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Abstract

The aim of this study was to apply signal processing techniques to a potential
known as the contingent negative variation (CNV) in order to aid detection of
schizophrenia, Parkinson's disease (PD) and Huntington's Disecase (HD). A data
recording system was constructed and used to obtain data from 20 schizophrenic
patients, 16 PD patients, 21 "at-risk” of HD patients, 11 HD patients and 43
normal control subjects. The data included the CNYV, electro-oculograms (required
for the preprocessing of the CNV) and the subjects reaction times to an acoustic
stimulus. The CNV waveforms were initially preprocessed. This reduced the
effects of background electroencephalogram and ocular artefact potentials.

The CNV waveforms were then processed using a method which involved the
discrete Fourier transform (DFT) and discriminant analysis. This method
developed from the work of Martin Nichols and Michael Coelho. It was possible
to successfully identify the majority of the patients using this method. In order to
reduce the complexity of patients' 1dentification a different method of CNV signal
processing was considered. This involved obtaining the CNV features in the time
domain and using them in neural networks. This method was as effective as the
method which used DFT and discriminant analysis in identifying the patients. To
establish whether HD could presymptomatically be detected in the at-risk of HD
group, the CNV was analysed using principal component analysis (PCA) and
Ward's clustering method. This resulted in identification of 7 patients who were
suggested would develop HD. The subjects' reaction times were also analysed.
This indicated that the reaction times of schizophrenic, PD, HD and some at-risk
of HD patients were significantly different from the reaction times of their normal
control subjects.
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Chapter 1 qu

An instrumentation system was constructed and was used to record the data from
20 schizophrenic, 16 Parkinson's disease (PD), 11 Huntington's disease, 21 "at-
risk" (AR) of HD patients and 43 normal control subjects. In order to improve the
signal (ie. the contingent negative variation, CNV) to noise (ie. the background
EEG activity and ocular artefact) ratio, the CNV waveforms were preprocessed
using a method developed by Nichols [1982] and Coelho [1988]. The preprocessed
CNV responses were then analysed by: i) using the Fourier transform and
discriminant analysis, ii) using the CNV time domain features in neural networks
and iii) applying principal component analysis and cluster analysis. The reaction

times of the subjects to an acoustic stimulus were also analysed.

1.1 Identification of Schizophrenic, Parkinson's Disease and Huntington's
Disease Patients by Frequency Analysis and Discriminant Analysis of the
CNV

This method involved applying the discrete Fourier transform (DFT) to pre- and
post-stimulus sections of the CNV waveforms and then applying four statistical
tests to the resulting harmonic frequency components of the pre- and post-stimulus
spectra. The four statistical tests were originally designed by Nichols [1982] to
detect phase and amplitude changes in CNV spectra. This process produced a set
of variables. A variable subset which best identified the patients was selected and
then used in a discriminant analysis program. A leave-one-out method was used to
ensure the data included during the calibration phase of the discriminant analysis
program were not used during the test phase. The method successfully identified
the majority of schizophrenic, PD and HD patients from normal subjects and it
was useful in distinguishing between the patients from the above three categories.
The performance of the discriminant analysis was best when distinguishing between

the HD patients and normal subjects (ie. 100%). This indicated that perhaps the

19



effects of HD on the CNV is more severe than the effects of schizophrenia and PD
on the CNV. The success rates obtained when distinguishing the patients from
their normal control subjects were higher than the success rates obtained when
distinguishing between the patients from different categories. This might be
because some of the CNV abnormalities in schizophrenia, PD and HD overlap.

1.2 Identification of Schizophrenic, Parkinson's Disease and Huntington's
Disease Patients by Using the CNV Time Domain Features in Neural
Networks

Neural networks were applied to the CNV waveforms of the schizophrenic, PD
and HD patients and their normal control subjects. The CNV features (variables)
used were obtained by averaging every four consecutive sample values from a
CNV section 512ms prior to the imperative-stimulus. This generated 16 CNV
features. As the time taken for the CNV to return to its baseline has been shown to
be important in identifying patients with disorders such as schizophrenia, PD and
HD (see chapter 2) a seventeenth feature which reflected this effect was also
included. The patients from each category and their normal control subjects were
divided into two groups. The CNV responses from the first group were used for
training the neural networks and the CNV responses from the second group were
used to test the effectiveness of the neural networks. The effect of changing the
number of nodes in the hidden layer(s) of the neural networks was investigated.
The neural networks successfully identified the schizophrenic, PD, and HD patients
from normal subjects. They performed best when distinguishing between the HD
patients and normal subjects (ie. 100% success rate). This was in line with the

results obtained from the other two methods of patients' differentiation.
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1.3 Presymptomatic Detection of Huntington's Disease and Identification of
Schizophrenic, Parkinson's Disease and Huntington's Disease Patients by
Applying Principal Component Analysis and Cluster Analysis to the CNV
The presymptomatic identification of HD patients is valuable as it can help the
individuals AR of HD decide whether they should have children. Discriminant
analysis was not suitable for presymptomatic identification of HD patients as it
was based on a supervised learning method. The clustering method is an
unsupervised learning method and therefore was used for this purpose. The
procedure for CNV feature extraction was the same as that used for the neural
network method. The CNV features were transformed using principal cdmponent

analysis.

Initially principal component analysis and clustering were used to distinguish
between schizophrenic, PD and HD patients and normal subjects. Application of
principal component analysis and cluster analysis resulted in the identification of
the majority of schizophrenic, HD and PD patients. In line with the other two
methods of patients' differentiation this method was most effective in identifying

the HD patients.

The principal component analysis and cluster analysis were then applied to CNV
responses of 21 AR of HD patients and their normal control subjects. Seven AR of
HD patients were identified as "abnormal” and it was suggested that they would
develop HD. The remaining 14 AR of HD patients were identified as “normal”
AR of HD patients.

A Two-tailed t-test was used to examine the CNV amplitudes in the abnormal AR

of HD patients, normal AR of HD patients and their normal control subjects. The

CNYV amplitudes of abnormal AR of HD patients and their normal control subjects
were significantly different (p <0.001, df=12). The CNV amplitudes of normal
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AR of HD patients were not significantly different from those of their normal

control subjects.

The CNV amplitude analysis of the AR of HD patients also indicated that the
changes in the CNV responses of HD patients appeared prior to the onset of HD.
This finding is in agreement with the studies of Josiassen et al. [1982], Oepen et
al. [1982], Josiassen et al. [1984], Noth et al. [1984], Hennerici et al. [1985] and
Homberg et al. [1986] when other event-related potentials (ERPs) were analysed
in AR of HD patients (refer to chapter 2 for detail).

1.4 Reaction Times Analysis of Schizophrenic, Parkinson's Disease,
Huntington's Disease and At-Risk of Huntington's Disease Patients

During the data recordings, 32 reaction times were recorded for each subject. The
reaction times were averaged and used in a two-tailed t-test. It was found that the
reaction times of schizophrenic, PD and HD patients were significantly different

from the reaction times of their normal control subjects (p <0.001).

The reaction times of the AR of HD patients were not significantly different from
the reaction times of their normal subjects. A similar result was obtained when the
reaction times of the AR of HD patients who were identified as "normal” in
chapter 9 were compared with their normal control subjects. But when the reaction
times of the "abnormal” AR of HD patients were compared with the reaction times
of their normal control subjects, they were significantly different (p <0.05,
df=12).

In several studies it has been shown that the reaction time tends to be shorter

following a large CNV and longer following a low amplitude CNV [Tecce, 1972].
As the mean CNV amplitude of the abnormal AR of HD patient group was about
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1/3 of that in the normal control group, this prolongation of the reaction
times in the abnormal AR of HD patients was in agreement with findings related

to the relationship between the CNV amplitude and the reaction time.

1.5 Overall Remarks

In this study three different methods were successfully used to differentiate
schizophrenic, PD and HD patients. The results indicated that all three methods
were valuable in identifying these patients. The patient differentiation method
which involved the use of the discrete Fourier transform and discriminant analysis
was the most complex method. Neural networks were used in order to find an
effective but less complicated method of identifying the patients. The application
of principal component analysis and clustering resulted in the identification of 7
abnormal AR OF HD patients. The reaction times in the subjects were also
analysed and it was found that the reaction times of schizophrenic, PD, HD and
abnormal AR of HD were significantly different from the reaction times of their

normal control subjects.
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Chapter 2 Introduction

This project was a continuation of previous studies [Nichols, 1982] [Coclho,
1988]. Nichols [1982] recorded the contingent negative variation (CNV)
waveforms of 8 Huntington's Disease (HD) patients and 6 normal subjects and
devised a CNV preprocessing procedure. The preprocessing is necessary in order
to retrieve the CNV from background noise sources (the CNV preprocessing is
described in chapter 6). He then investigated the composition of the CNV by using
signal processing and statistical methods. Coelho [1988] enhanced the Nichols'
CNV preprocessing method. He also applied signal processing and statistical
techniques to the data recorded by Nichols [1982] in order to differentiate between
HD patients and normal subjects (see chapter 7 for detail). The main problem with
the patients' identification method used by Coelho [1988] was that it required very

complicated and time consuming analysis of the CNV.

For this project the aim was to construct a data recording system and use it to
record the CNV waveforms of HD, “at-risk” (AR) of HD, Parkinson's Disease
(PD), schizophrenic patients, and their age and sex matched normal control
subjects. Then preprocess the CNV waveforms. It was intended to initially use the
patient identification method employed by Coelho [1988] and differentiate between
HD, PD, schizophrenic and normal subjects. Then develop another less
complicated method of identifying the patients. Presymptomatic detection of HD
patients is important as it could be used as a mean of reducing the number of
individuals with that disorder. Therefore, it was planned to investigate whether
HD could be presymptomatically diagnosed using the CNV.

The reason for using the CNV to identify HD, PD and schizophrenic patients is
that although these disorders could be related to some specific symptoms and
pathological changes, it can sometimes be difficult for a neurophysiologist or

psychiatrist to distinguish between them. This is because some of the symptoms
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and pathological changes observed in the patients with these disorders can be

similar.

In this chapter the symptoms and the brain structural changes observed in
schizophrenic, PD and HD patients are discussed. A description of the
electroencephalogram (EEG), event-related potentials (ERPs) and the CNV is
provided, and the relevant studies in ERPs in schizophrenia, PD, HD and AR of

HD are reviewed.

2.1 Description of the Disorders Included in this Study

2.1.1 Schizophrenia

The symptoms associated with schizophrenia can be grouped into "type 1" and
"type 2" [Crow and Johnstone, 1987]. Type 1 includes psychotic symptoms which
are generally referred to as "positive” because they cause abnormality by their
presence eg. hallucinations and delusions. Type 2 includes symptoms which are
generally referred to as "negative" because a normal function is missing.
Symptoms such‘ as poverty of speech, lack of self-care and anergia are considered
as negative symptoms. The symptoms observed in a schizophrenic patient could be
mainly positive, negative, or they can be a mixture. The positive and negative
symptoms can be observed at different times in the course of the illness, or
sometimes concurrently. Untreated schizophrenia tends to be progressive (with

some exceptions) and may reach a state of irreversible defect [Miller, 1989].

There are some indications of a general increase in cerebral activity in some stages
of schizophrenia. For example, an increased power in certain frequency bands of
the brain's electrical activity has been observed in early stages of schizophrenia
[Mukunda, 1986]. There are two possible causes for this excess neural activity. It

may be due to excess connectivity in the forebrain, or in crucial parts of it
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[Nasrallah et al., 1986], or it may be as a result of neurochemical imbalances with
respect to the neurotransmitters which control signal gain in the forebrain [Wong
et al., 1987]. Ben-Ari [1985] reported that the endogenous release of excitory
transmitters led to the brain cell destruction, therefore suggesting that if the

activity of neurons becomes too excessive, it might lead to their destruction.

Several structural brain abnormalities have been observed in schizophrenic patients
[Ron and Harvey, 1990]. The commonest were enlargement of the lateral and
third ventricles (see Figures (2.1) and (2.2)) and cortical atrophy [Revely, 1985]
[Weinberger et al., 1983]. There is also evidence for a reduction in volume of the
hippocampus (see Figure (2.3)) in schizophrenic patients [Falkai and Bogerts,
1986]. Young et al. [1991] using magnetic resonance imaging (MRI) found that
the parahippocampal gyrus (see Figure (2.3)) was smaller on the left side in 31
schizophrenic patients but not in 33 age and sex matched normal control subjects.
They reported that in schizophrenic patients, ventricular enlargement and cerebral
atrophy were significantly related to severity of the symptoms. Some investigators
found a distinct relationship between the structural brain abnormalities and |
positive and negative symptoms in patients with schizophrenia. Marks and Luchins

[1990] provided a review of some of these reports.

The identification of patients with schizophrenia has been based on monitoring the
symptoms and observation of the structural brain abnormalities related to the

disorder.

2.1.2 Parkinson's Disease

PD was originally described by James Parkinson [1817]. PD is a progressive
neurologic disorder. Its main clinical symptoms are: i) body tremors at rest. The
tremors mainly affect a limb or limbs but they may also be observed in other areas

such as jaw and lips, ii) muscle rigidity. This may cause stiffness and muscle
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discomfort, iii) slowness of active movements (such as rising from a chair) and iv)
postural instability. This can cause patients to fall. A number of secondary clinical
symptoms such as dementia and depression may also be observed in some PD

patients.

The cause of PD is unknown. The studies in progress to identify its cause include
~ a search for an environmental toxin [Stern and Hurtig, 1988]. PD is characterised
pathologically by: i) degeneration of the dopaminergic neurons from the
substantia nigra [Bennett, 1988]. The substantia nigra (see Figure (2.4)) is a small
nucleus considered a part of the basal ganglia. The anatomy of the basal ganglia is
complex and their details poorly imown. The basal ganglia are composed of
neuron cell bodies located deep within the white matter of the cerebrum and they
form part the neural pathway that controls motor function [McKenzie et al., 1984]
and ii) the appearance of Lewy bodies in the substantia nigra [Gibb, 1987].

Lewy bodies consist of structurally altered filaments, in part derived from
neurofilament. There is no definitive laboratory test for diagnosing PD, therefore,
its diagnosis has been based on a careful study of the patients' medical history and
thorough physical and neurological examination [Vernon, 1989].

2.1.3 Huntington's Disease

HD is a fatal hereditary disorder of the central nervous system [Hayden, 1981].
The age of onset of the disease varies widely but usually it is during the third and
fourth decades of life. Its clinical symptoms include progressive motor
abnormalities (typically involuntary movement called chorea), intellectual
deterioration and in most cases psychiatric disturbance. The average life span after
the onset of the disease is between 15 and 20 years. The disease is inherited
through a defective gene localised to the short arm of chromosome 4 [Gusellé et
al., 1983]. An offspring of an affected parent can have a 50% chance of receiving
the defective gene. Studies using computed tomography (CT) and positron

32



Vi
Ry |
53 /Tholms |
% Subthalamic
35 nucleus
, A /
/}{3’ .

_Red nucleus
Cerebellum

pallidus

Substantia /|
nigra ( >

Figure 2.4 The location of the substantia nigra in the brain (this
Figure was obtained from Guyton [1977]).

33



emission tomography (PET) show neuropathological changes in several parts of
the brains of HD patients. The affected areas include the globus pallidus (see
Figure (2.5)) and frontal cortex [Hayden, 1981] [Adams et al., 1984], but the
brunt of the changes (typically severe neuronal loss) are in the striatum
[Mazziotta, 1989]. The striatum (see Figure (2.5)) is part of the basal ganglia and
is referred to two masses of nuclei called the caudate nucleus and putamen.
Several nerve pathways pass from the cerebral cortex (particularly the so-called

"pre-motor areas”) to the striatum.

As there is no definitive test for diagnosing HD, therefore, its diagnosis has been

based on a positive family history (ie. if the patients have affected parents),

indications of progressive motor disability and psychiatric disturbance, and
~observation of relevant structural abnormalities of the brain using PET and CT

scans.

A genetic presymptomatic test for individuals AR of HD is possible but it excludes
some AR of HD patients. This is because the marker used in the test does not
detect the gene itself and therefore testing is only possible if suitable family
members are available so that the affected chromosome can be identified [Jackson,
1987] [Harper et al., 1988] [Mirsa et al., 1988].

2.2 Description of Electroencephalogram and Event-Related Potentials

The electroencephalogram (EEG) is the name given to electrical activity of the
brain. The first reported observation of EEG was made by a British physiologist
called Richard Caton. He studied the brains of rabbits and monkeys and reported:
*the external surface of the (brain's) grey matter is usually positive in relation to
the surface of the section through it. Feeble currents of varying direction pass
through the multiplier when the electrodes are placed on two points on the external

surface (of the brain), or one electrode on the grey matter, and one on the surface
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of the skull" [Caton, 1875]. Berger's [1929] discovery that EEG could be
recorded from the intact scalp led to the development of modemn -
electroencephalography in man. The EEG provides information about underlying

or ongoing brain functioning.

ERPs are potential changes in EEG that occur in association with an eliciting
event. In some articles the term evoked potential (EP) is used instead of ERP. In
this thesis both terms are used and they are considered synonymous. There are
several types of ERPs (Cooper et al. [1980] have provided a review of ERPs).
They include auditory evoked potentials (AEPs), visual evoked potential (VEPs)
and somatosensory evoked potentials (SEPs).

SEPs are usually elicited by stimulating the left or right median nerves at the wrist
with brief (0.1ms duration) electrical pulses. The stimulator for eliciting VEPs
may be a strobe flash or a checkerboard flash. The AEPs are elicited by clicks or
tones presented to one or both ears. The early components (up to 100ms) of the
ERPs are determined mainly by the nature of the evoking stimulus, while the
following components (after 100ms) reflect more the cognitive processes. The
widely reported cognitive EPs are the CNV, post-imperative negative variation
(PINV), Bereitschafts (readiness) potential, N100 and P300. The letters "N" and
"P" describe the polarities of the waves, ie. "P" represents a positive wave and
"N" represents a negative wave. The number following the polarity letter indicates
the wave's approximate peak latency. For example, N100 is a negative wave that
reaches its maximum amplitude at about 100ms after the onset of the evoking

stimulus.

The amplitude of N100 is dependent on factors such as expectedness of the
stimulus and the attention paid to it. The P300 is a positive wave that reaches its
peak between 300 and 500ms after the onset of the eliciting stimulus. To evoke the
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P300 in AEPs, the patient is requested to detect an infrequently occurring tone
burst from a background sequence of another tone which has a different pitch. The
P300 may reflect the ability of the individuals to process information [Baribeau-
Braun et al., 1983]. The Bereitschafts potential is generated as a result of a
voluntary motor response and it may reflect preparatory activity in the
supplementary motor area of the cortex [Dick et al., 1989]. The CNV is described
in detail in the next section. The PINV is closely related to the CNV and is also

described in the next section.

2.2.1 Description of the Contingent Negative Variation

The CNV was first described by Walter et al. [1964]. Since then it has been
described in a number of articles. Recently McCallum [1988] and Tecce and
Cattanach [1987] have provided a review of the nature of the CNV. The CNV is a
negative shift in EEG as compared to the potential of the electrical reference
electrode. Commonly electrodes placed on linked earlobes are used as the
reference. The elicitation of the CNV involves presentation of a warning
stimulus, S1 (eg. a click) to warn the subject of the upcoming imperative stimulus,
S2 (this can be a tone). The subject is requested to respond to the imperative
stimulus by performing a motor function, eg. by pressing a push-button to

terminate the tone.

The CNV is susceptible to contarrﬁnations, mainly by ocular artefact potentials.
The causes of the ocular artefact potentials are eye movements and blinks and they
are described in chapter (6). The CNYV is also usually obscured by the background
EEG. The CNYV therefore, has to be preprocessed prior to analysis. The
preprocessing method used was developed by Nichols [1982] and Coelho [1988]
and it is described in chapter (6).
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A schematic drawing of a preprocessed averaged CNV is shown in Figure (2.6).
Figures (2.7)-(2.11) show the CNV response in a normal subject, a schizophrenic
patient, a PD patient, an HD patient and an AR of HD patient respectively.
Figures (2.12)-(2.16) show the preprocessed averaged (over 8 trials) CNV
responses in the above subjects. The negative shift follows the onset of the
warning stimulus and it normally retumns to its original baseline rapidly after the
subject response to the imperative stimulus. In some cases the CNV takes an
abnormally longer time to return to its original baseline. The negative potential
which appears as a continuation of the CNV following the imperative stimulus is
known as the post-imperative negative variation (PINV). Figure (2.17) shows the
PINV in a PD patient.

The CNV was reported to have an early and a late component [Rohrbaugh et al.,
1976] [Rohrbaugh and Gaillard, 1983]. The early component develops in
response to the warning stimulus, its magnitude is maximum over the frontal
cortex, and it is dependent on the characteristics of the warning stimulus (eg.
duration and modality) [Rohrbaugh and Gaillard, 1983]. The late component is
believed to be related to preparation for motor response and it has a more central
distribution over areas of the cortex Rohrbaugh et al. [1976]. The physiology of
the CNV is complex and is not completely understood. The CNV has been
suggested to originate from the frontal and central areas of the cortex. Some sub-
cortical areas of the brain such as the caudate nucleus of the thalamus were also

believed to have a role in its production [Tecce, 1972] [Cohen, 1974].

The CNV was used for the identification of patients with schizophrenia, PD and
HD because: i) the main source of the CNV (ie. the frontal cortex) is an affected
area in schizophrenia, PD and HD [Goldman-Rakic, 1987], ii) several studies
have indicated that the CNV was altered in patients with any of these disorders

(see section 2.3 for detail) and iii) the CNV is considered to be a measure of the
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brain-behaviour functions [Tecce, 1972].

2.3 Review of the Relevant Studies in Event-Related Potentials

There have been numerous applications of ERPs in the medical field. Chiappa
[1990] and Picton [1988] have provided a review of some of their applications.
Although only the CNV was used in this study, whenever appropriate, the results
of other relevant ERPs studies in schizophrenia, PD and HD are also included.

2.3.1 Event-Related Potentials in Schizophrenic Patients .

The P300 amplitude has been reported to be significantly reduced in schizophrenic
patients [Roth et al. 1980] [Pfefferbaum et al. 1984] [Barrett et al. 1986])
[Blackwood et al. 1987] [Romani et al. 1987] [Pfefferbaum et al. 1989] [Ward et
al. 1991]. A prolonged P300 latency has been reported by Pfefferbaum et al.
[1984], Blackwood et al. [1987] and Romani et al. [1987].

P50 is a positive wave occurring SOms after the onset of an auditory stimulus
(such as a click). In an experiment Waldo et al. [1988] presented a series of pairs
of clicks to 13 schizophrenic patients and 32 normal subjects (each click pair
generated two P50 waves). They reported that in normal subjects, the P50 wave
generated as a result of the second stimulus was diminished compared with the
P50 generated as a result of the first stimulus. This phenomenon was not observed
in schizophrenic patients. Other alterations of auditory ERPs in schizophrenic
patients include a reduced N100 amplitude [Waldo et al., 1988] and a reduced
P200 amplitude [Shenton et al., 1989].

Several studies have reported that the amplitude of the CNV in schizophrenic
patients was significantly reduced compared with normal control subjects
[Abraham et al., 1976] [Timsit-Berthier et al., 1984]. More recently, Abraham
[1989] confirmed this finding by comparing the CNV amplitudes of 29
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schizophrenic patiénts and 52 normal control subjects. Several studies have shown
the presence of longer than normal PINV in the majority of schizophrenic patients
[Roth, 1977] [Dubrovsky and Dongier, 1976] and there has also been evidence of
abnormal PINV in schizophrenic children [Strandburg et al., 1984].

2.3.2 Event-Related Potentials in Parkinson's Disease Patients

'fhe P200 and P300 components of auditory and the P100 component of visual
ERPs in 20 PD patients and 20 normal control subjects were studied by Hansch et
al. [1982]. They reported that in the case of PD patients the latencies of both the
P200 and P300 components were significantly increased and the amplitude of the
P100 component was significantly increased. Goodin and Aminoff [1986] analysed
the N200 and P300 components of AEPs in 13 PD patients and 40 normal control
subjects and reported a significant prolongation in the latencies of the N200 and
P300 components in the PD patients. The amplitude of the VEP in 9 PD patients
was reported to be significantly different from that of 12 age-matched normal
control subjects [Calzetti et al., 1990]. Tachibana et al. [1988] studied the SEPs in
PD patients and their normal subjects and found that the latency of the N20
component in the PD patients was significantly abnormal.

Dick et al. [1989] studied the Bereitschafts potential in 14 PD patients and 12
age-matched normal control subjects and reported that the amplitudes of the early
components of the Bereitschafts potential were smaller in the PD patients.
McCallum et al, [1970] observed a general reduction in the CNV amplitude in PD
patients. This finding was later confirmed by Cohen [1974].

2.3.3 Event-Related Potentials in Huntington's Disease Patients

The SEPs in HD patients and AR of HD patients were investigated and compared

with those of normal control subjects in several studies. An increase in latency
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[Oepen et al., 1982] [Josiassen et al., 1982] and a reduction in amplitude [Noth et
al., 1984] [Ehle et al., 1984] [Bollen et al., 1985] [Abbruzzese et al., 1990] of
some SEP components were generally observed in HD patients. Josiassen et al.
[1982] and Noth et al. [1984] also reported that some AR of HD patients
exhibited amplitude reduction in their SEPs similar to that observed in HD
patients, although the reduction tended to be smaller in the AR of HD patients.

Oepen et al. [1982], Josiassen et al. [1984] and Hennerici et al. [1985] have
reported that the VEPs components in HD patients and some AR of HD patients
were significantly reduced.

The auditory evoked potentials (AEPs) in 21 HD patients and 21 normal control
subjects were analysed by Josiassen et al. [1984]. They reported the amplitudes of
the AEPs components in HD patients were generally reduced.

Rosenberg et al. [1985] compared the P300 components of both auditory and
visual ERPs in 13 HD patients with those in normal subjects. Nine HD patients
had abnormal auditory P300 latencies and 10 HD patients had abnormal visual
P300 latencies. Goodin and Aminoff [1985] analysed the latencies of the N200 and
P300 components of AEPs in 13 HD patients and 40 normal control subjects.
They found a significant prolongation in the latency of both the N200 and P300

* components in HD patients compared with those of normal control subjects.
Homberg et al. [1986] studied the P200, N200 and P300 components of AEPs in
30 HD patients, 40 AR of HD patients and 60 normal control subjects. They
reported that the latencies of the P200, N20O and (especially) P300 components
were prolonged in the majority of HD patients and to a lesser extend in AR of HD

patients.
Jervis et al. [1984] and [1989] reported that statistically significant differences
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existed between the amplitude of some CNV harmonic frequency components in 8
HD patients and those of 6 normal subjects (an account of these studies is included

in chapter 7).

Josiassen et al. [1988] studied the SEPs, VEPs and AEPs in 22 individuals AR of
HD and reported that the generalised reduction in the amplitude of EPs in AR of
HD patients was not due to emotional symptoms associated with knowledge of AR
status. They suggested that the amplitude changes might reflect early and subtle

changes of an organic nature.

2.4 The Possible Effects of Medication on Event-Related Potentials

Some of the patients included in this study were on medication related to their
disorders. The possible effects of medication on ERPs have been investigated in
several studies. Josiassen et al. [1984] reported that medication might further
reduce the already lower than normal amplitude in the auditory and visual EPs in
HD patients. Blackwood et al. [1987] found that the latency of the P300
component in auditory ERPs obtained from unmedicated schizophrenic patients
was significantly prolonged and remained unchanged after a long term follow up
of the patients on medication. They also reported that the amplitude of the P300
component was reduced in schizophrenic pa.tiems not on medication and remained
reduced following neuroleptic drug treatment. Ward et al. [1991] reported a
reduced P300 amplitude in unmedicated schizophrenic patients. The amplitude and
latency of VEPs in unmedicated PD patients compared to normal subjects were
also significantly different according to Calzetti et al. [1990].

2.5 Conclusion

The articles reviewed in this chapter indicate schizophrenia, PD and HD cause

structural brain abnormalities and some changes in the ERPs. The CNV was
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described and the reasons for selecting this potential for detecting schizophrenia,
PD and HD were discussed.
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Chapter 3 Description of the Instrumentation System

In this chapter the instrumentation system used for data recording is

described. An instrumentation system was required for simultaneous recording of
the signals from eight analogue channels, to generate the stimuli necessary for
recording of the CNV and to measure the subjects’ reaction times to an acoustic
stimulus. The signals of interest were the CNV (from two sites), electro-
oculogram (EOG) (from four sites), electrocardiogram (ECG) and psychogalvanic
response (PGR). The magnitudes of these signals varied from a few microvolts
to several millivolts. To increase the accuracy of digitisation of the signals a
programmable gain amplifier (PGA) was required the gain of which could be
software adjusted in accordance with the magnitudes of the signals. The system
had to provide a sufficient data storage facility (about 1 megabytes per subject),
and also had to process and analyse the data. An online paper chart recording of
the signals was necessary to observe the signals during the recording and to have
a hard copy of the data for future reference. It was important to minimise
distortion of the signals during the acquisition, storage and processing. Portability,
reliability, the cost of the instrumentation system, and patients' safety during the

data recordings were also design considerations.

The commercially available recording systems, such as analogue magnetic tapes,
were not suitable as they did not meet the required specifications. Therefore a PC-
based instrumentation system was developed. The system consisted of an IBM PC
(AT model, with a 20 megabytes hard disk and fitted with a Sysgen tape steamer),
an Elema-Schénander EEG machine, an acoustic stimulator and a signal
conditioning unit. The set-up of the system during a recording session is shown in

Figure (3.1).

The recorded CNV from one of the sites, the ECG data and the PGR data were

not analysed during the course of this study and they were left for future studies.
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3.1 The Instrumentation System Input Stage

The signals from the electrodes were fed via the head-box (adaptor) into the
electrode selector switches and the differential amplifiers of the EEG machine as
shown in Figure (3.2). Each of these differential amplifiers had a fixed gain of 50.
Differential recording was necessary for compatibility with differential
measurements between the electrode pairs and in order to attenuate the common

mode noise.

The analogue signals from the outputs of the differential amplifiers followed two
paths. The first path led to the next section in the EEG machine, while the second
path led to a 25-way D-type connector. The D-type connector was coupled to the
section of the instrumentation system responsible for further amplifying, digitising
and storing of the data on the hard disk of the PC. In this way the EEG machine
provided the paper chart as usual and the signals were also conditioned, digitised
and stored by the following hardware units. The EEG machine electrode selector
switches made it possible to set the data recording montage. The EEG machine
had an input impedance of 1.7M{Q1 with reference to earth [Elema-Schonander
databook, 1968].

3.2 High-Pass Filtering Section

It was necessary to high-pass ﬁlter the signals to reduce the d.c. offset in the
signal. The d.c. offset was mainly due to the extracerebral potentials (eg. skin
potentials). Cooper et al. [1980] suggested that the time constant of this filter
should be at least three times the duration of the inter-stimulus interval (ISI) of the
CNV (this interval was one second and the reason for selecting one second for this
period is given in chapter 5) to avoid distortion of the CNV., A first order lead
network with C=10uF and R=1M(Q was used for this purpose. This circuit had a

time constant of ten seconds. This corresponded to a cut-off frequency (f ) of
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0.0159Hz, where,

ese(3.1)
2%RC

3.3 Second Stage Amplification Section

There was an instrumentation amplifier for each channel following the high-pass
filter section as shown in Figure (3.3). The function of each instrumentation
amplifier was to further amplify and to convert its input signal to an unbalanced
form. The instrumentation amplifier type was INA110 [Burr-Brown, 1986]. The
INA110 device is a monolithic FET input device. It was selected because it had a
high common mode rejection ratio (about 106dB), low gain drift, low offset drift
(2uV/deg.C), fast settling time (4us to 0.01%) and easily adjustable gain. The
instrumentation amplifier circuit is shown in Figure (3.4). A fixed resistor (R;;)
and a potentiometer (R,) were placed in series between pin 3 and pin 16 (the pins
11, 12, and 16 were connected together). The net resistance of R and R, (ie.
Ry + Rgp) was referred to as R, The value of R, determined the gain of the

instrumentation amplifier and it was calculated using [Burr-Brown, 1986],

40000

Rg = —— - 50 0 cee(3.2)
Gain - 1

For channels 1 to 6 (allocated for EEG and EOG recordings) the instrumentation
amplifier gain was 52.5. It was necessary to adjust the R, potentiometer to obtain
this gain. For channels 7 and 8 (allocated for the ECG and PGR recordings), the
instrumentation amplifier gain was set to 2.6. This was achieved by placing a

10kQ potentiometer in series with a 20k} resistor between pins 3 and 16.
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The instrumentation amplifier gains were decided after considering the amplitude
range of each input signal and the gains provided by the other amplifiers in each

channel (this is described in section 3.8).

As the passive components attached to one input of each instrumentation amplifier
were not completely matched with components at the other input (ie. the resistors
and capacitors had a tolerance), a small d.c. offset appeared at the output of each
instrumentation amplifier. This offset was zeroed by applying a voltage to the
voltage reference pin (pin 6) of each instrumentation amplifier through a buffer.

This method of adjusting offset has been described in Burr-Brown [1986].

3.4 Low-Pass Filtering Section

Following each instrumentation amplifier there was a low-pass filter. Low-pass
filtering was necessary to prevent aliasing in the subsequent digitisation stage. The
design considerations for the low-pass filters were a linear pass-band phase
response, a sufficiently flat pass-band frequency response, and a sufficiently steep
gain roll-off. T‘hree filter types were considered. They were the Chebysheyv,
Butterworth and Bessel. The Bessel filter was selected as it had the best phase
response among the three filter types and it also had an acceptable frequency
response. It was decided to use a cut-off frequency (f,) of 30Hz. This cut-off
frequency was several times higher than the frequencies of the signals of interest.

The low-pass filtering process also attenuated any 5S0Hz mains interference.

Any aliasing component has to be attenuated to an acceptably low level below the
pass-band components. Let f_denotes this aliasing signal and f, represent the
sampling frequency (see Figure (3.5)). It has been shown [Elliott, 1987) that,

f = 2, +f ..(3.3)
where f=1f-f, ...(3.4)
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therefore f=f-f

r [ cl

...(3.5)

For f =125Hz (see section 3.5 for information related to sampling frequency) and
f ,=30Hz, the value of f is 95Hz.

It was decided to use a fourth order filter. The attenuation (dB) for a fourth order
Bessel low-pass filter at a frequency f is given by [Van Valkenburg, 1984],
1

a(f) = 201oq10 n 3 2 (dB) eses(3.6)
8 +1087+458°+1058+105

where s=jf/f . For largest aliasing component (ie. f =95Hz), s=j95/30.
Substituting s=j95/30 in (3.6) gives an attenuation of -47.6dB. This attenuation of

the largest aliasing component was considered sufficient.

The low-pass filter circuit was based on the voltage-controlled voltage source
(VCVS) filter. The VCVS is a variation of the Sallen and Key filter [Chen, 1982].
The circuit diagram of the low-pass filter is shown in Figure (3.6). The values of
the resistor (R) and the capacitor (C) were calculated using,

1
RC =

L I J (3.7)
2ﬂtnfc1

where f_is the normalising factor. The values of the f_ for the first and second
stages of the fourth order Bessel filter were 1.432 and 1.606 respectively
[Horowitz and Hill, 1987]. The values of R, and R, were calculated using,
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K-l*_ ' 000(308)

where k is the voltage gain. The values of k for the first and second stages of the
filter were 1.084 and 1.759 respectively [Horowitz and Hill, 1987]. This resulted
in the filter gain of 1.907 (ie. 1.084 x 1.759).

The operational amplifier type used for this filter was TLO741CP. This type was

selected because it had low noise and low distortion.

3.5 Sample and Hold Section

The signals from the eight channels were sampled simultaneously. This was
because the removal of ocular artefact potentials from the CNV involved the
correlation of the EEG and EOG signals and therefore it was important to
maintain the phase relationship between the signals. A sample and hold (S/H)
signal generated from the timing circuit (this circuit is described in section 3.9)
was fed to the S/H unit of each channel resulting in the simultaneous sampling of
the signals. The usual sampling rate for CNV recording is about 100Hz (for
example, Prescott [1986] used a sampling rate of 100Hz in his CNV studies). The
sampling rate used in this study was 125Hz. This also conformed with the
sampling frequency used in previous studies [Nichols, 1982] [Coelho, 1988] and
corresponded to a S/H period of 8ms (ie. 1/sampling rate), resulting in a
multiplexing rate of about 1kHz.

The S/H device type was LF398. This device had a sufficiently fast acquisition
time (less than 10us), low output noise in hold mode and low droop rate [National
Semiconductor, 1988]. The type and the value of the hold capacitor (C,,) were

important as this capacitor determined the acquisition time and droop rate. A
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0.01xF polystyrene capacitor was selected for C,.. The value of this capacitor
provided an acceptable compromise between the acquisition time and droop rate and
its type ensured a low dielectric absorption loss. The sample and hold circuit is

shown in Figure (3.7).

3.6 Multiplexing Section

The output of the S/H unit from each channel was connected to an analogue
multiplexer (type HIS06) as shown in Figure (3.3). It was decided to use a 16-
channel multiplexer (rather than an 8-channel multiplexer) to allow for any
possible future expansion of the system. The multiplexer circuit is shown in Figure
(3.8). The multi.plexcr channels were selected through a programmable peripheral
interface (PPI) device (the PPI device is described in section (3.13)). The PPI
device was TTL logic compatible. The multiplexer was a CMOS device.
Therefore, a TTL to CMOS voltage level shifter (type CD40109B) was

incorporated to interface the multiplexer with the PPI device.

3.7 Third Stage Amplification and Signal Digitisation Method

A DT2805 card from the DT2801 Data Translation series [1985] was available
and it was used to further amplify and to digitise the signals. The cards had a
programmable gain amplifier (PGA) and a. 12-bit analogue to digital convertor
(A/D). The PGA preceded the A/D and its gain could be software adjusted to 1,
10, 100 or 500. The conversion time of the A/D was 25us. This was sufficiently

fast for the multiplexing time of 1ms.
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The magnitudes of signals varied from a few microvolts (as in the case of the
CNV) to several millivolts (as in the case of the PGR). To increase accuracy,
before signal digitisation, the signal magnitude was estimated with the aid of a
circuit known as a "window detector” (WD). The gain of the PGA was software
adjusted after reading the WD output. The WD was designed to detect the
threshold voltages of +20mV, +100mV, +1V and +10V. These threshold
voltages corresponded to the PGA gains of 500, 100, 10 and 1 respectively. Each
threshold voltage multiplied by its corresponding PGA gain resulted in A/D full
scale range of +10V. The block diagram of the WD is shown in Figure (3.9) and
the sections of its circuit are shown in Figure (3.10). The WD circuit composed of
three pairs of comparators (type LM311). The inputs to each comparator were the
multiplexer output and the relevant threshold voltage. The effect of varying the
signal magnitude on the WD output is shown in Figure (3.11) and the relationship

between WD output and PGA gain is shown in Table (3.1).
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Table (3.1) WD outputs and the corresponding PGA gains.

Signal Range Ccl Cc2 c3 WD Output PGA Gain
1V to 110V 0 0 (4] 0 1
$£100mvV to %1V 0 o 1 4 10
$20mV to #100mv| O b 1 6 100
0V to $20mVv 1 1 1 7 500

When the magnitude of input signal (| v, | ) to the WD was less than the
threshold voltage (| v, | ) for a comparator pair, the common output of that pair
was logic "1". As | v, | exceeded | v, | the common output of the pair was

logic "0".

After issuing a S/H signal the following steps were carried out: i) channel 1 of the
multiplexer was selected, ii) the output of the WD was read through the PPI
device, iii) the PGA gain was software adjusted to provide an appropriate gain (for
example if the signal magnitude was below 20mV, the PGA gain was set to 500),
iv) the signal was digitised, v) steps (i) to (iv) were repeated for channels 2 to 8.

The value of the WD output (which was 1 byte) was stored with the corresponding
digitised signal (which was 2 bytes). Therefore each sample produced 3 bytes.
When processing the data, the magnitudes of the signals were adjusted according
to the WD outputs.

3.8 Total Gain Provided By Each Channel
The total gain provided by each channel was calculated using,

Total gain = G, x G, x G, x G, «.(3.9)
where G, = first stage amplification (= 50),

G, = second stage amplification,
(for channels 1-6, G,=52.5,

86



for channels 6 and 7, G,=2.6),
G, = effective gain of the low-pass filter (1.907),

G, = amplification due to the PGA.

For channels 1 to 6, the voltage gain range was from 5000 (when PGA gain was
1) to 2.5 x 10° (when the PGA gain was 500). The CNV amplitude was generally
between -4,V and -154V, and the EOG potentials had a maximum magnitude of
1mV. As the A/D had a full-scale voltage range of 110V, sufficient gain was
provided prior to the digitisation. For channels 7 and 8 the voltage gain was from
250 (when PGA gain was 1) to 125000 (when PGA gain was 500). As the ECG
and the PGA magnitudes were within +3mYV range, the allocated gain range for

channels 6 and 7 were therefore sufficient.

3.9 The Timing Circuit

A timing circuit was required for the following reasons: i) to provide the sample
and hold signal, ii) to measure the random inter-trial interval between the
successive CNYV trials and iii) to measure the subjects' reaction times. The block
diagram of the timing circuit is shown in Figure (3.12). This circuit was based on
two Intel 8253 software programmable interval timers. Each programmable
interval timer contained three counters (ie. counters 0, 1 and 2) which could
individually be programmed in several modes. Hall [1988] described in detail the
structure and the modes of operation of the Intel 8253 device. The programmable
interval timers were incorporated into the IBM PC by adding them to a vero-
board which had the necessary address decoding circuits for the devices added to
it. This board was placed in an expansion slot of the PC.

Figures (3.13a) and (3.13b) show the interconnections from the programmable

interval timers to the various buses of the PC. The PC had a clock, the frequency
of which was 6MHz. The frequency of this clock was divided by four using two
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flip-flops (type 74HC73) connected together in series. The reduction in the clock
frequency was necessary as the maximum permissible input clock frequency for

the 8253 programmable interval timer was 2.6MHz. The resulting 1.5MHz clock
signal was used as the clock signal for the counters 0 and 2 of the programmable
interval timer 1. The function of each counter in the programmable interval timer

1 follows.

Counter 0 - this counter divided the 1.5MHz clock signal by 1500. The resulting
1kHz signal was used as a clock signal for counter 1 of the programmable interval

timer 1 and counter O of the programmable interval timer 2.

Counter 1 - this counter measured the random inter-trial interval (ITI) period
between successive CNV trials. The value of this period was generated in the

software and was stored in this counter.

Counter 2 - this counter was programmed to provide a 125Hz square wave signal.
The 125Hz signal was converted to the required narrow sampling pulse by a
mono-stable (type 74121). The S/H timing diagram is shown in Figure (3.14). The
0 output of this mono-stable was used for the S/H signal and its Q output was
connected to an input (input "a") of an "OR" gate. The other input (input "b") of
this gate was connected to pin PA4 of the PPI device output port (ie. port A). The
output of the gate was connected to IRQS of the PC system interrupt controller 1
(type 8259A) in order to interrupt the PC at the required sampling rate. It was
necessary that the sampling process could be enabled or disabled through the
software. This was achieved by the inclusion of this "OR" gate in the timing
circuit. In order to disable the sampling process the "b" input of this "OR" gate
was set to "1" and the sampling was enabled by setting the "b" input of this "OR"

gate to "0". The PC had several interrupt types but, IRQS5 was the most suitable
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type for this purpose (for more information refer to IBM technical reference,
[1985]). |

Only the counter 0 in the programmable interval timer 2 was used. This function
of this counter was to measure the subjects’ reaction times. A signal from the tone
generator was fed to the gate of this counter. This signal started the counter at the
onset of the tone and when the push-button was pressed, it stopped the counter. As
the frequency of the clock input to this counter was 1kHz, the value read from it
represented the reaction time in milliseconds (ie. 1/1kHz = Ims). The other two
counters in this programmable interval timer may be utilised in the future

expansion of the system.

For each programmable interval timer, the data (D-D,), read (RD) and write
(WR) buses were connected to the corresponding buses on the vero-board. The
base address 300 (Hex.) is allocated for adding new devices to the IBM PC
system. The PC had a 16-bit data bus while the programmable interval timers had
an 8-bit data bus. When the address line A, was "0" data were read/written
from/to D,-D, and when A was "1" data were read/written from/to D;-D, . In
this application the data lines D -D, were used, therefore whenever the timers
were addressed, A was "0", The address lines A and A, from the PC were
connected to the programmable interval timers address lines Aj and A,
respectively. The address lines A, and A, determined which counter was
accessed. The control register of each programmable interval timer, which was
used to program the counters, was also selected through Ajand A,. To select a
programmable interval timer, the chip select input Ts of that timer was set to "0".
The chip select input for the programmable interval timer 1 was obtained from the
output of a 3-input "OR" gate. The inputs to this gate were the address lines A,
and A,, and the enable line (En) from the PC. For programmable interval timer 2,

the €s input was obtained from the output of another 3-input "OR" gate. The
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inputs to this 'OR;' gate were the address lines A,, A,, and the En line from the
PC. The address line A, had to be inverted to reflect the address decoding (refer
to Tables (3.2) and (3.3)).

Table (3.2) Addresses used to select the
ports in the programmable interval timer 1.

Address Lines Address

in Port Selected
A4|A3|A2|A1|AO| (Hex.)

o [0 |O |O |O 300 counter O
0o {0 |O |1 |O 302 counter 1
o |o |1 |0 |O 304 counter 2
o |0 [1 {1 |0 306 control register

Table (3.3) Addresses used to select the
ports in the programmable interval timer 2.

Address Lines Address

in Port Selected
A4|A3|A2|A1|A0| (Hex.)

1 |0 |0 |0 |O 310 counter O
10 |0 |1 |0 312 counter 1
11]01|1]0 |0 314 counter 2
1 |]o |1 |1 ]oO 316 control register

3.10 Acoustic Stimuli Generator

To elicit the CNV it was necessary to present a warning and an imperative
stimulus to the subjects. Some investigators such as Tecce [1972] used a light flash
for the warning stimulus and a tone for the imperative stimulus. It was decided to
use a click and a tone for the warning and imperative stimuli respectively. The
light flash was not used for the warning stimulus as it can cause blinking. This in

turn results in ocular artefact.
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3.10.1 Click Generator

The click generator circuit is shown in Figure (3.15). The base of a transistor (this
transistor performed as a digital switch) was connected to pin PA6 of the PPI
device port A and its collector was connected to the input of a mono-stable multi-
vibrator (type HEF4528B). On the rising edge of a pulse sent to the base of this
transistor, the mono-stable generated a narrow pulse (the width of which was set
by the values of R and C). The output of the mono-stable was connected to the
enable input (E,) of an analogue switch (type HEF4016B). The input terminal of
the switch (Y,) was connected to the centre pin of a 500k{} potentiometer and the
output of the analogue switch (Z,) was connected to a power amplifier (the power
amplifier is described in section (3.10.3)). During the short period that the mono-
stable output was high (ie. logic "1*), a d.c. voltage was transmitted through the
analogue switch to the power amplifier. This produced a click. The intensity of the
click was adjusted by using a 500k{) potentiometer.

3.10.2 Tone Generator

The tone generator circuit is shown in Figure (3.16). The base of a transistor (this
transistor was used as a digital switch) was connected to pin PA7 of the PPI
device port A and its collector to the input (Iob) of a mono-stable multi-vibrator
(type HFEA528B). The mono-stable circuit produced a square pulse (the duration
of the pulse was set to 6 seconds) on the rising edge of a pulse sent through the
PPI device to the base of the transistor. The output of the mono-stable was
connected to the enable input (E) of an analogue switch (type HEF4016B).
During the period that the output of the mono-stable was logic 1" a waveform
(frequency = 1kHz), produced by a circuit based on a 555N device, was
transmitted to the power amplifier through the analogue switch. This produced a
tone. The intensity of the tone was adjusted using a 500k{) potentiometer.
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A wire linked a push-button to the clear direct input (EDB) of the mono-stable.
The subjects, by pressing the push-button, cleared the output of the mono-stable,

thus terminating the tone.

The output of the mono-stable (O,) was also connected to the gate of counter 0 in
the programmable interval timer 2 (see section 3.9) in order to measure the

subjects' reaction times.

3.10.3 Audio Power Amplifier
A circuit based on the TBA820 device provided the necessary power amplification
of the click and the tone signals. This circuit was obtained from the RS data sheet

[1985]. The output of this circuit was connected to an 8( loudspeaker. The audio

power amplifier circuit is shown in Figure (3.17).

3.11 Circuit to Detect Erroneous CNV Trials

The CNV trial was erroneous if the subjects pressed the push-button prior to the
onset of the tone. It was necessary to detect the erroneous trials and to discard the
data associated with them. The circuit designed for this purpose is shown in
Figure (3.18). It had two inputs, one was from the push-button (which was linked
to the tone generator circuit) and the other was from pin PC1 of the PPI device
port C. The output of the circuit was connected to pin PB5 of the PPI device port
B.

The timing diagram of the circuit is shown in Figure (3.19). When the push-button
was pressed the circuit output changed from logic "0" to "1". The software was
designed so that the output of this circuit was checked prior to the onset of the
tone and if this output was "1" (ie. the subject pressed the push-button before the
onset of the tone), the tone was not generated and the data associated with that

trial were discarded. The output of the circuit was cleared by the software to "0"
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through pin PC1 of the PPI device port C at the end of each CNV trial recording.

3.12 Operator Switch and System LED

An operator switch was incorporated (as shown in Figure (3.20)) so that if it .pn
101 became necessary the operator could provide a pause in the data recording.
An LED was included to indicate when the data recording was in progress. Figure

(3.21) shows its circuit diagram.

3.13 Digital Interfacing

An Intel programmable peripheral interface (PPI) device (type 8255A) was used
for the interfacing of the devices to the PC system. The PPI device had three 8-bit
ports (A, B and C). The ports could be configured through the software in several
modes to perform a variety of functions (as described by Hall [1988]). The mode
selected was the basic input/output mode (ie. mode 0). In mode 0, the PPI device
provided a simple input and output operation for each of the three ports. The PPI
device had a write only control register. By entering 82 (Hex.) into this control
register (through the software) ports A and C were set for output and port B was

set for input. The functions of the ports are shown in Table (3.4).
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Table (3.4) Functions of the ports in the PPI device.

Port |Bit Function
o]
1 ] multiplexer channel select
2
A 3
4 enable/disable sampling
S LED command
6 click generator trigger
-7 tone generator trigger
0
1 ] window detector output
2
B 3 programmable interval timer 1 counter 1 output
4 operator switch output
5 CNV error detector circuit clear command
6
7 ] not used
0 programmable interval timer 1 counter 1 gate
1 CNV error detector circuit output
2
Cc 3
4 not used
5
6
7

The PPI device was added to the PC system using the vero-board (described in
section 3.9). Figure (3.22) shows the method of connecting the PPI device to the
vero-board. The device data pins (D;-D,) were connected to the system data bus
(DyD,). The read (RD) and write (WR) pins were connected to the corresponding
lines (Tor and Iow) of the vero-board. The ports A, B and C and the control
register were selected using the address lines Aj and A,. The A and A, pins were
connected to the vero-board lines A, and A, respectively. The PPI device was
selected when the chip select pin (Cs) was low. This was achieved using a circuit
shown in Figure (3.23). The addresses used for selecting the ports and the control

register are shown in Table (3.5).
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Table (3.5) Addresses used to select the
PPI ports.

Address Lines Address
in Port Selected
A4|A3[A2|A1|AOQ]| (Hex.)

0Jj11]0 |0 |O 308 port A
o110 (1|0 30A port B
0|1 |1 |0 {O 30C port C
011 |1 |0 30E control register

3.14 Data Storage Requirement
The number of bytes (N,) for a recording containing 32 trials was calculated
using,
N, =S5 ,xN xB xTxN, ...(3.10)
where S was the sample rate = 125Hz,
. was the number of channels = 8 channels,
B_was the number of bytes per sample = 3 bytes,

T" was the duration of a CNV trial = 12 seconds,
and N, was the number of trials recorded = 32 trials.

Using (3.10), N, was equal to 1.152 x 10° bytes (ie. 125 x 8 x 3 x 12 x 32).

3.15 Data Storage Facility

The recorded data related to the waveforms and the reaction time values for each
subject were kept in a file. This file was initially stored on the hard disk of the
PC and then copied into a 20 megabytes cassette using a Sysgen tape streamer.
This data transfer was controlled by a commercially available program called
FBACK. A description of this program and the procedure for the data transfer is
provided in Sysgen Smart Image Subsystem Owner's Manual [1985].

3.16 Hardware Testing
Initially the sections of the hardware were separately tested to ensure they

functioned in accordance with the specifications. The gain and d.c. offset of each
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amplifier and the phase and frequency responses of the filters were monitored.
Signals with different amplitudes were applied to the WD and the output of the
WD was examined. Tests were carried out to ensure the counters in the 8253
programmable interval timers functioned as described in section 3.9. This included
observing the 125Hz square wave signal generated by the counter 2 (in the
programmable interval timer 1) on the oscilloscope. The timing diagram of the
interrupt signal (shown in Figure (3.14)) was observed on the oscilloscope and it
was ensured it had a correct relationship with the sample and hold signal. The PPI
device was tested through software by reading and writing digital test data to and
from its ports. The operation of the stimuli generator unit was checked. The
circuit responsible for detecting erroneous CNV trials was tested by pressing the
push-button prior the onset of the tone. The device correctly detected the faulty
CNV trials.

The phase and frequency responses of the system up to the S/H units were
obtained using a frequency analyser. The set-up used is shown in Figure (3.24).
The phase and frequency responses obtained for channel 1 are shown in Figures
(3.25) and (3.26) respectively. The operation of the DT2805 was tested by
applying a calibration signal to the board, digitising the signal, storing the
digitised data on the hard disk and then plotting the stored data. The operation of
the complete recording system was tested by applying a calibration signal to the
EEG machine head-box and recording the signals using the eight channels. This
indicated that the system correctly recorded and stored the data on the hard disk.
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Chapter 4 Description of the Data Recording Software

The data recording software had two main sections. The first section was written
in the Turbo Pascal programming language and it was called "ACQ.PAS". The
second section was written in assembly language (Intel 80286) and was linked to
the Pascal program. The assembly language program was called
"SAMPLE1.ASM". The listing of the data recording software is provided in
Appendix (A).

4.1 Description of the Pascal Program Section
This section initialised and tested the DT2805 board (this board was used for its
programmable gain amplifier (PGA) and analogue to digital converter (A/D)) and

it acquired the following data recording information from the operator:

- The pre-warning-stimulus record length (in seconds).

- The inter-stimulus interval duration (in seconds).

- The post-imperative-stimulus record length (in seconds).
- The number of CNV trials to be recorded.

- A filename for data storage.

It then requested the operator to select an option. The options were familiarisation,
practice and data recording. The purpose of familiarisation option was to ensure
that the subjects could recognise the warning and imperative stimuli. When this
option was selected a series of 10 click and tone pairs were generated by the
instrumentation system and the subjects listened to the sounds. The practice
option was for ensuring that the subjects were able to respond correctly to the
imperative-stimulus. Selection of this option produced 15 click and tone pairs. The
subjects terminated the tones by pressing a push-button. Selection of the data

recording option initiated the recording of data.
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When the operator selected one of the above options, the Pascal program called

the assembly language program and the requested option was performed. After
the completion of data recording, the ACQ Turbo Pascal program displayed the
data (sample values) for recorded waveforms, values of the reaction times

associated with the CNV trials and the averaged value of the reaction time.

4.2.1 Description of the Assembly Language Section

This section received the durations of the pre-warning-stimulus record length,
inter-stimulus interval, post-imperative-stimulus record length and the number of
CNV trials from the Pascal program. It then followed the steps necessary for
execution of the chosen option. The same assembly language program was used
for familiarisation, practice and data recording options (files created after
performing the familiarisation and practice options were automatically discarded).
A flow chart illustrating the operation of the assembly language program is shown
in Figure (4.1).
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Figure (4.1) Flow chart describing the operations of the assembly language



Before describing the operations carried out in the assembly language program it
would be advantageous to briefly introduce a process known as "disk operating
system (DOS) function call” [Disk operating system, 1985]. This process was used
several times in the assembly language program to perform operations such as
creating a file, opening a file, closing a file and transferring data from the random
access memory (RAM) to the hard disk of the PC. DOS provides a wide variety of
functions which can be accessed in assembly language program through the DOS
function calls. This enables options such as character input/output, file
management and memory management to be carried out. In order to perform a
DOS function call specific registers and pointers must be initialised as described in
DOS technical reference manual [1985]. The interrupt type 21 (Hex) is then
issued. This causes the requested task to be performed.

The operations performed in the assembly language program were as follows.

1) The progfammable peripheral interface (PPI, Intel 8255A-5) device was
initialised so that it provided two 8-bit digital output ports (ie. ports A and C) for |
writing digital data to external devices and an 8-bit input port (ie. port B) for
reading digital data from external devices. The PPI device initialisation was
achieved by writing 82 (Hex.) into its control register as described by Hall [1988].

2) The hardware interrupt related to data sampling was disabled by setting the

enable/disable sampling signal high (see Figure (3.12)).

3) The starting address of the interrupt service routine (ISR) was stored in the
relevant vectors (ie. 34 (Hex.) and 36 (Hex.)). These vectors were associated
with the hardware interrupt request 5 (IRQS). IRQS was selected after referring to
the IBM technical reference manual [1985]. The instructions contained in the ISR

were executed following an interrupt request. During the execution of the ISR,
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signals from the 8 channels were sampled, digitised and stored in random access
memory (RAM) of the PC. A variable (called SAMPNO) which contained the total
number of samples obtained during the recording of the trial was also incremented

by one. The ISR function is described in detail in section 4.2.2.
4) The variables used in the assembly language program were initialised.

5) A file was created and opened on hard disk of the PC. This file was used for

storing data.

6) The counters 0 and 2 in the programmable interval timer 1 were initialised. The
counter 0 divided the frequency of its 1.5MHz clock signal by 1500, thus
producing a 1kHz signal at its output. The counter 2 divided the frequency of its
1.5MHz clock signal by 12000, thus producing a 125Hz signal at its output. The
125Hz signal was used in the S/H circuit and it also provided the necessary

hardware interrupt to the main microprocessor of the PC.

The operations (1)-(6) were performed only once during data recording. The
following steps were repeated for every trial.

7) The circuit responsible for detecting erroneous CNV trials (see chapter (3)) was
initialised by sending the necessary pulse to its initialisation input line through the

PPI device port C (pin PC1). This caused the output of this circuit to be cleared to
"0".

8) A random number was generated. This number was required as successive

CNV trials were separated by a random period called the inter-trial interval. The

value of this number was between 100 and 400 and was stored in the counter 1 of
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the programmable interval timer 1.

9) The LED of the data recording system was switched off. This was achieved by
setting pin PAS in the PPI device port A low.

10) The counter 0 in the programmable interval timer 2 was initialised to measure
reaction times. This was achieved by loading this counter with FFFF (Hex.) and
storing 30 (Hex.) in the control register of the programmable interval timer 2. At
the onset of the tone, the gate of the counter 0 was set to *1" by the tone generator
circuit. This caused the initial value of this counter (ie. FFFF (Hex.)) to be
repeatedly reduced by one at a rate equal to its clock input (ie. 1kHz). This
continued until the push-button (which was attached to the tone circuit) was
pressed, terminating the tone and stopping the counter. The value read from this

counter indicated the reaction time.

11) The operator switch circuit (referred to in chapter (3)) was checked through
PPI device port B (PB4) and if its output was "0", the data recording was halted

until the operator set the output of this circuit to 1" by using the switch.

12) The instrumentation system LED was switched on to indicate the system was
ready for data recording. This was achieved by setting the input to the LED circuit
to *1" through PPI device port A (PAS).

13) The hardware interrupt responsible for data sampling was enabled by setting
the enable/disable line of its circuit (see Figure (3.12)) to "0" through the PPI

device port A (PA4).

14) The variable SAMPNO was continuously monitored. Every 8ms the
instructions in the ISR were executed and the value held in the variable SAMPNO
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was incremented by one. Once SAMPNO reached a pre-defined sample number

for the pre-warning-stimulus interval the operation proceeded to the next section.

15) The click generator circuit was triggered to produce a click. This was
performed by sending the necessary pulse to the click generator circuit through
PPI device port A (PA6).

16) The value of the SAMPNO was monitored to determine how many samples
were recorded. This was repeated until the recording of the inter-stimulus interval

was complete.

17) The output of the circuit responsible for detecting erroneous CNV responses
(refer to chapter (3)) was read. A "1" at the output of this circuit indicated the
individual pressed the push-button prematurely, causing the CNV to be erroneous.

If the output of this circuit was "1", the next operation (ie. generation of a tone)

was skipped.

18) If the CNV was not erroneous a tone was generated by sending a pulse

through PPI device port A (PA7) to the tone generator circuit.

19) The variable SAMPNO was continuously monitored until recording of the

post-imperative-stimulus section was complete.

20) The enable/disable sampling signal (see Figure (3.12)) was set to "1". This
disabled the sampling interrupt.

21) The value of reaction time was read from the counter 0 of the programmable

interval timer 2 and if the CNV was not erroneous this value was stored in the
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RAM.

22) The counter 1 of the programmable interval timer 1 was loaded with the value
of random number (generated previously) and it was initialised to time the inter-
trial interval. Then the gate of this counter was set to "1* through PPI device port
C (PCO0). This caused this counter to start counting. The output of this counter was
continuously monitored through the PPI device port B (PB3). A high level ("1") at
the output of this counter indicated the end of the inter-trial interval. As the
frequency of the clock to this counter was 1kHz, if this counter was loaded with a

value N, it took N milliseconds for its output to change to "1".

23) If the CNV was not erroneous, the recorded data were transferred from RAM
to the hard disk of the PC.

24) The number of CNYV trials recorded was examined. If the required number of
trials was not recorded, the operations (7)-(23) were repeated.

25) The reaction time values were transferred from RAM to hard disk.

26) The CNV file containing the data was closed and control was returned to the
Pascal program.

4.2.2 Description of the Interrupt Service Routine

This routine was part of the assembly language program. Its flow chart is shown
in Figure (4.2).
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A description of the operations performed during the execution of the ISR

follows.

1) The value of the variable SAMPNO was incremented by one.

2) The multiplexer was switched to channel 0. This was achieved by sending code

the 8 chann-
1s digit-
ised
?

return
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0000 to the address lines of the multiplexer circuit through the PPI device port A
(PAO-PA3).

3) The output of the window detector circuit was read through the PPI device port
B (PB0-PB2).

4) An appropriate gain which reflected the magnitude of the signal was selected.

5) The gain of the PGA was adjusted and the signal from the selected channel was
digitised.

6) The output of the analogue to digital convertor was read. This together with the
value of a code which represented the gain used for the PGA were stored in RAM.

7) If digitisation of signals from the 8 channels was not complete, the multiplexer

was switched to the next channel and operations (3)-(6) were repeated.
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Chapter S Data Recording Procedure

20 schizophrenic patients, 16 PD patients, 11 HD patients, 21 AR of HD patients
and 43 normal control subjects were enrolled for the study. The age and sex of the
subjects were noted (the data associated with the age and sex of the subjects are
shown together with the analysis results in chapters 7 and 8). All subjects were
able to co-operate for the experiment. The severity of the symptoms in
schizophrenic patients was measured (by Dr S. Oke) using the Diagnostic and
Statistical Manual of Mental Disorders [DSM III, 1980]. Nine symptoms were
measured. Each schizophrenic patient was given a score for each measured
symptom. The scores varied between 0 (when the symptom was not observed) and
5 (when the symptom was severe). Table (5.1) shows the scores for the

schizophrenic patients.
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Table (5.1) The scores/or assessment of symptoms for

schizophrenic patients.

Subject |Positive Symptoms Negative Symptoms Sum of
Number Scores
a b c d e b 4 g h i
1 o] 2 0 0 2 0 4 4 2 14
2 4 4 O 0 0 1 0O © 0 9
3 4 4 4 2 2 2 3 3 3 27
4 4 4 O 0 3 3 4 4 2 24
5 4 3 2 0 4 3 4 4 2 26
6 0O 0 o0 0 0 0 4 4 2 10
7 o o0 3 0 2 4 4 4 2 19
8 0 o 3 0 4 4 5 4 3 23
9 0 o 3 0 4 3 4 4 3 21
10 3 o 4 2 4 3 5 4 4 29
11 (o] o o0 0 4 2 4 2 2 14
12 0 o 2 0 0 4 4 4 4 18
13 0 0o o0 0 3 2 4 2 1 12
14 0 0 o 0 3 3 4 4 2 16
15 2 S 4 0 0 0 1 2 0 14
16 0 o o0 0 2 4 4 4 3 17
17 0 4 0 0 o} 0 (o] 4 0 8
18 3 4 4 0 3 4 4 4 3 29
19 0 0 © 2 2 4 4 3 3 18
20 0 0 O 0 4 4 4 4 3 19

Key:

a =.hallucinations
b = delusions

¢ = bizarre behaviour
d = positive thought disorder

e = affective flattening
f = alogia

g = avolution-apathy

h = anhedonia-asociality
i = attention

The severity of disease in the HD and PD patients was assessed (by Dr E.M.

Allen) using a grading scale which varied between 1 and 5. The grades are shown

in Table (5.2).
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Table (5.2) The severity of symptoms in HD and PD patients.

Number of Patients
Grades
HD Patients|PD Patients
1 2 1
2 1 2
3 0 b
4 5 12
-3 3 0

Grade 1 included those newly diagnosed HD and PD patients for whom the
disease had not affected their ability to lead a normal life (eg. they could work
etc.). Grade 5 included those patients who had severe HD or PD and were tota'lly
dependent on others. The severity of the disease in patients classed as grades 2, 3
and 4 fell between grades 1 and §, ie. those classed as grade 2 needed some
assistance to lead a normal life, those classed as grade 3 could not live a normal
life but they were self caring, and those classed as grade 4 needed significant help.
The names of the drugs for the patients who were on medication were noted (refer
to Appendix (B)). The normal control subjects did not have any disorder which
might have affected their CNV responses. The hardware and software used to
record the data are described in chapters 3 and 4 respectively. The data were
recorded in a normal EEG recording room. In order to minimise voltage drift,
d.c. silver-silver chloride electrodes (see Figure (5.1)) were used for the
recording of the CNV and EOG. The CNV was recorded from two sites using the
linked earlobes as the reference. The CNV recording sites were the vertex
(convexity of the scalp) and at a point on the midline approximately 30mm
anterior to the vertex. Only the CNV data recorded from the vertex were analysed
in this study. Four channels were allocated for the recording of EOG. The
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electrode-pairs used for the EOG recordings are shown in Table (5.3). The
positions of the EOG electrodes are shown in Figure (5.2).

Table (5.3) The symbols used for electro-oculogram electrodes.

Channel Electro-oculogram Position of
Number (EOG) Electrodes
1 vertical left EOG E,-E,
2 vertical right EOG 23-24
3 horizontal left EOG Eg-E¢
4 horizontal right EOG E¢-E,

The electrodes were attached to the subjects using adhesive tape (for the facial
electrodes) or glue (for the scalp electrodes). Each electrode was filled (through a
hole at the centre of its éup) with "Neptic" electrode gel using a syringe which had
a blunted needle. Whilst filling the electrodes, the blunted needle of the syringe
was also used to abrade the skin under the electrodes. This reduced the impedance
between the electrode and the skin. The impedances between an arbitrary
electrode and all other electrodes were measured. If any impedance was more
than 5kQ the skin under the offending electrode was further abraded. The device
used to measure the impedance indicated the modulus of the complex impedance at
13Hz. It was important to avoid using an impedance meter with a d.c. internal
source as this would have caused a degradation of the electrode stability [Cooper
et-al., 1980].

The warning and imperative stimuli were a click and a 1kHz tone. On hearing the
imperative stimulus, the subjects pressed a handheld push-button to terminaté the
tone. In order to familiarise the subjects with the experiment, 10 presentations

(ie. 10 click and tone pairs) were made, initially with the subjects only listening.
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Figue 52 The positions of EOG electodes.
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Then the subjects participated in 15 practice trials. Following that 32 CNV trials

were recorded per subject.

The subjects' reaction times to the imperative stimulus were also measured. The
sampling rate was 125Hz. The cut-off frequencies for the high-pass and low-pass
filters in the hardware were 0.0159Hz and 30Hz respectively. The duration of
each CNV trial was 12 seconds, corresponding to a 1 second pre-warning-
stimulus section, a 1 second inter-stimulus interval and a 10 seconds post-
imperative-stimulus section. The recording of the pre-warning-stimulus section
was necessary for the baseline correction of the CNV (this procedure is described
in chapter 6). Coelho [1988] investigated the effect of inter-stimulus interval
duration on HD patients' identification. He compared the analysis results obtained
when durations of the inter-stimulus interval were 1 and 4 seconds and suggested
that duration of the inter-stimulus interval should be 1 second. The
post-imperative-stimulus section was used for baseline correction of the CNV
(refer to chapter 6) and a feature obtained from it was used in the identification of
patients (this is described in chapter 8). The long period selected for the post- |
imperative-stimulus section ensured that the CNV had sufficient time to return to
its baseline. The successive CNV trials were separated by a random interval
which varied between 100ms and 400ms. The instrumentation system
automatically rejected any faulty trials (a CNV trial was considered faulty if the
subjects did not respond correctly to the imperative stimulus). The CNV trials
grossly contaminated by ocular artefact in the sections of interest were also
rejected. The instrumentation system had eight channels. The last two channels
were allocated for the recording of the electrocardiogram (ECG) and the
psychogalvanic response (PGR). The ECG was recorded by placing two ECG
electrodes on the wrists of the subjects. The PGR electrodes were placed on the
palm and the back of the subjects’ hands.
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Chapter 6 Contingent Negative Variation Preprocessing Method

For the CNYV to be clinically useful, it has to be preprocessed. The CNV
preprocessing method used was originally developed by Nichols [1982] and then it
was enhanced by Coelho [1988]. The method consisted of the following steps:
mean level removal, baseline correction, digital low-pass filtering and

ocular artefact removal. A description of each step follows.

6.1 Mean Level Removal

A d.c. offset (or mean level) can usually be observed in the CNV. This offset is
mainly extracerebral in nature (eg. the skin potential) [Cooper et al., 1980] but the
various components in the instrumentation system also contribute to it. It was
desirable to have a baseline reference of zero so that comparisons over time could
be made. Jervis et al. [1989] reported that the removal of d.c. offset from the
CNYV improved the effectiveness of the OA removal routines. As each CNV trial

had a fixed duration, the d.c. offset was removed using,

1 N
xkr.xk-— z xi 000(6-1)
N i=]1

where N is the number of samples per CNV trial, X, is the k™ sample value and

x, is the k™ sample value with the mean removed.

6.2 Baseline Correction

A side effect of the mean level removal was to cause a positive shift in the
baselines of the pre- and post-stimulus sections of the CNV. It was therefore
necessary to restore the true baseline. The mean of the pre-warning-stimulus

section (y,,) was calculated using,
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1 P

Yg1 = ;—1- 131 xg ves(6.2)
where P1 is the sample number corresponding to the instant of the warning
stimulus (S1) and x; is the i® sample value. Further-more, to allow for any small
d.c. drift during the data acquisition, the mean signal level (y,,) was also
calculated from a point one second after the imperative-stimulus (S2) to the end of
the CNV trial. The value of y , was subtracted from the same section (ie. the
section from which y , was calculated). Thus,

1 N

. xi 0.0(6.3)
N-P2-D i=p24D

Yg2

where P2 is the sample number corresponding to the instant of S2, D is the delay
after S2 which was set to 125 samples (this delay was necessary to avoid the
auditory evoked potential due to $2) and N is the number of samples per CNV
trial. The section between P1 and P2+D was corrected by subtracting y. ., which
was the appropriate fraction of the difference between y | and y,,, therefore,

Ys2 7 ¥g1

P2+D-P1

where k is the sample number.

6.3 Digital Low-pass Filtering

Digital low-pass filtering was necessary to filter out the unwanted high frequency
components in the EEG. A finite impulse response (FIR) low-pass filter based on
the design program of Rabiner and Gold [1977] was used for this purpose. FIR
filters (unlike the infinite impulse response filters) do not distort the signals. The

cut-off frequency of the digital low-pass filter used in the patients' identification
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method as described in chapter 7 was 30Hz (filter length=21). This cut-off
frequency had to be reduced to 7.5Hz (ﬁltér length=29) for use in the patients’
identification methods described in chapters 8 and 9. The frequency response of
the digital low-pass filter (cut-off frequency=7.5Hz) is shown in Figure (6.1).
The reasons for selecting these cut-off frequencies were related to the particular
methods of analysing the CNV and therefore they are discussed in the relevant
chapters (ie. chapters 7 and 8).

6.4 Ocular Artefact Removal

The eye has a positive cornea and a negative retina. This produces an electrical
dipole. Whenever this electric field is changed due to the eye movement, eye
rotation or blink, a change of potential develops around the eye. This potential is
known as the electro-oculogram (EOG). The EOG spreads across the scalp to
contaminate the EEG. The term OA is a collective reference given to a number
eye-related potentials observed in the contaminated EEG. As the magnitude of the
OA can be several hundred microvolts (compared to the magnitude of the CNV
which is in the order of few microvolts), they are the main physiological sources

of CNV contamination.

There are several methods of OA removal [Jervis et al., 1988]. Jervis et al. [1985]
showed that a method known as proportional EOG subtraction was the most
suitable technique and therefore it was selected. This method of OA removal was
based on the assumptions that the measured EOGs had negligible cross-correlation
with the true EEG and the OA was a linear combination of the selected EOGs.

The formula used for removing OA removal was,
EEG (i) = EEG, (i) - (0, HR@H)HL(i)+6,VR(i)+6,HL(i) + 6 HR(i))
1<is<N ...(6.5)

138



Magnitude (dB)

fcwm7.5Hz

10
0
-10 ~
=30 -
-q0 -
-w -
-80
-70
-80
-90
L T T
o 0.2 0.4
Normolised Frequency
H(¢ 1) = =-0.9830649FE-02 = H( 29)
H( 2) = -N.22145083E-01 = H({ 28)
H( 3) = -0.12244012E-01 = H( a27)
H( &) = —0.19535918E-01 = H( 26)
H{ 5) = —0.1359649SE-01 = H( 2s)
H( &) = —0.71664676E-02 = H! 24)
Ht 7) = 0.444SS901E-02 = H( 23)
He 8) = ©.19459262E-01 = H( o)
H( 9) = 0.37399143E-01 = H( 21)
HO 10) =  ©.56883872E-01 = H{( 20)
H{ 11) = 0.76271415E-01 = H({ 19)
H( 12) = 0.93765736E-01 = H( 18)
H( 13) = 0.10773635E+00 = H( 17)
H( 14) = 0.11673010E+00 = H( 16)
H( 1S). = 0.11983693E+00 = H( 15)

Figure 6.1 Digital low-pass filter frequency

response (cut-off frequency = 7.5Hz).
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where EEG , EEG_, HL(i), HR(i) and VR(i) are the i sample values of the
corrected EEG, measured EEG, horizontal left EOG, horizontal right EOG and
vertical right EOG respectively. N is the number of samples per CNV trial and
©,...0, are the transmission coefficients. This formula allowed for the effects of
the vertical and horizontal eye movements and is the model recommended by
Jervis et al. [1989]. The values of ©,...6, were calculated off-line bya
correlation technique described by Quilter et al. [1977].

6.5 Description of the Preprocessed Plots

Figures (6.2)-(6.5) show the vertical left, vertical right, horizontal left and
horizontal right EOGs. The OA potentials can be seen in the EOG plots in the
time period between t=7 to t=11 seconds. A single CNV trial prior to the
preprocessing is shown in Figure (6.6). The OA potentials have contaminated the
CNYV (this is visible in the time period between t=7 to t=11 seconds). The effect
of OA contamination has been greatly reduced in the CNV trial following the

preprocessing (Figure (6.7)).
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Chapter 7 Identification of Schizophrenic, PD and HD Patients by Frequency
Analysis and Discriminant Analysis of the CNV

In order to investigate the composition of evoked potentials, Nichols [1982] and
Jervis et al. [1983] applied a series of statistical tests to the harmonic frequency
components of the auditory evoked potentials and the CNV responses of a number
of normal subjects and Huntington's disease (HD) patients. Jervis et al. [1984]
envisaged that it might be possible to distinguish between HD patients and
normal subjects using the techniques generated. They applied the four statistical
tests to the first six CNV harmonic frequency components of eight HD patients,
six normal subjects and three "at-risk" (AR) of HD patients. The statistical tests

were:

Nearest and furthest mean amplitude test,

Pre- and post-stimulus mean amplitude difference test,

® Rayleigh test of circular variance,

Modified Rayleigh test of circular variance.

The above four statistical tests are described in section 7.1.1. Jervis et al. [1984]
used the variables obtained from the application of the four tests to the first six
CNV harmonic frequency components in a logical flow chart. Using this flow
chart they identified the majority of HD patients from normal subjects and
suggested that one of the AR of HD patients would develop HD. Some of the

problems associated with the use of flow chart for this purpose were as follows:

i) It was not possible to differentiate between the HD patients and normal subjects
whenever the application of the statistical tests to the CNV harmonic frequency
components did not give any statistically significant result. This was the case for

two of the HD patients.
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ii) As the flow chart was designed by considering the CNV data from a limited
number of individuals, a review of its structure was necessary following the

inclusion of data from other HD patients and normal subjects.

In an attempt to overcome the problems associated with the use of the flow chart,
Coelho [1988] selected a set of harmonic frequency components by considering
the averaged CNV energy spectrum plots of eight HD patients and six normal
subjects (the CNV responses of these individuals were previously recorded by
Nichols). He then applied the four statistical tests (referred to earlier) to the CNV
harmonic frequency components and used the resulting variables in a stepwise
discriminant analysis (SDA) program. The SDA program identified one variable
among those variables as being most discriminatory. Coelho used this variable in a
discriminant analysis (DA) program. Although he was able to identify the HD
patients, his results had to be treated with caution as the DA program was
calibrated and then tested on the data from the same individuals. For the
assessment of the effectiveness of the method it is necessary to calibrate and test
the DA program on the CNV responses from a different set of individuals
[Grimsley, 1989].

In this study the method developed by Coelho [1988] was applied to a larger
number of HD patients and normal subjects and it was extended to differentiate
between:

Parkinson's disease (PD) patients and normal subjects.

Schizophrenic patients and normal subjects.

HD patients and PD patients.

HD patients and schizophrenic patients.

PD patients and schizophrenic patients.
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To evaluate the effectiveness of the method, a leave-one-out procedure was used.
This ensured the CNV responses from individuals included during the DA

program calibration phase were excluded in the test phase.
A description of the procedure used to identify the patients follows.

7.1 Generation of Variables
32 CNV trials recorded from each individual were preprocessed as described in
chapter 6. Two segments from each preprocessed CNV trial were analysed. The

segments were:

i) A 512ms segment prior to the imperative-stimulus (post-stimulus segment). This
segment contains the CNV components which share features with the readiness
potential and its nature is related to the dynamics of the motor response
[Rohrbaugh, et al., 1976].

ii) A 512ms wgment prior to the warning-stimulus (pre-stimulus segment). The
comparison of this segment with the post-stimulus segment allowed detection of
possible amplitude and phase changes in the harmonic frequency components of
the CNV in the patients and normal subjects. These changes develop as a result of

the onset of the warning- and imperative-stimuli.

Each selected segment contained 64 sample values. The next step was to transform
the data segments into the frequency domain using the discrete Fourier transform
(DFT). But prior to this operation, the segments were windowed and then
augmented with zeros. The windowing was necessary in order to reduce the
spectral leakage. Spectral leakage develops because the energy in the original
spectral components leaks to the other frequency components after truncation in
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the time domain [Stark and Tuteur, 1979]. This can distort the frequency spectrum
by introducing spurious peaks and cancelling out the true peaks. Coelho [1988]
after investigating the performance of several windows on simulated data and the
CNV responses suggested the use of the Kaiser-Bessel window. The trade-off
between the side-lobes level and main-lobe width of a spectrum after it is
subjected to the Kaiser-Bessel window is determined by a parameter, o [Harris,
1978]. Coelho [1988] found that when a=0.75 it produced an acceptable
compromise. Therefore the two segments were subjected to the Kaiser-Bessel
window, using a=0.75. Following the DFT, any signal components which occur
at a frequency between two adjacent harmonic frequency components will have its
energy shared and thus distort the amplitude of the adjacént harmonic components.
To reduce this effect the DFT harmonic separation was reduced by using
augmenting zeros before the transformation. After the zero augmentation, each
segment contained 64 CNV sample values and 960 zeros. The number of data
points for the DFT had to conform to 2", where n is an integer. In this case n was

equal to 10, providing 1024 points.

The four statistical tests were applied to the first 96 harmonic frequency
components of the two frequency spectra (ie. the spectra of the pre- and post-
stimulus segments) . The first 96 harmonic frequency components represented the
frequency range O to 11.72Hz (ie. 96 / (1024/64) x 1 / (64 x 0.008) = 11.72Hz).
Jervis et al. [1989] by Fourier analysis of the simulated CNV showed that most of
the CNV energy was concentrated below 1Hz and its energy spectral density fell
to -60dB at about SHz. Therefore the first 96 frequency harmonics were sufficient

for this analysis.

7.1.1 Description of the Statistical Tests Applied to the CNV Harmonic
Frequency Components

As mentioned in section 7.1 four statistical tests were applied to the selected CNV
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harmonic frequency components. A description of these tests follows.

7.1.2 Nearest and Furthest Mean Amplitude Test

This test was designed for analysing the variation of amplitude with phase angle in
the post-stimulus spectrum. As 32 CNYV trials were recorded per subject, this
produced 32 post-stimulus spectra. For each post-stimulus spectrum the magnitude
(length) of the n® selected frequency harmonic was obtained. The mean length of
that half of the vectors whose angles were within the smallest arc was calculated.
This was repeated for the remaining vectors. A one-tailed t-test was then
performed to determine whether the former mean was greater than the latter. The
resulting value of the t-test was used as a variable. The above procedure was

repeated for the remaining selected harmonic frequency components.

7.1.3 Pre- and Post-Stimulus Mean Amplitude Difference Test

The differences between corresponding pre- and post-stimulus phasor lengths for
the n® selected harmonic frequency component of each of the 32 trials were
calculated. The mean of the differences was computed. Using a two-tailed t-test,
this mean was tested to determine whether it was significantly different from zero.
The value of the resulting t-test was used as a variable. This procedure was
repeated for the remaining selected harmonic frequency components.

7.1.4 The Rayleigh Test of Circular Variance

This test was applied to the phase angles in the 32 post-stimulus spectra for each
selected CNV harmonic frequency component to determine whether the phase
angles (0,...6,) were distributed in a non-uniform manner. The circular variance,

S, is given by [Mardia, 1972],

s,=1-R eee(7.1)
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If the phase angles ©,=6,...=6,=0 then C = Cos0 and S = Sin®. This gives,

2

R = [CosZe + Sin%e}¥ = 1 eee(7.5)

and s =0 ese(7.6)

This corresponds to the case where all the phase angles have the same value.
Alternatively, when the phase angles are distributed uniformly over the range 0 to
27 then the values of R and S_become,

R=0 ese(.7)

so L 1 ...(7.8)
The value of So was used as a variable.

7.1.5 The Modified Rayleigh Test of Circular Variance

The modified Rayleigh test of circular variance encompassed both the amplitudes
and the phase angles in the post-stimulus spectrum. For each selected harmonic
frequency component, 32 vectors (one for each CNV trial) were obtained. The
vectors were ranked in ascending order of magnitudes. Then the test was carried

out using,
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where R, is the rank of the i*® phasor. U_ is closely related to the statistic R
proposed by Moore [1980]. The value of U_ was used as a variable.

7.2 Variable Reduction Procedure

The application of the four statistical tests to the first 96 harmonic frequency
components resulted in 384 variables (ie. 96 harmonics x 4 tests = 384 variables).
In order to identify the most discriminatory variables a series of tests were carried
out using the Statistical Analysis Systems (SAS) [1982 and 1985] packages. A
brief description of the tests follows.

7.2.1 Normal Distribution Test
A test for the statistical distribution of the variables was necessary as the
succeeding procedures required the variables to have normal or approximately

normal distributions.

This test was carried out using the SAS procedure, Univariate. It computed a test
statistic for the null hypothesis that the variables were from the normal
distribution. It calculated the Shapiro-Wilk statistic, W [Shapiro and Wilk, 1965]
and provided a probability value indicating whether the hypothesis should be
accepted or rejected (the significance level was 5%). The Univariate procedure

also plotted the variables together with a curve indicating where normally
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distributed data would fall. The variables found not to be normally distributed were

excluded from further analysis.

7.2.2 T-test

This was a two-tailed t-test for testing the hypothesis that the means of the
variables from the two groups (ie. patients from a category against their normal
control subjects or against the patients from another category) were equal. It
computed the t-statistic based on the assumption that the variances from the two
groups were equal. It also calculated an approximate t based on the assumption
that the variances were unequal. For each test the degrees of freedom and
probability level were computed. Satterthwaite's approximation [Satterthwaite,
1946] was used to determine the approximate t. A folded (F) statistic [Steel and
Torrie, 1980] was computed to test for equality of the two variances. The

significance levels for the t-test and F-statistic test were 10% and 5% respectively.

7.2.3 Stepwise Discriminant Analysis

The variables selected from the previous steps were used in the SAS stepwise
discriminant analysis program, Stepdisc. This program selected a subset of the
variables in order to form a good discrimination model using stepwise selection.

The variables selected by this program are shown in Table (7.1).
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Table (7.1) The variables used to identify subjects.

H T, represents test y applied to harmonic x, where

T, < nearest and furthest mean amplitude test,

T, = pre- and post-stimulus mean amplitude difference test,
T = Rayleigh test of circular variance and

T: modified Rayleigh test of circular variance.

Categories Discriminatory Variables
Huntington's disease HyoT3r HyeTo, HyTy
patients vs. normal
control subjects
schizophrenic 83T3, HSTJ. HSBTI' H72T4
patients vs. normal
control subjects HggT3, HggTy
Parkinson's disease H6T1, “1873' strl, 83774
patients vs. normal
control .“bj.ct. H63T3, Hasrip 391'1'4
Huntington's disease 82412, Hzarz, 36773' 372?1
patients vs.
schizophrenics HeeTy
Huntington's disease Hzorz. “38T1' HgaT3s Hg3Ty
vs. Parkinson's
disease patients
schizophrenics Hy3To, strz. HygTyr HeoTy
vs. Parkinson's
disease patients

7.3 Discriminant Analysis

The classification of the individuals was carried out using discriminant analysis
(DA). DA is a technique for classifying individuals into mutually exclusive and
exhaustive groups on the basis of a set of independent variables. Only the case
involving the identification of one group from another group was considered. In

the linear DA method, the discriminant score for each individual is obtained using,

Y=b'x «ee(7.10)
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where Y is a 1xn vector of discriminant scores, b' is a 1xp vector of discriminant
weights (note the symbol ' indicates transpose), and X is a pxn matnx containing
the values for each of the n individuals of the p independent variables. To assign
the individuals, the discriminant weight vector needs to be computed. It has been
shown [Morrison, 1976],

b=sg!

(!1 - !2) 000(7011)
where £, and ¥, are the mean vectors obtained from the data matrices, and S is
the inverse of the pooled sample variance-covariance matrix and is obtained using
[Morrison, 1976],

1

8 & ———— ‘!.1'1 + :.2’2) ...(7.12)
ng +n, =2

The number of individuals in each group is represented by n, and n,. x| is the
(pxn,) mean corrected data matrix taken from group 1 and x, is the (pxn,) mean

corrected matrix taken from group 2.

A formula for assigning the individuals to one of the two groups based on the

above information is [Morrison, 1976],

W=Xb-h( +InD cee(7.13)
The individuals are assigned to group 1 if W is greater than 0 otherwise to group
2. The DA program provided by SAS, Discrim, gave the probabilities which
indicated to which group an individual belonged.

Initially the patients from each category (schizophrenia, PD and HD) were age and
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sex matched with their normal control subjects and their CNV variables were
processed by the DA program. Then the patients with HD were age and sex
matched (as closely as it was possible) with schizophrenic patients and their
variables were processed by the DA program. This was repeated for HD and PD
patients, and PD and schizophrenic patients. To make best use of the recorded
data, a leave-one-out approach was followed. In this method the variables of n-1
individuals (n is the number of individuals in a patient category and their normal
control subjects or the patients from another category) were used in the DA
program. The DA program used this data to setup a classification rule (ie. the
calibration phase). Then the resulting information together with the variables from
the individual not included in the calibration phase were used by the DA program.
This generated a probability value which indicated to which group the individual
belonged. This was repeated n times (for example, for the 20 schizophrenic
patients and their 20 normal control subjects, this procedure was repeated 40

times).
7.4 Results and Discussion

Tables (7.2a) to (7.2f) show the probabilities obtained following the application of
the DA program.
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Table (7.2a) Schizophrenic patient versus normal control subjects. P(S)
and P(N) represent the probabilities that an individual is schizophrenic
or normal respectively.

Schizophrenic Patients Normal Control Subject
Subject P(S) P(N) Subject P(S) P(N)
Number Number

1 1.0000 | 0.0000 21 0.0000 | 1.0000
2 0.5753 | 0.4247 22 0.0477 | 0.9523
3 0.9998 | 0.0002 23 0.0011 | 0.9989
4 1.0000 | 0.0000 24 0.0000 | 1.0000
5 0.9366 | 0.0634 25 0.0184 | 0.9816
6 0.9948 | 0.0052 26 0.0001 | 0.9999
7 0.9016 | 0.0984 27 0.0049 | 0.9951
8 1.0000 | 0.0000 28 0.2197 | 0.7803
9 0.8269 | 0.1731 29 0.0000 | 1.0000

10 1.0000 | 0.0000 30 0.0002 | 0.9998

11 0.9968 | 0.0032 31 0.0047 | 0.9953

12 1.0000 | 0.0000 32 0.0164 | 0.9836

13 0.9999 | 0.0001 33 0.0010 | 0.9990

14 0.9952 | 0.0048 34 0.0000 | 1.0000

15 1.0000 | 0.0000 35 0.0001 | 0.9999

16 0.9883 | 0.0117 36 0.0051 | 0.9949

17 0.4600 { 0.5400 37 0.0000 | 1.0000

18 1.0000 | 0.0000 38 0.0003 | 0.9997

19 0.8960 | 0.1040 39 0.0436 | 0.9564

20 0.9993 | 0.0007 40 0.1739 | 0.8261
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Table (7.2b) Parkinson's disease patients versus normal control subjects.
P(P) and P(N) represent the probabilities that an individual has PD or is
normal respectively.

Parkinson's Disease Normal Control
Patients Subject
Subject P(P) P(N) Subject P(P) P(N)
Number Number

1l 0.6857 0.3143 17 0.0083 0.9917
2 0.9975 0.0025 18 0.0000 1.0000
3 1.0000 0.0000 19 0.3193 0.6807
4 0.8060 0.1940 20 0.0008 0.9992
s 0.9990 0.0010 21 0.0837 0.9163
6 0.9401 0.0599 22 0.0005 0.9995
7 0.8316 0.1684 23 0.0001 0.9999
8 0.8445 0.1555 24 0.8776 0.1224
9 0.9982 0.0018 25 0.0004 0.9996
10 0.1969 0.8031 26 0.0049 0.9951
11 0.9995 0.0005 27 0.0001 0.9999
12 0.9995 0.000S 28 0.0000 1.0000
13 0.9996 0.0004 29 0.0037 0.9963
14 0.990S 0.0095 30 0.0003 0.9997
15 1.0000 0.0000 31 0.0024 0.9976
16 1.0000 0.0000 32 1.0000 0.0000

Table (7.2c) Huntington's disease patients versus normal control
subjects. P(H) and P(N) represent the probabilities that an individual

has HD or is normal respectively.

Huntington's Disease Normal Control
Patients Subjects

Subject P(H) P(N) Subject P(H) P(N)

Number Number
1 0.8493 | 0.1507 12 0.0002 | 0.9998
2 1.,0000 | 0.0000 13 0.0005 | 0.9995
3 0.9963 | 0.0037 14 0.0000 | 1.0000
4 1.0000 | 0.0000 15 0.0000 | 1.0000
5 1,0000 | 0.0000 16 0.0000 | 1.0000
6 0.9998 | 0.0002 17 0.0000 | 1.0000
7 0.9998 | 0.0002 18 0.4313 | 0.5687
8 0.9971 | 0.0029 19 0.0030 | 0.9970
9 0.9507 | 0.0493 20 0.0000 1.0000
10 1.0000 | 0.0000 21 0.0001 | 0.9999
11 0.9999 | 0,0001 22 0.0231 | 0.9769
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Table (7.2d) Huntington's disease patients versus schizophrenic
subjects. P(H) and P(S) represent the probabilities that an individual
has HD or is schizophrenic respectively.

Huntington's Disease Schizophrenic Patients
Patients
Subject P(H) P(S) Subject P(H) P(S)
Number Number
1 0.9999 | 0.0001 12 0.0000 1.0000
2 0.9742 0.0258 13 0.0000 | 1.0000
3 1.0000 | 0.0000 14 0.0000 1.0000
4 1.0000 | 0,0000 15 0.0001 | 0.9999
5 1.0000 | 0.0000 16 0.0001 | 0.9999
6 1.0000 | 0.0000 17 1.0000 | 0.0000
7 1.0000 | 0.0000 18 0.0000 1.0000
8 1.0000 | 0.0000 19 0.4477 0.5523
9 1.0000 | 0.0000 20 0.0000 1.0000
10 1.0000 | 0.0000 21 0.0000 1.0000
11 1.0000 | 0.0000 22 0.0000 | 1.0000

Table (7.2e) Schizophrenic patients versus Parkinson's disease
patients. P(S) and P(P) represent the probabilities that
an individual is schizophrenic or has PD.

Schizophrenic Parkinson's Disease
Patients Patients
Subject P(S) P(P) Subject P(S) P(P)
Number Number
1 0.9993 | 0.0007 17 0.0153 | 0.9847
2 1,0000 | 0.0000 18 0.0010 | 0.9990
3 0.9812 | 0.0188 19 0.0197 | 0.9803
4 0.9999 ( 0.0001 20 0.9940 | 0.0060
5 0.3456 | 0.6544 21 0.0275 | 0.972S
6 0.9824 | 0.0176 22 0.0009 | 0.9991
7 0.9987 | 0.0013 23 0.0000 | 1,.,0000
8 0.9365 | 0.0635 24 0.0379 | 0.9621
9 0.9998 | 0.0002 25 0.0175 | 0.9825
10 0.8068 | 0.1932 26 0.0409 | 0.9591
11 0.9993 | 0.0007 27 0.0003 | 0.9997
12 0.9999 | 0.0001 28 0.0000 | 1.0000
13 0.2775 | 0.7225 29 0.0000 | 1.0000
14 0.3056 | 0.6944 30 0.0000 | 1.0000
1s 0.9973 | 0.0027 k) 0.0079 | 0.9921
16 0.9995 | 0.0005 32 0.1398 | 0.8602
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Table (7.2f) Huntington's disease patients versus Parkinson's disease
patients. P(H) and P(P) represent the probabilities that an individual
has HD or PD.

Huntington's Disease Parkinson's Disease
Patients Patients

Subject P(H) P(P) Subject P(H) P(P)

Number Number
b 0.9999 | 0.0001 12 0.7003 | 0.2997
2 0.9834 | 0.0166 13 0.0001 0.9999
3 0.9993 | 0.0007 14 0.0005 0.9995
4 1.0000 | 0.0000 15 0.0000 1.0000
5 0.9999 | 0.0001 16 0.9642 0.0358
6 0.9981 | 0.0019 17 0.0003 0.9997
? 0.2019 | 0.7981 18 0.0000 1.0000
8 0.9997 | 0.0003 19 0.0201 | 0.9799
9 0.8555 | 0.1445 20 0.0001 | 0.9999
10 1.0000 | 0.0000 21 0.0000 1.0000
11 0.9995 | 0.0005 22 0.0000 1.0000

As in each analysis the number of individuals in the two groups were equal, ie.
n,=n,, a probability threshold value of 0.5 was used. Therefore if the probability
was less than 0.5, the individual belonged to one group, otherwise the individual
belonged to the other group. In Table (7.2a) the probabilities of schizophrenic
patients versus normal subjects are shown. As can be observed all normal subjects
were identified correctly. One schizophrenic patient (subject number 17) was
misclassified as normal. Table (7.2b) indicates the probabilities for the PD
patients versus normal subjects. A PD patient (subject number 10) and two
normal subjects (subject numbers 24 and 32) were classified into the wrong group.
Table (7.2¢) shows the probabilities for the HD patients versus normal subjects.
Every one in these categories was classified correctly. The probabilities of the
HD patients versus schizophrenic patients are shown in Table (7.2d). Every HD
patient was placed in the correct group but a schizophrenic patient (subject number
17) was misclassified. Table (7.2¢) indicates the probabilities for schizophrenic
patients versus PD patients. Three schizophrenic patients (subject numbers 5, 13,
and 14) were misclassified. One of the PD (subject number 20) patients was also
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placed in a wrong category. Table (7.2f) shows the probabilities for the HD
patients versus PD patients. An HD patient (subject number 7) and two PD
patients (subject numbers 12 and 16) were misclassified.

The overall performance of the method in differentiating between the patients and
normal subjects, and between the patients of different categories is included in
Tables (7.3a) to (7.3f).

Table (7.3a) The subjects’ details and overall differentiation
success rate for Huntington's disease versus normal
control subjects.

Subjects®' Categories
Parameters
Huntington's Control
Disease Subjects
number total 11 (6 male) 11 (6 male)
of
subjects |on drug S 0
mean 53.73 50.09
age STD 10.97 10.513
range 39 to 77 40 to 73
differentiation
success rate in 100% 100%
the test domain
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Table (7.3b) The subjects’ details and overall differentiation
success rate for schizophrenic patients versus normal control

subjects.
Subjects' Categories
Parameters
Schizophrenic | Control
Patients Subjects
number total 20 (15 male) {20 (15 male)
of
subjects jon drug 18 0
mean 33.60 39.50
age STD 12.22 13.66
range 20 to 68 22 to 75
differentiation
success rate in 95.0% 100%
the test domain

Table (7.3c) The subjects' details and overall differentiation
success rate for Parkinson's disease patients versus normal
control subjects.

Subjects®' Categories
Parameters
Parkinson's Control
¢ Disease Subjects
number total 16 (10 male) |16 (10 male)
of
subjects |on drug 12 0
mean 63.63 50.81
age STD 9,68 11.16
range 42 to 80 35 to 75
differentiation
success rate in 93.8% 87.5%
the test domain
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Table (7.3d) The subjects' details and overall differentiation
success rate for Huntington's disease patients versus
schizophrenic patients.

Subjects' Categories
Parameters
Huntington's Schizophrenic
Disesase Patients
number total 11 (6 male) 11 (7 male)
of
subjects |on drug 5 9
mean $3.73 40.64
age STD 10.93 12.34
range 39 to 77 27 to 68
differentiation
success rate in 100% 90.91%
the test domain

Table (7.3¢) The subjects’ details and overall differentiation
success rate for Huntington's disease patients versus Parkinson's
disease patients.

Subjects' Categories
Parameters
Huntington's Parkinson's
Disease Disease
number total 11 (6 male) 11 (6 male)
of
subjects (on drug s 9
mean 53.73 60.91
age STD 10.97 10.52
range 39 to 77 42 to 80
differentiation
success rate in 90.91% 81.82%
the test domain
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Table (7.3f) The subjects' details and overall differentiation
success rate for schizophrenic patients versus Parkinson's

disease patients.
Subjects' Categories
Parameters
Schizophrenic Parkinson's
Patients Disease
number total 16 (12 male) 16 (10 male)
of
subjects |on drug 14 12
mean 36.63% 63.63%
age STD 11.83 9.68
range 25 to 68 . 42 to 80
differentiation
success rate in 81.25% 93.75%
the test domain

The overall success rates were not always 100%. This could be because the CNV
responses in some of the patients were not significantly different from the CNV
responses in the normal subjects. When differentiating between the individuals
from a patient category from another patient category (ie. HD patients versus PD
patients, HD patients versus schizophrenic patients, and PD patients versus
schizophrenic patients), it was not possible to age and sex match the individuals
closely (this was mainly because the general ages of onset of the above disorders
are different). This may have reduced success rates in differentiating between

patient groups.

7.5 Conclusion
The results obtained in this chapter indicate that CNV frequency analysis and
discriminant analysis provide an effective method for differentiating between HD,

PD and schizophrenic patients and normal subjects.
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Chapter 8 Identification of Schizophrenic, Parkinson's Disease and
Huntington's Disease Patients by Using the CNV Time Domain Features in
Neural Networks

The brain contains a large number of information processing elements, called
neurons. Neural networks (artificial neural networks) are computer models that
simulate the functioning of the brain in a very simplified manner. Neural networks
are capable of generalisation and, because of their highly parallel structure, they
can offer real-time solutions to complex optimisation problems. Furthermore, the
application of neural networks requires less restrictive assumptions about the
statistical nature of the data (ie. the distribution of discriminatory variables) and

they have been effective in cases involving noisy signals.

It was decided to use neural networks because it was considered that they might
provide a less complex method (compared to the method described in chapter 7) of
identifying the patients. Neural networks use either supervised or unsupervised
learning algorithms. In this study neural networks with supervised leaming
algorithms (ie. multilayer perceptron networks) were used and therefore the
discussion provided in this chapter relates to the supervised learning neural
networks. Supervised learning neural networks operate in two modes. In the
*learning” (or "training") mode several input patterns and their corresponding
output values are compared with the desired output values and the neural network
parameters are adapted to cause the actual outputs to approximate the desired
outputs. In the "test” (or "use®) mode the neural network is used to classify
patfems where their classes are not known (ie. the test patterns). The test patterns
must belong to the classes included during the training phase.

Neural networks have been widely used for pattern recognition, for example,
Gorman and Sejnowski [1988] successfully used neural networks to classify

sonar return signals from two undersea targets.
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There is a rising interest in the use of neural networks in the medical field
[McDonald and McDonald, 1991]. Bounds and Lloyd [1988] used neural
networks to analyse data concerned with four classes of back pain. Neural
networks were trained on 25 examples from each class of pain. The overall
performance of the neural networks on the test pattern example set, which
contained a similar number of examples as the training set, was 80%. Schizas et
al. [1989] used neural networks for classification of electromyographic signals.
They selected the amplitude, area, average power and duration of the signals as
the features. The neural network success rate in correctly classifying the test
patterns was about 60%. They suggested an improved method of selecting the
features could increase the success rate. An attempt was made to identify high risk
cardiac cases from "no-risk" cases by Hart and Wyatt [1989]. They could not
accurately differentiate the test cases. The complexity of the problem and lack of
sufficient examples from the different cases were believed to have contributed to
the low success rate [Hart, 1990]. Yoon et al. [1989] used a 3-layer neural
network to aid the differentiation of 10 skin diseases. They represented the
symptoms related to each skin disease by 18 variables and achieved an overall
success rate of 70% in the test mode. Several attempts have been made to classify
EEG patterns using neural networks [Choi et al., 1991] [Jarratt, 1991]. These

results seem to be promising.

In this chapter a brief account of neural network theory is provided, a time domain
feature extraction method suitable for the CNV is described and the results on
patient identification obtained following the processing of the CNV waveforms of
schizophrenic, Parkinson's disease and Huntington's discase patients and their

normal control subjects by neural networks are discussed.
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8.1 Theoretical Analysis of Neural Networks
Figure (8.1) shows a node (neuron, or unit) used as a building block fdr a neural
network. The input vector x brings the information from external sources. The
amount of influence the inputs exert on a node is controlled by the weight vector
w. The values of the inputs and their corresponding weights are combined using a
combining function. A commonly used combining function is the weighted sum
of the inputs. The procedure for this function is to multiply every input with its
associated weight and then sum the results. The transfer function (or threshold
function) interprets the combining function output. A traditionally used transfer
function is the sigmoid function shown in Figure (8.2). The sigmoid function is
defined as,

1

f(x) = eee(8.1)
1+ oxp(-(ij)/eo)

Gj is known as the bias or the threshold value and its effect is to shift the transfer
function to the left or right along the horizontal axis. The value of the constant ©_ -

determines the slope of the sigmoid as shown in Figure (8.2).

A single node on its own has little processing power. The capabilities of neural
networks lie in several nodes being interconnected to form structures such as the
one shown in Figure (8.3). The neural network shown in Figure (8.3) has an
input layer, an output layer and a layer not connected directly to the input or the
output, and so-called the "hidden layer®. The input layer distributes the input data
to the hidden layer. The hidden layer (there may be more than one hidden layer)
and the output layer are responsible for processing the data and presenting the
results to the oﬁtput.
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Figure 8.1 A node in a neural network.
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Figure 8.3 A multilayer neural network.
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If o, is the output of a node in the layer i then the input to a node in the layer j,

(inj) is,
‘.nj = I w3101 o-.(802)

where w;, is the weight associated with the connection from a node in the layer i to
a node in the layer j. The output of a node in the layer j, (oj) is a function of the

node's input. Using a sigmoid as the transfer function,
Oj -f(inj) 000(813)

1
je. oj = ...(804)
1+ oxp(-(inj*ej)/eo)

The input to a node in the layer k, (in,) is,

Lnk = I "kj°j ece(8.5)
and its output (0,), using a sigmoid transfer function is,
Ok - f(lnk) 000(806)
1

le. ok = ...(8.7)
1 + exp(=(in +e,)/6,)

If a node in the output layer, for a pattern p, has an output 0,,» and its desired

output is Lo then the sum of the squared errors (error function) will be,

1
3
E. .= — 3 (t, - 0,) ees(8.8)
P L% Pk pk

The factor ‘4 simplifies the mathematics during the succeeding stages of the

analysis.
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The weights and biases need to be adjusted in order to reduce the error function
EP. A widely used method of "learning” the weights and the biases is the
generalised delta rule sometimes referred to as the backpropagation rule
[Rumelhart et al., 1986]. Initially the weights and biases are set to small random
numbers. This is necessary for correct operation of the backpropagation rule
[Rumelhart et al., 1986]. Then the weights and biases are adjusted so that the
error E A is reduced as rapidly as possible. As a detailed analysis of the
backpropagation rule can be found in several publications such as Rumelhart et al.
[1987], Beale and Jackson [1990] and Aleksander and Morton [1990], derivation

of the backpropagation rule is not given.

Using the backpropagation rule, the change in the weights in the (n+1)® step for

the connections in the output layer is given by,
‘,ij(“+l) = B5,,g°,,j + oupwh.(n) ...(8.9)

where 8 is the learning rate. A large 8 produces a rapid leaming but can also

result in oscillation. & ok is,

<Spk = (tpk - opk) Oy a- opk) ...(8.10)

The proportionality constant, « is called the momentum. The value of 4w, is

initially zero.

The change in the weights in the (n+1)® step for the connections in the hidden
layer is given by,
A w.(n+l) = B¢Sm.(>pi + aa_w.(n) ...(8.11)

P2 P
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where 5,,; =0, - °,,,-) Ebpkwn. ...(8.12)

Initially the value of aAiji(n) is equal to zero. The bias values are treated as
incoming weights from a unit whose output is always 1 and they are adjusted in

the same manner as the weight values.
To summarise, neural network learning phase involves:

i) Setting all the weight and bias values to small random numbers.

ii) Reading in a training pattern and its associated desired value.

iii) Calculating the outputs of the nodes in the hidden and the output layers using
(8.4) and (8.7).

iv) Adjusting the weight and bias values using (8.9) and (8.11).

v) Repeating the process (ii) to (iv) for the remaining patterns in the training file.

The learning process is repeated until the neural network is capable of accurately
identifying the test patterns (ie. until it has generalised).

8.2 Time Domain Feature Extraction Method Applied to the CNV

In chapter 7, a method of feature extraction based on data transformation into the
frequency domain was described. In order to reduce the complexity of the analysis
and to reduce the processing time, it was decided to investigate whether it was
possible to obtain the discriminatory features by analysing the CNV in the time

domain.

Shiavi and Bourne [1986] described a series of parameters which could be used to
represent electrophysiological signals. These included amplitude, slope and
duration. However application of these parameters to the CNV could not provide

sufficiently sensitive measures for identifying the patients. This was because
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although the parameters provided a quantitative measure for the CNV, they did
not accurately describe the shape of the CNV which was also believed to be
important. A method applied to carotid pulse-wave (CPW) by Stockman et al.
[1976] involved identifying the points on the waveform in such a way that they
provided a reasonably complete description of the fundamental activity of the

signal in the time domain.

The method adopted, like the method used by Stockman et al. [1976), involved
obtaining a set of time domain points which could best represent the section of the
CNV relevant in the patient identification. Eight CNV trials not grossly
contaminated by ocular artefact were used per subject. The CNV trials were
subjected to a preprocessing procedure which carried out mean level removal,
baseline correction, digital low-pass filtering and ocular artefact removal. These
steps were discussed in chapter 6 and they were carried out using a Turbo Pascal
program called PROC.PAS (a listing of this program is included in Appendix C).
The CNV trials were then averaged. The CNV response tends to follow a
constant profile. By con@t the background EEG activity could be

considered to l;ave a randomly distributed amplitude about zero. The effect of
averaging is to reduce the unwanted background EEG (ie. noise) by a factor
proportional to \/n, where n is the number of trials averaged [Binnie, 1982]. The
reduction in the number of CNV trials (compared to the method described in
chapter 7) reduced the data recording and processing times. It also reduced the
distortion due to the inter-trial CNV variability. It should be noted that the
successive CNYV trials are not 100% identical. The variations are caused by
factors such as changes in patients' attention during the data recording and give
rise to the inter-trial variability [Binnie et al. 1982]. The digital low-pass filter
cut-off frequency was reconsidered (this was 30Hz for the method described in

chapter 7) to take into account the changes in the method of feature extraction and
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therefore it was set to 7.5Hz. The frequency response of this filter is shown in
chapter 6. Ruchkin [1988] reported that the details of the CNV were preserved
when the cut-off frequency of the digital low-pass filter was 5.5Hz. Therefore this
reduction in the filter's cut-off frequency was acceptable.

Seventeen CNV features were used as inputs to the neural networks. Sixteen
features were extracted from a section §12ms prior to the imperative-stimulus in
the preprocessed and averaged CNV waveform (listing of the program used for
this purpose is given in Appendix (D)). A moving average window, with a
window size of four samples (corresponding to 32ms), was applied to this section.
This averaged every four consecutive sample values producing sixteen CNV
features (or variables). Figure (8.4) shows the effect of this process on the CNV
section used in the analysis. This method was suitable as it further reduced the
effect of the almost random background EEG and it also closely represented the
CNV section of interest. In the majority of normal subjects the CNV returns to
the baseline rapidly following the onset of the imperative-stimulus and the
subject's response to that stimulus. It has been shown, however, that in 75% of
schizophrenic patients and 37% of neurotic patients the CNV takes more than 2
seconds to return to the baseline [Dubrovsky and Dongier, 1976]. To include this
effect, a seventeenth feature was obtained. This feature was the time difference
between the onset of the imperative-stimulus and the point where the CNV
returned to its baseline. This time period is shown in Figure (8.5). It should be
noted that the PINV was measured manually by determining the point where the
CNYV trend crossed the baseline.

8.3 Procedure for Obtaining the Results

Twenty schizophrenic patients, sixteen Parkinson's disease (PD) patients, eleven
Huntington's disease (HD) patients and their normal control subjects were
included in the analysis (refer to Tables (8.1)-(8.3) for more details).
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Table (8.1) Details of schizophrenic patients and their
normal control subjects.

Subjects®' Categories
Parameters
Schizophrenic Control
Patients Subjects
number total 20 (15 male) |20 (15 male)
of
subjects |on drug 18 0
mean 33.60 39,50
age STD 12.22 13.66
range 20 to 68 22 to 75

Table (8.2) Details of Parkinson's disease patients and
their normal control subjects.

Subjects' Categories
Parameters
Parkinson's Control
Disease Subjects
number total 16 (10 male) |16 (10 male)
of
subjects |on drug 12 0
mean 63.63 50.81
age STD 9.68 11.16
range 42 to 80 35 to 75
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Table (8.3) Details of Huntington's disease patients and
their normal control subjects.

Subjects' Categories
Parameters
Huntington's Control
Disease Subjects
number total 11 (6 male) 11 (6 male)
of
subjects jon drug S 0
mean $3.73 50.09
age STD 10.97 10.53
range 39 to 77 40 to 73

Seventeen features were obtained from each preprocessed averaged CNV
waveform as described in section (8.2). The selected features for the patients in
each category and their normal control subjects were normalised between 0 and 1.
The normalisation of the features was desirable as otherwise during the
implementation of neural networks numbers with unacceptably large magnitudes
could have resulted. To normalise the selected features for the patients in a
category such as schizophrenic patients and their normal control subjects, a
computer program read the 16 features selected from the inter-stimulus intervals
of the CNVs of these subjects. The maximum and minimum values of these
features were identified. Then the normalisation of the features selected from the

inter-stimulus interval (ISI) was achieved using,

Fiat IHIN1.1|
Nri'i - + ees(8.13)

lumiu|+|m“l| |nxuh1|+|w\x“1|

where  NF,. is the normalised feature,
F.. is the feature not normalised,
N. .. is minimum value of the features,
MAX’, is maximum value of the features.
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In order to normalise the 17® feature, the maximum and minimum values of the
PINV for the patients in each category and their normal control §ubjects were
obtained. Then these features were normalised by,

Foinv = MINo40y
Nppinv - eee(8.14)

MAX - HINpinV

pinv

where NF __ is normalised feature,
F_. "™ is not normalised feature,
v iS minimum value of the PINV,
MAJE'PW is maximum value of the PINV,

The patients in each category and their normal control subjects were divided into
two groups in such away that an individual in the first group was age and sex
matched with another individual in the second group. Two files were formed for
each patient category. The first file contained the normalised CNV features of half
the patients from a patient category and their normal control subjects and was used
to train the neural networks. The order of subjects' entry in the training file was
random, ie. a normal subject was randomly followed by either another normal or a.
patient. The second file contained the normalised CNV features of the remaining
patients from that category and their normal control subjects and was used to
evaluate the effectiveness of the neural networks in the test mode. This process

was repeated for the two other patient categories.

A commercially available package called NeuralWorks, was used to implement the
multilayer neural networks. The manual accompanying it provided a
comprehensive explanation of how to use that software [NeuralWorks Manual,
1988]. The structure of the neural networks used is described in section (8.1).
The NeuralWorks package permitted inclusion of up to two hidden layers. The
number of nodes in the input layer was always 17, ie. one node per CNV feature.
As the aim was to distinguish between the patients of a category and normal
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subjects, one output node was sufficient. During the training this node took a
value of 1 to represent normal subjects and O for the patients. The standard
backpropagation method referred to in section (8.1) was used for the learning
algorithm. A heuristic method is generally used to determine the number the nodes
in the hidden layer(s). If sufficient nodes are not included in the hidden layer(s),
the learning process will be hindered. Too many nodes in the hidden layer(s),
however can cause a degradation of the generalisation capability of the neural
network [Bhagat, 1990]. The classification threshold level was 0.5. Therefore if
the outputs of neural networks following training were between 0.5 and 1.0 the
individuals were considered "normal”, and if the outputs were between 0 and 0.5

the individuals were considered "patient®.

The type of the transfer function used was sigmoidal (as shown in Figure (8.2)).
The weights for the connections were initially randomised to lie between -0.1 and
0.1. The NeuralWorks software recommended that the value of ©_ to be 1, the
value of  to be 0.6 and the value of 8 to be 0.9 (see NeuralWorks Manual [1988]
for detail). It was decided to keep these parameters to the recommended values
and change them if it became necessary. A network with 17 units in the input
layer, 10 units in the first hidden layer, 5 units in the second hidden layer and 1
unit in the output layer was set up by follo'wing the instructions in NeuralWorks
manual. The neural network was initially trained on 10 schizophrenic patients and
their normal control subjects and tested the remaining 10 schizophrenic patients
and their normal control subjects. The output of the neural network for each
subject after 3000, 6000, 9000 and 12000 iterations were examined. This indicated
that the neural network performed best (ie. least error) after 12000 iterations. It
was then decided to keep the number of iterations to 12000 and investigate the
effect of changing the number of units in the hidden layer(s). In the case HD
patients and their normal control subjects, as in schizophrenic patients the number
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of iterations was kept to 12000 and the effect of changing the number of units in
the hidden layer(s) was investigated. For PD patients and their normal control
subjects, the outputs of the neural networks after 12000, 20000 and 24000

iteration were analysed.

Tables (8.4)-(8.10) show the outputs of neural networks for the patients and their
normal control subjects for different numbers of units in the hidden layer(s). The
performance of neural networks in differentiating between patients is summarised
in Tables (8.11)-(8.13).
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Table (8.4) Neural Network outputs for schizophrenic patients and their
normal control subjects. Number of units in the hidden layers 20 and
20, and 30 and 20.

Training Test
Network [Subject|Desired|Network |Subject|Desired|Network
Structure |Number Value Output |[Number Value Output
17-20-20-1 1 0 0.00507 21 0 0.00401
2 0 0.00524 22 o 0.00153
3 1 1.00000 23 0 1.00000
4 0 0.0079S 24 0 0.00143
5 1 1.00000 25 0 0.21516
6 0 0.03564 26 0 0.01292
7 1 1.00000 27 o 0.00171
8 0 0.00445 28 0 0.00176
9 (o] 0.00286 29 0 0.00541
10 1 1.00000 30 0 0.00161
11 0 0.00427 31 1 1.00000
12 1 0.97588 32 1 1.00000
13 0 0.00147 33 1 1.00000
14 1 0.99999 34 1 1.00000
15 0 0.00210 35 1 1.00000
16 1 1.00000 36 1 1.00000
17 1 1.00000 37 1 0.99998
18 0 0.00905 k}].} 1 0,.99539
19 1 1.00000 39 1 1.00000
20 1 0.99542 40 1 1.00000
17-30-20-1 1 0 0.00494 21 0 0.00399
2 (o] 0.00509 22 0 0.00183
3 1 1.00000 23 0 1.00000
4 0 0.00717 24 0 0.00173
S b 1.00000 25 0 0.18652
6 0 0.03444 26 0 0.01116
7 1 1.00000 27 0 0.00200
8 0 0.00451 28 0 0.00204
9 0 0.00302 29 o) 0.00543
10 1 1.00000 30 0 0.00190
11 0 0.00439 31 1 1.00000
12 1 0.97847 32 1 1.00000
13 0 0.00177 33 1 1.00000
14 1 0.99999 34 1 1.00000
15 o] 0.00234 35 1 1.00000
16 1 1.00000 36 1 1.00000
17 1 1.00000 37 1 1.00000
18 0 0.00776 as 1 0.99675
19 1 1.00000 39 1 1.00000
20 1 0.99545 40 1 1.00000
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Table (8.5) Neural Network outputs for schizophrenic patients nd their
normal control subjects. Number of units in the hidden 10 and 5, and 8

and 8.
Training Test
Network Subject |Desired|Network |Subject|Desired|Network
Structure |[Number | Value | Output [Number | Value | Output
17-10-5-1 1 0 0.00548 21 0 0.00478
2 o) 0.00566 22 o] 0.00380
3 1 0.99998 | 23 0 0.99994
4 0 0.00886 24 0 0.00375
5 1 0.99997 25 0 0.11894
6 0 0.03153 26 0 0.01130
7 1 0.99999 27 o] 0.00388
8 0 0.00517 28 o 0.00392
9 0 0.00459 29 o} 0.00551
10 1 0.99994 30 0 0.00383
11 0 0.00568 l 1 0.99997
12 1 0.97790 32 1 0.99998
13 0 0.00377 33 1 0.99998
14 1 0.99991 34 1 0.99996
15 0 0.00404 35 1 0.99994
16 1 0.99998 36 1 0.99999
17 1 0.99997 37 1 0.99984
18 0 0.00724 38 1 0.99700
19 1 0.99996 39 1 0.99996
20 1 0.99766 40 1 0.99998
17-8-8-1 1 o 0.00316 21 0 0.00299
2 0 0.00332 22 0 0.00203
3 1 1.00000 23 o 0.99999
4 0 0.00596 24 0 0.001%8
5 1 1.00000 25 0 0.10060
6 0 0.02255 26 o] 0.00694
7 1 1.00000 27 0 0.00207
8 0 0.00291 28 0 0.00210
9 0 0.00254 29 0 0.00329
10 b § 1.00000 30 0 0.00204
11 0 0.00371 1 1 1.00000
12 1 0.98428 32 1l 1.00000
13 0 0.00199 33 1 1.00000
14 1 0.99999 34 1 1.00000
15 o 0.00218 35 1 0.99999
16 1 1.00000 36 1 1.00000
17 1 1.00000 37 1 0.99997
18 0 0.00374 38 1 0.99842
19 1 1.00000 39 1 1.00000
20 1 0.99809 40 1 1,00000
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Table (8.6) Neural Network outputs for schizophrenic patients and their normal
control subjects. Number of units in the hidden layer 50 and 40.

Training Test
Network |Subject|Desired|Network jSubject|Desired|Network
Structure [Number | Value | Output [Number | Value | Output
17-50-1 1 0 0.00191 21 o] 0.00097
2 0 0.00149 22 0 0.00000
3 1l 1.00000 23 0 1.00000
4 o] 0.00354 24 0 0.00000
5 1l 1.00000 25 o] 0.35165
6 o 0.02775 26 0 0.01580
7 1 1.00000 27 (o] 0.00001
8 0 0.00184 28 (o] 0.00001
9 o] 0.00072 29 o] 0.00858
10 1 0.99997 30 0 0.00000
11 o] 0.00180 3l 1 1.00000
12 1 0.97361 32 1 1.00000
13 o] 0.00000 33 1 1.00000
14 1 0.99985 k) 1 1.00000
15 o] 0.00007 3s 1 0.99998
16 1 1.00000 3s 1 1.00000
17 b 1.00000 7 1 0.99994
18 0 0.01163 38 1 0.98862
19 1 1.00000 39 1 1.00000
20 1 0.99050 40 1 1.00000
17-40-1 1 0 0.00197 21 o] 0.00136
2 0 0.00169 22 0 0.00001
3 1 1.00000 23 o] 1.00000
4 0 0.00369 24 o] 0.00000
5 1 1.00000 25 0 0.35503
6 0 0.02903 26 0 0.01541
7 1 1.00000 27 o] 0.00001
8 o 0.00154 28 (o] 0.00002
9 0 0.00064 29 0 0.00939
10 1. 0.99997 30 0 0.00000
11 0 0.00237 Jl 1 1.00000
12 1 0.97303 32 1 1.00000
13 (o] 0.00000 33 1 1.00000
14 b 0.99982 34 1 1.00000
15 0 0.00009 3s 1 0.99998
16 1 1.00000 36 1 1.00000
17 1 1.00000 kb 1 0.99994
18 o] 0.0l1188 38 b 0.98874
19 1 1.00000 39 1 1.00000
20 1 0.99087 40 1 1.00000
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Table (8.7) Neural Network outputs for Parkinson's Disease patients and
their normal control subjects. Number of units in the hidden layers 40

and 60.
Training Test

Network Subject |Desired [Network jSubject|Desired|Network
Structure |Number | Value [Output Number | Value | Output
17-40-1 1 0 0.01831 17 0 0.00073
2 0 0.05613 18 0 0.00131

3 1 0.99984 19 0 0.00162

4 0 0.00016 20 0 0.35689

-3 1 0.96716 21 0 0.00000

6 0 0.00000 22 0 0.00000

7 0 0.04357 23 (o) 0.25433

8 1 0.99950 24 0 0.04962

9 0 0.01580 25 1 1.00000

10 1 1.00000 26 1l 1.00000

11 ) 0.00010 27 1 0.99919

12 1 0.97249 28 1 0.99999

13 1 0.97540 29 1 1.00000

14 0 0.00016 30 1 1.00000

15 1 0.97204 k) 1 0.09948

16 1 1.00000 32 1 1.00000

17-60-1 1 0 0.07926 17 o 0.05851
2 0 0.61806 18 0 0.27015

3 1 0.99962 19 0 0.08742

4 0 0.17059 20 0 0.61578

5 1 0.96600 21 0 0.00001

6 o] 0.00018 22 0 0.00041

? 0 0.47536 23 o 0.65008

8 1 0.99673 24 0 0.02517

9 o 0.53862 24 1 1.00000

10 1 1.00000 26 b 0.99999

11 0 0.05447 27 1 0.99881

12 1 0.96628 28 1 0.99991

13 1 0.94782 29 b 1.00000

14 0 0.03650 30 1 1.00000

15 b 0.97175 kb 1 0.62900

16 1 0.99992 32 b} 0.99997
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Table (8.8) Neural Network outputs for Parkinson's Disease patients and
their normal control subjects. Number of units in the hidden layers 20 and 20,
25 and 2S.

Training Test
Network |Subject|Desired|Network ]Subject|Desired|Network
Structure |Number | Value | Output [Number | Value | Output
17-20-20-1 1 0 0.00250 17 0 0.00241
2 0 1.00000 18 0 0.00134
3 1l 1.00000 19 0 0.95752
4 0 0.00234 20 0 0.12137
5 1 1.,00000 21 0 0.00066
6 0 0.00067 22 0 0.00085
7 0 0.005908 23 0 1.00000
8 b 0.99997 24 (o] 0.00224
9 0 0.02473 25 1 1.00000
10 1 1.00000 26 1 1.00000
11 0 0.00070 27 1 1.00000
12 1 0.99919 28 b 1.00000
13 1 0.98142 29 1l 0.99983
14 0 0.00070 30 1 1.00000
15 1 0.99983 31 1 1.00000
16 1l 0.99957 | 32 1 1.00000
17-25-25-1 1 0 0.00634 17 0 0.00413
2 0 1.00000 18 0 0.00292
3 1 1.00000 19 0 0.87640
4 0 0.00455 20 0 0.31919
5 1 1.00000 21 0 0.00157
6 0 0.00159 22 0 0.00201
? 0 0.008838 23 o] 1.00000
8 1 0.99995 24 o) 0.00755
-9 0 0.03521 25 1 1.00000
10 1 1.00000 26 1 1.00000
11 0 0.00165 27 1 1.00000
12 1 0.99820 28 1 1.00000
13 b 0.97569 29 1 0.99993
14 0 0.00164 30 1 1.00000
15 1 0.99940 k) 1 1.00000
16 1 0.99929 32 1 1.00000
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Table (8.9) Neural Network outputs for Parkinson's Disease patients and
their normal control subjects. Number of units in the hidden layers 10 and 10,
and 20 and 10.

Training Test
Network Subject [Desired |Network |Subject|Desired|Network
Structure |{Number Value |Output Number Value Output
17-10-10-1 1 o 0.00592 17 0o 0.00475
2 0 0.99997 18 0] 0.00343
3 1 1.00000 19 0 0.90638
4 o 0.00485 20 o] 0.23380
5 1 0.99995 21 o} 0.0025S
6 0 0.00256 22 0 0.00281
7 o 0.01132 23 0 0.99999
8 1 0.99985 24 o} 0.00566
9 o 0.03728 25 1 1.00000
10 1 1.00000 26 1 0.99999
11 0 0.00260 27 1 1.00000
12 1 0.99862 28 1 1.00000
13 1 0.97329 29 1 0.99972
14 (o] 0.00260 30 1 1.00000
15 1 0.99945 31 1 1.00000
16 1 0.99928 32 1 1.00000
17-20-10-1 1 0 0.00716 17 0 0.00492
2 0 0.99999 18 o] 0.00345
3 1 1.00000 19 (o] 0.91211
4 o 0.00579 20 (o] 0.20454
5 1 0.99996 21 o 0.00243
6 o} 0.00244 22 o} 0.00273
7 (o) 0.01216 23 (o} 1.00000
8 1 0.99983 24 (o] 0.00538
9 0 0.03823 25 1 1.00000
10 1 1.00000 26 1 1.00000
11 o 0.00249 27 1 1.00000
12 1 0.99887 28 1 1.00000
13 1 0.97313 29 1 0.99926
14 0- 0.00248 30 1 1.00000
15 1 0.99961 al 1 1.00000
16 1 0.99885 32 1 1.00000
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Table (8.10) Neural Network outputs for Huntington's Disease patients and
their normal control subjects. Number of units in the hidden layers 20 and 20,
25 and 25, and 10 and 10.

Training Test
Network Subject |Desired |Network JSubject|Desired|Network
Structure |Number Value Output JINumber Value Output
17-20-20-1 1 (o] 0.01732 13 0 0.05641
2 1 0.99886 14 o 0.24174
3 o} 0.00168 15 0 0.00088
4 1 0.98986 16 0 0.24912
5 o 0.01301 17 (o] 0.22759
6 0 0.00133 18 1 1.00000
7 1 0.98934 19 1 0.79412
8 0 0.00358 20 1l 0.99975
9 1 0.99968 21 1 0.99950
10 1 0.99164 22 1 0.99899
11 0 0.00481
12 1l 0.99969
17-25-25-1 1 0 0.01725 13 0 0.05661
2 1 0.99898 14 0 0.25233
3 0 0.00162 15 0 0.00078
4 1 0.98987 16 0 0.26518
S 0 0.01302 17 0 0.22297
6 0 0.00122 17 1 1.00000
7 1 0.98959 19 1 0.76972
8 0 0.00343 20 1 0.99979
9 1 0.99971 21 1 0.99957
10 1 0.99191 22 1 0.99902
11 0 0.00455
12 1 0.99972
17-10-10-1 1 o] 0.01625 13 0 0.05088
2 1 0.99875 14 0 0.23384
3 o} 0.00231 15 0 0.00155
4 1 0.99085 16 0 0.24379
s 0 0.01245 17 0 0.21647
6 o 0.00197 18 1 0.99999
7 1 0.99057 19 1 0.81479
8 0 0.00400 20 1 0.99968
9 1 0.99960 21 1 0.99939
10 1 0.99256 22 1 0.99897
11 0 0.00512
12 1 0.99961
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Table (8.11) Summary of patients' differentiation success rate for
schizophrenic patients and their normal control subjects.

Number Of Training Mode Test Mode Number Of
Units Iterations
' Patients|Controls|Patients|Controls

17-20-20-1| 100% 100% 90% 100% 12000
17-30-20-1| 100% 100% 90% 100% 12000
17-50-1 1008 100% 90% 100 12000
17-10-5-1 100% 100% 90% 100% 12000
17-8-8-1 100% 100% 90% 1008 12000
17-40-1 100% 100% 908 100% 12000

Table (8.12) Summary of patients' differentiation success rate for
Parkinson's disease patients and their normal control subjects.

Number Of Training Mode Test Mode Number Of
Units Iterations
Patients|Controls|Patients|Controls
17-20-20-1] 87.5% 100% 75% 100% 20000
17-25-25-1| 87.5% 100% 75% 100% 12000
17-10-10-1| 87.5% 100% 5% 100% 12000
17-20-10-1| 87.5% 100% 75% 100% 12000
17-40-1 100% 100% 100% 87.5% 24000
17-60~-1 75% 100% 75% 100% 12000
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Table (8.13) Summary of patients’ differentiation success rate for
Huntington's disease patients and their normal control subjects.

Number Of Training Mode Test Mode Number Of
Units Iterations
Patients|Controls|Patients|Controls
17-20-20-1 100% 100% 100% 1008 12000
17-25-25-1 1008 1008 100s 100% 12000
17-10-10-1 100% 1008 100% 100% 12000

8.4 Discussion

The success rate for the differentiation between HD patients and their normal
control subjects was 100% in both the training and test modes. The alteration of

the number of units in the hidden layers did not affect the success rates.

In the case of schizophrenic patients and their normal control subjects, one patient
was falsely classified as normal. All the normal subjects were classified correctly.
The alteration of number of units in the hidden layer(s) did not affect the success |
rates. In this branch of medicine the misclassification of a patient as normal is
known as a "false-negative". In medical term the false-negative diagnosis is less
serious than a "false-positive” diagnosis (ie. misclassification of a normal subject

as patient) [Allen, 1989].

For PD patients and their normal control subjects, when the number of units in the
hidden layer was 40, one normal subject was misclassified in the test mode but all
the patients were classified correctly both in the training and test modes.

The alteration of number of units did not affect the success rates of identifying the
patients because in each case a sufficient number of units were included in the

neural networks.
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8.5 Conclusion

The results indicated the particular time domain method of CNV feature extraction
used in this chapter was effective in representing the CNV waveforms, and the
application of neural networks was successful in identifying the schizophrenic,
Parkinson's disease and Huntington's disease patients. The high success rates
achieved were also due to the use of an evoked-potential (ie. the CNV) which was
thought to be affected by the diseases under investigation.
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Chapter 9 Presymptomatic Detection of Huntington's Disease and
Identification of Schizophrenic, PD and HD Patients by Applying Principal
component Analysis and Cluster Analysis to the CNV

The methods described in chapters 7 and 8 to identify patients required a prior
knowledge about the category of some of the patients. This enabled the methods to
be trained on known patients and their normal control subjects. Then the
classifiers used the information gained during the training together with the
necessary CNV variables to identify test (unknown) patients. Some patients who
are "at-risk" (AR) of HD may wish to know whether they will develop HD. This
could help them to decide whether they should have children (a person diagnosed
as HD gene carrier can pass on the faulty gene to his/her children). The methods
described in chapters 7 and 8 could not be employed for presymptomatical
detection of HD. This was because in order to form a classification (calibration)
rule, they required the variables from the AR of HD patients who could be
confirmed as the HD gene carriers (ie. the AR of HD patients who would chelOp
HD). As this knowledge could not be obtained due to the difficulties associated
with genetic testing and the unwillingness of many of the AR of HD patient to
undergo it, it was decided to consider an alternative technique which did not

require prior information about the patients (ie. an unsupervised learning).

The application of principal component analysis (PCA) and cluster analysis to the
CNYV waveforms of the schizophrenic, Parkinson's disease (PD) and Huntington's
disease (HD) patients in order to evaluate their effectiveness in identifying the
patients is described. These techniques were also applied to the CNV waveforms
of the AR of HD patients with the aim of presymptomatically detecting HD. The
CNV amplitudes of the AR of HD patients were also analysed using t-tests.

Cluster analysis is an unsupervised pattern recognition tool which could be used to

discover possible associations and structure in the data. Diday and Simon [1976],
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Everitt [1981] and Devijver [1982] have provided a review of clustering.
Generally, the technique attempts to group the elements in such a way that there
are high associations among the elements within a cluster, while different clusters
are relatively distinct from each other ie. it aims at maximising the between-

cluster variation relative to the within- cluster variation (see Figure (9.1)).

Before applying cluster analysis, a PCA of the discriminatory variables (ie. the
CNYV features) was carried out. This was necessary as otherwise a large number of
clusters would have resulted making the interpretation of the results complicated.
PCA transformed the variables in such a manner that the transformed variables (or
the principal components) were linear combinations of the original variables. The
successive linear combinations were uncorrelated with each other and accounted
for successively smaller amounts of the total variation. PCA is described in more

detail in section 9.1.

9.1 The Theory of Principal Component Analysis

The correlation matrix of the variables forms the starting point of a method for
obtaining the principal components. If there are n individuals, and p variables
(features) are obtained from the CNV response of each individual, the nxp data
matrix can be represented by,

xll xlz L xlp
le xzz ss e xzp

xn1 xn2 xnp

where X represents the value of variable j obtained from individual i. The
method of calculating the correlation matrix (R) is described in Appendix (E).
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Cluster 1 Cluster J

Cluster k

Centre of a cluster
Element within a cluster
— — Between-Cluster variation

Within-cluster variation

Figure 9.1 Representation of between - and within-
cluster variation.
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The procedure for computing the principal components using the correlation

matrix is as follows.
i) The eigenvalues (ie. €, ... € P) of the correlation matrix are obtained by solving,
IR-.II -o 000(901)

where I is a matrix whose entries along the main diagonal are 1 and whose non-

diagonal elements are 0 (ie. the unit matrix).

ii) The eigenvalues are then used in (9.2). For each eigenvalue (¢) a

corresponding eigenvector () is obtained.
(R - Cix)a‘ = 0 ...(9.2)
iii) The eigenvector corresponding to the largest eigenvalue (ie. e,) is used to

generate the first principal component (Y,) for each individual. If o', (note, the
symbol' indicates transpose) is,

then, Y, can be obtained by,

iv) The eigenvector corresponding to the next largest eigenvalue is used to
generate the second principal component for each individual. This is repeated until

all p principal components are generated.
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The sum of the eigenvalues is equal to p (ie. the number of variables). The total
variance of the variables provided by i principal component is indicated by e/p,

where ¢, is the i eigenvalue.

Mardia et al. [1979] and Morrison [1976] have provided a detailed analysis of
PCA.

9.2 Theoretical Analysis of Clustering

Cluster analysis has been valuable in several applications in the medical field.
Kendell [1968] applied clustering procedures to some depressive mental patients in
order to examine the nature of depression. Jansen [1979] divided the EEG into
segments and used a hierarchical clustering approach to group EEG segments of a
number of types. A clustering algorithm has been incorporated in a computer
system to aid clinicians in the interpretation of cranial magnetic-response images
[Herskovits, 1990]. Farmer et al. [1983] used clustering methods to investigate
whether schizophrenia is a heterogeneous condition. Morrison et al. [1990] used a
hierarchical cluster analysis method in order to investigate positive and negative

symptoms in schizophrenia.

There are numerous clustering methods. Gordon [1981] groups them into four
types: partitioning methods, hierarchical methods, clumping methods and
geometrical methods. Generally, a clustering method has some distinct
characteristics which determine its applications. The main factors distinguishing
the clustering methods are the parameters used to measure the distance between
the elements and the algorithms applied to the distance measures to obtain the
clusters [Cormack, 1971]. The hierarchical methods have been dominant in terms
of their applications and the frequency of use [Blashfield and Aldenderfer, 1978].
A widely used hierarchical clustering method is Ward's method [Mojena, 1977]
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[Bayne et al., 1980] and it was the method selected.

Ward [1963] proposed that the loss of information which resulted from clustering
of elements could be measured by the within sum of square deviations of every
point from the mean of the cluster it belonged. At each stage of the process, the
fusion of every possible pair of existing clusters is considered and their respective
within sum of square deviations (w) are calculated. The pair whose fusion results

in the minimum increase in the w possible at that stage is selected and combined.

Consider a sample of n individuals to be partitioned into g groups. Then the value
of w for the g-group partition is [Anderberg, 1973],

i=g 3=ny - 3
ws=3 b (xlj - ‘1) 000(9.‘)
i=] =1

Where n, is the number of elements in the i* group, %, is the mean of the variables

in the i group and x, is the j* variable in the i* group.

Ward's method‘ can efficiently be implemented by an algorithm described by
Wishart [1969]. This algorithm is based on a stored matrix of squared Euclidean
distances between the centroids of the clusters. Let d; be the squared Euclidean
distance between the centroids of clusters i and j ie.
- 2

dgy .131 (xg) = x4y) cee(9.5)
where x, is the I* variable on the i* element, x, is the 1* variable on the j*
element and n is the number of elements. Then the distance between the fused
clusters i and j, and a new cluster k has been shown to be [Anderberg, 1973)
[Gordon, 1981],
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1

k(1,9) puy k01094 x*Py)diy = mydyy

where n,, n, and n,_ are the number of elements in the clusters i, j and k
respectively, d;, d,; and dii are the squared Euclidean distances between the
clusters k and i, k and j, and i and j respectively.

The steps to implement the above recursive algorithm can be summarised as:

i) Obtain the squared Euclidean distance matrix for each pair of elements in the
data set using the formula (9.5).

ii) Amalgamate (fuse) the two elements with smallest value of squared Euclidean
distance.

iii) Recalculate the distances between the new cluster and every other cluster
(initially other clusters contain only one element) using the formula (9.6). Fuse
the two clusters with smallest value of dyq »Orf d“.

iv) Repeat step (iii) until all elements are finally within one cluster.

9.3 Experimental Procedure

Seventeen variables (features) were extracted from the preprocessed averaged
(over 8 CNYV trials) CNV waveform from each individual. The method was
described in chapter 8. The details related to the age, sex, medication and the
number of patients and their normal control subjects were given in chapter 8,
Tables (8.1)-(8.3).

PCA was implemented using the SAS [1985] procedure, Princomp. For each
patient category a program was written in the format described in SAS [1985]. In
the programs the procedure Princomp was invoked. The method generated

208



seventeen principal components (the number of principal components were equal
to the number of original variables), sorted by descending order of eigenvalues
which were equal to total variance for the variables representing each subject
category. Generally, the first few principal components account for most of the
total variance of the variables. In order to determine how many components
should be retained the eigenvalues of the principal components may be considered
[SAS, 1985]. Table (9.1) shows the eigenvalues of the seventeen principal

components for each subject category.
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Table (9.1) The eigenvalues for schizophrenic (sch.),
Parkinson's disease (PD), Huntington's disease (HD) and
at-risk (AR) of HD patients and their normal control

subjects.

Principal Eigenvalue

Component

Number Sch. PD HD AR OF HD
1 13,9620 | 13.7598 | 14.1895 13.5663
2 1.1098 1.3174 1.0647 1.2998
3 0.8683 0.7656 0.9269 0.7361
4 0.2773 0.4635 0.5650 0.4653
L3 0.2462 0.2633 0.1122 0.3774
6 0.2132 0.1701 0.0932 0.2154
7 0.1388 0.1145 0.0283 0.2014
8 0.0666 0.0945 0.0121 0.0687
9 0.0567 0.0305 0.0040 0.0376
10 0.0499 0.0100 0.0022 0.0192
11 0.0091 0.0073 0.0017 0.0099
12 0.0017 0.0030 0.0001 0.0021
13 0.0005 0.0003 0.0000 0.0006
14 0.0000 0.0001 0.0000 0.0001
15 0.0000 0.0000 0.0000 0.0000
16 0.0000 0.0000 0.0000 0.0000
17 0.0000 0.0000 0.0000 0.0000

As can be seen from the Table (9.1), the first principal component accounted for
82.13% (ie. 13.9620 x 17/100), 80.94% (ie. 13.7598 x 17/100), 83.47% (ie.
14,1895 x 17/1‘00) and 79.80% (ie. 13.5663 x 17/100) of total variance for
schizophrenic, PD, HD and AR of HD patients respectively. Tables (9.2)-(9.5)
provide a list of the first three principal components for the patients and their

normal control subjects.
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Table (9.2) The first three principal components for the
schizophrenic patients and their normal control subjects.

Schizophrenic Patients

Normal Control Subjects

No.
Prinl Prin2 Prin3 Prinl Prin2 Prinl
b 3.1439 0.6188 -0.0166 -6.4906 0.8738 -0.5572
2 0.7587 1.4672 2.0356 -1.4385 -1.3162 0.1802
3 4.9198 -0.6122 -0.4076 0.2079 1.2097 -1.1990
4 4.0882 2.0208 2.5334 -1.4772 0.7222 -1.3836
[ 4.6672 ~1.6697 0.5902 -2.3331 0.6742 -0.3407
6 1.2497 -0.7707 1.2813 -1.3937 0.3666 -1.1251
7 =0.7849 -1.4605 0.4416 -1.0188 =-0.1795 -0.4162
8 6.1618 -1.7724 -0.1197 -5.9887 -0.3671 0.6989
9 3.6784 -0.7551 0.1089 -2,4373 -0.8361 0.3666
10 3.0878 -0.8129 0.2222 -9.4948 =0.2699 1.8302
11 4.8197 0.5211 0.0771 -2.2191 -1.0371 0.1824
12 1.4378 -1.5897 0.64131 1.2139 0.4149 -0.4228
13 2.9294 -0.6146 -0.5826 -4,.5109 0.3544 -0.7263
14 2.5190 =-0.8141 -0.6021 -3.9725 -0.4772 -0.3424
15 $.6023 -0.1583 -1.0533 -1.4803 0.1963 -0.9400
16 2.7751 1.6170 1.9050 -0.4616 0.6249 -1.5605
17 -2.5536 =1.8421 0.2197 -3.5131 0.4028 0.0318
18 1.7452 2.1328 -0.3339 -2.8858 0.8438 -0.8836
19 2.7525 1.5865 -0.1293 -6.2068 -0.1333 0.5708
20 4.3294 0.7192 -0.2525 -1.4234 0.1220 -0.5212
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Table (9.3) The first three principal components for Parkinson's
disease patients and their normal control subjects.

Parkinson's Disease Patients Normal Control Subjects

Prinl Prin2 Prin3 Prinl Prin2 Prinl
1 -2.7164 2.5151 0.2937 1.3655 | -0.2754 -0.8598
2 0.8067 | -0.7438 | ~0.3671 -3.1420 | ~-1.7281 0.7468
3 -0.0722 -0.4517 0.4310 | -6.0761 | -0.0114 ~0.6934
4 2.1997 -1.5230 | -0.1309 -2.1241 | =-2.2266 0.8024
S 3.0660 1.2585 1.2932 -8.3803 | -0.6864 1.1519
6 4.4560 | -1.6549 1.0678 | -2.0374 0.9020 | -1.6084
7 3.4589 1.1835 0.0726 | -2.0067 | -0.0918 | -1.0734
8 6.0574 0.0489 0.3626 -0.3864 | -1.1807 0.0948
9 7.3420 0.3296 0.2573 1.3715 0.1183 -0.0292
10 | -3.2442 1.8487 1.7611 -2.0955 | -0.1580 | -0.8437
11 5.0973 0.9983 0.3616 ~3.9974 1.1033 -0.1555
12 -3.7084 1.6599 0.8432 -1.1847 0.6524 | -1.3280
13 1.3913 -0.5667 | -0.2010 3.3615 0.5128 | -1.7409
14 1.4412 1.2461 0.6644 -5.4337 | -1.1489 -0.0911
1s 5.4170 | -0.8926 | -0.0752 ~0.7781 0.1823 -1.5936
16 1.0778 0.1017 0.5330 -0.5262 -1.3214 0.0537

Table (9.4) The first three principal components for the Huntington's
disease patients and their normal control subjects.

Huntington's Disease Patlents Normal Control Subjects
No.

Prinl Prin2 Prinl Prinl Prin2 Prin3
1 1.8409 3.2200 1.0080 | -2.6636 | -0.0471 0.2307
2 | -0.1936 0.7218 | =-3.5513 | ~1.8322 | -0.3416 | -0.0947
3 0.8721 0.3163 0.1501 | -5.9894 0.4334 0.0688
4 5.6909 0.5613 | -1.4752 | -2.1769 | -0.0879 | -0,2552
5 3.9022 | -0.0143 | ~0.3494 | -2.4530 | -0.9007 0.5138
6 | -1.1992 1.4641 0.6457 | -3.1980 0.0693 0.1848
7 | -0.7307 1.1075 0.7348 0.5472 | -1.5773 0.2049
8 1.6552 | -0.0176 0.2118 | -2.6332 | -0.8075 0.3585
9 11.3673 | -0.6912 1.2257 § =-3.4531 | -0.4984 | -0,0259
10 4.1069 | -1.1885 | ~0.4527 | -1.6673 | -0.3585 0.3977
11 0.6091 | =-0.3524 0.0571 | -2.4017 | -1.0107 0.2119
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Table (9.5) The first three principal components for the
at-risk of Huntington's disease patients and their normal control

subjects.
AR OF HD Patients Normal Control Subjects
No.
Prinl Prin2 Prinl Prinl Prin2 Prin3
1 | -2.1980 | -0.8940 | =1.1799 ] -1.2639 0.4959 0.5352
2 | -7.1123 | -1.0787 0.6781 | ~-8.3460 1.8752 | -0.1492
3 | -0.7756 0.6503 2.1144 | -5.2044 | -0.5877 | -0.4017
4 6.4037 0.0179 | -0.0847 | -1.8097 | -0.4033 | -0.2940
5 5.1512 | -0.2440 | -0.9720 2.3617 | -1.7546 0.6369
6 0.5698 | -1.2822 | -0.3554 | -3.5237 | -0.0830 | -0.7131
7 3.0356 | -0.3529 | -0.9810 1.1724 | -1.0623 0.0683
8 0.9374 0.3776 1.2092 0.2625 0.4508 -0.9820
9 4.4420 1.1833 0.5425 | -2.4105 | -1.1313 0.6714

10 1.0391 1.3914 | -0.7114 -0.6818 | ~0.6648 | -0.3197
11 6.4191 0.3081 0.0889 -4.4313 0.5522 -0.1051
12 4.2718 1.8809 0.0625 1.1811 | -0.2544 0.2640
13 1.3321 | -1.3167 0.5414 -0.5195 -1.3738 | -0.0871
14 | -1.0447 0.2922 0.4182 2.4911 | -0.0127 -0.9429
15 =3.4573 0.4005 | -0.5521 3.1268 | ~0.9514 1.8443
16 3.4998 2.1746 0.4779 -4.4050 2.6182 1.5008
17 3.0911 2.3037 0.5568 | -4.7351 | ~-1.1590 0.2320
18 | -2.3812 1.8358 | =2.2575 1.7342 =0.3975 | ~0.5955
19 4.4145 | -0.9284 | =-0.7160 | -4.1468 0.5132 -0.9314
20 5.4499 | -0.3876 | ~0.6534 1.2640 | =-1.2993 0.4317
21 | -4.6896 | -1.1961 0.059S -0.5146 | -0.5061 1.0508

It was decided first to investigate the use of the first principal component in the
cluster analysis as it accounted for about 80% of the total variance for all four
subject categories (ie. schizophrenia, PD, HD and AR of HD). Each of the
remaining principal components accounted for less than 8% of the total variance.
The effects of the second and third principal components were also examined.
They did not improve the analysis result. Therefore the first principal component

was the only component retained.

A clustering computer package program called Clustan [Wishart, 1987) [Using
Clustan under VM/CMS, 1987] was available. Ward's clustering method was
implemented by using a Clustan procedure called Cluster. For each patient

category a program was written in accordance with the Clustan instructions. The
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listings of these programs are shown in Appendix (F). In each program the
procedure Cluster was invoked. The execution of each program ﬁroduced a tree-
diagram called the "dendrogram®. The subjects' identifiers were printed at the end
of the branches and the fusion coefficients as indicated by the formulae (9.5) and

(9.6) were shown on the sides of the dendrograms.

9.4 Results and Discussion

9.4.1 Schizophrenia

The dendrogram for the schizophrenic patients and their normal control subjects is
shown in Figure (9.2). The schizophrenic patients were labelled 1 to 20 and their
normal control as 21 to 40. Two main clusters, C, and C, were identified
corresponding to the fusion coefficient of 0.440. The cluster C, contained 18
schizophrenic patients and 2 normal subjects. The cluster C, contained 18 normal

subjects and 2 schizophrenic patients.

9.4.2 Parkinson's Disease

The dendrogram for the PD patients (labelled as 1-16) and their normal control
subjects (labelled 17-32) is shown in Figure (9.3). Two main clusters, C, and C,
were identified corresponding the fusion coefficient of 0.326. C, contained 13
normal subjects and 4 PD patients and C, contained 12 PD patients and 3 normal

subjects.

9.4.3 Huntington's Disease

The dendrogram for the HD patients (labelled as 1 to 11) and their normal control
subjects as (12 to 22) is shown in Figure (9.4). Three clusters C,, C, and C; were
identified corresponding to the fusion coefficient of 0.131. The clusters C,and C,
contained all the HD patients. The normal subjects, with the exception of subject

18 were included in cluster C,.
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9.4.4 At-risk of Huntington's Disease

The dendrogram for the AR of HD patients is shown in Figure (9.5). The AR of
HD patients were labelled as 1 to 21 and their normal control subjects were
labelled as 22 to 42. Four clusters C,» C,, C;and C, were identified
corresponding to the fusion coefficient of 0.145. Seven AR of HD patients were in
C,. The other clusters contained a mixture of AR of HD patients and normal
subjects. Therefore it was concluded that the 7 AR of HD patients in cluster C,
had CNV responses which were significantly different from the CNV responses of
normal subjects and the remaining AR of HD patients. The AR of HD patients in
cluster C, were labelled as abnormal AR of HD patients, the remaining AR of HD
patients were labelled as normal AR of HD patients.

9.5 CNV Amplitude Analysis of the At-Risk of Huntington's Disease Patients
The CNV amplitudes of the AR of HD patients and their normal control subjects
were analysed using a two tailed t-test in order to determine whether the results
would agree with the principal component analysis and cluster analysis findings.
In order to reduce the effect of the background EEG, the CNV amplitude is
generally expressed as a mean value of the samples from a section prior to the
imperative-stimulus [McCallum and Walter, 1968]. Therefore, the CNV
amplitudes were obtained from preprocessed averaged (over 8 trials) CNV
waveforms by averaging 16 samples values prior to the imperative stimulus. The

listing of the program used to obtain the CNV amplitude is given in Appendix (G).

As the data used in a t-test analysis should have a normal distribution [Kennedy
and Neville, 1986}, the variables were initially examined for statistical
distribution using the SAS [1985] Univariate procedure. If they did not have a
normal distribution, they were transformed using the function f(x)= -1/x. This
function is effective when there are a number of variables with values much larger

than the group's mean [Bland, 1987].
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The CNV amplitudes of the AR of HD patients were compared with the CNV

amplitudes of their normal control subjects (refer to Table (9.6)).

Table (9.6) The CNV amplitude analysis of the AR of HD
patients and their normal control subjects.

Category Number| Mean Number |[Mean CNV | T-Test
Age (STD)|On DrugiAmplitude| Result
at-risk of 21 36.43 2 =13.21uV | p<0.01
HD patients (17.12)
df=40
normal control 21 37.57 0 -18.53uv
subjects (10.22)

It was found their amplitudes were significantly different from the CNV

amplitudes of the normal subjects (p <0.01, df=40).
The mean CNV amplitudes of the normal and abnormal of AR of HD patient

group and those of their normal control subjects are shown in Table (9.7) and

their t-test analysis results are shown in Table (9.8).
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Table (9.7) The mean CNV amplitudes of the normal and
abnormal AR of HD patient groups and those of their normal
control groups.

Mean Age|Number |Mean CNV
Category Number| (STD) On Drug|Amplitude
(STD)
AR abnormal 7 41.6 b -6.23uV
of (13.0) (1.15)
HD
normal 14 33.9 1 -16.70uV
patients (18.8) (5.57)
normal for the 40.3 «18.16uV
abnormal AR of 7 (10.0) 0 (3.73)
control |HD patients
subjects|for the normal 36.2 =18.71uVv
AR of HD 14 (10.5) o (5.07)
patients

Table (9.8) The CNV amplitude analysis results of

the normal and abnormal AR of HD patients.

Category T-Test Degrees
Result Of Preedom
abnormal AR of HD versus p<0.001 12
normal c¢ontrols
normal AR of HD versus p=0.328 26
normal controls
abnormal AR of HD versus| p<0.001 19
normal AR of HD

The mean CNV amplitude of the abnormal AR of HD patient group was less than
the mean CNV amplitude of their normal control group. It was also less than the
mean CNV amplitude of the normal AR of HD patient group. T-test analysis
indicated that the differences between the CNV amplitudes of the abnormal AR of
HD patients and their normal control subjects were significant at 1% level,

df =12 (refer to Table (9.8)). The differences between the CNV amplitudes of the
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abnormal and normal AR of HD patients were also significant (p <0.001, df=19).
The difference between the mean CNV amplitude of the normal AR of HD patient
group and their normal control group was not significant. Therefore, the results
of the CNV amplitude analysis were in agreement with the principal component
analysis and cluster analysis findings.

As the HD patients have abnormal CNV waveforms [Jervis et al., 1984] [Jervis et
el., 1989] and considering the above results it might be possible to suggest that
the 7 abnormal AR of HD patients would develop HD.

9.6 Conclusion

It was possible to identify the majority of schizophrenic, PD and HD patients by
applying principal component analysis and cluster analysis to the CNV
waveforms. The application of the method to 21 AR of HD patients resulted in the
identification of 7 abnormal AR of HD patients. The CNV analysis indicated that
the CNV amplitude in the 7 abnormal AR of HD patients was significantly

different from that in normal control subjects.
The effectiveness of this method in presymptomatically detecting HD patients will

have to be further evaluated to establish the sensitivity and the reliability of the
method.

222



References
Anderberg, M.R., (1973), "Cluster analysis for applications”, Academic Press,
42-44 and 142-145.

Bayne, R., Beauchamp, J., Begovich, C. and Kane, V., (1980), "Monte Carlo
comparisons of selected clustering procedures®, Pattern Recognition, 12:51-62.

Bland, M., (1987), "An introduction to medical statistics", Oxford University
Press, 175-179.

Blashfield, R.K. and Aldenderfer, M., (1978), "The literature on cluster
analysis”, Multivariate behavioral research, 13:271-295.

Cormack, R.M., (1971), "A review of classification (with discussion)”, J. R.
Statist. Soc., A 134:321-367.

Devijver, P.A., (1982), "Pattern recognition: A statistical approach®, Prentice
Hall International, 382-421.

Diday, E. and Simon, J.C., (1976), "Cluster analysis®, In Fu, K.S. (Ed.),
*Digital pattern recognition®, Springer-Verlag, 47-94.

Everitt, B., (1981), "Cluster analysis®, Heinemann Educational Books, 1-58.

Farmer, A.E., McGuffin, P. and Spitznagel, E.L., (1983), "Heterogeneity in
schizophrenia: a cluster-analytic approach®, Psychiatry Research, 8:1-12,

Gordon, A.D., (1981), "Classification®, Chapman and Hall, 1-53.

223



Herskovits, E., (1990), "Hybrid classifier for automated radiologic diagnosis.
Preliminary results and clinical applications®, Computer Methods and Programs in
Biomedicine, Vol.32, No.1, 45-52.

Jansen, B.H., (1979), "EEG segmentation and classification*, Thesis, Free
University, Amsterdam.

Jervis, B.W.,, Allen, E., Johnson, T.E., Nichols, M.J. and Hudson, N.R., (1984),
*The application of pattern recognition techniques to the contingent negative
variation for the differentiation of subject categories®, IEEE Transaction on

Biomedical Engineering, Vol. BME-31, No.4, 342-348,

Jervis, B.W., Coelho, M. and Morgan, G.W., (1989), "Spectral analysis of EEG
responses”, Medical and Biological Engineering and Computing, 27:230-238.

Kendell, R.E., (1968), "The classification of depressive illnesses®, London:
Oxford University Press.

Kennedy, J.B. and Neville, A.M., (1986), “Basic statistical methods for engineers
and scientists", Third edition, Harper and Row, Publishers, New York, 310-314.

Mardia, K.V., Kent, J.T. and Bibby, J.M., (1979), "Multivariate analysis",
London: Academic Press.

McCallum, W.C. and Walter, W.G., (1968), "The effects of attention and

distraction on the contingent negative variation in normal and neurotic subjects”,

Electroencephalography and Clinical Neurophysiology, 25:319-329.

224



Mojena, R., (1977), "Hierarchical grouping methods and stopping rules: an
evaluation", Computer Journal, 20:359-363.

Morrison, D.F., (1976), "Multivariate statistical methods®, Second Edition,
McGraw-Hill.

Morrison, R.L., Bellack, A.S., Wixted, J.T. and Mueser, K.T., (1990), "Positive
and negative symptoms in schizophrenia: a cluster-analytic approach”, The Journal

of Nervous and Mental Disease, Vol.178, No.6, 377-384.

SAS, (1985), "SAS user's guide: statistics", Version 5 Edition, SAS institute Inc.,
USA.

Using Clustan under VM/CMS, (1987), Sheffield City Polytechnic Computer
Services, Document Number V6/3.35.

Ward, J.H., (1963), "Hierarchical grouping to optimise an objective function®,
American Statistical Association journal, 58:236-244.

Wishart, D., (1969), "An algorithm for hierarchical classifications”, Biometrika,
Vol.22, No.1, 165-170.

Wishart, D., (1987), "Clustan user manual®, Computing Laboratory, University
of St. Andrews, 16 Kingsburgh Road, Murrayfield, Edinburgh EH12 6DZ, UK.

225



Chapter 10 Reaction Times Analysis of Schizophrenic, Parkinson's Disease,
Huntington's Disease and At-Risk of Huntington's Disease Patients

Reaction time represents the ability of a subject to respond to a stimulus. This
process may be affected by brain structural abnormalities caused by disorders such
as schizophrenia, PD and HD. For example, Yokochi et al. [1985] reported the
prolongation of reaction times in PD patients. The prolongation of reaction times
in PD patients has been attributed to the changes in the functional loops of the
basal ganglia related to motor behaviour [DeLong et al., 1983].

Reaction time may also represent the efficiency of a subject in processing
information. Baribeau-Braun et al. [1983] analysed the reaction times of
schizophrenic patients in an experiment involving the detection of an occasional
target tone among frequent standard tones. They reported that the reaction times of
the schizophrenic patients were longer than the reaction times of their normal
control subjects. In the same study it was suggested that the prolongation of
reaction times of schizophrenic patients might be due to the inefficiency of the

schizophrenic patients in organising and processing information.

Some studies have indicated that there may be a relationship between CNV
magnitude and reaction time value. A review some of these findings was
provided by Tecce [1972]. The general view has been that reaction time tends to
be shorter following a CNV with large amplitude and longer following a low
amplitude CNV.

During the data recording, the reaction times of each subject to 32 stimuli were
measured. In this chapter the reaction times of schizophrenic, PD, HD and AR of
HD patients are compared with the reaction times of their normal control subjects.
The aim was to investigate whether schizophrenia, HD and PD alter the reaction

time of the patient to the stimulus. This analysis is then extended to consider how
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the findings relate to the two groups of AR of HD patients identified in chapter 9.

10.1 The Method of Analysis and Results
The mean of 32 reaction times (in seconds) for the patients and their normal

control subjects are shown in Tables (10.1a)-(10.1d).

Table (10.1a) The averaged Table (10.1b) The averaged
reaction times of the schizo- reaction times of the Parkinson's
phrenic (Sch.) patients and discase (PD) patients
their normal control subjects. and their normal control
subjects.
Subject| Sch. Normal Subject PD Normal
Number |Patients|Controls Number |Patients|Controls
1 0.449 0.187 1 0.288 0.275
2 0.388 0.309 2 0.397 0.302
3 1.845 0.168 3 0.366 0.201
4 0.633 0.206 4 0.566 0.309
5 0.654 0.260 5 0.261 0.175
6 0.285 0.176 6 0.300 0.206
7 0.321 0.273 7 0.325 0.176
8 0.653 0.177 8 0.319 0.214
9 0.261 0.264 9 0.589 0.272
10 0.393 0.179 10 0.309 0.197
11 0.268 0.302 1 0.347 0.386
12 0.477 0.272 12 0.247 0.212
13 0.324 0.201 13 0.350 0.320
14 0.299 0.139 14 0.271 0.139
1s 0.329 0.197 15 0.381 0.156
16 0.192 0.156 16 0.340 0.196
17 0.203 0.150
18 0.630 0.326
19 0.312 0.175
20 0.171 0.177
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Table (10.1¢) The averaged Table (10.1d) The averaged

reaction times of the reaction times of the
*at-risk" of Huntington's Huntington's disease (HD)
disease (AR of HD) patients patients and their normal
and their normal control control subjects.
subjects.
Subject |AR OF HD| Normal Subject HD Normal
Number {Patients|Controls Number |Patients|Controls
1 0.365 0.150 1 0.501 0.309
2 0.256 0.179 2 0.915 0.393
3 0.313 0.221 3 0.731 0.175
4 0.308 0.139 4 0.651 0.181
5 0.261 0.156 S 4.935 0.176
6 0.279 0.566 6 0.826 0.302
7 0.267 0.197 7 1.192 0.320
8 0.265 0.272 8 0.529 0.175
9 0.288 0.275 9 2.495 0.386
10 0.581 0.207 10 0.278 0.214
11 0.244 0.175 1 0.369 0.206
12 0.207 0.177
13 0.184 0.326
14 0.204 0.393
15 0.242 0.168
16 0.246 0.346
17 0.308 0.187
18 0.141 0.273
19 0.151 0.177
20 0.244 0.176
21 0.320 0.386

Table (10.2) shows the mean reaction time and its standard deviation (STD) for

each subject category.
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Table (10.2) The mean reaction time values and the standard
deviations (STDs) of the patients and their normal control subjects.

Mean Number |Reaction Times (sec.)
Category Age of

(STD) |{Subjects Mean STD
schizophrenic 33.60 20 0.454 0.362
patients (12.22) | (15 male)
normal control| 39.50 20 0.215 0.058
subjects (13.66) | (15 male)
Parkinson's 63.63 16 0.354 0.097
disease (9.68) |(10 male)
patients
normal control{ 50.81 16 0.234 0.069
subjects (11.16) ] (10 male)
Huntington's (17.12) | (10 male)
disease
Patients
normal control] 37.57 21 0.245 0.107
subjects (10.22) | (10 male)
Huntington's 53.73 11 1.220 1.373
disease (10.97) (6 male)
patients
normal control| $0.09 11 0.258 0.086
subjects (10.53) | (6 male)

Tests were carried out using the SAS [l985] Univariate procedure to examine the
statistical distribution of the reaction times. The Univariate procedure plotted the
distribution of each data set together with a cure indicating where normally
distributed data should fall. It also provided a parameter W which indicated
whether or not the data had a normal distribution. The value of W was between 0
and 1. Small values of W indicated that the data were not normally distributed.
The test for distribution of the data was necessary as the t-test was applicable
when the reaction times had a normal or nearly normal distribution, though the
two-tailed t-test used is less affected by this condition compared with the one-
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tailed t-test [Kennedy and Neville, 1986]. The Univariate procedure indicated the
statistical distributions in all subject categories were not normal and therefore they
required transformation to the normal distribution. Two transformation
functions, f(x)=-1/x and f(x)=1log (x) were suitable for this purpose [Bland,
1987). They were selected as in each case a few reaction times were
comparatively much larger than the rest, and these transformation functions reduce
the large values more than those of central or small values. The distributions of
each data set after transformation by -1/x and log (x) were examined. The
transformation which provided a closer fit to the normal distribution was then
selected. After transformation the distributions in all cases were close to the
normal distribution. Table (10.3) indicates the transformation function used for

each patient category.

Table (10.3) The t-test results for the reaction times of

the patient categories.

Category Transformation| T-Test

Punction f(x) Results

schizophrenic patients p<0.001
versus normal control =-1/x (df=38)
subjects
Parkinson's disease p<0.001
patients versus normal log,(x) (df£=30)
control subjects
at-risk of Huntington's p=0.1480
disease patients versus -1/x (df£=40)
normal control subjects
Huntington's disease p<0.001
patients versus normal -1/x (df=20)

control subjects

A two-tailed t-test was then applied to the (transformed) reaction times. This test
was used as the aim was to establish whether the mean reaction time of each

patient category differed significantly from the mean reaction time of the normal
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control category. The t-test was carried out using the SAS [1985] Ttest procedure,
The results are shown in Table (10.3).

In chapter 9 the AR of HD patients were divided into abnormal (n=7) and normal
(n=14) groups and it was suggested that the 7 abnormal AR of HD patients
would develop HD. The mean reaction times of the two groups of AR of HD
patients and their normal control subjects are shown in Table (10.4).

Table (10.4) The mean reaction time values in the normal and
abnormal at risk of Huntington's disease (AR of HD) patients and
their normal control subjects (std = standard deviation).

Mean Number |[Reaction Times (sec.)

Category Age of
(STD) [Subjects Mean STD
normal AR of 313.86 14 0.284 0.103
HD patients (18.74) | (4 male)
normal control| 36.21 14 0.277 0.116
subjects (10.45) | (4 male)
abnormal AR of| 41.57 7 0.243 0.052

HD patients (13.02) | (6 male)

normal control} 40.29 7 0.182 0.043
subjects (9.96) |(6 male)

The reaction times did not have a normal distribution and therefore they were
transformed using the function f(x)=-1/x. The t-test results are shown in Table
(10.5).
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Table (10.5) The t-test results for the reaction times
of the abnormal and normal AR of HD patients.

Category Transformation| T-Test
Punction f(x) Result

abnormal AR of
HD patients -1/x p<0.05
versus normal (df=12)
control subjects

normal AR
of HD patients -1/x p=0.6263
versus normal (df=26)

control subjects

10.2 Discussion

'The mean reaction times in descending order of magnitude were: 1.220s (for HD
patients), 0.454s (for schizophrenic patients), 0.354s (for PD patients) and 0.270s
(for AR of HD patients).

The mean reaction times of the schizophrenic, PD and HD patient groups were
significantly different from the mean reaction times of their normal control groups

(p<0.001).

The mean reaction times of the AR of HD iaaticnts were not significantly different
from the mean reaction times of their normal control subjects. But the mean
reaction times of the 7 abnormal AR of HD patients were significantly different
from the mean reaction times of their normal control subjects (p <0.05, df =12).
The mean reaction times in the 14 normal AR of HD patients on the other hand

were not significantly different from their normal control subjects.

Although the reaction times of the schizophrenic, PD and HD patients were

significantly different from the reaction times of normal control groups, the value
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of the reaction time on its own might not provide an accurate measure for
identifying the patients. This is because factors not related to the diseases may
affect its value, eg. if a person has been involved for a long period in a task which
required responding to a stimulus then the reaction time of that person would

generally be less than others.

10.3 Conclusion

The results in this chapter indicated that the reaction time may well be affected by
schizophrenia, PD and HD. The reaction time analysis of the normal and
abnormal AR of HD patients indicated the reaction time was affected in the
abnormal AR of HD patients. This result was in agreement with the finding of
chapter 9 which indicated that the CNV amplitude was also affected in that

category.
Whether it would be desirable to include the reaction time as one of the

discriminatory features (described in chapters 7, 8 and 9) for identifying the

patients requires further investigation.
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Chapter 11 Comparison of the Methods Used to Identify Schizophrenic,
Parkinson's Disease and Huntington's Disease patients

The method which involved application of discrete Fourier transform and
discriminant analysis was as effective as the neural network method in
distinguishing the patients from normal control subjects. It also made it possible
to differentiate between the individuals from one patient category from another.

The neural network method reduced the complexity of distinguishing between the
patients from the three categories and their normal control subjects. It also
reduced the processing time. The leave-one-out method of analysing data used in
the discriminant analysis method was not implemented when using neural
networks because neural networks required a much longer time for their training

phase.

The method involving the application of principal component analysis and
clustering was not as effective as the other two methods in identifying the
schizophrenic, PD and HD patients. But, it made it possible to identify 7 abnormal
AR of HD patients from 21 AR of HD patients. This method required the least
processing time compared to the two other methods of patient identification.

Taking into account the implementation complexity and success rates of each

method in identifying the patients, it is preferable to use the neural network
method for the identification of schizophrenic, PD and HD patients.
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Chapter 12 Further Studies

As this study was based on a limited number of patients and normal subjects, it
will be necessary to test the methods on a larger number of individuals in order to
establish whether they can be used as routine clinical tests for differentiating
between schizophrenic, PD, HD patients and normal subjects.

Some of the patients included in this study were on medication related to their
disorders. Therefore an analysis of the effects of medication on the patient
identification results should be carried out to determine if the medication had any

effect on the test results.

It would be useful to include patients with other disorders, such as manic
depression, and investigate whether the methods discussed could be used for their
detection. The CNYV responses of two patients with manic depression were
recorded during the course of this study and a prolonged PINV was observed in
one of them (see Figure (12.1)).

A follow up of the AR of HD patients is required to establish the effectiveness of
the principal component analysis and clustering in presymptomatically identifying
HD patients. As some neural networks such as Kohonen networks [Aleksander and
Morton, 1990], can operate in an unsupervised learning mode, an investigation
could be carried out, based on the CNV, to determine the effectiveness of those

neural networks in presymptomatically detecting HD.

The application of neural networks could be extended to distinguish between the

schizophrenic, PD and HD patients.
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Figure 12.1 The preprocessed averaged CNV response in a manic
depressive patient.
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Chapter 13 Conclusion

An 8-channel instrumentation system suitable for the recording of the contingent
negative variation (CNV), electrooculogram (EOG), electrocardiogram (ECG) and
psychogalvanic response (PGR) was designed, constructed and tests showed that it
met the required specifications. The system was successfully used to record the
above named signals from 20 schizophrenic patients, 16 Parkinson's disease (PD)
patients, 11 Huntington's disease (HD) patients, 21 at-risk of HD patients, and 43
normal control subjects. A feature of this instrumentation system was that it had a
gain scheduling circuit. This caused the magnitude of the signal recorded from
each channel to be checked for each sample and thus an appropriate gain which
reflected the magnitude of the signal for that particular sample to be utilised. The
gain scheduling was important as the signal of interest (ie. the CNV which has on
average a magnitude of about -20uV) is susceptible to contaminations by much
larger ocular artefact potentials. The ocular artefact potentials can have a
magnitude of several hundred microvolts. Therefore, the gain scheduling process

improved the accuracy of digitising the CNV signal.

Three different methods were successfully employed to differentiate between
schizophrenic, PD, HD patients and normal subjects. The first method
involved frequency analysis and discriminant analysis of the CNV waveform.

It provided the following success rates:

- All HD patients were successfully distinguished from normal subjects (ie.
100% success rate).

- When differentiating between schizophrenic patients and normal subjects,
all but one schizophrenic patients (ic. 95%) and all normal subjects (100%)
were successfully identified.

- When differentiating between PD patients and normal subjects, 15 out of the
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16 PD patients (93.8%) and 14 out of the 16 matched normal control subjects
(87.5%) were successfully identified.

The method of frequency analysis and discriminant analysis of the CNV
waveform was also effective in differentiating between schizophrenic, HD and
PD patients. The success rates obtained when differentiating between the
patients from these three patient categories were always higher than 81% and
on average less than the success rates achieved when differentiating between
the patients and normal subjects. This may suggest that some of the CNV
abnormalities produced as a result of these disorders may overlap. Generally
the probability values which indicated to which category a subject belonged
were not correlated with the severity of the disorders but two schizophrenic
patients which appeared to have relatively low sum of scores for the
symptoms related to schizophrenia (their scores for symptoms were 8 and 9)
did also have a relatively low probabilities of being schizophrenic
(probabilities of them being schizophrenic were 0.58 and 0.46 respectively).

The second method of identifying the schizophrenic, PD and HD patients
from normal subjects was a novel method of extracting CNV features in the
time domain and using the features in neural networks. During the training
mode the neural networks always successfully identified all the patients from
the three categories from normal subjects. The success rates achieved during

the test mode of the neural networks were:

- When differentiating between HD patients and normal subjects all HD
patients (100%) and all normal subjects (100%) were correctly identified.

- When differentiating between schizophrenic patients and normal subjects all
but one of the patients (90%) and all the normal subjects (100%) were
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correctly classified.
- When differentiating between PD patients and normal subjects, all PD
patients (100%) and all but one of the normal subjects (93.75%) were

correctly identified.

The schizophrenic patient misclassified by the frequency analysis and

discriminant analysis of the CNV was classified correctly by the neural

network method, and the schizophrenic patient misclassified by the neural

network method was classified correctly be the frequency analysis and
discriminant analysis method. A similar finding was observed when differentiating
between PD patients and normal subjects ie. the PD patient misclassified by the
neural network method was classified correctly by the frequency analysis and
discriminant analysis method. These observations suggest that the amalgamation of

the two techniques may further increase the success rate of identifying the

patients.

The third method of identifying the schizophrenic, PD, and HD patients involved
the application of principal components analysis and cluster analysis to the CNV
waveforms. The CNV features used in this method of identifying patients were the
same as those used in neural networks. This method was not as effective as the
other two methods of identifying the schizophrenic, PD and HD patients. This
method was also applied to 21 at-risk of HD patients and it resulted in identifying
7 at-risk of HD patients as abnormal at-risk of HD patients. As it is established
that the CNV in known HD patients is abnormal (references were given in the
introduction chapter) therefore it was suggested that these 7 abnormal at-risk of
HD patients would develop HD. These results then led to analysing the CNV
amplitude in the 7 abnormal and the remaining 14 at-risk of HD patients. It was
shown that the CNV amplitude in the 7 abnormal at-risk of HD patients was

significantly different from those in their normal control subjects (p <0.001,

241




df=12). The CNV amplitude in the remaining 14 at-risk of HD patients was not

significantly different from the CNV amplitude in normal controi subjects,

The reaction time analysis of the schizophrenic, PD, and HD patients
indicated that the reaction times in all three patient categories are

significantly different from the reaction times in their normal control subjects
and therefore these results indicate that the brain structural abnormalities
observed in the above named patients can alter the patients' motor response

to stimuli. The reaction time analysis of the at-risk of the HD patients
indicated that the reaction time in the 7 abnormal at-risk of HD patients

(these were identified as abnormal using principal components analysis and
cluster analysis) is significantly different from the reaction time in normal
control subjects (p <0.05, df=12). The reaction time of the remaining 14 at-
risk of HD patients were not significantly different from the reaction time of
their normal control subjects. These results were in agreement with the

results obtained when the CNV amplitude was analysed in the at-risk of HD
patients. The results obtained involving the application of principal
components aﬁdysis and cluster analysis, and following findings related to the
CNYV amplitude analysis and reaction time analysis in the at-risk of HD
patients are indicative that the structural brain abnormalities observed in the
HD patients may start to develop well prior to the onset of the disease causing

changes in the CNV and reaction time.

Overall, three different methods of identifying schizophrenic, PD and HD
patients were successfully implemented during the course of the project. The
method which involved the use of neural networks was considered to be the
more suitable for use by neurophysiologists and psychiatrists as its

implementation does not require a detailed knowledge of signal processing.
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Since identification of the 7 abnormal at-risk of HD patients, one of the 7
abnormal at-risk of HD patients has dcveldped HD and non of the 14 normal at-
risk of HD patients have developed HD.
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Appendices

Appendix A Listing of Data Recording Programs

PROGRAM DATA_ACQUISITION (INPUT, OUTPUT, DATA_FILE);
{Program name = ACQ.PAS

This program initialises the DT2805 board used for its programmable gain
amplifier and analogue to digital convertor. It then obtains the recording
parameters.

The program is linked to the assembly language program SAMPLE1.ASM which
acquires the signals from 8 channels and stores them on the hard disk of
the PC.

During the execution of this program a menu appears and the operator is
asked for an entry. The list of options available is described in chapter 4.}

{global parameters}

CONST
{DT2805 board addresses}
BASE_ADDRESS = $2EC; {base address}
COMMAND_REGISTER = $2ED; {command register address}
STATUS_REGISTER = $2ED; {status register address}
DATA_REGISTER = BASE_ADDRESS; {data register address}

{Bit position of DT2805 board status register}
COMMAND_WAIT = $4; {ready bit}
WRITE WAIT = $2; {data in full bit}
READ_WAIT = $1; {data out ready bit}

{PC waming to indicate experiment is over}
HZ = 200; {frequency of the sound}
US = 1000; {duration of the sound}

{cursor initial positions on the VDU of the PC}
X = 5; {x axis

Y = §; {y axis
{ }
TYPE

NAME = STRING [12];
{ }
VAR

STATUS, TEMP, RESULT, VALUE, TRIAL : INTEGER;
PRE_CNV, CNV, POST CNV : INTEGER;

ORG_ FILE : FILE OF INTEGER;

CHECK, OK, EXISTS, TRY_AGAIN, RUN : BOOLEAN;
DECISION : CHAR;

DISK_FILE, PAT_NAME : NAME;



DATA_FILE : TEXT;

LABEL EXIT;
{ }
{the external assembly language program definition}

PROCEDURE SAMPLE (PRE_CNV,CNV,POST_CNV,TRIAL : INTEGER);
EXTERNAL'SAMPLEI.BIN';

{ }
PROCEDURE LEGAL_STATUS (VAR ERROR :BOOLEAN);

{Check the status register of the DT2805 board}

CONST
FATAL_ERROR = $70; {code for examining possible error}

BEGIN
STATUS := PORT[STATUS REGISTER];
IF NOT ((STATUS AND FATAL_ERROR) = 0) THEN
BEGIN
ERROR := FALSE;
WRITELN ('Fatal error, run aborted.');

ELSE ERROR := TRUE;
END; {procedure legal status}

{ }
PROCEDURE WAIT_SET (SBIT : INTEGER);

{Procedure to wait for the specified bit/s to be set}

VAR
BIT_SET : BOOLEAN;
BEGIN
BIT_SET := FALSE;
REPEAT

STATUS := PORT[STATUS_REGISTER];
RESULT : = (STATUS AND SBIT);
IF (RESULT = SBIT) THEN
BIT SET := TRUE;
UNTIL BIT_SET;
END; {Procedure bit set}

{ }
PROCEDURE WAIT_CLEAR (CBIT : INTEGER);



{procedure to wait until the specified bit is cleared}

VAR
BIT_CLEAR : BOOLEAN;
BEGIN
BIT_CLEAR := FALSE;
REPEAT

STATUS : = PORT[STATUS_REGISTER];
RESULT := (STATUS AND CBIT) XOR CBIT;
IF (RESULT = CBIT) THEN
BIT CLEAR := TRUE;
UNTIL BIT_CLEAR;

END; {procedure wait clear}

{ }
PROCEDURE CHECK_ERROR(VAR CHECK : BOOLEAN);
{procedure to check for error after an operation}

CONST
ERROR_BIT = $80; {DT2805 board operation check code}

BEGIN
WAIT_CLEAR(WRITE_WAIT);
WAIT_SET(COMMAND WAIT);

STATUS := PORT[STATUS_REGISTER];
IF (STATUS AND ERROR_EIT) = 0 THEN
CHECK := TRUE

ELSE CHECK := FALSE;

END; {procedure operation check error}

{ }
PROCEDURE RESET_BOARD;

{procedure to reset the DT2805 board}

CONST
CSTOP = $F; {stop command code}
CCLEAR = $1; {clear command code}

BEGIN
PORT [COMMAND_REGISTER] := CSTOP;
TEMP : = PORT [DATA_REGISTER];
WAIT_CLEAR (WRITE WAIT);
WAIT_SET (COMMAND WAIT);
PORT [COMMAND_REGISTER] := CCLEAR;
END; {Procedure reset}

{ }
FUNCTION EXIST (FILE_NAME : NAME) : BOOLEAN;



{function to safeguard the files on hard disk}

VAR
OLD_FILE : FILE;

BEGIN

ASSIGN (OLD_FILE, FILE_NAME);

{$1-} {disable error handlcr}

RESET (OLD_FILE);

{S1+} {enable error handlcr}

EXIST :=(IORESULT =0); {if file exist, exists = true}
END; {exist funcnon}

{ }
PROCEDURE DELETE_FILE (FILE_NAME : NAME);
{procedure to delete a file}

VAR

OLD_FILE : FILE;

BEGIN
ASSIGN (OLD_FILE, FILE_NAME);
CLOSE (OLD_FILE);
ERASE (OLD". _FILE);

END; {procedure delete file}

{ }

PROCEDURE USER_INPUT (VAR
PRE_CNV, CNV, POST CNV, TRIAL : INTEGER;
VAR PAT NAME : NAME;
VAR RUN : BOOLEAN);

{this procedure asks the user for the recording parameters}

VAR
REPLY, DEL : CHAR;
READY : BOOLEAN;
BEGIN
. READY := FALSE;
CLRSCR;

REPEAT
GOTOXY (X,Y);

WRITELN (' DATA RECORDING ROUTINE');
GOTOXY (X,Y+3);

WRI’I'E '.t.lt‘t.tt“‘.‘#.‘O‘t“t“..‘ttt‘t‘#tt#');
meELN ('..tt“‘t.“‘tt.“t');

GOTOXY (X,Y+35);

WRITE ('Please reply to the followings, *);



WRITELN ('Enter an integer number :-');

REPEAT
GOTOXY (X, Y+7);
WRITE ('Pre-warning-stimulus recording time');
WRITE (', Enter 1" to "6" seconds : °');
READLN (PRE_CNV);

UNTIL (PRE_CNV > O)ANI'S(PRE CNV <= 6);

REPEAT
GOTOXY (X,Y+9);
WRITE ('ISI recording time, *);
WRITE (‘Enter "1* to "3" seconds : ');
READLN (CNV);

UNTIL (CNV > 0) AND (CNV <= 3);

REPEAT
GOTOXY (X,Y+11);
WRITE ('Post-imperative-stimulus time, *);
WRITE (‘Enter *1° to "12" seconds : ');
READLN (POST_CNV);

UNTIL (POST_CNV > 1) AND (POST_CNV < = 12);

REPEAT
GOTOXY (X,Y+13);
WRITE ('Number of trials required, °);
WRITE ('Enter "1" to 32" : ');
READLN (TRIAL);

UNTIL (TRIAL > 0) AND (TRIAL < = 32);

GOTOXY (X,Y+15);

WRITE (' ##*‘t““‘#“‘“““‘...‘..“““"lt“')-
?

WRITELN (' #t#““‘.‘ll"““')-
]

GOTOXY (X, Y+17);

WRITELN ('Do you wish to reenter above data ? ');
GOTOXY (X,Y+19),

WRITE ('If so type in "Y", if not type "N* ');
READLN (REPLY);

IF (REPLY = 'N') OR (REPLY = 'n') THEN
READY := TRUE;

IF (REPLY = 'Y') OR (REPLY = 'y') THEN
CLRSCR;

IF (REPLY = 'N') OR (REPLY = 'n') THEN
IF (PRE_CNV + CNV + POST_CNV) > 12 THEN
BEGIN
CLRSCR;
READY := FALSE;
GOTOXY (X,Y-2);
WRITE ('The CNV paradigm should not exceed');
WRITE (' 12 seconds');
END;

UNTIL READY = TRUE;
CLRSCR;



READY := FALSE;
REPEAT
GOTOXY (X,Y);
WRITE 't‘t.t“t“t““‘“““#‘t#“#t#‘##tt#t‘t');
WRrrEw ('t“t‘t.“‘.t.');
GOTOXY (X,Y+2);
WRITELN ('Please enter the data file name ');
WRITE (" in this format : NNNNNNNN.DAT °);
READLN (PAT_NAME);

GOTOXY (X, Y+5);

WRI'I'E "t‘ttt““##“t‘tt##““#.#“###&#######');
WRITELN ('ttt‘ttttttt‘t');

GOTOXY (X,Y+7);

WRITELN ('Do you wish change the above name ?');
WRITE (" If no enter "N*, else enter RET key ');
READLN (REPLY);

IF (REPLY = 'N') OR (REPLY = 'n') THEN

READY :=TRUE;

{Check if a file with similar name already exists}
RUN := TRUE;
EXISTS := EXIST (PAT_NAME);
IF EXISTS THEN
BEGIN
GOTOXY (X,Y+11);
WRITELN ('Above file already exists !');
GOTOXY (X,Y+12);
WRITELN ('Do you wish to delete it ?');
GOTOXY (X,Y+13);
WRITE ('If so enter "Y", otherwise "N* : ');
READLN (DEL);

IF (DEL = 'Y') OR (DEL = 'y') THEN
BEGIN
WRITELN ('File ',PAT NAME,' is deleted');
DELETE_FILE (PAT_NAME)
END
ELSE
BEGIN
GOTOXY (X,Y);
CLRSCR;
WRITELN (‘Run aborted as file exists');
RUN := FALSE;

END;
END;
CLRSCR;
UNTIL READY = TRUE;
END;
{ }




PROCEDURE SUB_FILE;

{procedure to form a file containing only a specified trial}

CONST

VAR

BEGIN

BASE FACTOR = 4096; {2 to the power 12}

RANGE = 20; {range of input signals, -10 to +10}
MAX_VOLTAGE = 10, smaximum input voltage allowed}
SAMPLE _RATE = 125; {sampling rate

MIC_SCALE = 200; {‘microvolt scale

MIL_SCALE = 4000; {millivolt scale}

NO1, NO2, NUMBER, AD_GAIN, CHANNEL, TRI_SEL :
INTEGER;

FACTOR, RESOLUTION, BI_VOLT, I, N : REAL;

DURATION, N1, N2, TIME : REAL;

COMP OUTPUT, ELEMENTI, ELEMENT?2, DECISION : CHAR;
OLD_FILE, NEW_FILE : STRING [12];

SUB FILE, DATA _FILE : TEXT;

CHECK : BOOLEAN;

CHECK :=FALSE;
CLRSCR;
REPEAT
GOTOXY (X,Y);
WRITEI‘N ('ttt#“tttt.#"t“‘ttl“t‘tt#t.‘tt");
GOTOXY (X,Y+1);
WRITELN (' Sub_file Routine');
GOTOXY (X,Y+2);

WRITEIN "*“““.‘“‘.“t...t““l..““t").
]

GOTOXY (X,Y+4);

WRITELN ('Routine to form a sub_file.");
GOTOXY (X,Y+5);

WRITE ('This file will contain the data from *);
WRITELN (‘one trial of the experiment.');

GOTOXY (X,Y+8);

WRITELN ('Please enter the followings:');
GOTOXY (X,Y+10);

WRITE ('The main file name :°');
READLN (OLD_FILE);

GOTOXY (X,Y+11);

WRITE ('The sub_file name : °);
READLN (NEW_FILE);

GOTOXY (X,Y+12);

WRITE ('The trial number selected : *);
READLN (TRI SEL);

GOTOXY (X,Y+13);

WRITE ('The duration of the trial in seconds : *);
READLN (DURATION);

GOTOXY (X,Y+15);
WRITE ('If you wish to re_enter above data, ');
WRITELN (‘enter "Y"');



GOTOXY (X,Y+ 16);
WRITE ('Otherwise enter *N* :");
READLN (DECISION)
IF (DECISION = 'N") OR (DECISION = 'n') THEN
CHECK := TRUE;
CLRSCR;
UNTIL CHECK = TRUE;

GOTOXY (X,Y)

WRITELN 'ttottttttttt-tttt-u-tun)’
GOTOXY (X,Y+2);

WRITELN ('Please wait .....");

GOTOXY (X,Y+4);

WRITEIN ('."“‘.‘tt‘.‘l‘...t‘lt'),

ASSIGN (DATA_FILE, OLD_FILE);
RESET (DATA _ FILE);

ASSIGN (SUB_FILE, NEW_FILE);
REWRITE (SUB_ FILE);

N := (TRI_SEL -1) * (SAMPLE_RATE * DURATION);
RES?LUTION = RANGE / BASE ,_FACTOR;
I:=
WHILE (I-1) < NDO
BEGIN
FOR CHANNEL := 1 TO 8 DO
READ (DATA_FILE, COMP_OUTPUT,
ELEMENT],
ELEMENTZ),
I:=1+1;
END;

1;:2 -6 SAMPLE_RATE * DURATION;
REPEAT
TIME := N1/ SAMPLE RATE;
WRITE (SUB_FILE, TIME:3:5," °);
N1:= N1 +[;

ggg gHANNEL:= 1 TO8DO
I
READ (DATA FILE, COMP_OUTPUT, ELEMENT]I,
ELEMENTY);
NOl := ORD(ELEMENTI),
NO2 := ORD(ELEMENT2);
NUMBER := NOI + (NO2 * 256);
FACTOR := RESOLUTION * NUMBER;

CASE ORD (COMP_OUTPUT) OF
0:AD_GAIN:=1;
1: AD_GAIN := 10;
2:AD_GAIN:= 100
3:AD_GAIN:= 500
END; {case}

BI_VOLT := (FACTOR - MAX_VOLTAGE) /
AD_GAIN;



IF CHANNEL < 7 THEN

BI_VOLT := BI_VOLT * MIC_SCALE
EISE

BI_VOLT := BI VOLT * MIL_SCALE;
WRITE (SUB_FILE, BI_VOLT:6:6,' );

END; {for}
WRITELN (SUB_FILE);

UNTIL N1 = N2;

CLOSE (DATA_FILE);
CLOSE (SUB_FILE);

END; {procedure sub_file}

{ }
PROCEDURE RESPONSE_TIMES;

{procedure to display the reaction times in the record}

CONST
SAMPLE_RATE = 125; {sample_rate}

VAR
INDEX, TRIAL, NO1, NO2, CHANNEL, N : INTEGER;
TIME, SAMPLES, K, DURATION, AVERAGE RT : REAL;
FILE_NAME, RESP_FILE NAME : STRING [12};
DATA_FILE, RESPONSE FILE : TEXT
ELEMENT1, ELEMENTZ, DECISION, RESPONSE, A : CHAR;
CHECK : BOOLEAN;

BEGIN

CHECK := FALSE;

AVERAGE RT := 0;

CLRSCR;

REPEAT
GOTOXY (X,Y);
WRITELN (' Reaction Time Routine');
GOTOXY (X,Y+3);
WRITE

('========888883-Bﬂ------ﬂﬂﬂ-ﬂﬂ-ﬂﬂﬂBHBGI');
WR"ELN('BBBBBBBBBB.);
GOTOXY (X,Y+4);
WRITELN ('Routine to display the reaction times');
GOTOXY (X,Y+35);
WRITE

('===========anuunnn----nunﬂﬂﬂnnaau')'

WRITEIN ('mes=s=sa=="); ’

GOTOXY (X,Y+7);

WRITE ('Please enter the filename ¢ ');
READLN (FILE_NAME),

GOTOXY (X,Y+9);



WRITE (*The number of trials in the record : ');
READLN (TRIAL);
GOTOXY (X,Y+11);
WRITE ('The trial duration : ');
READLN (DURATION);
GOTOXY (X,Y+13);
WRITE ('For a reaction time file enter "Y", ');
WRITE (‘otherwise enter *N*" : ');
READLN (RESPONSE);
IF (RESPONSE = 'Y') OR (RESPONSE = 'y') THEN
BEGIN
GOTOXY (X,Y+15);
WRITE ('The reaction time filename : ');
READLN (RESP_FILE_NAME);
END;

GOTOXY (X, Y+17);

WRITE ('To re_enter the above data, enter "Y", ');
WRITE (‘otherwise enter "N* : ');

READLN (DECISION);

IF (DECISION = 'N') OR (DECISION = 'n') THEN
CHECK := TRUE;

CLRSCR;

UNTIL CHECK = TRUE;

IF (RESPONSE = 'Y') OR (RESPONSE = 'y') THEN
BEGIN
ASSIGN (RESPONSE FILE, RESP_FILE_NAME);
REWRITE (RESPONSE_FILE);
END;

WRITELN('Patients reaction times are :');
WRITELN(" 8=-------n-=---------=---I');

WRITELN('| Trial Number | Time (Seconds) |'

WRITELN( | == mm e m = mmm s s | = [

ASSIGN (DATA FILE, FILE_NAME);
RESET (DATA_FILE);

SAMPLES := 0;
{skip the CNV data}
K := (DURATION * SAMPLE_RATE * TRIAL);
REPEAT
FORN:= 1 TONDO
READ (DATA_FILE, A);
SAMPLES :=SAMPLES + 1;
UNTIL SAMPLES = K;

Fgglgmﬁx := 1 TO TRIAL DO
B
READ (DATA FILE, ELEMENTI!, ELEMENT?);
NO1 := ORD(ELEMENTI);
NO2 := ORD(ELEMENT?2);
TIME := NO!1 + (NO2 * 256);
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TIME :=TIME / 1000;
AVERAGE RT := AVERAGE_RT + TIME;

WRITELN('| ~ ‘,INDEX:2,'  |',' °
,TIME:I:3,' 1"
WRITELN(' | 1

IF (RESPONSE = 'Y') OR (RESPONSE = y') THEN
WRITELN (RESPONSE_FILE, INDEX:2,* '
TIME:1:3);

END;

AVERAGE_RT := AVERAGE_RT / TRIAL;
WRITELN;

WRITELN;

WRITE ('Average RT based on ',trial,' °',‘trials is ');
WRITELN (average rt:5:3);

CLOSE (DATA _FILE);

IF (RESPONSE = 'Y') OR (RESPONSE = 'y') THEN
CLOSE (RESPONSE_FILE);

END; {procedure response_time}

{ }

{main section}
BEGIN
TRY_AGAIN := FALSE;
REPEAT
CLRSCR;
GOTOXY (X,Y);
WRITELN (' DATA ACQUISITION PROGRAM');
GOTOXY (X,Y+1);

WRITELN('===szcssccsaswasscascm==");

GOTOXY (X,Y+4);
WRITE ('.*.“““‘.“".““‘.“l‘.‘.‘..““');
wmw ("‘.“““.“““.');
GOTOXY (X,Y+5);
WRITE (** ");
WRITELN (' )
GUIOXY X, Y+6);
WRITE ('* Please enter : "F* to FAMILIARISE');

WRITELN (' .y,

GOTOXY (X, Y+7);

WRITE ('* *P" to PRACTICE the ');
WRITELN ('experiment ")

GOTOXY (X,Y+38);

WRITE ('* *R" to RECORD data ');
WRITELN (' *);

GOTOXY (X,Y+9);

WRITE ('* *S" to form a SUB_FILE');
WRITELN (' form main file *');

GOTOXY (X,Y+10);

WRITE ('* *T" to display the');
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WRITELN (' response TIMES  *');
GOTOXY (X,Y+11);

WRITE ('* "Q" to QUIT");
WRITELN (' *);
GOTOXY (X,Y+12);

WRITE ('* )i
WRITELN (' *);
GOTOXY (X,Y+13);

WRI'I'E ('#‘O‘.‘.“““.““.““"l.t.l‘.#l“.“.')-
’

WRrrEw ("...““““..‘.")o
’

GOTOXY (X, Y+16);
WRITE ('Decision please > ');
READ (DECISION);

IF (DECISION = 'F') OR (DECISION = 'f")
OR (DECISION = 'P') OR (DECISION = 'p') THEN

BEGIN
{check for legal status register condition}
LEGAL_STATUS (OK);
IF NOT OK THEN
GOTO EXTT;

{reset the DT2805 board}
RESET_BOARD;

CLRSCR;

GOTOXY (X+3,Y+4);
WRI’I'ELN (‘.““l“...tt“");
GOTOXY (X+3,Y+6);
WRITELN('Please wait ..... )%
GOTOXY (X+3,Y+38);
Wer_‘N ('.““.#“‘.‘ttt");

IF (DECISION = 'F') OR (DECISION = 'f') THEN
SAMPLE (1, 1, 10, 5);

IF (DECISION = ‘P') OR (DECISION = ‘p') THEN
SAMPLE (1, 1, 10, 15);

CLRSCR;

GOTOXY (X+5,Y);

WRITELN ('***sssssssensecssest).
GOTOXY (X+5, Y+2);

WRITELN('The end of practice ');
GOTOXY (X+5,Y+4);
WRITELN ("‘..“.t‘#““‘ttt.');

TEMP: = 0;
REPEAT
SOUND (HZ);
DELAY (US);
NOSOUND;
TEMP := TEMP+1;
UNTIL TEMP = 2;
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{delete the test file} .
DISK_FILE := 'CNVAMP.DAT';
DELETE FILE (DISK_FILE);

END; {if}

IF (DECISION = 'R') OR (DECISION = 'r') THEN

BEGIN
{check for legal status register condition}
LEGAL_STATUS(OK);
IF NOT OK THEN
GOTO EXIT;

{reset the DT2805 board}
RESET_BOARD;

{get user input}

USER_INPUT (PRE_CNYV, CNV, POST_CNV, TRIAL,
“PAT NAME, RUN):

IF RUN = FALSE THEN

GOTO EXIT;

CLRSCR;

GOTOXY (X+3,Y+4);

WRITE ('.t.'..“‘.“.“..‘.““““‘...“.");
WRITELN ("t.“‘.‘...');

GOTOXY (X+3,Y+6);

WRITE ('Signal is being recorded. ');

WRITELN("® Please wait .....');

GOTOXY (X+3,Y+8);

WRITE ('.#“"“.“.‘.."“‘O“.“t“‘.t");
WRITEIN (".'.“.“‘.');

{call assembly language procedure}

SAMPLE (PRE_CNY, CNV, POST_CNYV, TRIAL),

CLRSCR;
GOTOXY (X+5,Y);

WRI'I'ELN (' ..‘."“‘t““t“.‘#“t“");

GOTOXY (X+5, Y+2);

WRITELN('The signal is recorded °);
GOTOXY (X+5,Y +4);

WRITELN (' ..“l“““‘.“0“‘.“."");

SOUND (HZ);
DELAY (US);
NOSOUND;

{rename the file}

DISK _FILE := 'CNVAMP.DAT";
ASSIGN (ORG _FILE, DISK FILE),
RENAME (ORG _| FILE PAT_NAME);

END; {recording}
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IF (DECISION = 'S') OR (DECISION = 's') THEN
SUB_FILE;

IF (DECISION = 'T") OR (DECISION = 't') THEN
RESPONSE_TIMES;

IF (DECISION = 'Q') OR (DECISION = 'q') THEN
GOTO EXIT;

WRITELN;

WRITE ('If you wish another go, enter *Y*"');

WRITE (' otherwise enter *N* : > ');

READLN (DECISION); -
IF (DECISION = 'N') OR (DECISION = 'n') TH
TRY_AGAIN := TRUE;

UNTIL TRY_AGAIN =TRUE;
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Appendix A Continued

TITLE SAMPLEI

Procedure to sample the signals and to store the data

on the hard disk of the PC. The signals are acquired
from 8-analogue channels. The output of the multiplexer
is connected to a window detector and a programmable
gain amplifier (PGA). The function of the window
detector is to determine the gain setting for the PGA.
The output of the PGA is connected to a 12-bit analogue
to digital converter (A/D). The PGA and the A/D are on
the DT2805 board.

The timing and sampling signals are provided b
programmable interval timers. The dxgx:al inte acmg
1s achieved using a prgg;ammablc parallel port device.
Assembly language

Program name  : SAMPLE1.ASM

This program is called from ACQ.PAS Pascal Program.

Registers used : AX, BX, CX, DX, CS, DS, DI, SI and BP.
Ports used : The digital ports A, B, and C of 8255A-5.

Parameters received : Number of trials and CNV paradigm.
Parameters returned : None.

GO WO WO WS VWO VO WEE WO WS VS WOEWOWS VWO U VWE WO WEWE WS WEE VWO WSO W WS

Constants .
: DT280S board addresses
DTBADDR EQU O02ECH sBase address
DATARG EQU DTBADDR ;Data register
STCDRG EQU DTBADDR+1 ;Status/Command register
ADMODE EQU OCH sA/D command mode
; DT2805 board status register bit position
DOUTRDY EQU OlH ;Data out ready bit
DINFULL EQU 02H ;Data in full bit
RDYBIT EQU O4H ;Ready bit
; DT2805 multiplexing channel
CHANNEL EQU OOH :Channel zero

; 8259 interrupt controllers #1 port addresses
s Controller #1

INTAQO EQU 20H
INTAO1 EQU 21H
EOI EQU 20H ;End of interrupt command
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: 8254 counter/timer #1 addresses, external

COUNTRO EQU 300H ;Counter 0

COUNTR! EQU 302H ;:Counter 1

COUNTR2 EQU 304H ;Counter 2

CONTREG EQU 306H ;Common control register

: 8253 counter/timer #2 address, external

PTM2CRO EQU 310H ;Counter 0

PTM2CR1 EQU 312H ;Counter 1

PTM2CR2 EQU 314H ;Counter 2

PTM2CRG EQU 316H ;Common control register

; 8255A_5 programmable parallel ports

PORTA EQU 308H :Port A

PORTB EQU 30AH ;Port B

PORTC EQU 30CH ;Port C

CONREG EQU 30EH ;Control register

+ Maximum number of input channels

MAXCHN EQU O8H ;8 channel differential

; Codes for DOS function calls

CREFILE EQU 3CH ;Create file code

FILEATR EQU OOH ;File attribute code

WRCODE EQU 40H s Write code

CLOSFIL EQU 3EH ;Close file code

OPENFIL EQU 3DH ;Open file code

ACCODE EQU 82H sAccess file code

; Addresses where the A/D output is stored

ADSEG EQU 3000H ;Segment

ADOFFST EQU O0001H ;Offset

RESPTME EQU 65400 ;Reaction time location

EOI EQU 020H ;End of interrupt command

SAMPRT EQU 125 ;Sampling rate

: Code Segment

CODE SEGMENT BYTE
ASSUME CS:CODE :Initialise code seg. reg.

; PROCEDURE SAMPLE (PAGES : INTEGER);

SAMPLE PROC NEAR ;Define the procedure
PUSH BP ;Save bp register
MOV BP,SP ;Initialise bp with sp

; Get the starting address of the procedure
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PUSH AX ;Save ax reg.

CALL "START :Put IP on stack
START: POP AX ;Transfer IP into ax
SUB AX,7 ;Get proc. starting addr.
IMP CONT +Skip the variable section
: Variables
CNVFILE DB "C:CNVAMP.DAT",0 ;:CNYV file name
NETPATH DB 'C:CNVAMP.DAT',0 ;CNYV file network path
GCODE DB ? :Gain code
CHNNO DB ? ;Channel number
FLAG DB ? ;Error flag
STARTAD DW? ;Proc. starting address
RANDNO DW? ;:Random no. for ITI
FILEHDL DW? ;File handle of file
TRIAL DW? ;Number of trials
TRIALST DW? ;Trials recorded
POSTCNV DW? ;Post-imperative-sti. time
CNV DW? JISI time
PRECNV DW? ;Pre-waming-sti. time
SAMPNO DW? ;Sample number
DIREG DW? ; Byte counter
RESPTR DW? ;Reaction time byte pointer
BYTESUM DW? ;Total no. of bytes/trial

; Save the starting addr. of proc. & the contents of regs.

CONT: MOV STARTAD,AX ;Starting addr. of proc.
PUSH BX ;Registers used
PUSH CX
PUSH DX
PUSH DS
PUSH DI
PUSH SI
IMP ENDISR :Go to start of proc.
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;_—_———__—‘-———-—=-——-—-=————————'=======================

; Sampling interrupt service routine

ISRSAM l(’:ROC FAR
LI
PUSH DX ;Save the registers
PUSH BX
PUSH DX
MOV AL,EOI ;Enable interrupt
OUT INTAOOQ,AL
MOV CHNNO,0 ;Set the staring channel
ADD SAMPNO,1 ;Update sample number
MOV DI,DIREG ;Initialise byte pointer

L)
§ressesecsesesncitssosnsesisisse 000000000000 (XXX XA XN X X ] L]

: Switch the multiplexer to the required channel
: (The multiplexer address lines are connected to
;port A: bits0, 1,2 & 3)

NEXTCH MOV DX,PORTA ;Get port A address
IN AL,DX ;Rcmfo port A
AND AL,11110000B ;Set 1st 4 bitst0 0
OR AL,CHNNO ;Set the channel number
OUT DX,AL s Write the bit pattern

; Provide delay for the window detector to settle
MOV BL,3

DELAY: DEC BL

JNZ DELAY

; Read the window detector output
; (the window detector output is connected to port B
; bits0, 1, &2)

MOV DX,PORTB ;Get port B address
IN AL,DX ;Read port B
AND AL,00000111B :Mask out unwanted bits

; Determine & store gain code from the window detector
MOV BL,0 :Determine gain code

SHR
INC
INC
SHR
ADC

MOV
MOV

INC

ADDI1:

ALl
ADDI1
BL
AL,l
AL,BL

ES:[DI],AL
AH,AL

DI

;Store the gain code

;Update byte counter

ooooooooooooooooooooooooooooo



; Set DT2805 board A/D parameters

s A/D mode
MOV DX,STCDRG
WAITAD: IN AL,DX
AND AL,RDYBIT
JZ WAITAD
MOV AL,ADMODE
OUT DX,AL

; Gain code

WAITG: IN AL,DX
AND AL,DINFULL
INZ WAITG

MOV DX,DATARG
MOV AL,ah
ouT DX,AL

; Channel number
MOV X,STCDRG
WAITC: IN AL,DX
AND AL,DINFULL
JNZ WAITC

MOV DX,DATARG
MOV AL,CHANNEL
OuUT DX,AL

;Get status reg. address
;Repeat : read status reg.
s Check the ready bit
;Until ready bit is high
;:Get command mode
;Output to command reg.

;Repeat : read status reg.
; Check data in full bit
;Until data in full is low

;Get data reg. address
;Get the gain code
;s Write it to data reg.

;Get status reg. addr.
;Repeat : status reg.
;Check data in full bit
;Until data in full is low

;Get data reg. address
;Get channel number
; Write it to data reg.

L]
gersesevesecccssos ssccenee eeesseso0esssTRROIROEESY s00cseveee

; Read & store A/D output

; Low byte
MOV DX,STCDRG

WAITL: «IN  AL,DX
AND AL,DOUTRD
JZ  WAITL
MOV DX,DATARG
IN AL,DX
MOV AH,AL

s High byte
MOV DX,STCDRG
WAITH: IN ALDX
AND AL.DOUTRDY
JZ  WAITH
MOV DX,DATARG
IN ALDX
XCHG AH,AL

; Store the A/D output
MOV ES:[DI],AL
INC DI
MOV ES:[DI],AH
INC DI

:Get statum. address
;Repeat © status reg.
; Check data out rcadK %it
;Until data out ready high
;Get data register address
;Read low byte of A/D
;Store the value in AH reg.

;Get statuali.gg. address
sRepeat © status reg.

s Check data out read{u it
;Until data out ready high
:Get data register address
;Read high byte of A/D
;Store high byte in AH reg.

;Store the low byte
;Store the high byte



; Switch multiplexer to next channel

INC
MOV

CHNNO
DX,PORTA
AL,DX
AL,11110000B
AL,CHNNO
DX,AL

;Update channel number
;Get part A address
;Read port A

;Mask 4 LSBs

:Set the channel number
;s Write the bit pattern

; Provide delay for the window detector to settle

MOV
DELAY2: DE
INZ

; Read window detector

MOV
IN
AND

BL,3
BL
DELAY2

DX,PORTB
AL,DX
AL,00000111B

;Get port B address
;Read port B
;Mask unwanted bits

oooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Determme and store the gain code

MOV
SHR
INC
INC
SHR
ADC

ADD2:

BL,0
AL 1
ADD2
BL
AL,l
AL,BL

ES:[DI],AL
AH,AL
DI

;Store the gain code
;Update byte counter

.
geecccrsccssenesessestoseccccee ®%08080000000000000000 (XX

; Set DT2805 board parameters

s A/D mode
MOV

WAITA2: IN
AND
JZ
MOV
ouT

; Gain code
WAITG2: IN

;Channel number
MOV

DX,STCDRG
AL,DX
AL,RDYBIT
WAITA2

AL, ADMODE
DX,AL

AL,DX
AL,DINFULL
WAITG2
DX,DATARG
AL,AH
DX,AL

DX,STCDRG
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;Get status reg. address
;Repeat : read status reg.
; Check mdg bit

;Until ready bi
;Get command mode
;Output to command reg.

it is high

Repeat read status reg.
s Check data in full bit
Unul it is low

;Get data reg. address
;Get gain code
:Write to data register

;Get status reg. address



WAITC2: IN AL,DX ;Repeat : read status reg.
AND AL,DINFULL ; Check data in full bit
INZ WAITC2 ;Until it is low
MOV DX,DATARG ;Get data reg. address
MOV AL,CHANNEL ;Get channel number
OouUT DX,AL ;Write it into data reg.
;Read & store A/D output
; Low byte
MOV DX,STCDRG ;Get status reg. address
WAITL2: IN AL,DX ;Repeat : read status reg.
AND AL,DOUTRDY ; Check data out ready bit
JZ  WAITL2 ;Until it is high
MOV DX,DATARG ;Get data reg. address
IN ALDX ;Read low byte of A/D
MOV AH,AL ;Store it in AH register
; High byte
MOV DX,STCDRG ;Get status reg. address
WAITH2: IN AL,DX ;Repeat : read status reg.
AND AL,DOUTRDY ; Check data out ready bit
1Z WAITH2 ;Until it is high
MOV DX,DATARG ;Get data register address
IN AL,DX ;Read high byte of A/D
XCH AH,AL ;Store it in AH register
; Store result
MOV ES:[DI],AL ;Store the low byte
INC DI
MOV ES:[DI],AH ;Store the high byte
INC DI
INC CHNNO
; Next channel
; Switch multiplexer
MOV DX,PORTA ;Get port A address
IN ALDX ;Read port A
AND AL,11110000B ;Set 4 LSBs to zero
OR AL,CHNNO ;Set the channel number
OuUT DX,AL ; Write the bit pattern

;..‘ ooooooooooooooooooooooooooooooo teecsoe secsnvase esesnvse .

; Provide delay for the window detector to settle

MOV
DELAY3: DEC
INZ

; Read window detector

MOV
IN

BL,3
BL
DELAY3

DX,PORTB
AL,DX

21

;Get port B address
;Read port B



AND

AL,00000111B

; Determine and store the gain code

MOV
SHR
JNC
INC
SHR
ADC
MOV

ADD3:

BL,0

AL,1
ADD3

BL

AL,1
AL,BL
ES:[DI],AL

MOV AH,AL

INC

DI

; Set DT2805 board A/D parameters

: A/D mode
MOV

WAITA3: IN
AND
JZ
MOV
ouT

; Gain code

WAITG3: IN
AND
INZ
MOV
MOV
ourt

; Channel number

MOV DX,STCDRG ;Get status register addr,
WAITC3: IN ALDX ;Repeat : status reg.
AND AL,DINFULL ; Check data in full bit
INZ WAITC3 ;Until it is low
MOV DX,DATARG ;Get data register addr.
MOV AL,CHANNEL :Get channel number
OUT DX,AL :Write it into data reg.
; Read and store A/D output
; Low byte
MOV DX,STCDRG ;Get status register addr.
WAITL3: IN AL,DX ;Repeat : status reg.
AND AL,DOUTRDY ; Check data out ready bit
JZ  WAITL3 ;Until it is high
MOV DX,DATARG ;Get data register addr.
IN AL,DX ;Read low byte of A/D
MOV AH,AL ;Store the value in AH reg.
; High byte
MOV DX,STCDRG ;Get status register addr.

DX,STCDRG
AL,DX
AL,RDYBIT
WAITA3J
AL,ADMODE
DX,AL

AL,DX
AL,DINFULL
WAITG3
DX,DATARG
AL,AH
DX,AL

22

;Mask unwanted bits

;Store the gain code
;Update byte counter

:Get status register addr.
;Repeat : read status reg.

; Check the ready bit
;Until it is high

;Get command mode
;Output it to command reg.

;Repeat : read status reg.
; Check data in full bit
;Until it is low

;Get data register addr.
;Get the gain code

; Write it to data register



WAITH3:

; Store result

; Next channel

IN ALDX
AND AL,DOUTRDY
JZ  WAITH3
MOV DX,DATARG
IN ALDX
XCHGAH,AL

MOV ES:[DI],AL
INC DI

MOV ES:[DI},AH
INC DI

INC CHNNO

; Switch multiplexer to next channel

MOV DX,PORTA

IN ALDX

AND AL,11110000B
OR AL,CHNNO
OuT DX,AL

;Repeat : read status reg.
; Check data out ready bit
;Until it is high .
;Get data register addr.
;Read high byte of A/D

;Store high byte in AH reg.

;Store the low byte
;Store the high byte

;Get port A address

;Read port A

yMask 4 LSBs

;Set the channel number
; Write the bit pattern

; Provide delay for the window detector to settle

DELAY4:

MOV BL,3
DEC BL
JNZ DELAY4

; Read window detector output

MOV DX,PORTB
IN ALDX

AND AL,00000111B

; Determine the store the gain code

ADD4:

MOV BL,0

SHR AL,l

JNC ADD4

INC BL

SHR AL,l

ADC AL,BL
MOV ES:[DI],AL
MOV AH,AL
INC DI

;Get port B address
;Read port B
;yMask out unwanted bits

;Store the gain code
;Update byte counter

; Set DT2805 A/D board parameters

s A/D mode

MOV DX,STCDRG

23

;Get status register addr.



WAITA4: IN AL,DX
AND AL,RDYBIT
JZ WAITA4
MOV AL,ADMODE
OUT DX,AL

; Gain code

WAITG4: IN AL,DX
AND AL,DINFULL
INZ WAITG4
MOV DX,DATARG
MOV AL,AH
ouT DX,AL

; Channel number
MOV DX,STCDRG
WAITC4:  IN AL,DX
AND AL,DINFULL
INZ WAITC4
MOV DX,DATARG
MOV AL,CHANNEL
OUT DX,AL

; Read & store A/D output

; Low byte
MOV DX,STCDRG
WAITLA: IN ALDX
AND AL,DOUTRDY
I1Z WAITLA
MOV DX,DATARG
IN AL,DX
MOV AH,AL

; High byte
MOV DX,STCDRG
WAITH4: IN ALDX
AND AL,DOUTRDY
JZ  WAITH4
MOV DX,DATARG
IN AL,DX
XCHG AH,AL

; Store A/D output
MOV ES:[DI],AL
INC DI
MOV ES:[DI],AH
INC DI
INC CHNNO

CMP CHNNOMAXCHN
JE  ENDINT
JMP NEXTCH

24

;Repeat : read status reg.

; Check the ready bit

; Until ready bit is high
:Get command mode
;Output it to command reg.

;Repeat : read status reg.
; Check data in full bit
;Until it is low

;Get data register addr.
;Get the gain code

; Write it to data register

;Get status register addr.
;Repeat : read status reg.
; Check data in full bit
;Until it is low

;Get data register addr.
;Get channel number
;Write it into data reg.

;Get status register addr.
;Repeat : read status reg.
; Check data out ready bit
;Until it is high

;Get data register address
;Read low byte of A/D
;Store it in AH register

;Get status register addr.
;Repeat : read status reg.
; Check data out ready bit
;Until it is high

;Get data register addr.
;Read high byte of A/D
;Store it 1n AH register

;Store the low byte
;Store the high byte

;If channel no < 8 then
:Read next channel



ENDINT: MOV DIREG,DI

POP DX ;Restore registers

POP BX

POP AX

IRET ;Return from interrupt
ISRSAM ENDP

; Initialise 8255A-5 PPI & disable interrupts

; Initialise PPI for ports A:O/P, B:I/P and C:O/P-I/P

ENDISR: MOV AX,CS
MOV DS,AX
MOV DX,CONREG ;Get PPI cont. reg. addr.
MOV AL,82H ;Get control reg. value
OuUT DX,AL ;Output bit pattern

: Disable interrupts
CLI ;Disable interrupt

IN AL,DX ;Set sampling enable high

; Store the ISR address at the interrupt vectors

PUSH DS ;Save DS reg.
MOV AX,00 ;Set DS to zero
MOV DS§,AX

; Sampling ISR vectors
; (For sampling IS%,\Pardwarc interrupt IRQS is used)
M

BX,36H ;CS of ISR at vector 36H
MOV WORD PTR [BX],CS
MOV BX,34H ;Offset at vector 34H

MOV DX,STARTAD
ADD DX, OFFSET ISRSAM
MOV WORD PTR [BX],DX

POP DS :Restore DS
ST1

; Initialise the interrupt controller #1

MOV AL,11H ;ICW1, edge trigger, -
; Master with icwd

OUT INTAO0O0,AL
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JMP
MOV
ouT

JMP
MOV

$+2
AL,8
INTAO1,AL

$+2
AL,4

; Master controller level 2

ouT

INTAO1,AL

$+2
AL,1
INTAO1,AL

$+2
AL,INTAO!

; Mask register imr contents

AND AL,11011111B

ouT

INTAO1,AL

;Initialise the program variables

MOV
MOV
MOV
MOV

MOV
MOV
MOV
MOV

MOV
MOV
MOV

SI,RESPTME
RESPTR,SI
DI, ADOFFST
DIREG, DI

SAMPNO,0
CHNNO,0
AX,ADSEG
ES,AX

AX,[BP+4]
TRIAL,AX
TRIALST,AX

; Determine sample number

MOV
MOV
MUL
MOV

MOV
MOV
MUL
MOV

MOV
MOV
MUL
MOV

MOV
ADD
MOV

AX,[BP+6]
BX,SAMPRT
BX
POSTCNV,AX

AX,[BP+8]
BX,SAMPRT
BX

CNV,AX

AX,[BP+10]
BX,SAMPRT
BX

PRECNV,AX

AX,PRECNV

AX,CNV
CNV,AX

26

; Wait state for i/o
;ICW2, interrupt type 2

s Wait state for i/o
;ICW3, -

s Wait state for i/o
;JICW4, master, 80286 mode

;s Wait state for i/o
;Get interrupt

;Enable interrupt level §
;Put new bit pattern in imr.

;SI reg. = 1st RT location
;DI reg. = 1st CNV ampl.
;Initialise sample number

;Initialise channel number
:Initialise es register

:Get trial number
;Record trial number

;:Get post-imp.-sti. time
;Sampling freq = 125
;AX:= AX * BX
;Post-imp.-sti. sam. no.
;Get ISI time

;ISI sample no.

;Get pre-war,-sti. time

;Pre-war.-sti. sam. no.

;Adjust pre-war.-sti.



MOV AX,CNV . ;Adjust post-imp.-sti.
ADD AX,POSTCNV
MOV POSTCNV,AX

; Determine total number of bytes / trial
MOV AX,POSTCNV ;Add to post-imp. sam. no.
MOV BX,24
: (8-channel * 3 bytes / sample = 24)
MUL BX
: (Total bytes / trial = total sample * 24)
MOV BYTESUM,AX ;Store the result

; Create CNYV file on hard disk
MOV AX,CS ;Initialise ds reg.
MOV DS§,AX
MOV DX,STARTAD ;Get proc. start addr.
ADD DX,OFFSET CNVFILE ;Initialise dx reg.
MOV AH,CREFILE ;Ah reg. = create code
MOV CX,FILEATR ;Cx reg. = file attribute
INT 21H ;Call dos function

; Open the CNYV file created
MOV DX,STARTAD ;Get proc. starting addr.
ADD DX,OFFSET NETPATH ;Initialise dx reg.
MOV AH,OPENFIL ;Get open file code
MOV AL,ACCODE ;Al reg. = access code
INT 21H - ;Call dos function
MOV FILEHDL,AX ;Store file handle

; Initialise counters #0 and #2

; Counter #0

: (This counter is used to divide the 1.SMHz clock signal

; by 1500)
MOV AL,00110110B ;Set counter 0 cont. reg.
MOV DX,CONTREG ;Get control reg. address
OUT DX,AL ; Write bit pattern

MOV AL,11011100B ;Set counter 0 to 1500
; (1500 = 0SDCH)

MOV DX,COUNTRO ;Get counter 0 address

OUT DX,AL ; Write the low byte
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IMP $+2
MOV AL,00000101B
OUT DX,AL ; Write the high byte

; COUNTER #2
; (This counter is initialised to provide the sampling
; signal, initial counter value 12000, 2EEOH)

MOV AL,10110110B ;Set counter2 control reg.
MOV DX,CONTREG ;Get control reg. address
OuT DX,AL ; Write bit pattern

MOV AL,11100000B ; Write counter LSB
MOV DX,COUNTR2

ouT DX,AL

IMP $+2

MOV AL,00101110B ; Write counter MSB
OouT DX,AL

; Push_button error detection initialisation routine

REPEAT: MOV DX,PORTC ;Get port C address
IN AL,DX ;Read port C
IMP $+2

AND AL,11111101B
; Set error detector circuit output low

OUT DX,AL

JMP $+2

JIMP $+2

JIMP $+2

JMP $+2

MOV DX,PORTC
: Enable the error detector circuit

IN ALDX

OR  AL,00000010B

OUT DX,AL

JMP $+2

MOV FLAG,0 ;Clear error det. flag

: Generate a random number.

: The number is produced by reading the two L.s.b.s of the
; system clock then adding one to it and multiplying the

; result by 100, providing 100 to 400.

MOV AH,00 ;Prepare ah register

INT 1AH ;Call bios to read clock
; Low byte of the clock output is in dx register

MOV AX,DX

AND AL,00000011B ;Mask out unwanted bits

ADD AL,1l ;Add one to the result

MOV AH,00 ;Reset AH reg.

MOV BX,100
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MUL BX ;AX 1= AX *BX
MOV RANDNO,AX ;Save the number generated

; Initialise 8253, PTM #2 counter #0.

; This counter is used for reaction time measurement

; Its gate is connected to tone generator circuit.
MOV AL,00110000B ;CTRO, mode 0, 16-bit
MOV DX,PTM2CRG ;Get control reg. address
OuUT DX,AL ; Write the bit pattern

: Counter initial value = FFFFH
MOV AL,OFFH
MOV DX,PTM2CRO
OUT DX,AL
JIMP $+2
OouT DX,AL

: Switch the operator LED off
; (This LED is connected to port A bit 5)
MOV DX,PORTA ;Get port A address
IN AL,DX ;Read port A
AND AL,11011111B ;Set bit 5 low
JIMP $+42
OUT DX,AL

; Check the operator switch for initiation of trials
; (Operator switch is connected to port B bit 4)

MOV DX,PORTB ;Get port B address
NOTRDY: IN ALDX ;Repeat : read port B

IMP  $+2

AND AL,00010000B ; Check bit 4

JZ  NOTRDY ;Until ready condition

; Switch the LED on to indicate recording started

MOV DX,PORTA ;Get port A address
IN AL,DX ;Read port A

OR  AL,00100000B ;Set bit 5 high
IMP $+2

OouUT DX,AL

; Enable sampling interrupt
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STI , ;Enable processor interrupt
MOV DX,PORTA ;Enable sampling interrupt
IN ALDX

AND AL,11101111B

OUT DX,AL

JMP  $+2

; Wait until pre-warning-stimulus recording is complete
MOV AX,CS
MOV DS,AX
PRECS: STI
MOV AX,PRECNV
CMP AX,SAMPNO
JNE PRECS

; Trigger click generator

MOV DX,PORTA ;Get port a address

IN ALDX sRead port A

OR  AL,01000000B ;Set bit 6 high

OouT DX,AL

MOV BL,3 ;Provide delay
HCLICK: DEC BL

JNZ HCLICK

AND AL,10111111B ;Set bit 6 low

OuUT DX,AL

¢« MOV BL,3 ;Provide delay

LCLICK: DEC BL

INZ LCLICK

OR  AL,01000000B ;Set bit 6 high again

OUT DX,AL

: Wait until inter-stimulus-interval recording is complete
CNVS STI

MOV AX,CNV

CMP AX,SAMPNO

JNE CNVS

; Check if error has occurred in pressing push-button

MOV DX,PORTB ;Get portB address
IN ALDX ;Read portB
IMP $+42



; Check the output of the error detector circuit
AND AL,00100000B
JZ TONE . ;If no error then tone
MOV FLAG,1 ;Else set error flag to 1
JMP SHORT PCNVS ;No tone if error

;=====———_——-—-—_—_=—-_===——===—_—_—‘—==——==————=======

; Generate the tone (if no error in pressing push-button)

TONE: MOV DX,PORTA ;Get port A address
IN AL,DX ;Read port A
OR AL,10000000B ;Set tone line high
OUT DX,AL

MOV BL,3
HTONE: DEC BL
JNZ HTONE

IMP $+2

AND AL,01111111B :Set tone line low
ouT DX,AL

JIMP $+2

MOV BL,3 ;Provide delay
LTONE: DEC BL

JNZ LTONE

IMP $+2

OR  AL,10000000B ;Set tone line high again

: Wait for post-imperative-stimulus recording
PCNVS STI

MOV DX,PORTA ;Get port A

IN ALDX

IMP $+2

OR  AL,00010000B ;Set sampling line(4) high
OUT DX,AL

JMP  $+2

: Read and store reaction time (RT) from PTM2 counter #0
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MOV
MOV
ouT
MOV
IN
JIMP
MOV
IN

AL,00000000B
DX,PTM2CRG
DX,AL
DX,PTM2CRO
AL,DX

$+2

AH,AL
AL,DX

XCHGAL,AH

MOV

CX,AX

;Control reg. read mode

;Read lower byte

;Read most sig. byte

;RT := FFFFHex - AX

MOV AX, 1111111111111111B

SUB

CMP
JE

JMP SHORT INITPS

AXCX

FLAG,0
STRESP

; Store the reaction time

MOV
MOV
ADD
MOV

STRESP:

SLLRESPTR
ES:[SI],AX
SI,2

RESPTR,SI

; Initiate the ISI random time

ISI timing is done by PTM1 counter #1

INTTPS: MOV
IN
AND
ouT

DX,PORTC
AL, DX
AL,lllllllOB
DX,AL

: Control register: mode 0, 16-bits

MOV
MOV
ouT

: Enable counter #1
MOV
IN
OR
(0)

=

AL,01110000B
DX,CONTREG
DX,AL

AX,RANDNO
DX,COUNTRI
DX,AL

$+2

AL,AH
DX,AL

DX,PORTC
AL,DX
AL,00000001B
DX,AL

:Check if error occurred
;If flag = 1 then error

;Store reaction time

;Get port C address
sRead port C
:Disable the counter

;Get random number
;Get counter] address
;Write the low byte

;Write the high byte

:Get port C address

;Set counter gate high

; Wait until ISI is over by looking at port B bit 3

MOV

DX,PORTB
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PAUSE: IN AL,DX
AND AL,00001000B

IZ PAUSE

; Write A/D output to hard disk
WRITE: CMP FLAG,1
JE CHECK
MOV BX,FILEHDL
MOV DX,ADOFFST
MOV CX,BYTESUM
MOV DI, ADSEG

MOV DS,DI
MOV H,WRCODE

;JIf Bit = O then
,Waxt

:Check for trial error

;If error then skip data
:Get file handle into BX
;DX = offset address
;CX = no. of bytes/trial
;DS = segment address

;Get write code

; (N.B. the AH reg. value is changed after int. 21h)

STI
INT 21H ;Call dos function
MOV AX,CS ;Reinitialise ds reg.
MOV DS,AX
; Check the number of trials recorded
CHECK CMP FLAG,1 :Check for error
; If error has occurred, do not decrease trial no.
JE NOTDEC
DEC TRIAL ;Update trial no.
NOTDEC: * MOV SAMPNO,0 ;Update sample number
MOV DI, ADOFFST ;Update the byte pointers
MOV DIREG,DI
MOV AX,TRIAL ;Get no. of trials recorded
CMP AX,0 ;If trial = O then
JE  RESPT ;Experiment complete
JMP REPEAT ;Else do next tri

; Routine to store the reaction times on the hard disk

RESPT: MOV AX,TRIALST
MOV BX,2
MUL BX
MOV CX,AX
MOV BX,FILEHDL
MOV DX,RESPTME
MOV DI,ADSEG
MOV DS DI
MOV AH WRCODE
INT 2IH

3

:Determine the no. of -
; reaction time bytes

;Store byte no. into CX
;Get the file handle
;Get RTs 1st location
;Get segment address

;Get the write code
;Transfer the data



MOV AX,CS

MOV DS§,AX
; Close the CNVAMP.DAT file
EXIT: MOV BX,FILEHDL ;Get the file handle
MOV AH CLOSFIL ;Get code for closing file
INT 21H ;Call dos function
JMP POPREG

; Restore the registers

POPREG: POP SI
POP DI
POP DS
POP DX

; Deallocate variable from stack and return to Pascal prog.

RET 8
SAMPLE ENDP ;End sample procedure
CODE ENDS ;End code segment
END SAMPLE ;End routine

;***#***#***#*#‘# END OF SAMPLEI PROCEDURE sk koo ok ok



Appendix B List of Patients' Medication

The type of medication for the schizophrenic patients included chlorpromazine
(n=35), trifluoperazine (n=4), haloperidol (n=3), clopenthixol (n=2), droperidol
(n=1), sulpiride (n=4), pimozoide (n=1), fluphenazine decanoate (n=5) and
haloperidol decanoate (n=2). The daily dosage of these drugs in chlorpromazine
equivalents ranged from 100mg to 3025mg, mean was 1178mg and standard
deviation was 933.32mg. The type of medication for the Parkinson's disease
patients included sinemet, madopar, bromocriptine, domperidone and selegiline.
The type of medication for the Huntington's disease patients included motipress

and kurispas.
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Appendix C Listing of the Program Used to Preprocess and Average the
CNYV Waveforms and to Convert the Data Recordings for Transfer to the
Mainframe Computer

PROGRAM PROC;

{ Program name = PROC.PAS
This Turbo Pascal program can preprocess and average the CNV
waveforms using a PC or if is required it can prepare the data
to be preprocessed on the IBM main frame computer.

CONST

TYPE
DATA_ARRAY = ARRAY [1..1500] OF INTEGER;
MATRIX = ARRAY [l..4, 1..4] OF REAL;
VECTOR = ARRAY [l. 4] OF REAL;
REAL_ARRAY = ARRAY [1..100] OF REAL
REAL_DATA = ARRAY [1..1500]) OF REAL

VAR
OPTION : CHAR;
HN_FIL : TEXT;
VLREVRREHLREHRRE REAL DATA;
CNV_RE, CNyv, AVERAGE CNV :REAL DATA

{ }

PROCEDURE MATRIX_SOL (A : MATRIX;

B : VECTOR;

VAR X : VECTOR;

VAR SINGULARITY_DETECTED :
BOOLEAN);

CONST
N =4,

TYPE
SUBSCRIPT = 1..N;

PROCEDURE ELIMINATION (N : INTEGER;
VAR A : MATRIX;
VAR B : VECTOR);

CONST
ASSUMED_ZERO = 0.00001;

VAR

L], K : SUBSCRIPT;
MULTIPLIER : REAL;
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PROCEDURE SWAP (VAR X,Y : REAL);

VAR
T : REAL;
BEGIN
T:=X;
X:=Y,
Y:=T
END;

PROCEDURE REORDEREQUATIONS (N, I: INTEGER;
VAR A : MATRIX;
VAR B : VECTOR);

VAR
K, L, J : SUBSCRIPT;

BEGIN I
L:=1;
FORK :=1+1TONDO
IF ABSK(A[K,I]) > ABS(A[L,I]) THEN
L:=K;

IF ABS (A[L,I]) <= ASSUMED_ZERO THEN
SINGULARITY DETECTED :="TRUE

ELSE
IFI <> L THEN
BEGIN
FORJ:=1TON DO
SWAP (A[LT], A[L,J]);
SWAP(B[T], B[L))

- END
END; {reorderequations}

BEGIN {eliminations}
SINGIULARI'I'Y_DETECTED := FALSE;
I:=1;
REPEAT
REORDEREQUATIONS (N,I,A,B);
IF NOT SINGULARITY DETECTED THEN
FORK :=1+1TONDO
BEGIN
MULTIPLIER := A[K,I] / A[LI];
FOR J:=1+1TON DO
A[K,J] := A[K,J] - MULTIPLIER * A[LJ];
B[K] : = B[K] - MULTIPLIER * B[IJ;
A[K,I] := 0;
END;
It=1+1;
UNTIL (I = N) OR SINGULARITY_ DETECTED;

IF NOT SINGULARITY_ DETECTED THEN
SINGULARITY_DETECTED := ABS(A[N,N]) <= ASSUMED_ZERO
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END; {elimination}

PROCEDURE BACK_SUBST (N : INTEGER;
VAR A: MATRIX
VAR B,X : VECIUR);

VAR
I, J : SUBSCRIPT;
S : REAL;

BEGIN
FOR 1 := N DOWNTO 1 DO
BEGIN
S := B[I];
FORJ:=1+ 1TONDO
S := S - A[LJ] * X[J];
X[] := S/ A[L]I]
END
END;

BEGIN
{main procedure}

ELIMINATION (N,A,B);
IF SINGULARITY_DETECTED THEN
BEGIN
WRITELN;
WRITELN ('The equations are smgular "%
WRITELN ('Corrective action taken."')
END {begin}

ELSE
END;
{ }

PROCEDURE MEAN (SAMPLES : INTEGER;
VAR DATA : DATA_ARRAY);

{Procedure to remove the mean from data}
VAR

BACK_SUBST (N,A,B,X);

I : INTEGER;
MEAN_VALUE : REAL;

BEGIN
MEAN_VALUE : = 0;
FOR I 7=1 TO SAMPLES DO
MEAN_VALUE := MEAN_VALUE + DATA [I];
MEAN_VALUE := MEAN_VALUE / SAMPLES;
FOR I := 1 TO SAMPLES DO
DATA[T] : = ROUND(DATA[T] - MEAN_VALUE);
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{

PROCEDURE OARM (SAMPLES : INTEGER;

VAR VL, VR, HL, HR : DATA_ARRAY;

RAD, NEW_MONT : CHAR;

VAR CNV TDATA_ARRAY;

VAR SINGULARITY_DETECTED : BOOLEAN);

{Procedure to correct CNV data by removing OA}

VAR

BEGIN

I : INTEGER;

PVL, B, CCL, C, PVR, D, CCR, PHL : REAL;
MVL, MVR, MHL, MHR, A, PHR : REAL;

X : MATRIX;

Y, K : VECTOR;

{convert signals from uV to mV}

FOR 1 := 1 TO SAMPLES DO

BEGIN
VL _RE[]] := VL[] * 0.001;
VR _RE[I] := VR[I] * 0.001;
HL _RE(I] := HL[I] * 0.001;
HR_RE[I] := HR[I] * 0.001;
CNV_RE[I] := CNV[I] * 0.001

END;

IF (NEW_MONT="Y')OR(NEW_MONT="'y')) AND
i(RAD< >'R')AND(RAD< > 'r')) THEN
new montage, without rad. components}
BEGIN
FORI:= 1 TO SAMPLES DO

VL_RE[T] := HL_RE(T} * HR_RE[T]

END
ELSE
IF (RAD <> 'R') AND (RAD < >'r') THEN
{old montage}
BEGIN
{calculate VL components}
FOR I := 1 TO SAMPLES DO
VL_RE[T} := HL_RE[I] * HR_RE(I]
END;
{calculate correlation sum of product}
PVL:=0;
B :=0;
CCL := 0;
C :=0;
PVR := 0;
D :=0;
CCR:=0;
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PHL := 0;
A :=0;
PHR := 0;
MVL :=0;
MVR := 0;
MHL := 0;
MHR := 0;

FOR I :=1 TO SAMPLES DO

BEGIN
PVL := PVL + VL_RE(T] * VL_RE[I];
B :=B <+ VL_RE[I] * VR_RE[I];
CCL := CCL + VL_RE(l] *HL RE[T];

CCR := CCR + VR_RE[] * HR_RE[I];
PHL := PHL + HL RE{I] * HL RE[I];
A :=A + HL RE[] * HR RE[];
PHR := PHR + HR_RE[] * HR_RE[]
END;
FORI1 := 1TO SAMPLES DO
BEGIN
MVL := MVL + CNV_RE[I] * VL_RE(I);
MVR := MVR + CNV_RE[I] * VR_RE[]];
MHL := MHL + CNV_RE[I] * HL_RE[I];
MHR := MHR + CNV_RE[I] * HR_RE(I]
END;
{find K1, K2, K3 and K4}
X[1,1] := PVL;
X[1,2] := B;
X[1,3] := CCL;
X[1,4] := C;
X[2,1] := B;
X[2,2] := PVR;
X[2,3] := D;
X[2,4] := CCR;
X[3,1] := CCL;
X[3,2] := D;
X[3,3] := PHL;
X[3,4] := A;
X[4,1] := C;
X[4,2] := CCR;
X[4,3] := A,
X[4,4] := PHR;
Y[1] := MVL;
Y[2] := MVR;
Y[3] := MHL;
Y[4] := MHR;

MATRIX_SOL (X, Y, K, SINGULARITY_DETECTED);
IF NOT SINGULARITY_DETECTED THEN
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BEGIN
{correct the CNV channel}
FORI:= 1 TO SAMPLES DO
CNV_RE[T] := CNV_RE[T] -
(K[11* VL_RE[T] + K[2] * VR_RE[T] +
K[3] * HL_RE(1] + K[4] * HR_RE[I]);
{convert CNV signal back to uV}
FOR 1 := 1 TO SAMPLES DO
CNV[I] := ROUND (CNV_RE([I] * 1000);
END;{BEGIN
END; {OAR procedure}

{ }

PROCEDURE SECTAV (NPA, NPB : INTEGER;
CNV  : REAL DATA;
VAR SAV : REAL);

{procedure to average the points between NPA & NPB
of the CNV data}

VAR
I : INTEGER;

BEGIN
SAV := 0;
FOR I := NPA TO NPB DO
SAV := SAV + CNV[I];
SAV := SAV / (NPB - NPA);

END; {procedure sectav}

PROCEDURE BAS_ LNE (N, NP1, NP2, NP3, NP4 : INTEGER;
VAR CNV : REAL_DATA);

{procedure to correct the baseline of the CNV signal}

VAR
I, Z1, Z2 : INTEGER;
SAV], SAV2, GRAD : REAL;

BEGIN
SECTAV (NP1, NP2, CNV, SAV1);
SECTAV (NP3, NP4, CNV, SAV2);
GRAD := (SAV2 - SAV1) / (NP3 - NP2);

FORI:= 1 TO NP2 DO
CNV[I] : = CNV[I] - SAVI;

Zl :=NP2 + 1;
FORI:= Z1 TO NP3 DO
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CNV[T] := CNV[I] - SAV1 - GRAD * (I - NP2);
Z2 := NP3 + 1;
FORI:=Z2 TON DO
CNV[I] : = CNV[I] - SAV2;

END; {procedure bas_Ine}

{ }

PROCEDURE FILTER (SAMPLES M : INTEGER;
H : REAL_ARRAY;
VARCNV : REAL DATA),

{procedure to low-pass filter the CNV data using FIR.
The number of data points is equal to samples and
the data is returned is CNV array}

VAR
K, NEW, N, FILT_SAMP : INTEGER;
SUM T REAL;
YOUT REAL DATA;
X ARRAY f1. 100] OF REAL;
BEGIN
{initialise the filter buffer}
FOR K := M DOWNTO 1 DO
BEGIN
N:=1;
X[K] := CNVI[NJ;
N:=N+1;
END;
NEW := M;
FILT_SAMP := SAMPLES - M;
{do the filtering}
FOR N := 1 TO FILT_SAMP DO
BEGIN :
SUM := 0;

FORK :='1TO M DO
SUM := SUM + H[K] * X[K];
YOUT[N] : = SUM;

{shift new data into x[n] buffer}
FORK := M DOWNTO 2 DO

X[K] X[K-1];
NEW := NEW + 1;
X[1] := CNV[NEW],
END;{for}
FILT SAMP := FILT_SAMP + 1;
SUM:=0;

FORK :=1TOM DO
SUM := SUM + H[K] * X[K];
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YOUT [FILT_SAMP] := SUM;

FILT SAMP := FILT SAMP + 1,
FOR'N := FILT_SAMP TO SAMPLES DO
YOUTI[N] := 0;

FORK := 1 TO SAMPLES DO
CNV[K] := YOUT[K]

END; {procedure filter}

{

PROCEDURE CONVERT;
{procedure to convert a data file to the format

required for preprocessing on the mainframe
computer or preprocess the data on a PC}

CONST

TYPE

VAR

BEGIN

SAMPLE_RATE = 125;
CHANNEL_NO = §;
RANGE = 20;
BASE_FACTOR = 4096;
MAX_VOLTAGE = 10;

{baseline correction points}
NP1 = 1; ({initial point}
NP2 = 125 S1 point
NP3 = 250; S2 point
NP4 = 1500; {final point}

NAME = STRING [12];

NOI1, NO2, NUMBER, AD_GAIN, TRIAL : INTEGER;
CHANNEL BI_VOLT, N, M, I, SAMPLES : INTEGER
MAX_BATCH, BA'PCH NO DURATION TRIAL_NO : INTEGER;
PCHI, PCH2, PCH3 PCH4 PCHS : INTEGER

FAC'IUR RESOLUTION TIME : REAL;

VL, VR, VRC VRR, HL HR, CNV], CNV2: DATA_ARRAY;

H : REAL ARRAY

ORG_FILE _ NAME CONV _FILE NAME, SIN_TRI_NAM : NAME;
ORG FILE, CONV’ FILE, SIN_TRI FIL TEX‘T'

COMP OUTPUT ELEMENT ELEMENTZ A, RAD : CHAR;
BASE_LINE, FILTERING DECISION OAR INC : CHAR;

NEW MONT OAR OPI'ION SIN TRI OP : CHAR;
RE_ENTER : BOOI:EAN

K -VECTOR

TRIAL SET : SET OF 1..32;

SINGUIARITY DETECTED : BOOLEAN;

REPEAT
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CLRSCR;

WRrrEm ('““t##ttttt‘t“‘t“tt“t#‘#‘#t‘tt#t##');
WRITELN ('* Routine to preprocess the CNV data *');
WRITELN ('* on the PC or prepare the CNV data *');
WRITELN ('* for processing on the mainframe *');
WRI'I'ELN '“"“‘t‘t'tt.‘#'t'#l“‘tt#t.tt#t##‘#*')’
RE_ENTER := FALSE;

WRITELN;

WRITELN;
WRITELN ('Please enter the following :');
WRITELN

WRITE ('The original data filename : ');

READLN (ORG_ FILE NAME);
WRITE ('The converted file name : *);
READLN (CONV_FILE_NAME);
WRITE ('Channel 1 to 5 polarities 1/-1 :
READLN (PCH1, PCH2, PCH3, PCH4 PCHS),
WRITE ('The number of tnals in the recordmg %
READLN (TRIAL);
WRITE ('Include all trials ? Enter "Y" or *N*" : ');
READLN (DECISION);
TRIAL SET :={];
IF (DECISION ='Y"') OR (DECISION ='y') THEN
BEGIN

FOR N := 1 TO TRIAL DO

TRIAL_SET := TRIAL SET + [N];
END

BEGIN
WRITE ('How many trials to be included : ');
READLN (TRIAL_NO);
FOR I: =1 TO TRIAL_NO DO
BEGIN
‘ WRITE ('The required trial number : ');
READLN (NUMBER),
TRIAL_SET := TRIAL_SET + [NUMBER];
END; {for}
END;{else}

WRITE ('The duration of each trial : ');
READLN (DURATION);

ELSE

WRITE ('Is recording done with new montage?');
WRITE(', YorN:"');

READLN (NEW_MONT);

IF (NEW MONT = 'N') OR (NEW_MONT ='n') THEN

N
ELSE
BEGIN
WRITE ('To include radial components in OAR');
WRITE (' enter "R", else "N" : ');
READLN (RAD);
END; {else}

WRITE ('PC preprocessing, enter "P",");



WRITE (' MF preprocessing enter "M" : ');
READLN (OAR_OPTION);

IF (OAR_OPTION = 'P') OR (OAR_OPTION = 'p') THEN
BEGIN
WRITE ('For Baseline correction enter "B",');
WRITE (' else "N* : ');
READLN (BASE_LINE);
WRITE ('Carry out OAR 7, "Y" or "N" : ');
READLN (OAR_INC);
WRITE ('For digital filtering, enter "F", ');
WRITE (‘else "N" : *);
READLN (FILTERING);

WRITE ('For single trial file ');
WRITE (‘enter "S®, else "N" : ');
READLN (SIN_TRI_OP);
IF (SIN_TRI_OP = "S")OR(SIN_TRI_OP = 's') THEN
BEGIN
WRITE ('Enter single trial filename : ');
READLN (SIN_TRI_NAM);
END; {if}
END; {if}

WRITELN;

WRITELN;

WRITE('Above entries OK ? "Y", or "N" : ');
READLN (A);

IF (A="Y"') OR (A='y') THEN

RE ENTER := TRUE;

UNTIL RE_ENTER = TRUE;
CLRSCR;

ASSIGN (ORG_FILE, ORG_FILE_NAME);
RESET (ORG_FILE);

ASSIGN (CONV_FILE, CONV_FILE_NAME);
REWRITE (CONV_FILE);

IF (SIN_TRI_OP = 'S') OR (SIN_TRI_OP = 's') THEN
BEGIN .

ASSIGN (SIN_TRI_FIL, SIN_TRI_NAM),

REWRITE (SIN_TRI_FIL);

END; {if}

IF (FILTERING = 'F') OR (FILTERING = 'f') THEN
{if filtering option then read the coefficients}
BEGIN

ASSIGN (HN_FIL, "HNVALS.DAT");
RESET (HN _FIL);
READLN (HN _FIL, M);
FORN:=1TOMDO
READLN (HN_FIL, H[N));
CLOSE (HN_FIL);

END:; {for}
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RESOLUTION := RANGE / BASE_FACTOR;
SAMPLES := SAMPLE_RATE * DURATION

{initialise variables}

BATCH_NO := 0;

FORIL:=1TO SAMPLES DO
AVERAGE_CNV(T] : = 0;

FOR N :=1 TO TRIAL DO
BEGIN
IF (N IN TRIAL_SET) THEN
BEGIN

GOTOXY(XP+13,YP+38);
WRITE ('Processing trial number *,n:3);

{read data for one trial}
I:=1;
REPEAT
FOR CHANNEL := 1 TO 6 DO
BEGIN
READ (ORG_FILE, COMP_OUTPUT,
ELEMENT]1, ELEMEN'I?),
NOI : = ORD(ELEMENTI);
NO2 := ORD(ELEMENTY);
NUMBER := NO1 + (NO2 * 256);
FACTOR := RESOLUTION * NUMBER;
CASE ORD(COMP_OUTPUT) OF
0:AD GAIN:=I;
1: AD_GAIN:= 10;
2:AD GAIN:= 100
3: AD_GAIN:= 500
END; {end}

BI_VOLT := ROUND (( (FACTOR -
MAX_VOLTAGE)/AD_GAIN ) * 200);
CASE CHANNEL OF~

: VL [T} := PCH1 * BI_VOLT;
: VR[] := PCH2 * BI_ VOLT
: HL [T} := PCH3 * BI vox:r
: HR [1] := PCH4 * BI_ voxm
: CNVI1 [T] := PCHS *BL_ VOLT:
: CNV2 [1] := PCHS * BI_VOLT;

O\thNt—

END; {mc}
END; {for channel

READ (ORG_FILE, A,A,A,A A A);

I:=1+1;
UNTIL I = SAMPLES + 1;

{process the data if radial components is included}
IF (RAD='R") OR (RAD="r') OR (NEW_MONT="Y")
OR (NEW_MONT='y') THEN
BEGIN
FOR I:= 1 TO SAMPLES DO
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BEGIN
{calculate the radial right, VL
and VR components}
VRC[I] := VL[] - VR[]; {ver. right}
IF (RAD="'R') OR (RAD='r') THEN
{radial right}
VRR[I] := ROUND (0.5 * (VL[I] + VR[I]))
ELSE
VRR[I] := 0;
{vertical or radial right}
VL[I] := VRR[I];
VR[I] := VRC[I]; {vertical right}
{reorder channel 3 and 4}
VRR[I]} : = HL[I];
HL[I] : = HR[I];
HR[I] := VRR[I};
{when rad. comp. is included VRR refers to

END; {if)

{if MF OAR is required, form a converted file}
IF E&O&R_OFI’ION ='M') OR (OAR_OPTION ='m') THEN
B

{write data for one trial into the

converted file}

WRITELN (CONV_FILE, BATCH_NO:4);

FORI:=1TO 1024 DO

BEGIN
WRITE (CONV_FILE, VL[1]:5);
IF IMOD 16 = 0 THEN

‘ WRITELN (CONV_FILE);
END;
BATCH_NO := BATCH_NO +1;

WRITELN (CONV_FILE, BATCH_NO:4);

FOR1I:=1TO 1024 DO

BEGIN
WRITE (CONV_FILE, VR([I]:S);
IF IMOD 16 = 0 THEN
WRITELN (CONV_FILE);

END;
BATCH_NO := BATCH_NO +1;

WRITELN (CONV_FILE, BATCH_NO:4);

FORI:=1TO 1024 DO

BEGIN
WRITE (CONV_FILE, HL[I]:5);
IF IMOD 16 = 0 THEN
WRITELN (CONV_FILE);

END;

BATCH_NO := BATCH_NO +1,;

WRITELN (CONV_FILE, BATCH_NO:4);
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FOR I:= 1 TO 1024 DO
BEGIN
WRITE (CONV_FILE, HR[I]:S);
IF I MOD 16 = 0 THEN
WRITELN (CONV_FILE);
END;

BATCH_NO := BATCH_NO +1;

WRITELN (CONV_FILE, BATCH_NO:4);

FOR I:= 1 TO 1024 DO

BEGIN
WRITE (CONV_FILE, CNV1[I]:5);
IF I MOD 16 = 0 THEN
WRITELN (CONV_FILE);

END;
BATCH_NO := BATCH_NO +1;

WRITELN (CONV_FILE, BATCH_NO:4);

FOR1:= 1TO 1024 DO

BEGIN
WRITE (CONV_FILE, CNV2[1]:5);
IF 1MOD 16 = 0 THEN
WRITELN (CONV_FILE);

END;

BATCH_NO := BATCH_NO +1;

END; {if oar_option=m}

IF (OAR_OPTION = 'P') OR (OAR_OPTION = 'p') THEN

{process CNV on the PC}

BEGIN

{remove the mean from data}

MEAN (SAMPLES, VL);

MEAN (SAMPLES, VR);

MEAN (SAMPLES, HL);

MEAN (SAMPLES, HR);

MEAN (SAMPLES, CNV1);

IF (OAR_INC = 'Y"') OR (OAR_INC = 'y') THEN
{call OAR procedure}

OARM (SAMPLES, VL, VR, HL,HR,RAD,NEW_MONT,
CNV1, SINGULARITY_DETECTED);

FORI := 1 TO SAMPLES DO
CNV[T] := CNVI[I];

IF NOT SINGULARITY_DETECTED THEN
{if singularity is not detected in OAR
process}
BEGIN

IF (FILTERING = 'F') OR

LTERING = 'f') THEN
filter the CNV data}
FILTER (SAMPLES, M, H, CNV);

IF (BASE_LINE='B") OR (BASE_LINE="b")
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THEN

{remove the base line from data}
BAS_LNE (SAMPLES, NP1, NP2, NP3,
NP4, CNV);

FORI:= 1 TO SAMPLES DO
{average the CNV data}
AVERAGE_CNV [I] : = AVERAGE_CNV[I]
+ CNVI[I];

IF (SIN_TRI OP = 'S') OR (SIN_TRI_OP
= 's") THEN
{if single trial file is required
then form the file}
BEGIN
FOR1I := 1 TO SAMPLES DO
WRITE (SIN_TRI_FIL, CNV[I]

:12:8,' ');
WRITELN (SIN_TRI_FIL);
END;{if}
END; {if not singularity detected}
END; {oar on pc}
END
ELSE
BEGIN
{skip the unwanted trial}
FORI := 1 TO SAMPLES DO
READ (ORG_FILe, A,A,AAAAAAAAAA
AAAAAAAAAA A, A);
END;
END; {for n}

IF (OAR_OPTION = 'P') OR (OAR_OPTION = 'p') THEN
BEGIN

FOR I := 1 TO SAMPLES DO
BEGIN
: IF (DECISION = 'Y') OR (DECISION = 'y') THEN
EII:ISV[I] := AVERAGE_CNV[I]/ TRIAL
E
CNV[I] : = AVERAGE_CNV[I}/ TRIAL_NO
END; {for i}

FOR1:= 1 TO SAMPLES DO
BEGIN
TIME := (1*12)/SAMPLES;
WRITELN (CONV_FILE, TIME:2:5,
',CNV[1]:5:4);
END {for i}
END; {if}

CLOSE (ORG_FILE);
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CLOSE (CONV_FILE);
IF (OAR_OPTION ='P') OR (OAR_OPTION ='p') THEN
CLOSE (SIN_TRI_FIL);

END; {convert procedure}

WRITELN ('Please enter:');

GOTOXY (XP,YP+2);

WRITELN (' "C" for MF Conversion or PC processing');
GOTOXY (XP,YP+4);

WRITE (' "E" to End’);

GOTOXY (XP,YP+6);

WRITE (‘option required ? ');

READLN (OPTION);

IF (OPTION = 'C') OR (OPTION = ‘c') THEN
CONVERT;

{declare the process is complete}
SOUND (500);
DELAY (1000);
NOS OUND;

UNTIL (OPTION = 'E') or (OPTION = ‘e')

END. {program proc}
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Appendix D Listing of the Program Used to Obtain CNV Features From the
Inter-Stimulus Interval Section of the CNV

PROGRAM ISIFEA;

{ Program Name: ISIFEA.PAS
This program is used to extract features from the inter-
stimulus section of the CNV.

The features are obtained by averaging every 4 consecutive
sample values in a section from sample number 174 to 237.
This process produces 16 features.

This program asks for:

1) the name of a file for storing the CNV features
2) the number of subjects to be included

3) the names of the averaged preprocessed files.

}

CONST
TRIAL_LENGTH = 1500;
VAR

SAMPLE_NUMBER, SAMPLE, N, K, SUBJECT, SUBJ NO:
INTEGER; : -
TIME, FEATURE : REAL;

DATA : ARRAY [1..TRIAL_LENGTH] OF REAL;

IN_FILE, OUT _FILE : TEXT;

IN_FILE_NAME, OUT_FILE_NAME : STRING [12];

BEGIN

WRITE ('Enter out-file name: > ');

READLN (OUT_FILE NAME);

ASSIGN (OUT _FILE, OUT_FILE_NAME);

REWRITE (OUT_FILE);

WRITE ('Enter the number of subjects > ');

READLN (SUBJ_NO);

FOR SUBJECT := 1 TO SUBJ_NO DO

BEGIN
WRITE ('Enter in-file name > ',SUBJECT:3,' ');
READLN (IN_FILE NAME);
ASSIGN (IN_FILE, IN_FILE_NAME);
RESET (IN_FILE);

{read the CNV samples}
FOR SAMPLE NUMBER :=1 TO TRIAL LENGTH DO
READLN (IN_FILE, TIME, DATA[SAMPLE_NUMBERY));

{generate the CNV features}
SAMPLE := 17%4;
FEATURE := 0;
FORK:=1TO 16 DO
BEGIN
FORN:=1TO04 DO
BEGIN
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_FEATURE := DATA [SAMPLE] + FEATURE;
SAMPLE := SAMPLE + 1;
END;
FEATURE := FEATURE / 4;
WRITE (OUT_FILE, FEATURE:9:4);
FEATURE := 0;
IF K=8 THEN
WRITELN (OUT_FILE);
END;

WRITELN (OUT_FILE,' ',IN_FILE_NAME);
CLOSE (IN_FILE);

END;

CLOSE (OUT_FILE);
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Appendix E Procedure to Compute Correlation Matrix
If there are n individuals, and p variables (features) are obtained from the CNV
response of each individual, The nxp data matrix can be represented by,

. -
x11 x12 LN ) x1p
le x22 LA ] xzp
I = . . . .
Xp1 %2 * xnp

where X, represents the value of variable j obtained from individual i.
The procedure for calculating the correlation matrix (R) is as follows:

i) The row vector of the means of X, denoted by x (ie. the centroid) is computed

using,

;' = — 1'X coc(l)

where the row vector 1' denotes a 1xn unit row vector (note the
symbol ' indicates transpose).
ii) The mean corrected matrix X‘ is determined by,

I = X - 1x° eee(2)

iii) The mean corrected sums-of-squares and cross-products matrix (S) is
calculated using,

SOX'd!d ees{3)
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iv) The matrix whose entries along the main diagonal are the reciprocals of the
square roots of the standard deviations of the variables in X is obtained. Let this

matrix be D%, therefore,

o -

1/v.11 o ° L ) o
pHa|o0 1Vegy O eu. O
0 0 . - IIV'ppd

vii) The correlation matrix R can be found from pre- and post-multiplying S by

D%, ie.,

1
R= — (n"’ 8 n"‘) eee(4)
n-1
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Appendix F Listing of the Programs Used to Carry Out Cluster
Analysis

Note:
PS =1 Pnnclpal component for n scluzophremc patient
Pll\f = 1* Principal component for n normal subject
PP = 1% Pnncxpal component for n* PD patient
P, H = 1" Principal component for n® HD patient
P,A, = 1" Principal component for n® AR OF HD patient

Appendix F1 Cluster Analysis of Schizophrenic Patients and
Normal Subjects

NOTE
20 SCHIZOPHRENIC PATIENTS
FOLLOWED BY 20 NORMAL CONTROL SUBJECTS
17 FEATURES
PRINI
END NOTE

READ DATA, VARIABLES CONTINUOUS 1, CASES 40

CLUSTER, METHOD WARDS, PRINT FUSIONS

STOP
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Appendix F2 Cluster Analysis of Parkinson's Disease Patients
and Normal Subjects

NOTE
16 PARKINSON'S DISEASE PATIENTS
FOLLOWED BY 16 NORMAL SUBJECTS
17 FEATURES
PRIN1
END NOTE
READ DATA, VARIABLES CONTINUOUS 1, CASES 32

PN
CLUS*'ER, METHOD WARDS, PRINT FUSIONS
TREE
STOP

Appendix F3 Cluster Analysis of Huntington's Disease Patients
and Normal Subjects

NOTE

11 HUNTINGTON'S DISEASE PATIENTS
FOLLOWED BY 11 NORMAL SUBJECTS
17 FEATURES
PRIN1

END NOTE

READ DATA, VARIABLE CONTINUQUS 1, CASES 22

PN
CLUS"l'Eﬂ, METHOD WARDS, PRINT FUSIONS
TREE
STOP
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Appendix F4 Cluster Analysis of At-Risk of Huntington's
Disease Patients and Normal Subjects

NOTE
21 AR OF HD PATIENTS
FOLLOWED BY 21 NORMAL SUBJECTS
17 FEATURES
PRIN1
END NOTE
READ DATA, VARIABLES CONTINUOUS 1, CASES 42

PN
CLUSTER, METHOD WARDS, PRINT FUSIONS
TREE
STOP
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Appendix G Listing of the Program Used to Obtain the CNV
Amplitudes

PROGRAM CNVAMP;

{ Program name = CNVAMP.PAS.
This program calculates the CNV amplitude from
a preprocessed averaged CNV waveform.

The CNV amplitude is calculated by averaging
16 consecutive sample values prior to the
imperative stimulus.

This program asks for:

1) the name of a file for storing the CNV amplitudes

2) the number of subjects to be included

3) the names of the files containing the averaged
preprocessed CNV data

CONST
TRIAL_LENGTH = 1500;

VAR
SAMPLE_NUMBER, SAMPLE, N, SUBJECT, SUBJ_NO : INTEGER;
TIME, FEATURE : REAL;
DATA : ARRAY [1..TRIAL_LENGTH] OF REAL;
IN_FILE, OUT FILE : TEXT;

IN_FILE_NAME, OUT_FILE_NAME : STRING [12];

BEGIN
WRITE'('Enter filename for storing CNV amplitude > ');
READLN (OUT_FILE NAME);
ASSIGN (OUT_FILE, OUT_FILE_NAME);
REWRITE (OUT_FILE);

WRITELN;
WRITE ('Enter the number of subjects > ');
READLN (SUBJ_NO);

FOR SUBJECT := 1 TO SUBJ_NO DO
BEGIN
WRITE (‘Enter input filename > ‘,SUBJECT:3,' ');
READLN (IN_FILE NAME);
ASSIGN (IN_FILE, IN_FILE_NAME);
RESET (IN_FILE);

{calculate the CNV amplitudes}

FOR SAMPLE_NUMBER :=1 TO TRIAL_LENGTH DO
READLN (IN_FILE, TIME,
DATA[SAMPLE_NUMBERY));

SAMPLE : = 222;

FEATURE := 0;
FORN:=1T0 16 DO
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BEGIN
FEATURE := DATA [SAMPLE] + FEATURE;
SAMPLE := SAMPLE + 1;
END;
FEATURE : = FEATURE/ 16;

WRITE (OUT_FILE, SUBJECT:S,' ', IN_FILE NAME);
WRITELN (OUT_FILE, ' CNV AMP = T, FEATURE:9:4);

CLOSE (IN_FILE);
END;

CLOSE (OUT_FILE),
END. {cnvamp}
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Appendix H Documentation

The method and the procedure for generating the results included in this thesis are
described in detail in the relevant chapters. Some operations which were not
directly related to the techniques involved but they had to be carried out to obtain
the test results are not included in the main text of this thesis. They are described

in this Appendix.

The CNV data for each subject and the reaction times for that subject were held in
the same data file. All data files were stored on cassettes. It was necessary to
transfer the data files from the cassettes to the hard disk of the PC. The method
followed was similar to that for transferring data from the PC to the cassettes and
it required the use of a commercially available tape streamer called SYSGEN and
a program called FBACK. These are described in chapter 3 (section 3.15).

Once the data files were on the hard disk they were processed by either the PC or
they were transferred to an IBM mainframe computer. The PC was connected to

the mainframe computer by a wire link.

H1 Documentation for Chapter 7

The test results included in chapter 7 were obtained by using a number of
programs on the mainframe computer. These programs were either written by
Nichols [1982] and Coelho [1988] or they were commercially available programs.
Therefore the data files had to be transferred to the mainframe computer for the
reqhired analysis. In order that this data transfer can take place correctly the
format of the data files had to be changed from binary to ASCII. This was
achieved by using one of the options available in the Turbo Pascal Program
PROC.PAS (see Appendix C for the listing of this program). The data transfer
from the PC to the mainframe computer was carried out using a commercially

available program called MS-DOS Kermit [MS-DOS KERMIT, 1988]. A full
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description' of the steps necessary to ensure the data transfer from a PC to a
mainframe computer is provided in MS-DOS Kermit [1988]. Coelho [1986]
produced a report which indicated the steps necessary to run his (and Martin
Nichols') programs on the mainframe computer. Those steps were followed. The
operations performed by the execution of those steps were described in detail in
chapter 7 and they resulted in the test results included in chapter 7.

H2 Documentation for Chapter 8

By looking at the hardcopy of the data recordings (this was produced by the EEG
machine during the data recordings) 8 CNV trials not grossly contaminated by
ocular artefact were identified for each subject. One of the options available in the
Turbo Pascal program PROC.PAS (see appendix C for the listing of this program)
enabled the preprocessing of the CNV data as described in chapter 6. The
preprocessed CNV waveforms were also averaged by the program PROC.PAS.
Sixteen features were extracted from the inter-stimulus interval section of each
preprocessed averaged CNV waveform as described in chapter 8 by using the
Turbo Pascal program ISIFEA.PAS. A listing of this program is included in
Appendix D. A 17* feature which was the time difference between the onset of
the imperative stimulus and the CNV returning to its baseline was obtained
manually as described in chapter 8. The selected features were normalised using
the formulae given in chapter 8. They were then used in a commercially available
neural network package called NeuralWorks [1988]. The method of using
NeuralWorks is provided in NeuralWorks Manual [1988]. The details related to

the implementation of the neural networks are included in chapter 8.
H3 Documentation for Chapter 9

Seventeen features were obtained from preprocessed averaged CNV waveforms of

the subjects as described in Appendix H2 (these feature were not normalised for
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the analysis carried out in chapter 9). A file was formed containing the 17 features
for the subjects in a patient category (such as schizophrenic patients) and their
normal contro! subjects. A similar file was formed for each of the other patient
categories (ie. Parkinson's disease, Huntington's disease, and at-risk of
Huntington's disease) and their normal subjects. These files were transferred to
the mainframe computer using MS-DOS Kermit [1988] and were analysed by a
number of software packages described in chapter 9. These generated the principal
component analysis and cluster analysis results included in chapter 9.

The CNV amplitude results were obtained from the preprocessed averaged (over
8 trials) CNV waveforms using a program called CNVAMP.PAS. A listing of this
program is provided in Appendix G. The CNV amplitudes were then transferred

to the mainframe computer for analysis by various software packages described in

chapter 9.

H4 Documentation for Chapter 10

One of the options available in the Turbo Pascal program ACQ.PAS (see

Appendix A for its listing) read from the data files the values of the reaction times
for each subject and produced an averaged reaction time value. The averaged
values of the reaction times for the subjects were transferred to the mainframe
computer using MS-DOS Kermit and were analysed by the software packages
described in chapter 10.
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Proceedings of the EEG Society Scientific meeting held
at Aston University, Birmingham (21st June, 1989),

4. A PC-based instrument for recording CNVs. R.
Sagtchi. B.W. Jervis Sheffield City Polytechnic,
Sheffield.

A modular, multi-purpose instrumentation system
for recording CNV responses has been developed and is
now in use. It comprises an IBM PC, a signal
conditioning box, a stimulator, a timing and interface
section, and an EEG machine.

The system can acquire up to 20 Mbwies of data from
8-analogue channels whilst storing them at pre-defined
intervals onto the PC hard disk. The data can then be
displayed on a VDU or can be processed by various
programs. A tape streamer facilitates the down-loading
of the data from hard disk to tape for permanent
storage.

The special features of this svstem are:

(i) it controls the production of stimuli according
to the stimulus paradigm chosen; and

(i) it has an automatic gain control circuit to

enhance the accuracy of A/D conversion for
each sample by fully utilising the dynamic
range of the A/D converter which is
parucularly useful as EEG signals can vary
from a few u V to several hundred u V, when
contaminated by ocular ariefacts.

Special consideration was aiso given to the problems
of noise and drift.

The instrument detects false CNV responses and a
pause switch enables the sampling to be haited
temporarily. The sampling rate can be altered through
software. Beside EEGs, the system is being used to
measure electro-oculograms, reaction times, ECGs and
the PGR.

the instrument may be reprogrammed to measure
other types of EEG response.
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IEE Colloquium on PC-Based Instrumentation, Digest
no: 1990/025 (31 January 1990, London).

“Ari integrated_system for process control and the acquisition storage, and._ .
processing of data

B ¥ Jervis and R Saatchi

~1.0. Introduction

The-system vas-developed-to automate a programmable- experimental -stimulus-
paradigm and to record the resulting eight analogue signals and to enable
subsequent signal processing. The recorded signals consisted of an EEG,
some BOGs, an BCG and the PGR (psychogavanic svay) of a subject who was
required to respond by pressing a button. The signals vere to be cross
correlated so simultaneous sampling was necessary. Both continuous and
discontinuous recordings vere required. Erroneous responses were to be
discarded and the reaction time to button press was to be measured. A/D
overload vas to be avoided and the A/D converter sensitivity vas to be
maximised. The system vas required to communicate with a mainframe
computer. It wvas to be compatible with an EEG machine. The resultant design
bhad to have general application with some softvare and hardwvare
modification as necessary.

2.0 Requirements

All the present requirements (control, recording, and processing etc.) can
be achieved using a PC plus signal conditioning electronics. An EEG machine
vas incorporated to satisfy the clinicians. The parts cost excluding the
EEG machine will be about £5000.

3.0 Systea block diagram

The signals after amplification by 50 by the EEG machine are high-pass
filtered (£c=0.0159Hz), amplified by 80, lov-pass filtered (fc=30Hz) and
are fed to sample and hold units, see figure (1). The multiplexed signal is
fed into both a windov detector and the A/D card to be digitized. The
click/tone generator provides the necessary acoustic stimuli. The bode
plots of the complete sytem are shovn in figure (2).

4.0 MKemory requirement for recording and data storage

Using sampling rate fs of 125Hz, 8 channels, trial length 12 seconds
consisting of experimental paradigm for CNV recording 1 second pre-
stimulus, 1 second inter-stimulus-interval (ISI), 10 seconds post-stimulus,
repeated 32 times for evey subject and considering three bytes per sample
(2 bytes A/D output and a byte for the PGA gain), and 2 bytes per trial for
reaction time then a trial requires 36002 bytes of RAM. Por 32 trials the
minimum data storage requirememt is 1.125MBytes per subject.

Department of Blectrical and Electronic Bngineering, Sheffield City
Polytechnic.
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‘5.0 Pre-processing ,

5.1 Amplification by EEG machine
The signals are amplified by 50 at the EEG machine by differential
amplifiers vhich have CMMR of 1000:1. Differential recording is used for
compatibility with the differential measurements betveen electrode pairs
and to attenuate common mode noise.

S.1 High pass filtering
Lov frequency high pass filtering is carried out to remove the DC drift
[1]. The filter time constant should be at least three times the duration
of the signal of interest, here the ls inter stimulus interval, ISI [2]. A
simple CR circuit with CaluF and R=10MR provides a 10s time constant. Being
a first order single-lag circuit it has a constant gain above fc=0.0159H2
and constant phase shift above 0.159Hz. The CNV response has a fundamental
harmonic at about 1Hz, other EEG components of interest lie at higher
frequencies and most EOG frequency components will be above 0.159Hz. The CR
circuit will therefore not distort the signals in the frequency range of
interestc soa T e . A

zazer o0y,
5.2 Instrumentation amplifiers (IAs)
The IAs used are based on the INA110KP IC from BURR-BROWN. INAl1lOKP has a
CMMR of about 106dB and has very lowv drift and fast setting time (4us to
0.001X2). A gain of 80 was used in order to have a total signal
amplification of 4000 (ie 50 x 80) at the A/D card. This allows use of the
+20mV input of the A/D converter.

5.3 Low pass filtering
Low-pass filtering is used to prevent aliasing. The filter is required to
have a sufficiently steep roll-off to avoid aliasing combined with a
sufficiently linear phase to prevent distortion. A cut-off frequency of
30Hz vas chosen which exceeded the highest frequencies of interest and
vhich would also attenuate any SOHz mains noise. The sampling frequency was
125Hz. A fourth order Bessel low-pass filter provided the necessary roll-
?gf and phase linearity. The attenuation (dB) at frequency f is given by
?
1
a(f) = 20 logjg

s%4108344552+1055+105

vhere s = £/fc. So for fc = 30Hz and the largest aliasing component at f =
95Hz, s = j95/30 = 33.167. This gives a(95) of about -47.87dB and an
aliasing voltage of 4.08mV ie an error of 0.408% which is considerd
acceptable. This filter design vas based on the Sallen-Key equivalent
circuit [4] using TLO741CP IC unit.

S.4 Sample and hold (S/H)

The duration of the sample and hold period for every sample is 8mS ie
1/125s. The LF398 S/H units used are of ultra-high DC accuracy with fast
signal acquisition and low droop rate. The S/H capacitor used is of the
polystyrene type with a value of 0.01uF. With this capacitor and available
sample time of ImS, the droop rate is about 0.083mV/s giving a negligible
error during A/D conversion cf aliasing error of 0.4X. Simultaneous
sampling ensures that the time phase relationship of the signals is
preserved during multichannel sampling [3].
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5,5 "Multiplexing = -
An analogue multiplexer (HIS506) was used after the S/H so that only one
A/D, programmable gain amplifier and window detector vas necessary. The
required multiplexing rate was 1000, ie 8 x 125. The multiplexer on the A/D
board could not be used as it vas not possible to connect its output to the
vindow detector.

5.6 Analogue to digital conversion
A commercially available board from the DT2801 series was used to digitize
the signals [6]. This board has a programmable gain amplifier and a 12 bit
A/D. The error of the 12 bit convertor at mid range is 0.02%. This is much
smaller than the aliasing error of 0.40%. The signal varies from +5uV to
+1mV ie a factor of 200 or a dynamic range of 46.02dB. Since the four A/D
card input ranges are from +20mV to +10V ie a factor of 500 or 54dB,
therefore the PGA ensures effective use of the A/D converter. The dynamic
range of A/D is 72dB vhich therefore is ample.

s els

The PGA which lies before the A/D converter provides the third stage of
signal amplification. The gain of the PGA can be set to either 1, 10, 100

or 500 through software. The value of gain chosen is determined by a window
detector. The window detector consists of three comparators. The output of
each comparator changes with the signal voltage and so indicates signal
voltage range. The window detector is located in the signal conditioning
unit. The interfacing of the windov detector and multiplexer to the PC wvas
realised by employing an INTEL 8255A programmable peripheral interface device.

6.0 Computer system

The computer used vas an IBM PC AT (B) vhich has a clock rate of 6MHz,
640MByte RAM, 20MByte hard disk and a tape streamer. It has several
expansion slots two of vhich vere used for A/D card and VERO-ELECTRONICS

card. The PC communicated with an IBM mainframe via a RS232 port and a
KERMIT link.

7.0 Continuous recording

This vas realised by using one of the direct memory access controllers
(DMAC) of the PC to transfer the digitized data to a page in RAM. Once half
that page is full another DMAC transfers the completed half page to hard
disk vhile the second half is being completed. The function of PC nP (INTEL
80286) is to supervise the data transfer. After a page is transfered, the
first DMAC continues writing into the first half of that page and procedure
is repeated. The number of bytes forming a page is 64Kbyte. The A/D
thoughput to the system memory using the DMAC is 6000 samples per second.

8.0 Transfer to back-up tape

Data transfer from hard disk to tape is controlled by a program called
FBACK from SYSGEN, INC. The PC vas fitted with a SYSGEN SMARTIMAGE tape
drive. A 20Mbytes cassette fitted into the tape drive can receive the full
contents of the hard disk (transfer time about five minutes).

9.0 Control of integrated system

To provide the timing information, tvo programmable interval timers (INTEL
8254) vere used as shovn in figure (3). Bach timer contains three counters
vhich can be programmed separately. The PC itself has a similar timer but
it could not be utilised as it is dedicated to the PC. To add the timers to
the PC a prototype board was obtained (from VERO-ELECTRONICS LID). The
board includes address decoding circuitry and the timers vere soldered on

to 1it.
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—10.0 Plotted recordings . 3
Figure (4) shows a plot of vertical right EOG. A single CNV trial is shown
in figure (5) and that of the averaged processed CNV is shown in figure
(6). Pigures (7) and (8) show the plots of ECG and PGR respectively.

11.0 Conclusion
The system works satisfactorily, is relatively cheap, and is adaptable.
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Figure (6) A processed CNV response
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Computerised diagnosis of schizophrenia, Huntingron’s disease and Parkinson’s disease in
man using the contingent negative variation (CNV)

R. Saatchi , B.U. Jervis, EM. Allen* , N.R. Hudson*, S. Oke** and M. Grimsley
Division of Elecironic Engineering, School of EIT, Sheffield City Polytechnic, *EEG
Department, Derriford Hospilal, Plymouth, **Department of Psychiatry, Wonford House
Hospital, Exeter

The aim of the investigation was to discover whether Schizophrenia, Huntington's
disease(HD), and Parkinson’s disease(PD) could be diagnosed by analysing the CNV,

With the local ethical committee's approval, the CNVs of 112 subjects in the above
named categories and their age/sex matched normal controls were obtained. The CNV
trials were preprocessed by a procedure which carried out mean level removal, base line
correction, ocular artefact removal and digital filtering. The 500 ms of data preceding the
onset of the warning stimulus (S1) and imperative stimulus (S2) from each preprocessed
CNV trial were windowed by a Kaiser Bessel window and then Fourier transformed. To
generate the discriminatory statistical variables, statistical tests (Jervis et al. 1984) were
applied to the first six Fourier harmonics of the CNV. These tests were designed to
investigate the amplitude and phase spectra of the selected lengths of pre- and post
stimulus recording. The resulting data were used in a discriminant analysis (DA) routine
in two stages. Initially the variables of the known subjects were processed by DA. This
resulted in the setting up of a classification rule. Then the DA was used to diagnose the
unknown subjects on the basis of the classification rule and the statistical variables. The
results indicate that it is possible to distinguish the patients from the matched normal
controls accurately.

Neural networks and clustering techniques were also applied to the CNV using the
features obtained in the time domain. The results were in agreement with those of the
discriminant analysis. It was also observed that with the clustering technique, it may
be possible to presymptomatically diagnose HD.

REFERENCE

Jervis B.W., Allen EM., Johnson T.E., Nichols M.J. & Hudson N.R. (1984), JEEE Transaction on Biomedical
Engineering, BYE-31, No. 4, 342-349.
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Proceedings of the British Society for Clinical
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London
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9. An Investigation of presymptomatic
dlagnosis of Huntington's disease using the
contingent negative variation. - B.W,
Jervis, M.R. Saatchl, E. Allen, N. Hudson
and S. OKke (Sheflield Clty Polytechnic,
Sheffield)

Several studies have concluded that the contingent
negative variation (CNV) is affected in Huntington's disease
(HD) patients. In this investigation the CNV responses
were analysed with the aim of presymptomatically
diagnosing HD. A set of time domain features was obtained
from the preprocessed, averaged CNV responses of HD
patients (n=11), and ‘at-risk’ of HD paticats (n=21) and their
age/sex matched normal control subjects. The features were
used in Ward's hierarchical clustering mzthod.

Initially the HD patients and their normal control
subjects were analysed. This indicated the method could
differentiate between the CNV responses of the HD patients
and their normal control subjects. Then the ‘at-risk’ of HD
patients and their normal control subjects were analysed.
The method identified 8 ‘at-risk' of HD paticnts as having
abnormal CNV responses. As the ‘at-risk’ of HD patients
did pot have any disorder which could bave affected their
CNV responses, except being ‘at-risk’ of HD, the
conclusion was that the 8 ‘at-risk' of HD patients bad a
higher chance of developing HD coopared to the remaining
‘at-risk’ of HD patients.

t-tests were also camried out. They indicated the CNV
amplitudes of the 8 ‘at-risk’ of HD, identified as having
abnormal CNV responses, were significantly reduced
compared to their normal contro] subjects and the remaining
‘at-risk’ of HD pauents.

The cffectiveness of the method needs to be evaluated
further but if proved effective could be useful in
presymplomatiéally diagnosing HD in cases where the
genetic testing method could not be used (i.c. where the
suitable family members are not available).
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The study of electrical activity of
the brain has contributed to the
better understanding of cerebral
physiology and to the ability to assess
subjects with known or suspected
disorders of brain function.!-7 The first
reported observation of brain
electrical activity was made by a
British physiologist called Caton.8 He
provided the following description
about his finding in the British
medical journal: The external surface
of the [brain’s] grey matter is usually
positive in relation to the surface of
the section through it. Feeble currents
of varying direction pass through the
multiplier when the electrodes are
placed on two points on the |brain|
external surface, or one electrode on
the grey matter, and one on the
surface of the skuil.'

Caton’s investigations were carried
out on the brains of rabbits and
monkeys. However, it was not until
1929 that Berger? discovered the
electroencephalogram (EEC) in man
by using a galvanometer connected to
electrodes attached to the scalp.
Technological advances in 1930s
made it possibie for the brain
electnrical activity to be amplified and
displayed on a cathode-ray tube. The
resulting waveforms could be
photographed for a permanent
record. These early amplifiers were
usually AC coupled and often suffered
from pick-up of extemal interference.

During the 1540s pen recorders
became available and for the first
time electroencephalogrammers could
have an immediate permanent record
of the brain electrical activity. The
developments in the recording and
analysis of EEGs led to the ¢
observation of event-related
potentials. An event-related potential
(ERP) is the brain electrical activity
that occurs in association with the
eliciting event. The contingent
negative variation (CNV) is an ERP
first reported by Walter et a/.1° The
number of articles about the CNV
exceeds 800. A review of them
indicates that the CNV is a potentially
useful measure of brain behaviour
function. Tecce and Cattanach!' and
McCallum:Z discuss the nature of the
CNV and some of its applications. The
CNV has been found to be valuabie in
the study of ageing and dementia. the
effects of drugs. and
psychopathology.

The CNV is a negative shift in the
EEC potential measured on the scalp
and compared to the potential of an
electrical reference electrode placed
on a suitable site such as the
eariobes. In our experiments, two
channels of CNV recording were
obtained by electrodes located one at
the vertex (top of the head) and

PC-based
integrated system
developed to
diagnose specific
brain disorders

A PC-based instrumentation system developed primarily to
diagnose Huntington’s disease, Parkinson’s disease and
schizophrenia by using the contingent negative variation (CNV)
of the subject’s electroencephalogram (electrical activity of the
brain) is described. The system is capable of controlling the
required experiment, acquiring and processing the signals
from eight channels, and generating the diagnosis resulits. As
the diagnosis was based on a signal (i.e. the CNV) which has an
amplitude typically of the order of a few microvolts and is
usually badly contaminated by various noise sources,
considerable and accurate signal conditioning and
preprocessing was necessary. A description of the steps
following from the data recording to produce the diagnosis
results is provided.

by M. R. Saatchi and B. W. Jervis
Sheffield City Polytechnic

involves the generation of a waming
stimulus S1 (selected to be a click) to
wam the subject of the upcoming
imperative stimulus S2 (selected to be
a tone). The time interval between the
onset of S1 and S2 is called the inter-

another close to the vertex. Both
electrodes used a common reference
obtained from a pair of connected
electrodes on the left and right
earlobes. A schematic CNV waveform
is shown in Fig. 1. The CNV elicitation

AEP

U _—

|
| subject
S’ wr———— !SI ———.52- RT =t response

O
r4
<

Fig. 1 Schematic diagram of a CNV waveform
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filtered and amplified data

control signals

signal D-type |
conditioning I connectors
unit
control
signals “LED TT
pause I
Cwitch analogue data
AN EAN
loudspeaker °I= —1 ]
~’ )
< EEG machine
stop tone signal [ L
(trom push button) PR S
head box
(adaptor) -
subject
under test

Fig. 2 System set-up during a data recording

stimulus interval (ISt) and was chosen  0-3s) are generated as a result of the
tobe 1s. onset of the stimuli (S1 and S2). They
The subject under test is asked to are referred to as auditory-evoked

stop the tone as soon as possible by potentials.

pressing a hand-held pushbutton. The A CNV waveform could be

negative shift in tne EEG follows S1 considered as consisting of three

and after the subject has responded it  sections, pre S1, 1Sl and post S2.
retums to the baseline. The time Although the actual CNV lies in the ISI
taken between the generation of S2 section, the recording of pre S1 and
and the subject's response is the post S2 sections is necessary in order

reaction time (RT) and was measured.  to be able to camry out the required

The spike-like waveforms immediately  preprocessing procedure. A CNV
following S1 anc S2 (duration about record contained the waveforms

i Channel Function Electrode ,

! number position ;

T 1 lvercallthEOG |  E~E;
2 j vertical nght EOG | Es-E, |
3 | nonzontal ieft EOG ! Es-Eg f
4 | nonzontal right EOG | Ec-Eo
5 CNV G, i C.Ref. AjiA,

t 6 |CNVF, | F.Ref. A/A;
7 ECC | -

l 8 | PGR ] -

Fig. 3 Electrodes’ sites
ig 76

generated by 32 trials separated by a
random interval called inter-trial
interval (ITl) which was selected to
vary between 100 ms and 500 ms.

The CNV waveform is susceptible to
contamination by the much larger
background EEG and ocular artefact
{OA) potentials.'3-15 The positive
comea and the negative retina form
an electrical dipole so that, whenever
this field is changed due to eye
rotation or eye lid movement, a
change of potential develops around
the eye. This potential is referred to
as electro-oculogram (EOG) and it
spreads across the scalp to
contaminate the EEC. The term OA is
a collective reference to a number of
eye-related potentials observed in the
contaminated EEG. By recording the
appropriately selected EOG signals
and carrying out the necessary OA
removal process. it is possible to
reduce the amount of OA in the
recorded CNV responses.

The recording of electrocardiogram
(ECC) and psychogalvanic response
{PGR) were aliso included. They
enabled the monitoring of the
subject's heart rate and the skin
resistance, respectively. Following 2
waming stimulus. the heart may
briefly decelerate'¢ and the PGR
amplitude of the subjects with
depression has been found to be
smaller compared with that of normal
control subjects.?

Commercially available equipment
was available which could record the
signals of interest, but its cost was too
high (about £20000}. it had little
data-processing capability and it
could not provide many of the desired
features indicated in the next section.
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Therefore it was decided to design
and construct a PC-based system
which could control the experiment
and accurately carry out the
recording, storage and preprocessing
of the data and generate the
diagnosis results.

Specifications

The system was required to carry
out the simultaneous sampling
of the signals from eight
analogue channels with a sampling
rate of 125 Hz and to generate the
necessary stimuli required for the
elicitation of the CNV. It had to
measure the subject’s reaction time
(RT) to the imperative stimulus {S2)
and time the random time interval
between the successive CNV trials.

The signals of interest were: the
CNV of EEG obtained from two sites,
the EOG from four sites, the ECG and
the PCR. The maximum signal voltage
gainwas 2 x 106, To increase the
analogue-to-digital conversion
accuracy. a programmable gain
amplifier (PCA) was necessary prior to
a 12 bit analogue-to-digital (A/D)
convertor. The gain of this PCA varied
in accordance with the signal
amplitudes.

It was important not to distort the
signals during the acquisition or
conditioning and to ensure the
patient’s safety during the recording.
Online paper chart recording of the
signals was required. as it would
enable the technician recording the
data to mark off any important event

25-way D-type
connector

N

switch

electrode

selectors

i o N
- ..

8 channels

I
L

head box
{adaptor)

ditferential
amplifiers

Fig. 4 Diagram of the EEG machine input section

(which affects the recording) on the
chart and to continuously monitor the
recording. The system had to be able
to store a large amount of data, to
process and anaiyse it. and then to
provide the diagnosis results.

Hardware

he system consists of an IBM PC
(AT model, having a 20 Mbyte
hard disc and fitted with a
Sysgen tape streamer), an Elema-
Schénander EEG machine, an acoustic
stimulator device, and a signal-
conditioning unit. The set-up of the
system during a recording is shown in
Fig. 2. The CNV and EOG signals were
obtained from the sites shown in
Fig. 3. The ECGC and PGR were taken
from the subject’s wrist and hand.
respectively.

The signals from the appropriate
electrodes (for CNV and EOG
recording, the electrodes used were
DC silverrsilver-chloride electrodes)

were fed via the EEC machine adapter : .

{head box) into the electrode selector
switches {which enables the setting of
the recording montage) and the
differential ampilifiers of the EEG
machine as shown in Fig. 4. These
differential amplifiers had a fixed gain
of 50. The signals to be digitised were
then taken from the differential
amplifiers at the output of the EEG
machine. In this way the EEC machine
produced the required paper chart of
the signals as usual and the signals
were also conditioned, digitised and
stored by the following hardware
units.

Fig. 5 shows the sections of the
hardware following the EEG machine.

timing circuit
h,;n::ss . Scmolmg s;:_:ncl PIT o PIT -
fillers lowpass | 1 2 sampling
i - filters ! signal 18M PC
IEJ [:g H L ! PP
cnennet I ] EH ' A/D interface i
= I+pGA
signclEs_P : multi- A/D card (DT2805)
Irom gz o .
mcchine : plexer ==
[l :\ ‘ ! ‘ Cwindow _
cregne! o = {S/H ' | detector
P sample and ’
= instrumenteticn hotc units multipiexer cnannel select PP
croitiers
- click
generator L‘l
c Click trigger signal 2 - power
b Error signal c amplifier
¢ Reaction time signal d . l ls%‘g:ker
i one
g Tone trigger signal generator
i
pushoutton o
Fig. 5 Hardware units following the EEG machine 77
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sufficiently steep gain roll-off. A cut-
off frequency of 30 Hz was chosen
which exceeded the highest frequency

@ of interest and which wouid also
? attenuate any 50 Hz mains

interference. A fourth-order Bessel

read recording lowpass filter satisfied the above
information requirements.20 This lowpass filter
* design was based on the Sallen and
Y T T—— Key equivalent ci.rcuitz‘ using
and parameters TLO741CP IC units.
The sample and hold (S/H} signal
* . was derived from the timing circuit.
sample signals from 8 ’ The sampling signal was fed to the
channels simultaneously S/H unit of each channel, resulting in
Y simultaneous sampling of the signals.
‘ The S/H period was 8ms (i.e.
L°d'. :;‘;GTC‘:?;" "ﬁ;de WD, 1/1255). The LF398 S/H devices
and store samoies on RAM used are of ultra-high DC accuracy
T with fast signal acquisition time and
A A4 low droop rate.

An analogue multiplexer was used
after S/H so that only one
generate the programmable gain amplifier (PGA),
required stimulus A/D convertor and window detector
(WD) was necessary. The multiplexing
rate was 1000 (i.e. 8 x 125).

A commercially available A/D board

no

~"trial
complete?

yes from the DT2801 series (DT2805
arscard &.‘ model)22 was used to further amplify
trial gata $ and digitise the data. The board had a
: PGA and a 12 bit A/D convertor. The
Y no analogue-to-digital conversion time
"esZ "ezzior 1 me itom tne was 255 and therefore it was
counter anz siore it on RAM sufficiently fast for the required
Y sampling rate of 125 l;lz which
- . wete srom o corresponaed to a multiplexing time
more mge e O RaMto of 1 ms. The CNV voltage amplitude
could be as low as -5V and the PCR
v ' amplitude could vary tl»;_ ug éo :h2 mv
provige| Ne : which after being amplified by the
' *—@ fixed voltage gain of 4000 became
-20mV and =8V, respectively.
y ves The programmable gain amplifier is
DrOCESS. & 5oioy core situated prior to the A’D convertor
LT ey sei and provides a variable gain. its gain
" could be software adjusted to either
1, 10, 100 or 500. The particular
gain selected was determined by

reading the window detector (WD)
output. Tne WD consisted of a series
of comparators. The output of these

Fig. 6 Data recording software flow chart comparators would vary in
accorgance with the input signal
Highpass filtering was camed out to amplifier has a CMRR of about amplituoes. With this arrangement,
minimise the DC drift. The DC arift is 106 d8B, low drift and fast settling after issuing the S/H signat, a
mainly due to the extracerebral time. A gain of 42 was chosen for this  multiplexer channel was activated.
potentials and can be several stage. This resulted in a total fixed the signai amplitude range was
millivolts. 8 The highpass filter time voitage amplification of 4000 at the determined by reading the WD
constant should be at least three A'D card, i.e. output, the PGA gain was adjusted to
times the duration of the CNV's ISI a suitable value and then the signal
{which was chosen to be 1) otherwise total fixed voltage gain = was digitised. This was repeated for
the CNV waveform would be 50 x 42 x 1-9067 = 4000 the eight channels. Each digitisation
distorted.8 A simple CR circuit with produced three bytes, two bytes from
C~ 1uF and R = IMQ provided a where the factor of 1-9067 represents  the A/D convertor output and one
105 time constant. the gain of the lowpass filter from the WD. The WD output was
Following the highpass filters are described below. stored together with the
the instrumentation amplifiers which Lowpass filtering was necessary to corresponding digitised amplitude so
convert the signals to unbalanced prevent aliasing. The filter had to be that during the data processing the
form. The instrumentation amplifiers  chosen such that it provided both a particular gain utilised was known and
used were based on the INA110KP linear phase response in order to could be taken into account. The
device from Burr-Brown.!9 This avoid phase distortion and a interfacing of the WD and multiplexer

8
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to the PC was realised by a
programmabile peripheral interface
device, PPI (type INTEL 8255A).23

An acoustic stimuli generator was
required for CNV elecitation. It
produced a click by connecting a
power amplifier (type TBA820 linked
to a loudspeaker) to a DC voltage via
an analogue switch (type HFE4Q 16b)
for about 20 ms. Then a tone of 1 kHz
with 5s duration was generated by a
sine wave generator and also
amplified by the power amplifier. A
pushbutton attached to the tone
generator by a cable aliowed the tone
to be terminated. An error signal
which indicated whether the CNV
response was faulty (i.e. pushbutton
pressed before the onset of the tone)
was obtained through a latch
attached to the pushbutton.

The timing circuit provided the
necessary S/H signal, measured the
intertrial interval and the subject’s
reaction time. It consisted of two
programmable interval timers (Intel
8254) which were added to the PC.
Each programmable interval timer
{PIT) contained three individually
programmable counters. These

counters were programmed to
generate the necessary signals or to
measure the required times. The PC
contained a programmable timer, but
this could not be used as it was
utilised by the PC itself,

Memory requirements

he data recording was camried

out at a sampling rate of 125 Hz

and with a trial length of 12s.
The experiment was repeated 32
times for every subject, thus recording
32 trials. Eight channels of data were
recorded. The PC hard disc could hold
the data recordings from 17 subjects.
For further recordings the contents of
the hard disc were backed up on a
magnetic tape by using a Sysgen tape
streamer.

Data-recording software

ig. 6 shows the flow chart of the
data-recording software. The

programs were written in Turbo-
Pascal and 80286 assembly
language. Turbo-Pascal was used to
enter the data related to recording,

for example, the name of the file in
which the data was to be stored, the
number of CNV trials and the CNV
paradigm (the time for the onset of
waming and imperative stimuli, and
the duration of each trial}. The
assembly language program was
declared as external in the Turbo-
Pascal program and was called by the
Turbo-Pascal program. Assembly
language was used to control the
experiment, and to acquire and store
the data.

CNV‘preprocessing steps

rior to analysing the CNV

response a certain amount of

digital signal preprocessing had
to be camed out. The steps followed

were;

(i) Mean (DC) level removal

Even though a highpass filter with a
cut-off frequency of 0-0159 Hz was
implemented for each channel and
various precautions were taken during
the data recording and the
development stages to minimise any
DC offsets (e.g. the use of output
offsetting for the instrumentation
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Fig. 7 (a) A single CNV trial prior to preprocessing; (b) A vertical right EOG plot; (¢) A horizontal right EOG plot; and
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Fig. 8 Typical averaged preprocessed CNV waveform from: (a) A normal subject; (b) A schizophrenic: (¢} A Huntington’s
disease subject; (d) An at risk of Huntington's disease subject; and (e} A Parkinson’s disease subject

stimulus section:

where X, = ki data point,
N = total number of samples
per CNV trial,
and X,, = ktr data point with the
mean removed.

(i) Baseline correction

A side effect of mean level removal
for the CNV responses which had a
marked negative shift was to cause a
positive shift of the pre- and post-
stimulus baseline. Thus it was
necessary to re-establish the true
baseline. This was achieved by
subtracting the mean signal level
(Ys,). calcutated over that section of
the data prior to S1, from the pre-

amplifiers, as described in Reference
19, and the careful selection of the
components), they couid not be
totally eliminated. Their effects were
to cause a shifted baseline. It was
desirable to have a baseline reference
of zero so that comparison over time
could be made and to ensure that the
ocular artefact removal algorithm
tunctioned properly. As the CNV trial
length was fixed this offset was
removed by:

1 w~
Xu= Xy - 3 Xfor 1Sk =N (1)
=1

66 80

1 o
Yo == X for1 <k <Pi
Pl ,z_,

where P1 = the sample number
corresponding to the
instant of S1,
X, = the ith data point.

Further, to allow for any small drift
during the acquisition of the data, the
mean signal level Yg, was also
calculated for that section of the data
from a point 1s after S2 (to avoid the
auditory evoked potential generated
as a result of S2) to the end of the

(2)
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‘Uawa 1eCOra. rs; was subtractea rom
this post-stimulus section:

!
ix, for PR<k <N (3)
IN-P2-D)STp, .

where P2 = the sample number
corresponding to the
instant of S1.
D =the delay after S2(1s, or
125 sampies),
N = the total numper of data
points.

YQ"

Berween these two mean values the
gata was correcied by subtracting the
appropnate fraction of the difference,
i.e. Y, Detween these values:

Yo o Yo
PRR-D-P
forPl <k <P2-D

Y = (k-P1)+ Y5,

(4)

(iii) Digital filtenng

A finite impulse response (FIR)
jowpass filter with passcand and
stopcana frequencies of 5 Hz and
10 Hz. respectively, was designed. The
cutoff frequency of the filter is the
anthmetic mean of the bandedges,
i.e. 7-5Hz. The design was based ¢cn
the FIR filter program given by
Rabiner and Coulc.3“ A FIR filter was
chosen rather than an infinite impulse
respcnse (IR) filter Decause it does
not distort the signal.=3.26 Digital
filtenng was incorporated to filter out
tne unwantec hign-frecuency
components in the EEC. The filter
length chosen was 29,

{iv! Ocuiar artefac: removal [OAR)

There exist several methoas of QAR
but the lechnique appiied here was
the preoortional subtraction
technigue<” and is based on the
assumption that the measured EEC is
a linear combinaticn of the true
{uncontaminated) EEC and OA. and
tnat the OA is a linear combination of
selectecd EOCs. The formula used for
the OAR procedure was:

6-VR(i) = 8:HU} ~ 8.HR(i})
for1< i= N

where E£C.{i) = it" sample value of
corrected EEG
EZC (i) = it sampie value of
measured EEC
HL!{/) = ™ sampie value of
horizontal left EOG
HR(/) = i*" sample value of
honzontal right EOG
VR!i} = it» sampie value of
vertical rignt EOC
N = number of data points
and & = transmission coefficient.

The values of § were determined by
the correlation technique28 using a
non-recursive algorithm, Experiments
indicated that the non-recursive

(5)
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methoa of estimation of 8 was
superior to that of the recursive
technique as the latter may distort
the signal.3?

Waveforms description

he plots of a single CNV trial

(prior to preprocessing) and the

comresponding vertical nght and
horizontal rignt electrooculograms are
shown in Figs. 7{a). [b) and (c). The
vertical and horizontal left EOG plots
are not shown as they were similar to
those of the right. The spike-iike
waveforms at times ¢ = 2:5, 4 and Ss
in the EQG piots are due to eve
blinks. These ocular artefac:s and the
background EEG have contaminated
and opscured the single CNV trial of
Fig. 7(a). It can be seen that the effec:
of these artefacts is considerably
recucec in the preprocessed single
CNV triai of Fig. 7(d) and now the C\V
can be seen between the two stimuli
fi.e. St and S2 or time intervals 1 and
25s). As mentioned before. the onset
of the stimuli S1 and S2 generates
auaitory-evoked potentiais. These can
be seen at time t = 1 ang 2s.

Tvpical plots of preprocessed
averagea (over eight tnals) CNV
waveforms of a normal subject, a
schizopnrenic, @ HuntingTon's disease
subject. an at risk of Huntington's
disease subject. and a Parkinson's
disease suDject are snown in Figs.
8lal-e]. The averaging was necessary
to reduce the effect of background
EEC on the CNV. This reduction is
preporticnal to the square root of the
numper of CNV trials used.=?

Ceneration of diagnosis
results

or every patient considered.

data were recorged from an age

and sex matched normal control
subjec:. This was done so that

. comparison could be made between
the CNV waveforms of the patients
and normal subjects. The patients and
their matched normal control subjects
were divided into two egual groups in
such a way that each group contained
roughly similar patients and normal
control subjects from the point of view
of numbers, age and sex. 20 features
{attnbutes) were selected from the
average of eight trials of the
preprocessed inter-stimulus interval
sections of the CNV waveform from
each subject. The features from the
first group were used to dnve the
diagncsis rule (these features were
used in training moge) and then the
features from the second group (these
features were used in the test mode)
together with the aiagnosis rute were
used to test the effectiveness of the
technigue,

Of several methoas (such as
discnmunant analysis, prediciive
statistical diagnoses) wnich are being
used by us to obtain the aiagnosis
results. the artificial neural network
(ANN) technique wiil be described
here. ANN has been successfully used
in many fields. such as cattern
recognition. The reader may refer to
Reference 30 for an intrcquction to
ANN. and for more ceraiis. to the
proceedings of the first IEZ
international conference on artificial
neural networks.3* ANN comprises
programmabie neura!l units. Feature
vec:ors form the input o these units.
The structure of the ANN used is
shown in Fig. S. It contains an input,
an outout ang hiocen .avers. The
methoa used to rain the networx was
based on the back-propagation
algerithm. This is a generalisation of
the least-mean-squares technique
which uses a gradient search method
to minimise a cost func:ion egual to
the mean square error between the
desired and actual outputs of the
network.

Fig. 9 Artificial
neural network used
to obtain the
diagnosis results

output
layer

hidden
layers

tayer of
inputs
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Table 1 The diagnosis success rate
obtained for schizophrenia by

applying CNV to ANN

Network® Training Test
structure mode mode
4,81 100% 92-:9%
8.8.1 100% 857%
16,8, 1 100% 85-7%
16, 16, 1 100% 857%
20, 16,1 100% 85-7%

*Numbers under this column
represent the number of units in
input, hidden and output layers,
respectively.

The results obtained when the
above method was used to diagnose
schizophrenia are shown in Table 1.
These results are based on the
recordings from 14 schizophrenics
and their 14 matched normal control
subjects. It can be observed that the
success rate in the training mode for
all the different ANN structures was
100%. In the test mode, however, the
best result was obtained when the
number of units in the input, hidden
and output lavers were 4. 8 and 1
respectiveiy. The diagnosis results
from Huntington's disease and
Parkinson’s disease are not included
as sufficient data were not available
at the time of writing this article.

Conclusion

n integrated system set up
Aaround a PC to diagnose

brain-related disorders has
been deveioped. The svstem meets
the necessary specifications and when
compared to the commercially
available svstems was cheaper and
superior. It is now being applied
successfully to the clinical diagnosis of
patients.
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6. Application cf arzificial aeural nerwvorks 0 the
iceatification of schizophrenic patieats tased on the
contingent negzatve variation. B.W Jerds. MR.
Saazcli. E. Allen. N. Hudson and S. Oke. Scrool of
Engineering Technoiogy, Sheifieid City Poivtecanic.

Taere have been consisient reports describing
abnormalities such as the reduction in the arcpiitude
of the contingeat npegative variation (CNV)
resconses of schizoghrenic patieats and the preseace
of a post-imperative negative variation. Arificial
neural nerworks which are computer models that
sirculate the fucciioning of the brain in a very
sicplified manzer have besa used successfullv in
many pattern recognition proble:ns. We have app'lied
the:m to the identification of schizophrenic patieats
based on the contingent negative variation.

The CNV responses of 20 schizophrenic patients
and 20 age/sex matched normal control subjec:s were

preprocessed and averaged (over $ trials). Tweary
urze domain features were selected from each
averaged prezrocessed CNV respoase. The CNV
features of haif the patieats and :their matched
asormal controi subjects were used 0 train the
neural aeswork. The CNV responses of ithe
recaining patieats and their normal coatrol
suciects were ysed o test the effeciiveness of the
neural aetwork in the test mode.

The performance of the neural necwork in
icentifving the CNV responses of the scaizophrenic
patieats in the training and the test mode was
100 and %0¢% respecively. Tais result incicates
that neural nerworks are a valuable :coi for the
icentification of schizopnrenic patients.
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The Application of Unsupervised Artificial Neural Networks to the
Sub-classification of Subjects At-risk of Huntington's Disease

B W Jervis. M R Saatchi, A Lacey, G M Papadourakis, M Vourkas. T Roberts,
E M Allen. N R Hudson, S Oke

Summary

The Contingent Negative Variation ( CNV ), which is an evoked response in the human
electroencephalogram ( EEG ). was measured tor a number of Huntington's Disease
patients ( HDs ) and subjects at-risk of developing HD ( ARs ). and for equal numbers of
matched normal subjects. The sampled voltage response values and the duration ot the
CNV were then used as input data to Kohonen and ART?2 unsupervised artiticial neural
networks to classity the subjects. The two methods gave similar results for the HDs vs
normals which also agreed with the results of a cluster analysis. The results of attempting
to identiry abnormal ARs showed that the ART2 results showed partial agreement with the
results ot the Kohonen network and cluster analysis. The application of these unsupervised
neural networks to the sub-typing of clinical categories appears to ofter a relatively simple
tool suitable for hardware implementation.

Introduction

It is of clinical importance to be able to identity, monitor, and pre-symptomatically
diagnose the genetically inherited and fatal brain disease known as Huntington's Disease.
The Sheffield/Plymouth group have succeeded in ditferentiating HD patients from normals
using the Contingent Negative Variation ( CNV ) which is an evoked response potential

( ERP ) in the electroencephalogram ( EEG ) and which is moditied by the disease .The
CNV was recorded using purpose-designed instrumentation ( 1 ). In the first method ( 2)
the CNV was transtormed into its Fourier harmonic components and then these were
analysed statisticaily. This complicated approach was then replaced by pattern recognition
in the time domain which was much simpler ( 3 ). Voltage samples of the CNV wavetorm
were pre-processed and then used together with the duration of the CNV as inputs to an
artificial neural network, the output of which atter supervised training classitied the subject
as HD or normal. Attempts were then made to identify abnormal ARs ie ARs whose
CNVs were abnormal, and who therefore might be in the early stages of HD. Because
there was no means ot knowing whose CNVs were abnormal it was necessary 1o identify
techniques designed to form classes based upon unclassified data. This was done using
Ward's cluster analysis method which identified some abnormal ARs based upon the time
domain data ( 4 ). It was then of interest to establish whether similar results could be
obtained more easily using unsupervised neural networks. It would then be possible to
provide a software package for the detection of abnormal ARs which would be simple to
use, or to develop a hardware version available as a black box of electronics. There were
two competing artificial neural networks which might be suitable tor the task, namely the
Kohonen network ( 5 ) or the ART ( Adaptive Resonance Theory ) networks ( 6.7 ). Both
possess the crucial ability to learn ( be trained ) in the unsupervised mode. However they
work differently and have different output tormats. The Kohonen network responds to
input data by producing an output map in which each input data set produces a
characteristic pattern which depends upon the class to wgich it belongs. Recognition of the
pattern identifies the class. By comparison the ART networks have one output node
specifically assigned to each of the possible patterns. Activation ot a node identifies the
class. The Kohonen network is provided with all the data and forms the characteristic
patterns from it. The ART networks classify the data as it becomes available. Earlier
classes are retained in memory and new classes are identified and assigned to unused output
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nodes. Both methods have been applied to the identification of abnormal
ARS and the results compared with those of the cluster analysis. This is the topic of this

paper.

CNYV acquisition

11 HD patients, 21 ARs, and their age and sex matched normal control subjects were
enrolled for this study. The CNV was recorded from the convexity of the scalp ( vertex )
using linked earlobes as the reference. Electro-oculograms ( EOGs ) were also recorded for
use in the removal of contaminating ocular artifacts. The data recording system has been
described elsewhere ( 1 ) as has the CNV ( 1 ). Figures | and 2 show the individual CNV
waveforms of a normal subject and an HD patient respectively. The HDs were numbered

1 to 11 and their matched normals 12 to 22. The ARS were numbered | to 21 and their
matched normals 12 to 22.

CNY Pre-processing

CNV pre-processing was necessary to reduce the effects of background EEG and ocular
artifact contamination. This involved applying the following routines to each individual
CNYV response: mean level correction, baseline correction, digital low-pass filtering ( cut-
off 7.5 Hz ), and ocular artifact removal. The average of eight CNV trials per subject was
then taken to reduce the effect of the background EEG. Figures 3. 4. and S show the pre-
processed and averaged CNV responses of a normal subject, an HD, and an AR
respectively. The procedures are described in detail in ( | ).

Feature extraction

After pre-processing, teatures were extracted from the averaged CNV waveforms. 16
amplitude measures were obtained from the 64 data points immediately prior to the
imperative stimulus ( S2 ). Every four consecutive voltage samples was averaged to
produce 16 features. The seventeenth feature was the time ditference between S2 and the
point where the CNV trend returned to its original baseline. These features were the data
used in each method.

Kohonen method

The algorithmic version of the Kohonen self-organising map ( 5 ) given in ( 8 ) was used.
The aim is to map exemplar class patterns of input data on to the weights connecting the
inputs to the corresponding region of output nodes which is associated with the particular
class. In this way data belonging to a particular class will always activate the same region
of the output map. Thus when the network is fed unclassified data the classes become
revealed by the patterns formed in the output map.

The winning output node was identified as the one associated with the smallest Euclidean
distance between the input data and its weights. In the weight up-dating procedure all
nodes in the neighbourhood of the winning node had their weight vectors adjusted
incrementally to become nearer to the input data vector. The winning node was placed in
the centre of the neighbourhood which was shrunk as the training progressed.

Patterns of activity within the network and output patterns were more readily identified by
displaying the activity of each node. The activity is the inverse of the Euclidean distance
associated with a node. The activity values were scaled within the range O to | using the
arctan function. Otherwise winning nodes with near zero distances would result in infinite

activity.

There were 17 inputs corresponding to the 17 input features. The output map contained 10
x 10 nodes. The initial weights were random numbers between 0 and 1, and the input data
was normalised to lie between 0 and 1. The gain term which controls the amount by which
the weight vectors were adjusted was reduced from 0.2 during training in steps of 0.00001
every two cycles during neighbourhood sizes of 3 or 2, and by 0. 1 every 100 cycles
when the neighbourhood size was 1. The initial neighbourhood size was 3 being reduced
by 1 every 26,000 cycles down to 0. 100,000 training cycles were used. To assist the
pattern identification an activity threshold was set. If this was exceeded the node was on
and was illuminated on the screen, otherwise it was off and not illuminated.
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With a 486 PC ( 25 MHz ) having an on-board floating point calculation unit the average
training time was approximately 30 minutes.

ART method

The adaptive resonance theory, or ART, neural networks, based on the models of
Grossberg and Carpenter, are recommended for the real-time unsupervised grouping of
patterns, as they are encountered in an arbitrary "environment”. There is no separation of
activity into training and recognition phases and, while learned pattern templates are stable,
the network retains plasticity ie it can form a new template at any time a novel pattern
appears, though if the input is close enough ( as defined by an adjustable number,
vigilance ) to a known group, it joins it and modifies the template. Thus vigilance controls
the partitioning of the patterns with lower vigilance forming coarser categories. At first,
recognition of known patterns may require a search of several candidate templates before
the matching one is found, but after a tew repetitions of a fixed ( even a long ) sequence,
the network stabilises and known patterns are immediately classified without search.

The speed and self-organisation of ART networks make them attractive
as tools for the classification of subjects by multivariate data.

Each pattern of the 17 data is read into a sutficiently wide input array of "nodes" in layer
F1 ( figure 6 ), where it may be processed (ART 2). From F1, it activates F2 via "bottom-
up" connections, which are initialised with small random weights. The F2 node with
maximum activity "wins" and all others are suppressed. In parallel implementation this
would be done by competitive inhibition between F2 nodes. The winning signal is filtered
via the "top-down" weights, back to Fl, where the emerging vector is compared with the
input pattern. A similarity ratio exceeding vigilance is rewarded by learning and
resonance. In learning the outstar and instar weights between the winner and F1 are
modified to reinforce the selection of the winner and improve the match. In resonance the
F2 winner stays active with this input and represents its cluster. Thus, the outstar weights
from the winner constitute the template pattern for this cluster. On the other hand,
mismatches inhibit winners while the search cycle continues. If no existing cluster fits, an
unused F2 node will eventually win and start a new cluster. Only the size of F2 limits the
number of clusters that can be formed. After all the patterns have been cycled a few times,
the clusters stabilise.

ART 1 :

The ART | network ( 6 ) accepts only patterns of binary numbers, but as it is the simplest
ART to compute, an attempt was made to apply it. ART 1 is also much better-detined than
later models, and the conditions for its stability are rigorously proved in the literature. The
real numbers were first converted to histogram-like patterns of bits. Thus, if 10 bits were
used and the data scaled between 0 and 1, 0.7 became 7 1's followed by 3 0's, and 170
input nodes were needed for the whole pattern. The limit was 15 bits, so the resolution
was crude. In ART 1, top-down weights are binary, and the template is compared with the
input by ANDing, then dividing the number of 1's remaining by the number in the input.
The learning is "fast” ie the top-down outstar changes in one step to match the ANDed
vector, and the bottom-up instar becomes parallel to this vector, but scaled to allow sparse
templates to win when inputs match them.

ART 2

In ART 2 ( 7), Fl is modified for real number inputs, which are tirst contrast-enhanced
and normalised by FO. Competition among F1 nodes is introduced, to enhance peaks and
suppress low activity as noise. In the computer algorithm, this is simulated by creating
"nodelets” within each Fl node, which successively suppress low signals and normalise the
remaining patterns. Two cycles are seen in each node ( tigure 7 ) and the pattern matching
occurs at their interface. The resulting vector at U is compared with the outstar template at
P, to reset F2 or refine the weights as in ART1. o

Here, ANDing of vectors is replaced by measuring the length of a vector made by
normalised linear combination. Learning can be slow, where a new weight is a linear
combination of the old weight and the activity at P, or fast, asin ART 1. In all, there are
7 parameters to adjust: learning rate, vigilance, top-down filter gain, two feedback gains
and noise threshold in F1, and a constant used in vector companson. Some of these have
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stability constraints, but ART 2 is clearly more complex to use than ART 1, while having
greater versatility.

The algorithm first tested in the Sheffield group, ART 2A, was based on a simplification of
the full ART 2 model, which was proved ( 9 ) to have equivalent dynamics to ART 2 when
it is restricted to fast or intermediate modes of learning. ART 2A is recommended for
real-time applications, but even slow learning in ART 2 is fast compared to most neural
network simulations. In intermediate learning, free nodes undergo tast learning. while
those committed to a cluster learn slowly. In ART 2A, Fl and the reset mechanism are
much simpler ( the latter reduces to a measure of the angle between input and template ).

Results

The results of using the two unsupervised networks and the cluster analysis are compared
in Tables | and 2. Table | refers to distinguishing between the known classes of HDs and
matched normals, while Table 2 refers to the classification of ARs and their matched
normals. It can be seen from Table 2 that some ARs have been classed as abnormal, which
was the desired result. Some of the ARs have been classified as abnormal by more than
one method. This suggests that those subjects could be in the early stages of HD.

With all the ART networks, test patterns of real numbers in clearly discernible clusters
were successfully, and very rapidly, grouped, and noise within a variable was rejected,
using a wide range of network parameters. However, for the noisy EEG data, the clusters
revealed were sensitive to the parameters. The HD data was used to 'tune' the networks,
with the aim of minimising the number of badly classified subjects. Then the AR data
were investigated. ART | managed to classify the invented test patterns, but was
inadequate for the EEG data. ART 2A was capable of being fairly well tuned to HD data,
but then made little sense of AR data, confirming the view that ART 2 needs slow learning
with noisy data. The full ART 2 model was therefore used.

Two different ways of controlling the formation of new categories for novel inputs have
been tried based on the vigilance parameter. Vigilance prevents the inclusion of a
mismatched pattern in a cluster, by withdrawing that cluster from competition, allowing
free F2 nodes to "win". In the absence of reset ( zero vigilance ), the size of initial
bottom-up weights can be used to affect the stability of established clusters. As these
approach their upper limit, free nodes are more likely to beat the poorly matched
committed nodes, though they will lose to well matched ones. While the Cretan group
have used a zero-vigilance model (ZV), in which a noise threshold and initial weights were
manipulated, the Shettield network was tuned mainly by varying vigilance and a continuous
sigmoid version of the noise threshold. Both models were tried for ART 2A, and results
for HC data are tabulated.

HC results show a fair correlation with those from cluster analysis, especially ART 2 with
ZV. Of course, HC was used to tune the network, but this should not be confused with
training of a supervised network, where the categories are first created with known
exemplars taken from a population homogeneous with the test data. Thus, there are not
enough degrees of freedom to force ART 2 to correlate inputs with arbitrary outputs. The
AR results are more divergent, though both AR and HC controls are correctly identified by
all ART 2 models, 100 % in ZV and with one error in the others. The AR results with ZV
match cluster analysis quite well.

It can be seen that there is very good agreement between the cluster analysis and Kohonen
results. At present it is not clear whether this is because the two methods share an
underlying principle or whether these methods are robust compared to ART 2. Certainly
the results indicate that ART 2 is sensitive to the chosen parameters. It is also debatable
that, because the Sheftield ART 2(b) network identified some additional abnormals as well
as the same abnormals as the Kohonen and cluster methods, whether it is a more sensitive
detector of abnormals or whether it is unreliable. This query may be solved by more
analysis, otherwise it will be necessary to wait until the abnormal ARs have had sufficient
time to develop symptoms - and that will take years.
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An interesting suggestion has been made by Burke ( 10) that ART 2 is formally equivalent
to a K-means cluster analysis, and even shares characteristics with the cruder single leader
algorithm variant. The latter is refuted by Carpenter. Grossberg and Rosen ( 9).

Conclusion

All four methods have shown promise in the pre-symptomatic detection of HD in ARs.
Further investigation will be necessary to determine which of the unsupervised networks is
the more reliable. It will then be worthwhile implementing it as either a software system
and/or as hardware for clinical practice.
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TABLE 1: RESULTS FOR HDs AND MATCHED NORMALS

SUBJECT CLASS BY NUMBER
SUBJECT ART 2 ART 2 ART 2A KOHONEN CLUSTER
NUMBER SHEFFIELD CRETE SHEFFIELD
NORMALISED |NORMALISED |NORMALISED NORMALISED ANALYSIS
(a) (b) (a) | (b) S |
HD1 3 3 2 3 HD Cl
HD2 3 3 3 2 HD Cl
HD3 3 3 3 2 3 HD cl f
HD4 3 3 3 2 4 HD c3 f
HD5 3 1= 3 2 3 HD c3
HD6 2 2 2 2 5 HD c1 !
HD?7 2 2 1 b 2 HD cl ‘
HD8 1~ 1= 3 2 1* HD Cl :
HD9 3 3 3 2 3 HD c3
HD10O 3 3 3 2 3 HD c3 :
HD11 1= 2 1x 1x 1= HD Cl |
N12 b 1 1 1 1 N c2
N13 3= 1 1 2 3 N c2 ‘
N14 1 1 1 1 1 N C2
N15 1 1 1 1 1 N c2 :
N16 1 1 1 1 1 N c2 ;
N17 1 ]‘. 1 2+ 1 N c2 ,
N18 1 1 1 1 1 N Cl»
N19 1 1 1 1 1 N c2
N20 1 1 1 1 1 N c2
N21 1 1 b 1 1 N c2
N22 1 1 1 1 1 N c2
* denotes lincorrect classification
ART PARAMETERS
A B c D e e B
(a)l(b)|(a)[(b)|[(a)[(b)f(a)]|(b)i(a) [(b) |(a) |(b) |(a)|(b)
SHEFFIELD ART2A| = [ = | = | =} - | -}t -] - ]0 0.7 |0.24{0.23|0.1/0.05
SHEFFIELD ART2 [0.7(0.710.7|0.7/0.2!0.2{0.8(0.810.95[{0.97|0.24(0.24|0.5{0.03
CRETE ART2 10 10 0.1 0.9 0 0.0727 0.235%
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TABLE 2: RESULTS FOR ARs AND MATCHED NORMALS

SUBJECT CLASS BY NUMBER '
SUBJECT "ART 2 ART 2 KOHONEN CLUSTER :
NUMBER SHEFFIELD CRETE ANALYSIS '
{a) (b) ’
AR1 1 2+ 1 N Cl :
AR2 1 1 1 N c2 X
AR3 2+ 1 1 N cl :
AR4 1 2+ 2+ + C3+
ARS 2+ 2+ 1 + C3+ ,
AR6 1 2+ 1 N c4 ;
AR7 1 1 ! 1 N ca4 .
ARS8 1 1 X 1 N (o) :
AR9 1 2+ 2+ + C3+ ‘
AR10 1 2+ 1 N c4
AR11 1 2+ 2+ + C3+ !
AR12 2+ 2+ 2+ + C3+ ;
AR13 1 1 1 N Cc4 f
AR14 1 1 1l N Cl
AR15 1 2+ 1l N c2
AR16 1 2+ 2+ + Cc4
AR17 2+ 2+ 2+ N c4 |
AR18 2+ 2+ 1 N c1 ;
AR19 1 2+ 1 + C3+ |
AR20 2+ 2+ 1 + C3+ H
AR21 1 1l 1 N c2
N22 1 1 1 N cl
N23 2+ 3+ 1 N c2
N24 1 1 1 N c2
N25 1 1 1 N c1
N26 1 1 1 N c4
N27 1 1 1 N c2 :
N28 1 1 1 N c4 '
N29 1 1 1 N c4 :
N30 1 1 1 N c1 '
N31 1 1 1 N c1 |
N32 1 1 1 N c2 i
N33 1 1 1 N c4
N34 1l 1 1 N Cl
N35 1 1 1 N Cc4
N36 1 1 1 N c4
N37 1 1 1 N Cc2
N38 1 1 1 N c2
N39 1 1 1 N c4
N40 1 1 1 N c2
N41 1 1 1 N (o}
N42 1 1 1 N Ccl
+ denotes identified as abnormal
ART PARAMETERS
A B C D c e 5
(a) | (by|(a)|(b){(a)|(b)|(a)[(b)]| (a) [(b) [(a) [(b) |(a) [(b)
SHEFFIELD ART2| 1 1 1 1 10.210.210.8]0.8}0.98510.99 0.2310.20 0.0310.03
CRETE ART2 10 10 0.1 0.9 0 0.0727 0.23%
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Abstract

In this study a potential knowvn as the contingent negative variation was
used to differentiate betveen schizophrenic, Parkinson’s disease (PD),
Huntington’s disease (ED) patients and normal control subjects. The aim
vas to assist diagnosis and the avoidance of false-diagnosis. 20
-schizophrenic, 16 PD, 11 ED, and 43 normal control subjects vere enrolled
for this study. The discriminatory variables vere generated by applying
spectral analysis to pre- and post-stimulus sections of the CNV responses.
The patient differentiation vas achieved by using the measured variables in
a discriminant analysis program. It was possible to accurately

differentiate betveen ED, schizophrenic, PD patients and normal control

subjects.

93



It wvas also attempted to differentiate between HD and schizophrenic
patients, HD and PD patients, and schizophrenic and PD patients. The test

results indicated that the method is useful in differentiating between

these patients.

This study had a number of limitations. It was based on a limited number
of individuals, and an analysis of medication effects on the test results

and the test-retest reliability assessment could not be carried out.
Keyvords: Huntington’s disease, schizophrenia, Parkinson’s disease,

contingent negative variation, patient differentiatioh, spectral analysis,

" EEG processing, discriminant analysis.
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1 Introduction

The aim of this study wvas to develop a computerised method of
differentiating betwveen schizophrenic, Parkinson’s disease (PD), gnd
Buntington'’s disease (HD) patients and normal subjects using the

contingent negative variation (CNV) which would assist diagnosis and help

to avoid false diagnosis.

HD is a fatal and progressive neurodegenerative disease wvhich places 502
of the off-spring of the EHD patients 'at risk®’ (AR) of developing the
disease (Bayden, 1981). Its symptoms usually appear in the third to £ifth
decade and include involuntary movements and 1intellectual deterioration
commonly accompanied by psychiatric symptoms. The disease is inheriged
through a defective gene 1localised to the short arm of chromosome 4
(Gusella et al., 1983). Studies using computed tomography (CT) and positron
emission tomography (PET) shoved neuropathological changes in several parts
of the brains of HD patients. The affected areas include £frontal cortex
(Goldman-Rakic, 1987; Bayden, 1981; Adams et al., 1984), but the brunt of
the changes (typically severe neuronal loss) are in the striatum
(Mazziotta, 1989). The striatum is part of the basal ganglia and is
referred to two masses of nuclei called the caudate nucleus and putamen.
There is no single definitive test for diagnosing HD, therefore its
diagnosis has been based on: i) A positive family history (ie. when the
patient has an affected parent), ii) observation of choreic movements and
psychiatric disturbances and 1ii) detection of relevant brain structural
abnormalities using PET and CT scans. A genetic presymptomatic test for the
individuals AR of BED is possible but it excludes some of the AR patients
because the marker used in the test does not detect the gene itself and
therefore testing is only possible 3if suitable family members are

available, so that the affected chromosome can be identified (Mirsa, et
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al., 1988; Barper et al., 1988; Jackson, 1987).

Schizophrenia is an illness with symptoms such as hallucinations,
delusions and thought disorder. Several structural brain abnormalities wvere
observed in schizophrenic patients (Ron and Harvey, 1990). The commonest
vere enlargement of the lateral and third ventricles and cortical atrophy
(Revely, 1985; Weinberger et al., 1983). There has also been evidence of a
reduction in volume of the hippocampus in schizophrenic patients (Falkai
and Bogerts, 1986). Some investigators showved a distinct relationsiip
betveen the structural brain abnormalities and the symptoms in patients
vith schizophrenia. Marks and Luchins (1990) provided a review of some of
those reports. The identification of patients with schizophrenia has been
based on monitoring the symptoms and observation of the structural brain

abnormalities related to the disorder.

Parkinson’s disease (PD) was originally described by James Parkinson
(Parkinson, 1817). PD is a progressive movement disorder wvhich affects the
nervous system. Its main clinical symptoms are: i) Body tremors at rest,
the tremor mainly affects a limb or limbs but it may also be observed in
other areas such as jav and lips. i1i) Muscle rigidity, this may cause
stiffness and muscle discomfort. iii) Slowness of active movements. 1iv)
Postural instability. A number of secondary clinical symptoms such as
dementia and depression may also be observed in some PD patients. The
cause of PD is unknovn. The studies in progress to identify 1its cause
include a search for an environmental toxin (Stern and Burtig, 1988). PD is
characterised pathologically by: 1) Degeneration of the dopaminergic
neurons from the substantia nigra (Bennett, 1988). The substantia nigra is
a small nucleus considered a part of the basal ganglia. ii) The appearance

of Levy bodies in the substantia nigra (Gibb, 1987). There is no
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definitive laboratory test for diagnosing PD. Therefore, its diagnosis has
been based on .a careful study of the patient’s medical history and through

physical and neurological examination (Vernon, 1989).

An event-related potential (ERP) is the brain electrical activity t@at
occurs in association with an eliciting stimulus. The ERPs have been
valuable in the better understanding of the brain cerebral physiology and
in patients with known or suspected disorders of brain function (Chiappa,
1990; Picton, 1988). The CNV is an ERP first reported by Valter et al.
(1964). It is a negative shift in the EEG potential measured on the . séalp
and compared to the potential of the electrical reference electrode placed
" on a suitable site such as earlobe (Tecce and Cattanach, 1987; McCallum,
1988). The CNV elicitation involves the presentation of a warning stimulus
S1 (such as a click) to varn the subject o0f the upcoming imperative
stimulus S2 (such as a tone). The subject is asked to respond to the
imperative stimulus (eg. by pressing a pushbutton to terminate the tone). A
schematic draving of a CNV vaveform is shown in Figure 1. The CNV is
considered as having an early potential component which is maximal over the
frontal cortex and a readiness potential component which has a more central
distribution over the motor areas of the cortex (Rohrbaugh, et al., 1976).
The CNV was used in this study because: i) it is considered to be a
measure of the brain-behaviour functions (Tecce, 1972), ii) there have been
consistent reports of changes in the CNV responses of the patients with any
of the above disorders and iii) the dysfunction of the prefrontal cortex
has been directly or indirectly implicated in schizophrenia, PD and HD
(Goldman-Rakic, 1987). Furthermore, because some of the symptoms (such as
intellectual deterioration) in schizophrenia, PD, and ED are common, the

differentiation of the patients of one category from another category would

be of interest.
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A spectral analysis of the CNV response indicated differences betvéen
some harmonic frequency components of the HD patients and normal subjects
(Jervis et al., 1984; Jervis et al. 1989a). The CNV responses of 29
schizophrenic patients and 52 normal control subjects were analysed by
Abraham (1989). He found that it was possible to identify some qf the
patients. Prolonged CNV has been observed in the majority of schizophrenic
patients (Roth, 1977). McCallum et al. (1970) observed a general reduction

in the CNV amplitude of PD patients. This was later confirmed by Cohen

(1974).

2 Experimental Procedure

The ED, PD and schizophrenic patients were ail confirmed cases and wvere
selected by a neurophysiologist (EMA) and a psychiatrist (SO). A record
(containing the names and amounts) of the medication taken by the patients
vas obtained. The normal subjects were selected by EMA and SO making sure
that they did not have any disorder which might affect their CNV responses.

All subjects were able to co-operate for the experiment.

The severity of the symptoms in schizophrenic patients was measured
using the Diagnostic and Statistical Manual of Mental Disorders (DSM 1III,
1980). Nine symptoms were measured. ﬁach schizophrenic patient vas given a
score for each measured symptom. The scores varied betveen 0 (when the
symptom was not observed) and 5 (vhen the symptom was severe). The sum .of
the scores (SOS) was obtained for each schizophrenic patient. The minimum
value of the S0S wvas 8. This corresponded to a patient vwho was least
affected by the illness. The maximum value of SOS was 29. This corresponded

to the patient most affected by schizophrenia. The mean and standard

deviation values for the SOS were 18.35 and 6.45 respectively.
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The severity of the disease in the HD and PD patients vas assessed usink
a grading scale vhich varied betwveen 1 and 5. The grades are shovn in Table
"1. Grade 1 included those newly diagnosed HD and PD patients for whom the
disease had not affected their ability to lead a normal 1life (eg. they
could work etc.). Grade 5 included those patients vho had severe ED or PD
and wvere totally ‘dependent on others. The severity of the disease in
patients classed as grades 2, 3 and 4 fell between grades 1 and 5, ie.
those classed as grade 2 needed some assistance to lead a normalo life,
those classed as grade 3 could not live a normal life but they were self

caring and those classed as grade 4 needed significant help.

The data recording system consisted of an IBM personal computer (used to
control the experiment, acquire, store, and process the data), an eight
channel EEG machine (wvhich provided a hardcopy of the data recording and
wvas used to set the recording montage), a signal conditioning unit (this
amplified and filtered the signals), and an acoustic stimulus generator.
The system -3dB pass-band was 0.0159Hz to 30Hz. The varning and dimperative
stimuli were a click (approximately 70dB sound pressure level (SPL)) and a
1kHz tone (approximately 90dB SPL). On hearing :he imperative stimulus, the
subjects pressed a handheld pushbutton to terminate it. In order ‘to
familiarise the subjects with the experiment, 10 presentations vere made,
initially, with the subjects only listening, then the subjects participated
in 15 practice trials. Folloving that, 32 CNV trials wvere recorded per
subject. The CNV was recorded from the convexity of the scalp using linkea
earlobes as the reference. Four channels were allocated for electro-
oculogram (EOG) recording. The positions of the EOG electrodes are shown in
Figure 2. The data vere recorded using d.c. silver-silver chloride
electrodes. The impedance between any electrode pair vas ensured to be less
than 5ke during the recording. The subjects’ reaction times to the
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imperative stimulus vere also recorded. The sampling rate was 125Hz. The
CNV trial duration was 12 seconds, corresponding to 1 second prior to the
varning stimulus, a 1 second inter-stimulus interval and 10 seconds post-
imperative stimulus recording. The CNV trials were separated by a random
interval which varied betveen 100ms to 400ms. The data recording systenm
automatically rejected the faulty trials (a CNV trial wvas considered faulty
if the subject did not respond correctly to the imperative stimulus). The
CNV trials grossly contaminated by ocular artefact (OA) in the sections of

interest wvere also rejected.

3 CNV Data Preprocessing

Preprocessiqg vas necessary in order to reduce the effect of the
background EEG and OA. The procedure consisted of: mean level removal,
baseline correction, ocular artefact removal, and digital low-pass

filtering. A description of the steps follows.

3,1 Mean Level Removal’

It was desirable to have a d.c. level reference of zero so that
comparison over time could be made and to ensure that the ocular artefact
removal algorithm functioned properly. As the CNV trial length was fixed

this offset was removed by,

1 N
X Ix '—zx fOI‘ ISkSN ooo(l)
kr k N i-li
vhere . X, = k0 sample value,
N = toﬁal number of samples per CNV vaveform,
and Xer = k'? sample value with the mean removed.
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3.2 Baseline Correction

The mean level removal caused a positive shift of the pre- and post-
stimulus baseline. To correct this, it was necessary to carry out a
baseline correction. This vas achieved by initially subtracting the mean
signal level (Yg;), calculated over that section of the data prior to the

varning stimulus from the pre-varning stimulus section vhere,

. 1 Pl
Y -—zx 000(2)
S1 Pl 1£1

Pl = the sagple number corresponding to the instant of Sl,
X; = the i™® sample value.

The mean signal level Yg, vas also calculated for the section of the
data from a point one second after the imperative stimulus section to the

end of the data record. Yg, vas subtracted from the corresponding section

(ie. P2+D to N),

1 N
Y - — zx 000(3)
S2 (N-P2-D) 1=P34D

vhere P2 = the sample number corresponding to the instant of S2,

D = the delay after S2 (1 second, or 125 samples),

N =« the total number of samples per CNV wvaveform.

The section between Pl and P2+D was corrected by subtracting ¥ygy which

vas the appropriate fraction of the difference between Y5y and Ygy, vhere,

Yoy = ¥
S2 S1
Yygy = ———— (k-P1) + Yg; PI<ksP2+D cee ()

P2 + D - Pl

k = the sample number.
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3.3 Digital Filtering

Digital low-pass filtering was necessary to filter out the unvanted high
frequency components in the EEG. A finite impulse response low-pass filter
(FIR) with the cutoff frequency of 30Hz was designed using the computer
program given by Rabiner and Gold (1975). A FIR filter was chosen rather

than an infinite impulse response (IIR) filter because it does not distort

the wvaveforms.

3.4 Ocular Artefact Removal (OAR)

The technique applied was that of proportional subtraction (Jervis et
al., 1989b). This is based on the assumption that the measured EEG 1is a
linear combination of the uncontaminated EEG and the OA, and that the 0A is
a linear combination of selected Electro-oculograms. The formula used wvas,
EEGc(i) = EEG (1) - (BIHL(i)BR(i) + 8,VR(1) «+

6;BL(1) + 64ER(1)) orlsi:N eee(5)
vhere EEG (1) = itg sample value of corrected EEG,
Ezcm(i) = ith sample value of measured EEG,
HL(1) = ith sample value of horizontal left EOG,
HR(i) = ith sample value of horizontal right EOG,
VR(i) = i'® sample value of vertical right EOG,
N = number of data points,
and © = transmission coefficient.

The values of © vere computed by a correlation technique (Jervis, et al.,

1989b) using a non-recursive algorithm.

The preprocessed, averaged CNV vaveforms of a normal subject, an HD
patient, a schizophrenic patient, and a PD patient are showvn in FPigures 3a,
3b, 3¢ and 3d respectively. These examples wvere selected at random. It
should be noted that large variations in the waveforms are found within

patient categories and within normal subjects, and therefore it 1is
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difficult tb define a typical patient wvaveform.

4 Generation of the Discriminatory Variables

The CNV trials vere preprocessed as described. Tvo segments from each QNV
trial wvere selected. These vere: a 512ms segment prior to the warning
stimulus (pre-stimulus segment) and another 512ms segment prior to the
imperative stimulus (post-stimulus segment). Each segment corresponded to
64 sample values. The next step wvas to transform the data sequences into
the frequency domain using the discrete Fourier Transform (DFT). But prior
to this transformation, the data vas windoved and then augmented with
zeros. The windoving vas necessary in order to reduce the spectral leakage.
Spectral' leakage develops because the energy in the original spectral
components leaks to the other frequency components after truncation in the
time domain (Stark and Tuteur, 1979). This <«an distort the £frequency
spectrum by introducing spurious peaks or cancelling out true ones. To
reduce this effect, the segments were subjected to a Kaiser-Bessel window
(Barris, 1978). The Kaiser-Bessel vindov had been identified earlier as
suitable for this ap;lication (Jervis et al., 1989a). The trade-off
between the side-lobes level and main-lobe vidth for the spectrum is
determined by a parameter, «. Experiments indicated that «=0.75 would
produce a satisfactory compromise. Since the DFT of digital data is also
discrete, any signal component wvhich occurs at a frequency between the
harmonics will have its energy shared betveen these harmonics and thus
vill distort . them. In order to reduce this problem, the DFT harmonic
separation had to be reduced by using augmenting zeros before transforming
the data. After the zero augmentation, each segment contained 64 sample

values and 960 zeros. Four statistical tests vere applied to the first °96

harmonic frequency components of the spectrum. These tests vhich are valid
103
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for the sample sizes involved vere designed originally to investigate the
composition of AEPs (Jervis et al., 1983). As the description of the tests

is included in Jervis et al. (1983), only a very brief description of them

follows.

4.1 Nearest and Purthest Mean Amplitude Test

This test was designed for analysing the variation of amplitudes with
phase angles in the post-stimulus spectrum.

4.2 Pre- and Post-Stimulus Mean Amplitude Difference Test

The purpose of this test was to establish vhether there was a significant
difference between the amplitudes of the pre- and post-stimulus harmonics.

4.3 Rayleigh Test of Circular Variance

The Rayleigh test of circular variance (Mardia, 1972) wvas applied to the
phase angles of each post-stimulus spectrum in order to determine whether

the phase angles vere distributed in a non-uniform manner.

4.4 Modified Rayleigh Test of Circular Variance

The difference betwveen this test and the Rayleigh test of circular
variance vas that it considered both the amplitudes and the phase angles of

each post-stimulus spectrum.

5 Variable Reduction
The application of the four statistical tests to the 96 frequency
harmonics produced 384 variables. In order to select the most
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discriminatory variables and to reduce their number, a series of tests vere
carried out by using the Statistical Analysis System (SAS) (1982) computer
programs. The tests wvere: univariate test, t-test, and stepvise

discriminant analysis (SDA). Again, all these tests wvere valid for the

sample sizes involved.

The univariate test computed a test statistic for the null hypothesis
that the input variables vere a random sample from the normal distribution.
It calculated the Shapiro-Wilk statistic, V (Shapiro and Wilk, 1965). Small
values of VW led to the rejection of the null hypothesis. The t-test was
applied to the variables not rejected by the univariate test. The test
computed the t- statistic based on the assumption that the variances 'of
the variables from the two groups (ie. patient category and normal control,
or patients of one category against patients of another category) are
equal, and also computed an approximate t based on the assumption that the
variances are unequal. The variables which showed significant difference
betwveen the two groups (at 10X significance ievel) wvere selected. The
variables selected at this stage were then used in a SDA. The SDA wvas
carried out by the SAS procedure, Stepdisc. The Stepdisc procedure selected
a subset of the variables in order to produce a good discrimination model

using stepvise selection. The variables selected by the Stepdisc procedure

are shown in Table 2.

6 Classification Method

The classification of the individuals was carried out by using
discriminant analysis (DA) (Morrison, 1976). The DA wvas implemented
through the SAS procedure, Discrim. The Discrim procedure calculated the
values which shoved the probability of belonging to one or other group.
Initially the patients of each category vere matched vith their age/sex
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matched normal control subjects and their variables were analysed by the
Discrim procedure. Then the patients with HD vere age/sex matched (as
closely as it vas possible for us) with schizophrenic patients and their
CNV variables wvere analysed by the Discrim procedure. This vas repeated for
HD and PD patients, and PD and schizophrenic patients. In order to make
the best use of the recorded data, it wvas decided to use a leave-one-out
approach. In this method, the variables of all the individuals, but one,
in a patient category and their age/sex matched normal control subjects (or
another patient category) were used in the Discrim procedure. The Discrim
procedure used this data to generate a classification rule. Then this
classification rule together with the variables of the subject not included
in obtaining the classification rule were used by the Discrim procedure.
This generated a probability which indicated to vhich category the subject

belonged. This vas carried out for all the individuals in the categories

considered.

7 Results and Discussion

It was possible to differentiate betwveen the HD, PD and schizophrenic
patients and normal control subjects using the described technique (refer
to Tables 3a-3¢). It vas also found that the method can be effective in
differentiating betwveen schizophrenic, PD and HD patients (refer to Tables

3d-3f). The following should be noted when considering the results showvn in

Tables 3a-3f.

(i) The study was based on a limited number of individuals, ie. 11 HD,
16 PD, 20 schizophrenic patients and 43 normal control subjects. Therefore
it will be necessary to test the method on a larger number of individuals

in order to establish vhether it can be used as a routine clinical test for
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differentiating these disorders.

(ii) The leave-one-out method of analysis ensured that the subjects
included during the calibration of the discriminant analysis vere excluded

during the test phase and therefore the available data wvere effectively

analysed.

(1i1) Some of the patients included in this study were on medication
related to their disorders. Therefore it will be necessary to carry out an
analysis of the effects of medication on the patient identification
results. This necessitates the recording of data from a larger number of

patients and normal subjects. This could not be achieved in this study.

(iv) It was not possible for us to closely age match the patients when
attempting to differentiate betwveen the individuals from twvo patient
categories. A reason for this was that the usual ages of onset of
schizophrenia, PD and ED vere not the same. Thus most of the schizophrenic

patients vere younger than the PD and HD patients.

(v) Severity of illness in the patients wvas discussed in section 2. BEach
patient category included some individuals with mild forms and some
individuals with severe forms of their disorders. The method distinguished
correctly all the HD patients. Vhen differentiating between PD patients and
normal control subjects, one PD patient (classed as grade 4) wvas
misclassified. Vhen differentiating betwveen schizophrenic patients and
normal control subjects, one schizophrenic patient (sum of scores=8) was
misclassified. It was not possible to accurately differentiate betveen the

mild forms and severe forms of each disease using the described technique.

The method could also as a vhole or in parts be applied to other ERPs and

it might be valuable in the differentiation of other patient categories
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(such as manic depression).

8 Conclusion

The results obtained indicated that the :echnique of using ;1gnal
processing and discriminant analysis applied to the CNV vaveforms is
valuable for differentiating betveen schizoph:enic, Parkinson’s -disegse
| (PD), and Huntington’s disease (HD) patients a:id normal subjects. It was
also useful in differentiating betwveen HD and PD patients, PD and
schizophrenic patients, and schizophrenic and }ID patients. The method was
aimed at assisting diagnosis and the avoidance of false diagnosis. The
method might also prove applicable to other waveforms or disorders. This
study vas based on a limited number of patients and normal subjects and due

to various constraints the test-retest reliahility and the effects "of

medication on the test results vere not be carried out.
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number of patients
grades
ED Patients|PD Patients

1 2 1

2 1 2

3 0 1

4 5 12

5 3 0
Table 1
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categories discriminatory variables

HBuntington'’s disease | Hy,Tq, By Ty, HeyT
patients vs. normal 1473 72672 T71°%1
control subjects

schizophrenic BaTay, BcTa, HeqTy, BanT
patients vs. normal 373» 7573 738710 72%4
control subjects BgsTq, HggTy

Parkinson’s disease BgTyo BISTB' BogTy ByyT,
patients vs. normal
control SUbjeCtS B63T3' H86T1' 3911'4

Buntington’s disease Bza'rz, stTZ’ BG7T3’ 572'1‘1
patients vs.
schizophrenies B76T1

Huntington’s disease | BonToy HBagTy, BgaTa, EqaT
vs. Parkinson’s 2072 “38°1' “83%3r "93°2
disease patients

schizophrenies HyaTos BogTo: BacTe. HonT
vs. Parkinson’s 13T20 BygTay Hagly, BTy
disease patients

Table 2
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subjects’ categories
parameters
Buntington’s | control
disease subjects
numbers [total 11 (6 male) |11 (6 male)
of
subjects |on drug 5 0
mean 53.73 50.09
range 39 to 77 40 to 73
differentiation
success rate in 1002 100%
the test domain

Table 3a
subjects’ categories
parameters
schizophrenic | control
patients subjects
numbers |total 20 (15 male) |20 (15 male)
of
subjects |on drug 18 0
mean 33.60 39.50
age STD 12,22 13.66
range 20 to 68 22 to 75
differentiation
success rate in 95.02 100%
the test domain
Table 3b
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subjects? categories
parameters
Parkinson'’s control
disease subjects
numbers |total 16 (10 male) |16 (10 male)
of
subjects |on drug 12 0
mean 63.63 50.81
age STD 9.68 11.16
range 42 to 80 35 to 75
differentiation
success rate in 93.8% 87.5%
the test domain :

Table 3¢
subjects' categories
parameters
Buntington'’s | schizophrenic
disease patients
numbers |[total 11 (6 male) 11 (7 male)
of :
subjects |on drug 5 9
mean 53.73 40.64
age STD 10.93 12.34
range 39 to 77 27 to 68
differentiation
success rate in 100X 90.912
the test domain
Table 3d
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subjects’ categories
parameters
Huntington's | Parkinson’s
disease disease
numbers |[total 11 (6 male) 11 (6 male)
of
subjects |[on drug 5 9
mean 53.73 60.91
age STD 10.97 10.52
range 39 to 77 42 to 80
differentiation
success rate in 90.912 81.82
the test domain

Table 3e
subjects' categories
parameters
schizophrenic | Parkinson's
patients disease
numbers total 16 (12 male) 16 (10 male)
of -
subjects |on drug 14 12
mean 36.63% 63.63%
age STD 11.83 9.68
range 25 to 68 42 to 80
differentiation
success rate in B1.25% 93.75%
the test domain
Table 3£
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Figure 1 A Schematic drawing of a preprocessed averaged CNV

waveform.
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Figue 2  The positions of EOG electodes.
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Figure 3. The preprocessed averaged CNV response in a
normal subject. :
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Figure 3h The preprocessed averaged CNV response in a
Huntingon's disease patient.
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Figure 3¢ The preprocessed averaged CNV response in a

Schizophrenic patient.
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Figure 34 . The preprocessed averaged CNV response in a
Parkinson's disease patient.
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