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Abstract 

 

It has been acknowledged that stresses within a thermal barrier coating (TBC) and its 

durability are significantly affected by the coating interfaces. This paper presents a finite 

element approach for stress analysis of the plasma sprayed TBC system, using three-

dimensional (3D) coating interfaces. 3D co-ordinates of the coating surfaces were measured 

through 3D reconstruction of scanning electron microscope (SEM) images. These co-

ordinates were post processed to reconstruct finite element models for use in stress analyses. 

A surface profile unit cell approach with appropriate boundary conditions was applied to 

reduce the problem size and hence computation time. It has been shown that for an identical 

aspect ratio of the coating interface, interfacial out-of-plane stresses for 3D models are 

around twice the values predicted using 2D models. Based on predicted stress development 

within the systems, possible crack development and failure mechanisms of the TBC systems 

can be predicted. 

1 Introduction 

  

 Thermal barrier coating (TBC) systems are applied onto various superalloy and metal 

components e.g. gas turbine blades of an aircraft, diesel engine combustion chambers etc. 

One of the key functions of a TBC is to create a reduction in the substrate temperature by 

slowing the rate of thermal conduction of heat from a combustion reaction to the (cooled) 

substrate. This allows an increase in the combustion temperature which can lead to an 

increased efficiency. A TBC system typically consists of two applied layers: a metallic bond 

coat (BC), and a ceramic top-coat (TC). The TC is the outermost layer of the system and 

provides temperature reduction due to its low thermal conductivity, while the BC provides a 

structural link with the substrate. Coatings are applied using different methods and here only 

an air plasma sprayed (APS) system is considered. The method is more commonly used for 

components of land-based gas turbine engines. For this system, the surface roughness of the 

BC provides a mechanical bond to the TC and also influences its lifetime [1]. The BC is a 

mixture of β (NiAl), γ' (Ni3Al) and γ (Ni) phases in various proportions. At high temperature, 

the composition of the BC evolves either due to formation of a thermally grown oxide (TGO) 

at the TC/BC interface from oxygen diffusion [2] or due to interdiffusion at the substrate/BC 

interface [3, 4]. This variation in the BC compositions with service time can affect its 

mechanical properties significantly [5, 6].      

 Although the rough surface of the BC provides a mechanical bond to the TC, it can 

also cause out-of-plane stresses within the system as it undergoes thermal cycling. Early 

efforts to relate BC surface roughness and thermo-mechanical stresses within APS TBC 

systems have been carried out numerically in [7-9] where predictions were made using 

idealised 2D interfaces, based on micrographs of cross-sections of coating layers. Possible 
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reasons for these simple approaches are: inadequate computational power to run FE 

simulations of actual coating interface and, the difficulty involved with the characterisation of 

interface profiles from standalone coatings. Idealised interfaces not only fail to give an 

accurate representation of the actual geometry, but are, therefore, also likely to result in 

simulated TBC stresses which are insufficiently accurate for predictions of failure of the 

TBCs. Therefore, it is desirable to construct an FE unit cell to represent the actual surface 

geometry and hence to predict stress distributions within the TBC system accurately. A recent 

review [10] explores more generally the use of FE models for predicting TBC thermal 

behaviour and failure including the use of 3D models. 

Nowadays, complex microstructural features can be measured by various advanced 

methods [11, 12]. Furthermore, computational tools (such as object oriented finite element or 

OOF2 [13]) transform micrograph images into FE meshes to be used for further FE analyses. 

The application of this method for stress analysis of the TBCs can be found in [14]. The work 

not only captures the roughness profile but also porous area within the coatings, which 

provides useful information to calculate the coating’s thermal conductivity. Rezvani Rad, et 

al. [15] and Nayebpashaee, et al. [16] used a similar technique to identify the effect of 

realistic 2D roughness profiles on out-of-plane stresses under thermo-mechanical and thermal 

fatigue load conditions respectively. Measurements of 3D coating profiles were also used by 

Gupta et al. [17, 18] to construct 3D FE models and the resultant residual stresses were 

compared against results from 2D FE models. For similar aspect ratio of the interface, out-of-

plane stresses predicted from 3D models are around half an order of magnitude higher than 

those predicted from 2D models under similar loading conditions. The results highlight the 

importance of 3D interface shape to the estimation of residual stresses within TBC systems. 

Work by Saucedo-Mora, et al. [19] considered the microstructural roughness and 

heterogeneity of the coating for damage development within coatings using multi-scale FE 

model. The work not only demonstrated the effects of surface roughness on stress profiles, 

but also the influence of microstructural features on Young's modulus and damage within 

coatings. 

Despite current abilities to incorporate complex coating interfaces into FE analyses, 

there are still many shortcomings among the models presented in the previous paragraph. The 

models in [15, 18] ignore oxidation of the BC completely, yet this is very important due to 

the non-planar nature of the interface shape. When a BC oxidises, directional oxide growth 

strains and subsequent stresses build up within the system in a manner dependent on interface 

geometry. Nayebpashaee, et al. [16] considered oxidation by applying an empirical swelling 

strain to an initial oxide later without taking account of continuous consumption of the BC 

due to oxidation. Gupta et al. [17] calculated the oxide layer thickness based on the diffusion 

at the BC interfaces. However, the simulation only used a linear elastic material model to 

investigate the mismatch stress due to change in temperature. The model also ignored the 

stress build up and redistribution due to creep of coatings during the steady state. To address 

the aforementioned shortcomings, this paper reports an FE model that has been produced 

which describes the effect of stresses within a coating system of 3D microscopic features, 

extracted from 3D analysis of real coating interfaces. Appropriate boundary conditions 

presented by Li et al. [20] were applied to reduce the size of the surface profile unit cell and 

hence its computation time. Changes in material properties of the coating due to oxidation 

and sintering have also been incorporated to fully describe the changes taking place during 

service. A simple case study has been carried out using simplified 2D and 3D TGO interface 

idealisations with identical aspect ratios (ratio of amplitude to wavelength). Subsequently, 

two FE unit cells based on 3D microscopic features of the BC were built to carry out analysis 

of stress distribution and relate them to the failure of the TBC.   
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This work fits into the present Journal’s priority area [21] of the analysis, structure, 

morphology and role of interfaces in the context of multi-physics phenomena, specifically by 

describing the influences of manufacturing-related interface geometry on the development of 

stresses and cracks due to thermo-mechanical and oxidation effects. This paper documents 

the development of a theoretical model of interface stress with the use of experimental data of 

interface geometry which can be used in the design of future turbine blade coatings. 
 

2 Roughness modelling 

2.1 Capturing and post processing of TGO surface profiles  

Cross-sections of TBC systems are traditionally imaged using a scanning electron 

microscope (SEM). Nevertheless, as these interfaces are often view in cross-section, their 

interface roughness and surface profile data measured using this method might not always 

represent the actual aspect ratio. The concept can be appreciated through the examination of 

Fig. 1Fig. 1 where three different sectioning paths of an idealised surface with identical 

aspect ratio throughout its surface could form radically different cross-section profiles. To 

avoid this, 3D images of the coating interface were captured for the current work. 

The specimen used for the capture of the TGO surface profile was composed of a 

Ni22Co17Cr12Al0.6Y (Wt.%) BC with an APS TBC which was isothermally heated to a 

temperature of 940°C for 500 h. In order to view the TGO / BC interface, the BC was 

dissolved in hydrochloric acid (36%) for 36h at ambient temperature to reveal the surface of 

the oxide interface as used by Sohn et al. [22]. To produce a 3D representation of the TGO / 

BC interface, secondary electron images were collected using a Cambridge 360 Stereoscan 

SEM at a number of tilt angles and analysed using Alicona Mex 3D. The x-y-z coordinates of 

the measured surface profile were then saved in ASCII format and post-processed using 

‘Fogale Nanotech Profilometry Software’ (FNPS) [23]. In order to approximate a TGO layer 

of constant thickness within the FE model, it was assumed that both TGO interfaces (i.e. TBC 

/ TGO and TGO / BC) follow identical geometries. 

The measured TGO surface coordinates in ASCII format were imported into FNPS, 

and the roughness profile (short wavelength undulations) and waviness (longer wavelength 

than the roughness profile) of the interface were separated using a standardised Gaussian 

filtering method (ISO 11562) [24]. The weight function of the filter (S(x)) is given by Eq 

(1)(1) [25]. The mean line of the raw data was obtained by convolving it with the weighting 

function. The roughness and waviness profiles were separated by subtracting the mean line 

from the raw profile. The transfer function was obtained by performing a Fourier transform 

of the continuous function S(x) as shown in Eq (2)(2) [26].  
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 , x is the distance from the origin of the weight function, λc is the cut-off for 

longer wavelength roughness and λ is the actual wavelength of different waves from the raw 

surface profile.  
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As observed from Eq (1)(1) and (2)(2), the filtering process is mainly controlled by 

the choice of cut-off wavelength (λc). There are several uncertainties in choosing the cut-off 

wavelength as it has not only to be short enough to separate waviness profiles, but also long 

enough to give a meaningful roughness profile. A longer cut-off wavelength creates a 

smoother roughness profile and vice versa. Since there is no definite standard for the cut-off 

wavelength, the choice of the wavelength is entirely dependent on the sizes of the asperities, 

on which analyses are to be performed. In the present work, a cut-off wavelength of 25 μm 

was used to separate the microscopic roughness features from large protuberances of isolated 

BC “splats”. The height contour plots of the roughness and waviness profiles of the TGO/BC 

interface within the sample area of 200 µm x 140 µm are depicted in Fig.2Fig.2. 

 

 
 

Fig. 1: Possible coating roughness profiles that could be extracted from different 2D cross-

sectional micrographs of the coating surface with perfectly periodic asperities 

 
Fig.2: (i) Waviness and (ii) roughness profiles of the TGO/NiCoCrAlY BC interface with cut off 

wavelength (λc) = 25μm (profiles were generated using FNPS).  Vertical axes and scales show 

out-of-plane profile in m (height exaggerated) 

2.2 Types of interface geometries 
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Three types of interface geometries were chosen for the various case studies. They are listed 

in Table 1Table 1.   

 
Table 1: Geometries used in the current work and specimen from which they are extracted 

 

Interface 

geometries 
Detailed description 

Specimen 

(i) 
A profile cell measured from SEM micrographs 

of 2D cross-sections  

A range of TBC systems 

[5] 

(ii) 

A surface profile cell, extracted from 3D 

coating roughness measurements as shown in 

Fig.2Fig.2 (ii) 

NiCoCrAlY specimen that 

had been heat treated at 940˚C 

for 500h (as described in 

Section 2) 

(iii) 

A surface profile cell, which represents the 

protuberance of a BC splat, whose wavelength 

is larger than the roughness sampling length 

(Extracted from Fig.2Fig.2 (i)) 

NiCoCrAlY specimen that 

had been heat treated at 940˚C 

for 500h (as described in 

Section 2) 

 

 

Firstly, the interface geometry with amplitude (A) of 6 μm and wavelength (L) of 

48 μm (denoted as A6-L48), as used in previous studies [5, 6], was used for the axisymmetric 

and 3D unit cell models as shown in Fig.3Fig.3 (i) & (ii). The thermo-mechanical stresses 

were simulated for these models at 20°C after aging for 900 h at 1000°C.  

 

 

 

 
 

Fig.3: (i) Axisymmetric unit cell (L= 48μm, A = 6μm) (ii) Comparable 3D unit cell of TBC 

(Geometry set i).  Insets show relationships of main views to 3D geometry 

 

It is assumed that the features of a realistic rough interface, such as that shown in 

Fig.2Fig.2, can be broken down into three undulation components at different scales, known 

respectively as form, waviness and roughness.  In order to investigate the relative effects of 

these, each of these was modelled separately since the overall problem involving all three 

scales would have been too large to model realistically within a single FE unit cell that 

includes all of these geometric features.  Accordingly, separate unit cells were constructed to 

represent the roughness and waviness, with the form being included in the overall 
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axisymmetric or cylindrical geometry of the unit cell.  Additionally, it is assumed that the 

tangential slopes are zero along the symmetry and the periodicity planes of the unit cells due 

to limitations imposed by the boundary conditions for a 3D unit cell (Section 3). This 

assumption allows the modelling of only a quarter of each microscopic feature. 

An asperity extracted from the roughness profile of Fig.2Fig.2 (ii) is similar to the 

idealised 3D interface shown in Fig.3Fig.3 (ii). However, the aspect ratios of the interface for 

two in-plane directions were different as the actual peaks and troughs of the coating’s 

interface were elliptical as shown in Fig.4Fig.4 (ii). A and L of the asperity are 3.3 μm and 

22.5 μm respectively. It was assumed that the coating was covered with periodic features of 

the represented asperity as shown in Fig.4Fig.4 (iii). The substrate curvature for this 

specimen was 6.2 mm in this case and was incorporated with the unit cell as in [6]. 

 
Fig.4: i) Surface contour plot of roughness profile and ii) 3D view of extracted asperity using 

FNPS (NiCoCrAlY system after 500h of heat treatment at 940°C) iii) Representative coating 

roughness modelled using a repeating unit cell (Geometry set ii)  Vertical axis in ii), colour 

contours and scales show out-of-plane profile in m (height exaggerated in ii)) 

 

 

 

As shown in Fig.5Fig.5, pits with depths significantly larger than those of the 

roughness asperities can be observed at the surface of the TGO. This feature will hereafter be 

referred to as an ‘oxide loop’. A profile of an oxide loop formed after 500 h of heat treatment 

at 940°C was extracted from the 3D data of the TGO / BC surface. The length and width of 

the elliptical oxide loop were 32 μm and 24 μm respectively, and the depth was 15 μm. 

Because of the extreme aspect ratio of the oxide loop features, the form of the substrate was 
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assumed to have no significant effect upon the local stress field compared to that of the oxide 

loop. Therefore, the substrate was modelled as having zero curvature in either direction. 

 

 

 

 
Fig.5: (i) Waviness profile at the surface of the TGO from NiCoCrAlY-APS TBC system, which 

has been heat treated at 940°C for 500h; oxide loop feature shown in dotted line is shown in 

detail in (ii) and (iii) Vertical axis in iii), colour contours and scales show out-of-plane profile in 

m (profile height not to scale in iii)) 

 

 

 

 

3 Boundary conditions for microscopic features with cylindrical and longitudinal 

periodicities 

 In order to make the finite element simulation computationally efficient, the interface 

features identified in Section 2.22.1 are idealised into an infinitely-repeating form and 

appropriate boundary conditions are applied.  In the past, it has been assumed [5, 6, 27, 28] 

that the BC/TGO interface has a 2D shape with periodicity either in the circumferential 
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direction (with wavelength 2rα) or in the longitudinal direction (with wavelength 2b) as 

shown in Fig.6Fig.6 (i & ii). Here, an idealised 3D model with periodicity in both 

circumferential and longitudinal directions can be modelled using a unit cell contained within 

the domain shown in Eq (3)(3) [20] and having the repeating pattern shown in Fig.7Fig.7.  

 





Rr

bxb

0  (3) 

where x, r, and θ are longitudinal, radial and circumferential coordinates of the cylindrical 

coordinate system (CSYS), respectively.  

 
Fig.6:  Sinusoidal TGO interfaces i) periodicity in the circumferential direction with wavelength 

of 2rα and ii) periodicity in the longitudinal direction with wavelength of 2b (Cells bounded by 

double-dashed line are used for FE unit cells)  

  
 

Fig.7: Representative 3D coating surface (A unit cell is highlighted) 
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In principle, this unit cell involves symmetries about planes x=b and =.  However, 

purely translational symmetry, such as that presented by Li and Wongsto [29] for composite 

structures with geometrically periodic patterns, does not properly consider the rotational 

aspects of the circumferential periodicity as they involve consideration of a cylindrical 

coordinate system (CSYS).  Moreover, the commercial FE systems do not typically 

incorporate the ability to apply the appropriate symmetries in a cylindrical coordinate system, 

and do not allow the source code to be extended to incorporate such features.  Accordingly, 

the displacements need to be transformed from a cylindrical CSYS into a rectangular one 

using the transformations shown in Eq (4)(4), based on simple trigonometry:  





 cossin

sincos

wvu

wvu

uu

r

x







 

 

(4) 

 

where ux, ur and uθ are displacements in a cylindrical coordinates system (x-r-θ) and u, v and 

w are displacement components in a global Cartesian coordinate system (x-y-z) as shown in 

Fig. 8Fig. 8. 

 
Fig. 8: Relationship between displacement components ux, ur and u  in cylindrical x-r- 

coordinate system, and displacement components u, v and w in Cartesian (x-y-z) coordinate 

system 

 

 

Based on this transformation, Li et al. [20] extended the approach of [29] to obtain a 

set of boundary conditions periodic in both x and , of which a special case are conditions 

where there is symmetry about planes x=b and = which are applied within a Cartesian 

CSYS. These boundary conditions for a 3D unit cell as shown in Fig.7Fig.7 (iii), for 

calculation of thermo-mechanical stresses, can be represented in Eq (5)(5) [20]. 

At x = 0, u = 0 

At x = b, u = b 0

x ; where 0

x  is strain in the X-direction 

At θ = 0, w = 0 

At θ = α,  vsinθ + wcos θ = 0 

(5) 

The first two boundary conditions of Eq (5)(5) are applied to the unit cell with length, 

b. The boundary conditions ensure that the unit cell represents the infinitely long cylinder by 

constraining the plane at x = b to remain parallel while allowing displacement to occur in the 

longitudinal direction.  

x

z

y

u, ux

w

v

w

x
θ = α

ur

uθ
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Similarly, the last two boundary conditions of Eq (5)(5) are applied for symmetry and 

periodicity conditions in the r-θ plane. In the case for which the substrate is flat, simple 

transverse periodicity was applied in an analogous manner to the longitudinal periodic 

constraints in Eq (5)(5). By using Eq (5)(5), it is possible to model only a quarter of the 3D 

unit cell, as highlighted in Fig.7Fig.7, in order to reduce computation time without affecting 

the accuracy of the numerical calculations.  

 

4 FE model  

 

Each aspect of the FE model for 3D coating interfaces is described in the following sections. 

The current FE model is based on the previous work by authors for 2D coating interfaces [6, 

20] where details of relevant aspect of the model can be found. A case study for validation of 

the stresses at the coating interfaces simulated by the model against Raman and photo-

stimulated luminescence piezo-spectroscopic measurements was carried out in [30]. The 

study showed that residual stresses predicted from the FE model is of a similar order to the 

stresses measured. The predictions of crack initiation and spallation sites from the model are 

also in agreement with experiments. 

 

4.1 Implementation of boundary and loading conditions 

 

Equation constraints are applied at nodes on planes of symmetry and periodic planes 

of the unit cell to satisfy the boundary conditions from Eq (5)(5). In order to implement the 

periodic boundary conditions, a fictitious or non-structural node is defined to which the x-

displacements of all the nodes on the boundary x=b are tied via linear constraint equations, 

with the x-displacement being made equal to the value of x.  

 

 A simulated constant temperature load of 1000°C was applied across the 

system for a simulated time of 900 h before cooling back to room temperature. The duration 

of initial heating to 1000˚C from room temperature and cooling down to room temperature 

was 30 min. For the system with the preceding heat treatment duration of 500 h at 940°C, the 

thickness of the initial TGO was set as 4 μm; otherwise, the thickness was assumed to be 

1 μm. However, residual stresses from earlier heat treatments were not taken into account and 

all systems were assumed to be stress-free at the start of the analysis. 

 

 

4.2 Material properties and oxidation kinetics 

 

For this study, the TC is assumed to be purely elastic whereas creep behaviours of 

other layers are considered by using a power law. A power law creep strain rate (
cr

ij ) is 

shown in Eq (6)(6). Power law constants for the TGO are A0 = 6800 MPa
-n

s
-1

,  n = 2.3, Q = 

4.24 x 10
5
 J/mol. Q and R in Eq (6)(6) are the activation energy of the reaction and the 

universal gas constant respectively. For the TC, evolution in its elastic modulus due to 

sintering is considered. Material properties of the BC (elastic, creep and CTE) are calculated 

based on its constituents that constantly vary due to oxidation or diffusion at the BC/substrate 

interface. The procedure is explained in Section Error! Reference source not found.4.3. 

More details can be found in an earlier publication [6].  
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ncr

ij RT
Q

A  





 exp0

  (6) 

 

It was assumed that the oxidation of the BC produces isotropic strain according to the 

Pilling-Bedworth Ratio (PBR) of aluminium (Al). As in the model in [27], the PBR of Al is 

taken to be 1.28. The oxide formed is assumed to be made up of pure alumina and it is 

assumed to grow towards the BC since the oxygen diffusion rate within Al2O3 is higher than 

that of Al at the same temperature [31]. The growth strain rate  tr

ij  
due to oxidation is 

related to the PBR for Al containing phases in the BC (β and γ’) and the oxide formation rate 

 oxf  via Eq (7)(6) [5]. 

ijox

tr

ij fPBR  
 )ln(

3
1

'/  (76) 

As mentioned by Taylor et al. [32], local Al-depletion zones and external growth of 

non-Al oxides (spinels) are expected around the oxide features with high aspect ratios such as 

the oxide loop. Due to their significantly higher PBR than Al, fast growing oxides of Ni, Co 

and Cr create a rapid increase in out-of-plane tensile stress within the TBC system during 

steady state heating. The failure caused by this type of metal oxidation, due to Al depletion 

within the BC, is referred to as ‘chemical failure’. However, studying chemical failure is 

outside the scope of this article so therefore spinel formation due to external oxidation will 

not be considered here.  

4.3 Modelling evolution of material properties of coatings  

 

The high temperatures experienced by TBC systems during industrial service can 

cause the properties of the materials to change with time. Sintering of the ceramic TC at these 

temperatures can reduce the porosity of the TBC. The constitutive model which considers 

changes in TBC modulus due to sintering, based on the Arrhenius model, has been coupled to 

a FE model of the TBC system by Kyaw et al. [6]. The proportions of phases within the BC 

change continuously during the steady state period of heating due to oxidation or 

interdiffusion at the substrate/BC interface. These changes can be calculated by using finite 

difference (FD) calculations in combination with thermodynamic calculations such as 

CALPHAD [33] as presented in [34, 35]. The atomic flux of Al at the BC / TGO interface is 

calculated by using an empirically derived oxidation law [36]. Currently, a 1D 

FD/thermodynamics model developed by Karunaratne et al. [3], is coupled to the FE model 

of the TBC. Using the proportions of intermetallic phases predicted by the model, Eshelby’s 

theorem and material properties of the pure BC phases, a constitutive material model was 

developed in [5] for the aggregate properties (elastic and creep properties and coefficient of 

thermal expansion (CTE)) of the BC. This model for the BC will also be adopted here.  

To transfer the 1D phase proportion data into the 3D FE models, the BC was 

modelled as a multi-layered structure as shown in Fig.9Fig.9. The thickness of each layer was 

predefined at the pre-processing stage and the material points, at which the BC properties 

were calculated, were assumed to lie along the middle profile of each BC layer as shown in 

Fig.9Fig.9. Sporadically, layers of the BC were also transformed into the TGO layer based on 

the oxidation law in [36]. This transformation also imposes an appropriate growth strain 

based on the PBR of Al, to model oxidation. For the regions further away from the TGO 

interface, distances of material points from the TGO interface were estimated from the 

interface BC shown in Fig.9Fig.9. At those regions, errors in estimating distances due to the 
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undulated nature of the interface are tolerable as the change in BC composition is subtle. This 

type of multi-layered modelling approach would also be suitable for incorporating 1D phase 

data into complex 3D coating tomography such as the one measured by the synchrotron-

radiation method [12] 

 

 
Fig.9: The multilayered nature of the BC to implement 1D FE model for the composition of the 

BC 

4.4 Finite element mesh 

 

It is necessary to select appropriate element types and mesh densities for the FE 

models with interface geometries described in Section 2.22.1, in order to obtain accurate 

results with minimum computation time. For the axisymmetric models, 4-node linear 

axisymmetric elements (CAX4) were used for consistency with other work in the present 

project that makes use of ABAQUS features (XFEM and cohesive modelling) not available 

with higher-order elements.  Reduced integration (i.e. use of fewer Gaussian integration 

points than are required for exact integration of the stiffness matrix) was used both for 

computational economy and to avoid any danger of shear locking [37]. 

To overcome the inaccuracies in using linear elements with a reduced integration 

scheme, a relatively high mesh density is necessary around the regions with abrupt changes in 

displacements and hence in the resultant stress and strain. For TBC systems, stress 

concentrations occur around the TGO interface due to CTE mismatch [38, 39] and hence, 

higher mesh densities were applied at those regions.  A mesh diagram for the axisymmetric 

model (geometry set (i), Section 2.22.1) is illustrated in [6] while mesh diagrams for 

geometry set (ii) and (iii) are illustrated in Fig.10Fig.10 and Fig.11Fig.11, respectively. 
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Fig.10: i) Topography of the repeated sinusoidal oxide interface with highlighted unit cell for ii) 

FE mesh for the unit cell iii) Detail of mesh in the vicinity of the TGO 

 

 

 
Fig.11: i) Topography of the repeated oxide loop interface with highlighted unit cell ii) FE mesh 

for the unit cell iii) Detail of mesh in the vicinity of the TGO      

 

 

5 Results and discussions 

5.1 Stresses predicted by the TBC models with axisymmetric and 3D interfaces with 

identical aspect ratio of geometry set i 
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A comparison of out-of-plane TBC stresses for both the axisymmetric and 3D models 

using geometry set (i), at a simulated temperature of 20°C and a simulated 900h of ageing at 

1000°C, is presented in Fig.12Fig.12. It was found that when the 3D model was employed, 

the maximum tensile out-of-plane stresses at the TGO / TBC interface increased by a factor 

of nearly two. Similar findings were also presented by Gupta, et al.[18] and Glynn et al.[40]. 

These findings illustrate the importance of employing 3D models while carrying out stress 

analyses for TBC systems to avoid the underestimation of stresses caused through the use of 

a 2D profile.  

Higher stress concentrations at the TGO / TBC interfaces for the 3D model can be 

explained by a simple Lamé approach as described by Gong and Clarke [41]. In such an 

approach, local interfacial stresses at the peak and valley regions of 2D and 3D models can be 

idealised as stresses at the coating interface for cylindrical and spherical substrates 

respectively. Analytically, it can be proved that, for an identical radius, radial stress at the 

coating interface for a spherical substrate is around 1.5 times higher compared to the 

cylindrical substrate, which is a similar magnitude to the stress differences indicated here. 

 
Fig.12: Out of plane tensile stress within the TBC with i) axisymmetric TGO interface and ii) 3D 

TGO interface at 20°C after heating at 1000°C for 900h.  Insets show relationships of main 

views to the 3D geometry. 

 

 

5.2 Stresses predicted by the TBC models with 3D sinusoidal interface (geometry set 

ii)  

 

Two different simulations were carried out, both with the same interface geometry as 

that shown in Fig.4Fig.4. System 1 was a simulated as-sprayed system with an assumed 

initial TGO thickness of 1 μm. By contrast, for the simulated thermally aged sample, System 

2, the initial TGO was assumed to be 4 μm thick with a fully sintered TBC after an applied 

heat treatment of 500 h at 960°C. Moreover, the FD / thermodynamics model for evolution of 

the BC material properties (Section 4.3) was also modified to ensure the initial properties of 

the BC were equivalent to those of an aged system. A slower oxide formation rate was also 

used in the simulation since diffusion of O and Al will be much slower due to the thickness of 

the initial TGO layer. 

Firstly, the stresses within the coatings from System 1 and the idealised model from 

Section 5.1 were compared to investigate the significance of the coating aspect ratio. The 

trend of out-of-plane stresses within the TBC and the BC (shown in Fig.13Fig.13 and 

Fig.14Fig.14 respectively) at the end of cooling for both systems was similar despite the 
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unsymmetrical coating interface of System 1. Generally, out-of-plane stresses are higher than 

those predicted using the idealised 3D model (Fig.13Fig.13 and Fig.14Fig.14). This is due to 

the higher aspect ratio of the interface (0.15) compared to the ratio of the idealised 3D model 

(0.125). The trend of increased residual stresses within the system with increasing aspect 

ratio of the coating interface is similar to the one given from various 2D parametric studies 

[8, 28, 42] of the effect of aspect ratio on TBC stresses.   
 

 
 

Fig.13: Through thickness stress (σ11) in the vicinity of the TBC for (i) System 1 and (ii) 

idealised 3D interface at 20°C after heating at 1000°C for 900h.  Inset shows relationships of 

viewing direction relative to the 3D geometry.  

 

 

 

 
Fig.14: Through thickness stress (σ11) in the vicinity of the BC for (i) system 1 and (ii) for 

idealised 3D interface at 20°C after heating at 1000°C for 900h. Inset shows relationships of 

viewing direction relative to the 3D geometry. 

 

 

Secondly, stresses occurring within System 1 and System 2 were compared against 

each other. At the end of the heating period, both systems produced a similar out-of-plane 

stress pattern as shown in Fig.15Fig.15. The higher magnitude of stresses for System 2 is due 

to the lower strain tolerance of the aged TBC [43]. During steady state heating, lateral oxide 

growth imposes compressive in-plane stresses within the TGO. Concurrently, there will be 

additional creep strain of the TGO to relax the built-up stresses. Compressive in-plane stress 
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within the growing oxide layer will impose tensile and compressive out-of-plane stresses at 

the valleys and peaks at the TGO interfaces. These oxidation stresses are opposed to the 

initial thermal mismatch stresses and hence would be expected to lead eventually to stress 

reversal.  In the case of System 1, the stress reversal occurs rapidly after heat-up as the 

newly-grown oxide is almost adjacent to the TBC layer.  However, in the case of the heat-

treated NiCoCrAlY specimen, both depletion of the Al containing phases and a thicker TGO 

make the oxide formation rate within the system much slower than System 1. Accordingly, 

the rate of change of the TBC stresses due to oxide growth is much slower, and stress reversal 

occurs much later as demonstrated in Fig.15Fig.15. Moreover, oxide growth stresses 

produced at the TBC / TGO interface during the steady state heating period for System 1 are 

significantly higher than those produced by System 2 at the end of the steady state heating 

period (Fig.15Fig.15).  As a result, out of plane stresses at the TBC / TGO interface for 

System 1 after cooling are at least 40% higher than those predicted from System 2.  

The above discrepancies in stresses between Systems 1 and 2 show the importance of 

using appropriate initial TGO thickness, diffusion and oxidation models whilst carrying out 

stress analyses on real interface geometries extracted from aged coating systems. 

 

 

 
Fig.15: Out-of-plane stress at the TBC peak and valley for as-sprayed (Sample 1) and aged 

(Sample 2) TBC systems with an identical coating asperity  

 
Quantitative comparisons of stresses obtained in this study against other findings in the 

literature pose challenges due to differences in modelling methods (e.g. with or without TGO growth 

strain during steady state), material properties (e.g. diffusion model for estimating instantaneous 

properties of the BC or fixed properties, inclusion or exclusion of creep properties of coatings) and 

TGO thickness. Generally, stresses predicted in this study using homogenous materials with 

simplified TGO interfaces are higher than those predicted from the models with actual TGO interfaces 

by Gupta et al. [18], and Hansson and Skogsberg [44]. From their studies with microscopically 

scanned 3D TGO interface, maximum through thickness TBC stress after cooling to 100˚C from 

1100˚C is around 200MPa for both as-sprayed TBC system without TGO and for the system with 

TGO after 200h of isothermal heat treatment. The maximum stress occurs at the peak of the TBC for 

the as-sprayed system while it is found at the valley of the interface of the as-aged system, in a similar 

manner to the results obtained in the present study shown in Fig.13Fig.13 (ii). The maximum TBC 

stress after cooling in the present study (~ 375MPa) is higher than the magnitude of TBC stress by 
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Gupta for both as-sprayed and aged systems as shown in Fig.13Fig.13. The reason for this 

discrepancy could be the lack of TGO growth stress and creep within the models presented in 

references [18] and [44]  and their assumption that the system is stress-free before cooling. Studies in 

references [6] and [45]  have shown that the combination of TGO growth stresses, and relaxation 

caused by the TGO creep at the steady state, results in tensile out of plane stress at the TBC valley and 

these stresses further increase during cooling due to CTE mismatches between coating layers. 

Experimentally, hydrostatic growth stresses when the aluminium-rich BC transforms to TGO at 

1121˚C have been measured to be around 2-2.5 GPa [46]. Therefore, the TBC system cannot be 

assumed to be stress-free before cooling, and an appropriate oxide growth model has to be used to 

model stresses within the system due to TGO growth during the steady state.  
  

5.3 Stresses predicted by the TBC models with oxide loop geometry (geometry set iii)  

 

Because of the convoluted geometry of the oxide loop, high tensile through-thickness 

stresses are predicted to be concentrated at the TBC peak at the end of heating to 1000°C, as 

shown in Fig.16Fig.16 (i). In reality, these stresses will be relaxed through the formation of 

parallel cracks or by creep of the coatings during steady state heating.  Only the latter process 

was considered in this case. Due to stress relaxation by coating creep, tensile out-of-plane 

stresses at the TGO interfaces at the end of the steady state heating period are predicted to be 

below the rupture strengths of the interfaces. Thermal mismatch upon cooling will produce 

tensile out-of-plane stress at the BC peak and at the middle of the TBC / TGO interface as 

shown in Fig.16Fig.16 (ii). In the region where the interfacial geometry is flat, out-of-plane 

stresses are negligibly small although high compressive in-plane stresses of up to 6.5 GPa are 

created within the TGO due to cooling as shown in Fig. 17Fig. 17. Therefore, studies of both 

in-plane and out-of-plane stresses are necessary to predict crack growth near the coating 

asperities similar to the oxide loop model. Gupta et al. [18] also carried out stress analysis of 

the coating system using the TGO interface similar to the oxide loop in this study. By 

contrast, however, the feature was idealised as a hemisphere instead of the approximately 

conical shape in the current study. Gupta’s study shows that the maximum through thickness 

TBC stress (~ 200MPa) occurs at the peak of the TBC after cooling for the system without 

TGO. When a TGO layer of 10 μm is used, the maximum TBC stress (~ 200MPa) occurs at 

the middle of the TBC/TGO interface in a similar manner to the current study as shown in 

Fig.16Fig.16. As mentioned previously, TBC stresses at the end of heating (shown in  

Fig.16Fig.16 (i)) will be redistributed during steady state due to relaxation caused by TGO 

creep and due to TGO growth. Neither of these processes was considered in the Gupta model 

and hence the magnitude of stress is not directly comparable with the present study. 
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Fig.16: Through thickness stresses (i) within the TBC at the end of heating at 1000°C and (ii) 

within the TBC system near the TGO interfaces at the end of cooling after heating at 1000°C for 

900h  

 
 

Fig. 17: In-plane stress (i) S11 and (ii) S33 within TGO and TBC at the end of cooling after 

heating at 1000°C for 900h 

 

5.4 Prediction of crack development and failure of the TBC system based on stress 

distributions within the system 

 

 In this paper, crack initiation and subsequent propagation are not modelled but they 

are rather predicted from out of plane tensile stress state (assuming that the coating is brittle 

and mode I crack growth is the dominant fracture mode). When the axisymmetric interface 

with geometry set (i) is considered, propagation of parallel cracks due to residual stresses at 

three different stages during a thermal cycle can be predicted as shown in Fig.18Fig.18. 

Parallel cracks around the TBC peak towards the TBC valley after the heating period, are 

restricted due to the high compressive stress at the valley as shown in Fig.18Fig.18 (i). 

However for aged systems, reversal of tensile and compressive stresses is only predicted to 

occur after several hours of steady state heating (Fig.15Fig.15) and parallel cracks formed at 

the TBC peak during heat-up will continue to propagate. Therefore, premature spallation of 
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the TBC is expected for thermally aged systems.  During steady state heating, additional 

parallel cracks are expected to nucleate at the TBC valley due to stress reversal at the TBC 

peak and valley as shown in Fig.18Fig.18 (ii). When cooling is applied, any CTE mismatch is 

predicted to cause tensile out-of-plane stresses in the vicinity of the peak of BC and the valley 

and slope of the TBC as depicted in Fig.18Fig.18 (iii). Therefore, parallel cracks are expected 

to form at those regions.  Formation of parallel cracks at the BC peak, however, is not 

possible due to its high tensile strength [47] at low temperature. Delamination or interfacial 

cracks are also expected to form at the BC / TGO interface because of higher out-of-plane 

tensile stresses compared to those at the TGO / TBC interface. If delamination does occur, 

the strain energy release from interfacial cracking could drive further propagation of existing 

TBC and TGO cracks.  

The above predictions of possible parallel crack formations at different stages of a 

thermal cycle based on radial stresses within the system (Fig.18Fig.18) can be schematised as 

shown in Fig.19Fig.19. 

Similarly, local crack growth in the vicinity of 3D asperities based on out-of-plane 

tensile stresses obtained from stress analyses could occur except when significant regions of 

the interface are flat. In this case, very high compressive in-plane stresses are expected and 

buckling-driven cracks have to be considered. Buckling is favoured especially if there are 

significant de-cohesion zones at the interface [48]. For a flat interface shown in Fig.20Fig.20, 

the minimum compressive stress for initiation of buckling failure, is directly proportional to 

the thickness of the coatings (h) and inversely proportional to the temperature changes (ΔT) 

and half of the length of interfacial de-cohesion (b), according to the analytical derivation by 

Choi et al. [49]. For the oxide loop model (Fig.11Fig.11), expected buckling zones, along with 

parallel cracks formed from out-of-plane tensile stresses at the end of cooling, are illustrated 

in Fig.21Fig.21. 
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Fig.18: Through thickness stress state (σ11) within the TBC system with axisymmetric TGO 

interface at (i) at the end of heating (ii) after heating at 1000°C for 13h (iii) at 20°C after heating 

at 1000°C for 90h 

 

 

 
 

Fig.19: Stages of predicted crack growths within the TBC system with axisymmetric TGO 

interface relating to stress states shown in Fig.18Fig.18 (Note: Aspect ratio of the TGO interface 

is exaggerated) 

 

  
 

Fig.20: Schematic diagram of interfacial decohesion at the flat TGO/BC interface  
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Fig.21: Predicted crack growth within the oxide loop model at the end of cooling 

 

6 Conclusions  

 

The following conclusions can be made from the stress analyses presented in this paper. 

 

 For identical aspect ratios, the maximum compressive and tensile radial stresses at the 

TBC / TGO interface of the 3D model are around twice the values predicted using the 

axisymmetric (2D) model. The finding is consistent with analytical results [41], which 

show an increase of more than 1.5 times in tensile radial stress for a spherical 

interface compared to a cylindrical one.  

 For all geometries of the coating interface chosen in this paper, tensile stresses are 

predicted to be concentrated at the TBC peak and the opening of cracks is expected at 

the end of the heating period. The stresses near these cracks relax while their 

propagation towards the valley region is opposed by high compressive stress. 

 After the heating stage, stress reversal at the TBC peak and valley regions does not 

occur rapidly for the aged system with thick initial TGOs compared to the as-sprayed 

system. Therefore cracks that nucleate at the TBC peak during heating continue to 

propagate during the steady state heating stage for aged systems and premature 

spallation is expected.  

 At the end of cooling, tensile delamination cracks are expected to occur at the peak of 

the TGO / BC interface especially for the oxide loop asperity due to its high aspect 

ratio. Once the interface has delaminated, strain energy stored during the steady state 

period will be released. If coalescence of TBC and TGO cracks also occurs in the 

vicinity of the interfacial crack opening, strain energy release at the interface may 

drive further crack propagation leading to spallation.  

 Additionally, buckling failure is expected for relatively flat coating interface regions 

due to the high in-plane compressive stresses, which occur at the end of cooling as 

observed from the oxide loop model. 

This paper presents stress analyses within TBC systems using different unit cells of 

coating asperities, by assuming the coating surface is covered with an infinite tessellation of 
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identical asperities. However, in reality, the coating surface has several irregular microscopic 

features. Nevertheless, the presented framework, for setting up FE models of TBC systems, 

with 3D microscopic features, can be applied with future studies to explore the influence of 

different geometries of asperities on coating failure. 
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