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ABSTRACT 

The role of Chlorine-based activation in the production of high quality CdS/CdTe photovoltaic have been well 

discussed and explored with an overlook of the effect of Cadmium chloride (CdCl2) post-growth treatment 

acidity on the property of the fabricated devices. This work focuses on the optimisation of CdCl2 post-growth 

treatment pH as it affects both the material and fabricated device properties of all-electrodeposited multilayer 

glass/FTO/n-CdS/n-CdTe/p-CdTe configuration. CdCl2 treatments with acidity ranging from pH1 to pH4 were 

explored. The properties of the ensued CdTe layer were explored using optical, morphological, compositional 

structural and electrical property analysis, while, the effect on fabricated multilayer glass/FTO/n-CdS/n-CdTe/p-

CdTe configuration were also explored using both I-V and C-V measurements. Highest improvements in the 

optical, morphological, compositional and structural were observed at pH2 CdCl2 post-growth treatment with an 

improvement in absorption edge, grain size, crystallinity and crystallite size. Conductivity type conversions 

from n-CdTe to p-CdTe, increase in pin-hole density and collapse of the absorption edge were observed after 

pH1 CdCl2 treatment. The highest fabricated solar cell efficiency of 13% was achieved using pH2 CdCl2 

treatment as compared to other pH values explored. 
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1 INTRODUCTION  

Although efficiency stagnation in the cadmium sulphide/cadmium telluride (CdS/CdTe) based solar cell has 

been reported in the literature for the past twenty years prior to the recent improvement in both material and 

processing issues, post-growth treatment (PGT) has been documented as one of the most important processing 

step towards enhancing solar to electrical energy conversion efficiency. With properties such as grain growth, 

recystallisation, improved stoichiometry, grain boundary passivation, optimisation of doping concentration [1] 

among other advantages attributed to the PGT of CdS/CdTe, PGT has been the focus of many researchers. 

Although research focus has been turned towards identifying the best chlorine-based gas  or salt solution either 

in aqueous or methanol in which the highest efficiency can be achieved [2]–[6], the best application method [7] 

and also the optimisation of both annealing temperature and time [8]. So far, the effects of the pH values of the 

chlorine salt solution have been often overlooked. With emphasis on cadmium chloride (CdCl2) PGT, this paper 

focuses on the effect of PGT solution treatment pH on both the material and device properties of CdS/CdTe 

based solar cell. Both the CdS and the CdTe layers were grown using two-electrode electrodeposition 

configuration due to its simplicity. 

 

2 EXPERIMENTAL DETAILS 

2.1 SAMPLE PREPARATION 

All the conducting substrates and chemicals used in this set of experiments were procured from Sigma-Aldrich, 

United Kingdom. As it is a requirement for electrodeposition to utilise a conducting substrate, the TEC7 

glass/fluorine-doped tin oxide (glass/FTO) substrate utilised are strips of 5×4 cm
2
 area with a sheet resistance 7 

Ω/□. The strips of glass/FTO were washed in an ultrasonic bath containing soap solution for 15 minutes. The 

substrates were rinsed thoroughly in deionised (DI) water and degreased using hydrocarbons such as methanol 

and acetone. The substrates were rinsed afterwards in running DI water and directly transferred into the 

cadmium sulphide electrolytic bath.  

 

2.1.1 CdS BATH PREPARATION AND GROWTH 

The cadmium sulphide electrolytic bath contains 0.12 M cadmium chloride hydrate (CdCl2•xH2O) with a purity 

of 99.995% and 0.18 M ammonium thiosulphate ((NH4)2S2O3) with a purity of 99% in 400 ml of DI water. The 

aqueous electrolytic solution was contained in a 500 ml polypropylene beaker placed inside an 800 ml glass 

beaker. A small quantity of DI water is contained in the outer glass beaker for uniform heating of the electrolytic 
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bath contained within the glass beaker. Prior to deposition, the pH of the electrolytic bath was adjusted to 2.50± 

0.02 using dilute ammonium hydroxide (NH4OH) and dilute hydrochloric (HCl) acid to increase or reduce the 

pH value of the bath respectively. The deposition temperature and stirring rate were adjusted to 85°C and ~300 

rpm respectively. It should be taken into consideration that intrinsically, CdS is always n-type due to defects 

such as Cd interstitials and S vacancies within the lattice. CdS was deposited at a pre-optimised cathodic voltage 

of 1200 mV based on structural, optical, morphological, compositional and electrical property evaluation of CdS 

as documented in the literature [9]. 120 nm thick CdS layer was grown on the glass/FTO strip. The glass/FTO/n-

CdS layer was heat treated at 400°C for 20 minutes. The absence of CdCl2 from the treatment at this stage was 

to isolate the effect of post-growth-treatment pH and the inclusion of CdCl2 on the characteristic properties of 

the CdS/CdTe-based solar cell, as it is well known that CdS properties improve after the inclusion of CdCl2 in 

PGT. After heat treatment, the glass/FTO/n-CdS layer was rinsed in running DI water to wash off loose Cd, S 

and CdS which has been reported in the literature as detrimental to fabricated solar devices [10]. The 

glass/FTO/n-CdS layers were transferred into the cadmium telluride (CdTe) bath immediately afterwards. 

 

2.1.2 CdTe BATH PREPARATION AND GROWTH 

The cadmium telluride electrolytic bath contains 1.5 M cadmium nitrate tetrahydrate Cd(NO3)2·4H2O with a 

purity of 99.995%, 0.03 M of tellurium oxide (TeO2) with a purity of 99.995%  and 800 ml DI water bath. The 

electrolytic aqueous solution was contained in a 1000 ml polypropylene beaker and housed in an external 1800 

ml glass beaker similar to the CdS bath configuration. Before the growth of CdTe, the pH, growth temperature 

and stirring rate were set to 2.00±0.02, 85°C and ~300 rpm respectively. It should be noted that CdTe can 

intrinsically be n-, i- or p- conduction type based on the atomic concentration of Cd and Te. With a higher 

atomic concentration of Te to Cd, a p-CdTe layer is grown while n-CdTe can be grown with a higher 

concentration of Cd to Te [11]. Based on the pre-optimisation CdTe using structural, optical, morphological, 

compositional and electrical evaluation as described by Salim et al., 2015 [12]. Within the experimental 

constrain of this work, stoichiometric CdTe was observed at 1370 mV while both the n-CdTe and p-CdTe for 

these set of experiments were grown at 1375 mV and 1365 mV respectively. Utilising a continuous deposition 

process, 1200 nm thick n-CdTe followed by a 30 nm thick p-CdTe were grown to achieve glass/FTO/n-CdS/n-

CdTe/p-CdTe configuration. The  incorporation of the comparatively thin p-CdTe layer was necessitated to pin 

the Fermi level close to the valence band  and also to reduce the contact resistance  at the metal-semiconductor 
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interface [13]. However, an increase in the p-CdTe thickness in this configuration causes a detrimental effect on 

the device parameters due to deep junction formation [6].  

 

2.1.3 POST-GROWTH-TREATMENT PREPARATION AND APPLICATION 

Post-growth-treatment commences immediately after the growth of CdTe resulting into glass/FTO/n-CdS/n-

CdTe/p-CdTe configuration. The glass/FTO/n-CdS/n-CdTe/p-CdTe layer is rinsed in DI water to remove loose 

Cd, Te or CdTe and later dried in a stream of nitrogen gas. The 5×4 cm
2
 glass/FTO/n-CdS/n-CdTe/p-CdTe was 

cut into 5 strips (of 1×4 cm
2
 area) from the glass-side, rinsed thoroughly in running DI water to wash off glass 

shrapnel and dried in a stream of nitrogen gas.  

Prior to the application of CdCl2 treatment, 0.1 M CdCl2 was dissolved in 80 ml of DI water in a 100 ml glass 

beaker at room temperature. To achieve homogeneity, the solution was stirred for 60 minutes and 20 ml of the 

solution was poured into 4 different 25 ml glass beaker. The beakers were labelled A to D with the solution 

contained in beaker A being the most acidic with a pH of 1±0.02, beaker B with pH 2±0.02, beaker C with pH 

3±0.02 and beaker D was left as-prepared  with pH of ~4.02±0.02. It should be noted that the acidity level of the 

CdCl2 solution contained in the 25 ml beaker were adjusted using dilute HCl.  

CdCl2 solution with different pH treatment were applied by adding few droplets on each strip labelled A to D at 

this point based on the pH of the solution in which they were treated while the fifth strip E was left as-deposited. 

Each strip was allowed to air dry before heat treating at 420°C for 20 minutes in air except the as-deposited strip 

E. Afterwards, each strip of glass/FTO/n-CdS/n-CdTe/p-CdTe layers was rinsed in running DI water, dried in 

stream of nitrogen gas and etched using solution containing potassium dichromate (K2Cr2O7) and concentrated 

sulphuric acid (H2SO4) for acid etching and a solution containing sodium hydroxide (NaOH) and sodium 

thiosulfate (Na2S2O3) for basic etching for the duration of 5 seconds and 2 minutes respectively to improve the 

metal/semiconductor contact [14], [15]. 100 nm thick gold (Au) contacts were evaporated on the glass/FTO/n-

CdS/n-CdTe/p-CdTe using a 3 mm diameter mask. The fabricated devices were analysed using both current-

voltage and capacitance-voltage characteristic measurements to determine their device parameters. (It should be 

noted that the CdCl2 post-growth-treatment referred to in this paper denotes CdCl2 treatment and heat treatment 

at 420°C for 20 minutes in air.) 
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2.2 EXPERIMENTAL TECHNIQUE 

To ascertain the effect of CdCl2 treatment pH on the all-electroplated glass/FTO/n-CdS/n-CdTe/p-CdTe layers, 

the optical, morphological, compositional structural and electrical properties were analysed. The optical 

properties were analysed using Cary 50 Scan Ultraviolet-Visible (UV-Vis) spectrophotometer at room 

temperature within the wavelength range of 400 nm to 1000 nm. Prior to measurements, the baseline was set 

using a blank TEC7 glass/FTO to eliminate its effect on the obtained result. Both the scanning electron 

microscopy (SEM) for morphological analysis and the energy-dispersive X-ray spectroscopy (EDX) for 

compositional analysis of the layers were carried out using FEI Nova 200 NanoSEM equipment at a 

magnification of ×60,000. The structural analysis in which information such as crystallite size and phase 

identification were obtained using Philips PW 3,710 X‟pert diffractometer with Cu-Kα monochromator of 

wavelength λ=1.54 Å. For this set of experiments, both the generator tension and current were adjusted to 40 kV 

and 40 mA respectively. The conductivity types of the grown layers after post-growth-treatment were 

determined using photoelectrochemical (PEC) cell measurement. Robust technique such as Hall effect 

measurement was not possible due to the embedded transparent conducting substrate (fluorine doped tin oxide) 

on which the semiconductor layers were grown. 

 After metallisation with Au contacts, the electrical properties of the fully fabricated glass/FTO/n-CdS/n-

CdTe/p-CdTe/Au cells were measured using automated Rera Solution PV simulation system. Prior to 

measurements using the solar simulating system, the system was calibrated using standard RR267MON Si-

based solar cell at room temperature. 

 

3 RESULTS AND DISCUSSION 

3.1 OPTICAL PROPERTY ANALYSIS 

Further to the experimental details as discussed in Section 2.2, Figure 1 (a) shows the Tauc's plot [16] of 

 2


hc  against photon energy  


hc , where α is absorption coefficient h is the plank‟s constant, c is the 

speed of light and λ is the wavelength. Figure 1 (b) shows the graph of absorption edge slope against the CdCl2 

post-growth-treatment pH. The optical energy bandgap of the as-deposited and the CdCl2 treated CdTe layers 

were obtained by extrapolating the linear portion of the curve to  2


hc  =0. From observation, it could be said 

that the optical bandgap lies within the 1.45±0.01 eV for the as-deposited and all the CdCl2 treated CdTe layers. 

This observed bandgap shows comparability with the standard bulk CdTe bandgap of 1.45 eV. More 
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importantly, the absorption edge slope as shown in Figure 1 (b) can be related to semiconductor layer quality as 

discussed  in the literature [5], [17]. As expected, an improvement in the absorption edge of the as-deposited 

glass/FTO/n-CdS/n-CdTe was observed after CdCl2 treatment at different pH. This improvement in attributes 

have been well documented in the literature [1], [2], [7]. The steepest absorption edge slope was observed at 

pH2 while the lowest absorption edge slope was observed at pH1. This reduction in the absorption edge slope 

might be due to the reduction in the quality of the glass/FTO/n-CdS/n-CdTe layer as a result of the harshness of 

the acidic CdCl2 treatment by possible dissolution of Cd from CdTe at high acidity. It should be noted that only 

the bandgap of CdTe was observable rather than that of the incorporated n-CdS layer nor the bowing CdS/CdTe 

effect [18] due to the thickness of the CdTe layer. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 MORPHOLOGICAL AND COMPOSITIONAL ANALYSIS 

Figure 2 (a–d) show the scanning electron microscope (SEM) micrographs of glass/FTO/n-CdS/n-CdTe in the 

as-deposited, CdCl2 treated at pH1, pH2 and pH4 respectively, while, Figure 2 (e–f) show the energy-dispersive 

X-ray (EDX) spectra of point identification on the glass/FTO/n-CdS/n-CdTe treated with pH1 CdCl2 solution. 

The layer treated with pH3 CdCl2 was excluded due to its high comparability of morphological properties with 

pH4. The as-deposited glass/FTO/n-CdS/n-CdTe layer as depicted in Figure 2 (a) shows cauliflower-type 

morphology which is formed by the agglomerations of small grains. Most importantly, full coverage of the 

underlying glass/FTO/n-CdS layers was observed.  

Figure 1: (a) Optical absorption spectra for electrodeposited glass/FTO/n-Cds/n-CdTe thin-films 

treated with different CdCl2 at different pH values (b) absorption edge slope against PGT CdCl2 
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After CdTe treatment at all the explored pH in this work, an increase in grain growth was observed, which is in 

accord with the literature. The layers treated with pH2 CdCl2 showing a slightly bigger grain size as compared 

to the layers treated with pH4 CdCl2 as shown in Figure 2. The glass/FTO/n-CdS/n-CdTe layers treated with 

pH1 CdCl2 as illustrated in Figure 2 (b) shows deterioration of the glass/FTO/n-CdS/n-CdTe layer with the 

presence of pinholes and the accumulation of non-uniform strands on the grains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: (a) SEM micrograph of as-deposited n-CdTe grown on glass/FTO/n-CdS, (b-d) SEM 

micrographs for glass/FTO/n-CdS/n-CdTe layers treated with PGT treated with CdCl2 at pH1, pH2 and 

pH4 respectively, while (e-f) are the EDX point micrograph on layers treated at pH1. 
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With further investigation on the composition of the strands using EDX as shown in Figure 2 (e-f), it was 

observed that the strands show an atomic composition of 75.6% for Te and 24.4% for Cd. The presence of the 

Te-rich strands has also been documented  in the literature [19], [20] and as it is well known that an introduction 

of an acidic media to CdTe attacks Cd leaving rich Te surface [15], [21]. This observation signifies the 

detrimental effect of pH1 CdCl2 for post-growth-treatment on the material quality of the glass/FTO/n-CdS/n-

CdTe all-electrodeposited layers and may result in the reduction in the device quality. 

Figure 3 shows the graph of Cd/Te atomic composition against the acidity of the CdCl2 PGT of glass/FTO/n-

CdS/n-CdTe on a 6×6 μm
2
 area obtained using EDX. As shown in Figure 3, reduction in the atomic 

concentration of Cd was observed after CdCl2 treatment at all the pH explored including for pH1. The reduction 

in the Cd atomic concentration and shift towards 1:1 ratio of Cd to Te can be attributed to CdCl2 treatment at 

favourable pH [1]. At pH1, an increase in the Te atomic concentration was observed due to harsh effect of 

highly acidic CdCl2 on elemental Cd. This observation can be related to the Te-richness obtained after wet acid 

etching of CdTe layer as reported in the literature [15] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Graphical representation of percentage atomic composition 

ratio of Cd to Te atoms for CdCl2 treated CdTe layer after different PGT 

pH as obtained from EDX micrographs. 

As-deposited 

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5

C
d

/T
e 

 

Treatment pH 

Stoichiometry 



9 
 

3.3 STRUCTURAL ANALYSIS 

The analysis was aimed at identifying the effect of CdCl2 post-growth-treatment pH on XRD peak intensity, 

crystallinity, crystallite size, preferred phase and orientation of the glass/FTO/n-CdS/n-CdTe layers. Figure 4 (a) 

shows the graph of XRD diffraction intensity of the glass/FTO/n-CdS/n-CdTe layers treated at different CdCl2 

pH against 2θ angle. While Figure 4 (b) shows the graph of XRD peak intensity and crystallite size against 

CdCl2 post-growth-treatment pH. It should be noted that the stacked XRD micrographs as presented in Figure 4 

(a) is to aid the comparability of the peak intensity. From observation, XRD peaks associated with CdTe (111), 

(220) and (311) in their cubic phase ((111)C, (220)C, (311)C) were observed at angle 2θ≈23.8, 2θ≈38.6° and 

2θ≈45.8° respectively asides the FTO peaks at 2θ=25.42, 2θ=33.11, 2θ=36.57, 2θ=55.06, 2θ=61.12 and 

2θ=65.06 at all the CdCl2 pH treatment explored. As shown in Figure 4 (a), it is clear that the preferred 

orientation of CdTe at all the pH explored is along the cubic (111) plane based on the intensity of its diffraction. 

Furthermore, an increase in diffraction intensity of the (111)C peak was observed with increasing CdCl2  post-

growth-treatment acidity. The highest diffraction intensity observed at pH2 and the lowest intensity observed at 

pH1 as shown in Figure 4 (b).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: (a) Typical XRD patterns of glass/FTO/n-CdS/n-CdTe layers treated at different CdCl2 

pH value (b) typical plot of CdTe (111) cubic peak intensity and crystallite size against CdCl2  

post -growth treatment pH value.  
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This observation can be related to the improvement in the crystallinity of the CdTe layer treated with CdCl2 at 

pH4, pH3 and pH2 while, the detrimental effects on the CdTe layer crystallinity was observed with increased 

CdCl2 post-growth-treatment acidity to pH1. This detrimental effect can be further related to harsh etching and  

sublimation of the CdTe surface, the formation of pinholes, voids, and the formation of CdTe layer rich in Cd or 

Te with competing phases with CdTe. From observation, no elemental Cd and/or Te peaks were observable in 

Figure Figure 4 (a) which might be due to possible overlap with FTO peaks, although the formation of elemental 

Te is most likely as suggested by the compositional analysis in Section 3.2. Based on the preferred cubic (111) 

CdTe peaks, the crystallite peak was calculated using Scherrer equation as illustrated in Eq (1) , where D is the 

crystallite size, β is the full width at half maximum (FWHM) of the diffraction peak in radian, θ is the Bragg 

angle and λ is the wavelength of the X-rays used (1.54 Å).  

 





cos

94.0
D  (1) 

Table 1 shows the calculated crystallite size and other related properties as obtained from XRD diffraction 

system. As observed in Table 1, the minimum value of the FWHM and the maximum crystallite sizes were 

attained at pH2. Away from this pH value, a gradually increases in the FWHM and decrease in the crystallite 

size was observed. This shows further superior quality of CdCl2 post-growth-treatment at pH2 as compared to 

the other pH explored. It should be noted that the extracted XRD data from these CdTe work matches the 

International Centre for Diffraction Data (JCPDS) reference file No. 01-775-2086. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The XRD analysis of glass/FTO/n-CdS/n-CdTe layers treated with CdCl2 at different pH 

values 

Sample 
2θ     

(degrees) 

Lattice 

Spacing (Å) 

FWHM 

(Degrees) 

XRD Peak 

intensity 

Crystallite 

Size D (nm) 
Assignments 

AD 23.95 3.7162 0.195 1531 43.52 Cubic 

pH1 24.15 3.6812 0.162 1675 52.41 Cubic 

pH2 23.99 3.7074 0.129 2297 65.79 Cubic 

pH3 24.05 3.6965 0.162 2163 52.40 Cubic 

pH4 23.95 3.71485 0.162 1794 52.26 Cubic 
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3.4 PHOTOELECTROCHEMICAL (PEC) CELL STUDY 

The PEC cell measurements were performed by the formation of a solid/liquid junction between the 

electrodeposited semiconductor and a suitable electrolyte. For this experiment, the electrolyte utilised was a 0.1 

M sodium thiosulphate (Na2S2O3) dissolved in 20 ml of DI water. Both the semiconductor attached to a high 

purity graphite rod and the (high purity graphite rod) counter electrodes introduced into the electrolyte were 

connected to a voltmeter. Due to band bending at the solid/liquid interface as a result of the equalisation of the 

Fermi level, a Schottky type potential barrier is formed.  

The direction of flow of the electron is determined by the conductivity type of the semiconductor. The voltage 

difference (VL-VD)  between the measured voltage under illuminated condition (VL) and the measured voltage 

under dark condition (VD) determines the conductivity type [22]. The PEC signal sign indicates the conductivity 

type of the semiconductor layer. A positive voltage difference value is p-type, while a negative voltage 

difference value is an n-type semiconductor. Furthermore, PEC signal may give a zero value due to wide 

bandgap range insulators, overlapping bandgap in conductors (metal) or the mid-gap positioning of the Fermi 

level in an intrinsic semiconductor.  

For this experiment, 1200 nm thick n-CdTe was grown at 1375 mV on 4×5 cm
2
 glass/FTO. This experiment was 

performed to ascertain the effect of CdCl2 post-growth-treatment at different pH on the conductivity type of the 

n-CdTe layer utilised in this work. After growth, the glass/FTO/n-CdTe layer was cut into five 1×5 cm
2
 and 

treated with CdCl2 at different pH prior to heat treatment at 420°C for 20 minutes as described in Section 2.1.3. 

Figure 5 shows the graph of PEC signal against as-deposited and post-growth-treated n-CdTe at different pH 

values. As observed from Figure 5, the conductivity type of the as-deposited n-CdTe was retained after CdCl2 

treatment at pH2, pH3 and pH4 explored in this work with a slight shift towards the opposing conductivity type 

Figure 5: PEC signals for glass/FTO/n-CdTe layers treated with CdCl2 at different pH values. 
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except for the layers treated with CdCl2 at pH1. The glass/FTO/n-CdTe layer treated with pH1 shows a 

conductivity type transition into p-type. It should be noted that conductivity type conversion after CdCl2 

treatment may be due to doping effect caused by heat treatment temperature, duration of treatment, initial 

atomic composition of Cd and Te, the concentration of CdCl2 utilised in treatment,  defect structure present in 

the starting CdTe layer and the material‟s initial conductivity type as documented in the literature [1], [6], [12], 

[23]. Based on these observations coupled with the analysis on composition as discussed in Section 3.2, it could 

be said that the compositional alteration of the initial n-CdTe after pH1 CdCl2 treatment might be one of the 

determining factors in the conductivity type conversion of the CdTe layers explored in this work. This 

observation is in accord with the compositional analysis as discussed in Section 3.2.  

 

3.5 DC CONDUCTIVITY STUDY 

For this experiment, 1200 nm thick n-CdTe layer was grown on glass/FTO, treated with CdCl2 at different pH 

after growth and heat treated at 420°C for 20 minutes. On the basis of conductivity type as discussed in Section 

3.4, gold (Au) contact was evaporated on the glass/FTO/p-CdTe layers, while indium (In) was evaporated on the 

glass/FTO/n-CdTe to form Ohmic contacts prior to the I-V characterisation of the fabricated cells. From the I-V 

curve generated using Rera Solution PV simulation system, the resistance was calculated as the inverse of the I-

V slope and resistivity was calculated as shown in Eq (2) where the calculated resistance R, known contact area 

A and film thickness L. While the conductivity σ was calculated as an inverse of ρ. 

 

L

RA
  (2) 

Table 2 shows the tabulation of properties of the CdTe layers grown on glass/FTO layers and Figure 6 is an 

illustration of conductivity and resistance against CdCl2 treatment pH. It was observed that an increase in the 

acidity of the CdCl2 post-growth-treatment solution increases the conductivity of the CdTe layer with saturation 

observed at ~pH2. Increase in the acidity above pH2 shows a reduction in the conductivity which might be due 

to the p-type conductivity as observed after pH1 CdCl2 treatment as compared to the n-type conductivity as 

observed after pH2, pH3 and pH4 treatment (Section 3.4). It is well known that the conductivity and mobility of 

an n-type semiconductor material are higher than its p-type counterpart [24]. Furthermore, increase in the 

resistivity of the CdTe layer might also be due to CdTe layer deterioration as discussed in Section 3.2. 
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3.6 SOLAR CELL DEVICE CHARACTERISATION 

After the optical, morphological, structural and photoelectrochemical properties of the CdTe layers has been 

analysed, glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices were fabricated as discussed in Section 2.12.1.3.  

 

3.6.1 CURRENT - VOLTAGE CHARACTERISTICS WITH RECTIFYING CONTACTS  

The I-V measurements for the glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices were performed under both dark 

and A.M1.5 illuminated conditions. Figure 7 (a) shows a typical band diagram of the g/FTO/n-CdS/n-CdTe/p-

CdTe/Au thin film solar cell, while, Figure 7 (b) and (c) show both the linear-linear and log-linear I-V curve of 

the pH2 CdCl2 treated glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices respectively. Figure 7 (d) shows the I-V 

curves taken under A.M1.5 illumination condition for the glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices treated 

with different pH of CdCl2. While Table 3 shows the summary of the electronic properties of the glass/FTO/n-

CdS/n-CdTe/p-CdTe/Au devices fabricated. From the I-V data obtained under dark condition, electrical 

properties such as the shunt resistance Rsh, series resistance Rs, rectification factor RF, reverse saturation current 

Table 2: Summary of electrical properties of glass/FTO /n-CdTe layers after 

CdCl2 treatment at different pH values. 

pH Resistance R 

(Ω) 

Resistivity ρ 

×10
4
 (Ω·cm) 

Conductivity σ 

×10
-5 

(Ω·cm)
-1

 

1 42.6 1.12 8.97 

2 9.4 0.25 40.63 

3 11.3 0.30 33.80 

4 15.7 0.41 24.33 

 

Figure 6: Typical graphs of electrical conductivity and 

resistance against PGT CdCl2 pH value. 
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Figure 7: (a) The band diagram of the g/FTO/n-CdS/n-CdTe/p-CdTe/Au thin film solar cell (b) 

Typical linear–linear I–V curve and (c) semi-logarithmic current versus voltage curve measured 

under dark conditions for glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices. (the layers were treated 

with pH2 CdCl2). (d) Linear I–V curve of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au under AM 1.5 for 

device treated with CdCl2 at pH1-pH4. 
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Io, ideality factor n, and the barrier height ɸb were derived, while the effective Richardson constant (A
*
) for 

CdTe was calculated to be 12 Acm
-2

K
-2

. As observed in Table 3, the Rsh was comparatively high for all the pH 

values explored in this work but a noticeable reduction of about two orders of magnitude was observed at pH1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is well known that low Rsh can be attributed to the low quality of the semiconductor material  [25] which 

might be due to the inclusion of  gaps, voids, pinholes, high dislocation density within the semiconductor 

material [25]. Based on this, it can be deduced that the semiconductor material quality at pH1 has been reduced. 

Interestingly, this observation is in accord with the analytical studies as discussed Sections 3.1 - 3.3. 
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Furthermore, the glass/FTO/n-CdS/n-CdTe/p-CdTe/Au device activated using CdCl2 at pH2, pH3 and pH4 

shows  log RF values of above 3 with a tendency for archiving highly efficient solar cell [26]. On the contrary, 

the low log RF values observed for glass/FTO/n-CdS/n-CdTe/p-CdTe/Au device activated using CdCl2 at pH1 

shows lower log RF value of 1.27 which indicates the inability of the fabricated device to achieve high 

efficiencies. This observation might be due to the dominance of the current transport mechanism by 

recombination and generation (R&G) centres as indicated by n value >2. It should be noted that for an ideal 

diode, the ideality factor n is 1.00 indicating the dominance of the current transportation mechanism by 

thermionic emission. But if the ideality factor falls between 1.00 and 2.00, the current transportation mechanism 

is dominated by both thermionic emission and R&G centres. As reported by Verschraegen et al, the current 

transportation mechanism of a diode with an ideality factor above 2 is dominated with high-energy electrons 

tunnelling through the barrier high in addition to both thermionic emission and  R&G mechanisms [27]. The 

current transport mechanism of n>2 might result in barrier high ɸb reduction as observed in Table 3 for the pH1 

CdCl2 activated device.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 3: Summary of Device parameters from I–V (dark conditions), I–V (illuminated at AM1.5) and 

C–V (dark conditions) measurements. 

CdCl2 post-growth treatment pH 1 2 3 4 

I-V under Dark condition 

 Rsh ×10
5
 (Ω) 0. 08 10.13 5.72 5.28 

 Rs ×10
3
 (Ω) 1.27 0.47 0.87 0.89 

 log RF 1.40 4.80 3.50 3.50 

 Io ×10
-9 

(A) 158.49 1.00 3.98 3.16 

 n >2.00 1.60 1.86 1.91 

 Φb (eV) >0.67 >0.80 >0.77 >0.77 

I-V under A.M1.5 illuminated condition 

 Jsc (mAcm
-2

) 21.66 35.03 29.62 27.39 

 Voc (V) 0.58 0.72 0.71 0.70 

 FF 0.40 0.52 0.55 0.52 

 η (%) 5.00 13.10 11.60 10.00 

C-V under dark condition 

 σ×10
-5

 (Ω.cm)
-1

 8.97 40.63 33.80 24.33 

 ND ×10
14

 (cm
-3

) 254.00 1.95 3.66 6.67 

 μ (cm
2
V

-1
S

-1
) 0.02 13.00 5.76 2.28 
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Under A.M1.5 condition as shown in Figure 7 (d) and Table 3, the observed Jsc of cell treated using pH1 CdTe 

post-growth-treatment is relatively lower than pH2, pH3 and pH4. This observation can be related to the high 

ideality factor as a result of high R&G centre intensity. It should be noted that the Jsc observed in this work is 

higher than the Shockley– Queisser limit of a single p–n junction [28] due to the multi-layer and multi-junction 

n–n–p device configuration [29]. The explored glass/FTO/n-CdS/n-CdTe/p-CdTe/Au cells were isolated by 

carefully removing surrounding layers to ensure that there was no peripheral collection as suggested by Godfrey 

et al [30]. Although no peripheral collection of the current was expected due to the high resistivity and ultra-thin 

layer (total thickness <1500 nm) utilised in this work [31]. Using the multilayer configuration, the main author‟s 

group have reported 140% IPCE measurement value owing to the incorporation of impurity PV effect and 

impact ionisation [32], while,  other independent researchers have also report EQE values above 100% [33], 

[34].  

Comparatively, similar Voc was observed for glass/FTO/n-CdS/n-CdTe/p-CdTe/Au layers treated with CdCl2 at 

pH2 to pH4 while a reduction in the Voc, FF and η of the layers treated with pH1 CdTe were observed. These 

observations were been anticipated due the degradation of the material quality, reduction in crystallinity, 

conductivity type transition and high resistivity based on the analysis in Sections 3.1 - 3.5 respectively. 

 

3.6.2 CAPACITANCE - VOLTAGE CHARACTERISTICS OF RECTIFYING CONTACTS 

Figure 8 (a) and (b) show the capacitance–voltage (C-V) and the Mott-Schottky (C
-2

 versus V) plot of the 

glass/FTO/n-CdS/n-CdTe/p-CdTe/Au respectively for the pH2 CdCl2 treated layers. While the properties such 

as the doping density ND and mobility μ for glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices treated with pH1 to 

pH4 are tabulated in Table 3. For this sets of experiments, the measurements were carried out at a frequency of 

1.0 MHz between the bias voltage range of -1.00 V to 1.00 V at 300 K. The reported doping density ND in this 

work was obtained using the Mott-Schottky plot as shown in Figure 8 (b) and Eq. (3)-(5). Where C is the 

capacitance, Vbi is the built-in potential, VR is the reverse bias voltage, A is the area of the contact, e is the 

electronic charge, εo is the permittivity of free space, εs is the semiconductor permittivity and εr is the relative 

permittivity (or dielectric constant). The εr value was taken to be 11 [35], while, the slope obtained from the 

intercept of the Mott-Schottky plot as shown in Figure 8 (b) was incorporated into Eq. (4). 
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Using Eq. (6) the effective density of states Nc was calculated to be 9.15×10
17

 cm
3
, where h is the Plank‟s 

constant,  me
*
 is the effective electron mass, T is the temperature at 300K and k is the Boltzmann‟s constant. The 

electron mobility μ was calculated using Eq. (7). 
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As observed in Figure 8, the fabricated device treated with CdCl2 at pH2 was fully depleted at the reverse 

through the zero and towards ~0.5V in the forward bias with the depletion width W equalling to the fabricated 

device thickness of ~1350 nm. Increasing the voltage in the forward bias to ~0.5V and above, a gradual 

reduction in the depletion width was observed with a corresponding increase in capacitance. This observation 

was similar for glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices treated with CdCl2 at pH3 and pH4. Furthermore, 

the calculated ND in Table 3 for the devices treated with CdCl2 at pH2 - pH4 are of the same order of magnitude 

Figure 8: A typical (a) Capacitance-voltage and (b) Schottky–Mott plot of the 

glass/FTO/n-CdS/n-CdTe/p-CdTe/Au layer treated with pH2 CdCl2. 
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(10
14

 cm
-3

). High-efficiency solar cells have been reported to have ND values within the (~1.0×10
14

 – 5×10
15

 cm
-

3
) [36], [37]. The ND value of the devices activated with CdCl2 at pH1 signifies high doping which might result 

to a loss of Jsc, incorporation of defects within the crystal lattice, shrinkage of the depletion width and the 

consequent reduction in the photo-generated current  collection efficiency [38].  These observations coupled 

with the high defect density (R&G) centres might be the cause of the reduction in the charge carrier mobility of 

the devices activated with pH1 CdCl2 as compared to pH2 – pH4 CdCl2 treatment acidity.  

 

4 CONCLUSION 

In conclusion, this experimental work has explored the effect of CdCl2 post-growth-treatment pH on both 

material and fabricated CdS/CdTe device properties. It was observed that better material and device properties 

can be achieved at pH2 CdCl2 activation treatment. Although, the device parameter such as the Voc shows no 

distinct difference after treatment with pH2-pH4 CdCl2, the CdCl2 treatment at pH1 shows comparable low-

quality material quality as observed in the structural, morphological and compositional properties while the 

overall fabricated device photon-to-electron efficiency was low.   Work is on-going on optimising other 

processing step towards achieving higher efficiencies. 
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Figure 1: (a) Optical absorption spectra for electrodeposited glass/FTO/n-Cds/n-CdTe thin-films 

treated with different CdCl2 at different pH values (b) absorption edge slope against PGT CdCl2 pH 

CdTe thin films 2 

Figure 2: (a) SEM micrograph of as-deposited n-CdTe grown on glass/FTO/n-CdS, (b-d) SEM 

micrographs for glass/FTO/n-CdS/n-CdTe layers treated with PGT treated with CdCl2 at pH1, pH2 

and pH4 respectively, while (e-f) are the EDX point micrograph on layers treated at pH1. 2 

Figure 3: Graphical representation of percentage atomic composition ratio of Cd to Te atoms for 

CdCl2 treated CdTe layer after different PGT pH. 2 

Figure 4: Typical XRD patterns of glass/FTO/n-CdS/n-CdTe layers treated at different CdCl2 pH 

value (b) typical plot of CdTe (111) cubic peak intensity and crystallite size against CdCl2  post -

growth treatment pH value. 2 

Figure 5: PEC signals for glass/FTO/n-CdTe layers treated with CdCl2 at different pH values. 2 

Figure 6: Typical graphs of electrical conductivity and resistance against PGT CdCl2 pH value. 2 

Figure 7: (a) The band diagram of the g/FTO/n-CdS/n-CdTe/p-CdTe/Au thin film solar cell (b) 

Typical linear–linear I–V curve and (c) semi-logarithmic current versus voltage curve measured under 

dark conditions for glass/FTO/n-CdS/n-CdTe/p-CdTe/Au devices. (the layers were treated with pH2 

CdCl2). (d) Linear I–V curve of glass/FTO/n-CdS/n-CdTe/p-CdTe/Au under AM 1.5 for device 

treated with CdCl2 at pH1-pH4. 2 

Figure 8: A typical (a) Capacitance-voltage and (b) Schottky–Mott plot of the glass/FTO/n-CdS/n-

CdTe/p-CdTe/Au layer treated with pH2 CdCl2. 2 
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