics 

According to Burke et al. (2013, p.64), hyper-heuristics is "a high-level approach 

that, given a particular problem instance and a number of low-level heuristics, 

can select and apply an appropriate low-level heuristic at each decision point". 

Since each heuristic can have its advantages and disadvantages as well as 

exhibit different performance on various data instances, the main objective of the 

selection heuristic operator is to automatically identify and apply the most 

appropriate low level heuristics (Misir et al. 2013). In comparison with meta-

heuristics, hyper-heuristics does not have any domain specific knowledge and 

works with information regarding the operators' performance rather than the 

solution of the actual problem (Burke et al. 2013).   

It is evident that the larger the heuristic set, the more chances that the good 

solution will be discovered as it is more likely that the appropriate operator will be 

applied. At the same time testing and managing a large set of heuristics can be 

extremely time consuming and memory-intensive.  Kiraz, Etaner-Uyar and Ozkan 

(2013) list several operator selection mechanisms: 

• Simple Random (all operators have the same probability to be selected) 

• Random Descent (applies the same heuristic until the solution is not 

improving further, then another one is chosen randomly) 

• Random Permutation (selects different operators in series following the 

order they appear in the program) 

• Random Permutation Descent (combination of the Permutation and 

Descent) 

• Greedy (use the one, which produces the largest improvement) 

The previously considered techniques relate to the selection type of hyper-

heuristics, however there is another type of hyper-heuristics called construction 

hyper-heuristics. Construction heuristics normally starts from an empty template 

and then fills it in with parts of solutions.   
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For instance, Hart, Ross and Nelson (1998) designed a chromosome with a 

complex structure for catching and planning chicken transportation. This problem 

is characterised as a highly constrained real-life problem. Unlike the traditional 

GA, where the chromosome only represents a solution, in the developed 

algorithm chromosome denotes both the elements of solution and the method of 

its decoding (Figure 2).  The first two rows are associated with the orders and 

their quantities whereas the third and fourth rows dictate which rule must be 

applied to decode a corresponding order. While all the rows participate in 

evolutionary processes, different genetic operators are applied to each part of the 

chromosome.  

 

Figure 2 Hyper-heuristics chromosome representation 

Source: Hart, Ross and Nelson (1998) 

Despite the fact that the algorithm might be perceived as highly problem-specific, 

Hart, Ross and Nelson (1998) claim that the principles of evolution of both 

solution and rules can be spread to other problems as well. Moreover, the result 

comparison with the SA algorithm revealed that EA was able to obtain more 

practical solutions.  

Han and Kendall (2003) developed a hyper-EA for a design of a timetable for 

events and trainers. Rather than evolving the timetables, hyper-EA evolved 

fourteen rules (variations of add and remove rules) of assembling timetables. The 

distinctive characteristic of this algorithm was that the initial timetable remained 

constant during the algorithm, but various construction rules were evolving 

resulting in improvement in their abilities to modify the initial schedule. Changes 

which each operator made were recorded and used to select crossover and 

mutation operators.  
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2.5 Algorithm comparison and analysis 

The review of the algorithms is conducted from two perspectives: algorithmic 

configuration and flexibility to accommodate new problems. Table 3 illustrates the 

level of generalizability in relation to the anticipated development time. 

Development time refers to the amount of time spent on the coding of the initial 

algorithm. Level of generalizability denotes the degree of manual adaptation 

required to fine tune the algorithm for the solution of different problems. The more 

time required the smaller potential for generalizability the algorithm has.    

Table 3 Development time and Generalizability of the algorithms 

 Low generalizability High generalizability 

Low development time Heuristics Re-configurable 
schedulers 

High development time Meta-heuristics Hyper-heuristics 

 

Heuristic methods, mainly consisting of one or two operators, rely on only a small 

piece of code (hence requiring a relatively small amount of time) which is 

produced specifically for a certain problem. Application of the algorithm to any 

other problems would need a considerable redesign of the operators. The same 

is applied to meta-heuristics with the exception that they are also guided by 

algorithmic parameters which have to be altered to each problem, hence more 

time is required to adjust the algorithm to other domains. 

Re-configurable schedulers require a small amount of development time as they 

are based on a single GA and the same set of operators is applied across different 

problems. In contrast, hyper-heuristics requires development of a collection of 

low-level operators and the operator selection procedure, which makes the 

construction of hyper-heuristic more time-consuming than re-configurable 

schedulers. 

Metaheuristic and hyper-heuristic are placed on the same level in terms of the 

development time. This is because the manual tuning of metaheuristic algorithm 

compensates for the time required to design and test an operator selection 

mechanism. 
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Figure 3 illustrates how the programming efforts are translated into the 

effectiveness of the algorithm. The reconfigurable methods are the least time 

consuming in terms of the development. This is because once the general 

optimisation technique has been developed, the user only needs to formulate 

constraints and objectives. The algorithm is able to solve scheduling problems as 

long as the problem can be formulated with available tools. The performance of 

such an algorithm is unlikely to be high since very general operators are used for 

all the problems. 

For large scale problems, metaheuristic and hyper-heuristic appears to be more 

effective than heuristics since they have a capability to perform and automatically 

regulate the exploitation and exploration of the search space. Metaheuristic were 

placed higher with respect to its performance because it thought to be more 

tailored to a particular problem and thus is expected to show better results 

although at the cost of more narrow applicability. Another reason for the high 

performance is that metaheuristic has faster execution speed since they do not 

employ automatic adjustments.  

 

Figure 3 Generalizability of the algorithms level of programming efforts 

Since it was concluded that metaheuristic techniques provide a trade-off between 

the quality of the results and required computation time, the methods belonging 

to this class will be compared in greater depth. The comparison is based on key 

Reconfigurable 
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search functions suggested by Gendreau and Potvin (2005) and the details are 

presented the Table 4.    

Table 4 Comparative analysis of the heuristic and meta-heuristic methods 

 GRASP SA TS ACO EA 

Construction Yes Yes Yes Yes Yes 

Recombination     Yes 

Random 

Modification 
  Yes Yes Yes 

Improvement Yes     

Memory Update   Yes Yes Yes 

Parameter 

Update 
 Yes    

Adapted from Gendreau and Potvin (2005) 

All metaheuristic algorithms start with the initialisation of a solution and use 

iterative steps to transfer from one solution to another moving through the search 

space. The first three algorithms (GRASP, SA and TS) are single candidate 

methods meaning they improve only one solution at a time. In contrast ACO and 

EA consider multiple solutions within the same iterations. This allows them to 

have a more global view of the problem by investigating several regions of the 

search space. 

While each algorithm has its unique benefits and limitations as discussed above, 

the comparison demonstrated that EA contains more means for the effective 

search than other algorithms. It comprises of two specialised operators, mutation 

and crossover, which are responsible for exploration and exploitation of the 

search space. Moreover, it is a population based method, but unlike ACO, it has 

an ability to explicitly exchange elements between good solutions (Gendreau and 

Potvin 2005). At the same time, by the means of mutation, it is capable of 

performing a neighbourhood search similar to other techniques.   

Table 4 also indicates that traditional EA is lacking parameter update stage. 

However, the more recent EAs have incorporated operators for the adjustments 

of crossover and mutation probabilities depending on how EA is progressing, for 

examples Xu and Vucovich (1993), McClintock, Lunney and Hashim (1997) and 

Chiou and Lan (2002). 
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2.6 Justification of the selected technique  

Having reviewed all the methods, it was revealed that EAs have a number of 

advantages, which make them suitable for real-life scheduling problems. To 

summarise, the main benefits and capabilities of EA are: 

1. Population-based method. It iterates a set of solutions that leads to better 

coverage and exploration of the search space (Gogna and Tayal 2013). 

2. Contains a mutation operator supporting the search space exploration 

process and allowing the search to escape a local optimum. 

3. Unlike other algorithms, it enables explicit recombination of the attributes 

between parent solutions via a crossover operator. 

4. EA can preserve several solutions for the next iterations to avoid loss of 

the best solution during the evolutionary process 

5. Can perform robustly on the problems with a noise (as it is population base 

method and one solution is unlikely to change the direction of the search) 

(Mitchell 1996) 

6. Suitable for complex real-life problems (Mitchell 1996) 

7. Flexible framework allows hybridization with other methods 

8. Can be executed on several processors. 

Since EA has been selected as the leading algorithm for the given study, the core 

operators and underlying principles of its work will be considered in a greater 

depth in the next section.  

2.7 Detailed analysis of EAs 

The general framework of one EA's iteration is displayed in Figure 4. The process 

begins with the initialisation of the chromosomes, and then the algorithm selects 

parent chromosomes from the population to produce two new solutions. The 

iteration ends with the replacement of the current population with a new one.  
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Figure 4 Flow chart of GA 

The algorithm repeats until the termination criteria are met. The examples of 

termination criteria include (Sivanandam and Deepa 2008):  

1. Achieved specified number of generations 

2. Achieved specified elapsed time 

3. The fitness has not changed for a specified number of iterations 

4. No improvements have been made within a certain amount of iteration 

5. No improvements have been made within a certain amount of time 

Each part of the algorithm and the essential principles of its work will be discussed 

below.  

2.7.1 Chromosome representation 

Chromosome (or individual) represents a coded solution. The chromosome 

consists of genes. Position of each gene is denoted by locus and the value as 

allele.  

In traditional GA (a class of EAs) chromosomes are expressed as a binary string 

of 0s and 1s. However with the further enhancements of EAs and its application 

to more sophisticated problems, other ways of chromosome representations such 

as matrix,  string of integers, and even computer programmes have emerged 

(Michalewicz 1996).  There are two ways of decoding a solution into 

Population creation

Selection

Crossover

Mutation

Replacement
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chromosome: direct and indirect. Direct encoding contains the soltuion itself, 

whereas indirect consists of the rules for constructing the solution rather than the 

solution itself (Han and Kendall 2003).   

The chromosome can be generated at random as well as based on the already 

existing feasible, but not the optimal, solutions. Although random generation 

might increase the population's diversity, it also can construct infeasible solutions. 

Usually infeasible solutions are tackled in one of the following ways (Michalewicz 

1996):  

• Automatically deleted from the population (without any further actions). 

• Left in the population with the intention that they might contribute to the 

production of a good solution later. 

• The infeasibility is penalised by a fitness function. 

• Repair operator which fixes the genes causing infeasibility. 

 

2.7.2 Population 

The population is an array of chromosomes. For a stable performance of the 

algorithm, it is very important to have an adequate population size. The 

population of a relatively small size can evolve quite fast, but might not capture 

all the regions of the search space. On the other hand, a too large population can 

lead to slow convergence (Elmihoub et al. 2006).   

2.7.3 Fitness function 

Fitness function (maximisation problems) or cost function (minimisation 

problems) indicates the "goodness of solution". It enables the algorithm to make 

judgements about particular individuals in the population.  The intuitive equivalent 

of the fitness function is the objective function. However, computation of the value 

of objective functions of real-life problems can be extremely time-consuming 

(Elmihoub et al. 2006). To alleviate this, Cooper and Hinde (2003) propose 

intelligent fitness function, which ensures that the fitness for the same 

chromosomes will not be tested multiple times. Another possible approach is to 

use approximation of the fitness function (Elmihoub et al. 2006). 
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Each cost function can be characterised by the level of epistasis (biological term 

for genes interaction). According to Haupt (1998, p.168),  epistasis is "the 

interaction of the coupling between different parameters of the cost function. The 

extent to which the contribution to the fitness of one gene depends on the value 

of other genes". EA works best on medium to high epistatic problems (Haupt 

1998).  

2.7.4 Selection 

Selection is the process of choosing chromosomes for reproduction. Several 

ways have been developed in order to accomplish this process (Hopgood 2012).  

Fitness-proportionate selection. The chromosomes will have a higher 

probability of being selected if they have higher fitness functions than other 

chromosomes in the population.  

The example is a roulette-wheel selection, in which all the individuals have the 

section proportionate to their fitness on the abstract roulette-wheel. During the 

selection, the wheel is rotated and the individual occupying the section where the 

wheel stopped gets selected. Despite of the fact that the selection probability is 

being aligned with the fitness, there is still a chance that the individual with low 

fitness will reproduce more frequently (Hopgood 2012).  

In order to mitigate unfair selection, Stochastic Universal Selection, a modification 

of roulette-wheel selection, can be applied (Hopgood 2012). Stochastic Universal 

Selection is augmented with a second roulette wheel on which the sections are 

equally distributed across the wheel. Unlike the roulette-wheel, Stochastic 

Universal Selection requires only one spin to choose the necessary number of 

individuals. 

Fitness-Scaling. The chromosomes are sorted based on a certain rule, and then 

topmost individuals are chosen for selection. Methods for ranking calculation 

include linear fitness scale, sigma scaling, Boltzmann fitness scaling, linear rank 

scaling, non-linear rank scaling, probabilistic nonlinear rank scaling, truncation 

selection, transform ranking (Hopgood 2012). The advantage of this method is it 

allows exploration of the whole search space preventing premature convergence. 

However, this approach requires more computation time because the scale value 

of each individual should be estimated every iteration. 
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Tournament selection. Unlike the previously discussed methods, the probability 

of the individual to reproduce depends much less on its fitness. It randomly 

selects two individuals from the population, measures their fitness, and the fittest 

individual is passed on to the next stage. Only fitness of the selected individuals 

is calculated meaning that Tournament selection is more time-efficient than the 

above described techniques. However, as opposed to other methods, the strong 

individual has smaller chances of being selected.  

2.7.5 Elitism 

Unlike the standard EA, where a new population completely replaces the current 

population, elitism prevents strong individuals from being deleted from the 

subsequent generations (Hopgood 2012). Under elitism strategy, replacement is 

usually carried out after each individual has been formed (rather than the entire 

population) by replacing the weakest individual in the population with the new one 

provided that the new individual is fitter.  

2.7.6 Schemata theorem 

Before the operators dealing with creation and modification of the chromosomes 

will be introduced, it is important to understand what happens "inside the 

algorithm" and why EA works. The schemata theorem proposed by Holland in 

1960 is the fundamental principle explaining how EA functions.   

Definition 3 

Schemata is "a set of genes values that can be represented by a template" 

(Hopgood 2012, p.177) (Figure 5).  Asterisk means that the gene can have any 

value.  
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0 1 * 1 1 * * 

Figure 5 Schemata instance 

Definition 4 

Building blocks is a set of schemata. The chromosome matching the schemata 

are said to be the instances of schema H (Sivanandam and Deepa 2008).  

Definition 5 

Order of schemata refers to the number of values on the fixed positions 

(Sivanandam and Deepa 2008). 

Definition 6 

Defining length is a distance between the outermost defined bits (Sivanandam 

and Deepa 2008). 

During the algorithm, EA manipulates schemata based on its implicit association 

with the fitness value. The task of the evolution is to identify those schemata and 

propagate them further. Building blocks are put together on the same string in the 

hope of creating a superior string by means of crossover and mutation operators. 

Good schemata, having a short definition length and a low order, tend to growth 

very rapidly in the population (Sivanandam and Deepa 2008).  

Mitchell (1996) and Sivanandam and Deepa (2008) state that the principles of 

GA's work are comparable with a sequential, two-armed bandit problem. They 

explain it as given a set of slot machines ("one-armed bandit machines"), where 

each machine has a mean value of the award and its variance, but the gambler 

does not have any information about them. Having N coins the task of the 

gambler is to maximise the payoff by pulling one of the arms. The common 

strategy is to conduct some trials by equally pulling each arm and recoding the 

payoff (exploration). After a certain amount of trials, the gambler selects the arm 

which gave a maximum pay off and plays on that (exploitation). Clearly the more 

trials the gambler carried out, the more accurate the decision of which arm to 

choose would be. On the other hand, he would lose more coins playing on the 

unprofitable arm.  

This problem illustrates the dilemma between exploration (gaining new 

knowledge and exploitation (obtaining current in-depth and reliable knowledge) 
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which is a common phenomenon in GA. However, it can be viewed as a multi-

armed bandit problem due to the presence of several schemata in the algorithm 

EA (Mitchell 1996). Formula 3 describes the behaviour of GA according to 

schema theorem (Hopgood 2012, Mitchell 1996).  

Formula 3 

 𝑛(𝐻, 𝑡 + 1) ≥ 𝑛(𝐻, 𝑡)
𝑓̅(𝐻,𝑡)

𝑓(𝑡)̅̅ ̅̅ ̅̅ (1 −
𝑃𝑐𝑑(𝐻)

𝑙−1
)(1 − 𝑃𝑚)

𝑜(𝐻) 

where H-hyperplane  (schema with more than one instance at the previous 

iteration) ; 

𝑑(𝐻)- defining length; 

𝑙 is the total number of genes in the chromosome; 

𝑛(𝐻, 𝑡) is the number of instances of H at the time t; 

𝑓(̅𝐻, 𝑡) is a average fitness of H; 

𝑓(𝑡)̅̅ ̅̅ ̅̅  is the average fitness in the population; 

𝑃𝑐 and 𝑃𝑚 are crossover and mutation probabilities respectively; 

𝑜(𝐻) is the order of H; 

 

According to this formula the schemata with the higher than average fitness will 

be occurring more frequently in future generations, whereas the number of 

schemata with a fitness lower than average will be decreasing (Hopgood 2012, 

Spears and De Jong 1991). However, this is only applicable when the effect of 

crossover and mutation is not too disruptive and there is a sufficient sample for 

reliable estimation of average fitness of H (Spears and De Jong 1991). 

Schemata analysis allows not only understanding whether the representation is 

suitable for EA, but also the overall efficiency of EA as well as prediction of the 

presence of a certain schema in the next generation (Sivanandam and Deepa 

2008, Negnevitsky 2011). 

2.7.7 Crossover 

Crossover is responsible for production of new chromosomes in the hope that 

they would be better than existing ones. From the optimisation perspective, the 

role of the crossover is to facilitate the exploitation of the search by the 

recombination of building blocks (Mitchell 1996). The schema can survive during 
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the crossover process if at least one of its offspring is also in its instance and if 

crossover does not occur within the defining length of the schema (Negnevitsky 

2011). Crossovers differ in the way they traverse the searching space.  

Single point crossover (Figure 6) recombines parts of the parent chromosomes. 

The cutting point is usually selected randomly. While it is relatively simple to 

implement, the limitation of this method is its inability to produce all possible 

schemata, i.e. it would be impossible to obtain a child with 11*11*1 from the 

parents 11*****1 and ****11* (Mitchell 1996). Moreover, schemata with long 

defining length are likely to be destroyed under single point crossover (Mitchell 

1996).  

Parent 1 

1 0 1 1 0 

Parent 2 

0 0 1 0 1 

Offspring 1 

1 0 1 0 1 

Offspring 2 

0 0 1 1 0 
Figure 6 One-point crossover 

To tackle this, two-point crossover, with two cut points (Figure 7), has been 

proposed. However, there can also be schemata that two-point crossover cannot 

combine. 

Parent 1 

1 0 1 1 0 

Parent 2 

0 0 1 0 1 

Offspring 1 

1 0 1 0 0 

Offspring 2 

0 0 1 0 1 
Figure 7 Two-point crossover 

Uniform crossover has no "position biases", but can be highly disruptive (Mitchell 

1996). Uniform crossover takes a gene from each parent with an equal probability 

and places it into the same position in s child's chromosome. Figure 8 illustrates 

the creation of one offspring by using uniform crossover. The second 

chromosome is formed in a similar way. 
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Parent 1 

1 0 1 1 0 

Parent 2 

0 0 1 0 1 

Probabilities 

0.2 0.7 0.3 0.9 0.2 

Offspring 1 

0 0 1 1 1 
Figure 8 Uniform crossover 

The above mentioned crossovers are suitable for the binary chromosome 

representation. However, they might not be appropriate for permutation 

representation (which is used in many combinatorial optimisation problems) as 

they can produce duplicate genes. PMX, OX and CX crossovers are very popular 

and often used for a travelling salesman problem and job shop scheduling 

problem where permutation representation is used (Sivanandam and Deepa 

2008).  These crossovers will be presented and explained below.  

PMX (partial mapping crossover) works as follows (Haupt 1998, Sivanandam 

and Deepa 2008). Two cutting points are selected in the Parent 1 and Parent 2 

and the alleles between them are copied into Child 1 and Child 2 respectively. 

Then the rest of the genes are passed according to the exchange map. The 

following example provides detailed information of how to construct and apply the 

exchange map. 

Parent1 3 8 4 9 2 1 5 6 7 

Parent2 8 6 7 2 3 4 9 1 5 

Child1 8 6 4 9 2 7 3 1 5 

Child2 9 8 7 2 3 1 5 6 4 
Figure 9 Partially mapped crossover (PMX) 

Assuming that the cutting points are three and five, the segment between them 

is copied into the same positions in the offspring (Figure 9). The exchange map 

displays the allelles standing on the same locuses belonging to the selected parts. 

For the given example the exchange map would be 4->7, 9->2 and 2->3. Then, 

those genes from Parent 2 that are not in the map are copied into Child1 in the 

same order as they appear in Parent 2. If they are included in the map then they 

should be replaced for a corresponding alternative value.  For example, 4 will be 

substituted by 7. In case where if it has to been exchanged  for the number which 

is already in the map (i.e 9 is replaced with 2 and 2 should be replaced with 3), 

the last value, which is 3, should be inserted.  
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Kramer and Koch (2007) improved PMX by intelligent selection of the cutting 

points. Ting, Su and Lee (2010) propose a modification of PMX that can be 

applied to more than two parents. Both strategies had a positive impact on EA 

performace, but have been tested only on the traveling salesman problem, thus 

their effect should still be verified with regard to other problems. 

PBX (Position-based crossover) is the equivalent of uniform crossover adapted 

to the permutation chromosome representation (Cheng, Gen and Tsujimura 

1999). It starts with generation of a binary mask, which indicates which parent will 

provide a gene to the child (0-first parent and 1-second parent). After copying 

genes from the first parent, the rest of them are passed from another parent to 

the unfilled positions in a sequence of their appearance in the second parent 

(Figure 10).  

Parent1 3 4 1 6 2 5 9 8 7 

Parent2 1 2 3 4 5 6 7 8 9 

Binary mask 0 1 0 0 1 0 0 0 1 

Child1 3 2 1 6 4 5 7 8 9 
Figure 10 Position-based crossover 

OX (Order crossover) is similar to the position-based crossover exdef4cept that 

a part which will be copied is a set of consecutive genes in one parent (Cheng, 

Gen and Tsujimura 1999). The example of order crossover is shown in Figure 11. 

Parent1 1 5 4 2 3 

Parent2 4 1 3 5 2 

Child1 1 5 4 2 3 
Figure 11 Order crossover 

CX (Cycle Crossover) forms a child by constantly alternating parents (Haupt 

1998). Moreover, unlike the other crossovers the genes are chosen depending 

on the previously selected genes rather than at random. The following example 

illustrates the procedure of the CX (Figure 12).  

The first round begins with copying the first genes of the first and second parents 

into the first child and the second child into the first locus (4 and 3). The gene 

from the first locus of the second parent (4) is found in the first parent, and both 

genes occupying these positions are copied again (3 and 6). This should be 

repeated until the cycle is closed up with the same value of the gene as when it 

has started (6 and 4). Then it starts from the gene which has not been 
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manipulated yet in the second parent, but now genes from the second parent are 

going to the first child. Each odd cycle the genes are taken from the first parent 

to the first child, and each even cycle the genes from the second parent go to the 

first child. The opposite is applied to the second offspring. If any of the genes are 

left, but it is impossible to form a cycle, then they are directly dropped down to 

the relative offspring.    

Cycle 1. 

Parent1 4 5 1 3 6 8 2 7 9 

Parent2 3 2 8 6 4 1 5 9 7 

Child 1 4   3 6     

Child 2 3   6 4     

Cycle 2 

Parent1 4 5 1 3 6 8 2 7 9 

Parent2 3 2 8 6 4 1 5 9 7 

Child 1 4 2  3 6  5   

Child 2 3 5  6 4  2   

Cycle 3 

Parent1 4 5 1 3 6 8 2 7 9 

Parent2 3 2 8 6 4 1 5 9 7 

Child 1 4 2 1 3 6 8 5   

Child 2 3 5 8 6 4 1 2   

Cycle 4 

Parent1 4 5 1 3 6 8 2 7 9 

Parent2 3 2 8 6 4 1 5 9 7 

Child 1 4 2 1 3 6 8 5 9 7 

Child 2 3 5 8 6 4 1 2 7 9 

Figure 12 Cycle Crossover 

Cyclic mechanism automatically preserves the legality of the chromosomes. 

However, there is a probability that the offspring will become an unchanged copy 

of the parents if all the genes will be inherited in one cycle.  In addition, CX was 

one of the most poorly performed crossovers when tested on TSP problem as it 

is unable to preserve favourable building blocks (Poon and Carter 1995).  Hong 
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et al. (1995) tested three crossovers: traditional crossover, cycle crossover and 

two-dimension geographic crossover. Applied with the same probability, Cycle 

crossover produced an 85% better solution in the beginning, but in the end the 

performance was equal to all the crossovers.  

2.7.8 Mutation 

Mutation facilitates exploration of the region. Sivanandam and Deepa (2008) 

state that by inversion of certain genes it is possible to reduce the defining length 

of highly fit schema, whereby increase diversity of the population. Because 

mutation is performed at a very small rate its disruptive power and the extent it 

affects the solution is not fully understood (Spears and De Jong 1991). There are 

several ways to perform mutation on permutation chromosome representation.  

Insert mutation randomly selects a gene and reinserts it in another locus as 

illustrated on Figure 13. This type of mutation causes the minimum changes in 

the chromosome. 

Chromosome before mutation 2 5 3 6 4 1 

Chromosome after mutation 2 5 3 1 6 4 
Figure 13 Insert mutation 

Swap mutation exchanges the genes between two randomly identified positions 

(Figure 14).  

Chromosome before mutation 2 5 3 6 4 1 

Chromosome after mutation 2 5 1 6 4 3 
Figure 14 Swap mutation 

Inversion mutation According to Wang and Zheng (2001) inversion mutation 

arbitrary selects a subsection in the chromosome and reverses the order of all 

the genes from the selected range (Figure 15). 

Chromosome before mutation 2 5 3 6 4 1 

Chromosome after mutation 2 6 3 5 4 1 
Figure 15 Inversion mutation 

Scramble mutation randomly rearranges alleles of the genes on the selected 

loci (Figure 16). This mutation is more likely to cause a disturbance in the 

population since it makes the greatest changes in the chromosome. The mutation 

rate should be relatively low and scramble mutation must be applied to a small 
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part of the chromosome as it can cause deterioration of the solution quality as 

well. 

Chromosome before mutation 2 5 3 6 4 1 

Chromosome after mutation 2 6 5 3 4 1 
Figure 16 Scramble mutation 

2.7.9 EA parameters 

Because crossover and mutation play different roles, it is imperative to find the 

right balance between them. However, their importance is not static and can 

change during the course of the algorithm. There are several methods allowing 

determination of relevant genetic parameters:  

• Parameters are identified manually by conducting the experiments for 

each parameter.   

• Carrying out hand optimization. For example, De Jong (1975) calculated 

optimum parameters for standard problems for the specific population size 

and EA operators.  

• Some researchers evolved encoded parameters together with 

chromosomes (Hopgood 2012).  

• Utilization of fuzzy logic controllers (Varnamkhasti et al. 2012, Neta et al. 

2012, Sumer and Turker 2013).  

2.7.10 Local search  

Local search can have a positive as well as negative impact on the search 

procedure (El-Mihoub et al. 2006). On the one hand it can direct the algorithm 

closer to the optimum with less iteration required, whilst on the other hand 

instigating premature convergence. Furthermore, local searches involve 

calculation of the fitness function, which is a computationally expensive task for 

many real life problems. Therefore, it is crucial to determine the correct 

parameters such as frequency of the local search application, number of the 

individuals and the method itself to design an effectively functioning search (El-

Mihoub et al. 2006).  

When used correctly, local search is able to spread the good characteristics of 

the chromosome to the next generation and is often regarded as learning. There 

are two ways of incorporation of the learning strategies in the algorithm. 
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Lamarckian approach integrates the adaptation to the surrounding environment 

into the genotype properties (Mitchell 1996). Within the algorithm, Lamarckian 

evolution works as follows. Firstly, the local search mechanism is applied for the 

selected individual. If the resulting individual is found to be fitter than the original 

one, then it would replace the existing chromosome. It is said that chromosome 

representation has a Lamarckian property if a common genetic operator is able 

to transfer the good qualities from the parent to a child chromosome. If that is 

impossible then the chromosome has a non-Lamarckian property. When only a 

part of a parent's attributes can be inherited by the future generations, that is 

called a half-Lamarckian property (Gen and Cheng 1997).  

Baldwinian effect represents learning process during the life time and passing 

knowledge to the next generations without making any modifications in genetic 

structures (Mitchell 1996). In the optimisation context, the individual undergoes a 

problem-dependent local search which usually improves its fitness. However, the 

change in the original chromosomes occurs only on the phenotype level while the 

all the genes remain unchanged (El-Mihoub et al. 2006). This procedure signifies 

the "potential" of the individual that increases the chances of being selected.  

Each of these approaches demonstrated its effectiveness when applied to certain 

domains. Moreover, hybridization of both methods has proven to be efficient for 

the solution of several real-life problems (El-Mihoub et al. 2006). 

2.8 Conclusion 

The chapter has presented the optimisation methods commonly used in AI 

research. The overall logic of each algorithm has been described and their 

capabilities and limitations have been considered.  While each technique has its 

own advantages and disadvantages, it was shown that EA is more suitable for 

the solution of the real-life large scale scheduling problems. Therefore, various 

configurations of this algorithm will be investigated, and then this algorithm will 

be applied to solve crew scheduling and job shop scheduling problems.    

The next chapter will describe the methodology which will be used in order to 

collect raw data for experimentation and to get an insight into the domains, in 

which scheduling operations are performed.  
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Chapter 3. Multi-disciplinary research 
methods for real life problems 

3.1 Introduction 

This chapter describes the core methodology for the given research and defines 

the methods which will be used. Since this research is conducted in two different 

industries and with the direct engagement of various business stakeholders, it 

requires utilisation of several data collection and research techniques. These 

techniques include exploratory semi-structured interviews, focus groups, 

experiments and investment analysis. All these methods as well as the rationale 

for their selection are discussed in this chapter. 

3.2 Overview of research structure 

Research involving real life companies differs from purely academic research in 

two fundamental ways. First of all, the real life formulation of the problem typically 

contains a larger number of rules, more possible scenarios and they tend to be 

more restricted by domain-specific constraints (Hart, Ross and Corne 2005). 

Secondly, as a sequence of the first one, some of real life systems do not fall into 

a specific class of standard problems and a tailored model and solution method 

has to be designed (Jensen 2003). With the intention of studying application and 

the development of a generalisable scheduling algorithm for real-world 

scheduling problems, the new research framework, illustrated in Figure 17, has 

been developed. 

The research begins with the collection of pertinent data about the scheduling 

operations which would enable a good insight into the logic and features of both 

scheduling problems.  At this stage it is crucial to obtain a sufficient amount of 

information in order to be able to devise a correct conceptual model. In order to 

achieve this, several visits to the companies will be made as well as a variety of 

methods of data collection will be employed. At the second stage the collected 

information will be formally defined and presented in a form suitable for analysis 

and optimisation.  



55 
 

The third stage deals with examination of a broad range of existing optimisation 

techniques for the solution of similar models. Analysis of their logic and 

corresponding strengths and weaknesses will enable the researcher to fulfil the 

gaps and build on a more powerful technique if necessary.  

The fourth stage is the central one as it is responsible for the selection of the 

technique which will constitute the automatic scheduling system. Several 

configurations of the algorithm including the standard and problem specific ones 

will be empirically tested with the aim of identification of the best performing one. 

Moreover, similar experiments will be repeated for another problem in order to 

determine the level of robustness and generalizability of the selected 

configuration.  

Once the method has been approved in the "laboratory" environment, a system 

prototype will be designed before it is presented to a number of industrial experts. 

In order to conduct a comprehensive evaluation, opinions of various stakeholders 

will be gathered and discussed. Finally, the essential financial analysis will be 

carried out in order to assess the economic viability of potential investments in an 

automated scheduling system.  
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Figure 17 Research Methodology 

3.3 Data collection methods 

The main objective of data collection is not only an understanding of the 

scheduling processes, but also acquisition of a sufficient amount of 

representative historical data for algorithm design and experiments.  Wren et al 

(2003) states that the collection of data in the rail industry presents a very 

challenging task. The main reason for that is the large number of written and 

unwritten rules and regulations existing in the industry. Thus, in order to minimise 

the risk of missing crucial information, the research will rely on two types of data: 

primary and secondary.  

Crew Scheduling Problem Research Method Job Shop Scheduling 

Problem 

• Document Analysis 

• Interviews 

• Observation 

• Literature review 

• Interviews 

• Focus group 

• Financial Analysis  

Design of problem specific 

optimisation technique 

 

• Experimentation 

• Direct comparison 

• Computer coding 

• Flow charts 

• Formal model 

Understanding the 

problem space 

Proof of concept design 

 

Designing and creating a 

conceptual model 

 

Designing and creating a 

conceptual model 

 

Analysing existing 

methods 

 

Analysing existing 

methods 

 

Design of problem-specific 

optimisation technique 

 

Evaluation of the algorithms generalizability 

 

Evaluation and impact 

assessment 

Understanding the 

problem space 

•  Computer coding 
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3.3.1 Document analysis 

The historical information required for the algorithm testing and evaluation of the 

results will be collected either during the visits (if available) or sent by email. This 

process is expected to be convenient for the company managers and the 

researcher as it does not require a significant amount of time (Martin 1995). 

However, the main issue is the security of the data. It is also anticipated that the 

data might be incomplete or not in the appropriate format, hence some data 

transformation procedures might be required.  

The documents explaining procedures and regulations will also be gathered. The 

advantage of document review is that it allows for receiving complete and 

structured information with minimal intervention and interruptions (Martin 1995). 

However, it has some limitations as well. First of all, in order to get an insight into 

real world operations, some explanation of the industrial terms or operations 

might be necessary. Secondly, real-world practices, such as those based on 

schedulers' experience, might be different or not fully explained in the 

documentation of a company's procedure (Wren et al. 2003). In order to make 

sure that the information is complete triangulation will be used.  Triangulation is 

"the use of different research methods in the same study to collect data so as to 

check the validity of any finding" (Gill 2010). Thus interviews and observations 

will be conducted in order to clarify and expand the information obtained through 

document review. 

The raw secondary data required for this research are presented in Table 5. The 

methods of collecting the data are discussed below.  
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Table 5 List of required data 

DB-Schenker Garnett-

Dickinsons 

Purpose 

Historic data set 

regarding the 

train trips and 

drivers 

Historic data set 

regarding 

printing jobs and 

machines 

• Algorithm development and 

experiments 

Examples of the manual schedules 

built from the data collected on the 

previous stage 

• Rules extraction and understanding 

the final schedule. 

• Assessment of the correctness and 

quality of the schedule. 

• Calculation of efficiency/inefficiency 

of the developed system with the 

manual practices. 

Documents 

describing the 

procedures and 

polices 

Not available • Obtaining knowledge about the 

background and context in which the 

process takes place. 

• Understanding the rules and stages 

of creating a schedule. 

• Extraction of the industrial regulations 

to which the schedule must adhere. 

 

3.3.2 Interview 

In addition to the document review, semi-structured interviews, allowing 

acquisition of more detailed information, will be employed. Semi-structured 

interviews will be utilised because they allow modification of the set of pre-defined 

questions in accordance with previously received responses while still making 

sure that the discussion covers the key points. Another advantage of semi-

structured interviews is a higher response rate, than, for example, in the surveys 

(Gill 2010).  

For this research, respondents will be selected on the basis of the snowball 

sample: either by recommendation of the previous respondent, or by getting an 

introduction from the manager of a department. With regard to the sample size, 

there is no predefined number of participants and it depends on the sufficiency of 

obtained information, stage of the research and availability of the personnel.  

The disadvantage of this method is it is very time consuming for both interviewer 

and interviewee (Martin 1995). Also interview techniques have always been 
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associated with subjectivity (Gill 2010). However, in the context of this research 

the level of subjectivity is predicted to be relatively low since the questions are 

related to the technical aspects and do not involve personal attitudes and 

emotions. Another issue with the interview, more common in complex research 

environments, is that sometimes the managers "do not want to discourage the 

researchers by telling all the difficulties at once" (Wren et al. 2003).  Potentially 

this issue can lead to a researcher designing an inappropriate model and solution. 

The observation will be carried out in order to mitigate this issue and support 

already collected data.  

3.3.3 Observation 

Since during the interviews users might neither be able to explain complex 

scheduling processes, nor recall all possible circumstances, the observation will 

complement the information gathered through interviews and validate the 

researcher's understanding of the process (Roth 2012). The advantage of the 

observation is that it can reveal the information that the participant omits or takes 

for granted (Sapsford and Jupp 2006). In terms of information system research, 

Rees (1992, p.22) states that observation is a very important technique “as 

watching users working with the system provides more in-depth information than 

questionnaires or interviews”.  

However, observations might affect operations and distract the participants from 

their work. In addition, observations conducted only a few times might not be a 

full representation of a typical day (Martin 1995).   Moreover, Sapsford and Jupp 

(2006) state that it is possible to make some inaccuracies in interpretation as all 

the obtained information still goes through the "prism" of researcher’s 

understanding and experience.  

With regard to this research, during the observation the participant will be asked 

to build a schedule as they normally do. The schedulers will be encouraged to 

describe and comment on the processes as they go through the session. In order 

to avoid any misunderstanding or misinterpretation, the researcher will be asking 

clarifying questions and summarise the recorded data at the end of the 

observation.   
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3.3.4 Problem modelling 

Models allow representation of the collected information in a structured and 

systematic way. A well-devised model can not only reveal clear sequences and 

the relationship between operations, but also increase the understanding of the 

complex processes and expose process inefficiencies (Slack 2013, Holt 2009, 

Becker, Kugeler and Rosemann 2011).  However, the limitation of models is they 

are only an abstract version of real systems and might not address some of real 

life aspects (Jensen 2003, Becker, Kugeler and Rosemann 2011).  

Several process modelling techniques such as flow chart, swim-lane diagram and 

mathematical models will be employed in this study to describe scheduling 

processes.  

Flow-charts offer a visual illustration of a process and operations within it (Slack 

2013). Flow chart enables displaying the process in a form of symbols that is easy 

to follow and interpret.  One of the main challenges is the decision from what level 

the process should be modelled: a too detailed model can overwhelm with 

complexity, whereas a simplified model can omit important details (Holt 2009, 

Becker, Kugeler and Rosemann 2011). 

Swim lane diagrams are suitable for the process involving different departments 

or stakeholders (Slack 2013). The benefit of a swim lane diagram is that it shows 

responsibilities and functions of each operation owner. Like with a flow-chart, the 

determination on the adequate level of representation is crucial for accurate 

process definition. 

Mathematical model is "a tool designed to help solve managerial, planning, and 

design problems in which the decision maker must allocate scarce (or limited) 

resources among various activities to optimize a measurable goal" (Ruhul,Sarker 

and Newton 2007). There are two types of mathematical models: deterministic 

and stochastic (Jensen 2003, Becker, Kugeler and Rosemann 2011). 

Deterministic models are suitable for representation of the situation where the 

data and functional relationship between variables are known in advance, 

whereas stochastic models address the uncertainty of the process in which 

certain events might occur with some probability.  
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Ruhul et al (2007) argue that a well-devised mathematical model should meet the 

following criteria: 

• Robust: Should be applicable for all types of potential input variables. 

• Adaptive: the changes in the process should be easily incorporated. 

• Complete: should contain a sufficient amount of detail. 

• User friendly: should be understandable by various users. 

3.3.5 Prototyping 

The approach "prototype-test-refine" suggested by Hopgood (2012) will be 

utilised in this research. It starts from the formulation of requirements, followed 

by designing the general functions, and then obtaining user feedback. The cycle 

is repeated until the system achieves user expectations and can be implemented. 

Unlike the traditional "waterfall" model it gives an opportunity for continuous 

improvement and error corrections at the early stages (Hopgood 2012).  

The main purpose of the prototype is demonstration of the algorithm capabilities 

to the industrial experts. Tangible demonstration allows for avoiding any 

misunderstanding or misinterpretations. Moreover, Jensen (2003, p.656) states 

that "visualisalisation adds impact to simulation output and often enhances 

credibility". It also allows to "convince sceptic users in its effectiveness and 

feasibility" (Montana, Talib and Vidaver 2007) as well as receive immediate 

feedback from the users (Bocij 2015).   

Although the full system implementation could achieve the same objectives, the 

preferences were given for prototyping rather than the full system implementation 

for the following reasons (Avison 2006):  

• Research deals with core organizational processes, full system 

implementation will have a high impact on organizational performance, 

which is risky 

• Prototype can allow demonstration of the necessary functions 

• Less programming efforts and less time needed to produce a prototype 

• Does not require significant financial investments 
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• Prototypes and experimental simulation provides a means for 

consideration of different scenarios before their implementation (Jensen 

2003) 

Prior to expert demonstration, prototype verification and validation will be 

performed. Verification is "a test of design to ensure that the design chosen is 

the best available and that is error free" (Bocij 2015, p.396). With the aim of 

identification of the most effective configuration of the algorithm, several trials will 

be conducted. Moreover, the correctness of the logic will be examined by 

performing manual calculations and debugging (Jensen 2003). The test cases 

will be designed in a way that addresses and evaluates each rule. In addition, a 

test case that attests all of the rules and trade-off amongst the results will also be 

executed. According to Montana (2002), it is important to use the real-data set to 

check the system even though the optimal results might be unknown. Therefore, 

the algorithm and its behaviour will be studied using both test benchmark data 

and the real data.  

Validation is "the test of design where we check that the design fulfils the 

requirements of the business users which are defined in the requirements 

specification" (Bocij 2015, p.396). Historical validation where the model output is 

compared against historical data is deemed to be one of the most commonly used 

validation methods (Jensen 2003). However, this approach might not be 

applicable for this research as the automatically produced schedule might differ 

from the schedule constructed manually, and therefore the expert evaluations, 

described in the section 3.5, will be conducted instead.  

3.4 Algorithm parameter selection 

Selected optimisation technique determines the quality of the results and 

computation time. However, in many cases it is impossible to find the best 

techniques and its parameters analytically. A series of experiments need to be 

carried out to discover them empirically.  

Experiment is a "test or a series of runs in which purposeful changes are made 

to the input variables of a process or a system so that we may observe and 

identify the reasons for changes that may be observed in the output response" 

(Montgomery 2013, p1). 
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According to Robinson (1994) there are two types of experiments: interactive 

and batch experiments. Interactive experiments require the researcher to 

observe the entire process and make manipulations in the course of the run if 

required. Batch experiments do not involve the researcher in the process and can 

perform multiple runs without the need for parameter resetting or process 

observation. The given research will be based on a series of batch experiments 

since parameters do not need to be adjusted during algorithm execution and a 

run can take several hours. All the information regarding algorithm behaviour will 

be automatically recorded and documented, freeing up the researcher from 

observation and providing more detailed recording of the algorithm.  

One of the key questions related to the batch experiment design is the number of 

repetitions. Although it is possible to improve accuracy by increasing the number 

of replications of experiments, there is still no guarantee that the system 

behaviour will remain similar to what has been demonstrated previously if the 

experiment will be repeated one more time (Gill 2010,Jensen 2003). In order to 

achieve a compromise between the amount of replications and time allocated to 

the experiments, each test case will be executed ten times such as in Liu and 

Sun (2011), Wanner (2007), Pinto, Ainbinder and Rabinowitz (2009), Wang and 

Wu (2010), Patel and Padhiyar (2015).  

The experimental settings for both problems are defined in section 8.4. 

3.5 Algorithm evaluation and business impact assessment 

3.5.1 Cost-benefit analysis 

Cost-benefit analysis is the "process of comparing the various costs of acquiring 

and implementation of IS against the benefits which the organisation derives from 

the use of the system" (Remenyi, Money and Twite 1991, p.96). Cost-benefit 

analysis regards both qualitative and quantitative factors, and that is why this type 

of analysis is appropriate for a new system evaluation. While it is relatively simple 

to quantify the cost, the estimation of the IT system benefits is a challenging task. 

Depending on the role the IS plays in the organisation, Remenyi, Money and 

Twite (1991) identify the following types of benefits: 

Cost displacement approach compares the cost of the investments against the 

cost the system has saved. It is usually applied in the situations where technology 
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replaces workers. Although it provides clear financial benefits, this method might 

not be applicable when the role of the IT system is to add value rather than to 

reduce the cost.  

Impact or time release analysis considers the enhancement of an employee's 

productivity by measuring the opportunities which might arise from freeing up the 

employees’ time. This can be the involvement of employees in other projects or 

improved customer relationships which might result in increasing sales.  

Unlike cost displacement, cost avoidance is used when no reduction in the 

current cost can be achieved, but the introduction of an IS can prevent occurrence 

of additional cost.   

Decision analysis is applied when the responsibility of the IS system is to assist 

in the decision making process. In theory, this is normally measured as the 

correlation with organisational performance. However, because the performance 

is the aggregation of numerous actions and decisions, it might be challenging to 

establish the pure impact of the IS suggested decisions (Remenyi, Money and 

Twite 1991).  

Nominal breakeven analysis is suitable when the benefits of IS are intangible 

and are hard to specify. In this case, the employees are asked how much the 

various services offered by the IS are worth to them. On that basis the decision 

about the investment into the new IS is taken.  It is important to note that it might 

be quite difficult for a user to put a figure to express the support of an IT system. 

Furthermore, the opinion might be quite subjective and considerably vary from 

one user to another. 

Decision analysis and cost avoidance approaches will be adopted in this study 

because the algorithm is designed to improve the scheduling process and will 

likely reduce the total cost of the schedule. The time release analysis was 

rejected in this research due to a large number of staff and scarce information 

regarding the potential tasks they can perform.  Although this study considers 

business process automation, cost displacement analysis is not appropriate as 

we assume that the number of staff will remain the same. As demonstrated in the 

following section, some of the benefits of an automated scheduling system are 
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not possible to quantify, so nominal break even analysis has been rejected as 

well.  

3.5.2 Metrics 

Selection of the appropriate metrics is an important decision as the value of the 

information system, its capabilities and functionality will be judged based on the 

chosen indicators. There are number of parameters and indicators suggested in 

the literature which can be utilised for the information system evaluation.  

For instance, Hamilton and Chervany (1981) were among the first researchers 

who provided a collection of indicators for appraisal of information system 

performance. In general, they can be divided into two broad categories: 

efficiency-orientated and effectiveness-orientated indicators (Table 6).  

Table 6. MIS performance measures 

Efficiency-orientated Effectiveness-orientated 

• Requirements definition 

(compliance to the specification) 

• Resource consumption (budget, 

staff) 

• Production capability 

(productivity, response time) 

• Level of investments in the 

resources (capital expenditure, 

hardware) 

• Information and support provided 

(response time, quality of 

information, level of user friendly 

interface) 

• User process and user 

performance (contribution of IS 

to decision making process) 

• Organization performance 

(sales, profit, market share) 

Adapted from: Hamilton and Chervany (1981) 

While Hamilton and Chervany (1981) state that the first group of indicators is 

more popular than the second, it might be argued that efficient-orientated 

indicators on their own do not provide a full picture about the quality of an 

information system. Likewise, although effectiveness-orientated indicators 

provide a low level information about IS performance, they do not convey key 

investment and financial figures which might be of interest to key decision makers.  

Several scholars designed indicators specifically for expert and intelligent 

systems. For example, Sawka (2000) suggests calculating the contribution of IT 

system in the decision making process as the benefits of those decisions (Luz, 

Oscar and Claudia 2010).  Marin and Poulter (2004) expressed the decision 

process in financial terms by comparing the cost for consultancy against the cost 
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of information system (Luz, Oscar and Claudia 2010). The limitation of this 

approach is it could be very problematic to estimate the actual contribution of an 

IT system towards the benefits of the decision, since other factors could also 

contribute to the resulting figures (Remenyi, Money and Twite 1991). 

Davison (2001) suggests examining the level of user confidence and the 

percentage of decisions accepted by users. The disadvantage of this approach 

is a high level of subjectivity as results might vary from one user to another 

depending on their personal preferences and experience. Rees (1992) states that 

users with a lack of experience tend to rely more on the expert system decision, 

whereas users with a vast experience in the process tend to consult less with the 

system.  

Since each of the analysed methods has its own advantages and disadvantages, 

a collection of indicators will be used in this research to provide a well-rounded 

picture about the efficiency and effectiveness of the designed automatic 

scheduler. These indicators are discussed below. 

3.5.3 Operational level 

It is important to measure the impact the information system has on the 

operations, as "first-order impact of IT investments occur at the process level" 

(Tallon, Kraemer and Gurbaxani 2000, p.149). Although there is a vast amount 

of literature dedicated to improving scheduling mechanisms and measuring 

organisational performance, much less attention has been paid to measuring the 

performance of the scheduling operations and defining tailored metrics (De Snoo, 

Van Wezel and Jorna 2011).  For this reason, the standard process performance 

indicators such as cost, speed, dependability and flexibility, will be defined and 

applied.  

Cost  

To date the most common measurement is the total cost of the schedule 

(Ozdemir and Mohan 2001, Abbink et al. 2011, Azadeh et al. 2013) in the crew 

scheduling problem and time in the job-shop scheduling problem (Spanos et al. 

2014, Chaudhry 2012, Hui 2012, Meeran and Morshed 2012, Qing-dao-er-ji and 

Wang 2012, Raeesi and Kobti 2012, Thamilselvan and Balasubramanie 2012). 
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In addition, the opportunity cost defining the revenue from potentially accepting 

more jobs, which could be taken due to freeing up capacities, will be estimated.  

Dependability  

Dependability is the ability to fulfil the customer orders on time and according to 

the negotiated specification (Jones 2012). The dependability of the algorithm will 

be proven by demonstrating that none of the required jobs are missing in the 

schedule and there is enough available equipment and staff to perform them.  

Quality  

High quality operations decrease the cost and increases dependability due to 

fewer errors and rework (Slack 2013). The quality of the solution will be judged 

by the industrial experts during the focus group discussion.   

This information will be obtained from the focus group solution evaluation and 

responses.  

The evident advantages of this method are that it is not time consuming for both 

schedulers and the researcher, the data can be quantitatively analysed and 

modelled. The limitation of this method is the predefined amount of questions and 

answers, which might restrict the respondents in providing a detailed answer. 

Therefore, if a user would like to provide additional information with regard to the 

quality of the diagrams, they will be able to use the space at the end of the 

questionnaire to do this.  

Speed  

By performing each operation faster, it is possible to perform more tasks in the 

same time frame. This would mean that the schedulers would free up some time 

and assist with other tasks or would have sufficient time to consider different 

schedule alternatives and chose the best (Kwan 2011). The speed advantage will 

be measured as the difference between the manual hours to produce a schedule 

from the certain number of tasks and execution time of the algorithm to produce 

a schedule from the same tasks.  



68 
 

Flexibility  

Flexibility is the ability of the organisation to adjust their processes according to 

the change in customer orders (Jones 2012). Flexibility increases robustness of 

operations and raises their dependability (Slack 2013).  In the context of 

scheduling, it is the ability of an organisation to either fit the last-minute schedule 

or to produce a completely new plan.  

A special session devoted to evaluation of the quality of the diagrams with the 

schedulers will be organised. The primary objective of the session is to determine 

the extent to which the designed system accommodates business processes and 

meets industrial regulations. This will be accomplished through the focus group 

method, in which the schedulers will be asked to discuss a series of questions 

addressing different aspects of the diagram quality. The plan of the focus group 

discussion is presented in the Appendix 1. 

Unlike surveys, this method is able to provide not only the information about the 

quality of the diagrams, but also an explanation as to why a particular score was 

given.  In contrast to single participant interviews, focus groups allow multiple 

experts’ opinions to be obtained and then cross validated by the expert 

themselves rather than the researcher who does the analysis after all the 

interviews based on his/her understanding.  

However, the drawback of this method is that the flow of discussion and the 

obtained results can be influenced by a number of psychological and social 

factors such as the domination of one member, unwillingness to express ideas in 

front of the group and a fear of public speaking (Klein 2003). To minimise the 

impact of these factors, the researcher will ensure that each member of the group 

has an opportunity to express his or her opinion and have enough time to do so.  

3.5.4 Strategic Level 

To enable effective performance of the organisation, IS should support the overall 

organisation strategy. In order to evaluate the degree of alignment, the key 

strategic priorities will be studied and the extent to which the automated crew 

scheduler contributes to them will be identified. 
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3.5.5 Investment Evaluation 

As investment in IS constitutes a large portion of an organisation's capital, the 

investment decision should be carefully evaluated (Hallikainen, Kivijarvi and 

Nurmimaki 2002). After the pieces of schedule have been confirmed to be 

practical, the classic financial indicators such as ROI, NPV, PI and IRR will be 

computed (Bocij 2015, Remenyi, Money and Twite 1991). 

ROI (return on investment) represents the efficiency of investment and is 

computed based on the formula below. 

Formula 4  

𝑅𝑂𝐼 =
𝑃𝑟𝑜𝑗𝑒𝑐𝑡⁡𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠

𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡⁡𝐴𝑚𝑜𝑢𝑛𝑡
 

Payback period refers to the amount of time it takes to recoup initial investments. 

The limitation of both indicators is that they do not consider the time value of the 

money. In order to overcome this, the NPV value will be determined as well (Atrill 

2014).  

 

Net present value (NPV) determines the profitability of the investment project. It 

compares the cost of investment with the benefits in the form of cost savings over 

a period of time (Atrill 2014).  

Formula 5 

𝑁𝑃𝑉 =∑
𝐶𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=1

− 𝐶0 

where: 

𝐶0 is the cost of new system. 

𝐶𝑡 cost saved in the period t. 

𝑟 is the discount rate, that is the interest rate. 
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PI (Profitability Index) shows how much money will be earned (saved) per one 

pound invested. 

Formula 6 

𝑃𝐼 =
∑𝑃𝑟𝑒𝑠𝑒𝑛𝑡⁡𝑉𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑠

𝑃𝑟𝑒𝑠𝑒𝑛𝑡⁡𝑉𝑎𝑙𝑢𝑒⁡𝑜𝑓⁡𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡
 

Internal rate of return (IRR) denotes the discounted rate at which NPV is equal 

to zero. It can be found from the equation displayed below. The higher the IRR, 

the more desirable the project is.  

Formula 7 

∑
𝐶𝑡

(1 + 𝐼𝑅𝑅)𝑡

𝑇

𝑡=1

= 0 

Despite these tools being widely used by investors, they can only give an idea of 

worthiness of the investment project, rather than a precise number of future 

financial results. This is because the cash flow is usually based on forecasted 

values, and in reality can be lower than expected. In addition, the interest rate 

which depends on inflation might slightly fluctuate as well (Atrill 2014). In this 

research it will be assumed that the cost savings produced by the IS system will 

remain the same over its life-cycle period and the interest rate will remain stable.   

3.6 Conclusion 

The chapter has presented the methodological framework which will be used to 

guide the research and allow for achieving the objectives. The techniques for data 

collection, data analysis, model optimisation and algorithm evaluation have been 

described. Moreover, each technique had been analysed and compared with the 

similar methods to ensure the most suitable and effective technique is selected 

and will be applied in this research.  

The next chapters will provide an insight into two domains, in which the research 

will take place.  
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Chapter 4. Job-shop Scheduling 
Problem in the Printing Industry 

4.1 Introduction  

This chapter provides insight into the printing industry and the key processes of 

handling customer orders. This information derives from the numerous interviews 

conducted with the managers at Garnett-Dickinson. After detailed consideration 

of the key operations and relationships between them, the problem is categorised 

to the relevant class of job shop scheduling problems and the formal 

mathematical model, which is necessary for the optimisation, is then designed.  

4.2 Printing industry overview 

The commercial printing industry has changed dramatically over time. Increased 

competition from digital technology, the internet as a way of spreading the news 

and advertising, forces printing companies to increase their effectiveness and 

provide an outstanding service exceeding customers' expectations. Wide 

availability of printing technology and relatively low entry barriers shift competition 

in the industry towards price and quality (Datamonitor 2012). Companies usually 

differentiate themselves and gain competitive advantages by adding other value-

added services (Datamonitor 2012). 

Customers' expectations of the order fulfilment time fell from 7 to 3-4 days. They 

also became more demanding in terms of the quality. There is a high variety of 

products. Each customer requires a unique publication on a specific type of paper 

and paper size, using different stitching and folded in a certain way. In terms of 

volume, medium-size companies, such as Garnett Dickinson, do not accept 

orders of less than 5000 copies, because it is not economically efficient due to 

fixed set-up cost (Garnett-Dickinson Sales Manager interviewed on 23/04/2013).  

Despite the fact that the demand is relatively predictable, there is a considerable 

surge around the Christmas time period. The demand is based on regular 

customer orders, which require periodic publications, as well as less expected 

publications on a single occasion.   
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While the demand has moderate certainty, the printing process can still be 

characterised as a high volume and high variations process that makes 

scheduling operations particularly complicated.  

4.3 Job shop scheduling operations in the printing industry 

The business process map of handling customer orders is illustrated in Figure 18 

and is described below (Garnett-Dickinson Operations Manager interviewed on 

23/04/2013).  

 

Figure 18 Key business operations in the printing industry 

4.4  Estimator 

The process starts with taking an order from a customer. At the beginning it is 

just a general description of what the customer would like to see as a result. Then 

the task goes to the team of estimators, who suggests different options with 

regard to paper type and quality, size of the page, finishing style, delivery, 

destination, packing and the potential cost. Evaluating the cost, the estimator 

carefully builds a production plan and calculates the amount of required 

consumables as well as assessing the availability of the printing presses.  

The total cost of publication consists of materials, equipment, labour and facilities. 

The customer usually sees only materials in the estimate (Garnett-Dickinson 

Estimator interviewed on 23/04/2013). The expected time is calculated on the 

basis of production speed, which in turn depends on the type of paper (weight 
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and size), type of fold (single, right angle and etc.). In addition, the lead time 

depends on other customers' orders, availability of the equipment and processing 

routes (Garnett-Dickinson Estimator interviewed on 23/04/2013). 

Where a customer would like to have publication completed in a shorter 

timeframe, the estimator contacts the planner to discuss whether there is room 

to insert the job in the current production plan or identifies if there are other 

process routes (i.e. by using different machines). Usually it means an increase in 

the price as well. Once the price has been confirmed, the customer's history is 

revised and a simple credit check is performed. Upon success the order is put on 

the plate which divides the colours into magenta, green and cyan. After that the 

order is forwarded to the planner on the job floor.  

4.5 Planner 

The planner on the job shop floor deals with low level day to day scheduling 

problems. He or she breaks the task into operations and assigns them to the 

corresponding machines. The computer software automatically calculates how 

much time it will take to perform a certain operation and what resources are 

needed (Garnett-Dickinson Operations Manager interviewed on 23/04/2013). 

The planner also, looking at the information provided, collates it with due dates, 

and then draws operations manually in the Gantt chart (Appendix Appendix 2).  

The Gantt chart displays the order of operations and the software communicates 

this to the printing and binding machines. The software checks the sequences of 

operations and the availability of resources (mostly paper) and displays a warning 

message if it is impossible to accomplish the task due to the lack of resources or 

operational precedence constraints violation (i.e. the stitching operation before 

printing).  After determination of the operations, the planner adds a set-up time to 

the total time of the operation. Set-up time is the time necessary to clean the 

machine after the previous operation and to load the machine for the succeeding 

one.  

4.6 Job-floor  

Appendix 3 shows the pictures taken from the job floor in Garnett-Dickinson. In 

general, the publication's production route follows five stages: printing, folding, 

stitching, packing and mailing. Various specialised machines are used to perform 
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these operations. The machines monitor the work progress, estimate completion 

time and average speed which are reported back to the scheduler's computer, so 

he or she would be aware of the availability of the machines and any delays on 

the job floor (Garnett-Dickinson Operations Manager interviewed on 23/04/2013, 

Garnett-Dickinson Machine Operator interviewed on 23/04/2013). Machines 

differ on the basis of type of resources they can handle.  

Quality checks are performed during various stages of the process in the form of 

examination of the random sample (Garnett-Dickinson Operations Manager 

interviewed on 23/04/2013, Garnett-Dickinson Machine Operator interviewed on 

23/04/2013).  Although, Garnett-Dickinson sets high quality standards and has 

ISO accreditation, minor imperfections might occur on the publication. It might be 

caused by allocation of not enough time for the ink to dry (folding too early) or the 

glue might leave marks on certain pages. In order to minimise the risk associated 

with defects and delays, companies produce one percent of extra copies.  

4.7 Mailing 

Garnett-Dickinson also provides mailing services. Only a sample goes back to 

the client, while the rest of the publications are inserted into the envelopes and 

sent directly to clients’ clients (Garnett-Dickinson Operations Manager 

interviewed on 23/04/2013). This allows the company to minimise the finished 

goods inventory, since the completed jobs leave the facilities without waiting for 

the client to collect them.   

4.8 Importance of the scheduling operations 

Clearly the effective scheduling operations can reduce the lead time, increase 

customer satisfaction and retention. On the other hand, a poorly constructed 

schedule might increase customer waiting time and cause delays. As a result, 

businesses might encounter additional expenses such as cost associated with 

communicating the problem to the customer (paperwork, telephone calls, 

managers’ time); cost for extra set-up times to move the job quicker through the 

job floor; penalty in a contract or discount; and, the less visible one, lost 

opportunities (Gere 1966).  
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This problem relates to the class of job shop scheduling problems and various 

operation research techniques have been introduced for modelling and finding an 

effective solution. 

4.9  Job-shop Scheduling 

Job shop scheduling problem is very common problem in the manufacturing 

environment (Pinedo 2009).  It can be loosely defined as an assignment of jobs 

to the machines in compliance with all operational constraints.  

4.10 Performance indicators 

Pinedo (2009) states two dimensions in which the quality of the schedule can be 

measured. In the first one, the quality of the schedule can be expressed using 

financial equivalents such as work-in-progress inventory cost, finished-goods 

inventory cost, cost for the set-up times, utility cost. The second aspect is the 

time-related parameters such as tardiness, deadline satisfaction, throughput time 

of a particular job. 

The most wide-spread measure of schedule quality is the makespan, which is a 

total time from the beginning of the first operation to the completion time of the 

last one. It has been adopted in this study due to availability of benchmark data 

and results for testing and evaluation.  

4.11 Problem modelling and formulation 

The given problem relates to the classic JSSP with sequence dependent set-up 

times. Formalising the description of the Garnett-Dickinson case the main 

constraints of JSSP can be formulated as: 

• The sequence of operations in each job is predefined. 

• All operations must be processed without interruptions (once started it 

should be finished). 

• Different operations of the same job cannot be performed simultaneously. 

• One machine can process only one operation at a time. 

• One job can be processed only at one machine at a time. 

• One machine cannot process more than one job at a time. 

• One job cannot be processed at more than one machine. 
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• The set-up times are sequence dependant and are not included in the 

processing time. 

• All the resources (people, consumables) are available. 

• All machines are available in the beginning. 

4.12 Formal definition of the job shop scheduling problem 

Let’s assume that a company has a set of machines M={m1, m2…ml} and a set 

of jobs J={j1, j2…jn}, which need to be assigned to machines in the optimal order 

and satisfying all production requirements. Each job consists of several 

operations Oi={Oi1, Oi2…Oinm}. Moreover, each operation has its own processing 

time, which is Ti={ti1, ti2…timn}. Since the operations of the same job need to be 

performed in a specific order (i.e. the folding cannot be done before printing), 

matrix A defines binary relationship for each operation in O. If (v, w) €A, then it 

means that operation v should be performed before operation w.  S(v) denotes a 

start time for each operation. 

Therefore, the objective is to find an optimal schedule with the minimal makespan 

(Formula  8.1):   

Formula  8.1 

Formula  8

))()((max)( vvSSlen Ov                                       

Which is a subject to feasibility constraints (Formula  8.2-Formula  8.4): 

Formula  8.2 

0)(:  vSOv                                                 

This inequality denotes that the start time for all operations should be non-

negative.  

Formula  8.3 

)()()(:),(,, wSvvSAwvOwv                      

This constraint requires the previous operation to be completed before the 

subsequent operation begins. 

Formula  8.4 
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)()()(:)()(,,,
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
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The inequality three ensures that each machine will not start processing 

another job until the current job is completed. 

4.13 Disjunctive graph representation classic JSSP 

Given the graph G= (V, A, E,  I). The nodes represent the operations of the jobs 

(Figure 19). Nodes 0 and 1 are called dummy nodes since they do not consume 

any time and only indicate the beginning and end of the schedule. The set of arcs 

A reflects the precedence operations constraints for each job. These arcs are 

directed and called conjunctive arcs. The other sets of undirected, disjunctive 

arcs, shows the operations which should be processed on the same machine. 

The task is to determine the direction of the disjunctive arcs with the objective of 

minimisation of the length of the makespan.  

Definition 7  

Makespan is the critical path on graph G. Critical path is the longest path 

starting from the 0 node and ending at node 1. Any operation on the critical path 

is called a critical operation. The critical operation cannot be delayed without 

increasing the makespan.    

Definition 8 

The critical block is a subsequence of operations belonging to the critical path 

and utilising the same production facilities (i.e. machines).  

 

Figure 19 Disjunctive graph representation of JSSP 
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Definition 9 

The schedule is called active if neither of the operations can be started earlier 

without delaying other operations.  

Definition 10 

The optimal schedule is a feasible schedule in which the maximum interval 

between any two operations is minimal (Giffler and Thompson 1960, p.489). An 

optimal schedule is an active schedule. A set of active schedules is much smaller 

than a set of all feasible schedules (Giffler and Thompson 1960).  

4.14 Conclusion 

This chapter has described the scheduling processes in the printing industry. 

These operations have a high degree of variation due to diverse customer 

preferences, large volumes of publications and very short leading times dictated 

by customer expectations. Technical constraints and job specifications add more 

complexity to printing processes. Therefore, it is important to have a software, 

which is able to build a schedule automatically, or at least to provide a scheduler 

with an initial solution.  

This chapter has established that this problem belongs to the Job Shop 

Scheduling class and provided mathematical model of this problem. The solution 

methods for this model, their advantages and limitations are discussed in the next 

chapter.   
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Chapter 5. Approaches to Job Shop 
Scheduling Problem 

5.1 Introduction 

As established in the previous chapter, the scheduling operations, which Garnett-

Dickinson performs, relate to the class of Classical Job Shop Scheduling 

Problems. The main goal in these operations is to minimise the amount of time 

required to complete all the jobs, while still satisfying all the production 

requirements such as the precedent relationship between the operations of the 

same jobs and assignment of the operations to the correct printing press.  

Being one of the most studied problems that has been attracting research 

attention for over fifty years, JSSP is still not fully resolved (Meeran and Morshed 

2012). The following chapter provides the overview of the key algorithms 

developed to tackle this problem with the main focus on EA, as it has been 

selected for this research in Chapter 2. After the analysis of various chromosome 

representations and the corresponding genetic operators developed and utilised 

in previous research, it reveals gaps in the literature, which will be fullfilled in this 

research in Chapter 8 and Chapter 9.  

5.2 Dispatching Rules 

Dispatching rules are one of the most straightforward and first developed 

methods for attacking JSSP (Gere 1966). The basic dispatching rules are listed 

below.  

• SPT (shortest processing time). 

• LPT (longest processing time). 

• MWR (Most work remaining - the total processing time of the remaining 

operations). 

• MOR (Most Operations Remain). 

• LOR (Least Operations remaining). 

• EDD (Earliest due date). 

• FCFS (First come, first serve).  
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The dispatching rules can be applied as follows. All the operations are pre-sorted 

with respect to the selected prioritization scheme and then they are assigned one-

by-one to the machines in the obtained sequence. The advantage of this 

technique is the ease of implementation and fast execution. However, despite its 

simplicity, this approach can rarely build an optimal schedule. This is because 

there is no mechanism which would identify the gaps where some of the 

succeeding operations can be squeezed in, and thereby would reduce the total 

completion time.  

Priority rules are proven to be effective when they are used as a part of another 

algorithm. In terms of EA for JSSP, priority rules are often embedded in the 

chromosome generation process or into the local search operator. Usage of 

priority rules enables EA to achieve better results compared to the algorithm 

alone (Mattfeld and Bierwirth 2004, Essafi, Mati and Dauzere-Peres 2008, Zhou, 

Cheung and Leung 2009, Yang et al. 2012). 

5.3 Giffler and Thomson algorithm  

The Giffler and Thomson algorithm allows an active schedule to be obtained from 

the feasible schedule by manipulating the operations lying on the critical path 

(Giffler and Thompson 1960). It starts with the first operations of each job and 

assigns them to the relevant machines. Then it takes the second operation and 

checks if there are any conflicts. According to the definition given by Giffler and 

Thompson (1960) the conflict is the situation when the operations assigned to 

the same machine overlap. In order to resolve the conflict, the successive 

operation is shifted to the right-hand side on a production plan. This means the 

completion time of the next operation is the sum of the completion time of the 

previous operation and duration of the current operation.  

This concept can also be extended to the JSSP with precedence constraints 

where the subsequent operation cannot start until the previous operation of the 

same job is finished. In this case the starting time is the maximum time between 

the time when the machine becomes available and the preceding operation of 

the same job is completed. Likewise, the completion time of the given operation 

and machine is equal to the starting time plus the duration of the operation. 



81 
 

The Giffler and Thomson algorithm is often incorporated in contemporary 

algorithms. This is because it enables conversion of any feasible schedule into 

the active one. This, in turn, greatly reduces the search space and transfers the 

search to the region where the optimal solution is located. In terms of EA, 

depending on the chromosome representation, it can be utilised as a decoding 

procedure, local search operator or feasibility restoring operator (Cheng, Gen and 

Tsujimura 1999, Gao, Sun and Gen 2008).  

5.4 Branch and bound (B&B) 

Unlike the aforementioned techniques, in theory B&B is able to solve JSSP to the 

optimality. However, for real-life problems it requires an enormous computational 

time that hinders its practical application. Brucker, Jurisch and Sievers (1994) 

were one of the first researchers who applied this method for the solution of the 

10x10 JSSP. Later several enhancements that were able to slightly accelerate 

the speed of the algorithm were proposed. For instance, Nababan, et al. (2008) 

combined B&B with a disjunctive programming approach, that enabled B&B to 

solve 50X20 problems for less than 20 minutes. Liaw (2013) incorporated various 

heuristics into B&B and obtained a solution of 14 x14 pre-emptive open shop 

problem for the reasonable amount of time. However, because in reality the size 

of the JSSP can reach hundreds of jobs and tens of machines, B&B is rarely used 

to solve JSSP in real life (Lei 2009).  

Since in real world applications the optimal solution is not always the main 

objective, beam search strategy can be applied to prune unpromising branches 

earlier in the process (Pinedo 2009). The adaptation of beam search to the JSSP 

works according to the following principle. Beam search starts from the 

generation and the evaluation of several schedules. Then, it selects only w (beam 

width) best of them for further branching. To make the restriction of branches 

even tighter, the additional value f (filter width) is defined. Filter width denotes 

how many branches will be obtained from the current branch. Clearly, the 

performance will depend on the value on the algorithmic parameters f and w. 

Having very low values, it is possible to achieve reduction in the computation time, 

although the branch which can lead to the optimal solution can be pruned as well. 

Alternatively, examination of too many branches can be computationally 

expensive. Thus, like in the majority of the optimisation algorithms, a trade-off 
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between the solution quality and computing time needs to be experimentally 

identified. 

5.5 Metaheuristic algorithms 

Metaheuristic algorithms gain more and more popularity for the solution of JSSP 

(Abdullah and Abdolrazzagh-Nezhad 2014). Metaheuristic methods can offer a 

quick solution, which is presummably close to the optimal one, for a reasonable 

computation time.   

Abdullah and Abdolrazzagh-Nezhad (2014) conduct a survey of the popularity of 

metaheuristic algorithms for the solution of fuzzy JSSP. Their results are 

presented in Figure 20. Their findings support the selection of the algorithm for 

this research. The EA appeared as the most popular one followed by Tabu 

Search, Simulated Annealing and Ant Colony optimisation. These results are 

similar to the survey results  conducted by Lei (2009), Gen and Lin (2014). 

  

Figure 20 Methods for the solution of JSSP 

Source: Abdullah and Abdolrazzagh-Nezhad (2014) 

Despite each of these methods having its own advantages and disadvantages 

and being able to outperform one another in different problems and comparison 

settings, the majority of researchers agree that the utilisation of a combination of 

methods can yield much better results than each algorithm on its own (Meeran 

and Morshed  2012, Spanos et al. 2014, Zhang, Gao and Li 2013, Javadi and 

Hasanzadeh 2012, Qing-dao-er-ji and Wang 2012, Rakkiannan and Palanisamy 
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2012).  Thus, the application of EA and its hybrids will be considered in great 

detail in the following section.  

5.6 Evolutionary algorithms  

5.6.1 Chromosome representations 

Various chromosome representations have been designed for the solution of the 

job-shop scheduling problem. Generally, there are two types of representation: 

direct and indirect. Direct chromosome representation encodes the schedule 

itself, while indirect contains only the rules of schedule deduction. Although the 

advantage of direct chromosome representation is that the same solution cannot 

be obtained from different chromosomes, the major disadvantage is that it 

requires the development of specific genetic operators. The opposite is true for 

indirect chromosome representation. Although the implementation of the direct 

encoding is more simple, Corne and Ogden demonstrated that indirect encoding 

more superior (Hart, Ross and Corne 2005).  

In order to implement both representations, an additional procedure, schedule 

builder, should be developed and tailored to both chromosome representations 

in order to solve JSSP. The role of the schedule builder is to translate the 

chromosome into a feasible and user-friendly schedule format, which would allow 

calculation of the makespan and other parameters. The relationship between the 

schedule builder and chromosome representation is as follows: the simpler the 

chromosome representation, the higher the burden on the schedule builder and 

vice versa (Cheng, Gen and Tsujimura 1999).  

Hart, Ross and Corne (2005) classify all the existing chromosome 

representations for the JSSP. The results are presented in Table 7.  

Table 7 Chromosome representation of JSSP 

Direct representation Indirect representation 

• Operation based 

• Job based 

• Job-pair relationship based 

• Completion-time based 

• Random-keys 

• Preference-list based 

• Priority-rules based 

• Disjunctive graph based 

• Machine based 

Source: Hart, Ross and Corne (2005) 
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Each type and the corresponding schedule builder procedure will be analysed in 

the next section.  

Job-based representation In this type of representation a chromosome consists 

of a string of integers that represent each job waiting to be scheduled. The 

example of such representation is presented in Figure 21. 

2 1 4 3 

Figure 21 Job-based chromosome representation 

There are two major ways of deducing the schedule. The first one is to assign all 

the operations of the job represented by the first gene, then assign all operation 

of the job standing at second locus, and repeat this procedure until the end of the 

chromosome is reached (Jianchao Tang, et al. 2010). Another way to decode this 

chromosome is to assign first operations of all the jobs in the order they appear 

in the chromosome, then to assign all the second operations in the same order 

and so on until all operations are assigned (Amirthagadeswaran and 

Arunachalam 2006).  

Such chromosome representation is able to find a satisfactory solution relatively 

quickly due to a smaller number of genes, and therefore a small number of 

possible permutations than in operation-based representation. The experiments 

carried out by Amirthagadeswaran and Arunachalam (2006) on the 24 standard 

test instances show that the job-based representation outperforms other 

representations in 22 cases.  

On the other hand, such a robust decoding procedure might prevent formation of 

the optimal solutions. For instance, it would be impossible to obtain a schedule 

where the operations of different jobs should be scheduled in different orders. 

This problem can be tackled with the usage of operations-based representation.   

Operation based representation The operation-based representation was 

proposed by Bierwirth (1995). Given m jobs with n operations, the chromosome 

is composed of mxn genes. Each operation is represented by its job number. In 

other words, the job number will appear in the chromosome as many times as the 

number of operations it contains. The number of a job occurrence in the 

chromosome denotes the operation's number. The following example with 3 jobs 

and 3 operations illustrates the chromosome representation and decoding 
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procedure. The first row in Figure 22 represents the chromosome and the second 

row explains the meaning of each gene  

Chromosome 1 2 1 2 3 3 2 3 1 

Job-Operation  1-1 2-1 1-2 2-2 3-1 3-2 2-3 3-3 1-3 

Figure 22 Operation-based chromosome representation 

Schedule builder is based on similar logic to the Griffler and Thomson algorithm, 

but uses EA to find an optimal sequence of operations. Based on the given 

example, the schedule builder firstly allocates the first operation of the first job to 

the relevant machine, then it placed the first operation of the second job. 

Decoding gene three, it places the second operation of the first job in the 

schedule in the best available time, which is the maximum time between the 

completion of the previous operation of the same job and the time when the 

corresponding machine becomes available (Amirthagadeswaran and 

Arunachalam 2006). The process repeats until all the operations appear in the 

schedule. 

Such logic does not violate precedence constraints and produces a feasible 

schedule. In addition, it can adapt to the changes in schedule rates and uncertain 

number of operations (Zhu, Chen and Zhang 2009).  

It has a half-Lamarckian property, where offspring partially inherit their parent’s 

attributes. However, because each job number appears several times in the 

chromosome, some standard genetic operators, in particular mutation, might 

have no impact on the chromosome or produce infeasible solution. Also, with the 

larger search space compared to the job-shop representation, operation-based 

representation might attain a better solution, although at a cost of greater 

computation time.  

Job-pair relationship based chromosome representation Unlike 

aforementioned chromosome representations, the job-pair relationship 

representation encodes the precedence constraints between operations on 

different machines (Cheng, Gen and Tsujimura 1996). The chromosome is 

presented in matrix form, where each row denotes all possible sequences of the 

operations and each column stands for machines (Figure 23). The binary variable 
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indicates whether the job i is performed before the job i+1 on a particular machine 

j.  

 

Figure 23 Job-pair relationship based chromosome representation 

Source: Cheng, Gen and Tsujimura (1996) 

EA designed by Hasan, Sarker and Cornforth (2007) is based on job-pair 

relationship chromosome representation. It achieves either better or the same as 

the best known results. However, it is important to notice that the experiments 

were conducted on small and medium size problems with the data set not 

exceeding 20 jobs and five machines.  

In terms of the development of EA, this representation might be impractical since 

standard EA operators destroy the feasibility. Moreover, such representation 

requires significant memory resources. Cheng, Gen and Tsujimura (1996) state 

that this type of representation causes unnecessary complexity and contains 

superfluous information.  

Completion time-based representation This chromosome representation was 

proposed by Yamada and Nakano in 1992 (Cheng, Gen and Tsujimura 1996). 

The length of the chromosome is equal to the total number of operations and 

each gene c denotes the completion time of i-th operation of j-th job on the k-th 

machine (Figure 24). 

c111 c123 c132 c211 c223 c232 

Figure 24 Completion time-based chromosome representation 

The times are usually obtained through the Giffler and Thomson algorithm and 

each chromosome is an active schedule (Dahal, Tan and Cowling 2007). The 

chromosome has no-Lamarckian property (Gen and Cheng 1997). The success 

of finding the right solution depends on the genetic operators, which are quite 

complex and have to be devised specifically for this representation. This might 

be the reason for the little popularity of this representation in the literature. 
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Random-keys The solution is encoded as a set of random keys (random 

numbers from 0 to 1). The schedule builder is based on a priority rules 

mechanism, except that priority rules are determined and managed by EA (Dahal, 

Tan and Cowling 2007) . The schedule builder assigns operations to the 

machines in descending order. For instance, for the chromosome shown in Figure 

25, sequence of the jobs is the following 2->1->3->4. Clearly, any permutation 

initiated by genetic operators sustains the feasibility of the schedule. This 

chromosome has a Lamarckian property, and with the evolutional process the 

algorithm acquires the knowledge of the relationship between certain 

chromosomes and the corresponding objective function.   

0.35 0.98 0.14 0.03 

Figure 25 Random-keys chromosome representation 

Vela, Varela and Gonzailez (2010) extends this concept by including the 

maximum delay times. The length of this chromosome is equal to 2n, where n is 

the number of the operations. The first n genes denote the priorities of the 

operations, and the second part of the chromosome specifies delay times (Figure 

26). The delay times are equal to geneg x 1.5 x MaxDur (maximum duration of all 

operations). The principle of the delay times is that if the next operation is not 

scheduled within the specified time interval (i.e. machine remains idle after the 

execution of the previous operation), the operation with a lower priority will be 

placed into the schedule. This enables generation of so-called parameterized 

semi-active schedule (Vela, Varela and Gonzailez 2010). 

0.35 0.98 0.14 0.03 650 1030 898 565 

Figure 26 Random key chromosome representation with delay times 

In the random key chromosome representation, a great burden lies on the 

complex schedule builder and objective function evaluation. Analogue of the 

uniform crossover and the mutation, which generates a new member from the 

same distribution as the original population for this type of chromosome, are 

introduced by Vela, Varela and Gonzailez (2010).   

Such type of chromosome representation is highly reusable and can be applied 

to other ordering problems (Gen and Cheng 1997). However, the application of 

random-key representation is more common for problems with fuzzy due dates 
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and set-up times rather than traditional JSSP (Lei 2010, You-Lian Zheng, et al. 

2010).   

Preference List-Based Representation In this type of chromosome 

representation, the chromosome is comprised of m-blocks (m-number of 

machines) and each block stands for a single machine (Figure 27). Every block 

contains a permutation of the jobs in the order of their priorities (Hasan, Sarker 

and Cornforth 2007). It needs to be highlighted that this is only a preference list 

rather than strict scheduling rules. In the example of the chromosome presented 

on Figure 27, the preference for machine 1 is the first operation of job3, 

preference for machine 2 is the first operation of job 1, and the second operation 

of the third job for machine 3. If in some cases precedence-constraints do not 

allow sequencing the operation in the given order, then the operation is skipped 

and the schedule builder continues to scan the chromosome from the left to the 

right and assign only the operations which are permitted to be scheduled. Upon 

reaching the end of the chromosome, the procedure starts over and assigns 

unscheduled operations which can now be scheduled. This process repeats until 

all the operations are allocated. This mechanism provides feasible schedules. 

However, it is possible to encode the same solution differently, which will result 

in false competition between chromosomes in the population. However, unlike a 

situation where the same chromosome can be decoded differently, different 

encoding of the same solution might benefit the algorithm by contributing to the 

diversity of the population. It also can resolve itself over a number of iterations.  

3 2 1 1 2 3 2 3 1 

 

 

Figure 27 Preference list-based chromosome representation 

This representation is commonly used for JSSP with due dates and release times 

(Cheng, Gen and Tsujimura 1996). Qing-dao-er-ji and Wang (2012), Essafi, Mati 

and Dauzere-Peres (2008)  applied this chromosome representation for the flow 

shop problem, which is the JSSP without operation-precedence constraints. 

However, in this case, since the principle of the given chromosome 

representation is setting the directions of disjunctive arcs, a cycle might occur 

which in turn leads to an infeasible schedule.  A special procedure resolving this 

Machine 1 Machine 2 Machine 3 
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issue is developed by Qing-dao-er-ji and Wang (2012). Although the results 

reported by Qing-dao-er-ji and Wang (2012) outperform the existing techniques 

in the literature, especially for large-size problems, it is difficult to certainly state 

whether the success should be attributed to the chromosome representation 

scheme or special local search and selection procedures.   

Priority rule-based representation In this type of representation a set of priority 

rules undergoes evolutional process, while the sequence of operations remains 

static. The length of such chromosomes is equal to the number of operations. 

Each gene signifies which heuristic rule will be applied to schedule the next 

operation.  With each gene, the schedule builder re-arranges unscheduled 

operations according to the selected rule and then adds the operation with the 

highest priority into the schedule (Cheng, Gen and Tsujimura 1999). The 

examples of these rules are presented in section 5.2.  

Operations can also be positioned into the schedule in a probabilistic manner. 

Firstly, the priorities are assigned to all the operations by using one or more 

despatching rules. After that one of the operations is probabilistically selected 

and drawn to the schedule. The operation has a higher chance of being chosen 

if it has a higher priority than others (Zhang and Wu 2011).   

Advantages are ease of the implementation and low time consumption (Abdullah 

and Abdolrazzagh-Nezhad 2014, Cheng, Gen and Tsujimura 1996). In terms of 

the disadvantages, the changes indirectly impact genotypes that might cause 

false competition (Cheng, Gen and Tsujimura 1999).  

Machine-based representation. In this type of representation, the chromosome 

consists of a set of ordered machines (Cheng, Gen and Tsujimura 1996).  In order 

to deduce a schedule a shifting bottleneck algorithm is used. The main idea of 

a shifting bottleneck heuristic is to give a priority to bottleneck machines. It works 

according to the principle as follows. At the first step a schedule builder takes one 

gene (machine), which has not yet been sequenced and produces a schedule for 

it.  At the next step all the machines that are already in the schedule undergo re-

optimization (Adams, Balas and Zawack 1988). These two steps are repeated 

until the full schedule is obtained.  
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Disjunctive graph representation. In this representation a chromosome is a list 

of arcs in the disjunctive graph presented in Figure 19. It shows the processing 

order between two operations (nodes). The given type of representation can be 

classified as a variation of job-pair relationships representation. Each gene 

represents eij., eij, is equal to one arc orientated from the node i to the node j, and 

0 denotes the opposite orientation: from the node j to the node i (Figure 28). This 

does not guarantee the feasibility of the solution since chromosomes which were 

randomly generated might contain cycles or violate operation precedence 

constraints (Gen and Cheng 1997). The critical path algorithm is used in order to 

conduct a decoding procedure. Cheng, Gen and Tsujimura (1996) state that in 

the given representation the chromosome is not a solution, which is a schedule 

itself, but rather a guide for the conflict resolution of the operations competing for 

the same machine.   

 

Figure 28 Disjunctive based chromosome representation 

Source: Cheng, Gen and Tsujimura (1996) 

This chromosome representation presents an extremely large search space as 

the number of combinations is (2nxm)m (Abdullah and Abdolrazzagh-Nezhad 2014). 

The possible unfeasibility of the schedule along with the complexity of the 

searching space might be the reason for the rare utilisation of this representation 

in the literature.  

5.6.2 Population management 

The vast majority of EAs for JSSP create the population at random, however 

various chromosome generation strategies have been introduced as well.  

Tang et al. (2010) report that utilisation of Particle Swarm Optimisation in the 

chromosome generation process can produce better results in terms of quality 

and stability. Spanos et al. (2014) showed that priority rules can reduce the 
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number of illegal chromosomes as well as better results in terms of the 

achievement of augmented goals (i.e. due dates, machine workload).  

The advantages of these methods are a high quality of the first population as well 

as the relatively narrow search space. However, they also might cause premature 

convergence and poor exploration of the space regions. In order to preserve 

diversity in the population Javadi and Hasanzadeh (2012) incorporated a 

neighbourhood check that accepts a new individual only if this chromosome has 

a predefined distance from already existing solutions. The distance is calculated 

according to the permutation of operations and machine assignment. However, 

the main disadvantage of this mechanism is there is no prior knowledge of the 

number of the regions and thus how many individuals should be in the population. 

This means that some of the regions might still be skipped.  

Defersha and Chen (2010) proposed parallel EA implemented on two processors. 

They have used the island model, where each processor solves the problem 

with an EA, but from time to time some individuals can migrate from one island 

to another. Migration is controlled by a specifically designed operator, which 

regulates the diversity and migration rates.  

5.6.3 Crossover  

The fundamental role of the crossover operator is to construct offspring, in the 

hope that they will be better than precursors as well as to direct the search 

process to new, as yet unexplored, regions. The type of crossover operator is 

determined by the chromosome representation. In the EAs designed for the JSSP, 

traditional crossovers as well as their problem-specific modifications are 

commonly used. The most popular crossovers for JSSP are outlined below.  

Partially mapped crossover (PMX) is one of the widely-used crossovers for 

permutation encoding. The working principles of PMX were shown in 2.7.7. Jia et 

al. (2011), Essafi, Mati and Dauzere-Peres (2008) applied this crossover type in 

their studies of JSSP. Kramer and Koch (2007) improved PMX by intelligent 

selection of the cutting points.  

Position-based crossover (PBX) is the equivalent of uniform crossover adapted 

to the literal chromosome representation and was utilised in Cheng, Gen and 

Tsujimura (1999). Figure 10 illustrates the mechanism of PBX crossover. 
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Order crossover(OX) is similar to the position-based crossover except that a 

part which will be copied is a set of consecutive genes in one parent (Cheng, Gen 

and Tsujimura 1999). OX crossover is explained in greater detail in section 2.7.7. 

Precedence Operation Crossover was developed specifically for JSSP and can 

preserve good characteristics from previous generations (Chuanjun Zhu, Yurong 

Chen and Chaoyong Zhang 2009). This can be seen as an adaptation of PBX for 

the operation-based chromosome structure. The main principle is to randomly 

divide all the jobs into two non-empty, non-overlapping sets. Preserving locus, all 

the operations of the jobs belonging to the first set are transmitted to the first child. 

Then the operations of the jobs from the second set should be transferred to the 

first child in the same order as they are in the second parent as shown in Figure 

29. 

 

Figure 29 Modified Precedence Operation Crossover 

Source: Chen and Zhang (2009) 

Subsequence exchange crossover is used with the matrix representation, 

where a row denotes a series of operations processed by a machine (Figure 30). 

Usually all rows with odd indexes are passed to the first child from the first parent 

and even rows are taken from the second parent and copied to the first child. 

Such a method might produce illegal schedules, which violate the precedence-

constraint. The Giffler and Thomson method is commonly used to restore the 

feasibility (Cheng, Gen and Tsujimura 1999).  
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Figure 30 Subsequence exchange crossover 

Job-based order crossover is the variation of the subsequence exchange 

crossover, where the jobs are selected and copied rather than machines (Figure 

31). It works as follows. Firstly, a certain subset of jobs is selected in the first 

parents and copied onto the same positions (preserving machines) to the first 

child. After that the rest of the jobs are fulfilled in the order they appear in the 

second parent.  

 

Figure 31 Job-based ordered crossover 

5.6.4 Mutation  

In order to maintain diversity in the population, a mutation method suitable for the 

selected chromosome representation should be designed. The most popular 
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mutation schemes are presented below. However, sometimes mutation is not 

used at all due to a sufficient diversity in the population caused by effective 

chromosome representation and crossover procedures (Essafi, Mati and 

Dauzere-Peres 2008).  

Swap mutation exchanges the genes from randomly identified positions as was 

shown in Figure 14.This type of mutation is the most popular one for the solution 

of JSSP (Amirthagadeswaran and Arunachalam 2006, Jianchao Tang, et al. 2010,  

Yang et al. 2012). Swap mutation can be extended to swap the genes responsible 

for the jobs on the critical path that might lead directly to the attainment of the 

optimal schedule (Spanos et al. 2014).   

Inversion mutation arbitrarily selects a subsection in the chromosome and 

reverses the order of all the genes from the selected range (Figure 15). Wang 

and Zheng (2001) employed this mutation type for the solution of JSSP. 

Neighbourhood mutation is based on the generation of neighbourhood around 

a certain chromosome (Figure 32). A few genes usually selected as a basis for 

the identification of the neighbourhood and several new individuals are produced 

by permutation of these genes (Chuanjun Zhu, Yurong Chen and Chaoyong 

Zhang 2009). The best neighbour is accepted.  

 

 

 

 

  

 

Figure 32 Neighbourhood mutation 

Compared to the other aforementioned mutation types, this type allows 

exploration of a particular region more comprehensively, and therefore the 

likelihood of solution improvement is higher. 

Parent chromosome 

1 3 2 5 4 6 7 

Neigborhood 

1 3 2 4 5 6 7 

1 4 2 5 3 6 7 

1 4 2 3 5 6 7 

1 5 2 4 3 6 7 

1 5 2 3 4 6 7 



95 
 

5.6.5 Hybrids and local search strategies 

EA has a good capability to explore the entire search space, but it lacks intensive 

local knowledge (El-Mihoub, Hopgood and Aref 2013). On the contrary, such 

algorithms as simulated annealing and tabu-search are equipped with the 

mechanisms of exploration of search space regions, but miss the global 

perspective. Therefore, the utilisation of EA with the local search technique 

creates a balance between exploitation and exploration phases. This section 

considers application of those algorithms in tandem with EA for the solution of 

JSSP.  

5.6.6 Local neighbourhood search 

The majority of the local search techniques for JSSP are based on exploiting the 

neighbourhood structure of the problem derived from the disjunctive graph 

representation. This is conducted by manipulating the operations lying on the 

critical path. The most popular method, which can lead to finding an optimum 

solution, is reversion of disjunctive arcs connecting adjacent operations 

performed on the same machine (Vela, Varela and Gonzailez 2010, Essafi, Mati 

and Dauzere-Peres 2008). 

Essafi, Mati and Dauzere-Peres (2008) employ additional ILS (iterative local 

search) procedure. The ILS consists of two stages: the improvement stage and 

the perturbation stage. The first stage is based on steepest descents and accepts 

only the moves that add improvements to the solution. When no improvements 

can be made the perturbation operator repeats the same process with the 

exception that non-improving moves get accepted as well. This process allows 

exploration of new regions and avoidance of being trapped in the local minimum. 

5.7 Simulated Annealing (SA) and Tabu Search (TS) 

SA and TS belong to improvement type of algorithms, that start from an initial 

coded solution and gradually develops it (Pinedo 2009). The detailed explanation 

of the principles of their work was given in sections 2.3.1 and 2.3.2. 

Various SA algorithms have been devised for the solution of JSSP and its 

variations (Zhang and Wu 2011, Cruz-Chajvez 2014, Mirsanei et al. 2011, 

Steinhafel, Albrecht and Wong 1999). The major conceptual differences between 
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them are temperature cooling schemes and neighbourhood generation 

mechanisms.  

In some cases, SA even outperformed EA. In the experiments of Ponnambalam, 

Jawahar and Aravindan (1999), SA demonstrated better results in 11 of 20 tests, 

but at the execution time was significantly longer. It is also important to notice 

that used in the experiments EA has been designed for the flexible JSSP, 

whereas SA was tailored to the solution of the classic JSSP. SA also showed 

superior performance over EA with random key chromosome representation in 

terms of the quality of the schedule and computation time in the study conducted 

by Mirsanei et al. (2011). However, based on the observations of the trends in 

the literature, random key representation is rarely used for the solution of job shop 

scheduling problem due to the fact that the schedule deduction from the 

chromosome is a time consuming task, and the majority of researches give their 

preferences to more problem-specific chromosome representations.  

At the same time, several experiments concluded that together EA and SA are 

able to attain significantly better results (Rakkiannan and Palanisamy 2012, Liu 

et al. 2011). There are various ways of embedding SA into EA framework. For 

instance, Wang and Zheng (2001) apply simulated annealing to each new 

individual in the population until the stopping criteria are met. Then, the algorithm 

returns the best found solutions in the population to EA. Dong Hui (2012) 

proposes a crossover operator on the basis of SA algorithm, while Liu et al. 

(2011) incorporated SA into mutation.  

EA can also benefit from the adaptive memory regarding the previous solutions 

presented in Tabu-search. There are various ways of its integration in the 

literature. Vilcot and Billaut (2008) utilised TS in order to generate the initial 

population. The algorithm starts from creating the initial solution and then applies 

TS in order to produce a neighbourhood and form the rest of the population. 

Zhang, Gao and Li (2013) apply TS for a certain number of iterations for each 

individual in the population. In order to reduce the computation time, Javadi and 

Hasanzadeh (2012) firstly cluster the solutions and then employ a TS as a local 

search mechanism to a single representative selected from each cluster.  

And finally, Thamilselvan and Balasubramanie (2012) implement SA, TS and EA 

in the same algorithm. EA is a leading algorithm, while TS is performed after the 
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crossover operator and SA is inserted after mutation. The authors claim that such 

a combination surpasses EA, parallel SA, and hybrid algorithm of SA and EA.  

5.8 Limitations and gaps in the literature  

This review of the literature has identified three gaps related to the way the 

research experiments were conducted and the results were compared. First of 

all, there is a lack of elucidation and experimental justification of the reasons for 

the selection of a particular operator in the literature. Secondly, because all the 

operators were applied in conjunction with one another, it is difficult to determine 

what operator was responsible for the success or failure of the overall algorithm. 

Thirdly, there were no direct comparison under the same conditions made, which 

would allow for establishing efficiency of a particular chromosome representation 

of a genetic operator.  

As modelling the behaviour of the population under certain operators before their 

implementation is an extremely challenging task (Gendreau and Potvin 2005),  

the more feasible way to discover the efficiency of each operator is to conduct 

empirical evaluation. This research provides such evaluation for various genetic 

operators in the context of JSSP.  

5.9 Conclusion 

This chapter has reviewed the methods available in the literature for the solution 

of the Job-Shop Scheduling Problem. They included exact methods such as 

branch-and-bound as well as heuristic and metaheuristic algorithms which 

include despatching rules, Giffler and Thompson algorithm, evolutionary 

algorithm, Simulated Annealing and Tabu-Search.  

The main focus was on the configurations of the EAs since analysis of the 

literature showed that it is one of the popular meta-heuristic algorithms for the 

solution of JSSP. A wide range of chromosome representations, genetic 

operators and hybrid algorithms have been discussed.  

It was identified that the major limitation of EA research is a lack of empirical 

evidence of genetic operators’ effectiveness. This research will fill this gap by 

carrying out experimental comparison of the effectives of genetic operators in 

Chapter 9.  
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Chapter 6. Crew Scheduling Problem 
in the rail-freight industry 

6.1 Introduction 

This chapter concerns the second scheduling problem selected for this research, 

which is the crew scheduling problem. In order to develop an appropriate and 

effective solution it is important to have an in-depth understanding of the problem 

and surrounding business environment. Therefore, the chapter starts by 

providing an overview of the rail freight industry and its role in the economy.  

It then explains the complexity of crew scheduling operations and its importance 

for the overall business. Close attention is paid to health and safety regulations 

and contractual terms underpinning the construction of the driver schedule in the 

real world. Based on this, the formal mathematical model defining driver 

scheduling processes, which will be used to develop and test the optimisation 

algorithm, is devised.  

6.2 Role of rail freight in the economy 

While international trade continues to expand, businesses are striving to increase 

reliability and reduce their environmental impact (WTO 2014, Eurostat 2015). 

This has a positive impact on the growth of the demand for transportation (World 

Energy Council, IBM Corporation and Paul Scherrer Institute 2012, Islam et al. 

2015). For example, the number of containers that passed through Felixstowe 

port, the largest container port in the UK, has increased twice between 2001 and 

2011, resulting in a 25% rise in the amount of trains arriving and departing to and 

from the port (Network Rail 2014).  

There are a number of reasons why businesses give preferences to railway 

freight transportation. These are lower cost with a smaller number of incidents 

and relatively high quality and reliability (Cacchiani, Caprara and Toth 2010). Rail 

transport provides higher reliability in terms of the number and length of delays 

compared with road transport, which is often subject to traffic and congestion. It 

is estimated that road congestion reduces GDP by £7-8 billion a year (Network 

Rail 2014).  From the fuel cost perspective, rail is almost three times cheaper 
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than road transportation. For example, using a gallon of fuel it would be possible 

to move a ton of goods for 246 miles, whereas by road it is only 88 miles (Network 

Rail 2014). With regard to quality, rail transportation is safer meaning the goods 

are less likely to be damaged. For instance, this is one of the reasons why the 

majority of the luxury car brands such as Mini, Jaguar and Land Rover transport 

70% of their premium products by rail (Network Rail 2014).  

Finally, each train can replace 50 heavy goods vehicles from the road. Effectively 

this would decrease carbon dioxide emission, number of incidents, congestion 

and even noise in certain areas making them more pleasant and safer for 

communities (Network Rail 2010).  

6.3 Rail-freight industry overview  

Privatisation in 1994 divided the railway industry into two parts: the infrastructure 

(stations, signalling, tracks) controlled by Railtrack (later National Rail) and 

private train operating companies (TOC). English, Welsh and Scottish Railways 

Ltd. (EWS) was one of the biggest freight TOC (Stittle 2004). Freightliner was the 

second biggest player transporting 17% of the freight traffic. In 2007 EWS was 

sold to Deutsche Bahn and in 2009 rebranded to DB-Schneker (DB-Schneker 

2014b). 

Demand for transportation is dictated by overall economic health, international 

trade and the situation in a particular industry. Figure 33 displays the breakdown 

by commodity type in the amount of freight moved by railroad based on their 

weight and distance carried.   
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Figure 33 Demand for rail freight transportation by commodity 1996-2014 

Adapted from Department for Transport (2015) 

Despite the impact of the global recession of 2007-2012, the overall trend in 

demand for transportation is increasing (Islam et al. 2015). Moreover, the number 

of trains to serve the industries is predicted to grow even further in the coming 

years (Marketline 2014). In addition, Network Rail is planning to expand 

infrastructure which would allow transit companies to have more and longer trains, 

and operate on a larger number of destinations (Network Rail 2014). Moreover, 

the HS2 project is expected to "take" the passengers from the standard rail track 

freeing up capacities for the freight trains.  

However, the proportion of commodities in the overall freight dynamically 

changes. Domestic intermodal category is rapidly growing as the volume of 

freight passing through the Channel Tunnel is rising (Eurotunnelgroup 2014) 

owning to the stable relationship with main European trade partners, Germany 

and France (HM Revenue&Customs 2015). However, the demand for coal 

transportation has significantly decreased since 2013 due to closure of several 

power stations and relatively high winter temperatures (Islam et al. 2015). This 

adversely impacted train operating companies who were forced to reduce the 

number of their staff particularly in the North of England (BBC 2015, Gazettelive 

2015). On the other hand, the demand for biomass, as an alternative to coal, 

continues to grow compelling the freight TOC to invest in the development of 

biomass wagons in order to respond to customer needs. 
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Currently there are seven freight operating companies: Colas Rail, Devon and 

Cornwall Railways, Direct Rail Services, DB Schenker, Freightliner, GB 

Railfreight, Mendip Rail (Office of rail and road 2015).  The rivalry in the market 

is assessed as strong (Marketline 2014).   

Therefore, in order to effectively adapt to fluctuations in demand and remain 

competitive, it is paramount for rail freight carriers to have agile business 

processes. The next section describes the principal planning and scheduling 

operations (DB- Schneker 2014a).  

6.4 Planning operations in the rail scheduling 

In order to effectively function and adapt to the changing demand, the rail freight 

operator needs to solve various problems including the crew scheduling problem, 

blocking problem, yard location problem, train routing problem, locomotive 

scheduling problem, train scheduling and dispatching problem (Mu and Dessouky 

2011).  

As the driver cost is the second largest cost after the fuel cost, the driver 

scheduling problem has been selected for this research, and the operations 

influencing crew scheduling will be studied in greater depth (Kwan 2011).   

Figure 34 illustrates the operations dealing with customer orders (DB-Schenker 

Business Manager interviewed on 14/11/12). The process starts with taking an 

order from a client. Orders vary in terms of the frequency, size and type of 

commodity. Each order is characterised by the places where the goods need to 

be collected from and delivered to, volume and tonnage as well as commodity 

type.   

 

https://en.wikipedia.org/wiki/DB_Schenker_Rail_(UK)
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Figure 34. The main operations of the railways freight carrier 

Once the orders have been collected, similar commodities which are transported 

in the same directions and on the same date are grouped together. Then, they 

are temporarily assigned to the virtual trains (i.e. simulation of the real train). At 

the next stage, the route of the virtual train is specified and the real fleet is 

reserved for each virtual train. At this step, a scheduler also adds some ancillary 

activities such as attachment and detachment of a set of wagons, loading and 

unloading goods, fuelling a train, freight shunt etc.  

The last two stages concern the construction of the crew schedule and 

assignment of the train drivers to the trips. Crew scheduling operations group a 

sequence of trips into the shifts. Crew rostering is a process of assigning a driver 

with the required route and traction knowledge to each shift. Rostering is subject 

to several industrial regulations. The fundamental constraints are the minimum 

rest time between shifts and the number of free days. At the rostering stage the 

planners also make sure that the work is distributed fairly among the drivers.  

6.5 Crew Scheduling Problem  

At the strategic level, crew management is concerned with depots’ capacities and 

allocation of the depots (Huisman et al. 2005). These decisions are usually based 

on forecast of demand for the freight transportation and market outlook.   

Apart from the demand forecast, another challenge here is maintaining the 

required level of staff. Hiring new drivers requires a considerable amount of time 

and financial resources as drivers need to undergo appropriate training before 

they can start their job. In addition, redundancy is the last option for the company 

Take an order from a client 

Assemble virtual trains 

Fleet assignment 

Crew Scheduling 

Rostering 
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as it entails difficult negotiations with trade unions and payment of compensation 

packages (Huisman et al. 2005). 

6.5.1 Contractual terms 

According to employment contract terms, the drivers are paid the same hourly 

rate for any time spent on duty regardless of the number of hours they have 

actually been driving the train. Moreover, in accordance with collectively 

bargained contracts, each driver has a fixed number of working hours per year, 

so the company is obliged to pay for all the stated hours in full even if some of 

the hours are not utilized. Paid additional overtime hours can be worked at the 

driver’s discretion. Thus it is in the best interests of the company to use the agreed 

driving hours in the most efficient and economical way (DB-Schenker Head of 

Finance interviewed on 02/09/2013).  

From a business perspective, crew management processes are relatively 

inflexible and any changes in the contractual terms might have serious 

consequences for the company (i.e. strikes). From the legal point of view, the 

collectively bargained contract denotes that the company cannot deal individually 

with each employee (i.e. negotiate amount of working hours). It also heavily 

restricts the company to freely adjust their workforce in relation to demand.  

6.5.2 Crew scheduling processes 

CSP in the rail-freight industry deals with the construction of a schedule for a train 

driver. Each schedule contains instructions for the driver of what he or she should 

do on a particular day. Within the industry, the driver’s schedule is called a 

diagram. Each diagram should cover all the trains driven by a driver in a given 

day. It must start and end at the same station and obey all labour laws and trade 

union agreements. These rules regulate the maximum diagram duration, 

maximum continuous and aggregate driving time in a diagram, and minimum 

break time.  

All drivers are located in depots where they start and finish their work. Depots are 

distributed approximately evenly across the UK. Sometimes in order to connect 

two trips that finish and start at different locations, a driver has to travel on a 

passenger train, taxi or a freight train driven by another driver. The situation of a 

driver travelling as a passenger while on duty is called deadheading. The cost 
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of deadheading varies and depends on the means of transportation and business 

agreements between operating companies. Despite the potential cost, 

deadheading is sometimes inevitable and it can benefit the overall schedule 

(Barnhart, Hatay and Johnson 1995, Jutte et al. 2011).  

6.5.3 Operational objectives 

The effectiveness of the scheduling operations depends on the degree to which 

a schedule achieves objectives as follows (DB-Schenker Head of Finance 

interviewed on 02/09/2013): 

1. Minimize the cost of additional transportation, such as a taxi. 

2. Minimize the losses associated with unused and excess contract hours at 

the end of the year. 

3. Minimize the spread of durations of the diagrams. All diagrams will 

therefore be of duration close to the average 8.5 hours, i.e. the annual 

contract hours divided by the number of working days.  

4. Maximize the throttle time, i.e. the proportion of the work shift that is 

actually spent driving a train. It excludes time for deadheading and waiting 

between trips.  

5. Minimize the deviation of workload distribution across the depots. 

6.5.4 Labour rules 

In addition, all the diagrams must adhere to various health and safety regulations, 

such as (DB-Schenker Head of Finance interviewed on 02/09/2013): 

1. Maximum diagram duration cannot exceed 11 hours and 30 mins. 

2. No driving is allowed after 11 hours of work.  

3. For the six to nine hours shift the driver should take either one break of 30 

minutes or two breaks of twenty minutes. 

4. For the more than 9 hours diagram the break should be one of the 

following options: one break of 45 mins; 2 breaks of 30 mins each; 3 

breaks of 20 minutes each. 

5. Maximum aggregate driving should be from 7.30 to 8 hours depending on 

the class of train. The information about various locomotive types is 

presented in Appendix 4. 
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6. Maximum continuous driving time should be from three to five hours 

depending on the train class and number of stops. 

7.  All the diagrams with a duration of less than 5 hours are rounded up to 

the five hours.  

6.6 Complexity and size of the problem 

Both operational constraints and the size of the problem contribute to the high 

complexity of the problem (Caprara, et al. 2007).  Furthermore, the crew 

scheduling problem in rail freight is more complex than similar crew scheduling 

problems in airline and passenger railway transportation. Table 8 compares 

complexities of CSPs in various industries.   

Table 8 Problem Complexity 

 Air transportation 
Passenger 

railways 
Freight railway 

Network structure Hub-and-Spoke 

(tree graph) 

Acyclic graph Acyclic graph 

Schedule Cycle. Repeats 

every week 

Cycle. Repeats 

every week 

Based on customer 

orders 

Time 24/7 Day time 24/7 

Relief opportunities 

(Places where 

drivers can change) 

Only at 

origin/destination 

Only at stopping 

stations 

At any passing 

stations 

Deadheads Planes of their and 

other companies; 

Trains between 

airports only; 

Taxi connecting the 

nearly located 

airports; 

Passenger trains 

Taxi 

The same mode of 

transportations; 

Passenger trains 

between all the 

stations; 

Taxi connecting 

nearly located cities; 

Geographical 

coverage 

Depends on the 

scope of the 

company 

Part of the country The entire country 

Source: Adapted from Jutte (2011) 

6.7 Importance of effective crew scheduling systems 

Given both the intricacy of the problem and its significance in the overall planning 

processes, it is evident that it would be almost impossible for a human to produce 

a schedule which would satisfy the objectives stated in 6.5.3.  Having an effective 
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system assisting in the decision making is very important for the following 

reasons: 

1. The crew cost accounts for 20-25% of the total operating cost and is the 

largest after the fuel cost. Even a 1% improvement can save a company a 

substantial amount of money (Kwan 2011, Abbink et al. 2005). In the 

context of DB-Schenker, 1% of crew scheduling savings can be equal to 

hundreds of thousands of pounds saved a year. This will be discussed in 

detail in Chapter 11.  

2. Unlike the passenger trains, where the route depends on the demand in 

certain areas, the path of the freight train is also determined by the 

availability of the train drivers in certain depots. 

3. The effectiveness of the subsequent, rostering, stage depends on the 

quality of the built crew schedule.  

4. An effective crew scheduling system might enable a company to be more 

competitive and support a franchise bid in the UK (Jutte et al. 2011, Kwan 

2011).  

5. Because crew scheduling is the last operation and is performed in a very 

short time frame, the work of the schedulers is associated with a great 

amount of stress. An automatic scheduling system might help to produce 

an initial schedule and the schedulers would have more time to 

thoughtfully revise the schedule and possibly conduct a “What-if” analysis 

(Kwan 2011). 

6. Overall, automatic systems would provide more flexibility and agility to the 

company (Caprara, et al. 2007). 

6.8 Mathematical formulation of the CSP 

Assuming that the set 𝑇𝑖 = {𝑡1, 𝑡2…𝑡𝑛} represents all the trips to which drivers 

need to be assigned to, set 𝐾𝑙 = {𝑙1, 𝑙2… 𝑙𝑝}  contains all possible types of 

locomotives and set 𝑅𝑘 = {𝑙1, 𝑙2… 𝑙𝑞}⁡ includes all the routes, each trip t has the 

following characteristics: 
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tsj– start time of the 𝑡𝑖 trip. 

etj - end time of the 𝑡𝑖 trip. 

slj- start location (origin) of the 𝑡𝑖 trip. 

elj – end location (destination) of the 𝑡𝑖 trip. 

𝑡𝑙𝑖𝑙– is a type of the locomotive that should perform 𝑡𝑖 trip; if 𝑡𝑙𝑖𝑙 = 1, then 

the locomotive which carries out 𝑡𝑖  trip belongs to a class 𝑙. For each trip 

only one 𝑡𝑙𝑖𝑙=1. 

𝑟𝑘𝑖𝑘– is a route code; if 𝑟𝑘𝑖𝑘 = 1, then trip belongs to the k-th code of the 

route. For each trip only one 𝑟𝑘𝑖𝑘 = 1. 

There is also a set of drivers 𝐷𝑗 = {𝑑1, 𝑑2…𝑑𝑚} with each driver d having the 

following properties: 

ℎ𝑗-driver home depot. 

𝑡𝑙𝑗𝑙 - traction knowledge, if 𝑡𝑙𝑗𝑙 = 1, the 𝑑𝑗driver has knowledge of the lth 

locomotive type.  

𝑟𝑘𝑗𝑘 - route knowledge, if 𝑟𝑘𝑗𝑘 = 1, then the 𝑑𝑗 driver has the knowledge of 

the kth route; 

 
The number of depots is equal to Ndepots.  𝑊𝑑𝑒𝑝 represents all the workload for 

a depot dep and 𝑊̅ is the average workload of all the depots. 

Finally, there is a schedule 𝑆 = {𝑠1, 𝑠2…𝑠𝑤}⁡ which consists of the w number of 

diagrams s. In turn, each diagram s consists of a combination of trips and taxi 

transfers. In order to include the possibility of transporting a driver by a taxi, 

additional set of taxi trips, Taxi, connecting all locations of origins and destinations 

as well as depots is created. Each taxi trip has an associated cost taxi 

proportionate to its duration.  

Taxi={taxi1,2, taxi1,3…taxi1, nxw; taxi2,2, taxi2,3…taxi2, nxw;  taxin,1, taxin,2 …taxn,nxw }  

The Formula 9 expresses the main objective, which is minimisation of the 

schedule cost. The cost of the schedule is composed of four components: labour 

cost (Formula 9.1), cost for additional transportation (taxi cost) (Formula 9.2), 

losses from unequal utilisation of drivers’ contract hours (Formula 9.3) and loses 

attributed to unequal distribution of workload amongst depots (Formula 9.4).   
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Formula 9 

Formula 9  

𝐷𝑟𝑖𝑣𝑒𝑟𝐶𝑜𝑠𝑡 + 𝑇𝑎𝑥𝑖𝐶𝑜𝑠𝑡 + 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 + 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 → 𝑚𝑖𝑛 

Formula 9.1 

𝐷𝑟𝑖𝑣𝑒𝑟𝐶𝑜𝑠𝑡 = ∑ ⁡𝑆𝑡𝑒𝑡−𝑡𝑠𝑡×𝐻𝑜𝑢𝑟𝑙𝑦𝑅𝑎𝑡𝑒

∀𝑠∈𝑆

 

Formula 9.2 

𝑇𝑎𝑥𝑖𝐶𝑜𝑠𝑡 = ∑ ⁡𝑡𝑎𝑥𝑖×𝐻𝑜𝑢𝑟𝑙𝑦𝑅𝑎𝑡𝑒

∀𝑡𝑎𝑥∈S

 

Formula 9.3 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 = ∑ ⁡|𝑆𝑡𝑒𝑡−𝑡𝑠𝑡 − 𝑆̅|×𝐻𝑜𝑢𝑟𝑙𝑦𝑅𝑎𝑡𝑒

∀𝑠∈𝑆

 

Formula 9.4 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐶𝑜𝑠𝑡 = √
1

𝑚
∑ (𝑊𝑑𝑒𝑝 − 𝑊̅)

𝑁𝑑𝑒𝑝𝑜𝑡𝑠

𝑑𝑒𝑝=1

⁡⁡×𝐻𝑜𝑢𝑟𝑙𝑦𝑅𝑎𝑡𝑒 

However, this is a subject to the following conditions and constraints (Formula 

9.5-Formula 9.9): 

Formula 9.5 

∀⁡t∈T t∈S 

The condition presented on the Formula 9.5 requires all the trips to be included 

into the schedule. 

Formula 9.6 

𝑡𝑙𝑗(𝑡𝑙𝑖𝑙) = 1⁡&&⁡𝑟𝑘𝑗(𝑟𝑘𝑖𝑘) = 1⁡ 

Formula 9.6 denotes that a driver can be assigned to the trip only if he or she has 

necessary route and traction knowledge. 

Formula 9.7 

l<t 

Formula 9.7  ensures that the number of diagrams will not exceed the number of 

drivers. 
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Formula 9.8 

∀⁡s∈S 5< tset-tses<11 

This constraint requires the duration diagrams to be no more than 11 hours and 

no less than 5 hours. 

Formula 9.9 

∀⁡s∈S:⁡tssl=tsel || tssl=taxiel,thd tsel  || tssl + taxiel,thd = tsel  ||  tssl + taxiel,thd = tsel + 

taxiel,thd 

Formula 9.9 denotes that any diagram should start and finish in the same depot. 

Taxi trips can be used to connect job locations with home depots if necessary. 

6.9 Conclusion 

The chapter has described the importance of the rail freight for the economy and 

explained the context surrounding the rail freight driver scheduling problem. The 

analysis of the health and safety regulations and train driver contract structure 

has been provided. Given the above information, mathematical model 

representing the problem has been designed.  

The next chapter will consider the approaches developed in the literature for 

driver’ schedules creations and optimisation.  
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Chapter 7. Approaches to Crew 
Scheduling Problem 

7.1 Introduction 

This chapter presents a review of approaches to solving the Crew Scheduling 

Problem, which was formulated and defined in the previous chapter. Although the 

research deals with the CSP in the rail freight industry, the crew scheduling 

algorithms designed for other transit industries will be considered as well because 

these problems are conceptually similar.  

Broadly optimisation techniques for CSP can be divided into exact and heuristics. 

Exact methods are based on Linear Programming and Column Generation 

techniques (Lasdon 1970a). The heuristic methods developed for CSP include 

Simulated Annealing, Ant Colony Optimisation and GA. This chapter presents 

thoughtful analysis and examination of the effectiveness of each technique. Their 

gaps and limitations are exposed and discussed in this chapter. 

7.2 General approach for the solution of   CSP with exact 

methods 

The CSP is usually solved in two stages. At the first stage, all possible diagrams 

satisfying the industrial constraints and health and safety regulations are 

enumerated. Typically, the number of generated diagrams reaches 300 000-400 

000 for small problems and can be up to 50-75 million for the large ones (Klabjan 

et al. 2001, Kwan 2004). Diagrams are usually presented in the form of a duty 

matrix and modelled as binary vectors where ‘1’ denotes that the trip i is included 

in the diagram j, otherwise ‘0’ is inserted. In the rest of the thesis the terms 

diagram and column will be used interchangeably (Gopalakrishnan and Johnson 

2005). 

Assuming that the trains in Figure 35 require an assignment of the drivers, some 

examples of possible diagrams are presented in Figure 36. For instance, diagram 

one denotes that the driver starts his work at London Kings Cross and drives a 

train to York, where he changes it and operates another train from York to 
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Newcastle. In Newcastle he changes the train again and then drives it from 

Newcastle to the place where he started his work, London Kings Cross.  

The second diagram indicates that the work starts in York and a driver should 

drive a train from there to Newcastle, and then from Newcastle to London King's 

Cross. As there are no company trains that can deliver him to the home station, 

he is taking a train to York operated by another company. The deadhead journeys 

are not explicitly displayed in the duty matrix, but are taken into account when 

calculating the overall cost. In this example the cost of each diagram is computed 

on the basis of the drivers' payments and cost of additional transportation only. 

The cost breakdown and all the deadhead journeys are presented in Table 9 and 

Table 10.   

The generation of the diagrams is performed in a simple and relatively 

straightforward manner using various graph searching and label-setting 

techniques, which will be discussed in section 7.2.5.  

 Origin Destination 
Departure 

time 
Arrival time 

Trip 1 
London Kings Cross 

[KGX] 
York [YRK] 13:00  14:51  

 

Trip 2 York [YRK] Newcastle [NCL] 15:08  16:15  
 

Trip 3 Newcastle [NCL] 
London Kings 

Cross [KGX] 
16:59 19:50 

Trip 4 
London Kings Cross 

[KGX] 
Darlington [DAR] 15:00 17:20  

 

Trip 5 Darlington [DAR] York [YRK] 17:27 17:54  
 

Trip 6 York [YRK] 
London Kings 

Cross [KGX] 
18:30 20:46 

Figure 35 Trains in the timetable 

Source: National Rail (2015) 

 Diagram 1 Diagram 2 Diagram 3 Diagram 4 

Trip 1 1 0 0 1 

Trip 2 1 1 0 1 

Trip 3 1 1 0 0 

Trip 4 0 0 1 0 

Trip 5 0 0 1 1 

Trip 6 0 0 1 1 

Figure 36 Diagrams  
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 Diagram 1 Diagram 2 Diagram 3 Diagram 4 

Total Diagram Duration 06.50 07:46 06:42 05:46 

Driver Payment, £ 273 310 228 230 

Transportation   cost, £ 0 40 97 0 

Total, £ 273 350 325 230 

Table 9 Diagram cost 

 Origin Destination 
Departure 

Time 
Arrival Time Cost 

Deadhead 

diagram 2 

London Kings 

Cross [KGX] 

York 

[YRK] 
20:00 21:50 £ 40 

Deadhead1 

diagram 3 

Newcastle 

[NCL] 

Darlington 

[DAR] 
16:25 16:55 £ 97 

Table 10 Deadheads 

Source:National Rail (2015) 

At the second stage, only the set of diagrams that covers the entire schedule in 

the most cost-effective way is identified (Caprara et al. 1997). Referring to the 

previous example, the schedule can be covered by diagrams one and three, or 

two, three and four. It is evident that the first case is more preferable because the 

schedule has a lower cost and utilises only two drivers. However, because 

millions of columns might be generated, identification of the set of diagrams which 

will constitute the schedule is a more complicated task due to a massive number 

of possible combinations (Gopalakrishnan and Johnson 2005). Kwan (2004) 

compares this stage with a jigsaw puzzle with an infinite set of pieces, which 

represent the task to find the diagrams which would not only cover all the trips, 

but would also effectively fit together. 

The problem boils down to the solution of the 0–1 set covering problem (SCP) or 

set partitioning problem (SPP) (Chu, Gelman and Johnson 1997). Formulas 

Formula 10.1-Formula 10.3 and Formula 11.1-Formula 11.3 present 

mathematical models of SCP and SPP correspondingly.  In these formulas, aij is 

a decision variable indicating whether a trip i is included in the diagram j; xj shows 

if the diagram is included in the schedule; cj is the cost of the diagram.  The only 

difference between SCP and SPP is that SCP allows to having two drivers on the 

train, i.e. in the situation when one driver operates the train while another one 

presents there as a passenger (Formula 10.2 and Formula 11.2) (Caprara et al. 

1997).   
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Formula 10 Formula 11 

Set covering formulation Set partitioning formulation 




m

j

jj xcMinimize 
1

     (Formula 10.1) 


m

j

jj xcMinimize 
1

    (Formula 11.1) 

1
1




n

i

jij xa: Subject to   (Formula 10.2) 1
1




n

i

jij xa: Subject to  (Formula 11.2) 

}1,0{jx                 (Formula 10.3) }1,0{jx             (Formula 11.3) 

tripsni  2,1    tripsni  2,1   

diagramsmj  2,1    diagramsmj  2,1   

7.2.1 Column generation 

Column generation is one of the most popular algorithms for the solution of CSP. 

The invention of the column generation is attributed to Dantzig and Wolfe (1960) 

(Lübbecke and Desrosiers 2005). The first researchers who applied this method 

for CSP were Lavoie, Minoux and Odier (1988). Column generation remains a 

very popular method for the solution of CSP nowadays and is used by many 

authors including Gopalakrishnan and Johnson (2005), Derigs, Malcherek and 

Schafer (2010), Jütte et al. (2011), Nishi, Muroi and Inuiguchi (2011). 

Algorithm 1 Column generation 

1: Generate a limited number of columns.  

2: Solve Restricted Master Problem.  

3: If the solution is feasible then algorithm terminates. If the solution is 

infeasible go to step 4. 

4: Pricing. Using pricing algorithm, find and add new columns. Go to step 2. 

 

Column generation allows obtaining an optimal solution without enumeration of 

all possible diagrams. The algorithm of the method is illustrated above. In general, 

column generation consists of two sub-problems: master and pricing. A master 

sub-problem is applied to solve a set covering problem from only a limited set of 

columns (i.e. it is often called a restricted master problem (RMP). The pricing 

problem is responsible for the production of additional columns. If the new 
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columns improve the objective function, then the process repeats. If the value of 

the objective function remains the same, then the process terminates, and it is 

assumed that the optimal solution is found. 

To reduce the number of iterations, Duck, Wesselmann and Suhl (2011) use 

multiple pricing in order to obtain several columns at the pricing stage and to 

increase the convergence of the optimisation algorithm. Abbink et al. (2011) 

introduce the concept of fixed columns. Fixed columns are the columns which 

demonstrated a small improvement to the previous iteration, and are regarded as 

a sign that the algorithm is approaching an optimum solution. For this reason, 

fixed columns remain in the master problem and the pricing problem constructs 

only the columns which include uncovered by the fixed columns duties.  

However, both approaches contain certain limitations. For example, by 

generating several columns at the same stage, it might not be possible to 

determine which of them were more beneficial for the solution and should remain. 

The drawback of the second method is that slight improvement of the objective 

function can be because the new columns are not significantly better than existing 

ones.  

7.2.2 Master problem 

A high volume of constraints presents a significant challenge to the solution of 

large linear problems (Nemhauser and Wolsey 1988, Hillier 2005, Reeves 1993). 

For this reason, constraints 10.3 or 11.3 are usually relaxed to non-negativity 

constraints and imposed later if the obtained solution is not integer. Constraints 

10.2 and 11.2 can be relaxed through Lagrangian relaxation. Lagrangian 

relaxation transforms the constraints into a related penalty function (Formula 12). 

The penalty coefficients u are called Lagrangian Simplex Multipliers and 

updated with the sub-gradient optimisation method (Formula 13) (Beasley and 

Cao 1996). In this formula 𝑥𝑖𝑗
𝑛   is the solution of LP relaxation on the nth iteration, 

t is a positive scalar denoting the step size. The advantage of the sub gradient 

method is that it is relatively easy to program and it provides good results to 

practical problems (Fisher 1981).  



115 
 

Formula 12 

∑𝒄𝒊𝒋𝒙𝒊𝒋
𝒊,𝒋

+∑𝒖𝒊(𝟏 −∑𝒙𝒊𝒋
𝒋

)

𝑵

𝒊=𝟏

 

Formula 13 

𝒖𝒊
𝒏+𝟏 = 𝒖𝒊

𝒏 + 𝒕𝒏(𝟏 − ∑ 𝒙𝒊𝒋
𝒏

𝒋 )          

The relaxed LP solution is solved with various simplex method techniques. The 

key principle of the simplex method is starting from initial basic solution it 

iteratively improves it by exchanging basic and non-basic variables. The number 

of shifts in the initial basic solution usually indicates an upper bound - the 

maximum possible number of shifts in the schedule (Kwan 2004). Although 

simplex method is able to identify the optimal solution, it might have a very slow 

convergence rate due to highly degenerate nature of the problem, according to 

Jans and Degraeve (2004) (in Duck, Wesselmann and Suhl 2011). 

Because CSP is a sheer combinatorial optimisation problem with a large number 

of variables, the duality attribute (Formulas 14.1 and 15.2) of each linear program 

is usually exploited (Hillier 2005).  

 

Formula 14    Formula 15     

Primal  Dual  

Minimise⁡cx 

Subject⁡to⁡Ax > b 

x ≥ 0 

Maximise⁡πx 

Subject⁡to⁡Aπ ≤ c 

x ≥ 0 

 

The dual simplex method approaches the solution from the infeasible for the 

primal problem region. It is able to locate the solution for a smaller number of 

iterations in the problems where the number of columns is significantly larger than 

a number of rows and is more suitable for the linear programs with integer 

variables (Klabjan et al. 2001).  

Yan and Chang (2002) solved the LP-relaxation with the classic simplex method 

and used the simplex dual variables from the optimal simplex tableau to modify 
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the duty arc costs. They also employed sensitivity analysis techniques which 

determined whether additional columns should be added or not.  

With the primal dual simplex method, the optimal solution is approached from 

both directions: from the primal feasibility and dual infeasibility (Curet 1993). 

Klabjan, Johnson and Nemhauser (2000) employed this method for CSP and 

increased the speed of the algorithm by solving linear sub-problems on different 

processors. After that the dual feasible solutions were considered together in 

order to identify the direction of a search. 

7.2.3 Diagram Generation 

The problem of diagram generation is usually modelled as a connection graph 

(Figure 37). Diagram generation is a very time consuming procedure due to the 

large number of combinations of trips which can form diagrams to be considered. 

The breaks and various deadhead opportunities only add the complexity to the 

existing problem. Therefore, special models and techniques have been proposed 

which allow for a slight reduction in the intricacy of the problem and handling 

those activities more effectively. 

Unlike straightforward representation, where nodes represent train stations and 

arcs reflect trains, the majority of the studies utilise nodes to denote activities 

(trips) and arcs to display possible sequences of activities (Derigs, Malcherek and 

Schafer 2010, Shebalov and Klabjan 2006, Lu and Gzara 2015). Presenting the 

problem in this way allows for explicit representation of the constraints 

(Desaulniers et al. 1997). There can be different types of nodes, depending on 

the kind of activity they represent (i.e. service node and deadhead node as well 

as sink and source nodes) (Derigs, Malcherek and Schafer 2010).   

Figure 37 shows the graphical illustrations of the diagrams presented in Figure 

36. Each node represents a trip or an activity and has such attributes as start 

location, end location as well as start and finish time. The red nodes indicate the 

trains to which the drivers need to be assigned and the purple nodes are the 

passenger trains, which are used as deadheads.  The green, source and sink, 

nodes are the dummy nodes and only symbolise the beginning and the end of 

the diagrams (depots). In this example the graph illustrates only the nodes 

participating in the example on the table, but in reality the connection graph 
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should include all possible transfers including taxi services which can connect all 

the subsequent work activities.  

 

 

 

 

 

 

Figure 37 Connection graph 

Klabjan et al. (2001), Chu, Gelman and Johnson (1997), Nishi, Muroi and 

Inuiguchi (2011) employed an alternative graph, time-space network, to 

represent the problem.  

 

Figure 38 Time space network 

Source: Nishi, Muroi and Inuiguchi (2011) 

The network is similar to the connection graph except that two nodes instead of 

one should be allocated for each trip in order to signify the beginning and the end 

of each trip. 

In both graphs, the arc between two nodes exists if it does not violate any of the 

problem constraints. The typical constraints are: the subsequent trip starts later 

than the previous trip finishes and there is enough time for a required break or 

transfer to the next job (Abbink et al. 2011). Since each arc represents the later 

Source 

Trip1 Trip2 Trip3 

Sink 

Trip4 
Trip5 Trip6 

DTrip

1 

DTrip

2 
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in time connection, the graph is always acyclic. Therefore, the task is to partition 

the graph into non-disjoint parts (Emden-Weinert and Proksch 1999).  

The breaks are usually determined once the whole path is built. However, for the 

typical European rail network this can result in a massive number of break 

combinations which can complicate the task even further (Drexl and Prescott-

Gagnon 2010).  Drexl and Prescott-Gagnon (2010) proposed the including of a 

special node for a break, which would pass this problem to the path generation 

stage. However, this approach might result in graph cycling and increase the time 

for path generation (Drexl and Prescott-Gagnon 2010).  

Apart from breaks, Jutte et al. (2011) estimate the number of deadhead arcs can 

reach 20 million for the large crew scheduling problem in Germany, which 

dramatically increases the number of possible diagrams. In order to reduce their 

size Jutte et al. (2011) proposed a procedure as follows. Firstly, the benefits of 

the diagrams containing the arc to the overall schedule are calculated. After that, 

if the contribution of the column is positive then the arc remains, otherwise the 

arc is temporally removed from the graph but can be returned at the later 

iterations. 

Abbink et al. (2011) suggest eliminating long deadhead arcs to reduce the 

complexity. Moreover, in order to speed up the process of column generations, 

they group the trips performed on the same train into one task. This enabled them 

to achieve 75% reduction of arcs and nodes on the rail network in the Netherlands.  

7.2.4 Diagram generation with pricing problem 

The problem of diagram generation for the solution of a linear program formulated 

in Formula 10 and Formula 11, is called pricing problem. The pricing problem 

for CSP usually fits into the model of finding shortest-path with resource 

constraints (Yan and Chang 2002, Desaulniers et al. 1997, Abbink et al. 2011). 

The mathematical formulation designed by Desaulniers et al. (1997) is displayed 

below. 
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Formula 16 

Minimize ∑ cij
(i,j⁡€A)

xij 

 

(Formula 16.1) 

subject⁡to⁡ ∑ x1j
j:(1,j€⁡A)

= 1 

 

(Formula 16.2) 

∑ xij
j:(i,j€A)

− ∑ xji
j:(j,i€A)

= 0⁡i = 2,3…n − 1 
(Formula 16.3) 

∑ xin
i:(i,n)€⁡A

= 1 

 

(Formula 16.4) 

∑ tij
(i,j)€A

xij ≤ Tshift 
(Formula 16.5) 

xij⁡{0,1} (Formula 16.6) 

 

The equalities (Formula 16.2) and (Formula 16.4) ensure that the graph starts 

and ends at the source and sink nodes respectively. The constraint (Formula 

16.5) makes it different from the classical shortest path model by imposing the 

restriction on the maximum path duration to limit the diagram duration (Abbink et 

al. 2005). 

Despite the fact that the graph is acyclic and all the weights are non-negative, it 

is still extremely challenging NP-hard problem (Pugliese and Guerriero 2013). 

Various network traversal and pricing techniques were developed to increase the 

effectiveness of the solution to this problem (Lavoie, Minoux and Odier 1988, Yan 

and Chang 2002). For instance, Abbink et al. (2011) splits the connection graph, 

such as the one illustrated in Figure 37, into several parts and solves the shortest 

path problem with resource constraints on different processors. 

7.2.5 Label-setting algorithm for diagram generation 

Label-setting algorithm was developed by Desrochers et al. (1988). It is another 

set of techniques enabling generation of the diagrams, which consist of the 

sequence of being separated in time jobs.  

Label setting algorithm iterates through all nodes in topological order storing the 

information about the visited paths and resource consumption on each node in a 

label. Resource is "an arbitrarily scaled one-dimensional quantity that can be 
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determined or computed at the vertices of a directed walk in a network" (Drexl 

and Prescott-Gagnon 2010, p.85). Label contains information of each path and 

consumption of each resource, which is updated at each iteration (Pugliese and 

Guerriero 2013).  

With regard to the diagram construction, the labels usually carry such information 

as driving time, diagram duration, last time of a break etc. (Figure 39).  At each 

iteration a node is selected and all the labels are extended to the successor node. 

However, the partial path can be extended to the next node if none of the labels 

violate regulations.  

 

Figure 39 Label-setting algorithm 

Figure 39 illustrates the logic of the labelling algorithm. Along with a number of 

visited nodes each label accumulates the information regarding diagram length, 

aggregate driving time and time of the last break. The path P1, D1, P5, D6, D7 

(red) is legal and satisfies all the regulations. However, the path P1, P4, D3, D5, 

P7 violates the maximum diagram duration and is backtracked back to P4, where 

it is extended to P6 and D8.  

In order to increase the effectiveness of this technique and reduce CPU 

resources, Desrochers et al. (1988) included dominance rules. The dominance 
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rules define the characteristics of the promising (i.e. dominant) paths, which are 

extended first. Duck, Wesselmann and Suhl (2011) suggest restricting the 

number of backtracking steps. Klabjan et al. (2001) propose a random diagram 

generation mechanism and probabilistic node selection. The node to which the 

path would be extended is selected with a certain probability. The probability is 

higher if the connection time is less. 

Nevertheless, in this case the ideal situation would be if the search could know in 

advance whether the path would lead to a high quality diagram or not. Having 

this information, the algorithm would be able to stop propagation of poor quality 

paths earlier saving a significant portion of computation time. In order to 

implement this idea, the pruning method has been proposed.  

Pruning is "a procedure that fathoms depth-first search of a partial diagram 

before the diagram is actually obtained" (Makri and Klabjan 2004, p.59). Its key 

objective is to predict and detect unproductive branches as soon as possible.   

To achieve this, Goumopoulos and Housos (2004) introduce an indicator called 

MAP (minimum available time to complete a partial path). Traversing the graph, 

MAP is calculated at each node and displays how much time is left in the shift. If 

the accumulated time is approaching the maximum shift duration and the driver 

is "too far" from the base depot, then it indicates that it might not be worth 

extending the path and the algorithm should start building other paths. In order to 

reduce execution time further, Goumopoulos and Housos (2004) implemented a 

procedure which places all the rules in an order starting from those which are 

more often violated in order to check them first and save time on the label 

calculations.   

Although pruning methods reduce the time for generation of new diagrams, they 

also can possibly reduce the search space and miss a diagram valuable for the 

schedule. The example of a such situation would be when a path, which could 

result in a cost-efficient diagram, gets abandoned before reaching to next node. 

This case precludes finding an optimum solution.  

7.3 Diagram set selection 

After all the diagrams have been generated using one of the principles defined in 

sections 7.2.3-7.2.5, the master problem formulated in 7.2.2 is solved through 
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LP-relaxation. As LP-relaxation removes integrality constraints (Formula 10.3 

and Formula 11.3) from  formulas 4 and 5 to simplify the computation, in almost 

all cases of the railway scheduling problem, the solution will contain fractional 

variables (Figure 40) (Beasley and Cao 1996). While the number of non-zero 

shifts gives a target number of diagrams and an idea of how many drivers 

approximately are required to cover the train trips, the non-binary nature of the 

variables makes the decision whether the diagram would constitute a schedule 

or not quite ambiguous. 

 Diagram 1 Diagram 2 Diagram 3 Diagram 4 

Trip 1 1   1 

Trip 2 1 1  1 

Trip 3 1 1   

Trip 4   1  

Trip 5   1 1 

Trip 6   1 1 

Solution 
vector 

0.6 0.1 0.25 0.2 

Figure 40 Continuous solution 

Identification of the integer solution is usually a computationally intensive task 

because it requires investigation of a large number of combinations. Moreover, if 

LP is unable to find a solution within a target number of shifts, the process usually 

terminates, a shift target increases and the process starts again (Kwan, Kwan 

and Wren 2001). Below the methods allowing for that and to find the integer 

solution are presented. They all utilise branch-and-bound methodology devised 

by Land and Doig (1960).  

7.3.1 Branch-and-bound 

Branch-and-bound is one of the most popular methods for the solution of integer 

combinatorial optimisation problems (Hillier 2005). Branch and bound is able to 

find an exact solution for the small size problems. The main idea of this method 

is the gradual split of the search space into subsets (branching) and calculation 

of the (bounds). Bounds indicate how good the solution in the region can be and 

allows for the elimination of the regions which do not contain the optimal solution. 

After one of the regions was discarded, the remaining area is split again. The 

process repeats until the final solution is reached (Algorithm 2). This mechanism 

Diagram content 

(1 indicates 

included trips) 

Indicates whether the 

diagram is included 

into the schedule 
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avoids exhaustive search and gradually narrows the search towards the integer 

solution, while still ensuring that the optimal solution is not discarded. 

Algorithm 2 Branch-and-Bound 

1: Find x(0) by Solving the initial problem L0 removing the integrality constraints. 

It L0 has no solution then the whole problem does not have the solution.  

2: Calculate the lower bound ξ0 = f(x(0)). If x(0) is integer, than x*= x(0) and f ∗ =

ξ0 and the algorithm terminates.  If x(0) is not integer, than θ0=+∞, k=1 and go to 

the step 3.  

3: Chose a v-node for the branching (often for which ξv = 𝑚𝑖𝑛 ξi ⁡where⁡i ⊂ I) 

4: Select arbitraly one of non- integers  xr
(v)

 and start branching creating L2k-1 

and L2k 

5: Solve Lj, j=2k-1,2k. If Lj does not have a solution then ξj=+∞, θj=θj-1, k=2 go to 

step7.  

6: Find x(j) and calculate ξj = f(x(j)). If x(j) is integer than algorithm terminates, 

otherwise θj=θj-1, k=2 go to step7. 

7: Review the nodes and branching stops if ξt=θ2k 

8: Check the termination condition. if I=Ø then f*=θ2k, x*=x(v) where x(v) 

determined from the f*( x(v))= θ 2k and the algorithm terminates.  

9: Otherwise, k=k+1 and go to step 3. 

 

Christofides, et al. (1979) state that the branch-and-bound concept allows for the 

addition of various heuristic rules and search strategies, which often are essential 

elements in search facilitation and acceleration. One of the limitations of this 

method is that estimation of the bounds can be computationally expensive 

(Klabjan et al. 2001).  Another drawback is that the only way to recognise the 

optimal solution is to calculate the next solution. If the subsequent solution is not 

better, then it is concluded that the algorithm attained the optimum. There are no 

precise instructions of which node should be examined next. Nemhauser and 

Wolsey (1988) suggest two types of rules that can be applied: a priori (determine 

the rule in advance such as for example last in, first out) and adaptive rules that 

are based on using information about bounds. Beasley and Cao (1996) observed 

that the branch with the lower bound value is more likely to lead to the optimal 

solution.  

Nevertheless, due to the large size of real crew scheduling problems, the "pure" 

branch and bound is still not practical (Gopalakrishnan and Johnson 2005). 
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Several modifications of this method have been developed in order to improve 

this method.  

7.3.2 Branching strategies 

The choice of branching strategy determines the computational cost of the 

algorithm  (Klabjan et al. 2001). The standard approach for branching is to fix one 

part as one and another as zero (Hillier 2005). However, this is not preferable for 

CSP because it is a very lengthy approach, which does not exploit the problem 

structure (Barnhart et al. 1998, Kwan 2004). More effective branching techniques 

relying on problem specific information developed in the literature are discussed 

below.  

• Timeline branching has been developed by Klabjan et al. (2001).  The 

set of diagrams containing a certain trip is divided into two sub-sets: the 

first comprises of all the diagrams where the connection time between the 

given trip and the preceding trip is lower than a specified value, and the 

second where the connection time is larger. All the variables from the first 

set are fixed to zero in the first branch and to one in the second. In a similar 

manner, all the variables from the second branch are set as one in the first 

branch and zero in the second branch.  

• Rayn and Foster (1981) create Follow on branching strategies based on 

the FORCE and FORBID approach. It works as follows. Suppose we have 

two diagrams with the fractional values in LP relaxation that cover 

consecutive trips: the first diagram contains the first trip and the second 

diagram contains the second trip. FORCE branch requires all these trips 

to belong to one diagram, whereas FORBID branch prohibits it 

(Gopalakrishnan and Johnson 2005, Derigs, Malcherek and Schafer 2010).  

• Strong Branching is performed as follows. For each variable which has 

a fractional value two branches are created and a certain number of 

simplex iterations are performed. The value which demonstrated the better 

performance on both branches becomes a candidate for branching 

(Klabjan et al. 2001). 

• Strong follow on branching is a combination of both strong and follow 

on branching strategies (Klabjan et al. 2001).  
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• Relief opportunity branching was developed by Kwan (2004). Relief 

opportunity is the place between the jobs where a driver changes the train. 

The relief opportunity branching approach works as follows. If two or more 

shifts containing the same relief opportunity has a fractional value, then 

they are all divided into two branches: one having this relief opportunity 

and the other one not. Because this approach might sometimes fail to 

provide an exact solution, the FORCE and FORBID approach is then 

utilised.  

7.3.3 Branch-and-price and Branch-and-Cut 

Because of a large number of columns and constraints in the CSP, it is almost 

impossible to process all the diagrams at the same stage. For this reason, 

branch-and-price and branch and cut methods have been proposed. They enable 

effective management of constraints and columns and still attain the feasible and 

mathematically optimum solution for integer programs (Gopalakrishnan and 

Johnson 2005, Barnhart et al. 1998). Both methods work with a "simplified" 

version of the problem gradually adding complexity if necessary. 

Branch and cut is the combination of branch-and-bound and cutting plane method.  

Since the more constrained the problem the more difficult it is to solve it (Reeves 

1993), branch-and-cut allows omission of the majority of the constraints in the 

beginning and only adds them if it is necessary (Duck, Wesselmann and Suhl 

2011). If the obtained solution with a limited number of constraints is feasible, 

then it is passed to branch-and-bound to find the best integer solution in that 

region. Otherwise, additional constraints are added until the feasible solution is 

identified.  The basic concept underlying this approach is that in some linear 

programs some constraints can be superfluous and would not affect the solution. 

This situation is illustrated with a trivial example in Figure 41. In that instance the 

feasible region and thus the area of a solution is bounded by constraint A and B, 

hence constraint C (blue) would be automatically satisfied and can be removed.  
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Algorithm 3 Branch-and-Cut 

1: Relax the majority of the constraints. 

2: Solve LP.  

3: If the solution is feasible and integer then the algorithm terminates. If the 

solution is feasible, but not integer then go to Step 6. If the solution is infeasible 

go to Step 4. 

4: Separation. Using the cutting plane algorithm, find and add some of the 

violated constraints in order to tackle the infeasibility.  

5: Solve new LP. Go to Step 3.  

6: Branching. Split the problem into two sub-problems and go to Step 2.   

 

 

Figure 41 Linear program with constraints 

Branch and price is another variation of the branch and bound algorithm 

(Algorithm 4). Branch and Price is a mixture of the branch-and-bound concept 

and the column generation approach (Barnhart et al. 1998).  Branch-and-Price is 

applied more often for the solution of Crew Scheduling Problems than Branch-

and-Cut. This might be because the number or rows is considerably smaller than 

the number of columns. Therefore, from the computational perspective it is more 

efficient to handle hundreds of inequalities than to generate and deal with millions 

of columns.  
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Algorithm 4 Branch and Price 

1. Generate a limited number of columns. 

2. Solve RMP. 

3. If the solution is feasible and integer then the algorithm terminates. If the 

solution is feasible, but not integer then go to Step 6. If the solution is 

infeasible go to step 4. 

4. Pricing. Generate and add new columns. 

5. Solve new RMP. Go to Step 3. 

6. Branching. Split the problem into two sub-problems and go to Step 2. 

 

In theory, it is possible to combine branch-and-price with branch-and-cut. 

However, in practice it is quite a challenging task because the generation of new 

columns can break the row constraints (Barnhart et al. 1998). Duck, Wesselmann 

and Suhl (2011) designed an algorithm synthesizing branch and price with branch 

and cut for the airline crew diagram optimization problem. They observed that 

consideration of rows and column generations enables better decision making in 

terms of branching and less iterations were required to find a near-optimal 

solution.  

7.4 Metaheuristic methods 

Metaheuristic methods allow for finding near optimal solution for large and 

complex problems considerably faster than exact methods (Alabas-Uslu and 

Dengiz 2014). This is because they do not require generation of all diagrams and 

can determine the direction of the search based on the small sample of solutions 

in that area. This makes them suitable for the solution of real life CSPs (Gogna 

and Tayal 2013). Such methods as GA, Simulated Annealing and Ant Colony 

Optimisation were proposed in the academic literature to solve CSP. Their 

configurations and performance are discussed below.  

7.4.1 Simulated Annealing  

Emden-Weinert and Proksch (1999) apply the SA algorithm to tackle the diagram 

generation stage of CSP in the airline industry. A standard SA was augmented 

with a local search procedure called Disturb. Infeasible solutions were allowed, 

but significantly penalised. With regard to the SA parameters geometric cooling 

schedule similar to the one described in Table 2 was used. The initial solution 

was obtained with the constructive heuristic which orders all consecutive flights.  
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As the initial solution is usually of a poor quality, the local search operator plays 

a great role in developing it. Selecting a diagram, Disturb examines all the 

diagrams with the intention of finding a diagram which can be concatenated with 

the selected one. Concatenation is only permitted if the succeeding diagram 

starts at the same location and later than the given diagram. If more than one 

diagram was detected, then the preferences are given to the diagram with the 

earliest start. On both tests instances used in the study, SA with Disturb operator 

showed a better result than SA without it.  Such results were attained probably 

because by combining two diagrams into one, the number of drivers required and 

the number of deadheads can decrease in the solution. However, the given 

approach might cause unequal distribution among the depots and drivers, which 

were not taken into account in the study.  

Hanafi and Kozan (2014) combined SA with a constructive heuristic to solve a 

railway crew scheduling problem. The heuristic procedure firstly analyses the 

train routes and timetables. If the train starts at one depot, and then returns there 

within acceptable shift time, then the entire diagram would be based on that train. 

In the situation, where the train journey is longer than the allowed driver working 

time, the segment of the trip surpassing maximum diagram time is cut off and 

placed in the pool for later allocation.  At the second stage, all the segments are 

inspected and grouped into duties of other drivers. Neighbourhood generation in 

this algorithm is performed by exchanging trips between randomly selected 

diagrams. The trips can be exchanged only if they start and end in the same 

locations. Then a random trip from the set of all trips is inserted into another 

diagram. This only can be a trip arriving and departing from the station with a 

local connection. Experimental results demonstrate that when this heuristic is 

incorporated into the SA framework, the algorithm is able to achieve 3%-4% 

better results than on its own.  

This approach significantly reduces the number of trips to be scheduled and thus 

the size of a problem. The evident limitation of this method is that there might be 

long breaks in the train schedule (e.g. for maintenance). It is possible that during 

this time a driver could have been assigned to another train and come back to 

drive the first train to the home depot. However, such logic would prohibit the 

assignment of the driver to another train. Another drawback of this idea is that 

the leftover segments might be geographically separated, which would either 
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require usage of other means of transportation to keep the number of drivers to 

a minimum, or to utilise more drivers from various regions.  

7.4.2 Ant colony optimisation 

Deng and Lin (2011) propose ACO for the solution of the crew scheduling 

problem in the airline industry. They expressed the problem as finding the 

shortest path in the graph similar to the Travelling Salesman Problem and applied 

a standard ACO. The algorithm was tuned by experimentally verified parameters. 

The algorithm terminates when all the ants use the same path in the solution. The 

given algorithm showed better results than EA designed in Ozdemir and Mohan 

(2001), however it is difficult to establish the reason for that as the logic of 

crossover operator used in EA was not fully presented.  

7.4.3 EA algorithm 

As shown in the section 7.2, the CSP is usually solved in two stages. The first 

stage is responsible for the generation of a large number of candidate diagrams. 

The second stage deals with the selection of the shifts which would constitute a 

schedule. The majority of the EAs were designed to tackle the second, 

optimisation, stage of the problem. Only one EA has been found in the literature 

for the diagram construction step. There were no EAs capable of handling both 

stages simultaneously.  All these types of EAs and their configurations are 

considered below.  

7.4.4 EA for diagram generation 

Santos and Mateus (2009) incorporate EA in conjunction with integer 

programming into column-generation approach for the solution of the pricing 

problem. The advantage of incorporating EA is its ability to return more than one 

column at the same iteration as it works with several solutions simultaneously.  

This accelerates the search and reduces computation time.  

7.4.5 EA for optimization 

Levine (1996) was one of the first researchers to apply EA for the diagram 

optimisation stage of a Crew Scheduling Problem. He developed a classic GA 

with binary chromosome representation and a local search heuristic proposed by 

Beasley and Chu (1996). The given algorithm was able to find an optimal solution 
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in 50% of all cases, while branch and cut solved them all. Later numerous EAs 

were devised for this problem. The main differences between them are the way 

they represent the solution and the way they perform crossover and mutation 

operators. These methods are considered in the following sections.  

7.4.6 Chromosome representations 

In the row based representation each gene stands for a train trip, thereby the 

length of the chromosome is equal to the number of rows in the matrix presented 

in Figure 36. Scanning the chromosome from the left to the right, the decoding 

procedure selects the column (diagram) which covers the trip and best suits the 

existing partial schedule. The choice of the column depends on its cost, how 

many other undercovered rows it covers and how many rows it covers in total. 

As Aickelin (2002) noticed, this approach might be biased towards lower cost 

columns. This might result in search space not being fully explored as some of 

the columns can never be included in the solution. In order to overcome this issue, 

Aickelin (2002) added the second part of the chromosome (Figure 42), which 

contains the weights of column selection criteria. The second part of the 

chromosome undergoes evolution as well, but the values are set randomly at the 

first iteration.  As the second part of the chromosome has a different structure, 

the special crossover and mutation mechanisms were employed. The crossover 

operator copies all the weights from the fittest parent to the child. The mutation 

replaces an arbitrary selected gene with a random value.  

The limitation of the given approach is it might express the same solution in 

different forms. In addition, Zeren and Ozkol (2012) state that genetic operators 

often produce offspring with many overcovered rows meaning that too many 

drivers will be assigned to one trip. This can result in a large number of deadhead 

trips. Finally, this approach seems to overcomplicate the problem with the 

evolution of the trips, which in its core evolves the columns.  



131 
 

 

Figure 42 Chromosome representation with weighting criteria 

In the column-based representation (Figure 43) a chromosome is expressed 

as a binary vector of a length equal to a number of generated columns, which 

were displayed in Figure 36. The locus of the gene denotes the index of the 

column (shift). The binary allele indicates whether this shift is included in the 

schedule or not. Usually the length of the chromosome is very long and consists 

mainly of zeros. This is because a typical number of generated shifts can be 

between 30000 and 75000 with only about 100 of them included in the final 

schedule (Kwan, Kwan and Wren 2001).   

1 0 0 1 0 1 0 0 

Figure 43 Binary Chromosome representation 

The more compact form of column based representation is depicted in Figure 44. 

The vector of integers contains only the indexes of the shifts comprising the 

schedule (Kwan, Wren and Kwan 2000, Wren and Wren 1995).  

1 4 6 

Figure 44 Integer Chromosome representation 

The chromosome initialisation stage presents some challenges. An entirely 

random generation of chromosomes in the population might result in very slow 

convergence and infeasible schedules. As the number of diagrams is unknown 

in advance, it is not clear how many genes should be in a chromosome and how 

many of them should have “1s”.   

Levine (1996) used a simple logic to establish the probability of 1s. Observing 

existing solutions and manually produced diagrams, he determines the average 

number of trips constituting the diagrams. Thereby, given the total number of trips 

in the schedule and average amount of trips in each diagram, he obtained an 

approximate number of diagrams. However, as this approach cannot provide an 
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exact number of diagrams, he utilised this number as only a probability with every 

"1" is generated.  

Zeren and Ozkol (2012) developed a heuristic aiming at achieving a solution with 

minimum trip overlapping and number of deadheads when generating a 

chromosome. For each uncovered job, a randomly chosen diagram containing 

that job is added to the solution. After each insertion the set of uncovered flights 

is updated. The process repeats until all the flights are covered in the schedule. 

The procedure is very similar to the row-based representation developed by 

(Aickelin 2002). 

Kwan, Wren and Kwan (2000) used the continuous relaxed LP-solution as a 

starting point (Figure 40). Using the information about the target shifts obtained 

from LP-relaxation, they suggest including 25% of the estimated number of 

diagrams. However, the diagrams themselves are selected randomly. It is evident, 

that in many cases randomly selected diagrams might not cover all the trips from 

the train schedule, so Kwan, Wren and Kwan (2000) apply heuristic FILL and 

DISCARD procedure to identify the rest of the columns. This heuristic procedure 

is discussed in more detail in Section 7.4.11. 

Shen et al. (2013) apply the same principle of 25%. In addition, because the 

number of drivers is unknown, they developed an adaptive chromosome 

representation which allows expansion of the length of the chromosomes in the 

later generations. The algorithm first starts with the initial length as a lower bound 

obtained by LP-relaxation. Then if it is unable to return a feasible solution during 

a pre-defined number of iterations, an extra gene is then added to the 

chromosome (Figure 45).  

1 4 6 8 

Figure 45 Adaptive chromosome representation 

Park and Ryu (2006) introduce the concept of unexpressed genes for the subway 

crew scheduling problem (Figure 46). Unexpressed genes are the genes which 

are good on their own, but do not fit well with other diagrams in the schedule. 

While both expressed and unexpressed parts are involved in crossover and 

mutation procedures, only the expressed part is used for the calculation of fitness 

function. The unexpressed part preserves information which might be lost after 
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the application of genetic operators. Although experimental comparison of a 

maximum of 634 trips demonstrated that the suggested algorithm outperformed 

simulated annealing and Tabu search algorithms, EA developed by Zeren and 

Ozkol (2012) showed better results when tested on a larger data set.  

1 4 6 2 8 10 

Figure 46 Expressed and Unexpressed genes 

To conclude, the column based chromosome representation is fit for purpose as 

it clearly expresses the problem domain and is capable of reflecting the optimal 

solution. However, there are two limitations. First of all, a randomly generated 

solution and chromosomes produced by standard genetic operators usually 

violate the constraints. Secondly, the exact number of genes is unknown and 

therefore additional operators are required in order to restore the feasibility.  

Another type of chromosome representation, graph-based chromosome 

representation was devised by Ozdemir and Mohan (2001) and is illustrated in 

Figure 47. In this case, the genes represent individual trips rather than diagrams. 

The chromosomes are initialised with graph search procedure which groups the 

trips into the diagrams.  In this EA, mutation employs logic similar to 1PX 

crossover operator, but performs it on a single individual.  The algorithm also 

includes three crossover operators: set-based, time-based and distance 

preserving operator. The limitation of this chromosome representation is that not 

all the trips can be covered after the first round, and thus some restoration 

procedures are required.  

1-2-5 

3-4-7 

6-8 

Figure 47 Graph-based chromosome representation 

 

7.4.7 Selection 

Binary tournament is one of the most popular selection mechanisms in crew 

scheduling EAs. It can be found in the works of Ozdemir and Mohan (2001), 

Levine (1996), Zeren and Ozkol (2012), Chu and Beasley (1998). There are no 
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empirical results confirming its effectiveness, but the possible explanation of its 

popularity is its relative simplicity of implementation and speed of execution.  

Roulette-wheel selection is a bit less popular, but still has been utilised in crew 

scheduling EAs in Kornilakis and Stamatopoulos (2002),  Kwan, Wren and Kwan 

(2000), Shen et al. (2013).  

In order to increase the efficiency of the selection process, Chu and Beasley 

(1998) proposed matching selection for a general set partitioning problem. The 

first parent is chosen through the tournament selection while the second one is 

selected on the basis of compatibility with the first one. The compatibility score 

is calculated for each individual in the population apart from the one already 

chosen. The high compatibility score implies that both parents cover the 

maximum number of trips together, but contain a small amount of the same trips. 

If more than one chromosome has maximum fitness, than the least fit individual 

is chosen for reproduction (Chu and Beasley 1998).  

7.4.8 Crossover  

Due to mostly integer or binary chromosome representations being utilised in the 

algorithms, standard crossovers operators are often built into the algorithms.  

For example, Levine (1996) applied 2-point crossover and Shen et al. (2013)'s 

EA is based on one-point crossover. Kornilakis and Stamatopoulos (2002) used 

uniform crossover. Uniform crossover works as follows. If a certain allele in both 

parents has the same value, then it is copied to the child. If the values are different, 

then the only child inherits the gene from one of the parents with the specified 

probability.  

Zeren and Ozkol (2012) used fusion crossover proposed by Beasley and Chu 

(1996) for the solution of the general set covering problem. This crossover is very 

similar to the uniform crossover with the only exception that the probability from 

which parent the gene will be taken directly depends on the fitness of that parent. 

The fitter the parent, the higher the probability that it will pass its gene on to a 

child. The possible limitation of both uniform and fusion crossovers is it will not 

be able to create different children when the population converges. This might 

cause premature convergence of the algorithm.  
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Park and Ryu (2006) designed a crossover which greedily selects genes from 

both parents and passes them to the child. First this crossover puts all the genes 

from both parents together. Then it evaluates the value of each gene in relation 

to the already existing genes in a chromosome. The value is measured by how 

many uncovered rows can be covered by each gene. The algorithm always gives 

a preference to genes which have a minimal overlapping with the rest of the 

genes in a new chromosome.  

Cleary, in all of the above-mentioned crossovers there is a high probability that 

formed offspring will violate some of the problem constraints. Therefore, 

additional operators and procedures restoring the feasibility are usually applied. 

They are discussed in section 7.4.11.  

7.4.9 Mutation 

Park and Ryu (2006) proposed a k-exchange mutation. It is based on the 

REMOVE and INSERT principle. It begins by deleting some diagrams with a 

certain probability. The probability would be lower if the diagram removal will 

cause a significant increase in the uncovered rows. Then, the insert stage looks 

for k duties to form a candidate pool, which would not only cover the uncovered 

trips, but would also cause a minimum coverage of already covered trips. While 

this mutation can contribute to the elimination of redundant diagrams, it requires 

calculation of the score for each gene in a chromosome every iteration when 

mutation is performed. In addition, INSERT operation can also consume memory 

resources as it works with an enormous set of candidate shifts. 

As a mutation operator Shen et al. (2013) use a procedure which is very similar 

to the perturbation operator proposed by Zeren and Ozkol (2012). They remove 

one of the diagrams from the mutated chromosome and then search for the better 

replacement though specially designed heuristics.   

In order to maintain a number of the diagrams, the selected genes in the 

chromosome for mutation are inverted to one with the probability equal to the 

ratio of the diagrams included in the solution to the total number of diagrams in 

the candidate pool (Kornilakis and Stamatopoulos 2002).  

In Kwan, Kwan and Wren (2001) the mutation rate depends on the total number 

of remaining iterations before the end of the run, the amount of iterations for which 
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the fittest member survived, and a special control parameter. In general, the 

mutation frequency increases as the algorithm progresses. This contributes to 

the reduction of premature convergence possibility. The mutation itself is 

performed by replacing a random number of genes with an arbitrary selected 

probability.  

Zeren and Ozkol (2012) propose a method for the calculation of the mutation 

probability (the number of genes in the chromosome to be mutated). This value 

derives from chromosome length and the number of new chromosomes since the 

first iteration (Kornilakis and Stamatopoulos 2002) 

Because both algorithms have not been compared, it is not possible to conclude 

analytically which of them would be more effective.  

7.4.10 Constraint handling and infeasibility 

Since the CSP is the highly constrained problem, developed crossover and 

mutation operators are unable to always produce legal offspring (Zeren and Ozkol 

2012, Kornilakis and Stamatopoulos 2002). Several strategies for dealing with 

infeasibility have been suggested.  

7.4.11 Repair operators 

The majority of EAs for CSP employs heuristic operators to restore the feasibility 

of the chromosomes. They work by the principle ADD and REMOVE first 

mentioned by Chu and Beasley (1998). The operator starts by scanning the 

chromosome in order to determine undercovered rows. After that it identifies the 

diagram from the set of all diagrams, which can cover the trip. Then, this 

procedure eliminates redundant diagrams from the schedule, where all the trips 

are already covered by other diagrams.  

The enhanced procedure called FILL and DISCARD has been applied by Kwan, 

Wren and Kwan (2000). Comparing the continuous solution with the final integer 

solution, Kwan, Wren and Kwan (2000) found that 50%-74% of the shifts included 

in the optimum solution had non-zeros value in the continuous solution. 

Furthermore, 75% of non-zero shifts, which were in the integer solution had a 

value greater than 0.2 in the continuous one. The shifts with this value and above 

were named preferable. In order to reduce the number of shifts, Kwan, Wren and 
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Kwan (2000)  suggested removing the shifts with a relief opportunity (a place 

where drivers can change), which is not included in the preferable shifts.  

The benefit of this method is that it not only maintains feasibility, but also performs 

an operation resembling typical local search. However, the feasibility operator 

should be applied at each iteration. Given the number of trips and the number of 

shifts which needed to be scanned and analysed at each iteration, this approach 

might be computationally expensive for real life problems especially in the rail 

industry (Kwan 2004).   

Instead of treating the constraints on the genotype level as in the case with repair 

operators, some researchers perform it via penalty function. Allowing infeasible 

chromosomes in the population, it is possible to maintain diversity, while the 

penalty function will gradually ensure a non-domination of unfeasible individuals. 

The main objective is to select an appropriate penalty coefficient and to select 

the right approach. For example, devising penalty coefficients for CSP formulated 

as a set partitioning problem, Levine (1996) selected the value proportional to the 

cost of violation. If the trip occurs more than once in the schedule, then the penalty 

will be equal to the maximum cost among the diagrams containing the same trip.  

However, Chu and Beasley (1998) noticed that while some of the chromosomes 

can be feasible, they might not be as fit as some of the unfeasible chromosomes 

in the population. For this reason, Chu and Beasley (1998) suggested separating 

feasibility from the fitness. They divided all the chromosomes into four groups: 

low cost and feasible (G4), high cost and feasible (G3), low cost and unfeasible 

(G2), high cost and unfeasible (G1). In the ranking replacement strategy, the 

chromosomes from G4 are replaced first, and if the group is empty then the 

chromosomes from the group G3 are replaced etc.  

In order to avoid excessive calculations and verifications, Shen et al. (2013) 

proposed ignoring the feasibility of the chromosomes until the last iteration. 

Despite this approach reducing the computation time, there might be the risk that 

after fixing the feasibility of the chromosome not only the fitness can be lower, 

but the wrong chromosome could be extracted from the population as a solution.   

While both methods can tackle constraint violation, they have several 

disadvantages. Repair operators are extremely time consuming for the real 
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problems. In terms of the penalty functions, there is no general formula allowing 

determination of the right coefficients, and ignorance of infeasibility might not 

return a practical solution at the end of the algorithm.   

7.4.12 EA enhancement 

The performance of the algorithm can be improved by design of additional 

operators.  

Zeren and Ozkol (2012) devised a perturbation operator which acts as a local 

search. It makes a chromosome infeasible by removing one or more genes, and 

then searches for a replacement from a set of potential shifts with the aim of 

achieving a lower cost schedule. Despite requiring more CPU time per iteration, 

it enables EA to converge much faster to reach the solution more quickly. 

Kwan, Kwan and Wren (2001) exploit combinatorial traits in the chromosomes. 

In general, combinatorial traits are genotype characteristics responsible for the 

good solution. They state that if the fittest individual survives during a certain 

number of iterations, then it probably signifies that this chromosome possesses 

some combinatorial traits. With regards to the CSP combinatorial traits consist of 

seeding shifts and relief chains.  

In order to identify the seeding shifts, for each shift and each trip in it, the 

algorithm calculates how many shifts contain the same trip. The minimum and 

average number of trip coverage is calculated for each shift. Based on that, the 

more unique the shift is, the more chances of it being inserted into the 

chromosome. The offspring is produced from the candidates of seeding shifts. 

This concept allows minimisation of the number of overlapping shifts and direct 

the search to promising areas.  

Relief Chain is the sequence of drivers, who operate the same vehicle on 

different train journey segments. Kwan, Kwan and Wren (2001) observe the 

correlation between long relief chains and a good solution by comparing the 

results obtained by ILP and EA.  For this reason, relief chains are considered as 

a combinatorial trait as well. The concept of combinatorial traits allows more 

effective management of the large number of pre-generated shifts and 

demonstrated considerably better results compared to the EA without 

combinatorial traits.  
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In terms of the fitness function, Li and Kwan (2003) utilised fuzzy logic concepts 

for its computation. They identified several properties of the effective schedule 

(i.e. total work time, throttle time, number of diagrams etc.) and designed a 

membership function for each of them. All the membership functions were then 

aggregated into the single objective function. Although this approach is able to 

achieve various objectives, it has two limitations. First of all, accurate design of 

the membership functions requires conducting a large number of experiments. 

Secondly, this approach does not explicitly represent the actual cost of the 

schedule, which might be the ultimate objective for many companies.  

7.5 Other metaheuristic approaches 

Li (2005) designed a hybrid algorithm named a self-adjusting algorithm for 

driver scheduling. This approach is based on population concept coupled with a 

local search mechanism.  

As an equivalent of the fitness function, they use solution goodness. This 

approach works on a single solution and treats diagrams as individual 

chromosomes, while the diagrams all together constitute the schedule. The 

fitness of each diagram depends on other diagrams and it is recalculated at each 

iteration. Selection mechanism generates a number in the interval from 0 to 1 and 

removes all the shifts with the lower value. These shifts are returned to the pool 

of potential shifts. Following this step an analogy for mutation further removes 

additional genes with a certain probability. This probability does not depend on 

the number of rows covered or the goodness of the shift. The last step, called 

Reconstruction, restores the feasibility by returning some of the necessary genes 

from a pool. Although Li’s (2005) approach delivered the solution faster than other 

EA’s and ILP methods, the overall cost of the solution was 0.92% higher and the 

number of shifts (diagrams) remain almost the same (only 0.01% smaller). 

Elizondo et al. (2010) proposed a constructive heuristic for the conductor 

scheduling problem in underground transport. It starts by generating two 

diagrams, and then adds the trips from the second diagram to the first in the 

interval between the trips in the first diagram. If it is impossible to augment the 

diagram with the trips from the second diagram, then the trips from other 

diagrams are inserted to fulfil all the gaps. While it does reduce the idle time which 

can contribute to the reduction of the total number of diagrams, in the context of 
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the rail industry this approach might be infeasible due to the large geographical 

distribution. First of all, if diagrams contain the jobs in different parts of the country, 

the driver might not have the knowledge to operate the trains. Secondly, even if 

the driver is trained on both regions, he would have to travel for a significant time 

to arrive for the next job, which would reduce the throttle time and increase the 

transportation cost.  

7.6 Conclusion 

The chapter has considered models and approaches for the solution of the CSP. 

The common approach of tackling this problem is splitting it into two sub-

problems: generation of a large set of possible diagrams and then selection of a 

subset which forms the schedule. While it was shown that the first phase is 

relatively straightforward and can be searched with various graph traversing 

techniques, the second phase is more computationally expensive and requires a 

more sophisticated approach. In the literature. there are two broad categories of 

methods for attacking this stage: exact and heuristics.  

 

Figure 48 Heuristic used in the literature for CSP 

Analysis of the literature has shown that the exact methods based on column the 

generation are the most popular methods for solution of the optimisation phase 

of CSP (Figure 48).  They offer a number of advantages such as: 

• In theory they are able to find a mathematically optimal integer solution for 

CSP.  

• Some of them are able to work with incomplete set of columns and do not 

require generation of all possible diagrams in the beginning.  
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However, they also have a number of limitations presented below:  

• Even though all the columns do not need to be generated a priori, 

generation of a subset of the required columns and their re-optimisation is 

still very time and memory consuming task (Zeren and Ozkol 2012).  

• Tailing-off effect of a situation when columns are generated and re-

optimised many times without resulting in significant improvements of the 

solution (Derigs, Malcherek and Schafer 2010).  

• Risk of getting into local optima, which can prevent further improvements. 

The exact algorithms have no mechanisms of detecting and avoiding local 

optimum (Chu, Gelman and Johnson 1997). 

• The general column generation framework works only with the "best" 

found columns, whereas in some cases a sub-optimal solution can lead to 

finding the optimal solution more quickly (Deng and Lin 2011, Ozdemir and 

Mohan 2001).  

• Column-generation is only able to develop one solution at a time, 

compared to the population-based methods which approach the problem 

from different areas of the search space.  

• From the practical perspective, the computer implementation of the 

branch-and-price algorithm is very complex and requires an expert with a 

significant prior linear programming knowledge (Barnhart et al. 1998). The 

person with the right skills might not be in the company.  

The analysis showed that while in theory branch-and-price is an effective tool for 

solving crew scheduling problems, in practice this method might not provide any 

solution within the required timeframe. In the literature, the algorithms have been 

tested mostly on the airline data instances with the average size of 500 flights a 

day. And even there, some heuristic and pruning rules had to be developed to 

facilitate the algorithm to return at least a near-optimum solution. This is 

significantly smaller than the data arising in the railway industry.  

For this reason, several metaheuristic algorithms were developed. For example, 

EA is one of the evolutionary computing algorithms, which is rapidly growing in 

the area of Artificial Intelligence. Kwan, Wren and Kwan (2000) utilised EA to set 

up parameters for the ILP of TRACS II (crew scheduling system). According to 

their empirical observations the standard column generation and branch and 

bound algorithms might fail to find a solution to complex problems with multiple 
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depots such as in the rail industry. For these problems, EA has been embedded 

in the system and runs in case standard procedure cannot find a solution. Based 

on the conducted experiments, the EA alone did not outperform ILP methods, 

however in some cases if was able to find a solution where other methods failed. 

It is difficult to conclude with certainty, which of metaheuristic algorithm performs 

the best because the reported results were significantly influenced by local search 

procedures and different data instances.  

However, compared to other algorithms, EA has a number of advantages. For 

instance, unlike SA, EA and ACO are population based methods, which are able 

to consider more than one solution at the same iteration. In addition, compared 

to ACO, EA is also able to directly combine the good characteristics of the 

solution by the means of a crossover operator. Moreover, steady-state EAs 

ensure that the best solution found in the algorithm will be preserved in the next 

generations in contrast to SA which can replace a good solution with a worse one 

with certain probability.  

At the same time, despite the aforementioned advantages of EA, the analysis of 

the literature identified some limitations of EA based on so called Generate and 

Select approach. They are as follows: 

• EA has a lack of control of the shift generation. No matter how powerful 

EA is, if the best diagrams have not been captured in the generation stage, 

it would be impossible to obtain a good solution without them.  

• In addition, providing too small number of columns, the optimal solution 

might not be within them. On the other hand, if the number of columns is 

too large, it would take too much time to perform the search among them. 

• They all contain an additional operator or other means to restore the 

feasibility given the chromosome representation and main genetic 

operators. These processes are very time consuming due to the size of 

the problem and the number of combinations which needs to be processed. 

• Chromosome length and how many drivers should be in the solution are 

unknown and not all of the algorithms are able to dynamically change it. 

• In addition, these approaches do not consider drivers' traction and route 

knowledge. This might result in limited practical applicability of the solution.  
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The research reported in this thesis aimed to exploit the numerous advantages 

of EAs while overcoming the limitations listed above. The method designed within 

the given research addresses all the discussed problems by, first of all, tackling 

the problem with only one stage (instead of generate and select approach). 

Secondly, the utilised chromosome representation and decoding procedure 

ensures feasibility during all time of the algorithm. This prevents wastage of the 

computation resources and time, which otherwise would be spent on the 

restoration of the chromosome legality.  
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Chapter 8. Evolutionary algorithm 
design 

8.1 Introduction 

This chapter describes the process of the algorithm development for the solution 

of CSP and JSSP. CSP deals with assigning the train drivers to the train trips in 

accordance with a large number of health and safety regulations. JSSP is 

concerned with assigning the jobs given the industrial process routes and 

technical constraints.  

In order to develop an appropriate and efficient algorithm, rules guiding the design 

of an effective EA are established. After that, both problems are conceptually 

analysed in order to identify the components which they could share within the 

algorithm and those which need to be tailored to each particular problem. Based 

on that, the relevant standard genetic operators are selected and problem-

specific ones developed. The framework, which will be utilised for operators and 

algorithm evaluation, as well as test instances are also presented in this chapter.  

8.2 Key principles of EA design 

Several researchers proposed the principles which allow design of an effective 

EA. Aickelin (2002) stated that one of the main objectives should be the 

minimisation of the number of iterations required to yield a good solution. This 

can be achieved through the construction of efficient genetic operators as well as 

ensuring that they are relevant for the chosen chromosome representation.  

According to Aickelin (2002), the quality of genetic operators can be measured 

using three characteristics:  

• Computation efficiency (fast speed of execution). 

• Determinism (the same permutation yields the same solution). 

• Ability to discover the optimal solution in the solution space. 

Furthermore, Davis (1991) states that incorporation of the domain-based 

heuristics and problem specific information can also increase the productivity of 

the search. 
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8.3 Analysis of the CSP and JSSS 

In order to design a successful reconfigurable algorithm, it is important to 

understand the commonalities which both the problems share as well as any 

differences that exist between the two problems.  Table 11 presents a conceptual 

comparison of CSP and JSSP.  

Table 11 Conceptual comparison of CSP and JSSP 

 
Garnett-Dickinsons 

Production scheduling 

DB-Schenker 

Logistics/transportation 

What task 

needs to be 

assigned 

Printing job, which consists of 

several operations. 

Trip or any other train operating 

activity. This is a single job and 

cannot be broken down to 

smaller operations. 

Who performs 

the task 

Appropriate printing press. Driver with relevant route and 

train type knowledge. 

Rules • Machines are available 

all the time 

• The operation of the 

same job cannot start until 

the previous operation of 

the same job has finished. 

 

• Subset of drivers who 

are available on a particular 

day (who are not on annual 

leave, sick or performed a 

shift in the last 12 hours). 

• The trips and activities 

should begin at the 

specified time. 

Variations • No restriction on 

machines’ maximum work 

time. 

• Maintenance is very 

rare and no break between 

the jobs required. 

• Machine can perform 

only one job at the time. 

• Jobs changeover is 

already included in the 

duration of the jobs and this 

does not need to be 

individually scheduled. 

 

 

• Driver can work only a 

certain amount of hours. 

• Driver is required to 

have a break after a 

specified amount of time. 

• Driver can drive only 

one train, but can travel as 

a passenger on another 

train trip. 

• Different modes of 

transport can be used in 

order to get to the next job 

(travel as a passenger by 

passenger/freight train, 

taxi). 

Objective 

function 

Minimising makespan time. Minimise total cost of the 

schedule. 

 

Initial consideration shows that both problems belong to the class of assignment 

problems and they can be encoded into permutation chromosome representation. 

In such representation, each chromosome contains of a vector of integers, where 
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each integer (gene) stands for the task which needs to be scheduled. There are 

a number of reasons for selection of this chromosome representation: 

• This style of representation is suitable for combinatorial optimisation 

problems (Sivanandam and Deepa 2008).   

• It is one of the most popular representations for the scheduling problems 

(Hart, Ross and Corne 2005). 

• As discussed in section 7.4.6, permutation chromosome representation is 

more compact than binary chromosome representation. 

• Unlike symbol chromosome representation, it is not too problem specific 

and different problems can fit into it. 

However, both problems have domain specific assignment rules which prevent 

application of the same algorithm to both problems. This requires the design of 

separate decoding procedures and unique formulas for fitness function 

calculations. But because the representation itself remains unchanged, similar 

crossover and mutation operators can be applied. 

8.4 Proposed EA test framework 

The framework of the algorithm which was designed to conduct the trials is 

presented in Figure 49. The EA, which is the core optimisation part, is shared by 

CSP and JSSP, while encoding and decoding procedures as well as fitness 

function are customised for each problem. Some initial trials showed that the 90% 

crossover probability and 40% mutation probability produced the best results. 

Similar values were used by various researchers including Amirthagadeswaran 

and Arunachalam (2007), Majumdar and Bhunia (2011), Mattfeld and Bierwirth 

(2004), Pezzella, Morganti and Ciaschetti (2008). These values will be used 

during all the experiments in this study.  

Since there is no clear conclusion in the literature regarding the efficiency of 

genetic operators, several standard permutation operators will be tested using 

two procedures. The first set of trials will be conducted for a single crossover and 

mutation operator embedded into the algorithm. The second series of trials will 

investigate a performance of the synergies of the mutation and crossover 

operators, which are described in detail in section 8.4.4.  
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Figure 49 EA for CSP and JSSP test framework 

8.4.1 Crossover operators  

Since the selected chromosome representation does not contain genes with 

repetition, the traditional genetic operators such as one or two-point crossover 
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for the permutation chromosome representation such as PMX, CX, LOX and PBX 

will be tested in the given research.  

PMX, LOX and CX are the most popular crossovers for permutation problems 

(Xu, Xu and Gu 2011, Wiese and Glen 2003). PBX has also been included 

because it is a variation of the popular uniform crossover (Gen and Cheng 1997). 

It is interesting to investigate its behaviour on the non-binary chromosome 

representation.  

Moreover, they all apply the principles of good block preservation and genes 

exchange between the parents in a different manner. LOX and PMX copy the 

entire substring from parents to children, whereas CX and PBX swap the 

information gene by gene. In addition, LOX preserves the relative position of the 

genes while CX, PMX and PBX absolute position (Croce FD, Tadei R, Volta G 

1995, Bo, Hua and Yu 2006).  

To the date there is no evidence to support which approach is the most effective 

for different domains (Elaoud, Teghem and Loukil 2010), therefore several 

experiments will be conducted in the next chapter in order to identify it.  

8.4.2 Mutation  

With the similar objective in mind as in the case of crossover operators, the most 

popular mutation operators will be investigated. Due to specifics of scheduling 

problems, it is important that the mutation operator does not create duplicate 

genes, which might violate the problem constraints and cause reduction or 

repetition of the jobs. 

Following this rule, three mutation operators have been selected for testing: 

Simple, Swap and Scramble. They all cause a distinctive level of disturbance in 

the chromosome, which will have a different effect on the evolution process. For 

example, Simple mutation only exchanges two neighbourhood genes and causes 

very little alteration in the chromosome structure. Swap mutation switches the 

genes from different parts of the chromosome resulting in moderate changes. 

Finally scramble mutation rearranges all the genes on the specified interval and 

therefore the level of disturbance is estimated to be high.  
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It is anticipated that simple mutation will be more efficient on small data sets, 

whereas scramble mutation might be more appropriate for the large problem 

instances. This is because the scramble mutation affects a large number of genes 

and makes significant changes to the chromosome. This gives the algorithm an 

opportunity to quickly move from one solution to another inspecting diverse 

combinations of the genes, which can lead to finding the optimal solution faster. 

On the contrary, the simple mutation can be beneficial for smaller size problems, 

where movement from one solution to another can be accomplished by an 

exchange of the positions of two adjacent genes. The scramble mutation might 

be disturbing for such problems and prevent the convergence of the algorithm.  

Finally, swap mutation might perform the best on the small and medium data. 

However, these hypotheses need to be empirically validated in order to provide 

a definitive answer.  

8.4.3 Operator selection mechanism 

Since the evolutionary search is orchestrated by genetic operators and each of 

them has their own unique way of schemata manipulation, Ming, Cheung and 

Wang (2004) and Kumar, Contreras-Bolton and Parada (2015) state that 

application of different operators can improve the process of optimisation.  

Three diverse strategies of application and management of the operators have 

been devised in order to test the effectiveness of the operators' synergy. 

Strategy1. In this strategy each operator has an equal probability of being 

selected at every iteration. The advantage of this approach is that operator 

selection time is negligible and implementation of various operators might boost 

diversity in the population due to their technical differences in the chromosome 

formation.  

Strategy2. Unlike the previous strategy, the second strategy is focused on finding 

the two best chromosomes which can be constructed from selected parents by 

available genetic operators. This method applies all the operators to the same 

pair of chromosomes and keeps a record of temporarily created offspring and 

their fitness. Once the process has completed the production of new 

chromosomes, the replacement procedure adds only the two fittest individuals to 

the population and deletes the others.  
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The rationale of this method is that it enables the maximum performance from the 

operators. The down side of this strategy is that the time spent on each iteration 

might be much longer compared to the previous strategy. 

Strategy 3. The third strategy is a trade-off between the two previous strategies. 

It tests each crossover in the same fashion as strategy two for a predefined 

amount of trial iterations, and then applies the best-performing operator for a 

series of subsequent iterations. The amount and ratio of the trials to the number 

of standard iterations will depend on each problem and data size and will be 

discussed in the related sections.  

The motivation for this strategy relies on the concept that the landscape of the 

search region changes as the algorithm progresses. This implies that the 

effectiveness of the operators changes over time as well (Elaoud, Teghem and 

Loukil 2010). The benefit of this strategy is that it is less computationally 

expensive than strategy two, but at the same time it takes into account the 

effectiveness of the operators unlike strategy one. The potential limitation is that 

the operator that has been identified as superior during the trial iterations might 

not be the most powerful at successive iterations.   

8.4.4 Selection 

Preference was given to binary tournament selection as it is a comparatively 

simple and non-time consuming selection mechanism. It is also a popular 

selection strategy that is used in numerous EAs for CSP and JSSP (Park and 

Ryu 2006, Kwan, Kwan and Wren 2001). Binary tournament selection can be 

described as follows. Two individuals are selected from the population at random 

and the fittest amongst them is selected as a first parent. The same process 

repeats in order to obtain the second parent. The tournament selection has been 

chosen because of its efficiency as it can select two individuals without calculation 

of the fitness for all the population. It is also relatively unbiased towards the high-

fitness individuals unlike other fitness scaling selection techniques. This is 

important because some individuals with poor fitness might still possess a 

valuable combination of genes. 
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8.4.5 Replacement 

Elitist replacement strategy was implemented in the algorithm.  The motivation of 

this is that it enables preservation of good chromosomes during the course of the 

algorithm. Elitist algorithms demonstrated a good performance in various 

research studies, and was incorporated into the popular NSEA-II (Leno, Sankar 

and Ponnambalam 2013, Liang and Leung 2011, Kim and Ellis 2008, Deb et al. 

2002) 

8.4.6 Data Instances 

Finally, this section describes the data sets on which the developed algorithm will 

undergo their assessment. Following the research objectives of testing EAs on 

two conceptually different problems with significantly different numbers of tasks 

for assignment, two data sets for experimentation presented in Table 12 and 

Table 13 will be used.  

Table 12 Data sets for CSP experiments 

Data size Data 
Number of 

Trips 

Number of 

Depots 

Execution 

time 

Small CSP_780 780 12 390 minutes 

Medium CSP_1260 1260 21 630 minutes 

Large CSP_1980 1980 33 990 minutes 

 

Since there are no available benchmark data in the literature which match the 

CSP problem defined in section 6.8, three data sets comparable to the real data 

in respect of quantity of trips, proportion of the drivers and depots have been 

arbitrary created. The real data are not used at this stage due to format and 

quality issues that can affect the experiment result. This issue is discussed in 

detail in Chapter 10. The computation time depends on the size of that data set 

and increases by 30 minutes with increase of data size by 60 trips. 
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Table 13 Data sets for the JSSP experiments 

Data size Data 
Number of 

Jobs 

Number of 

Machines 

Number of 

iterations 

Small JSSP_20 20 12 100 

Medium JSSP_31 31 21 300 

Large JSSP_50 50 33 500 

 

On the contrary, three JSSP benchmark data instances, Lawrence 20x10, 

Lawrence 30x10, Storer, Wu, and Vaccari hard 50x10, will be used for JSSP 

experiments. Due to the size of the data, the computation time is anticipated to 

be very short, therefore the number of iterations will act as a termination criterion.  

8.4.7 Adaptation to the CSP 

As was established in section 8.3, application of the reconfigurable EA requires 

development of the schedule builder and decoding procedure individually for 

each problem. Along with these functions, a specialised crossover and mutation 

operator will be developed for each problem. This section provides details on 

these aspects in relation to the CSP problem.  

8.4.8 Decoding procedure 

In the given algorithm the solution is encoded as a vector of integers, where each 

integer represents a job which needs to be assigned to the schedule. In the 

context of CSP a job denotes either the task of driving a train or performing an 

ancillary activity such as fuelling the train, loading and unloading wagons.   

Once the chromosomes have been randomly generated, jobs are allocated in 

series to the diagrams according to the following logic (Figure 50). Starting from 

the leftmost gene, the procedure finds the first driver in the database (the position 

of the driver is displayed in grey on the picture) who has the necessary route and 

traction knowledge to operate that trip and creates a new diagram for him or her. 

Then the procedure checks if the same driver is able to drive on the next journey 

(i.e. the second gene). If it is possible, then that trip is added to his or her diagram. 

If the station of origin for the current trip differs from the destination station of the 

previous trip, the algorithm first searches for passenger trains and the freight 

company’s own trains that can deliver a driver within the available time slot to the 

next job location, e.g. Diagram 1, between trips 3 and 8 (Figure 50). If no such 



153 
 

trains have been found but there is a sufficient interval between the trips, then 

the algorithm inserts a taxi journey. 

The information regarding driving times and the current duration of the diagrams 

is stored. Before adding a new trip, the algorithm inserts a break if necessary. If 

the time expires and there are no trains to the home depot that a driver can drive, 

the deadheading activity completes the diagram, as in Diagram 2 (Figure 50). If 

a trip cannot be placed in any of the existing diagrams, the procedure takes the 

next driver from a database and creates a new diagram for him or her.  

 

5 2 3 4 8 1 7 6 9 10 4 2 1 3 

 

 

 

 

 

 

Figure 50 Chromosome representation and decoding logic 

On rare occasions, a few diagrams might be left with only a few trips and a 

duration that is less than the minimum. This is due to the fact that other drivers 

are either busy at this time or located at different stations. This problem is also 

seen in some examples of the real diagrams. According to the company’s 

regulation, in this situation the company pays a driver for five-hour work. This 

practice is also suitable for GA as it will act as a penalising mechanism for the 

short diagrams.  

The given representation has a visual resemblance to the flight-graph 

representation suggested by Ozdemir and Mohan (2001), but the decoding 

procedures are different. The flight-graph representation generates trips based 

on a depth-first graph search, whereas in the proposed EA they are produced at 

random. Random generation is beneficial since it does not exclude situations 

where a driver can travel to another part of the country to start working in order 

to have an even workload distribution across the depots, while depth-first search 

usually places only geographically adjusted trips together.  
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Trip 8 
Break 
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The advantage of the proposed chromosome representation is that it creates both 

the diagrams and schedule within the same algorithm, thereby giving the EA 

greater control over the solution. It also does not require the generation of a large 

number of diagrams at the beginning. In addition, this representation does not 

leave under-covered trips and ensures that no unnecessary over-covering 

happens. It is possible that at the beginning of the algorithm this chromosome 

representation might produce schedules with a high number of deadheads. 

However, due to the specific fitness function and genetic operators, the number 

of chromosomes containing deadheads decreases rapidly with evolution. 

However, until Chapter 10,  the position of the drivers in the data base remains 

fixed. This limitation enables utilisation of the same chromosome representation 

for JSSP. The configurations, where the position of the drivers is manipulated will 

be discussed further in sections 10.2 and 10.3.  

8.4.9 Fitness Function 

An adequate solution of the CSP requires the achievement of several objectives: 

reduction of driver and additional transportation costs, equal distribution of the 

workload amongst the drivers, reduction of the losses associated with 

unbalanced diagram lengths, and increase in driver utilisation. There are also two 

conflicting objectives: high throttle time and low deviation from average diagram 

lengths. It is evident that with the increase in throttle time, the deviation from the 

average diagram length will be increased towards a minimum diagram length. 

This is due to the algorithm attempting to allocate a diagram for a single trip in 

order to achieve 100% throttle time.  

As it is possible to find a single financial equivalent for all goals, the single-

objective EA, whose aim is to reduce the total cost of the schedule, will be applied. 

The formula below displays the logic for the fitness function calculation, where 

the first summand represents the driver payment, the second part of the function 

is the cost of a taxi and the third and the fourth are the potential losses from the 

deviation from the target shift length and unequal workload distribution amongst 

depots.  
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8.4.10 Problem-specific crossover for CSP  

This section presents the crossover operator which has been developed 

specifically for CSP and which preserves and propagates high-quality diagrams 

accumulated throughout evolution. Figure 51 illustrates the main steps in creating 

the offspring.   

The process starts from calculation of throttle time for each diagram in Parent 1 

(the genes constituting the diagrams with high throttle times are colour coded in 

the darker shade on Figure 51). At the second step, 25% of all the diagrams are 

copied to the first child.  Finally, the missing trips are added in the same order as 

they appear in the second parent. The same procedure is then used to form the 

second child.  

 Parent 1 

2 5 1 8 4 7 3 10 9 6 

 Parent 2 

1 3 4 10 2 6 7 9 5 8 

 Inheriting the genes from the first parent 

2   8 4 7     

 Filling the rest with the second parent's genes 

2 1 3 8 4 7 10 6 9 5 

Figure 51 Intelligent crossover 

8.4.11 Problem-specific mutation for CSP 

Likewise, the devised mutation for CSP operates with the throttle time of the 

diagrams. The idea behind mutation for CSP is the trips placed in poor quality 

diagrams would make a cost efficient schedule if they were correctly re-inserted 

into other diagrams. This process is depicted in Figure 52. 
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It begins with computation of diagrams' throttle times (the genes constituting the 

diagrams with a high throttle time has a darker shade in Figure 52).  Then, it 

selects a random gene from the diagram with the least throttle time and identifies 

the place where this trip can be inserted. The trip can only be placed between 

other trips, where the time of arrival of the preceding trip is earlier than the 

departure time of the selected trip and the arrival time of the given trip is no later 

than the departure of the subsequent trip. The same is applied to the locations. 

The departure station of the re-inserted trip should be the same as the arrival 

location of the previous trip and the departure of the next trip should be the same 

as the arrival place of the new trip. If this condition has not been met by any pair 

of consecutive trips, then the selected gene is re-inserted randomly.  

Chromosome for mutation 

2 5 1 8 4 7 3 10 9 6 

Selection of the new position for the gene  

 

 

Resulting chromosome 

2 5 1 8 4 7 3 6 10 9 

 

Figure 52 Intelligent Mutation 

8.5 Adaptation to the Job-Shop Scheduling Problem 

8.5.1 Chromosome representation and decoding procedure 

Preference was given to the job-based chromosome representation for the 

following reasons: 

• Unlike operation-based representations, the job-based chromosome 

representation does not contain repetitions of the genes and hence fits to 

the CSP as well. 

• Attaching a number to each operation of each job in order to avoid 

repetitions is not an option because the operations should be performed 
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in a specific order. The selected genetic operators will be unable to 

preserve this sequence.  

• A machine-based representation has been rejected due to the fact that not 

all machines can perform different operations and there is no information 

available of which operation can be performed on a different set of 

machines; 

The fundamental difference between decoding procedures for job-based 

representations is the order in which the operations get assigned to machines.  

There are two techniques of the schedule deduction. First one assigns all the 

operations of the job to corresponding machines and only then moves to another 

job (Algorithm 5). Another way of accomplishing it is to assign only one operation 

from each job in the order they appear in the chromosome. Once all the first 

operations were scheduled, the procedure starts to assign second operations. 

This is repeated until operations of all the jobs have been assigned (Algorithm 6).  

Algorithm 5 First Decoding procedure 

1: FOR i=1:Njobs 

2: FOR j=1:NOper[Job[i]]; 

3: CurrentMachine=Machines[Job][i] 

4: JobDuration=Duration[Job][i] ; 

5: MachineCompletion[CurrentMachine]= 

max(MachineCompletion[CurrentMachine] 

6: JobCompletion[Job])+JobDuration ; 

7:JobCompletion[Job]=MachineCompletion[CurrentMachine]; 

8: j++; 

9: END 

10: i++; 

11: END 
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Algorithm 6  Second decoding procedure 

1: FOR i=1:NOper;  

2: FOR j=1:NJobs; 

3: CurrentMachine=Machines[Job][i] 

4: JobDuration=Duration[Job][i] ; 

5: MachineCompletion[CurrentMachine]= 

max(MachineCompletion[CurrentMachine]6:JobCompletion[Job])+JobDuratio

n ; 

7: JobCompletion[Job]=MachineCompletion[CurrentMachine]; 

8: j++; 

9: END 

10: i++; 

11: END 

 

In order to identify the most effective procedure, a series of ten experiments 

testing each algorithm has been performed for each data set.   

 

Figure 53 Comparison of decoding procedures for JSSP 

Figure 53 illustrates that the second approach provided a better schedule for all 

test instances, and thus will be implemented in the decoding procedure.  

8.5.2 Problem-specific crossover operator 

The main objective of JSSP is the minimisation of the total time required for 

processing all the jobs. Since the job duration is fixed and cannot be minimised, 

the only way to attain it is to keep the idle time between them to the minimum. 

With this in mind the problem-specific crossover has been designed.  It is based 

on the principle that if the idle time between two jobs is relatively small than the 

relative position of these two jobs should be preserved. The example of execution 

steps of the crossover is outlined below.  
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Step1. Calculate the total idle time between each pair of jobs in the first parent. 

The idle time for each operation is computed by calculating the absolute 

difference between the time when the machine became available from the time 

when the preceding operation of the same job has been completed.   

Parent 1     

2 1 3 5 4 

Operation 1:  5 

Operation 2: 7 

Operation 3: 1 

Total: 13 

Operation 1:  1 

Operation 2: 1 

Operation 3: 2 

Total: 4 

Operation 1:  1 

Operation 2: 5 

Operation 3: 2 

Total: 8 

Operation 1: 1 

Operation 2: 3 

Operation 3: 3 

Total:7 

 

 

Parent 2     

3 4 1 2 5 

 

Step2. Identify 30% of the jobs with the smallest idle time in between.  

2 1 3 5 4 

 

Step 3.  Copy the given genes to the first child preserving their position.   

 1 3   

Step 4. Fill in the empty genes with the genes from the second parent sustaining 

their order.  

4 1 3 2 5 

Figure 54 Problem-Specific Crossover for JSSP 

8.5.3 Problem-specific mutation operator 

The proposed problem specific mutation is based on the critical path (the longest 

path in the graph connecting sink and source nodes) properties. Since only 

permutation of the operations lying on the critical path can improve the schedule, 

the mutation which deals with permutation of those operators has been 

embedded in the algorithm. A similar concept was incorporated in the local search 

mechanism in Zhang, Rao and Li (2008), Raeesi and Kobti (2012) and 

demonstrated positive results. Figure 55 demonstrates three steps of proposed 

mutation. 
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Chromosome for mutation 

1 2 3 4 

 

Step1. Identify the critical path and the jobs lying on the critical paths. In the given 

example these are jobs one, two and four.  

                                      

Step2. Reinsert randomly selected job from the critical path between other jobs 

lying on the critical path. Assuming this is job number four, so it will be reinserted 

between job 1 and job 2.  

Mutated chromosome 

1 4 2 3 

Step3. If there are only two jobs, then only a swap operation should be performed. 

If there is only one job, then re-insert it into the randomly selected position.  

Figure 55 Intelligent Mutation 

8.6 Conclusion  

Based on the conceptual analysis conducted in this chapter, the framework for 

algorithm investigation has been proposed. It has been identified that both 

problems can be encoded into a permutation chromosome representation and 

identical genetic operators can be utilised. Four popular crossover operators and 

three mutation operators were chosen for their distinctive features in manipulation 

of schemata.  

Along with traditional genetic operators, specific crossover and mutation 

operators have been devised for each problem. Unlike common permutation 

operators, they do not blindly exchange the genes between two parent 

chromosomes, but rather attempt to identify and propagate useful parts of the 

chromosome as well as to make local improvements in the schedule.  
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The effectiveness of these techniques individually and in conjunction with each 

other is empirically tested and discussed in the next chapter.  
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Chapter 9. Comparison of 
evolutionary operators and 

strategies: experimental results 

9.1 Introduction 

It is crucial to identify a set of the most effective genetic operators, which should 

be embedded into the automatic crew scheduling system. The main objective of 

this chapter is empirical validation of the effectiveness of traditional permutation 

genetic operators and problem-specific operators devised in Chapter Chapter 8.  

The chapter begins with comparison of the standard permutation genetic 

operators with each other as well as against the operators which have been 

specifically developed for the CSP and JSSP within this research. The second 

part of this chapter explores whether the joint use of the operators (i.e. application 

of several different mutations and crossovers) within the same algorithm can 

improve the results. 

For consistency of the experiments, in the CSP all the operators will be applied 

to the first part of the chromosome which corresponds to the trips, leaving the 

second part, which characterises the position of the drivers, fixed. The second 

part of the chromosome will be directly copied from the first parent to the first child 

and from the second parent to the second child in the crossover operator and will 

not be modified during mutation. This assumption enables equal comparison of 

the operators between both problems. 

9.2 Crew Scheduling Problem 

9.2.1 Single Crossover and mutation experiments 

The purpose of the given series of the experiments is to investigate the 

performance of crossover and mutation operators. Because it is important to take 

into account the collective effect of both mutation and crossover, each 

combination of crossover and mutation has been tested. The experiments were 

carried out on the three sets of data: small (CSP 780), medium (CSP 1260) and 
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large (CSP 1980). Each experiment has been repeated 10 times. Graphs in 

Appendix 6 demonstrate one of the runs of each configuration.  

9.2.2 Crossover Performance 

All four standard crossovers along with customised crossover for CSP have been 

tested with each type of mutation ten times, therefore the total number of runs for 

each crossover reached 50 on each data set. The average results for each 

crossover are displayed in Figure 56-Figure 58. 

 

Figure 56 Performance of different crossover operators on a small CSP data set 

 

Figure 57 Performance of different crossover operators on a medium CSP data set 
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Figure 58 Performance of different crossover operators on a large CSP data set 

The intelligent crossover demonstrated 11%, 30% and 23% correspondingly 

better results on the small, medium and large size problems than the PMX, the 

next best performing crossover. The graphs in Figure 136-Figure 138 in Appendix 

6  display that Intelligent crossover was able to reach a better solution for the 

smaller amount of iterations. This is especially noticeable on the medium and 

large data sets, where Intelligent crossover could locate a promising region 

significantly faster than other crossovers.   

The second best performing operators are PMX and LOX. Their performance is 

relatively similar with a maximum observed difference of 4 % on the large data 

set whereas the difference on the small data set constituted 2%. 

Interestingly, although LOX crossover has some similarities with Intelligent 

crossover as they both preserve the position of the genes in the same way during 

crossover stage, Intelligent crossover achieved a12% better result on a small 

data set, 30% on the medium and 25% on the large data set. This suggests that 

intelligent selection of cutting points can improve the efficiency of the operator.  

CX and PBX demonstrated the poorest performance amongst all crossovers 

tested on the CSP. They showed relatively similar performance with the 

maximum deviation in final results reaching 5% with CX crossover delivering a 

better schedule. On average the solution produced with CX crossover is 6% 

worse than LOX crossover and 27% worse than Intelligent Crossover. 

Such results obtained by CX can be explained by its inability in some cases to 

create a new solution which can be the reason for premature convergence and 
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poor exploitation of the search space as demonstrated in section 2.7.7. In its 

application to CSP, PBX crossover showed a very slow convergence process 

(Figure 145-Figure 147 in Appendix 6). This may be because of the way the 

crossover exchanges the genes.  Referring back to the principles of its 

mechanism, it swaps random trips between the parents preserving their absolute 

position. However, from the decoding perspective this does not protect good 

diagrams and leads to poor convergence. On the other hand, crossovers which 

preserve the substring, i.e. PMX, and the relative position of the trips (LOX) have 

proven to be more effective in the context of CSP. 

9.2.3 Mutation Performance 

This section compares the performance of standard permutation mutations 

against each other as well as against the problem specific mutation, which is 

described in section 8.4.11. Each of the mutation types was applied with every 

crossover operator ten times, and in total has been tested for fifty times on each 

data set. Figure 59-Figure 61 present average mutation results on three different 

data sets.  
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Figure 59 Performance of different mutation operators on the small CSP data set 

 

Figure 60 Performance of different mutation operators on the medium CSP data set 

 

Figure 61 Performance of different mutation operators on the large CSP data set 
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In general, the behaviour and final results of Intelligent mutation are similar to 

Swap mutation, whereas Simple mutation resembles Scramble mutation 

(Appendix 6).  

The average difference in the results between Intelligent and Swap mutation 

constitutes 6 % on CSP 780, 2 % on CSP 1260 and CSP 1980. This may be 

because they share similar logic: if the intelligent mutation could not find the trips 

which can be re-inserted, it swaps two randomly selected genes. Unlike 

crossover, the intelligent selection of the genes and position where they need to 

be re-inserted provided only marginal improvement in the mutation. This may be 

due to the impact of putting consecutive trips together, which has increased 

workload distribution and possibly deviation from the target shift length. 

The difference in the produced results between Swap and Scramble mutation is 

more significant and achieves 24%, 20% and 21% on the small, medium and 

large data set respectively. The difference in performance of Scramble and 

Simple mutation is not significant. Scramble mutation produced schedules 3%, 

5% and 3% better than Simple mutation on CSP780, CSP1260 and CSP1980 

correspondingly.  

The overall effectiveness of Swap and Insert mutation operators can be explained 

by the fact that they provided an opportunity for genes, which represents the trips, 

to migrate from one diagram to another, which resulted in the trips which start 

one after another at the same location to be connected without deadheads.  

Although the initial hypothesis was that Scramble mutation would work well on 

large data sets because of its ability to change the position of a larger number of 

genes than other mutation operators, the results have proven the opposite. This 

might be because the mutation caused significant disruptions in the schedule and 

obstructed the convergence of the algorithm. Figure 62 demonstrates how the 

shuffle of the genes performed by Scramble mutation can increase the number 

of diagrams. Although the initial schedule in the chromosome consisted of two 

diagrams (each diagram is displayed in a different colour and pattern), the 

mutated chromosome has four diagrams as it reversed the consecutive trips on 

the positions between two and four.  
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7 3 6 1 4 2 5 

 

1 6 7 3 4 2 5 
Figure 62 Example when scramble mutation deteriorates the schedule 

Mutation Simple which dealt with two adjacent genes did not provide a significant 

improvement to the solution. This can be due to the fact making the changes on 

the genotype it failed to make changes in the phenotypes. This could happen 

when the genes were allocated to different diagrams anyway, so their position in 

relation to one another did not affect the cost of the schedule. Figure 63 provides 

a demonstration of such a case.  

7 3 6 1 4 2 5 
 

3 7 6 1 4 2 5 
Figure 63 Example when a simple mutation does not change a driver schedule 

The schedule on that picture consists of two diagrams, which are presented in 

different colours. If mutation occurred at position two and swapped the trip 

number seven and trip number three, it would not change schedule as these trips 

belonged to different diagrams anyway. The schedule would only be affected if 

trip three started before trip seven and there would be a sufficient transfer time 

between the trips, or alternatively the trips which belonged to the same diagram 

would be permutated.  

9.2.4 Crossover and mutation 

Because the average performance of crossovers and mutations does not provide 

information regarding their collective performance, the graph presented in Figure 

64 and data in Table 14 display the operators' effectiveness in ascending order 

starting from the most powerful pair. 
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Figure 64 Performance of the pair of crossover and mutation on the small data set 

Table 14 Average results of crossover and mutation performance for CSP780 

Average of 

Cost Function 
Mutation    

Crossovers Intelligent Swap Scramble Simple 

Intelligent 112,328 123,713 175,823 180,369 

PMX 124,319 136,224 187,369 212,395 

LOX 138,945 137,218 185,399 210,766 

CX 160,236 176,107 215,091 197,431 

PBX 170,045 172,055 220,274 205,744 

 

With regard to the small data set, the pair of Intelligent crossover and Intelligent 

mutation outperformed the next best performing pair of traditional genetic 

operators PMX and Swap by 18 % and the worst performing pair PBX and 

Scramble by 50%.  Despite the general tendency in the effectiveness of each 

operator presented in the previous sections, crossover CX and PBX 

outperformed PMX and LOX when applied with Simple mutation. In addition, 

Swap mutation obtained better results with PBX crossover than with CX. Lastly, 

CX and LOX crossovers were more effective with Scramble mutation than PMX 

crossover with the same mutation.  
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Figure 65 Performance of the pair of crossover and mutation on the medium data set 

Table 15 Average results of crossover and mutation performance for CSP1260 

Average Cost 

function 
Mutation    

Crossover Intelligent Swap Scramble Simple 

Intelligent 165,200 169,297 247,950 241,724 

PMX 244,812 252,899 328,532 349,912 

LOX 256,373 251,434 332,159 348,942 

CX 281,047 283,617 330,678 365,556 

PBX 311,330 310,940 350,419 353,674 

 

In terms of the medium data set (Figure 65, Table 15), the combination of the 

Intelligent Crossover and Intelligent Mutation demonstrated superior results 

compared to other pairs of operators. It outperformed the next best performing 

combination of standard operators LOX and Swap by 34% and the worst 

performing combination of CX crossover and Simple mutation by 54%.  With 

almost all mutation operators, Intelligent crossover outperformed other 

configurations of EA, and with three out of five crossovers Intelligent mutation 

produced more cost efficient schedules than other mutations (Figure 65). The 
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only exceptions are LOX and PBX crossovers, where the best results were 

achieved with Swap mutation. Also it has been noticed that LOX crossover 

outperforms PMX crossover with Swap and Simple mutations, while CX is more 

powerful than LOX when applied with Scramble mutation. In addition, with Simple 

mutation LOX performs better than PMX, and PBX is more effective than PBX 

when applied with Simple mutation. 

Figure 66 Performance of the pair of crossover and mutation on the large data set 

Table 16 Average results of crossover and mutation performance for CSP1980 

Average of 

Cost function 
Mutation    

Crossover Intelligent Swap Scramble Simple 

Intelligent 297,726 312,900 422,355 459,168 

PMX 410,289 418,033 533,935 567,359 

LOX 409,630 495,178 557,410 530,935 

CX 453,190 449,026 587,179 541,361 

PBX 498,018 431,910 535,722 594,151 

 

On the large data set (Figure 66, Table 16), again Intelligent crossover and 

Intelligent mutation obtained 27% better results than conventional operators, 

PMX and Swap, and 50% better than the weakest operators PBX and Simple. 

With Intelligent mutation, LOX crossover performs slightly better than PMX. In 
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general, the tendency of crossover and mutation performance remains the same. 

However, crossovers CX and PBX outperformed LOX when used together with 

Swap mutation. In addition, PBX showed better results with the Scramble 

mutation than PMX, LOX and CX. Finally, crossovers LOX and CX performed 

better with Simple mutation than PMX.  

9.2.5 Multiple operators 

Since Hong, Kahng and Byung Ro Moon (1995) argued that each crossover and 

mutation operator traverse the search space in a different manner, we wanted to 

empirically validate how application of several crossovers and mutations together 

would affect the search process. Three strategies of operator selection and 

application described in section 8.4.3 were applied to the data instances of 

various size and this section reports the obtained results.  

9.2.6 First Strategy 

Strategy one selects genetic operators that will be used at random. This is 

accomplished by generation of two random numbers at each iteration, which 

represent which crossover and mutation will be applied to the population at that 

iteration. The algorithm also measured the level of improvement each crossover 

makes, which is expressed as the change in the fitness function. The algorithm 

ran ten times and the average contribution of each crossover and mutation is 

exhibited in Figure 67. 
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Figure 67 Contribution of each operator in Strategy 1 
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The Intelligent crossover demonstrated the largest contribution towards 

improvement of the solution compared to other crossover operators. Its impact 

varies from 34% to 47% and increases with the data sets. This is in line with the 

results reported in section 9.2.2, where Intelligent Crossover outperformed other 

crossovers on all data sets.  

PMX crossover made 9% larger improvements than LOX crossover on a small 

data set. However, LOX outperformed PMX by only 1% and 2% on the medium 

and large data set correspondingly, despite PMX showing slightly better results 

than LOX when applied alone.   

PBX crossover displayed a comparative performance when applied together with 

other crossovers. It made a greater reduction in the cost of the schedule than 

LOX on a small data set and achieved the same average result as PMX crossover 

on the large data set. Unlike the case with other crossovers, PBX crossover 

performance is different to its performance on its own on the CSP problem 

instances. Application with other crossovers possibly enabled it to have a good 

starting solution at different iterations. 

Comparing performance of PBX and CX crossovers it can be noticed that PBX 

produced better solutions by 7%, 11% and 9% than CX on small, medium and 

large data sets, however when PBX was applied on its own it created 1%-5% 

worse solutions than CX.  

With regard to the performance of the mutation operators, the level of 

effectiveness of mutations is relatively consistent with their performance as single 

operators. The largest improvement of 41%-51% was accomplished by the 

Intelligent mutation operator, followed by Swap mutation which optimised the cost 

by 26%-31%. On the small and large data sets, Scramble mutation showed better 

results than Simple mutation which reflects their individual capabilities, however 

on an average data set the simple mutation outperformed scramble by 3%.  

9.2.7 Third Strategy 

Unlike the first strategy, the third strategy deliberately selects operators on the 

basis of their performance. For this purpose, it conducts a series of the trial tests 

during which it assesses each operator and records its improvement towards the 

cost function. Then it applies the most successful one for a specified number of 
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iterations. Thus the frequency of the operators' utilisation as an additional 

indicator of effectiveness has also been considered. The reason why two 

operators, total improvements and frequency, rather than only average 

improvement are calculated is because in later stages of the algorithm when it 

converged, the operator can still be selected, but cannot make any improvements.  

This might deteriorate their average improvement score and will not reveal the 

actual efficacy. The graphs below (Figure 68) display the average results 

obtained during the experiments. 
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Figure 68  Strategy3: Contribution and utilisation of each crossover operator for CSP 

As with the previous results, the Intelligent crossover made greater improvements 

than other crossover operators. The contribution towards reduction of the cost of 

the schedule varies from 44% to 59%. This is echoed by the number of times it 

has been used, which is in the range of 46% to 75%. Noticeably, the utilisation of 

Intelligent crossover is greater on the large data sets.  
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The efficiency of the PMX oscillates between 18% and 24%, and its utilisation 

between 9% and 17%. The portion of the improvements made by LOX is in the 

range of 15%-21% with the usage ratio of 8%-15%.  

The contribution of CX grew from 9% to 12% despite utilisation dropping from 

10% to 6%. Similar to that, PBX effectiveness increased from 2% to 10%, 

however its utilisation reduced from 10% to 3%. 

 

 

 

Figure 69 Contribution and utilisation of each mutation operator for CSP 
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With regard to mutation (Figure 69), the Intelligent mutation was selected on 

average 53% of the time. The Intelligent mutation is responsible for 49%-52% of 

the fitness function improvements. Swap mutation demonstrated a strong ability 

to make a large improvement as well, its total cost reduction ranges from 32% to 

43% while it was called in 25%-38% of all occasions. The contribution of 

Scramble and Simple mutation is relatively small and does not exceed 5%. The 

utilisation of such mutations varies from 7% to 24%. 

9.2.8 Comparison of all strategies 

This section compares the average final results delivered by three strategies. The 

first strategy has selected the operators with equal probability, the second 

strategy applied all of the operators and then selected the one which produced 

better offspring, and third one tested each crossover every 50 iterations and 

applied the most effective one. The graphs on the Figure 70 - Figure 72 

demonstrate how the function evolved during the optimisation process. 

Despite being the most time consuming and thus evolving a fewer number of 

times, the second strategy descended much faster than other techniques. The 

first strategy seems to fail to converge perhaps because application of each 

operator led to a wider exploration of the search space. The third strategy 

exhibited an average performance by descending faster than the first strategy, 

but slower than the second strategy.  
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Figure 70 Performance of different strategies on a small data set 

 

Figure 71 Performance of different strategies on a medium data set 

 

Figure 72 Performance of different strategies on a large data set 
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The average final results (Figure 73-Figure 75) indicate that application of all 

crossovers is the most efficient strategy of managing several incorporated 

genetic operators. The obtained average results for 10 runs are 21%, 13% and 

23% better than the method with random selection of operators for CSP780, 

CSP1260, CSP1980.The difference in the results produced by application of the 

best crossover at each iteration and every 50 iterations is less significant and is 

5% for the small data set, and 9% for the medium and 15% for the large data sets.  

 

Figure 73 Final results produced by each strategy on a small data set 

 

Figure 74 Final results produced by each strategy on a medium data set 
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Figure 75 Final results produced by each strategy on a medium data set 

However, when compared with the results of the single operator performance 
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some of them. On the small data set, the second strategy performed better than 

16 configurations, third strategy was better than 14 and the first strategy better 
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better results than only 9 combinations of crossovers and mutations. This may be 
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9.4 Classic Job-Shop Scheduling Problem 

This section analyses the effectiveness of genetic operators when applied to the 

classic Job Shop Scheduling problem in a similar fashion to as it was carried out 

for the CSP. First of all, the performance of conventional crossovers and 

mutations will be presented, and then their role and impact in joint application will 

be studied.  

9.4.1 Crossover Performance 

When all the operators had been tested, the results were calculated and 

aggregated. Figure 76-Figure 78 display the summary of the crossovers 

performance.   

 

Figure 76 Performance of crossover operator on small JSSP data set 

 

Figure 77 Performance of crossovers on a medium JSSP data set 
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Figure 78 Performance of crossovers on the large JSSP data set 
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Figure 79 Performance of different mutation operators on small JSSP data set 

 

Figure 80 Performance of different mutation operators on medium JSSP data set 

 

Figure 81 Performance of different mutation operators on large JSSP data set 
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on JSSP data instances, with Scramble mutation being able to produce a 

shortened schedule by 2, 6 and 39 minutes than Simple mutation on the JSSP20, 

JSSP30 and JSSP50 respectively. The gap between Swap and Scramble 

mutation varies from one minute on a small data set to 13 minutes on large and 

medium data sets.  

The effectiveness of mutations in relation to each other when applied to JSSP 

corresponds to the results obtained on the CSP.     

9.4.3 Crossover and mutation 

This section examines the combined performance of both crossovers and 

mutations. The bar chart and the table below demonstrates the average results 

of each combination placed in ascending order starting from the most efficient 

one.  

From Figure 82 and Table 17, it can be seen that on a small data set, more than 

half of the algorithms reached the schedule with the makespan of 1569. In 

particular, all the crossovers supported by Intelligent mutation attained the best 

solution in these experiments.  

 

Figure 82 Average results achieved by a combination of crossovers and mutation on small JSSP 
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Table 17 Average crossover and mutation result for the small size JSSP 

Average of Fitness 

Function 
Mutation 

Crossover Intelligent Swap Scramble Simple 

Intelligent 1569 1569 1569 1571 

PMX 1569 1570 1570 1571 

PBX 1569 1570 1573 1570 

LOX 1569 1574 1573 1578 

CX 1569 1576 1580 1583 

 

Figure 83 and Table 18 display the average results obtained for the medium 

JSSP consisting of 30 jobs. The best average results of 1820 were achieved by 

Intelligent crossover supported by Intelligent and Swap mutations and PBX 

crossover with Intelligent mutation. CX and LOX together with Simple mutation 

produced the poorest results on this data set and the difference with the best 

results constituted 95 and 101 minutes respectively.  

 

Figure 83 Average results achieved by a combination of crossovers and mutation on medium JSSP 
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Table 18 Average results obtained by crossover and mutation operator on medium JSSP 

Average of Fitness 

Function 
Mutation 

Crossover Intelligent Swap Scramble Simple 

Intelligent 1820 1820 1838 1837 

PMX 1821 1825 1848 1824 

PBX 1821 1828 1853 1840 

LOX 1823 1838 1853 1921 

CX 1831 1837 1867 1915 

 

The computation results for the large data set are aggregated in a similar fashion 

and exhibited in Figure 84 and Table 19. These results are more diverse and the 

performance of the operators becomes more apparent. Intelligent crossover and 

mutation produced the best results. Likewise, in the small data set results, all of 

the combinations containing Intelligent mutation are situated in the first half of the 

league, while Simple and Scramble are located at the end. The graphs show that 

the crossovers supported by Swap mutation are spread across the bars. This 

suggests that they depend more on the effectiveness of the crossover operator 

they are used with. 
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Figure 84 Average results achieved by a combination of crossovers and mutation on large JSSP 

data 

Table 19 Average results obtained by crossover and mutation operator on large JSSP 

Average of 

Fitness Function 
Mutation 

      

Crossover Intelligent Swap Scramble Simple 

Intelligent 4820 4825 4828 4836 

PMX 4820 4827 4831 4835 

PBX 4823 4828 4856 4845 

LOX 4826 4834 4856 4943 

CX 4830 4856 4864 4971 

 

9.4.4 First Strategy 

This section examines the performance of all operators together under the same 

algorithmic framework. In strategy one, only one randomly selected mutation and 

crossover operator is applied at each iteration. Figure 85 displays the average 

contribution of each operator towards the solution. Since a uniformly distributed 

random number generator has been used, each operator has been called 

approximately an equal amount of times.  
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Despite several crossovers and mutations yielding similar results on the JSSP20, 

their contribution when they were applied together revealed some differences. 

Intelligent and PMX crossover were the most valuable for the algorithm as they 

reduced the time of the schedule by 63%. LOX and PBX crossover showed 

slightly inferior performance by decreasing time by only 29%. The remaining 8% 

were dropped by CX.  

On the medium data set, the contribution of the operators stays relatively the 

same with the exception of PMX and PBX crossovers, where PMX outperformed 

PBX by 4%.  

On the large, JSSP 50 data instance the influence of the operators on the solution 

is more balanced than on a smaller data set. Despite Intelligent crossover still 

playing a leading role, the impact of CX crossover rose to 11%, while PMX and 

PBX shared the similar result of 21%.  

In terms of performance of the mutations, Intelligent and Swap mutation together 

contributed to approximately 78% of the improvement. The remaining 22%, were 

made by Simple and Scramble with Simple mutation optimising the solution more 

effectively. While Intelligent mutation remains the leading operator, the effect of 

the Intelligent mutation decreases with the increase of the data set.  
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Figure 85 Experimental results of the first strategy applied to JSSP 
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the makespan. Aside from total contribution, which can be low if the operator has 

been applied when the algorithm was converging, the amount of times each 

operator has been used will also be considered. 

As the number of iterations in JSSP is considerably smaller than CSP, the 

frequency and proportion of trial and non-trial iterations has been adjusted for this 

problem. The parameters are exhibited in Table 20.  

Table 20 Strategy 3 Parameters for JSSP 

Data 
Number of iterations 

for trials 

Frequency of 

trials 

JSSP20 1 20 

JSSP31 1 30 

JSSP50 1 50 

 

The aggregated results of the contribution and usage frequency of crossover and 

mutation operators are presented in Figure 86.   
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Figure 86 Strategy3: Contribution and utilisation of each crossover operator for JSSP 
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23% of cases. Again, PBX outperformed LOX in terms of the contribution by 4% 

on average and utilisation by 8%. CX was the poorest performing operator with 

an impact of only 6%-10% and utilisation on average 10%.  

In terms of mutation (Figure 87), the greatest reduction (35%-52%) in the time of 

the schedule was caused by Intelligent mutation, which was used in a third of the 

iterations. Similar to the previously declared results, it was followed by Swap 

mutation, whose contribution is estimated at around 30%. The joint impact of the 

Simple and Scramble mutations varies from 20% to 25%. 
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Figure 87 Contribution and utilisation ratio of mutation operators in the Strategy 3 for JSSP 
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Figure 88 Performance of strategies on the small JSSP data set 

 

Figure 89 Performance of strategies on the medium JSSP data set 

 

Figure 90 Performance of strategies on the large JSSP data set 
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However, with an increase in the size of the data, the difference between 

strategies became more noticeable. By deliberately selecting the best performing 

operator at each iteration, Strategy two managed to produce a better solution 

than Intelligent crossover and mutation on their own.  Strategy three reached the 

same makespan as the best performing heuristics, possibly because it was 

greatly dominated by them. Finally, the first strategy obtained the worst result 

which was due to the inclusion of operators that were not well matched to this 

problem. 

With regard to the large data sets, the third and second strategies produced the 

same results while the first strategy produced a 12 minute longer schedule.  

Figure 91-Figure 93 illustrate one of the runs of each strategy with respect to 

three data sets varying in sizes. It can be seen that the second strategy was more 

efficient and converged faster than the others, whereas the first strategy was the 

slowest.  

 

Figure 91 Performance of different strategies on a small JSSP data set 
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Figure 92 Performance of different strategies on a medium JSSP data set 

 

Figure 93 Performance of different strategies on a large JSSP data set 
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calculations, PMX crossover consistently demonstrated good results after 

Intelligent heuristics.  

• PBX came third on JSSP, whereas LOX on CSP. 

• CX performed relatively poorly on both problems: it was the fifth on the 

JSSP and fourth on CSP. 

• The performance of the traditional mutations was consistent across all the 

experiments. In order of efficiency, they can be sorted as Swap, Scramble 

and Simple.  

Although there is no explicit comparison of the same operators on the JSSP and 

CSP available in the literature, a comparison of the obtained results will be made 

with other problems solved by EA with the use of permutation chromosome 

representation and traditional crossovers. 

There are several studies that showed that the modified or problem-specific 

operators are more beneficial for the algorithm. This has been proven across 

different domains such as Electric distribution network problem (Carrano et al. 

2006), flow shop scheduling problem with multiple factories (Gao, Chen and Liu 

2012), capacitated vehicle routing problem (Nazif and Lee 2012), corridor 

allocation problem (Kalita and Datta 2014) and Cloud Infrastructure Management 

(Pascual et al. 2015). 

PMX is regarded as one of the most popular crossovers for permutation encoded 

chromosomes (Kumar, Gopal and Kumar 2013). The effectiveness of the PMX 

crossover can be confirmed by the fact that it was applied to a wide range of 

domains, for instance in Project Management (Yuan and Zhi-Ping 2006), 

Assignment problem (Sahu and Tapadar 2007), Packing non-identical circles 

within a rectangle with open length problem (He and Wu 2013) and many others.   

In the comparative studies, PMX outperformed PBX and CX crossovers on the 

facilities layout design (Chan and Tansri 1994). It also showed better results than 

PBX in 9 out of 11 instances of the TSP with the population size set to 100, but 

showed opposite results when the population size was reduced down to 50 

(Kumar, Gopal and Kumar 2013). In other studies, PMX came third on the 

Travelling Salesman Problem (Tagawa, et al. 1998) and movie distribution 

problems (variation of TSP)  (Zhang and Zheng 1995). 
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In direct comparison with LOX, PMX delivered almost identical results when they 

were applied to solve a university timetabling problem (Kumar, Gopal and Kumar 

2013). The effectiveness of PMX and LOX crossover can be explained by their 

ability to preserve substrings which stand for diagrams. However, PMX's ability 

to exchange the genes by mapping them in both parents has proven to be more 

effective than preservation of the relative position of the trips from the second 

parent.  

Interestingly, LOX crossover was more effective than PBX crossover on the CSP, 

whereas PBX produced a better schedule than LOX on JSSP. This contradiction 

can be explained by the problem structures and applied decoding procedures. 

Figure 94 presents a special case which distinctively demonstrates the different 

effect of LOX crossover on both problems. The genes belonging to different 

diagrams are represented in different colours and have different textures. 

Following LOX logic, the genes occupying the positions on the intervals from one 

to two and from six to eight were passed on from Parent 1 to Child 1. The missing 

genes were copied from the second parent keeping their relative position.  

Parent1 7 1 2 3 5 6 8 4 
 

        

Parent2 8 3 4 2 1 5 7 6 
 

        

Child (LOX) 7 1 3 2 5 6 8 4 
Figure 94 Impact of LOX crossover on CSP and JSSP 

It can be seen that two diagrams (7,1) and (6,8,4), were preserved and, by re-

arranging the position of the other genes, two diagrams (3) and (2,5) were 

combined into one (3,2,5). Thus the number of the diagrams reduced from four 

(in Parent 1) to three (in Child 1). A decrease in the number of diagrams typically 

causes a drop in the driver and taxi costs, which are usually the largest costs 

constituting cost function. However, such permutation might not make such a 

significant impact for the job shop schedule, where it would only swap job 3 and 

2.   

In contrast, the effect of PBX crossover, illustrated in Figure 95, is directly 

opposite to LOX. Assuming the trips 7, 2, 3 and 8 were passed from the first 
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parents and the rest were copied from the second parents, it can be noticed that 

a large portion of the trips have exchanged their relative positions. In the context 

of CSP it denotes that consecutive trips were swapped and can no longer be 

placed into the same diagram resulting in the increase of the overall number of 

diagrams, and subsequently the total cost of the schedule. However, the given 

exchange of job sequence will not cause such a disturbance in the schedule of 

JSSP.   

Parent1 7 1 2 3 5 6 8 4 

         

Parent2 8 3 4 2 1 5 7 6 

         

Child (PBX) 7 4 2 3 1 5 8 6 

Figure 95 Impact of PBX crossover on JSSP and CSP 

In addition to its suitability for JSSP, PBX crossover showed superior results 

mostly on the travelling salesman problems (Kumar, Gopal and Kumar 2013, 

Abdoun and Abouchabaka 2012, Sharma and Tapaswi  2013). However, no such 

comparison was found in other domains. 

CX crossover exhibited poorer performance than other operators in a variety of 

the experiments, for instance in Tagawa, et al. (1998), Zhang and Zheng (1995), 

Xu, Xu and Gu (2011), Kumar, Gopal and Kumar (2013), Abdoun and 

Abouchabaka (2012). However, it outperformed PMX and LOX on the University 

design timetable problem (Chinnasri, Krootjohn and Sureerattanan 2012) and the 

RNA folding problem (Wiese and Glen 2003).  

To conclude, there is strong evidence that the heuristic which is based on domain 

specific knowledge tends to outperform more general operators. As for the other 

operators, the evidence is weaker due to comparison with other research not 

being made in absolutely identical settings. The factors such as utilisation of 

different genetic parameters such as population, size, crossover and mutation 

rates, number of iterations the algorithm ran for, use of additional techniques 

(repair operators, special procedures to population initialisation) could have a 

significant impact on the final solution.  



201 
 

9.5.2 Strategies 

The summary of the key results of strategies is presented below.  

• The second strategy delivered better results than the first and third 

strategies.  

• In five out of six cases, the single operator algorithm was more effective 

than any of the strategies; 

• The contribution of the operators in the third strategy corresponds to their 

effectiveness when they are applied on their own. 

However, the fact that single operator EA in general performed better than 

multiple operator EA contradicts some of the studies reported in the literature.  

For example, Zhang, Wang and Zheng (2006) showed the positive impact of the 

application of synergy of operators on the performance of EA when applied for 

the Flow Job-Scheduling problem. Along with LOX and PMX crossovers, they 

employed the less popular C1 and NABEL. They also embedded Swap, Insert 

and Inverse (special case of Scramble) mutation operators. Their proposed 

selection strategy was somewhat between Strategy two and Strategy three. They 

tested each crossover at every iteration similar to Strategy three, however the 

accumulated operators scores were kept through the entire evolution (Strategy 

three used only the scores obtained at each iteration). Despite its effectiveness, 

the possible limitation of this approach is that crossover which has been 

productive at previous iterations might not be effective at the current iteration.  

Similar to this, in the study conducted by Elaoud, Teghem and Loukil (2010) the 

selection process was similar to the third strategy, but the operators were 

probabilistically selected according to their scores.   

Hong, Wang and Chen (2000) used similar logic in operator selection and 

reported positive results as well. However, binary chromosome representation 

and corresponding operators were employed while the algorithm was tested on 

linear and non-linear functions.   

Unlike strategy 2, Kim, Gen and Yamazaki (2003) applied each combination of 

crossovers and mutation to each individual before they were placed back in the 
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population. In addition, they have incorporated a fuzzy logic controller for the 

adjustment of the operator probabilities. 

This discrepancy in the results obtained in the discussed studies and given 

research can be due to the following reasons. 

1. The different set of operators was included in the algorithm. 

2. The execution time was not taken into account. 

3. The operator selection mechanism has been tailored to the selected 

operators. 

4. The algorithms have been evaluated on different problems. 

9.6 Conclusions 

The last two chapters presented experimental results of the comparative 

performance of various genetic operators. The main purpose of the conducted 

experiments was identification of effective crossover and mutation operators 

which can be incorporated in the EA-based automatic scheduling system.  

It was found that domain specific Intelligent heuristics which explicitly preserve 

good building blocks is more valuable than those which do it implicitly. As for the 

standard crossover and mutation operators, PMX crossover and Swap mutation 

are proven to be the most effective conventional genetic operators for both JSSP 

and CSP problems. 

Another observation which has been made is that PBX crossover tends to be 

more efficient for the problems where the genes are decoded consecutively such 

as Job Shop Scheduling Problem and TSP. On the other hand, LOX is more 

suitable where the relative position of the genes plays a greater role and where 

some genes can be temporarily skipped during the decoding procedure, such as 

Crew Scheduling, Timetabling and various bin packing problems.  

CX crossover showed poor results in the given experiments as well as in other 

trials conducted in the literature, although it managed to be more effective in two 

other domains. This means that it needs to be carefully examined before 

application in new domains.  
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Although the incorporation of multiple operators was beneficial for a large number 

of studies in the literature, this was not confirmed in the current research.  With 

regard to the strategies’ performance in general, the second strategy performed 

the best even at the cost of longer time spent per iteration, followed by the third 

and first. However, Strategy three demonstrated an interesting property: the ratio 

of the contribution of each crossover corresponded to the results of their single 

tests. This attribute can be used for selection of operators when designing a new 

EA as strategy three can replace time consuming trial-and-error methods, but still 

provide stable results. 
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Chapter 10. EA Adaptation to the CSP 
problem 

10.1 Introduction 

In Chapter 8 and Chapter 9, it was proven that it is not efficient to apply the same 

chromosome representation for the solution of both CSP and JSSP. It was shown 

that job-based chromosome representation does not allow for having different 

orders of operations’ assignment in JSSP and to alternate the sequence of drivers 

in CSP. In order to design an efficient algorithm for evaluation by industrial 

experts, this section returns to the leading problem in this research, which is CSP, 

and suggests ways of enhancing the proposed algorithm. The CSP has been 

selected due to higher complexity expressed in a large number of rules and 

regulations. Evaluation of the algorithm using this problem enables a more 

accurate conclusion as to whether EA can be used in the real life settings.  

The analysis of the chromosome structure utilised in section 8.4.8 suggested that, 

in addition to the position of the trip in a chromosome, the location of the driver in 

the chromosome plays an important role and can affect the formation and cost of 

schedule.  Therefore, an additional series of the experiments is carried out in 

order to investigate whether manipulation of the position of the drivers in the 

chromosome is beneficial.  

Two types of experiments are conducted in this chapter. The first part examines 

the effect of additional operators on the evolution of the second chromosome 

component. The second part of the trials will explore whether some modifications 

in the decoding procedure related to the assignment of the drivers can improve 

the construction of the schedule. Since the experiments conducted in the 

previous chapter proved the high efficiency of the customised operators, they will 

be adopted in this chapter.   
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10.2 Chromosome representation supporting evolution of 

drivers' role 

The limitation of the previously used universal chromosome representation is that 

the order in which drivers were encoded into chromosomes was the same for the 

entire population (blue part of the chromosomes on Figure 96) and it remained 

unchanged in the course of the evolution. Given that the number of available 

drivers usually exceeds the number of trips, drivers at the end might not be 

reached by the decoding procedure unless the preceding drivers did not have 

sufficient route and traction knowledge. This can lead to the situation of a trip 

being assigned to a sub-optimal driver and the production of a more expensive 

schedule.  

2 1 3 4 5 1 2 3 4 

         

3 1 2 5 4 1 2 3 4 

         

5 4 2 1 3 1 2 3 4 

Figure 96 Example of the population with static drivers 

Figure 97 displays the new population for the EA with driver and trip evolution for 

CSP consisting of five trips and three drivers. Like the trips, drivers' genes are 

generated at random. 

2 1 3 4 5 4 2 3 1 

         

3 1 2 5 4 1 3 2 4 

         

5 4 2 1 3 4 3 1 2 

Figure 97 Example of the population with evolving drivers 

In addition to the improvement in the decoding procedure, it is expected that the 

evolution of the second part will also enhance the optimisation process as the 

solution will be approached from two different directions: drivers and trips. The 

possible downside of the proposal is it might interfere with the speed of the 

evolution and thus convergence might be slower due to the expanded search 

space.   
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10.2.1 Genetic operators and their effectiveness in the driver evolution 

This section presents the operators which will support the drivers' evolution and 

evaluates their effectiveness. In order to achieve a reasonable convergence of 

the algorithm, it was decided that only mutation operators would be employed to 

evolve the second part of the chromosome. The mutations which will be operating 

on the driver's part are Swap, Insert, Scramble and Simple. The best performing 

in the previous chapter, Intelligent mutation and Intelligent crossover, are applied 

to the first part of the chromosome responsible for the trips. 

The trials have been carried out ten times for each mutation type. The data used 

for the experiments are the same and as specified in Table 12. The graphs 

presented in Appendix 8 illustrate the evolutional process with drivers 

participating in mutation.  

In terms of the behaviour of the algorithm, no explicit differences were identified. 

The functions across all data sets have converged relatively quickly at the 

beginning of the algorithm and have not substantially evolved after that point. This 

might be due to two factors. Firstly, the Intelligent Crossover and Intelligent 

mutation strongly dominated the process and the effect of the driver change was 

less significant compared to the evolution process of the trips. Secondly, the 

expansion of the search space caused by the increased number of possible 

combinations of drivers and trips prolonged the exploration part of the algorithm. 

Therefore, the conclusion of the efficiency of tested operators will be drawn from 

their average results, displayed in Figure 98-Figure 100.  
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Figure 98 Final results of various driver evolution operators on a small data set 

 

Figure 99 Final results of various driver evolution operators on a medium data set 

 

Figure 100 Final results of various driver evolution operators on a large data set 

From the obtained results it can be noticed that Insert and Swap operators 

performed better than Scramble and Simple mutations. Insert mutation 

outperformed Swap mutation on the average and large size data sets by 4% and 
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1% respectively, but showed worse performance on the CSP 780 producing on 

average a 5% inferior schedule.  

The gap between the Scramble and Swap mutation is more noticeable on the 

medium and large data sets, where the difference reaches 18% and 10% 

correspondingly. The observed difference on the small data set is not significant.  

The Simple type of permutation performed the worst on all data sets regardless 

of their size. The gap between Simple and Scramble mutation is 10%, 9% and 

3%.  The gap between the best performing mutation and Simple mutation 

constitutes 15%, 28% and 11% on a CSP780, CSP1260 and CSP1980 

respectively.  

The initial comparison with the results reported in section 9.2.4 demonstrates that 

within the same amount of time and using the same data, the additional mutation 

of drivers showed worse results than the algorithm with the fixed drivers position.  

This issue will be investigated in greater depth in section 10.4.  

10.3 Nearest Driver 

Although the Evolving driver strategy discussed in the previous section is able to 

move the position of the driver in the chromosome, it still has two limitations. First 

of all, it does not guarantee that the “right” driver will always be on the loci from 

which it will be reached by the decoding procedure and, secondly, this approach 

is more computationally expensive as it deploys additional operators.  

In order to tackle the inefficiencies of the previous approach, another method has 

been devised. However, unlike evolution of the drivers, it deals with the decoding 

procedure rather than genetic operators.  

10.3.1 Fitness function adaptation for the Nearest Driver algorithm 

The major difference to the existing decoding procedure discussed in section 

8.4.8 is that the driver is selected depending on his proximity to the first trip in the 

diagram rather than his position in the chromosome. This means that looking for 

the driver to operate a first trip in the new diagram, the algorithm first identifies 

the driver who is located closely to the trip and then verifies whether the driver 

has been trained for that route and train type (Algorithm 7). If the driver does not 
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have the knowledge of that trip or train, another closest driver is checked. This 

process repeats until the driver has been found.  

The advantage of the given logic is that all the drivers can be considered in the 

assignment process. However, the possible disadvantage is that this procedure 

can be more time consuming and might involve a driver who would be better 

suited to other trips.   

Algorithm 7  FIND NEAREST DRIVER 

1: DriverFound=FALSE; 

2: FOR i=0; i<NDrivers; 

3: DriverDistance[i]=TaxiTimes(Driver[i].Depot, Train[j].DepartureStation) 

4: END 

5: WHILE DriverFound=!TRUE 

6: Position=FIND MIN(DriverDistance) 

7: IF Driver[Position].RouteKnowledge==Trip[j].RouteKnowledge && 

8:Driver[Position].Tractionknowledge==Trip[j].TractionKnowledge; 

9: DriverFound=TRUE; 

10: ELSE 

11: DriverDistance[Postion]=max(DriverDistance)+1; //so this driver would 

not participate in the consideration again 

12: END 

13: END 

 

Thus in order to empirically evaluate the effectiveness of such a procedure, ten 

tests have been run using three data sets defined in the Table 12. The 

parameters of the algorithm remain unchanged and the search will be guided by 

the Intelligent crossover and mutation operators since their results outperformed 

other operators.  

10.3.2 Nearest Driver results 

The graphs in Appendix 9 illustrate one of the runs of the algorithm with the 

incorporated procedure of finding the Nearest Driver and compare it against the 

standard decoding procedure. As the logic of genetic operators has not been 

affected, the behaviour of the functions remains very similar.  However, as can 

be seen from the graphs, the starting solution is on average 20 % smaller than 

the standard decoding procedure. The Nearest Driver procedure also has 

converged quicker which is due to the fact that the search space is reduced by 
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fixing the driver to the first trip in the diagram. The average final results for the 

three data sets are presented Table 21 and they will be discussed in depth as 

well as compared with other successful techniques in the following section.  

Table 21 The Nearest Driver experimental results 

Data Set Total Cost of the Schedule 

Small (CSP_780) 91 425 

Medium (CSP_1240) 137 381 

Large (CSP_1980) 246 058 

  

10.4 Comparison of all successful techniques 

This section provides a detailed comparison among the best performing 

techniques from each experiment section: single operator, multiple operators, 

evolving and Nearest Driver.  

In terms of single operator, Intelligent crossover and mutation are the problem-

specific genetic operators which achieved the best results when compared with 

the other four standard crossover operators and three standard mutations, and 

their result will be used for comparison. With regard to the multiple operators, the 

second strategy where all the crossovers and then mutations operators were 

applied together outperformed the strategy with the random selection of 

operators and embodied operator trials.  

The algorithm with the Insert mutation delivered better results on two out of three 

data sets than other driver evolution mechanisms and will be included in the 

comparison as well. Finally, the Nearest Driver approach with Intelligent 

crossover and mutation in its core will be included in the evaluation.  

The comparison and analysis are based on a wide range of crew scheduling 

objectives such as the daily cost of the schedule, number of diagrams, workload 

distribution, deviation from the target shift length and throttle time.  

Actual Cost of the Schedule. Actual Cost represents the day cost of the 

schedule, which is made up of driver payments and taxi costs. Figure 101-Figure 

103 illustrate the cost breakdown in the solution obtained by four algorithm 

configurations on the small, medium and large data sets.  
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Figure 101 Comparison of EA configurations: Actual Cost of the Schedule of the small CSP data set 

 

Figure 102 Comparison of EA configurations: Actual Cost of the Schedule of the medium CSP data 

set 
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Figure 103 Comparison of EA configurations: Actual Cost of the Schedule of the large CSP data set 
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crossovers and Simple and Scramble mutations) as they can lead the search to 

the wrong region by generating a solution which has slightly better phenotype 

than the worst individual in the population, but a poor phenotype which other 

operators will struggle to improve in subsequent iterations.  

The driver evolution approach produced a 12% worse day than Strategy 2. The 

taxi cost exceeded the cost in the schedule produced by the second strategy by 

15% and the driver cost was higher by 8%.  

Number of diagrams. Despite not being the explicit objective, the reduction in 

the quantity of diagrams, which is the number of required drivers, implies not only 

a cost reduction, but also the acceptance of more customer orders which make 

a positive impact on the revenue. A comparison of the average number of 

diagrams constituting the schedules across different data sets is displayed in 

Figure 104-Figure 106.  

 

Figure 104 Comparison of EA configurations: Number of diagrams on the small CSP data set 
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Figure 105 Comparison of EA configurations: Number of diagrams on the medium CSP data set 

 

Figure 106 Comparison of EA configurations: Number of diagrams on the large CSP data set 
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averge rose by 5%, 4% and 9% (for CSP 780, CSP1260 and CSP 1980 

respectively) in comparison to the standard procedure.  

 

Figure 107 Comparison of EA configurations: Throttle time on the small CSP data set 

 

Figure 108 Comparison of EA configurations: Throttle time on the medium data set 
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Figure 109 Comparison of EA configurations: Throttle time on the large CSP data set 
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term objectives.  
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will be minimised. As the cost of unused and excess hours is the same, an 
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Figure 110-Figure 112 demonstrate the average deviation of diagrams from the 

510 mins.  

 

Figure 110 Comparison of EA configurations: Average deviation on the medium CSP data set 
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Figure 111 Comparison of EA configurations: Average deviation on the large CSP data set 

 

Figure 112 Comparison of EA configurations: Average deviation for the large CSP data set 
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Workload distribution. Another aspect of the schedule which ensures that the 

number of the excess and unused contract hours will be minimized is the 

workload distribution amongst the depot. The graphs in Figure 113-Figure 115 

present the average standard deviation in the workload distribution among depots. 

 

Figure 113 Comparison of EA configurations: Workload distribution among depots for the small 

CSP data set 

 

Figure 114 Comparison of EA configurations: Workload distribution among depots for the medium 

CSP data set 

4329

3293
3951

6325

0

1000

2000

3000

4000

5000

6000

7000

Single Operator
(Inteligent

Crossover and
Mutation)

Multiple Operators
(Strategy 2)

Driver Evolution
(Insert Operator)

Nearest Driver

St
an

d
ar

d
 d

e
vi

at
io

n
 in

 t
h

e
 w

o
rk

lo
ad

 
d

is
tr

ib
u

ti
o

n
 a

m
o

n
g 

d
e

p
o

ts

Configuration

Workload distribution among depots for the small CSP data set

2375

1972
1708

2991

0

500

1000

1500

2000

2500

3000

3500

Single Operator
(Inteligent

Crossover and
Mutation)

Multiple Operators
(Strategy 2)

Driver Evolution
(Insert Operator)

Nearest Driver

St
an

d
ar

d
 d

e
vi

at
io

n
 in

 t
h

e
 w

o
rk

lo
ad

 
d

is
tr

ib
u

ti
o

n
 a

m
o

n
g 

d
e

p
o

ts

Configuration

Workload distribution among depots for the medium data set



219 
 

 

Figure 115 Comparison of EA configurations: Workload distribution among depots for the large 

CSP data set 

Unlike the short-term cost indicators, the Multiple Operator approach and Driver 

Evolution approach delivered better results on two out of three data sets from the 

long-term perspective on the schedule. This can be explained in two possible 

ways. On the one hand, it may show their capabilities for production of a 

geographically balanced schedule. This might be especially relevant for the 

Driver Evolutionary strategy because it has the capacity to adjust driver position 

in response to the fitness function. On the other hand, taking into account the 

large taxi cost, it might be a sign of a poorly converged algorithm as the taxi cost 

has a higher weight in the fitness function (£120 per hour for a taxi, against £40 

per hour for unequal workload distribution).  

The previously successful Nearest Driver strategy achieved the worst balance in 

the workload allocation. This showed that selecting the driver who is closer to the 

trips is not always ideal for satisfaction of all objectives, since it takes some work 
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locations. 

Fitness function. Finally, the algorithm which will be applied to the real data will 

be selected on the cost function basis. The bar charts in Figure 116-Figure 118 

illustrate the total cost of the schedule including the daily and the penalty costs. 
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Figure 116 Comparison of EA configurations: Total Cost of the Schedule of the small CSP data set 

 

Figure 117 Comparison of EA configurations: Total Cost of the Schedule of the medium CSP data 

set 
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Figure 118 Comparison of EA configurations: Total Cost of the Schedule of the large CSP data set 
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out of time if he or she performed this trip. This situation results in splitting a good 

diagram into two, which might have a knock on effect on the rest of the schedule. 

At the same time, this creates three diagrams and, having three drivers in the 

data, it can be assumed that the standard deviation in the workload distribution 

would be less than if two drivers were assigned to the given trips.  

The results of multiple and single operator EAs lie between Nearest Driver and 

Driver evolution strategies. This is because they are able to adjust the trips to the 

driver position in the chromosome, but might not be able to reach some of the 

drivers. EA with single domain specific heuristics performed better than the 

algorithm equipped with the same heuristic as well as other general operators. 

This is because it required less time for each iteration and embedded a powerful 

mechanism of preservation of high quality diagrams, which allowed construction 

of a schedule faster by avoiding a "random walk" search.   

As the satisfaction of various objectives was incorporated into the cost function, 

cost-wise the Nearest Driver approach outperformed Single operator, Multiple 

Operator and Driver Evolution by approximately 17%, 32% and 40% respectively.  

For that reason, it will be incorporated into the EA which will be used to produce 

a schedule using real life data. 

10.5 Conclusion  

The aim of this section was the design of an effective algorithm for the solution of 

CSP. It took previously successful algorithms with Intelligent genetic operators 

and enhanced them with two mechanisms: evolution of the drivers and 

assignment of the first trip in the diagram to the driver from the previous depot.  

The comparison of the above approaches showed the effectiveness of the later 

one, even though it did not achieve a balanced workload allocation. However, it 

gained advantage in terms of the low daily cost which compensated for inequality 

in the workload distribution.  

The next chapter will consider its adaptation and deployment on the real data 

sets.  
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Chapter 11. Implication of the 
research for an organisation 

11.1 Introduction 

This chapter discusses the development of the proof of concept of the automatic 

scheduling system and its effectiveness and applicability to the real organisation. 

It explains how the incorporated EA has been adapted in order to accommodate 

some problem-specific aspects of the real CSP as well as how real life data have 

been transformed in order to meet the format requirements of the algorithm. Then, 

it moves on to examination of the benefits and risks of application of the standard 

and generalisable EA for the optimisation of crew schedules. 

Once all the modifications were made and the most-cost efficient algorithm 

generated a solution from real life data, it has been evaluated by the industrial 

experts at different levels. The evaluation procedure sought to find out about the 

implication of such a system for different business aspects ranging from day to 

day operations to overall strategic performance. In addition, the analysis of the 

software investment project was carried out to demonstrate the financial value of 

the system.  

11.2 Overview of the adaptation process 

The application of the developed algorithm on the real data sets requires 

execution of three adaptation stages which are shown on Figure 120.  The first 

stage deals with the data preparation and conversion to the format accepted by 

the algorithm. At the second stage the fitness function of the algorithm is modified 

in order to accurately reflect the cost structure. The third stage begins after 

algorithm completion and is responsible for deduction of the diagrams from the 

chromosome and their presentation in a user friendly format. These steps are 

explained in detail in the following sections.  
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Figure 120 The process of testing EA on the real data set 

 

11.3 Data preparation 
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possible (Google 2016).  Conversely, the offline download of all deadheads will 

not impact the actual time of running the algorithm, but entails design of a 

specialised downloading procedure and storage of large sets of data.   

Because the fitness function is calculated thousands of times during the course 

of optimisation, the preference was given to the offline method. Furthermore, in 

• Coding train trips

• Coding drivers' locations, route and traction 
knowledge

• Downloading information about the  
passsenger tains and taxi charges

Data 
Preparation

• Adding different types of deadhead trips 
and altering the method of the deadhead 
cost calculaton

EA

• Decoding the information about the trips

• Adding the information about the relief 
opportunities

Solution 
Decoding



225 
 

order to avoid download of a full set of trains across the UK, only the trains which 

can connect the train trips in the schedule (those that depart and arrive within the 

time window between the trips and necessary stations) will be obtained. Moreover, 

in order to limit the number of inefficient deadheads, the maximum time window 

is restricted to five hours. The sources and methods of gathering this information 

are considered below.  

Manual distance calculation. Given the latitude and longitude of both locations, 

it is possible to compute the distance between two points on the sphere. Although 

this method can provide results for a very short period of time, the accuracy of 

the journey duration between two locations might be quite poor since the roads 

are not straight and the driving speed varies on the different parts of the path. 

Imprecise information about deadheads can lead to a situation when a driver 

misses one of the trains causing disruptions to the entire schedule. In addition, 

this approach cannot provide data on the passenger train timetable. 

National Rail. As a part of the information transparency initiative, Rail Network 

shares comprehensive data regarding passenger trains (Network Rail n/d). To 

date, each data feed encompasses each single train, its stops, platforms, and 

arrival and departure times. Despite plans to release in 2015 the Darwin system, 

which supports journey planner functions and can find the possible connections 

between the trains, the deployment has been postponed and the system is still 

not in full operation.  

The currently available system might be used to obtain the timetable only of direct 

trains between two locations. However, an additional rather complex procedure 

must be designed to perform a network search to identify potential train 

connections. Moreover, its execution as a part of the fitness function would 

considerably increase the time of the algorithm as graph search techniques are 

usually NP-hard (I-Lin, Johnson and Sokol 2005, Pugliese and Guerriero 2013). 

On the other hand, the exclusion of journeys with changes would force the system 

to assign taxi trips instead of passenger trains.  

Aside from that, there are two serious drawbacks of this system which reduces 

its suitability for the given algorithm. First of all, the route is provided only from 

one train station to another disregarding possible walking and car rides to and 

from the train station. The second shortcoming is that it does not consider the 
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possible combinations of transport modes, i.e. when one part of the route is 

performed by taxi and another by train.  

Google maps. Google maps developer's service fulfils the problem requirements 

more closely: it contains the data about the rail and road transport, it is able to 

insert walking directions and is based on a fast and powerful mechanism to 

quickly discover the optimal route between two locations. Its response contains 

step-by-step journey instructions and realistic durations of each part. 

Another benefit of using Google Maps is that it provides up-to-date information 

about infrastructure objects, traffic, and public transport service availability at a 

particular date and time. This is crucial as reliance on the incorrect data about 

deadhead trips might cause disruptions to a driver’s diagram, which might, in turn, 

have a knock-on effect on the rest of schedule.  

However, unlike other sources this is a commercial service and has an annual 

subscription cost (Google 2016). But it can be noticed that Google Maps’ 

capabilities to provide more precise transfer information than other tools, and 

subsequently reduce the risk of rail freight train delays, justify the cost of the 

subscription. Therefore the Google Maps service will be used in this research. 

11.3.2 Company trains 

The import of real-life data into the devised system was one of the greatest 

challenges.  Due to significant differences in data structures used in the company 

and the one embedded in the prototype, two different sets of data have been 

obtained from the company. They consist of freight train schedules and the 

diagrams covering that schedule. Information from the train timetable comprises 

the start and end locations as well as departure and arrival times. However, it 

does not specify all the stops of the trains and the required activities.  

Another solicited data set provides already scheduled diagrams which display 

driving and ancillary activities, however it is based on missing, unstructured and 

inconsistent data (Figure 121).   
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Figure 121 Example of the data format 
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As can be seen, the time of the activities, for example in row one, is not stated. 

In addition, in the location column, the activity is placed together with the location. 

Given the size of data (more than 9000 entities), the manual correction and 

fulfillment of the data was impractical. To tackle this, the missing information was 

repaired either based on the subsequent or previous activities (when the finish 

time of the current activity is unknown) or based on the average data regarding 

the duration of certain activities.  However, for some tasks there were insufficient 

data to restore the missing attributes. Loshin (2013) argues that filling in missing 

values can be counterproductive and dangerous as it can lead the analysis in a 

completely different direction. For this reason, several activities with missing 

attributes which could not be determined are combined into blocks if they are 

between the tasks where all the required characteristics are known.  

In order to make sure that all the activities were extracted from the schedule, a 

comparison against the full train data has been made (Table 22).  

Table 22 Real life train data set comparison 

 Trip data Blocks data 

Number of pieces of work 431 905 

Total duration, min 114026 93005 

Average duration, min 264 min 102 min 

 

The analysis indicates that 18% of the activities were left unaccounted for in the 

transformation process and further refinement and manual attempts to fix it were 

unsuccessful. For this reason, the adjustment of 18% will be made when 

comparing the results of the EA based solution against the manually produced 

schedule.   
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11.3.3 Drivers 

The data about the number of available drivers in each depot has been collected 

as well. In total there are 1024 drivers who are located in 39 depots. At the 

moment, there are no electronic data linking the drivers’ route knowledge with 

train trips. Together with the Head of Service it was established that the drivers 

are familiar with the area within a 200 mile radius of their depot location. Although 

this approach might produce only a sub-optimal solution because it will prohibit 

the diagrams where the drivers with knowledge of other regions can travel further, 

the permission to drive on all the routes can lead to an unpractical solution or 

prevent the algorithm from convergence as it would widely enlarge the search 

space.  

11.3.4 EA modification 

In the experimental version, only one type of deadhead has been used. This 

simplification was made because the type of a deadhead does not influence the 

configuration of the algorithm and its performance. However, for the real life data 

there are four possible modes of transportations and they are defined in Table 

23. 
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Table 23 Types and specification of the deadhead transportation 

Mode Duration Cost Comments 

WALK Less than 15 

minutes 

0  When two locations are 

situated within 15 minutes 

from each other. 

PASSENGER 

TRAIN 

8mins-5 hours 0 The cost for the passenger 

is fixed and assumed to be 

zero in the fitness function 

calculation 

TAXI  Up to 5 hours £ 2 per 

minute 

The taxi trips have been 

restricted to five hours based 

on operation and cost 

considerations  

VANS Up to 5 hours £0.19 per 

minute  

One van is located at each 

depot and can be used by 

drivers to transport 

themselves between 

different locations.   

Each van should be 

returned to the depot at the 

end of the working day.  

 

In order to embed the given travelling opportunities into the fitness function and 

decoding procedure, the following elements have been added. 

Deadhead selection. The search for the appropriate deadhead mode is carried 

out in the following order: walk, passenger train, and taxi. The search stops when 

the suitable transportation method is found. The vans are not considered at this 

stage as they depend on the entire diagram which might not be finalised at this 

stage.  This relies on the fact the duration of the taxi trip is the same as the van 

trip and therefore will not affect the further construction of the diagrams.  

Taxi trips replacement. Once the entire diagram has been created, the 

procedure starts identifying the taxi trips, which can be substituted for a van. The 

principle of this procedure is to scan the diagram from the beginning to the end 

and notice the places where the taxi trip starts and ends. The trips where the 

driver travels to one destination and then returns from the same destination to 

the same place of origin is replaced. The taxi trip can be converted into van driving 
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if it will not exceed the maximum driving time allowance.  The cost difference is 

then subtracted from the total cost.   

Selection process. In addition to the reduction of cost, it has been mentioned 

that the company is interested in the minimization of the number of drivers as well. 

Because the revenue associated with the number of drivers is hard to model, it 

was decided not to include this information in the fitness function. However, in 

order to reflect this preference, some adjustments were made in the selection 

process.  In the case when two chromosomes have the same cost, the selection 

gives higher preferences to the chromosome with the minimum number of 

diagrams.  

11.3.5 Solution construction 

Once the solution has been identified, the schedule builder assembles the 

diagrams from the chromosome and enhances them with supplementary details 

of the deadhead directions and non-time consuming activities (i.e. relieving the 

drivers, booking on and off). These activities are added at the end because they 

do not affect the schedule, but would consume a significant portion of 

computation time if they were a part of the algorithm. 

11.3.6 Proof of concept design 

In order to demonstrate the automatic crew scheduler logic, a proof of concept 

has been designed. The screenshots are illustrated on Figure 122-Figure 124.  

The window in Figure 122 exhibits the coded data denoting all the trips and 

geographical locations, as well as the drivers and their knowledge. The panel on 

Figure 123 allows the selection of EA parameters. Finally, the window and charts 

in Figure 124 help to explain how the process of the evolution works. The charts 

present how the cost components develop under the evolution process. They 

show how the overall cost reduces as well as the changes caused to the actual 

cost of the schedule and the losses associated with unequal workload distribution 

and deviation from the target shift length.  

The average diagram parameters are presented above the graphs and indicate 

the average throttle time per diagram, average deviation of the diagram from the 
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target shift length and the average number of deadhead transportations in one 

diagram.  

 

Figure 122 Demonstration of the input data 

 

Figure 123 Screen shot of the prototype: Selecting EA parameters 
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Figure 124 Screen shot of the prototype: evolution process demonstration 

 

11.4 Optimisation of the real-data set with Nearest Driver EA 

Once all the data have been transformed into the appropriate format, the 

algorithm with the parameters and operators described in section 10.3 is 

executed.  The graphs in Appendix 10 exhibit one of the runs of the algorithm and 

show the improvements of the cost function and corresponding changes of its 

components.   

Each run lasted 24 hours and the algorithm was repeated 10 times. Table 24 

presents the average results. The allowance of 18% was made in order to 

compensate for the missing data.  It is important to note that this represents the 

worst case scenario as if these activities were scheduled separately. It is 

anticipated that scheduling all activities together would lead to a better solution 

due to the consolidation of the short diagrams and the opportunity to travel as a 

passenger on the freight trains. 
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Table 24 Average cost of EA- produced schedule on the real data 

   EA solution EA solution with 18% adjustment 

Driver Cost £116,769 £137,787 

Taxi Cost £12,601 £14,869 

Vans cost £880 £1,038 

Number of diagrams 348 410 

Cost of deviation £20,192 £23,827 

Workload cost £15,022 £17,726 

Daily cost £130,250 £153,695 

Long-term cost £35,214 £41,553 

Total Cost £165,464 £195,248 

 

11.5 Cost-benefit analysis of the generalizable algorithm 

Throughout this research several configurations of the algorithm have been 

considered. These configurations can be presented on the customisation 

spectrum, where standard EA lies on the one side of the spectrum and EA with 

specifically developed chromosome representation and tailored genetic 

operators on the other. Two EAs in the middle of that spectrum are the EA with 

multiple operators and the EA with intelligent operators, but standard 

chromosome representation.  

11.5.1 Cost 

The cost of producing various algorithm configurations is measured based on the 

development time. The time estimate was derived from the actual research time 

which was spent on performing each activity. The table below displays the time 

per each development stage and the total time required to produce each 

configuration of the algorithm. 

While each algorithm required the same efforts for problem understanding and 

analysis, the solution design, development and testing times vary significantly 

across the configurations. Interestingly the difference between completing EA 

with standard and multiple operators is only one week. This is because the code 

production time for the multiple operators is compensated by the reduction in the 

test time for multiple operators (as the algorithm tests the operators and selects 
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the best automatically). Customised algorithms, on the other hand, required 

creation of the novel operators and more complex chromosome representation 

which significantly increased the amount of design and build efforts.  

Table 25 Algorithm development efforts 

  Analyse Solution 

Design 

Build Test Total 

Standard EA 16 weeks 2 weeks 2 weeks 8 weeks 28 weeks 

Multiple operators 

EA 
16 weeks 4 weeks 6 weeks 3 weeks 29 weeks 

EA with intelligent 

operators 
16 weeks 7 weeks 5 weeks 5 weeks 33 weeks 

Customised EA 16 weeks 9 weeks 7 weeks 9 weeks 41 weeks 

 

The development cost of each algorithm is calculated based on the duration of 

each stage presented in Table 25 and the UK average labour cost. The average 

salary for the specialist with the required expertise was obtained from job search 

web-site, Glassdoor (2016). The fixed cost of programming software and 

equipment is omitted at this stage as it is identical for all configurations and will 

have no impact on the results’ comparison.   

Table 26 Algorithm development cost 

 
Analyse 

(Business 

Analyst) 

Solution 

Design 

(Software 

Engineer) 

Build 

(Software 

Developer) 

Test 

(Software 

Tester) 

Total 

Annual Salary £40,000 £61,074 £39,155 £25,712  

Standard EA £12,308 £2,349 £1,506 £3,956 £20,118 

Multiple operators 

EA 
£12,308 £4,698 £4,518 £1,483 £23,007 

EA with intelligent 

operators 
£12,308 £8,222 £3,765 £2,472 £26,766 

Customised EA £12,308 £10,571 £5,271 £4,450 £32,599 

 

11.5.2 Benefit  

The schedule cost estimates have been produced using the results about the 

relative efficiency of each of the algorithm configuration presented in Chapter 9 

and real life schedule cost delivered by the Nearest Driver configuration (section 

11.4). The estimated schedule costs for the other configurations are displayed in 

Figure 125. The bar chart shows two values: the estimated average cost obtained 
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with the certain technique and the percentage difference with the lowest cost 

solution produced by the Nearest Driver configuration.  

 

Figure 125 Cost of the schedule and the percentage difference with the most efficient one 

The cost comparison of the above results with the actual solution (Figure 126) 

revealed that non-fully customised algorithms do not outperform the manual 

schedule. This is because their solutions utilise a larger number of drivers which 

has an adverse impact on additional revenue streams. This is discussed in detail 

in section 11.7.2. 

 

Figure 126 Cost difference between the manual schedules and EAs 
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schedule. Assuming that standard EA does not provide any benefits, the cost 

saving advantages of using other algorithms have been measured against the 

EA with standard genetic operators. The graph on Figure 127 shows the cost 

differences between the standard EA and its various configurations.  

 

Figure 127 Relative benefits among the algorithm 

The results indicate that while application of multiple operators provide certain 

benefits to the standard algorithm, the most economic schedule was produced 

by the algorithm with unique chromosome representation and tailored genetic 
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Since both the benefits and development cost depend upon algorithm 
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section 3.5.5 in order to compare the cost-efficiency of the algorithms. The 
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This means that although EA with multiple operators appears to be more 

transferrable across different problems and the companies can achieve 

significant economies of scales by re-using the same algorithm for various 

optimisation problems, the investment in design of fully customised EA for each 

problem would be the most profitable solution. 

 

Figure 128 Relative savings per pound invested 

11.6 Results Evaluation and Discussion 

Since it was established in section 11.5.3, that the fully customised algorithm with 

Nearest Driver configuration is the most profitable amongst other EAs, further 

analysis will be solely focused on that technique.  
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which might have a potential cost of £20,265 at the end of the year. Likewise, the 
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constituted 91 minutes, which might cost a company £24,948 if it is not stabilised 

on other days.  
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Table 27 Comparison of the cost of manually and automatically produced schedules 

 

EA solution 

with 18% 

adjustment 

Manual Difference 

Driver Cost £137,787 £143,827 £6,040 

Taxi Cost £14,869 £13,038 -£1,831 

Vans cost £1,038 £653 -£385 

Number of 

diagrams 
410 414 

4 

Cost of deviation £23,827 £24,949 £1,122 

Workload cost £17,726 £20,265 £2,539 

Daily cost £153,695 £157,518 £3,823 

Long-term cost £41,553 £45,214 £3,661 

Total Cost £195,248 £202,732 £7,484 

 

It can be seen from Table 27 that while the cost for the drivers has been 

significantly reduced, the cost of the taxis has increased substantially. This was 

caused by the amalgamation of the trips by the means of the deadhead 

transportation, which was necessary in order to include more trips into the 

diagrams and to reduce the total number of drivers. In most cases this was 

achieved by the insertion of a taxi trip because the train trip did not fit into the 

available interval of time or the connection was required at late or early times 

when passenger trains do not operate. Nevertheless, the overall crew day cost 

has been reduced by £3,823 on average.  

Moreover, the automatically produced schedule distributed workload more 

equally amongst the depots as well as producing shifts with reduced deviation 

from the ideal shift length. Thus the savings from the balanced work allocation 

constitute £3,661, while the total savings a day reach £7,484. 

In the produced schedule we could not find any solutions similar or identical to 

the manual diagrams. Therefore, the automatically constructed diagrams were 

presented to the crew scheduling experts in DB-Schenker, who were asked to 

give their opinion on each diagram and evaluate its overall quality and feasibility. 

The next section explains the evaluation procedure and reports the results from 

the assessment session.  
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11.6.1 Diagram sample evaluation 

In order to verify real life feasibility of the diagrams and their conformance to all 

industrial regulations, a randomly extracted subset of the diagrams was shown to 

the scheduling experts. These diagrams are included in Appendix 11.  The 

comments regarding each diagram are outlined below.  

Diagram 1. The unnecessary mobilisation of train activity (11:47-12:03) was 

spotted in diagram one. The activity is not required because the driver relieves 

the previous driver meaning that it is very likely that the engine has already been 

started. Another comment regarding this diagram is that the assigned Walk 

activity (19.31-19:34) from Immingham Lindsey Refinery to Immingham Hit Coal 

Facility is impossible as it is an industrial area and there is no footpath. This 

implies that either a taxi trip or van should be inserted instead.  

Diagram 2. This diagram received three comments. The first comment is that the 

driver is expected to walk to the Immingham TMD (traction maintenance depot) 

first to get the necessary equipment before performing the attachment of the 

wagons. The second comment is that the break (18:55-19:10) was superfluous 

and is not required by the health and safety regulations. The third observation 

was that there is no area to take a break at the Immingham SS (19:34-20:50).  

Diagram 3. This diagram was approved by all schedulers because it not only 

satisfied all the regulations, but also effectively combined the trains from two 

different manual diagrams into one.   

Diagram 4. According to the specifics of the operations, a FS (freight shunt) 

activity should be between PR (propel) and Driving (08:42-08:48). The train 6J94 

could not be verified as it does not run any longer, but it was suggested that the 

driver cannot leave a train in Goole unattended, so the driver should have spent 

all day at that station. The assigned break in Immingham SS at 09:00-10:09 

cannot take place due to the absence of the required facilities. 

Diagram 5. This diagram was given a similar comment to Diagram2: the driver 

should have visited Mossend TMB before performing the attachment of the 

wagons (09:03-09:23). In addition, due to the large length of train 6G25, attaching 

the wagons takes more time as those wagons should have been inserted in the 

middle of the train, so the train should be decoupled first. This means that more 
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time should have been allocated for the activity.  Another remark is that MOB 

(mobilise train) activity is usually performed after loco preparation (PL at 17:43-

17:58) and before driving. It was also noted that the train trip effectively replaced 

a part of the taxi trips (10:48-11:53). 

Additional Comments. During the discussion additional information came up, 

which highlighted the limitations of the current algorithm, and in particular the 

schedule builder functionality.  

The sequence and duration of the activities depends on a large number of factors: 

terminal infrastructure, commodity types, types of wagons, and even sometimes 

client preferences and capacities.  For instance, the freight shunt activity can be 

performed either by the driver or by the freight recipient company. This activity 

also varies in duration, which is determined by the level of automation at the 

client’s site as well as the amount and type of loads. Likewise, attachment and 

detachment depends on the number of wagons and train configuration. Moreover, 

some activities can only be executed at specific stations. For example, reversing 

the train engine can be performed only at certain terminals with a special rail track 

infrastructure, and a driver can have a break at the stations or passenger trains 

with necessary facilities.  

These limitations resulted from the built model, which did not incorporate the 

above-mentioned rules. However, as Rensburg (2011, p.1710) pointed out, the 

main objective of the model is to solve the problem and in order to do so, 

sometimes it is necessary to "eliminate those real-world details that do not 

influence the relevant goals of the problem". Another factor that contributed to 

these limitations is that the schedulers did not mention the rules at the interview 

process. According to Freeze and Schmidt (2015, p254), this represents tacit 

knowledge, which is "unspoken relations and patterns that help individuals store, 

organise and retrieve relevant information at appropriate times". The extraction 

and documentation of such knowledge usually present a great challenge, since 

people might struggle to explain or to recall all the details of the process.  
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11.6.2 Overall impression 

Once all the comments were obtained, the schedulers were asked a number of 

questions regarding their opinion on the diagrams and the automatic system 

overall. The questions and the answers are discussed below.  

Question: In your opinion, to what extent do the diagrams comply with all the 

regulations (i.e. maximum diagram duration, maximum working time, minimum 

breaks etc.)?  

Answer: Diagrammers came to the conclusion that the duration of the breaks, 

driving times and the diagram duration satisfy the health and safety regulations, 

and in fact the system placed more breaks than required. However, it was pointed 

out that some of the locations do not have necessary facilities and need to be 

reconsidered.  

Discussion: Indeed, at the moment the system does not take into account the 

location when assigning a break. However, it is possible to resolve this in future 

research by collecting the information about the stations’ and trains’ facilities and 

integrating them in the schedule builder. Concerning the larger number of breaks, 

this happened because the driver could not be assigned to any tasks at the 

particular time, so the system reserved it for a break in case that there would be 

no time slot for a break later. This is relatively simple to fix by designing a 

scanning procedure, which would check the diagrams and remove unnecessary 

breaks once all the diagrams have been constructed.  

Question: Does it contain all the necessary information for the drivers to perform 

the tasks?  

Answer: Verification of all the abbreviation used in the diagrams showed that they 

are correct and recognisable by drivers. The location and time of the trains were 

also verified and approved. It was also noted that the different layout of the 

diagrams (Figure 129, Figure 130) might be a bit unusual for the drivers and 

would take time to get used to, but is not a major problem.   



243 
 

 

Figure 129 Example of the diagram produced by the algorithm 

 

Figure 130 Example of the diagram produced manually 

Some issues were spotted which would restrict the performance of some of the 

activities included in the diagrams. For instance, in some locations walking is 

impossible and highly dangerous (e.g. an oil refinery terminal). In addition, 

despite the short geographical distance, some locations require longer 

transportation times to the trains due to security checks and gates.  

It was also recommended that it would be worth specifying at what time the driver 

should relieve another driver as it does not always happen on the arrival of the 

trains as the train can stay at the terminal a long time. 

 
 

ADDITIONAL INFORMATION  
  

Route Codes  
 
Special Instructions 

 
  
Train Details  

  
Head Start From To Arrive Customer Commodity  
Code  

  
 
Notes  

 BOFF Book Off  
 BON Book On  
 FB45 Facility break for 45 minutes  
 IMM Immobilise Loco  
 PASS Passenger (Ring Commodity Control First)  
 REL Relieve  
 RELD Relieved by  
 
 

EWS                                        TRAINCREW DIAGRAM  
  
Turn No. WY0002/811 (Driver)    Days Run - SX Depot - Westbury Depot  

  
 Start - 05:10                  Finish - 16:10 Duration - 11h00m  
  
Loco/ Acti- Details Arr. Dep. Head Days Notes  
Unit vity    Code Run  
 
         
 REL WY1754 at 0525 MO       
 REL WY0756 at 05.25 MSX       
         
 ETHR Either       
         
59/0  Westbury Up Reception  05:27 7A14 SX   
  via Swindon       
 PATH Highworth Jn 06:37 06:45     
 PATH Wantage Road 07:09 07:24     
 PATH Didcot North Jn 07:40 08:00     
 PATH Oxford Nth Jn 08:20 08:28     
  Oxford Banbury Road G.F. 08:34 08:36     
 FS Oxford Banbury Rd 08:39      
 IMM Immobilise Loco       
         
         
 FB45 Facility break for 45 minutes       
         
         
 MOB Mobilise Loco       
59/0 FS Oxford Banbury Rd  13:06 7C54    
  ( To Whatley )       
  Oxford Banbury Rd G.F. 13:09 13:11     
 PATH Challow 13:58 14:06     
 PATH Swindon East Loop 14:30 15:02     
  Westbury Down T.C. 16:00  7Z50    
         
 OR Or       
59/0  Westbury Up Reception  05:27 7A15    
 PATH Swindon 06:33 06:35     
 PATH Highworth Jn 06:39 06:45     
 PATH Wantage Road 07:09 07:24     
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Comment: While the last comment can be tackled with the utilisation of the train 

timetable information, the procedures at different locations and their 

characteristics might be hard to obtain and would require a comprehensive 

analysis of the sites and stations. 

Question: To what extent can the automatically generated diagrams help you in 

your daily work (i.e. as a starting solution)?  

Answer: In terms of the practical use, the general reaction was “probably rather 

no, than yes”. They elaborated by saying that “it would be good to know it in 

theory how it should be, but in practice…I don’t think I would use it”. They also 

said that the schedule is currently constructed “bit by bit” meaning that every time 

a customer order changes, the trains are just added or removed to and from an 

existing schedule.  

Although this approach can be less disruptive, over time, such modifications can 

result in a highly inefficient schedule. The schedulers agreed on that point and 

added that it could be possible to re-optimise it from time to time but not daily.  

Comment. This response was slightly unexpected since the system was aimed 

at providing a better solution and it was intended to simplify the daily tasks of the 

users.  

Markus (1983) analysed the factors which can lead to unacceptance of 

organisational changes, and in particular the resistance to information systems. 

She categorised them into three groups: people orientated, system orientated 

and integration orientated.    

In terms of the people orientation, psychology research claims that such factors 

as age, gender, culture, background and technological experience have a 

significant impact on the perception of an IT system (Morris, Davis and Davis 

2003, Freeze and Schmidt 2015, Laumer et al. 2016). However, Davis and 

Songer (2009) found that in architecture, engineering, and construction industries, 

where their research has been carried out, no correlation was found between age, 

education and technology resistance. Having no information about the 

schedulers’ background and controversy in the research conclusion, this concept 

cannot be used to explain the rejection of the system. 
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The second principle is the system oriented approach, which is applicable when 

a new IT system does not meet the expectations of the users or cannot correctly 

and timely perform its functions (Davis and Songer 2009, Misir et al. 2013). There 

are a number of limitations of the current prototype such as a basic user interface, 

the diagrams that were unfamiliar to the users, and the small location errors. 

These could significantly undermine the core value of the system and its 

usefulness. Although these problems can be tackled in future versions, the 

negative reaction can be explained by the short-term focus concept defined by 

Oreg et al. (2008). He states that short-term focus “involves the degree to which 

individuals are preoccupied with the short-term inconveniences versus the 

potential long-term benefits of the change”(Oreg et al. 2008, p936) . 

Furthermore, the proposed system also breaks the standard “bit by bit” diagram 

construction pattern and replaces it with the verification of the already created 

diagrams.  Oreg (2006) states that in general people tend to have a negative 

opinion about the novel systems and the things they were previously unaware of. 

Several researchers showed that users who have been working with the current 

system for a long time are less likely to recognise the business needs of updating 

it (Lapointe and Rivard 2005, Haerem and Rau 2007, Bhattacherjee and Hikmet 

2007, Klaus et al. (2010), Bhattacherjee and Hikmet 2007). 

Another approach which can explain the reaction of the experts is the integration 

orientation, which suggests that rejections and scepticism of a new IS are caused 

by potential consequences of its implementation such as alterations in job 

structures, reduction of autonomy and change of power. Potentially the negative 

response was caused by a subconscious fear that they might have less 

involvement in the familiar diagram construction process and change in the 

responsibilities to the inspection and quality checks of the created diagrams.  

Not the least important aspect was the role the introduction of the research played. 

The title of the research and the utilised algorithm could create an impression that 

the automatic system is complex and can “replace their work”. Oreg (2006) states 

that such predispositions tend to form negative perceptions of a new system. 

Furthermore, Baruch and Hind (1999) and Probst (2003) argue that employees 

tend to react negatively to an organisational change if it threats their job security.  
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Question: Could you please evaluate the standard of the diagrams in general? 

Answer: The diagramers came to the conclusion that at the moment the diagrams 

are not feasible and cannot be safely operated. In addition to the above 

mentioned comments, they were concerned that the diagrams do not provide 

different route options, which are useful at the rostering stage. Since drivers have 

different sets of route knowledge, the rostering staff would be left with more 

options for driver assignment.   

Comment: The relevance of the comment is twofold. On the one hand, the 

automatically produced schedule ensures that the driver with the corresponding 

route and traction knowledge is available. On the other hand, it does not deal with 

the rostering operations and does not possess the information about the previous 

working time of a particular driver.  

11.6.3 IT perspective 

According to the Application and Projects Manager (interviewed on 09/12/2015) 

the currently existing IT system is not up-to-date and has a limited scalability. 

However, it is undergoing revision and drastic improvements, after which the 

algorithm can be integrated as a back office process into the new platform. In 

such a case, the level of changes and required efforts are assessed as moderate 

and the duration of the implementation project is estimated at six weeks. Since 

the algorithm can function together with the existing system, the risk of the system 

failure is considered as relatively low (Application and Projects Manager 

interviewed on 09/12/2015).       

The major difficulty is the transformation of the data into the new format. The 

problem of misspelt and missing data discussed in section 11.3.2 was caused by 

the manual data entry.  

11.6.4 HR perspective 

The potential impact of the new system on the staff will be considered from two 

perspectives: from the driver perspective and from the schedulers’ perspectives. 

Although the automatically generated diagrams group the work activities in a 

different manner compared to the existing diagrams, the Head of Service 

(interviewed on 09/12/2015) states that this is acceptable as it does not exceed 



247 
 

driver fatigue levels. Moreover, many research publications have confirmed that 

monotonous and repetitive jobs have a detrimental impact on performance (Jay 

et al. 2008, Jap, Lal and Fischer 2011, Othman, Gouw and Bhuiyan 2012). Since 

the new schedule needs to be created each time, it will have a positive influence 

on the drivers’ performance as well as allowing them to drive on different routes. 

This would prevent them losing the knowledge of various routes and hence less 

training will be required.  

From the perspective of the scheduling staff, the new system entails two possible 

alterations in their job functions. First of all, it involves the elimination of 

geographical barriers, when each scheduler was attached to a particular region 

and now they might need to work with different areas. Secondly, the nature of the 

job would shift from generation to verification of the diagrams. In the opinion of 

the Head of Service (interviewed on 09/12/2015), half of the schedulers would 

welcome the system, whereas the other half might be a bit sceptical.  

11.7 Investment evaluation 

This part analyses the impact of the system on an organisation’s financial 

performance and calculates key investment indicators allowing assessment of 

the profitability and value of the new system acquisition. Typically, the decision 

to invest or not to invest is taken based on the evaluation of three factors: cost, 

benefits and risk (Asakiewicz 2011). These factors are calculated for the system 

investment project and are displayed in Table 28. 
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Table 28 Automatic Crew Scheduling System Investment Analysis 

Cost 

Labour cost  

Business analyst  £24,615.38 

Software engineer  £15,268.50 

Software developer £23,342.40 

Software tester £10,383.69 

Software cost  

Programming software  £10,000.00 

Google API 5-year subscription  £10,000.00 

Miscellaneous cost  

Events Attendance  £2,500.00 

Travel Cost   £1,360.00 

 Total Cost   £97,469.98 

    

 Benefits  

Cost of deviation  £204,765.00 

Workload cost  £926,735.00 

Taxi Cost   -£668,315.00 

Vans cost  -£140,525.00 

Opportunity Cost  £500,000.00 

Total £822,660.00 

    

Investment analysis 

Interest rate  0.50% 

Payback period 0.12 

ROI (%) 41.20 

Profitability Index (PI) 33.13 

NPV year 1 £822,660.00 

NPV year 2 £822,660.00 

NPV year 3 £822,660.00 

NPV year 4 £822,660.00 

NPV year 5 £822,660.00 

NPV £3,229,653.19 

    

3. Risk (standard deviation of the results) 5,7% 

 

11.7.1 Cost 

The labour cost estimate consists of two components: the cost of the initial 

prototype development (as discussed in section 11.5.1) and the further system 

enhancement as per schedulers’ comments. Table 29 provides the details of both 

cost components.  
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Table 29 Labour cost for scheduling system development 

 
Annual 
Salary 

Prototype 
development 

(weeks) 

Prototype 
enhancements 

(weeks) 

Prototype 
Cost 

Enhancement 
cost 

Total 
Cost 

Business 
Analysis £40,000 16 16 £12,800 £12,800 £25,600 

Solution 
Design £61,074 9 4 £10,993 £4,886 £15,879 

Build  £39,155 7 24 £5,482 £18,794 £24,276 

Test £25,712 9 12 £4,628 £6,171 £10,799 

Total 
 41 56 £33,903 £42,651 £76,554 

 

In addition to the labour and software cost, there are several miscellaneous costs 

for travelling and attendance of related conferences and events, which allows for 

sharing ideas and best practices. However, there were several assumptions 

when calculating the cost. They are stated below: 

1. The role of project manager will be performed by existing staff in the 

organisation and no additional cost will occur. 

2. The system deployment will be conducted by the existing IT manager. 

3. No consultancy fees are applied. 

4. IT infrastructure is able to accommodate the system enhancement 

therefore no additional investments in infrastructure are required. 

5. The test environment already exists in the organisation. 

6. The user training cost is omitted as the final number of users and their 

competencies are not known. 

11.7.2 Benefits 

In general, the benefits from application of the software for the train driver 

scheduling derive from two types of costs: avoidance and opportunity. Avoidance 

cost is represented in reduction of the excess driver payments for the time 

exceeding the normal annual contractual hours together with the losses 

associated with the imbalanced workload distribution amongst the depots.   

In addition, the comparison in Table 27 illustrates that the automatically produced 

software engages four drivers fewer than the manually produced software. There 

are two potential courses of action the company might want to take to respond to 

this situation. In the first scenario the organisation can make redundancies in 

order to save the cost. In this case, based on the annual contractual hours, the 
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total savings a year would be equal to £160,000 (Head of Service interviewed on 

09/12/2015). However, this might lead to trade union actions and the payment of 

compensation packages. Furthermore, it would also increase the risk of having a 

shortage of drivers should the demand increase.    

The second scenario suggests keeping all the drivers, but to start accepting more 

customer orders. According to the Head of Service (interviewed on 09/12/2015), 

there is sufficient additional demand for the freight transportation services and 

having four available drivers can drive the revenue by up to £500,000 a year.  

Therefore, the total benefit from the implementation of the software can 

hypothetically rise to £822,660 a year.  To compute the return on investment and 

profitability index, it will be assumed that the demand will remain constant and 

the interest rate will be taken as 0.5% (Bank of England 2016). Given that, it is 

expected that the initial investments should recoup within 44 days while return on 

investment will reach 41.2% in the first year and the profitability index is 33. 

Because the lifecycle for the product is estimated to be five years (the frequency 

of contract and regulations changes which need to be reflected in the algorithm), 

the NPV was calculated for the next five years reaching £ 3,229,653 by the end 

of year 5. Based on the given analysis, the investment project is regarded as 

attractive.  

11.7.3 Risk 

The last parameter which needs to be considered when making an investment 

decision is the risk which might affect the performance and hamper the operations.  

As discussed in section 11.6.3, the risk associated with system failure is 

perceived as relatively low. This is because of two factors. First of all, the 

company has its own IT department which has expertise in the industry and in 

the current IT system. This enables the company to rectify any issues relatively 

quickly. The second factor is that the automatic scheduler will not completely 

replace the existing system and thus the automatically produced solution can be 

either partially or entirely overridden by the users.   

The risk associated with the algorithm itself is its inability to deliver a high-quality 

solution. To estimate the level of solution fluctuation a standard deviation of the 
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final results of the ten runs has been computed and achieved 6%, which is quite 

reasonable for such an investment project.  

11.8 Operational perspective  

This section examines how the existing process of constructing a full driver 

schedule would be transformed if the system were implemented in the company. 

The radar chart in Figure 131 illustrates the potential changes in the process 

performance based on the five key performance indicators.  

 

Figure 131 Key process performance indicators 

Speed The developed EA is expected to significantly accelerate the current 

scheduling process. At the moment, diagram construction operations take three 

days and several departments participate in the process. With the automatic 

scheduler, it is possible to obtain a schedule within 24 hours, which also can be 

done during the weekend. So on Monday the schedulers would only need to 

revise the schedule and perhaps make minor amendments. In this case the 

automatic system would reduce not only the time needed to produce the schedule, 

but also the number of staff involved in that process.  

Flexibility is expected to increase as well. The current practices are relatively 

inflexible in terms of insertion or removal of trips into and from existing diagrams, 

either of which is carried out without the consideration of the full schedule. 

Moreover, in most cases, this change entails the creation of new diagrams for the 

last-minute trains, which requires the involvement of additional drivers. The 
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designed algorithm allows effective incorporation of the new trips into the existing 

schedule by the timely re-running of the algorithm.  The only limitation of the 

current version is that the algorithm does not have the capability of partial re-

scheduling and might change a whole schedule rather than only the affected parts 

of it.  

Cost From the cost perspective, the EA can produce a more cost-effective 

schedule and decrease the total cost of the schedule by £7,484 a day. The 

detailed analysis is presented in the Table 27.    

Quality The impact of the EA on the quality of the scheduling process is twofold. 

On the one hand, the algorithm is able to produce a more balanced schedule in 

terms of the driver utilisation and work distribution. On the other hand, the 

evaluation reported in Section 11.6.1 revealed that it lacks the expert knowledge 

of certain locations and particulars of the operations. For this reason, the quality 

score remains unchanged.  

Dependability Quality inspections of the diagrams generated with the EA did not 

identify any missing trains or incorrect departure or arrival times.  The devised 

algorithm is more reliable than manual practices as it is able to deliver a schedule 

by the specified time, whereas the exact completion time of the manually created 

diagrams can vary. The only possible reason for the algorithm’s failure is faulty 

equipment or a power outage, which are very rare events.  

11.9 Strategy 

No matter how modern the IT system is or what algorithms it is built from, there 

would be no value for it if it does not help to achieve, or worse, conflicts with the 

strategic objectives of the organisation. This section investigates the extent to 

which the proposed system would be aligned to the company's strategy.  In order 

to do this, DB-Schenker’s mission and strategic principles will be outlined first 

and then the role and possible effect of the Automatic Crew Scheduling System 

on the strategic performance will be analysed.  

11.9.1 Description of DB-Schenker’s Strategy 

DB-Schenker’s strategy rests on three aspects of their business: Social, Ecology 

and Economy (Figure 132). The social part stands for the creation of the 
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comfortable working environment, retention of current staff and being attractive 

for potential employees. Corporate culture and employee satisfaction form one of 

the main strategic priorities for DB-Schenker (DB-Schenker n/d).  Furthermore, 

the company constantly calculates the job attractiveness indicator and strives to 

achieve higher and higher scores (DB-Schenker n/d) .  

The Ecology side of the business focuses on the reduction of CO2 emissions and 

aims to make the trains less disruptive for communities and less harmful for the 

environment.  

The Economy area consists of two parts: Customer & Quality and Profitable 

Growth. The first part concerns the provision of exceptional service to customers 

while the second part ensures that the business remains profitable. With regard 

to the latter, the company puts “optimisation of the business processes”, 

“competitive cost structures”, “innovative products” and “market growth” in the 

centre of their DB2020 plan (DB-Schenker n/d). Besides, DB-Schenker aims at 

achieving high capacity utilisation and high productivity (DB-Schenker n/d).   
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Figure 132 Aspects of DB-Schenker’s Strategy 

 (Source: DB-Schenker n/d) 

 

11.9.2 Alignment of the Automatic Scheduling System with the strategic 

goals 

The developed automatic scheduling system contributes to the achievement of 

two out of three strategic priorities: Economy and Social. Table 30 demonstrates 

how the designed algorithm addresses a number of strategic objectives and 

contributes to their attainment.  
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Table 30 Automatic Scheduler alignment with the organisational strategy  

Strategy 

part 

What aspects the IS 

address 
How IS helps achieve strategic objectives 

Social Employment condition By implementing the automated system 

and providing a schedule faster, the 

schedulers would have more time to 

review, edit and make amendments if 

necessary. This should make the job less 

stressful as they will not be operating to 

extremely tight deadlines. Struebing 

(1996) states that realistic deadlines are 

one of the ways to reduce stress which 

could lead to poor performance and 

decreased productivity. In addition, after 

the implementation of the new system the 

staff can be involved in making more 

strategic decisions instead of performing 

routine tasks. Morris and Venkatesh 

(2010) observe that the significance of the 

task given to staff correlates with job 

satisfaction, while job satisfaction directly 

correlates with staff retention (Johnson 

and Yanson 2015).  In addition, Limbu, 

Jayachandran and Babin (2014) showed 

that technology not only positively 

influences staff performance, but can also 

increase job satisfaction as well. 

Personnel development Implementation of the new IT system 

implies the training of staff with the latest 

technological developments. 

Strategic workforce 

planning  

Ability to quickly run the algorithm allows 

"What if" analysis to be conducted to 

identify and plan the number of required 

drivers on a particular day at a specific 

depot. 

Staff acquisition All of the above might result in making the 

job more appealing to new staff as well as 

elevating the retention of current DB-

Schenker employees. 

Profitable 

Growth 

Optimisation of existing 

business 

The automatic crew scheduling system 

increases the effectiveness of the diagram 

construction and enables better utilisation 

of the drivers while satisfying all health and 

safety measures. 
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Innovative growth The system is built on one of the latest 

technological advancements. i.e. GAs, 

which are a rapidly growing area of 

Artificial Intelligence. Mithas and Rust 

(2016) showed that the organisations that 

have technology advancement at the core 

of their strategy have a higher revenue and 

lower cost compared to those that 

undervalue the role of technology. 

Market growth The analysis showed that the better 

utilisation of drivers implies acceptance of 

more customer orders, which boosts the 

revenue and increases market share.  

 

11.10 Conclusion 

This chapter has presented the adaptation of the devised EA to real life settings 

and discussed the results of a comprehensive evaluation of the system’s 

applicability. The profitability analysis of the spectrum of the algorithms proved 

that the fully customised algorithm delivers significantly better results than re-

usable and transferable algorithms even though the development cost is larger.  

Despite the issues with the format incompatibility of the data and consideration 

of the worst case scenario, the developed customised EA has obtained promising 

results and managed to outperform the manually generated schedule. The 

success of the automatically produced solution stems mainly from balancing 

workload distribution across various regions and reduction in the driver cost. This 

result was achieved by having a centralized view of the problem and analysis of 

a vast number of options which a human mind cannot process.  In addition, the 

human schedulers perhaps try to avoid having the long taxi trips because this 

increases the cost of the diagrams they are responsible for. However, as has 

been shown, connecting taxi trips might be advantageous for the schedule overall, 

but the decision of which taxi trip should be included cannot be made without 

having a picture of the entire schedule.  

The appraisal of the diagrams by the expert schedulers highlighted some of the 

limitations of the current model, which caused a disbelief in the system 

applicability in their everyday work. Conversely, the managers demonstrated an 

interest and seemed enthusiastic about the new system. This phenomenon has 
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also been observed by Strebel (1996), who stated “Managers at the top of the 

organizational hierarchy see change as an opportunity to improve the company 

and advance their careers. For other employees, the change is unwelcome”.   

The investment analysis indicated that the proposed algorithm can bring 

substantial savings and revenue opportunities to the company and that the 

investment is worthwhile. Further appraisal of such a system revealed that if the 

automatic scheduling system were implemented in the company it would increase 

operational effectiveness and contribute to the achievement of the company's 

long term strategic objectives.   
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Chapter 12. Conclusions and future 
research directions 

12.1 Introduction 

The design of an optimal and cost-efficient schedule for such real life scheduling 

problems as crew scheduling and job-shop scheduling is a very challenging task. 

This is because they not only consist of a large number of jobs, but also because 

they are very constrained by industrial regulations and contain a large number of 

technical rules underpinning these operations.  

As demonstrated in Chapter 5 and Chapter 7, the exact integer programming 

methods are not always practical as they require generation of all the schedules, 

which is a very time consuming process for the real-life scheduling models. On 

the contrary, the metaheuristic methods described in Chapter 2 can effectively 

handle a large set of data and provide a reasonable solution within an acceptable 

time frame.  

An evolutionary algorithm has been selected for this research rather than other 

metaheuristic algorithms for its ability to work with population of the solutions, 

exploitation and exploration capabilities and capacity to retain a good solution in 

the population. Other metaheuristic methods such as Simulated Annealing and 

Tabu Search are single solution based techniques, which work only with one 

solution and are not able to exchange good properties between two or more 

solutions to create a superior one. Ant colony optimisation is a population based 

method, but it is more suitable for the problems which can be presented in the 

form of a graph (e.g. travelling salesman problem).  

Going further, Chapter 9 demonstrated that as developed in Chapter 8, intelligent 

operators for an EA are more efficient than standard genetic operators. This is 

because the devised operators take into account the domain-specific information 

when exchanging and permuting genes between parents.  

The conceptual comparison of CSP and JSSP in sections 8.3 and 9.5 proved that 

while it is possible to design an EA applicable to both problems, the efficiency of 

such an algorithm appeared to be relatively low. Furthermore, the experimental 
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results demonstrated that the schedule produced by a generalizable algorithm is 

on average 48% more expensive than the schedule produced by a customised 

EA. This is because a permutation based chromosome representation which was 

suitable for both problems could not accommodate the variation of the 

assignment of operations in JSSP. The rigid chromosome representation 

precluded fast construction of the schedule for CSP as it was unable to 

manipulate the position of the drivers in the chromosome.   

Further analysis in Chapter 10 indicated that although development of the 

customised algorithm required more financial resources, the profitability index 

was 50% higher for the customised algorithm than the generalizable one. Given 

the comparatively small cost for the algorithm implementation and significantly 

larger schedule cost savings, it is recommended that enterprises should give a 

preference to a customised algorithm rather than an off-the-shelf solution.   

In order to assess the impact of the algorithm on the performance of the real-life 

organisation, the customised configuration of the algorithm has been applied to 

group the real train trips into diagrams and to produce a schedule compared 

against the manual one. The empirical investigation conducted in Chapter 11 

identified various benefits from using the automated schedule builder, which 

range from the direct cost savings to staff satisfaction and process improvements. 

The potential benefit from the algorithm, which has been developed in this 

research, is summarised in the table below. 
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Table 31 The summary of the business benefits provided by developed EA 

Type Description 

Financial benefits 

 

1. The average cost saving is 3.7%  

2. 4 driver FTEs saving can result in the opportunity 

cost of £500,000 

3. In five years the total financial benefits can save 

more than £3 million  

 

Operational 

benefits  

 

1. The speed of schedule construction is reduced from 

3 days to 2 days. The algorithm can also run outside 

of working hours to provide even greater time saving 

2. Intelligent incorporation of last minute orders 

enhances the scheduling process flexibility 

Strategic benefits 

 

1. Better workforce planning and utilisation 

2. Staff satisfaction deriving from stress reduction, 

performance of more strategic roles and personal 

growth  

3. Knowledge retention  

4. Business optimisation and market growth  
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12.2 The limitations of the algorithm experiments 

The following limitations of the algorithm experiments are proposed: 

Optimisation of EA parameters. The parameters for the algorithms relied on 

results from separate experiments and might not be optimal for the given 

problems. In future the parameters might be retested in order to verify their 

suitability for the given problems.  Alternatively, this can be done through 

incorporation of a fuzzy-logic controller to ensure maximum efficiency, higher 

adaptability to different data sets and problem structures as suggested by Sumer 

and Turker (2013), Herrera and Lozano (2003), Yu-Chiun Chiou and Lan (2002), 

McClintock, Lunney and Hashim (1997). 

Driver Evolution. The driver evolution experiments were conducted along with 

powerful heuristic operators, which possibly had a greater impact on directing the 

optimisation process and made the effect of driver evolution less detectable. In 

future, it might be interesting to repeat the experiments with conventional 

operators, such as PMX and Swap or to conduct a factorial analysis to determine 

the impact of each operator. 

Machine Evolution. Because of the substantial conceptual differences in the 

driver and machine assignment identified in Section 8.3, it was impossible to test 

the same logic of driver permutation on the JSSP.  

Test Problems. The research has considered the performance of an EA for two 

problems: job-shop scheduling and crew scheduling. However, this might not be 

sufficient in order to draw a general conclusion regarding the effectiveness of the 

operators. It would be interesting to conduct the experiment with other 

combinatorial problems in order to investigate whether the results can be 

repeated across various domains. 

12.3 The limitation of business evaluation 

This section presents the limitations of the practical algorithm development and 

evaluation, which were caused by data quality, sample size and research scope.   

Evaluation framework. Evaluation of the benefits did not consider soft indicators 

such as organisational culture, user acceptance, and convenience of using the 

system. Moreover, due to time constraints and the scope of the research, the full 
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system has not been implemented and all the results are based on the predicted 

numbers rather than actual ones.  

Data quality. The comparison conducted in section 11.6, was based on the 

"repaired" data as some of the actual data contained missing attributes. The 

accuracy of the analysis could be improved by carrying out the evaluation on 

cleaner data to confirm the results.  

Research sample. First of all, the evaluation of the system and its usefulness was 

conducted by a small group of potential users who had worked in the company 

for a long period of time. Therefore, the results might vary if the staff who had 

recently joined the company participated in the focus group. Furthermore, the 

research was conducted in a single organisation, and it would be interesting to 

get an opinion of experts from another company. 

12.4 Future research direction 

There are several aspects of this research which can be enhanced in the future. 

They are presented below.  

Operator performance analysis. The analysis of operator effectiveness has been 

conducted based on the empirical results of their average performance. Factorial 

analysis can be performed in the future in order to separate contributions of 

crossover and mutation operators and better understand their pure impact. 

Moreover, Markov chains analysis, similar to the one proposed by Ma, et al. 

(2011), can be employed to analyse the operators' effectiveness in greater depth 

and predict the state of the system at the next iteration.  

Multiple operator performance. The strategies in this research did not succeed 

in outperforming the results of an EA with single intelligent crossover and 

mutation. Additional research could be conducted in order to identify the set and 

number of operators that should be included in the strategy. The design of more 

sophisticated procedures for operator selection can also be considered. For 

instance, an additional high-level EA that regulates low-level genetic operators 

could be developed as it might enable the selection of an optimal combination 

of operators for the strategies. 
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Rules extraction. The rules of driver scheduling used in this study were gathered 

from the numerous documents and interviews with the schedulers. However, in 

order to develop a fully automated scheduling system, a significant number of 

additional rules, which are not documented, should be obtained. This can be 

accomplished in at least two ways. The first way is to perform further interviews 

with the schedulers and possibly to conduct job shadowing. The second way is 

to devise a data mining system similar to one proposed by Metan, Sabuncuoglu 

and Pierreval (2010) which would enable automated rule extraction from existing 

diagrams. 

Decoding procedure. In order to accurately estimate the duration of each activity 

and to build fully feasible diagrams, the decoding procedure can be enhanced 

with more rules and information as such traction type, rail terminal infrastructure, 

commodity types and regulations for their transportation, and clients’ orders and 

preferences. To achieve this, the trips input data set needs to be modified to 

include commodity type, number of wagons, and tonnage. 

Vans optimisation. In section 11.3.4 it was assumed that the vans could connect 

only the trips starting or ending in the same depot. However, in reality the vans 

can be used anywhere as long as they are finally returned to the depot. The 

additional optimisation procedure could be incorporated into the fitness function 

in order to find the effective schedule of the vans’ utilisation.  

Strategic perspective. It would be ideal to design a hybrid system which is 

orientated not only to the daily crew scheduling operations, but also takes into 

account the long term strategic objectives and performs other operations such as 

scheduling trains and creating a driver roster. In particular, it would be useful to 

incorporate three functions:  

1. Based on the availability of the crew and information about the passenger 

trains, select the appropriate time for a freight train departure and route. 

This is because sometimes moving the departure time of the freight train 

forward can help to fit in the passenger train trip and therefore reduce the 

taxi charges significantly. 

2. Increase the planning horizon to at least seven days. This would enable 

construction of an effective roster and more equal workload distribution.   



264 
 

3. Incorporate strategic objectives (such as the revenue and cost of running 

a train) into the fitness function. 

 

Real impact of automation. The automation of the crew scheduling processes is 

significantly under-researched. It would be interesting to investigate the user 

acceptance and the impact on the organisation after the system has been 

deployed and run for several years.  

Wider applicability. Since the JSSP was an ancillary problem in this research, 

which served only for the evaluation of effectiveness of the operators, it has not 

been tested in real life settings. In future research, the prototype representing the 

functionality of automated job scheduler for the printing industry can also be 

developed and evaluated in a similar manner to the automated crew scheduling 

system.  

12.5 Final Remarks  

The thesis has achieved the key objectives and has answered the research 

question presented in Chapter 1. The research has designed two EA algorithms 

for the solution of JSSP and CSP, and compared their domain and cross-domain 

effectiveness. The successful configuration of the algorithm has also been 

applied to produce a real train-driver schedule for a large rail freight carrier in the 

UK. This has allowed the author to hypothetically examine the effect that this 

algorithm would have on organisational performance if it were integrated into the 

existing IT system.  

It was estimated that the algorithm would significantly reduce operational cost 

and increase the speed of constructing the schedule. Furthermore, the financial 

analysis showed the profitability of investing in the design of the automated crew 

scheduling system. However, while the managers demonstrated enthusiasm 

about the new system, the potential users express some degree of concern. This 

is an important finding as well, because awareness and recognition of user 

opinions at the early stages of a system development enable not only the 

incorporation of the correct functionality, but also reduce any resistance with an 

appropriate change management strategy before the system is live.  
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Given these findings, the author believes that by leveraging the capabilities of 

EAs and successfully addressing corresponding implementation issues, 

distribution and transport organisations can successfully transform their current 

scheduling systems, enhance operational effectiveness and achieve their core 

strategic objectives.  

  



266 
 

Bibliography  

ABBINK,E.J.W.; ALBINO,L.; DOLLEVOET,T.; HUISMAN,D.; ROUSSADO,J.; 

SALDANHA,R.L. (2011). Solving large scale crew scheduling problems in 

practice. Public transport, 3 (2), 149-164.  

ABBINK,E.J.W.; FISCHETTI, M.; KROON,L.; TIMMER,G.; VROMANS,M.; 

(2005). Reinventing Crew Scheduling at Netherlands Railways. Interfaces, 35 (5), 

393-401.  

ABDOUN, O.; ABOUCHABAKA, J. (2012). A Comparative Study of Adaptive 

Crossover Operators for Genetic Algorithms to Resolve the Traveling Salesman 

Problem, International Journal of Computer Applications, 31(11), 49-57. 

ABDULLAH, S.; ABDOLRAZZAGH-NEZHAD, M. (2014). Fuzzy job-shop 

scheduling problems: A review. Information sciences, 278, 380-407.  

ADAMS, J. E. B.; ZAWACK, D. (1988). The Shifting Bottleneck Procedure for Job 

Shop Scheduling. Management science, 34 (3), 391-401.  

AICKELIN, U. (2002). An Indirect Genetic Algorithm for Set Covering Problems. 

The journal of the operational research society, 53 (10), 1118-1126.  

AIEX, R. M.; BINATO, S.; RESENDE, M. G. C. (2003). Parallel GRASP with path-

relinking for job shop scheduling. Parallel computing, 29 (4), 393-430.  

ALABAS-USLU, C.; DENGIZ, B. (2014). A Self-Adaptive Heuristic Algorithm for 

Combinatorial Optimization Problems. International journal of computational 

intelligence systems, 7 (5), 827-852.  

AMIRTHAGADESWARAN, K. S.; ARUNACHALAM, V. P. (2006). Improved 

solutions for job shop scheduling problems through genetic algorithm with a 

different method of schedule deduction. The international journal of advanced 

manufacturing technology, 28 (5-6), 532-540.  

AMIRTHAGADESWARAN, K. S.; ARUNACHALAM, V. P. (2007). Enhancement 

of performance of Genetic Algorithm for job shop scheduling problems through 

inversion operator. The international journal of advanced manufacturing 

technology, 32 (7), 780-786.  

APPOINTY (2016). Online Scheduler Software. [online]. 

http://www.appointy.com/.  

ASAKIEWICZ, C. (2011). Business Investments in IT: Managing Integration 

Risks. IT professional, 13 (4), 41-45.  



267 
 

ATRILL, P.  (2014). Financial management for decision makers. 7th. ed.; Harlow, 

Pearson.  

AVISON, D. E. (2006). Information systems development: methodologies, 

techniques and tools. 4th ed.; Maidenhead,  McGraw-Hill Education.  

AZADEH, A.; FARAHANI-HOSSEINABADI,M.; EIVAZY, H.; NAZARI-

SHIRKOUHI, S.; ASADIPOUR, G. (2013). A hybrid metaheuristic algorithm for 

optimization of crew scheduling. Applied soft computing, 13 (1), 158-164.  

BALTZAN, P.  (2009). Business driven information systems. 2nd ed.; 

International student ed. London, McGraw-Hill Irwin.  

BALTZAN, P. (2015). Business driven information systems.5th ed.; New York, 

McGraw-Hill.  

BANK OF ENGLAND (2016). BOE home. [online]. Last updated 15 March 2016. 

http://www.bankofengland.co.uk/Pages/home.aspx.  

BARNHART, C.; HATAY, L.; JOHNSON, E. L. (1995). Deadhead Selection for 

the Long-Haul Crew Pairing Problem. Operations research, 43 (3), 491-499.  

BARNHART,C.; JOHNSON,E.L.; NEMHAUSER,G.L.; SAVELSBERGH, M.W.P.; 

VANCE,P.H. (1998). Branch-and-Price: Column Generation for Solving Huge 

Integer Programs. Operations research, 46 (3), 316-329.  

BARUCH, Y.; HIND, P.  (1999). Perpetual Motion in Organizations: Effective 

Management and the Impact of the New Psychological Contracts on " Survivor 

Syndrome". European journal of work and organizational psychology, 8 (2), 295-

306.  

BAUR, C.; WEE, D.  (2015). Manufacturing’s next act. 

McKinsey&Company.[online].http://www.mckinsey.com/business-

functions/operations/our-insights/manufacturings-next-act. 

BBC (2015). DB-Schenker to cut 234 rail freight jobs. [online]. Last updated 22 

June 2015 http://www.bbc.co.uk/news/uk-england-33222140.  

BEASLEY, J. E.; CAO, B. (1996). A tree search algorithm for the crew scheduling 

problem. European journal of operational research, 94 (3), 517-526.  

BEASLEY, J. E.; CHU, P. C. (1996). A genetic algorithm for the set covering 

problem. European journal of operational research, 94 (2), 392-404.  

BECKER, J.; KUGELER, M.; ROSEMANN, M.  (2011). Process management : a 

guide for the design of business processes. 2nd ed.; London: Springer.  



268 
 

BHATTACHERJEE, A.; HIKMET, N. (2007). Physicians' resistance toward 

healthcare information technology: a theoretical model and empirical test. 

European journal of information systems, 16 (6), 725-737.  

BIERWIRTH, C. (1995). A generalized permutation approach to job shop 

scheduling with genetic algorithms. Operations-research-spektrum, 17 (2-3), 87-

92.  

BLUM,C.; PUCHINGER,J.; RAIDL,G.; ROLI,A. (2011). Hybrid metaheuristics in 

combinatorial optimization: A survey. Applied soft computing journal, 11 (6), 

4135-4151.  

BLUM, C.  and ROLI, A.  (2003). Metaheuristics in combinatorial optimization: 

Overview and conceptual comparison. ACM computing surveys, 35 (3), 268-308.  

BO, Z. W.; HUA, L. Z.  and YU, Z. G. (2006). Optimization of process route by 

Genetic Algorithms. Robotics and computer-integrated manufacturing, 22 (2), 

180-188.  

BOCIJ, P. (2015). Business information systems: technology, development and 

management for the e-business.5th ed.; Harlow, Pearson.  

BRANDON, J. (2016). The epic battle between Google Home and Amazon Echo 

has just begun. Framingham, Computerworld.com.  

BRUCKER, P.; JURISCH, B.; SIEVERS, B. (1994). A branch and bound 

algorithm for the job-shop scheduling problem. Discrete applied mathematics, 

special volume viewpoints on optimization, 49 (1), 107-127.  

BURKE,E.; GENDREAU,M.; HYDE,M.; KENDALL,G.; OCHOA,G.; OZCAN, E.; 

QU,R. (2013). Hyper-heuristics: a survey of the state of the art. The journal of the 

operational research society, 64 (12), 1695-1724.  

BUSINESS WIRE (2015) Meet Amelia: IPsoft's New Artificial Intelligence 

Platform Interacts Like a Human. New York, Business Wire. 

CACCHIANI, V.; CAPRARA, A.; TOTH, P. (2010). Scheduling extra freight trains 

on railway networks. Transportation research part B: Methodological, 44 (2), 215-

231.  

CAPRARA,A.; FISCHETTI,M.; TOTH,P.; VIGO,D.; GUIDA,P.L (1997). 

Algorithms for railway crew management. Mathematical programming, 79 (1-3), 

125-141.  

CAPRARA,A.; KROON,L.; MONACI,M.; PEETERS,M.; TOTH,P. (2007). Chapter 

3 Passenger Railway Optimization. In: Handbooks in Operations Research and 

Management Science. Elsevier, Volume 14, 129-187.  



269 
 

CARRANO,E.G.; SOARES,L.A.E.; TAKAHASHI,R.H.C.; SALDANHA,R.R.; 

NETO,O.M. (2006). Electric distribution network multiobjective design using a 

problem- specific genetic alg orithm. Power delivery, IEEE transactions on, 21 (2), 

995-1005.  

CHAN, K. C.; TANSRI, H. (1994). A study of genetic crossover operations on the 

facilities layout problem. Computers & industrial engineering, 26 (3), 537-550.  

CHAUDHRY, I. A. (2012). Job shop scheduling problem with alternative 

machines using genetic algorithms. Journal of central south university, 19 (5), 

1322-1333.  

CHENG, R.; GEN, M.; TSUJIMURA, Y. (1996). A tutorial survey of job-shop 

scheduling problems using genetic algorithm-representation. Computers & 

industrial engineering, 30 (4), 983-997.  

CHENG, R.; GEN, M.; TSUJIMURA, Y. (1999). A tutorial survey of job-shop 

scheduling problems using genetic algorithms: Part II. Hybrid genetic search 

strategies. Computers & industrial engineering, proceedings of the 24th 

international conference on computers and industrial engineering, 37 (1), 51-55.  

CHINNASRI, W.; KROOTJOHN, S.; SUREERATTANAN, N. (2012). 

Performance comparison of Genetic Algorithm's crossover operators on 

University Course Timetabling Problem. Computing Technology and Information 

Management (ICCM), 2012 8th International Conference on, 2 781-786.  

CHRISTOFIDES, N.; MINGOZZI, A.; TOTH, P.; SANDI, C. (1979). Combinatorial 

Optimization. Bath, A Wiley-Interscience Publication.  

CHU, H. D.; GELMAN, E.; JOHNSON, E. L. (1997). Solving large scale crew 

scheduling problems. European journal of operational research, 97 (2), 260-268.  

CHU, P. C.; BEASLEY, J. E. (1998). Constraint Handling in Genetic Algorithms: 

The Set Partitioning Problem. Journal of heuristics, 4 (4), 323-357.  

CHUANJUN, Z.; YURONG, C.; CHAOYONG, Z. (2009). A Modified Genetic 

Algorithm to Due Date of Job Shop Scheduling Problem. In: Computer network 

and multimedia technology, 2009. CNMT 2009. international symposium on, 1-5.  

CLARKE,M.; HINDE, C. J.; WITHALL, M. S.; JACKSON, T. W.;  PHILLIPS, I. W.; 

BROWN, S.; WATSON, R.(2010). Allocating railway platforms using a genetic 

algorithm. In: Research and development in intelligent systems XXVI. 

Proceedings of AI- the twenty-ninth SGAI international conference on innovative 

techniques and applications of artificial intelligence. 15-17 December. 421-437.  

COELLO, A. C. (2000). An updated survey of GA-based multiobjective 

optimization techniques. ACM, 32 (2).  



270 
 

CONTRERAS-BOLTON, C.; PARADA, V. (2015). Automatic Combination of 

Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem. 

PLoS one, 10 (9).  

COOPER, J.; HINDE, C. (2003). Improving Genetic Algorithms Efficiency Using 

Intelligent Fitness Functions. In: CHUNG, Paul W H.; HINDE, Chris and ALI, 

Moonis (eds.). Springer Berlin Heidelberg, 2718, 636-643.  

CROCE, T. R.; VOLTA, G. (1995). A genetic algorithm for the job shop problem. 

Computer operational research, 22 (1), 15-24.  

CRUZ-CHAVEZ, M. A. (2014). Neighbourhood generation mechanism applied in 

simulated annealing to job shop scheduling problems. International journal of 

systems science, 1-13.  

CURET, N. D. (1993). A primal-dual simplex method for linear programs. 

Operations research letters, 13 (4), 233-237.  

DA-CHENG, N.; YAN, F.; JUN-LIN, Z.; ZHEN, L.; ZI-KE, Z.; CHUANG, L. (2014). 

A personalized recommendation algorithm via biased random walk. Computer 

Science and Software Engineering (JCSSE), 2014 11th International Joint 

Conference on, 292-296. 

DAHAL, K.; TAN, C. K.; COWLING, P. (2007). Evolutionary Scheduling. Berlin, 

Springer.  

DANTZING, G.; WOLFE, P. (1974). The decomposition algorithm for linear 

program. In: DANTZING, G. B.; EAVES, B. C. (eds.). Studies in Optimization. US, 

10.  

DATAMONITOR (2012). Commercial Printing Industry Profile: Global. 

Commercial printing industry profile: Global, 1-32.  

DAVIS, L.  (ed.) (1991). Handbook of genetic algorithms. Van Nostrand, Reinhold.  

DAVIS, K. A.; SONGER, A. D. (2009). Resistance to IT Change in the AEC 

Industry: Are the Stereotypes True? Journal of construction engineering & 

management, 135 (12), 1324-1333.  

DB-SCHENKER Application and Projects Manager. (2015). Discussion of the 

potential impact of the automatic scheduling system on organisation performance. 

09 December. Personal communication.  

DB-SCHENKER Business Manager (2012). Scheduling operations in the rail 

freight operating industry. Interview with the author, 14 December. Personal 

communication  



271 
 

DB-SCHENKER Head of Finance (2012). Key operations and main challenges in 

the rail freight operating industry. Interview with the author, 07 November. 

Personal communication. 

DB-SCHENKER Head of Finance (2013). Driver Contractual Terms and Key 

Operations Objectives. Interview with the author, 14 December. Personal 

communication. 

DB-SCHENKER Head of HR (2012). Key operations and main challenges in the 

rail freight operating industry. Interview with the author, 07 November. Personal 

communication. 

DB-SCHENKER Head of Service. (2015). Discussion of the potential impact of 

the automatic scheduling system on organisation performance. 09 December. 

Personal communication.  

DB-SCHNEKER (2014a). Coal and biomass rail freight services for the energy-

generation sector. [online]. Last updated 05 February 2014. 

https://www.rail.dbschenker.co.uk/rail-uk-en/industrysectors/coal_biomass.html.  

DB-SCHNEKER (2014b). Our history. [online]. Last updated 05 February 2014. 

https://www.rail.dbschenker.co.uk/rail-uk-

en/ourcompany/About_DB_Schenker_Rail_UK/history.html.  

DB-SCHENKER (2014) Profitable market leader. [online]. Last updated 05 

February 2014.http://ib2014.deutschebahn.com/ib2014-en/group-management-

report/corporate-strategy/dimensions-and-management-approaches/profitable-

market-leader.html.  

DB-SCHENKER Talent Acquisition [online]. Last updated 05 February 2014.  

http://ib2014.deutschebahn.com/ib2014-en/group-management-report/group-

performance-social-dimension/talent-acquistions.html.  

DB-SCHENKER (2014). Developing the strategies of tomorrows employees. 

[online]. Last updated 05 February 2014. 

http://ib2014.deutschebahn.com/ib2014-en/integrated-thinking/ulrich-weber.html.  

DE JONG, K. A. (1975). An analysis of the behavior of a Class of Genetic 

Adaptive Systems. PhD thesis, University of Michigan.  

DE SNOO, C.; VAN WEZEL, W.; JORNA, R. J. (2011). An empirical investigation 

of scheduling performance criteria. Journal of operations management, 29 (3), 

181-193.  

DEB,K.; PRATAP,A.; AGARWAL,S.; MEYARIVAN,T. (2002). A fast and elitist 

multiobjective genetic algorithm: NSGA-II. Evolutionary computation, IEEE 

transactions on, 6 (2), 182-197.  



272 
 

DEFERSHA, F.; CHEN, M. (2010). A parallel genetic algorithm for a flexible job-

shop scheduling problem with sequence dependent setups. The international 

journal of advanced manufacturing technology, 49 (1-4), 263-279.  

DENG, G. F.; LIN, W. T.  (2011). Ant colony optimization-based algorithm for 

airline crew scheduling problem. Expert systems with applications, 38 (5), 5787-

5793.  

DEPARTMENT FOR TRANSPORT (2015). National Railways freight moved by 

commodity. Department for Transport Office of Rail Regulation. [online] Last 

updated 10 December 2015. https://www.gov.uk/government/statistical-data-

sets/tsgb04-freight. 

DERIGS, U.; MALCHEREK, D.; SCHAFER, S. (2010). Supporting strategic crew 

management at passenger railway model, method and system. Public transport, 

2 (4), 307-334.  

DESAULNIERS,G.; DESROSIERS,J.; DUMAS,Y.; MARC,S.; RIOUX,B.; 

SOLOMON,M.M.; SOUMIS,F. (1997). Crew pairing at Air France. European 

journal of operational research, 97 (2), 245-259.  

DESROCHERS, M.; SOUMIS, F. (1988). A Generalized Permanent Labelling 

Algorithm for the Shortest Path Problem with Time Windows. University of 

Toronto Press. INFOR, 26 (3), 191-212.  

DOCBROWN Archive Steam [online]. ArchiveSteam.  

http://www.docbrown.info/docspics/ArchiveSteam/. 

DONG, H. (2012). An improvement genetic algorithm for solving the job-shop 

scheduling. In: Computer science and information processing (CSIP), 2012 

international conference on, 1136-1139.  

DORIGO, M. (1992). Optimization, Learning and Natural Algorithms. PhD, 

Poliecnico di Milano.  

DOS SANTOS, A. G.; MATEUS, G. R. (2009). General hybrid column generation 

algorithm for crew scheduling problems using genetic algorithm. In: Evolutionary 

computation, 2009. CEC '09. IEEE congress on, 1799-1806.  

DREXL, M.; PRESCOTT-GAGNON, E. (2010). Labelling algorithms for the 

elementary shortest path problem with resource constraints considering EU 

drivers' rules. Logistics research, 2 (2), 79-96.  

DUCK, V.; WESSELMANN, F.; SUHL, L. (2011). Implementing a branch and 

price and cut method for the airline crew pairing optimization problem. Public 

transport, 3 (1), 43-64.  



273 
 

ELAOUD, S.; TEGHEM, J.; LOUKIL, T. (2010). Multiple crossover genetic 

algorithm for the multiobjective traveling salesman problem. Electronic notes in 

discrete mathematics, 36 , 939-946.  

ELHADDAD, Y. R. (2012). Combined Simulated Annealing and Genetic 

Algorithm to Solve Optimization Problems. In: Aug 2012. Canakkale, Italy, 

Canakkale, World Academy of Science, Engineering and Technology (WASET), 

1508-1510.  

ELIZONDO,R.; PARADA,V.; PRADENAS,L.; ARTIGUES,C. (2010). An 

evolutionary and constructive approach to a crew scheduling problem in 

underground passenger transport. Journal of heuristics, 16 (4), 575-591.  

EL-MIHOUB, T. A.; HOPGOOD,A.A.; NOLLE,L.; BATTERSBY,A. (2006). Hybrid 

Genetic Algorithms: A Review. Engineering letters, 13 (2), 124-137  

EL-MIHOUB, T. A.; HOPGOOD, A.A and AREF, I.A (2013). Accelerating genetic 

schema processing through local search. In: Computer, control, informatics and 

its applications (IC3INA), 2013 international conference on, 343-348.  

EMDEN-WEINERT, T.; PROKSCH, M. (1999). Best Practice Simulated 

Annealing for the Airline Crew Scheduling Problem. Journal of heuristics, 5 (4), 

419-436.  

ESSAFI, I.; MATI, Y.; DAUZERE-PERES, S. (2008). A genetic local search 

algorithm for minimizing total weighted tardiness in the job-shop scheduling 

problem. Computers & operations research, 35 (8), 2599-2616.  

ETILER,O.; TOKLU,B.; ATAK,M.; WILSON,J. (2004). A Genetic Algorithm for 

Flow Shop Scheduling Problems. The journal of the operational research society, 

55 (8), 830-835.  

EUROSTAT (2015). Environmental tax statistics. [online]. Last updated 12 

January2015http://ec.europa.eu/eurostat/statistics-

explained/index.php/Environmental_tax_statistics. 

EUROTUNNELGROUP (2014). Traffic volumes for the past 10 years. [online]. 

http://www.eurotunnelgroup.com/uk/eurotunnel-group/operations/traffic-figures/.  

FANG, Z.; ZHANG, L.; CHEN, K. (2016). A behavior mining based hybrid 

recommender system. 1-5.  

FISHER, M. L. (1981). The Lagrangian Relaxation Method for Solving Integer 

Programming Problems. Management science, 27 (1), 1-18.  

FREEZE, R. D.; SCHMIDT, P. J. (2015). To Use or Not to Use-ERP Resistance 

is the Question: The Roles of Tacit Knowledge and Complexity. Decision 

sciences journal of innovative education, 13 (2), 247-272.  



274 
 

GARNETT DICKINSON Chief Executive (2012). Scheduling and logistics issues 

in the printing company. Interview with the author, 16 October. Personal 

communication. 

GARNETT DICKINSON Divisional Managing Director (2012). Scheduling and 

logistics issues in the printing company. Interview with the author, 16 October. 

Personal communication. 

GARNETT DICKINSON Estimator (2013). Scheduling processes in the printing 

industry.  Interview with the author, 23 April. Personal communication. 

GARNETT-DICKINSON Garnett-Dickinson home. [online]. http://www.garnett-

dickinson.co.uk/index.asp.  

GARNETT DICKINSON Machine Operator (2013). Scheduling processes in the 

printing industry.  Interview with the author, 23 April. Personal communication. 

GARNETT DICKINSON Operations Manager (2013). Overview of the scheduling 

operations in the printing industry.  Interview with the author, 23 April. Personal 

communication. 

GARNETT DICKINSON Sales Manager (2013). Scheduling processes in the 

printing industry.  Interview with the author, 23 April. Personal communication. 

GAO, J.; CHEN, R.; LIU, Y. (2012). A knowledge-based genetic algorithm for 

permutation flowshop scheduling problems with multiple factories. International 

journal of advancements in computing technology, 4 (7), 121-129.  

GAO, J.; SUN, L.; GEN, M. (2008). A hybrid genetic and variable neighborhood 

descent algorithm for flexible job shop scheduling problems. Computers & 

operations research, part special issue: Bio-inspired methods in combinatorial 

optimization, 35 (9), 2892-2907.  

GAZETTELIVE (2015). DB Schenker: Hundreds of jobs to go at rail freight 

company with Thornaby base. [online]. Last updated 22 June 2015. 

http://www.gazettelive.co.uk/business/business-news/db-schenker-jobs-lost-

thornaby-9504333.  

GEN, M.; CHENG, R. (1997). Genetic Algorithms and Engineering Optimization. 

Canada, John Wiley & Sons.  

GEN, M.; LIN, L. (2014). Multiobjective evolutionary algorithm for manufacturing 

scheduling problems: state-of-the-art survey. Journal of intelligent manufacturing, 

25 (5), 849-866.  

GENDREAU, M.; POTVIN, J. Y. (2005). Metaheuristics in Combinatorial 

Optimization. Annals of operations research, 140 (1), 189-213.  



275 
 

GERE, W. S.;Jr. (1966). Heuristics in Job Shop Scheduling. Management 

science, 13 (3), 167-190.  

GIFFLER, B.; THOMPSON, G. L. (1960). Algorithms for Solving Production-

Scheduling Problems. Operations research, 8 (4), 487-503.  

GILL, J. (2010). Research methods for managers. 4th ed.; London, SAGE.  

GLASSDOOR (2016). Salaries in UK. [online]. https://www.glassdoor.com/.  

GLOVER, F. (1986). Future paths for integer programming and links to artificial 

intelligence. Computers and operations research, 13 (5), 533-549.  

GOOGLE (2016). Google Maps API. [online]. 

https://developers.google.com/maps/premium/. 

GOGNA, A.; TAYAL, A. (2013). Metaheuristics: review and application. Journal 

of experimental & theoretical artificial intelligence, J.exp.theor.artif.intell.; 25 (4), 

503-526.  

GONCALVES, J. F.; de Magalhaes Mendes, J. J.; RESENDE, M.G. C. (2005). A 

hybrid genetic algorithm for the job shop scheduling problem. European journal 

of operational research, 167 (1), 77-95.  

GOOGLE (2016). Google Maps Directions Api. [online]. Last updated January 20. 

https://developers.google.com/maps/documentation/directions/.  

GOPALAKRISHNAN, B.; JOHNSON, E. L. (2005). Airline Crew Scheduling: 

State-of-the-Art. Annals of operations research, 140 , 305-337.  

GOUMOPOULOS, C.; HOUSOS, E. (2004). Efficient trip generation with a rule 

modeling system for crew scheduling problems. Journal of systems and software, 

69 (1), 43-56.  

HAEREM, T.; RAU, D. (2007). The Influence of Degree of Expertise and 

Objective Task Complexity on Perceived Task Complexity and Performance. 

Journal of applied psychology, 92 (5), 1320-1331.  

HALLIKAINEN, P.; KIVIJARVI, H.; NURMIMAKI, K. (2002). Evaluating strategic 

IT investments: an assessment of investment alternatives for a web content 

management system. In: System sciences, 2002. HICSS. proceedings of the 

35th annual hawaii international conference, 2977-2986.  

HAMILTON, S.; CHERVANY, N. L. (1981). Evaluating Information System 

Effectiveness - Part I: Comparing Evaluation Approaches. MIS quarterly, 5 (3), 

55-69.  



276 
 

HAN, L.; KENDALL, G. (2003). Guided Operators for a Hyper-Heuristic Genetic 

Algorithm. In: GEDEON, Domonkos and FUNG, Lance Chun Che (eds.). Springer 

Berlin Heidelberg, 2903, 807-820.  

HANAFI, R.; KOZAN, E. (2014). A hybrid constructive heuristic and simulated 

annealing for railway crew scheduling. Computers & industrial engineering, 70 

(0), 11-19.  

HART, E.; ROSS, P.; NELSON, J. (1998). Solving a Real-World Problem Using 

an Evolving Heuristically Driven Schedule Builder. Evolutionary computation, 6 

(1), 61-80.  

HART, E.; ROSS, P.; CORNE, D. (2005). Evolutionary Scheduling: A Review. 

Genetic programming and evolvable machines, 6 (2), 191-220.  

HASAN, S. M. K.; SARKER, R.; CORNFORTH, D. (2007). Hybrid Genetic 

Algorithm for Solving Job-Shop Scheduling Problem. In: Computer and 

information science, 2007. ICIS 2007. 6th IEEE/ACIS international conference, 

519-524.  

HAUPT, R. L. (1998). Practical genetic algorithms.Canada, Wiley.  

HE, Y.; WU, Y. (2013). Packing non-identical circles within a rectangle with open 

length. Journal of global optimization, 56 (3), 1187-1215.  

HERRERA, F.; LOZANO, M. (2003). Fuzzy adaptive genetic algorithms: design, 

taxonomy, and future directions. Soft computing, 7 (8), 545-562.  

HILLIER, F. S. (2005). Introduction to operations research. 8th ed.; London, 

McGraw-Hill.  

HM REVENUE&CUSTOMS (2015). Overseas trade statistics. [online]. Last 

updated 9 September 2015. 

https://www.uktradeinfo.com/Statistics/EUOverseasTrade/Pages/EuOTS.aspx.  

HOLLAND, J.; H. (1975). Adaptation in Natural and Artificial Systems, MIT Press. 

HOLT, J. (2009). Pragmatic Guide to Business Process Modelling. London, 

British Computer Society.  

HONG, I.; KAHNG, A. B.; BYUNG R. M. (1995). Exploiting synergies of multiple 

crossovers: initial studies. In: Evolutionary computation, 1995.; IEEE international 

conference, 245.  

HONG, T. P.; WANG, H. S and CHEN, W. C. (2000). Simultaneously Applying 

Multiple Mutation Operators in Genetic Algorithms. Journal of heuristics, 6 (4), 

439-455.  



277 
 

HOPGOOD, A. A. (2012). Intelligent Systems for Engineers and Scientists. 3rd 

ed.; Boca Raton, CRC Press.  

HUISMAN,D.; KROON,L.G.; LENTINK,R.M.; VROMANS,M.J.C.M.; 

HUISMAN,D.; KROON,L.G.; LENTINK,R. M.; VROMANS,M.L J.C.M. (2005). 

Operations Research in passenger railway transportation. Statistica neerlandica, 

59 (4), 467-497.  

I-LIN, W. J.; Ellis L.; SOKOL, J. S. (2005). A Multiple Pairs Shortest Path 

Algorithm. Transportation science, 39 (4), 465-476.  

INTERNATIONAL FEDERATION OF ROBOTICS (2015). World Robotics 2015 

Industrial Robots. [online]. http://www.ifr.org/industrial-robots/statistics/.  

ISLAM,D.; JACKSON,R.; ZUNDER,T.; BURGESS,A. (2015). Assessing the 

impact of the 2011 EU Transport White Paper - a rail freight demand forecast up 

to 2050 for the EU27. European transport research review, 7 (3), 1-9.  

JAP, B. T.; LAL, S.; FISCHER, P. (2011). Comparing combinations of EEG 

activity in train drivers during monotonous driving. Expert systems with 

applications, 38 (1), 996-1003.  

JARGEN, B.; GUNTSCH, M. (2005). Ant Colony Optimization. In: Chapman and 

Hall, Handbook of Bioinspired Algorithms and Applications, 3-41-3-54.  

JAVADI, R.; HASANZADEH, M. (2012). A new method for hybridizing 

metaheuristics for multi-objective flexible job shop scheduling. In: Computer and 

knowledge engineering (ICCKE), 2012 2nd international Conference, 105-110.  

ISLAM,D.; JACKSON,R.; ZUNDER,T.; BURGESS,A.(2008). Driver fatigue during 

extended rail operations. Applied ergonomics, 39 (5), 623-629.  

JENSEN, P. A. (2003). Operations research: models and methods. Hoboken, 

Wiley.  

JERIN L. I.; SARAVANA S. S.; PONNAMBALAM, S. G. (2013). An elitist strategy 

genetic algorithm using simulated annealing algorithm as local search for facility 

layout design. The international journal of advanced manufacturing technology, 

1-13.  

JIA, Z.; LU, X.; YANG, J.; JIA, D. (2011). Research on job-shop scheduling 

problem based on genetic algorithm. International journal of production research, 

49 (12), 3585-3604.  

JIANCHAO T.; GUOJI Z.; BINBIN L.; BIXI Z. (2010). Hybrid Genetic Algorithm for 

Flow Shop Scheduling Problem. In: Intelligent computation technology and 

automation (ICICTA), 2010 international conference, 449-452.  



278 
 

JOHNSON, R. D.; YANSON, R. (2015). Job Satisfaction and Turnover Intentions 

during Technology Transition: The Role of User Involvement, Core Self-

Evaluations, and Computer Self-Efficacy. Information resources management 

journal, 4 (28), 38-51.  

JONES, P. (2012). Operations management. Oxford, Oxford  University Press.  

JUTTE, S.; THONEMANN,U. W. (2011). Optimizing Railway Crew Scheduling at 

DB Schenker. Interfaces, 41 (2), 109-121.  

KALITA, Z.; DATTA, D. (2014). Solving the bi-objective corridor allocation 

problem using a permutation-based genetic algorithm. Computers and operations 

research, 52 , 123-134.  

KHAN, N.; SIKES, J. (2014). IT under pressure. McKinsey&Company. [online]. 

Last updated March 2014. http://www.mckinsey.com/business-

functions/business-technology/our-insights/it-under-pressure-mckinsey-global-

survey-results. 

KIM, J.L.; ELLIS, R. D. (2008). Permutation-Based Elitist Genetic Algorithm for 

Optimization of Large-Sized Resource-Constrained Project Scheduling. Journal 

of construction engineering and management, 134 (11), 904-913.  

KIM, K. W.; GEN, M.; YAMAZAKI, G. (2003). Hybrid genetic algorithm with fuzzy 

logic for resource-constrained project scheduling. Applied soft computing, 2 (3), 

174-188.  

KINCAID, R. K. (2008). Metaheuristics for Discrete Optimization Problems. In: 

CRC Press, 376-414.  

KIRAZ, B.; UYAR, S.; OZKAN, E.(2013). Selection hyper-heuristics in dynamic 

environments. Journal of the operational research society, 64 , 1753-1769.  

KIRKPATRICK, S.; GELATT C.D and VECCHI, M. P. (1983). Optimization by 

Simulated Annealing. Science, 220, 671-680.  

KLABJAN, D.; JOHNSON, E. L.; NEMHAUSER, G. L. (2000). A parallel primal–

dual simplex algorithm. Operations research letters, 27 (2), 47-55.  

KLABJAN,D.;JOHNSON,E.L.; EMHAUSER,G..; GELMAN,E.; RAMASWAMY,S. 

(2001). Solving Large Airline Crew Scheduling Problems: Random Pairing 

Generation and Strong Branching. Computational optimization and applications, 

20 (1), 73-91.  

KLAUS,T.; WINGREEN, S.C.; BLANTON, E.J. (2010). Resistant groups in 

enterprise system implementations: a Q-methodology examination. Journal of 

information technology, 25 (1), 91.  



279 
 

KLEIN, E. E. (2003). Group support systems and the removal of barriers to 

creative idea generation within small groups: the inhibition of normative influence. 

Virtual education: Cases in learning and teaching technologies, , 91-112.  

KORNILAKIS, H.; STAMATOPOULOS, P. (2002). Crew pairing optimization with 

genetic algorithms. In: Methods and Applications of Artificial Intelligence. 

Springer, 109-120.  

KRAMER, O.; KOCH, P. (2007). Self-adaptive Partially Mapped Crossover. In: 

Proceedings of the 9th annual conference on genetic and evolutionary 

computation, London, England, ACM, 1523-1523.  

KURZWEIL, R. (2006). The Singularity Is Near. United States, Viking.  

KWAN R.S. (2004). Bus and train driver scheduling. In: Leung JY-T (ed.). 

Handbook of Scheduling: Algorithms, Models, and Performance Analysis. 300-

400.  

KWAN, R. S.; KWAN, A. S. K.; WREN, A. (2001). Evolutionary Driver Scheduling 

with Relief Chains. Evolutionary computation, 9 (4), 445-460.  

KWAN, R. S.; WREN, A.; KWAN, A. S.; (2000). Hybrid genetic algorithms for 

scheduling bus and train drivers. In: Proceedings of the congress on evolutionary 

computation, 285-292 vol.1.  

KWAN, R. S. (2011). Case studies of successful train crew scheduling 

optimisation. Journal of scheduling, 14 (5), 423-434.  

LAND, A. H.; DOIG, A. G. (1960). An Automatic Method of Solving Discrete 

Programming Problems. Econometrica, 28 (3), 497-520.  

LAPOINTE, L.; RIVARD, S.(2005). A Multilevel Model of Resistance to 

Information Technology Implementation. MIS quarterly, 29 (3), 461-491.  

LASDON, L. S. (1970). Optimization theory for large systems.  

LAUMER,S.; MAIER,C.; ECKHARDT,A.; WEITZEL,T. (2016). User personality 

and resistance to mandatory information systems in organizations: a theoretical 

model and empirical test of dispositional resistance to change. Journal of 

information technology (palgrave macmillan), 31 (1), 67-82.  

LAVOIE, S.; MINOUX, M.and ODIER, E. (1988). A new approach for crew pairing 

problems by column generation with an application to air transportation. 

European journal of operational research, 35 (1), 45-58.  

LEI, D. (2009). Multi-objective production scheduling: a survey. Internation 

journal of advance manufacturing technologies, 43 , 926-938.  



280 
 

LEI, D. (2010). Solving fuzzy job shop scheduling problems using random key 

genetic algorithm. The international journal of advanced manufacturing 

technology, 49 (1-4), 253-262.  

LEVINE, D. (1996). Application of a hybrid genetic algorithm to airline crew 

scheduling. Computers & Operations research, 23 (6), 547-558.  

LI, J.; KWAN, R. S. (2003). A fuzzy genetic algorithm for driver scheduling. 

European journal of operational research, fuzzy sets in scheduling and planning, 

147 (2), 334-344.  

LIANG, M.; YIU-MING, C.; YU-PING, W. (2004). A dynamically switched 

crossover for genetic algorithms. In: Machine learning and cybernetics, 2004. 

proceedings of 2004 international conference, 3254-3257 vol.5.  

LIANG, Y.; LEUNG, K.S. (2011). Genetic Algorithm with adaptive elitist-

population strategies for multimodal function optimization. Applied soft computing 

journal, 11 (2), 2017-2034.  

LIAW, C. F. (2013). An improved branch-and-bound algorithm for the preemptive 

open shop total completion time scheduling problem. Journal of industrial and 

production engineering, 30 (5), 327-335.  

LIMBU, Y. B.; JAYACHANDRAN, C.; BARRY, J. (2014). Does information and 

communication technology improve job satisfaction? The moderating role of 

sales technology orientation. Industrial marketing management, 43 (7), 1236-

1245.  

LIU,M.; SUN,Z.J.; YAN,J.W.; KANG,J.S. (2011). An Adaptive annealing genetic 

algorithm for the job-shop planning and scheduling problem. Expert systems with 

applications, 38 (8), 9248-9255.  

LIU, Y.; SUN, F. (2011). A fast differential evolution algorithm using k-Nearest 

Neighbour predictor. Expert systems with applications, 38 (4), 4254-4258.  

LOSHIN, D. (2013). Chapter 12 - Data Quality. In: LOSHIN, D. (ed.). Business 

Intelligence (Second Edition). Morgan Kaufmann, 165-187.  

LU, D.; GZARA, F. (2015). The robust crew pairing problem: model and solution 

methodology. Journal of global optimization, 62 (1), 29-54.  

LUBBECKE, M. E.; DESROSIERS, J. (2005). Selected Topics in Column 

Generation. Operations research, 53 (6), 1007-1023.  

LUNDEN, I. (2013). Forrester: $2.1 Trillion Will Go Into IT Spend In 2013, Apps 

And The U.S. Lead The Charge. [online]. Last updated 15/07/2013. 

https://techcrunch.com/2013/07/15/forrester-2-1-trillion-will-go-into-it-spend-in-

2013-apps-and-the-u-s-lead-the-charge/.  



281 
 

LUZ M.; TORRES P.; OSCAR F.; CASTELLANOS,D.; CLAUDIA, N. J. (2010). 

Evaluating technology intelligence system efficiency. Ingeniería e investigación, 

30 (3), 106.  

MA,Q.; ZHANG,Y.A,, YAMAMORI,K.; SAKAMOTO,M.; FURUTANI,H. (2011). 

Markov chain analysis of genetic algorithms for 3-SAT problem. Natural 

Computation, Seventh International Conference, (2) 1101-1105.  

MAJUMDAR, J.; BHUNIA, A. K. (2011). Solving a multi-objective interval crew-

scheduling problem via Genetic Algorithms. OPSEARCH, 48 (3), 197-216.  

MAKRI, A.; KLABJAN, D. (2004). A New Pricing Scheme for Airline Crew 

Scheduling. INFORMS, 16 (1), 56-67.  

MARKETLINE (2014). Road & Rail Industry Profile: United Kingdom. Road & rail 

industry profile: United kingdom, , 1-37.  

MARKUS, M. L. (1983). Power, Politics, and MIS Implementation. 

Communications of the ACM, 26 (6), 430-444.  

MARTIN, M. P. (1995). Analysis and design of business information systems. 2nd 

ed.; Prentice-Hall.  

MATTFELD, D. C.; BIERWIRTH, C. (2004). An efficient genetic algorithm for job 

shop scheduling with tardiness objectives. European journal of operational 

research, 155 (3), 616-630.  

MCCLINTOCK, S.; LUNNEY, T.; HASHIM, A. (1997). A fuzzy logic controlled 

genetic algorithm environment. In: Systems, man, and cybernetics, 1997. 

computational cybernetics and simulation, IEEE international conference on, 

2181-2186 vol.3.  

MEERAN, S.; MORSHED, M. S. (2012). A hybrid genetic tabu search algorithm 

for solving job shop scheduling problems: a case study. Journal of intelligent 

manufacturing, 23 (4), 1063-1078.  

METAN, G.; SABUNCUOGLU, I.; PIERREVAL, H. (2010). Real time selection of 

scheduling rules and knowledge extraction via dynamically controlled data mining. 

International journal of production research, 48 (23), 6909-6938.  

MICHALEWICZ, Z. (1996). Genetic algorithms + data structures =, evolution 

programs. 3rd ed.; London, Springer.  

MIRSANEI,H.S.; ZANDIEH,M.; MOAYED,M.J.; KHABBAZI,M.R. (2011). A 

simulated annealing algorithm approach to hybrid flow shop scheduling with 

sequence-dependent setup times. Journal of intelligent manufacturing, 22 (6), 

965-978.  



282 
 

MISIR,M.; VERBEECK,K.; CAUSMAECKER,P.; BERGHE,G.(2013). A new 

hyper-heuristic as a general problem solver: an implementation in HyFlex. 

Journal of scheduling, 16 (3), 291-311.  

MITCHELL, M. (1996). An introduction to genetic algorithms. Cambridge, MIT 

Press.  

MITHAS, S.; RUST, R. T. (2016). How Information Technology Strategy and 

Investments Influence Firm Performance: Conjecture and Empirical Evidence. 

MIS quarterly, 40 (1), 223-246.  

MONTANA, D. (2002). So You Want to Build an Automated Scheduling System. 

In: The GECCO-2002 industrial track.  

MONTANA, D.; TALIB, H.; VIDAVER, G. A. (2007) Genetic-Algorithm-Based 

Reconfigurable Scheduler.  

MONTANA, D.; HUSSAIN, T.; VIDAVER, G. (2007) A Genetic-Algorithm-Based 

Reconfigurable Scheduler. In: DAHAL, Keshavp, TAN, KayChen and COWLING, 

PeterI (eds.). Springer Berlin Heidelberg, 49, 577-611.  

MONTGOMERY, D. C. (2013). Design and analysis of experiments. 8th ed.; 

International student version.. ed.; Hoboken, N.J.: John Wiley and Sons.  

MORRIS, M. G.; VENKATESH, V. (2010). Job Characteristics and Job 

Satisfaction: Understanding the Role of Enterprise Resource Planning System 

Implementation. MIS quarterly, 34 (1), 143-161.  

MORRIS, M.; DAVIS, G.; DAVIS, F. (2003). User acceptance of information 

technology: Towards a unified view. MIS quarterly, 27 (3), 425-478.  

MU, S.; DESSOUKY, M. (2011). Scheduling freight trains traveling on complex 

networks. Transportation research part B: Methodological, 45 (7), 1103-1123.  

NABABAN,E. B.; HAMDAN,A. R.; ABDULLAH,S.; ZAKARIA,M.S. (2008). Branch 

and bound algorithm in optimizing job shop scheduling problems. In: Information 

technology, ITSim 2008. international symposium on, 1-5.  

NARRATIVE SCIENCE (2015) State of AI and Big Data in the Enterprise. 

Narrative Science.  

NATIONAL RAIL (2015). National Rail Enquiries. [online]. 

http://www.nationalrail.co.uk/.  

NATIONAL RAIL (N/A). Transparency. [online]. 

http://www.nationalrail.co.uk/100752.aspx.  



283 
 

NAZIF, H.; LEE, L. S. (2012). Optimised crossover genetic algorithm for 

capacitated vehicle routing problem. Applied mathematical modelling, 36 (5), 

2110-2117.  

NEGNEVITSKY, M. (2011). Artificial intelligence:: a guide to intelligent systems. 

3rd ed.; Harlow , Addison Wesley.  

NEMHAUSER, G. L.; WOLSEY, L. A. (1988). Integer and Combinatorial 

Optimization. New York, A Wiley-Interscience Publication.  

NETA,B.M.M.; ARAJO, G. H.D.; GUIMARAZES, F. G.; MESQUITA,R.C.; EKEL,P. 

Y. (2012). A fuzzy genetic algorithm for automatic orthogonal graph drawing. 

Applied soft computing, 12 (4), 1379-1389.  

NETWORK RAIL (2010). Value and Importance of Rail Freight.  

NETWORK RAIL (2014). The future of the rail freight.  

NISHI, T.; MUROI, Y.; INUIGUCHI, M. (2011). Column generation with dual 

inequalities for railway crew scheduling problems. Public transport, 3 (1), 25-42.  

NOLLE,L.; GOODYEAR,A.; HOPGOOD,A.A.; PICTON,P.D.; 

BRAITHWAITE,N.STJ.  (2001). On Step Width Adaptation in Simulated 

Annealing for Continuous Parameter Optimisation. In: REUSCH, Bernd (ed.). 

Springer Berlin Heidelberg, 2206, 589-598.  

NOURANI, Y.; ANDRESEN, B. (1998). A comparison of simulated annealing 

cooling strategies. Journal of physics A-mathematical and general, 31 (41), 8373-

8385.  

OFFICE OF RAIL AND ROAD (2015). Freight operator companies. [online]. 

http://orr.gov.uk/about-orr/who-we-work-with/industry-organisations/freight-

operator-companies.  

ONWUBOLU, G. C.; BABU, B. V. (2004). New Optimization Techniques in 

Engineering. Berlin, Springer.  

OREG, S. (2006). Personality, context, and resistance to organizational change. 

European journal of work and organizational psychology, 15 (1), 73-101.  

OREG,S.; BAYAZIT, M.; VAKOLA,M.; ARCINIEGA,L.; ARMENAKIS,A.; 

BARKAUSKIENE,R.; BOZIONELOS,N.; FUJIMOTO,Y.; GONZALEZ, L.; HAN,J.; 

HREBIKOVA, M.; JIMMIESON,N.; KORDACOVA, J.; MITSUHASHI,H.; MIACIC, 

B.; FERRIC, I.; TOPIC, M. K.; OHLY,S.; SAKSVIK,P.O.; HETLAND,H.; 

SAKSVIK,I.; VAN DAM, K. (2008). Dispositional Resistance to Change: 

Measurement Equivalence and the Link to Personal Values Across 17 Nations. 

Journal of applied psychology, 93 (4), 935-944.  



284 
 

OSMAN, I. H and LAPORTE, G. (1996). Metaheuristics: A bibliography. Annals 

of operations research, 63 (5), 511-623.  

OTHMAN, M.; GOUW, G. J.; BHUIYAN, N. (2012). Workforce scheduling: A new 

model incorporating human factors. Journal of industrial engineering and 

management, 5 (2), 259.  

OZDEMIR, H. T.; MOHAN, C. K. (2001). Flight graph based genetic algorithm for 

crew scheduling in airlines. Information sciences, 133 (3–4), 165-173.  

PARK, T.; RYU, K. (2006). Crew pairing optimization by a genetic algorithm with 

unexpressed genes. Journal of intelligent manufacturing, 17 (4), 375-383.  

PASCUAL,J.; LORIDO-BOTRÁN, T.; MIGUEL-ALONSO, J, LOZANO,J. (2015). 

Towards a Greener Cloud Infrastructure Management using Optimized 

Placement Policies. Journal of grid computing, from grids to cloud federations, 13 

(3), 375-389.  

PATEL, N.; PADHIYAR, N. (2015). Modified genetic algorithm using Box 

Complex method: Application to optimal control problems. Journal of process 

control, 26 , 35-50.  

PEZZELLA, F.; MORGANTI, G.; CIASCHETTI, G. (2008). A genetic algorithm for 

the Flexible Job-shop Scheduling Problem. Computers & operations research, 35 

(10), 3202-3212.  

PINEDO, M. L. (2009). Planning and scheduling in manufacturing and services. 

2nd ed.; London, Springer.  

PINTO, G.; AINBINDER, I.; RABINOWITZ, G. (2009). A genetic algorithm-based 

approach for solving the resource-sharing and scheduling problem. Computers & 

industrial engineering, 57 (3), 1131-1143.  

POLOVINA, S. (2013). A Transaction-oriented architecture for enterprise 

systems. International Journal of Intelligent Information Technologies, 9 (4), 69-

79. 

PONNAMBALAM, S. G.; JAWAHAR, N.; ARAVINDAN, P. (1999). A simulated 

annealing algorithm for job shop scheduling. Production planning & control, 10 

(8), 767-777.  

POON, P. W.; CARTER, J. N. (1995). Genetic algorithm crossover operators for 

ordering applications. Computers & operations research, genetic algorithms, 22 

(1), 135-147.  

PROBST, T. M. (2003). Exploring employee outcomes of organizational 

restructuring: a Solomon four- group study.(Longitudinal Processes in Groups 

and Organizations). Group & organization management, 28 (3), 416-439.  



285 
 

PUGLIESE, L. D..P and GUERRIERO, F. (2013). A survey of resource 

constrained shortest path problems: Exact solution approaches. Networks, 62 (3), 

183-200.  

QING-DAO-ER-JI, R.; WANG, Y.  (2012). A new hybrid genetic algorithm for job 

shop scheduling problem. Computers & operations research, 39 (10), 2291-2299.  

RAEESI N.M.; KOBTI, Z. (2012). A memetic algorithm for job shop scheduling 

using a critical-path-based local search heuristic. Memetic computing, 4 (3), 231-

245.  

RAKESH K.; GIRDHAR G.; and RAJESH K.; (2013). Novel Crossover Operator 

for Genetic Algorithm for Permutation Problems. International journal of soft 

computing & engineering, 3 (2), 252-258.  

RAKKIANNAN, T.; PALANISAMY, B. (2012). Hybridization of Genetic Algorithm 

with Parallel Implementation of Simulated Annealing for Job Shop Scheduling. 

American journal of applied sciences, 9 (10), 1694-1705.  

REES, P. (1992). User evaluation of expert systems. Industrial management & 

data systems, 92 (6) (1992), 17-23.  

REEVES, C. R. (1993). Modern heuristic techniques for combinatorial problems. 

Oxford, Blackwell.  

REMENYI, D.; MONEY, A.; TWITE, A. (1991). A Guide to measuring and 

managing IT benefits . Manchester, Blackwel.  

ROBINSON, S. (1994). Successful simulation: a practical approach to simulation 

projects. McGraw-Hill.  

ROTH, R. M. (2012). Systems analysis and design. 5th ed.; International student 

version.. ed.; Hoboken, N.J,: Wiley.  

SARKER, R. A.; NEWTON, C. S. (2007). The Process of Optimization. In: 

Optimization Modelling: A Practical Approach. CRC Press.  

SAHU, A.; TAPADAR, R. (2007). Solving the Assignment problem using Genetic 

Algorithm and Simulated Annealing. IAENG international journal of applied 

mathematics, 36 (1), 37-40.  

SAPSFORD, R.; JUPP, V. (2006). Data collection and analysis. 2nd ed.; London: 

SAGE in association with the Open University.  

SHARMA, S.; TAPASWI, N. (2013). Solving TSP Using Advanced Crossover & 

Mutating Operators of Genetic Algorithm. International journal of electronics 

communication and computer engineering, 4 (4), 1289-1292.  



286 
 

SHEBALOV, S.; KLABJAN, D. (2006). Robust Airline Crew Pairing: Move-up 

Crews. Transportation science, 40 (3), 300-312.  

SHEN,Y.; PENG,K.; CHEN,K.; LI,J. (2013). Evolutionary crew scheduling with 

adaptive chromosomes. Transportation research part B: Methodological, 56 (0), 

174-185.  

SHIFTPLANNING (2016). Shift Planning-Online Employee Scheduling an 

Management Software. [online]. https://www.shiftplanning.com/.  

SHL, G. (1997). A genetic algorithm applied to a classic job-shop scheduling 

problem. International journal of systems science, 28 (1), 25-32.  

SIVANANDAM, S. N.; DEEPA, S. N. (2008). Introduction to Genetic Algorithm. 

Berlin, Springer.  

SLACK, N. (2013). Operations management. Seventh ed.; Harlow, England : 

Pearson.  

SPANOS, A. C.; PONIS, S.T.; TATSIOPOULOS, I. P.; CHRISTOU, I.T. ; ROKOU, 

E. (2014). A new hybrid parallel genetic algorithm for the job-shop scheduling 

problem. International transactions in operational research, 21 (3), 479-499.  

SPEARS, W.; M.; DE JONG, K.; A (1991). An analysis of multi-point crossover. 

In: RAWLINS, Gregory J. E. (ed.). Foundations of genetic algorithm. 301-315.  

STEINHAFEL, K.; ALBRECHT, A.; WONG, C. K. (1999). Two simulated 

annealing-based heuristics for the job shop scheduling problem. European 

journal of operational research, 118 (3), 524-548.  

STITTLE, J. (2004). Accounting for UK rail freight track charges: privatisation, 

politics and the pursuit of private sector vested interests. Accounting forum, 28 

(4), 403-425.  

STREBEL, P. (1996). Why Do Employees Resist Change? Harvard business 

review, 74 (3), 86-92.  

STRUEBING, L. (1996). Eight ways to reduce employee stress. Quality progress, 

29 (7), 14.  

SUMER, E.; TURKER, M. (2013). An adaptive fuzzy-genetic algorithm approach 

for building detection using high-resolution satellite images. Computers, 

environment and urban systems, 39 (0), 48-62.  

TAGAWA,K.; KANZAKI,Y.; OKADA,D.; INOUE,K.; HANEDA,H. (1998). A new 

metric function and harmonic crossover for symmetric and asymmetric traveling 

salesman problems. Evolutionary Computation Proceedings, IEEE World 

Congress on Computational Intelligence,  822-827.  



287 
 

TALLON, P. P.; KRAEMER, K. L.; GURBAXANI, V. (2000). Executives' 

Perceptions of the Business Value of Information Technology: A Process-

Oriented Approach. Journal of management information systems, 16 (4), 145-

173.  

THAMILSELVAN, R.; BALASUBRAMANIE, P. (2012). Integrating Genetic 

Algorithm, Tabu Search and Simulated Annealing For Job Shop Scheduling. 

International journal of computer applications, 48 (5), 42-54.  

TING, C.K, SU, C.H.; LEE, C.N. (2010). Multi-parent extension of partially 

mapped crossover for combinatorial optimization problems. Expert systems with 

applications, 37 (3), 1879-1886.  

VAN RENSBURG, A. (2011). Principles for modelling business processes. 

Industrial Engineering and Engineering Management,1710-1714.  

VARNAMKHASTI,M. J.; LEE,L.S.; BAKAR,M.R.A.; LEONG, W. J. (2012). A 

Genetic Algorithm with Fuzzy Crossover Operator and Probability. Advances in 

operations research, 2012 .  

VELA, C. R.; VARELA, R.; GONZAILEZ, M. A. (2010). Local search and genetic 

algorithm for the job shop scheduling problem with sequence dependent setup 

times. Journal of heuristics, 16 (2), 139-165.  

VILCOT, G.; BILLAUT, J. C. (2008). A tabu search and a genetic algorithm for 

solving a bicriteria general job shop scheduling problem. European journal of 

operational research, 190 (2), 398-411.  

VON ROSING, M.; POLOVINA, S. (2015). Business process trends. In:  The 

complete business process handbook. Elsevier, 187-216. 

WANG, L.; ZHENG, D. Z. (2001). An effective hybrid optimization strategy for job-

shop scheduling problems. Computers & Operations research, 28 (6), 585-596.  

WANG, S.; WU, L. (2010). A novel hybrid genetic algorithm for global 

optimization.; Sixth International Conference on Natural Computation, 2, 1058-

1061.  

WANNER, E. F. (2007). Hybrid genetic algorithms using quadratic local search 

operators. COMPEL: The international journal for computation and mathematics 

in electrical and electronic engineering, 26 (3), 773-787.  

WHENTOWORK (2016). Online Employee Shift Scheduling. [online]. 

http://whentowork.com/.  

WIESE, K. C.; GLEN, E. (2003). A permutation-based genetic algorithm for the 

RNA folding problem: a critical look at selection strategies, crossover operators, 

and representation issues. Biosystems, 72 (1–2), 29-41.  



288 
 

WITHALL, M.S.; HINDE, C.J.; JACKSON, T.; PHILLIPS, I. W.; PHILLIPS, I. W.; 

BROWN, S.; WATSON, R. (2011). Automating rolling stock diagramming and 

platform allocation. In: World congress on railway research SNCF. 

WOOD, M. (1965). Parman Economic Programming Model. Management 

science (pre-1986), 11 (7), 619.  

WORLD ENERGY COUNCIL, IBM Corporation and Paul Scherrer Institute 

(2012). Global Transport Scenarios 2050. World Energy Council,.  

WREN, A.; WREN, D. O. (1995). A genetic algorithm for public transport driver 

scheduling. Computers and operations research, 22 , 101-110.  

WREN,A.; FORES,S.; KWAN,A.; KWAN,R.; PARKER,M.; PROLL,L. (2003). A 

flexible system for scheduling drivers. Journal of scheduling, J.sched.; 6 (5), 437-

455.  

WTO (2014). Trade and development: recent trends and the role of the WTO.  

XU, H. Y.; VUKOVICH, G. (1993). A fuzzy genetic algorithm with effective search 

and optimization. In: Proceedings of international joint conference on Neural 

networks, 2967-2970 vol.3.  

XU, X.; XU, Z.; GU, X. (2011). An asynchronous genetic local search algorithm 

for the permutation flowshop scheduling problem with total flowtime minimization. 

Expert systems with applications, 38 (7), 7970-7979.  

YAN, S.; CHANG, J. C. (2002). Airline cockpit crew scheduling. European journal 

of operational research, 136 (3), 501-511.  

YANG,H.A, SUN,Q.F, SAYGIN,C.; SUN,S.D. (2012). Job shop scheduling based 

on earliness and tardiness penalties with due dates and deadlines: an enhanced 

genetic algorithm. The international journal of advanced manufacturing 

technology, 61 (5-8), 657-666.  

YOU-LIAN, Z.; YUAN-XIANG, L.; DE-MING LEI, C.X. (2010). Scheduling fuzzy 

job shop using random key genetic algorithm. In international conference on 

Machine learning and cybernetics, 1887-1892.  

YUAN, C.; FAN, Z. P. (2006). A Multiobjective Optimization Model for Packing 

Proposals in Large-Scale R&D Project Review. International Conference on 

Management Science and Engineering, 359-363.  

YU-CHIUN, C.; LAN, L. W. (2002). Genetic fuzzy logic controllers. In: 

Proceedings of the 5th international conference on Intelligent transportation 

systems, 200-205.  



289 
 

ZEREN, B.; OZKOL, I. (2012). An Improved Genetic Algorithm for Crew Pairing 

Optimization. Journal of intelligent learning systems and applications, 4 (1), 70-

80.  

ZHANG, C.; RAO, Y.; LI, P.  (2008). An effective hybrid genetic algorithm for the 

job shop scheduling problem. The international journal of advanced 

manufacturing technology, 39 (9), 965-974.  

ZHANG, L.; ZHENG, W. (1995). Genetic computing for the film copy deliverer 

problem. In Proceedings of International Conference on Systems, Man and 

Cybernetics, 1067-1073.  

ZHANG, L.; WANG, L.; ZHENG, D.Z.  (2006). An adaptive genetic algorithm with 

multiple operators for flowshop scheduling. The international journal of advanced 

manufacturing technology, 27 (5), 580-587.  

ZHANG, L.; GAO, L.; LI, X.  (2013). A hybrid genetic algorithm and tabu search 

for a multi-objective dynamic job shop scheduling problem. International journal 

of production research, 51 (12), 3516-3531.  

ZHANG, R.; WU, C. (2011). A simulated annealing algorithm based on block 

properties for the job shop scheduling problem with total weighted 

tardinessobjective. Computers & operations research, 38 (5), 854-867.  

ZHANG, X.; SONG, Q. (2015). A Multi-Label Learning Based Kernel Automatic 

Recommendation Method for Support Vector Machine. PLoS one, 10 (4). 

ZHOU, H. CHEUNG, W.; LEUNG, L. C. (2009). Minimizing weighted tardiness of 

job-shop scheduling using a hybrid genetic algorithm. European journal of 

operational research, 194 (3), 637-649.   



290 
 

 

Appendix 1. Focus group discussion 

 

 

 

Figure 133 Focus group discussion plan 
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Appendix 2. Printing Job Schedule 

 

 

Figure 134 Gantt chart illustrating printing job schedule 
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Appendix 3. Printing job floor  

 

 

 

 

 

 

 

Figure 135 Printing job floor in Garnett-Dickinson 
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Appendix 4. Traction types 

Class Description 

Class 59/2 

 

Producer: General Motors 

Power type: Diesel-electric 

Max speed: 60–75 mph 

Tractive effort: 508 kN (114 000 lbf) 

 

Class 60 

 

Producer: Brush Traction 

Power type: Diesel 

Max speed: 62/60 mph 

Tractive effort: 500 kN (106 500 lbf) 

Class 66 

 

Producer: General Motors/EMD. 

Power type: diesel powered  

Max. speed :60/75 mph 

Tractive effort 409 kN (92 000 lbf) 

Class 67 

 

Producer: Alstom ,General Motors.  

Power type:: Diesel-Electric  

Max. speed: 125 mph 

Tractive effort: 141 kN  (31 770 lbf) 

Class 90 

 

Producer: BREL 

Power type: Electric 

maximum 110 mph.  

Maximum tractive effort:258 kN (58000 lbf). 

Class 92 

 

Producer: Brush Traction 

Power type: Electric  

Maxium speed of 145 km/h(90 mph) 

Maximum tractive effort 400 kN (90000 lbf). 

 

Adapted from: Docbrown (2016) 
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Appendix 5. Data Instances for JSSP 

Lawrence 20x10 instance (Table 8, instance 1), also called (setc1) or (C1) 

 

 20 10 

 8 52 7 26 6 71 9 16 2 34 1 21 5 95 4 21 0 53 3 55 

 4 55 5 98 3 39 9 79 0 12 8 77 6 77 7 66 2 31 1 42 

 5 37 4 92 2 64 6 54 1 19 7 43 0 83 3 34 9 79 8 62 

 1 87 5 77 0 93 3 69 2 87 7 38 8 24 6 41 9 83 4 60 

 2 98 5 25 6 75 9 77 1 49 3 17 8 79 0 44 7 43 4 96 

 1  7 4 61 0 95 2 35 9 10 8 35 5 28 3 76 7 95 6  9 

 5 59 9 43 0 46 4 28 6 52 3 16 2 59 1 91 8 50 7 27 

 5  9 9 43 8 14 7 71 4 20 6 54 3 41 0 87 1 45 2 39 

 1 28 8 66 0 78 2 37 9 42 3 26 5 33 6 89 4 33 7  8 

 4 96 3 27 6 78 5 84 2 94 8 69 1 74 9 81 7 45 0 69 

 4 24 7 32 9 25 2 17 3 87 8 81 5 76 6 18 1 31 0 20 

 8 90 5 28 1 72 7 86 2 23 3 99 6 76 9 97 4 45 0 58 

 2 17 4 98 3 48 1 46 8 27 6 67 7 62 0 42 9 48 5 27 

 0 80 8 50 3 19 7 98 5 28 2 50 4 94 6 63 1 12 9 80 

 9 72 0 75 4 61 8 79 6 37 2 50 5 14 3 55 7 18 1 41 

 3 96 2 14 5 57 0 47 7 65 4 75 8 79 1 71 6 60 9 22 

 1 31 7 47 8 58 3 32 4 44 5 58 6 34 0 33 2 69 9 51 

 1 44 7 40 2 17 0 62 8 66 6 15 3 29 9 38 5  8 4 97 

 2 58 3 50 4 63 9 87 0 57 6 21 7 57 8 32 1 39 5 20 

 1 85 0 84 5 56 3 61 9 15 7 70 8 30 2 90 6 67 4 20 

 

Lawrence 30x10 instance, also called (setd1) or (D1) BKS 1888 (Aiex, Binato and Resende 2003) 

 30 10 

 4 21 7 26 9 16 2 34 3 55 8 52 5 95 6 71 1 21 0 53 

 8 77 5 98 1 42 7 66 2 31 3 39 6 77 9 79 4 55 0 12 

 2 64 4 92 3 34 1 19 8 62 6 54 7 43 0 83 9 79 5 37 

 0 93 8 24 3 69 7 38 5 77 2 87 4 60 6 41 1 87 9 83 

 9 77 0 44 4 96 8 79 6 75 2 98 5 25 3 17 7 43 1 49 

 3 76 2 35 5 28 0 95 7 95 4 61 8 35 1  7 6  9 9 10 

 1 91 7 27 8 50 3 16 4 28 5 59 6 52 0 46 2 59 9 43 

 1 45 7 71 2 39 0 87 8 14 6 54 3 41 9 43 5  9 4 20 

 2 37 3 26 4 33 9 42 0 78 6 89 7  8 8 66 1 28 5 33 

 1 74 0 69 5 84 3 27 9 81 7 45 8 69 2 94 6 78 4 96 

 5 76 7 32 6 18 0 20 3 87 2 17 9 25 4 24 1 31 8 81 

 9 97 8 90 5 28 7 86 0 58 1 72 2 23 6 76 3 99 4 45 

 9 48 5 27 6 67 7 62 4 98 0 42 1 46 8 27 3 48 2 17 

 9 80 3 19 5 28 1 12 4 94 6 63 7 98 8 50 0 80 2 50 

 2 50 1 41 4 61 8 79 5 14 9 72 7 18 3 55 6 37 0 75 

 9 22 5 57 4 75 2 14 7 65 3 96 1 71 0 47 8 79 6 60 

 3 32 2 69 4 44 1 31 9 51 0 33 6 34 5 58 7 47 8 58 

 8 66 7 40 2 17 0 62 9 38 5  8 6 15 3 29 1 44 4 97 

 3 50 2 58 6 21 4 63 7 57 8 32 5 20 9 87 0 57 1 39 

 4 20 6 67 1 85 2 90 7 70 0 84 8 30 5 56 3 61 9 15 

 6 29 0 82 4 18 3 38 7 21 8 50 1 23 5 84 2 45 9 41 

 3 54 9 37 6 62 5 16 0 52 8 57 4 54 2 38 7 74 1 52 
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 4 79 1 61 8 11 0 81 7 89 6 89 5 57 3 68 9 81 2 30 

 9 24 1 66 4 32 3 33 8  8 2 20 6 84 0 91 7 55 5 20 

 3 54 2 64 6 83 9 40 7  8 0  7 4 19 5 56 1 39 8  7 

 1  6 4 74 0 63 2 64 9 15 6 42 7 98 8 61 5 40 3 91 

 1 80 3 75 0 26 2 87 9 22 7 39 8 24 4 75 6 44 5  6 

 5  8 3 79 6 61 1 15 0 12 7 43 8 26 9 22 2 20 4 80 

 1 36 0 63 7 10 4 22 3 96 5 40 9  5 8 18 6 33 2 62 

 4  8 8 15 2 64 3 95 1 96 6 38 7 18 9 23 5 64 0 89 

 

 

Storer, Wu, and Vaccari hard 50x10 instance BKS is unknown 

 50 10 

  0  92  4  47  3  56  2  91  1  49  5  39  9  63  7  12  6   1  8  37 

  0  86  2 100  1  75  3  92  4  90  5  11  7  85  8  54  9 100  6  38 

  1   4  4  94  3  44  2  40  0  92  8  53  6  40  9   5  5  68  7  27 

  4  87  0  48  1  59  2  92  3  35  6  99  7  46  9  27  8  83  5  91 

  0  83  1  78  4  76  3  64  2  44  8  12  9  91  6  31  7  98  5  63 

  3  49  0  15  1 100  4  18  2  24  6  92  9  65  5  26  7  29  8  24 

  0  28  3  53  4  84  2  47  1  85  7 100  5  34  6  35  8  90  9  88 

  2  61  4  71  3  54  1  34  0  13  9  47  8   2  6  97  7  27  5  97 

  0  85  2  75  1  33  4  72  3  49  7  23  5  12  8  90  6  87  9  42 

  2  24  3  20  1  65  4  33  0  75  9  47  6  84  8  44  7  74  5  29 

  2  48  3  27  4   1  0  23  1  66  6  35  7  46  9  29  5  63  8  44 

  2  79  0   4  4  61  3  46  1  69  7  10  8  88  9  19  6  50  5  34 

  0  16  4  31  3  77  2   3  1  25  8  88  7  97  9  49  6  79  5  22 

  1  40  0  39  4  15  2  93  3  48  6  63  9  74  8  46  7  91  5  51 

  4  48  0  93  2   8  3  50  1   5  6  48  7  46  9  35  5  88  8  97 

  3  70  1   8  2  65  0  32  4  84  8   9  6  43  7  10  5  72  9  60 

  0  21  2  28  1  26  3  91  4  58  9  90  6  43  8  64  5  39  7  93 

  1  50  2  60  0  51  4  90  3  93  7  20  9  33  8  27  6  12  5  89 

  1  21  3   3  2  47  4  34  0  53  9  67  8   8  5  68  7   1  6  71 

  3  57  4  26  2  36  0  48  1  11  9  44  7  25  5  30  8  92  6  57 

  1  20  0  20  4   6  3  74  2  48  9  77  8  15  5  80  7  27  6  10 

  3  71  1  40  0  86  2  23  4  29  7  99  8  56  6 100  9  77  5  28 

  4  83  0  61  3  27  1  86  2  99  7  31  5  60  8  40  9  84  6  26 

  4  68  1  94  3  46  2  60  0  33  7  46  5  86  9  63  6  70  8  89 

  4  33  1  13  2  91  3  27  0  38  8  82  7  31  6  23  9  27  5  87 

  4  58  3  30  0  24  2  12  1  38  8   2  9  37  5  59  6  37  7  36 

  2  62  1  47  4   5  3  39  0  75  7  60  9  65  8  61  6  77  5  31 

  4 100  0  21  1  53  3  74  2   3  8  34  6   6  7  91  9  80  5  28 

  1   8  0   3  2  88  3  54  4  18  9   4  6  34  5  54  8  59  7  42 

  3  33  4  72  0  83  2  17  1  23  6  24  8  60  9  96  7  78  5  70 

  4  63  2  36  3  70  0  97  1  99  6  71  9  92  5  41  8  73  7  97 

  2  28  1  37  4  24  0  30  3  55  8  38  5   9  9  77  7  17  6  51 

  3  15  0  46  2  14  4  18  1  99  9  48  6  41  5  10  7  47  8  80 

  4  89  3  78  2  51  1  63  0  29  7  70  9   7  5  14  8  84  6  32 

  4  26  1  69  2  92  3  15  0  23  8  42  6  95  5  47  9  83  7  56 

  1  38  2  44  3  47  4  23  0  10  9  63  7  65  6  21  5  70  8  56 

  3  42  4  85  1  29  0  35  2  66  9  46  8  25  5  90  7  85  6  75 

  3  99  0  46  4  74  2  96  1  48  5  52  6  13  7  88  8   4  9  30 

  1  15  3  80  4  47  2  25  0   8  9  61  7  70  8  23  6  93  5   5 

  0  90  2  51  3  66  4   5  1  86  5  59  6  97  9  28  7  85  8   9 
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  0  59  1  50  4  40  3  23  2  93  7  61  9  96  8  63  6  34  5  14 

  1  62  2  72  4  30  0  21  3  15  5  77  6  13  7   2  8  22  9  22 

  2  20  4  14  3  85  1   4  0   2  9  33  7  90  5  48  8  90  6  62 

  0  49  3  49  4  46  1  89  2  64  9  72  8   6  5  83  6  13  7  66 

  4  74  1  55  2  73  0  25  3  16  7  19  9  38  6  22  5  26  8  63 

  3  13  2  96  1   8  0  15  4  97  6  95  7   2  5  66  8  57  9  46 

  4  73  1  97  3  39  0  22  2  90  9  64  6  65  8  31  5  98  7  85 

  3  43  2  67  0  38  1  77  4  11  7  61  5   7  9  95  8  97  6  69 

  0  35  2  68  1   5  3  46  4   4  7  51  6  44  5  58  9  69  8  98 

  2  68  1  81  0   2  3   4  4  59  9  53  8  69  5  69  6  14  7  21 
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Appendix 6. CSP Crossover and 
mutation 

 

Figure 136 Performance of the intelligent crossover with mutations on the small data set 

 

Figure 137 Performance of the intelligent crossover with different mutations on the medium data 

set 

Figure 138 Performance of the intelligent crossover with different mutations on the large data set 
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Figure 139 Performance of the PMX crossover with different mutations on the small data set 

 

Figure 140 Performance of the PMX crossover with different mutations on the medium data set 

 

Figure 141 Performance of the PMX crossover with different mutations on the medium data set 
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Figure 142 Performance of the LOX crossover with different mutations on the small data set 

 

 

Figure 143 Performance of the LOX crossover with different mutations on the medium data set  

 

 

Figure 144 Performance of the LOX crossover with different mutations on the large data set 

120000

140000

160000

180000

200000

220000

240000

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0
TO

TA
L 

C
O

ST
 O

F 
TH

E 
SC

H
ED

U
LE

ITERATIONS

LO X C R O S S OVER C S P 7 8 0

Swap Intelligent Simple Scramble

240000

290000

340000

390000

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0

TO
TA

L 
C

O
ST

 O
F 

TH
E 

SC
H

ED
U

LE

ITERATIONS

LO X C R O S S OV ER C S P 1 2 6 0

Swap Intelligent Simple Scramble

400000

450000

500000

550000

600000

650000

700000

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0

TO
TA

L 
C

O
ST

 O
F 

TH
E 

SC
H

ED
U

LE

ITERATION

LO X C R O S S OVER C S P  1 9 8 0

Swap Intellignt Simple Scramble



300 
 

 

Figure 145 Performance of the PBX crossover with different mutations on the small data set 

 

Figure 146 Performance of the PBX crossover with different mutations on the medium data set 

 

Figure 147 Performance of the PBX crossover with different mutations on the large data set 
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Figure 148 Performance of the CX crossover with different mutations on the small data set 

 

Figure 149 Performance of the CX crossover with different mutations on the medium data set 

 

Figure 150 Performance of the CX crossover with different mutations on the large data set 
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Figure 151 Crossover comparison CSP 780 with Intelligent mutation 

 

Figure 152 Crossover comparison CSP 1260 with intelligent mutation 

 

Figure 153 Crossover comparison CSP 1980 with intelligent mutation 
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Appendix 7. JSSP: Crossover and 
mutation JSSP 

 

Figure 154 Performance of intelligent crossover on small JSSP data set 

 

Figure 155 Performance of intelligent crossover of medium JSSP data set 

 

Figure 156 Performance of intelligent crossover on large JSSP data set 
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Figure 157 Performance of PMX crossover on small JSSP data set 

 

Figure 158 Performance of PMX crossover on medium JSSP data set 

 

Figure 159 Performance of PMX crossover on large JSSP data set 
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Figure 160 Performance of PBX crossover on a small data set 

 

Figure 161 Performance of PBX crossover on a medium data set 

 

Figure 162 Performance of PBX crossover on a medium data set 
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Figure 163 Performance of CX crossover on a small data set 

 

Figure 164 Performance of CX crossover on a medium JSSP data set 

 

Figure 165 Performance of CX crossover on a medium JSSP data set 
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Figure 166 Performance of LOX crossover on a small JSSP data set 

 

Figure 167 Performance of LOX crossover on a medium JSSP data set 

 

Figure 168 Performance of LOX crossover on a large JSSP data set 
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Figure 169 Performance of crossovers on the small size of JSSP 

 

Figure 170 Performance of crossovers on the medium size of JSSP 

 

Figure 171 Performance of crossovers on the large size of JSSP 
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Appendix 8. Driver Evolution 

 

Figure 172 Driver Evolution on a small data set 

 

Figure 173 Driver Evolution on a medium data set 

 

Figure 174 Driver Evolution on the large data sets  
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Appendix 9. Nearest Driver 

 

Figure 175 Nearest Driver evolution process on the small data set 

 

Figure 176 Nearest Driver evolution process on the medium data set 

 

Figure 177 Nearest Driver evolution process on the large data set 
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Appendix 10. Process of evolution of 

real data schedule 

 

Figure 178 Evolution process: Total Cost of the Schedule 

 

Figure 179 Evolution process: Driver Cost 
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Figure 180 Evolution process: Total Cost of Deadheads 

 

Figure 181 Evolution process: Cost of workload distribution 
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Figure 182 Evolution process: Total Cost of the deviation of the shift length 

 

Figure 183 Evolution process: Number of Diagrams 
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Appendix 11. Evaluated diagrams  

Diagram 1 

Head Code/Passenger 

Train Company 

Activity Start End Origin Destination 

  book on 11:33 11:43 PeterboroughDepot PeterboroughDepot 

  walk 11:43 11:47 PeterboroughDepot PeterboroughSigP800 

  Relieve driver 14   

  MOB 11:47 12:03 PeterboroughSigP800 PeterboroughSigP800 

6L43 driving 12:03 12:30 PeterboroughSigP800 MarchUpRS 

  driving 12:39 13:09 MarchUpRS Ely 

  OP 13:10 13:41 Ely KennettRedlandGF 

  FS 13:41 13:45 KennettRedlandGF KennettLafargeSdgs 

  walk 13:45 14:07 KennettLafargeSdgs KennettTrainStation 

Abellio Greater Anglia  PASS 14:07 14:39 KennettTrainStation Cambridge 

Cross Country PASS 15:01 15:14 Cambridge Ely 

  walk 15:14 15:24 Ely ElyPapworthSidings(PotterGp) 

  break 15:24 16:58 ElyPapworthSidings(PotterGp) ElyPapworthSidings(PotterGp) 

  Relieve driver 989   

6M86 DORR 16:58 18:17 ElyPapworthSidings(PotterGp) PeterboroughSigP451 

  Relieved by the driver 756   

  walk 18:17 18:21 PeterboroughSigP451 PeterboroughDepot 

  book off 18:21 18:31 PeterboroughDepot PeterboroughDepot 



315 
 

Diagram2      

Head Code Activity Start End Origin Destination 

  book on 11:20 11:30 ImminghamDepot ImminghamDepot 

  walk 11:30 11:35 ImminghamDepot ImminghamHumberRefinery 

  ATT 11:35 11:40 ImminghamHumberRefinery ImminghamHumberRefinery 

6M00 driving 11:40 13:55 ImminghamHumberRefinery Nottingham 

  Relieved by driver number: 344 

  Relieve: driver number: 802   

  Break 14:00 16:18 Nottingham Nottingham 

6E41 driving 16:18 18:21 Nottingham ImminghamLindseyRefinery 

0D41 DET 18:21 18:35 ImminghamLindseyRefinery ImminghamLindseyRefinery 

  Relieved by driver number: 12 

  walk 18:35 18:42 ImminghamLindseyRefinery ImminghamHITCoalLdgFacility 

  Relieve driver 1001   

6M03 LOAD 18:45 18:55 ImminghamHITCoalLdgFacility ImminghamHITCoalLdgFacility 

  walk 18:55 19:10 ImminghamHITCoalLdgFacility ImminghamHITCoalLdgFacility 

0D41 driving 19:10 19:31 ImminghamLindseyRefinery ImminghamLindseyRefinery 

  walk 19:31 19:34 ImminghamLindseyRefinery ImminghamSS 

  Break 19:34 20:50 ImminghamSS ImminghamSS 

  Relieve driver 921   

0E08 FS 20:50 21:00 ImminghamSS ImminghamTMD 

  DISP 21:00 21:10 ImminghamTMD ImminghamTMD 

  Relieved by driver number: 67   

  walk 21:10 21:15 ImminghamTMD ImminghamDepot 

  book off 21:15 21:25 ImminghamDepot ImminghamDepot 

Duration 10:05 
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Diagram3      

Head Code Activity Start End Origin Destination 

  book on 07:04 07:14 NewportDepot NewportDepot 

  walk 07:14 07:17 NewportDepot NewportSig.NT1273 

6V49 driving 07:17 07:41 NewportSig.NT1273 LeckwithLoopNorthJn 

6V49 driving 07:41 08:21 LeckwithLoopNorthJn MargamKnuckleYard 

  taxi 08:21 08:48 MargamKnuckleYard Port Talbot Parkway 

Arriva Trains 

Wales 

PASS 08:48 09:01 Port Talbot Parkway Bridgend 

  taxi 09:01 09:20 Bridgend AberthawReceptionSdgs 

  MOB 09:20 09:25 AberthawReceptionSdgs AberthawReceptionSdgs 

4F69 driving 09:25 10:26 AberthawReceptionSdgs NewportA.D.JnSdgs 

  OP 10:26 10:32 NewportA.D.JnSdgs NewportA.D.JnSdgs 

  DORR 10:32 12:35 NewportA.D.JnSdgs NewportCourtybellaSdg 

  OP 12:35 12:43 NewportCourtybellaSdg NewportA.D.JnSdgs 

  Relieved by driver 

number: 

39   

  walk 12:43 12:46 NewportA.D.JnSdgs NewportDepot 

  book off 12:46 12:56 NewportDepot NewportDepot 

Duration 05:52 
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Diagram 4 
     

Head Code Activity Start End Origin Destination 

  book on 06:25 06:35 RotherhamDepot RotherhamDepot 

  walk 06:35 06:45 RotherhamDepot MasboroughFD 

  Relieve driver 516       

6E20 RM 06:45 06:50 MasboroughFD MasboroughSSJn 

  PR 06:50 08:05 MasboroughSSJn ScunthorpeTrentT.C 

  Break 08:05 08:42 ScunthorpeTrentT.C ScunthorpeTrentT.C 

  driving 08:42 08:48 ScunthorpeTrentT.C ScunthorpeSig319 

0E20 DET 08:48 08:58 ScunthorpeSig319 ImminghamSS 

  Relieved by driver number: 13 

  Break 09:00 10:09 ImminghamSS ImminghamSS 

  taxi 10:09 10:57 ImminghamSS GooleDocks 

  Break 10:57 12:30 GooleDocks GooleDocks 

  MOB 12:30 12:35 GooleDocks GooleDocks 

6J94 FS 12:35 12:59 GooleDocks GooleUpGoodsLoop 

  break 13:00 13:40 GooleUpGoodsLoop GooleUpGoodsLoop 

  RR 13:40 14:23 GooleUpGoodsLoop HexthorpeJn 

  walk 14:23 15:17 HexthorpeJn MasboroughFD 

0J94 DET 15:17 15:22 MasboroughFD MasboroughLHS 

  DISP 15:22 15:32 MasboroughFD MasboroughFD 

  walk 15:32 15:37 MasboroughLHS RotherhamDepot 

  book off 15:37 15:47 RotherhamDepot RotherhamDepot 

Duration: 09:22 
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Diagram 5 
     

Head Code Activity Start End Origin Destination 

  book on 08:47 08:57 MossendDepot MossendDepot 

  walk 08:57 09:03 MossendDepot MossendDownYard 

6G25 ATT 09:03 09:23 MossendDownYard MossendDownYard 

  driving 09:23 10:48 MossendDownYard KincardineLC 

  Relieved by driver 721 

  taxi 10:48 11:22 KincardineLC Cumbernauld 

ScotRail PASS 11:22 11:33 Cumbernauld Whifflet  

  taxi 11:33 11:59 Whifflet [WFF] MossendDepot 

  break 11:59 14:35 MossendDepot MossendDepot 

  walk 14:35 14:45 MossendDepot MossendLHS 

  PL 14:45 15:00 MossendLHS MossendLHS 

  PU 15:00 15:15 MossendLHS MossendLHS 

  WAR 15:15 16:00 MossendLHS MossendLHS 

  break 16:00 16:24 MossendLHS MossendLHS 

  PL 16:24 16:39 MossendLHS MossendLHS 

  PU 16:39 16:54 MossendLHS MossendLHS 

  walk 16:54 17:00 MossendLHS MossendWestYardLHS 

  break 17:00 17:43 MossendWestYardLHS MossendWestYardLHS 

  Relieve driver 670 

0S94 PL 17:43 17:58 MossendWestYardLHS MossendWestYardLHS 

0S94 driving 17:58 18:08 MossendWestYardLHS MossendDownYard 

  walk 18:08 18:14 MossendDownYard MossendDepot 

  book off 18:14 18:24 MossendDepot MossendDepot 

Duration 09:37 
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Appendix 12.  Publication and award 

Rail-Freight Crew Scheduling with a Genetic Algorithm 

E. Khmeleva1, A. A. Hopgood1, L. Tipi1 and M. Shahidan1 

Abstract This article presents a novel genetic algorithm designed for the solution of the Crew Scheduling Problem 

(CSP) in the rail-freight industry. CSP is the task of assigning drivers to a sequence of train trips while ensuring 

that no driver's schedule exceeds the permitted working hours, that each driver starts and finishes their day's work 

at the same location, and that no train routes are left without a driver. Real-life CSPs are extremely complex due 

to the large number of trips, opportunities to use other means of transportation, and numerous government 

regulations and trade union agreements. CSP is usually modelled as a set-covering problem and solved with linear 

programming methods. However, the sheer volume of data makes the application of conventional techniques 

computationally expensive, while existing genetic algorithms often struggle to handle the large number of 

constraints. A genetic algorithm is presented that overcomes these challenges by using an indirect chromosome 

representation and decoding procedure. Experiments using real schedules on the UK national rail network show 

that the algorithm provides an effective solution within a faster timeframe than alternative approaches.  

1 Introduction 

While international trade continues to expand, businesses are striving to increase 

reliability and reduce their environmental impact. As a result, demand for rail freight 

increases every year and rail-freight carriers attempt to maximize their efficiency. The 

crew cost constitutes 20-25% of the total rail-freight operating cost and is second only 

to cost of fuel. Therefore even a small improvement in the scheduling processes can 

save a company millions of pounds a year.  

The CSP in the rail-freight industry is the problem of constructing a schedule for a train 

driver. Each schedule contains instructions for the driver of what he or she should do 

on a particular day. Within the industry, the driver’s schedule is called a diagram. Each 

diagram should cover all the trains driven by a driver in a given day. It must start and 

end at the same station and obey all labour laws and trade union agreements. These 

rules regulate the maximum diagram duration, maximum continuous and aggregate 

driving time in a diagram, and minimum break time.  

All drivers are located in depots where they start and finish their work. Depots are 

distributed fairly evenly across the UK. Sometimes in order to connect two trips that 

finish and start at different locations, a driver has to travel on a passenger train, taxi 
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or a freight train driven by another driver. The situation of a driver travelling as a 

passenger while on duty is called deadheading. The cost of deadheading varies and 

depends on the means of transportation and business agreements between operating 

companies. Despite the potential cost, deadheading is sometimes inevitable and it can 

benefit the overall schedule [1]. 

Due to employment contract terms, the drivers are paid the same hourly rate for any 

time spent on duty regardless of the number of hours they have actually been driving 

the train. Moreover, in accordance with collectively bargained contracts, each driver 

has a fixed number of working hours per year, so the company is obliged to pay for all 

the stated hours in full even if some of the hours are not utilised. Paid additional 

overtime hours can be worked at the driver's discretion. Thus it is in the best interests 

of the company to utilize the agreed driving hours in the most efficient and economical 

way. 

Taking all of this into consideration, the operational objectives for the diagrams are: 

1. Minimize a number of unused and excess contract hours at the end of the year with 
a minimum spread of durations of the diagrams. All diagrams will therefore be of 
duration close to the average 8.5 hours, i.e. the annual contract hours divided by 
the number of the working days.  

𝑇𝑑𝑖𝑎𝑔𝑟𝑎𝑚 = 𝑇𝑑𝑟𝑖𝑣𝑖𝑛𝑔 + 𝑇𝑑𝑒𝑎𝑑ℎ𝑒𝑎𝑑𝑖𝑛𝑔 + 𝑇𝑏𝑟𝑒𝑎𝑘 + 𝑇𝑖𝑑𝑙𝑒  

𝑇𝑑𝑖𝑎𝑔𝑟𝑎𝑚 → 𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒  

2. Maximize the throttle time, i.e. the proportion of the work shift that is actually spent 
driving a train. It excludes time for deadheading and waiting between trips. 

𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒⁡𝑡𝑖𝑚𝑒 =
𝑇𝑑𝑟𝑖𝑣𝑖𝑛𝑔

𝑇𝑑𝑖𝑎𝑔𝑟𝑎𝑚
⁡ 
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2 Approaches to crew scheduling 

The CSP is usually solved in two stages. At the first stage, all possible diagrams 

satisfying the industrial constraints are enumerated. At the second stage, only the set 

of diagrams that covers the entire schedule in the most cost-effective way is identified. 

Diagrams are usually modelled as binary vectors (Figure 1) where '1' denotes that the 

trip i is included in the diagram j, otherwise '0' is inserted. Each diagram has its own 

cost. The deadhead journeys are displayed by including the same trip in more than 

one diagram. In the rest of the article the terms diagram and column will be used 

interchangeably. 

 

 Diagram1 Diagram2 Diagram3 Diagram4 

Trip1 1 0 0 1 

Trip2 0 1 1 0 

Trip3 0 1 0 1 

Trip4 0 1 0 1 

Trip5 1 1 0 0 

 

Figure 1 Diagrams 

Although the generation of the diagrams can be performed in a simple and relatively 

straightforward manner using various graph search and label-setting techniques [2], 

finding an optimal set of diagrams may be highly time-consuming. The problem boils 

down to the solution of the 0–1 integer combinatorial optimization set covering problem 

(SCP): 

minimize⁡∑𝑐𝑗𝑥𝑗

𝑛

𝑖=1

 

subject⁡to∑𝑎𝑖𝑗𝑥𝑗

𝑛

𝑖=1

≥ 1 

𝑥𝑖 ∈{1,0} 

i = 1,2…n trips 

j = 1,2…m diagrams 

where aij is a decision variable indicating whether a trip i is included in the diagram j, 

xj shows if the diagram is included in the schedule, cj is the cost of the diagram. 

2.1 Branch-and-price 

The complete enumeration of all possible diagrams is likely to be impractical due to 

the large geographical scope of operations, the number of train services, and industry 
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regulations. Linear programming methods such as branch-and-price [3, 4] have been 

popular for the solution of medium-sized CSPs in the passenger train and airline 

industries [5]. These methods usually rely on a column-generation approach, where 

the main principle is to generate diagrams in the course of the algorithm, rather than 

having them all constructed a priori. Despite the ability of the algorithm to work with an 

incomplete set of columns, the column generation method alone does not guarantee 

an integer solution of SCP. It is usually utilised in conjunction with various branching 

techniques that are able to find the nearest integer optimal solution. However, this 

approach is not quite suitable for the CSP in rail freight, where the possible number of 

diagrams tend to be considerably higher.  

2.2 Genetic algorithms 

Linear programming (LP) has been used for CSP since the 1960s  [6 ] but genetic 

algorithms (GAs) were introduced more recently [7]. GAs have been applied either for 

the production of additional columns as a part of column generation [6] or for the 

solution of SCP from the set of columns generated prior to the application of a GA [9-

12], but there are not yet any reports of them solving both stages of the problem. Since 

the diagrams are generated outside the GA in advance, the GA cannot change or add 

new columns. The GA is therefore confined to finding only good combinations from a 

pre-determined pool of columns.  

For the solution of CSP with a GA, chromosomes are normally represented by integer 

or binary vectors. Integer vector chromosomes contain only the numbers of the 

diagrams that constitute the schedule. This approach requires knowledge of the 

minimum number of diagrams in the schedule and this information is usually obtained 

from the lower bounds. Lower bounds are usually acquired through the solution of LP 

relaxation for SCP [13]. Since the number of diagrams tends to be higher than the 

lower bound, Costa et al [14] have suggested the following approach. In the first 

population the chromosomes have a length equal to the lower bound. Then, if a 

solution has not been found within a certain number of iterations, the length of the 

chromosome increases by one. This process repeats until the termination criteria are 

met.  

In the binary vector representation, each gene stands for one diagram. The figure '1' 

denotes that the diagram is included in the schedule, otherwise it is '0'. Such 

chromosomes usually consist of several hundred thousand genes, and only around a 

hundred of them appear in the final solution. The number of diagrams can be unknown 

and the algorithm is likely to need a large number of iterations in order to solve the 

problem.  

The application of genetic operators often violates the feasibility of the chromosomes, 

resulting in certain trips being highly over-covered (i.e. more than one driver assigned 

to the train) or under-covered (i.e. no drivers assigned to the train). One way of 
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resolving this difficulty is to penalize the chromosome through the fitness function in 

accordance with the number of constraints that have been violated. However, the 

development of the penalty parameters can be problematic as in some cases it is 

impossible to verify them analytically and they are usually designed experimentally 

[15]. The penalty parameters are therefore data-dependent and likely to be 

inapplicable to other industries and companies. Moreover, the feasibility of the entire 

population is not guaranteed and might be achieved only after a large number of 

iterations. 

Another more straightforward approach to maintaining the feasibility is to design 

heuristic "repair" operators. These operators are based on the principles "REMOVE" 

and "INSERT". They scan the schedule and remove certain drivers from the over-

covered trips and assign those drivers to under-covered journeys [13, 15]. This 

procedure might have to be repeated several times, leading to high memory 

consumption and increased computation time.  

3 GA-generated crew schedules 

3.1 Initial data 

The process starts with a user uploading the freight train and driver data (Figure 2). 

Each train has the following attributes: place of origin, destination, departure and 

arrival time, type of train and route code. The last two attributes indicate the knowledge 

that a driver must have in order to operate a particular train. The system also stores 

information about the drivers, i.e. where each driver is located and his or her traction 

and route knowledge. The program also captures all the passenger trains and the taxi 

times between cities (Figure 3).  

After all the necessary data have been uploaded, the GA is applied to construct an 

efficient schedule. The proposed algorithm overcomes the aforementioned challenges 

through a novel alternative chromosome representation and special decoding 

procedure. It allows the feasibility of chromosomes to be preserved at each iteration 

without the application of repair operators. As a result, the computational burden is 

considerably reduced. 



 

324 
 

 

Figure 2 Freight trains and drivers 

 

Figure 3 Passenger trains and taxis 

3.2 Chromosome representation 

The chromosome is represented by a series of integers, where each number stands 

for the number of the trip (Figure 4). The population of chromosomes is generated at 

random and then the trips are allocated in series to the diagrams using a specific 

decoding procedure. This procedure checks if the next trip can be placed after a 

preexisting one without violation of any restrictions. If it is possible, then it verifies times 

and locations. If the origin station for the current trip differs from the destination station 

of the previous trip, then the algorithm first searches for passenger trains and the 

freight company's own trains that can deliver a driver within the available time slot to 

the next job location, e.g. Diagram 1, between trips 3 and 8 (Figure 4). If no such trains 

have been found but there is sufficient interval between the trips, then the algorithm 

inserts a taxi journey.  
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Figure 4 Chromosome representation and decoding procedure 

If the trips cannot be placed together, then the procedure checks if one of them can 

be included into another diagram, otherwise it will create a new diagram. Information 

regarding driving times and the current duration of the diagrams is stored. Before 

adding a new trip, the algorithm inserts breaks if necessary. If the time expires and 

there are no trains to the home depot that a driver can drive, the deadheading activity 

completes the diagram, as in Diagram2 (Figure 4).  

On rare occasions, a few diagrams might be left with only a few trips and a duration 

that is less than the minimum. This is due to the fact that other drivers are either busy 

at this time or located at different stations. In order to tackle this problem, a mechanism 

has been added for finding and assigning a driver from a remote depot with the lowest 

workload. This approach not only solved the problem of the short diagrams, but also 

helped in distributing the workload more equally across the depots. After 

implementation of this procedure, the algorithm has been tested on various data sets 

including real and randomly generated data. Neither of the chromosomes has been 

reported to violate the constraint.  

The given representation has a visual resemblance to the flight-graph representation 

suggested by Ozdemir and Mohan [16], but the decoding procedures are different. 

The flight-graph representation generates trips based on a depth-first graph search, 

whereas in the proposed GA they are produced at random. Random generation is 

beneficial since it does not exclude situations where a driver can travel to another part 

of the country to start working in order to have even workload distribution across the 

depots, while depth-first search usually places only geographically adjusted trips 

together.  

The advantage of the proposed chromosome representation is that it creates both the 

diagrams and schedule within the same algorithm, thereby giving the GA greater 

control over the solution. It also does not require the generation of a large amount of 

diagrams at the beginning. In addition, this representation does not leave under-

covered trips and ensures that no unnecessary over-covering happens. It is possible 

that at the beginning of the algorithm this chromosome representation might produce 

schedules with a high number of deadheads. However, due to the specific fitness 

function and genetic operators, the number of chromosomes containing deadheads 

decreases rapidly with evolution. 
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3.3 Fitness function  

An adequate solution of the CSP requires the achievement of two conflicting 

objectives: high throttle time and low deviation from average diagram lengths. It is 

evident that with the increase in throttle time, the deviation from the average diagram 

length will be increased towards a minimum diagram length. This is due to the 

algorithm attempting to allocate a diagram for a single trip in order to achieve 100% 

throttle time.  

Since GAs are a single-objective optimization method, a weighted sum approach has 

been applied in order to transform all the objectives into scalar fitness information [17]. 

The advantage of this technique is relative simplicity of implementation as well as high 

computational efficacy [18].  

3.4 Selection 

Preference was given to binary tournament selection as it is a comparatively simple 

and non-time consuming selection mechanism. It is also a popular selection strategy 

that is utilised in numerous GAs for CSP [9, 15, 16]. Binary tournament selection can 

be described as follows. Two individuals are selected at random form the population 

and the fittest among them constitutes the first parent. The same process repeats for 

the selection of the second parent.  

3.5 Crossover and mutation 

Since one or two point crossover might produce invalid offspring by removing some 

trips or copying the same journey several times, a crossover mechanism utilizing 

domain-specific information has been designed. Firstly, the process detects genes 

responsible for diagrams with a high throttle time in the first parent. Then these genes 

are copied to the first child and the rest of the genes are added from the second parent. 

The same procedure is then used to form the second child. The process is illustrated 

on the Figure 5.  
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Figure 5 Crossover 

In order to maintain diversity in the population, randomly selected genes are mutated 

with 40% probability. The mutation is performed by swapping two randomly identified 

genes. The mutation probability was determined through numerous tests and empirical 

observations. 

4 Experimental results 

The proposed GA for CSP (referred to as GACSP) has been used to produce diagrams 

for the freight-train drivers. The GACSP has been tested on a full daily data set 

obtained from one of the largest rail-freight operators in the UK. The data instances 

comprise 2000 freight-train legs, 500 cities, 39 depots, 1240 drivers, 500000 

passenger-train links, and taxi trips connecting any of the stations at any time. Figures 

6 and 7 illustrate a three-hour run of the algorithm and its achievement of the main 

business objectives, i.e. maximized throttle time and minimized deviation from the 

average shift duration. Increasing the throttle time indicates a reduction in deadheads 

and unnecessary waiting, thereby reducing the number of drivers required to operate 

the given trains. The decrease in deviation of the diagram duration from the average 

can be translated into equal utilization of the contract hours during the year. A typical 

resulting diagram is presented in Figure 8.  

 

Figure 6 Maximizing average throttle time 
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Figure 7 Minimizing deviation from the average shift length of 8.5 hours 

 

 

Figure 8 A typical diagram, i.e. driver schedule 

In order to evaluate the efficiency of GACSP, it has been compared against two 

established approaches. The first is B&P, i.e. the combination of column generation 

and branch and bound methods [4]. The second comparator is Genetic Algorithm 

Process Optimization (GAPO), a genetic algorithm for CSP enhanced with repair and 

perturbation operators [9]. Both GAs have been adapted and modified to the current 

problem and implemented with C++ Builder while B&P was written in CPLEX. They all 

were run on computer with 4 GB RAM and 3.4 GHz Dual Core Processor. Initially, the 

intention had been to test all three algorithms on the full data set. However, after twelve 

hours running of the B&P algorithm, no solution had been reached. For the sake of 

comparison, the data size was reduced to six cities and 180 train legs, 500 passenger-

train links. For the GA the population size was set as 20, crossover rate 90% and 

mutation probability 40%. As criteria for comparison, real business objectives such as 

throttle time, number of deadheads, average deviation from the desirable diagram 

length and computation time have been selected.  
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Table 1Experimental results using the reduced data set 

 B&P GAPO GACSP 

Computation 

time (min) 

60 120 228 60 120 228 60 120 228 

Number of 

diagrams 

- - 22 32 28 26 25 23 23 

Throttle time 

(%) 

- - 63 50 56 59 60 62 62 

Average 

Number of 

deadheads per 

shift 

- - 1.36 2.21 1.85 1.60 1.66 1.47 1.47 

Deviation 

from the 

average (min) 

- - 46 51 48 47 62 57 57 

 

The computational results with the reduced data sets are displayed in Table 1. B&P 

obtained a solution in 228 minutes. Within 10 minutes, B&P had constructed 2000 

columns and solved LP relaxation without an integer solution. Further time was 

required for branching and generation of additional columns. In order to estimate 

efficiency of GACSP and GAPO, they have been run for the same period of time. 

GACSP obtained an entire feasible schedule within 10 seconds and after one hour an 

acceptable schedule had been reached. Although the B&P algorithm ultimately 

achieved slightly better results, it has been tested on a problem of relatively small size. 

The computational time for linear programming algorithms usually grows exponentially 

with the increase in data size, so the B&P algorithm is likely to be impractical in 

environments where there is a crucial need to make fast decisions from large data 

sets. 

As in other work [9], 3308 columns have been generated for GAPO, which took 30 

minutes of computational time. Unlike B&P and GACSP, this approach did not have 

an embedded ability to generate additional columns, limiting its capability to explore 

other possible diagrams. It was also observed that 70% of the computational time was 

consumed by the heuristic and perturbation operators, whose aim was to restore the 

feasibility of the chromosomes. The repair operations were performed by scanning all 

available diagrams and selecting the best that could be inserted in the current 

schedule. GACSP overcomes this challenge by utilising the alternative chromosome 

representation that does not violate the validity of the chromosomes. Thus GACSP 

spends less time on each iteration and hence evolves more rapidly.  

5 Potential implementation and integration issues 

The most common implementation problems with software for scheduling transit 

systems concern robustness [19], i.e. the ability of the schedule to adapt to different 

circumstances. An example of such circumstances might be the delay of the previous 

train, resulting in the driver being unable to catch the planned train. In our system, the 
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transfer time regulates how much time is allocated for a driver to leave the previous 

train and start working on the next one. The larger the interval between trips, the lower 

the risk that the next freight train will be delayed by the late arrival of the previous one. 

On the other hand, a large transfer time decreases throttle time and requires more 

drivers to cover the trips. The best way to tackle this situation is to have an effective 

re-scheduling mechanism that makes changes in as few diagrams as possible.  

In addition, the crew scheduling process is extremely complex. It is not always possible 

to model all the rules, nuances and exceptions of the schedule. For this reason, the 

system-generated diagrams have to be revised and amended by an experienced 

human planner until all the knowledge has been fully acquired. 

Finally, although GAs are able to find an acceptable solution relatively quickly, they 

might also converge prematurely around a sub-optimal solution. Convergence can be 

controlled either by embedding variations in the selection procedure [17] or by 

changing the mutation rate [13].  

6 Conclusions 

In this paper, the complexities of CSP in the rail-freight industry in the UK have been 

described. Due to a high monetary cost of train crew, the profitability and success of 

the company might rely heavily on the quality of the constructed crew schedule. Given 

the wide geographical spread, numerous regulations, and severely constrained 

planning time, an IT system with an effective scheduling algorithm can equip a 

company with valuable decision-making support.  

We have proposed a novel GA for crew scheduling (GACSP). Unlike other GAs for 

CSP, GACSP works with the entire schedule and does not restrict the algorithm in 

finding an optimal solution. The special chromosome representation and genetic 

operators are able to preserve the validity of the chromosomes without the utilization 

of additional repair operators or penalty functions. This capability enables the 

algorithm to consume fewer memory resources and to find a solution faster. In addition, 

the user can to retrieve a feasible schedule at any iteration.  

It has been shown that although B&P was capable of finding an optimal solution from 

the mathematical perspective, time was its main weakness. In real-world operations, 

the cost for late optimal decision often can be much higher than that of a fast sub-

optimal one. In this sense, the GA demonstrated excellent results as it provided a 

reasonable schedule nearly four times faster when using the reduced rail network. 

When faced with the scheduling task for the complete UK rail network, B&P had failed 

to find a solution at all after 12 hours, whereas GACSP was able to find an adequate 

solution in 2 hours. With further improvements of GACSP and possible hybridization 

with linear programming methods, its performance maybe further improved. 
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As future work, more domain specific rules will be incorporated into the chromosome 

generation process in order to achieve a better initial population. Moreover, it would 

be worthwhile to investigate a possible hybridization of a GA with the B&P method. 

The hybridization might seize the advantages of both algorithms to reach a solution 

that is close to the mathematical optimum in a short computation time.  
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