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Abstract

In this paper a conceptual kinematic design of a chameleon-
like robot with proper mobility capacity is presented for
service applications in space stations as result of design
considerations with biomimetic inspiration by looking at
chameleons. Requirements and characteristics are dis‐
cussed with the aim to identify design problems and
operation features. A study of feasibility is described
through performance evaluation by using simulations for
a basic operation characterization.

Keywords Space Robotics, Service Robots, Robot Design,
Simulation

1. Introduction

Since a decade service robots have addressed great atten‐
tion for developing new robotic systems for new applica‐
tions even in non technical areas. Typical robots are already
developed for medical care, space exploration, demining

operation, surveillance, entertainment, museum guide and
many other non industrial applications, as reported for
example in [1]. In some cases results are even already
available in the market. A considerable literature is
available not only on technical issues but it is not reported
in the paper for space limits and paper purposes.

According to the International Federation of Robotics (IFR),
"a service robot is a robot, which operates semi or fully
autonomously to perform services useful to the well being
of human and equipment, excluding manufacturing
operations". Therefore, a service action can be understood
as a complex set of operations that can achieve goals with
a variety of aspects, in manipulation and transportation but
also in dealing with interactions with environment and
human beings as users or operators or assisted persons.

Specific activity has been developed in the past for design‐
ing robots for space applications, [2], but only few robotic
arms have been developed for servicing space stations, like
Canadarm, Robonaut, Justin, and ESA EuroBot.

Canadarm was designed by Canadian Space Agency for
payload handling, support in extravehicular activity, and
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station assembly, [3]. A second version Canadarm2 is also
used for service and maintenance of space stations,
transport of payloads, as well as for the berthing/de-
berthing of the orbit, [4]. Canadarm2 can move because of
a mobile platform, which is guided along a giant truss
beam.

Robonaut is a humanoid robot designed by the Robotic
Systems Technology Branch at NASA’s Johnson Space
Center in a collaborative effort with DARPA, [5]. Robonaut
can work for extravehicular activity and planetary explo‐
ration with rapid response, [6]. Robonaut has a single
seven-DOFs leg with an interface that permit its attachment
to the spacecraft. Once anchored to a spacecraft, the multi-
jointed leg provides a mobility larger than the one of a
human crew member. Additionally, Robonaut B is de‐
signed to have a grapple fixture in its back that allows its
installation in the large Space Shuttle and Space Station
arms, [7].

Justin  is  a  two-arm  humanoid  system  that  has  been
developed  as  a  research  platform  for  studying  dexter‐
ous two-hand manipulation by German aerospace agency
but also for its use in space stations. The system is based
on  the  modular  DLR-Lightweight-Robot-III  and  DLR-
Hand-II, [8].

ESA EuroBot robot is designed for ESA by a consortium led
by Thales Alenia Space with a central body structure with
three identical arms, each one with 7 joints, [9]. Each arm is
equipped with a camera and an end-effector hand, which
is capable of grasping EVA handrails. In next develop‐
ments Eurobot will have a set of 3 or 4 interchangeable
hands.

However there is still a large attention in the design of
service robots for space applications that are aimed at
service tasks for maintenance and surveillance in space
orbital stations with proper mobility capacity. Challenges
can be mainly focused in design issues for limiting com‐
plexity and size as well as for optimizing capabilities and
autonomy.

In this  paper we have attached the problem of design‐
ing  a  new  robot  structure  for  outdoor  space  applica‐
tions for servicing tasks with a proper mobility in orbital
stations.  The  mobility  capacity  can  be  considered  a
fundamental aspect in this kind of service tasks since any
operation  depends  on  the  possibility  to  reach  the
intervention area with proper mobility. Thus, the aim of
this  work  has  been  focused to  design  a  walking  robot
with  high  reliability  and  robust  operation  for  applica‐
tions in external environment of space stations both for
construction  and  maintenance.  The  main  characteristcs
can be considered the possibility to move along rods of
deployable structures and the need to have a structure
with  less  actuators  as  possible.  Bio-inspiration  from
chameleons  has  helped to  find a  solution for  a  system
with  the  main  capability  in  moving  along  rods  with
robust  powerful  posture  that  can  permit  high  payload
and high impulse absorption (due to impacts with flying
objects at  high velocity).  The primary interest  has been

focused on the structure design that can ensure versatili‐
ty and robustness with a compact mechanical design. The
paper  presents  a  conceptual  kinematic  design  that  has
been inspired by biomimetics considerations by looking
at  chameleons  in  their  motion  and  structure.  The
proposed  solution  has  been  obtained  from  considera‐
tions  of  requirements  as  well  as  it  has  been  character‐
ized by simulation results for basic operation features. A
preliminary version of this paper has been presented at
RAAD 2012 Workshop, [10].

Recently, service robots in other service applications are
developed with the aim to perform operations in specific
no-industrial tasks, whose main characteristics are related
with interactions with the environment, including often
human beings, as pointed out in [11]. Thus, those robots do
a service that can be understood as as a complete task with
their actions, which are often much more extended and
complicated than in industrial applications. In addition,
even the specificity of service goals require different
solutions both for design and operation, and a large variety
of robots and robotic systems have been and can be still
developed. In fact, a considerable literature is available
with proposals of a large variety of service robots, by
emphasizing on design issues as well as on operation
success with procedures and algorithms that can be used
specifically but in general for a variety of cases as reported
for example in [1]. Indeed, a general design approach for
service robots can be outlined only with general guidelines,
[11], and there are still several challenges that must be not
only attached but even defined, as for example it has
pointed out in the Strategic Agenda in [12].

Referring to technical aspects, Fig.1 summarizes the
mechatronic character of a service robot, as a traditional
robot, but with specific emphasis to those above-mentioned
peculiarities in terms of interactions with environment and
human beings, and in term of a careful consideration of the
task environment. Those interactions should be under‐
stood not only in terms of engineering mechanical issues
but by looking at more general aspects, like for example
psychological attitudes and social impacts in potential
users. A consideration of the environment should include
also how a service robot affects or it is affected by it, by
analyzing and designing the variety of feasible conditions
and situations.
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Figure 1. A general scheme for mechatronic design of service 
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Figure 1. A general scheme for mechatronic design of service robots, [11]
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In addition, service robots, even for space applications, can
be considered efficient and successful when ultimately the
cost, both in design and operation, can be properly sized as
function of the service task and mainly as function of the
affordable budget of users and operators, and within
planned project programs. Thus, indeed, economic evalu‐
ation and management must be included both in R&D and
design of service robots, even since the beginning.

Once a service robot problem is properly identified by
using the above considerations with specific further
observations, challenges can be understood for given
applications and service tasks, as related to the specific
workspace environment.

In particular, challenges for service robots can be under‐
stood in general as in:

• operating together and/or for human users, with suitable
behaviors and careful users-friendly operation;

• operating service tasks with proper easy-operation
modes at user-oriented cost.

In case of space applications those challenges are augment‐
ed by the extreme environment conditions and operation
features that are needed. This paper attaches the problem
for a new solution with fairly simple structure and task-
oriented operation by using biomimetics inspiration.(9 pt)

2. Requirements for Service Space Robots

The International Space Station (ISS) is an internationally
developed research facility that can be assembled within
the Earth's orbit, Fig.2. The station is expected to remain in
operation until at least 2015, and very likely 2020. The ISS
serves as a research laboratory that has a microgravity
environment in which crews conduct experiments in
biology, chemistry, human biology, physics, astronomy
and meteorology, [13].

Figure 2. ISS, the international space station, [13]

The space station was not constructed by space robots, but
through many hours of human extravehicular activities
with the assistance of Shuttle Remote Manipulator System
(SRMS known as Canadarm) and Space Station Remote

Manipulator System (SSRMS, Canadarm2). Because ISS is
still under further development, and many other space
stations will be built, there is lot of work for assembling,
repairing, and monitoring that astronauts should do.
Because of radiation, space debris, upper atmospheric drag
and spacecraft electrostatic charging, a space station is easy
to be damaged or broken in any place. Therefore, there are
lot of activities for assembling, repairing, and monitoring
that astronauts must do. In addition, space environment is
very dangerous for astronauts, so that space robots are
urgently needed to be developed in order to assist or
replace astronauts in extravehicular activity.

Since it is very difficult and expensive to send heavy objects
to space station, a space robot should be as light as possible.
The robots should work most of the time outside the space
station with a large radiation level and severe temperature
changes, and therefore they can be easily damaged or even
destroyed. Consequently, a space service robot has to be
light, easy to maintain. and with high reliability.

Application of a service robot in a space orbital station can
be characterized and constrained by environment charac‐
teristics and operation tasks. In particular, space environ‐
ment is characterized by the following aspects:

• The condition of low gravity acting on the robot makes
motion easier but also very sensitive to unexpected
actions, even of small magnitude.

• Strong radiation from the sun but also from the space can
be dangerous and can even affect the operation of
actuators and electronic devices up to the extent of
causing them to fail.

• Temperature of objects changes drastically between the
sunny side and shady side.

• In orbital stations, energy source is very limited and
therefore energy consumption must be kept at a mini‐
mum.

• A robot will use handrails and beams in outside struc‐
ture of space station. In Fig. 2, ISS is provided of hun‐
dreds of handrails and beams that are located in the
outside surface to help astronauts in EVA motions. Each
handrail is distanced from the next one by the length of
an astronauts reach with the design shown in Fig. 3.
Beams are part of the structure of the space station and
can be conveniently used as anchoring sites for robots
too.
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Similarly, operation tasks of space service robots in serving
in orbital stations can be characterized by specific aspects
as the following:

• A robot helps or cooperates with astronauts in assem‐
bling, repairing and monitoring, but it should be able
also to perform autonomous work even without astro‐
nauts supervision

• Suitable robot mobility will ensure the work anywhere
outside a space station

• A robot can move slowly but with sure action results and
firm positioning.

The above-mentioned characteristics and requirements of
mobility aspects in service tasks with proper design and
operation features can be useful to select and design a
feasible structure of a space service robot. In particular, the
environment frames and motion capabilities are the most
demanding constraints and have motivated to look for a
biomimetics inspired solution.

3. Conceptual Kinematic Design with Biomimetics
Inspiration

In nature there are few animals that can move in environ‐
ment frames with very different characteristics that can be
considered similar to those in a space orbital station.
Among them chameleons can be considered the most
attractive inspiration since their motion capabilities and
biological structure show features of robustness and
compactness that meet somehow the above-mentioned
constraints for robot space applications.

Arboreal habitats require many functional challenges,
including bridging gaps between branches, travelling on
perches with small diameter and obstructions created by
the clutter of branches. Key morphological specializations
of chameleons that probably facilitate accomplishment of
these tasks are the prehensile feet and tail together with a
robust leg structure. Behavior specializations of chame‐
leons that facilitate arboreal locomotion include a slow, but
stable, walking gait (Fischer et al 2010). In addition, they
can use the tail as an additional arm to free two legs for
other tasks by achieving a three-point grasping configura‐
tion, as shown in Figure 4 a). The three-leg configuration
can be considered an optimal static posture to achieve
stable positioning for a body in any environment. In
addition, a chameleon moves slowly with the aim to
achieve safe and reliable postures during its motions,
likewise it is needed in space stations by astronauts or space
robots. Though the structure of chameleon’s foot is very
simple, the foot can adapt to most intricate environments
as shown in Fig. 4.

After a long evolution, the prehensile feet of chameleons
are also able to grasp firmly tree branches since each foot is
composed of only two fingers with metacarpal, proximal
phalanx and digits, Fig.5. Chameleons can also walk on flat
surfaces by opening the fingers to form a planar foot. In

Fig. 4 a), when a chameleon moves on a branch, its foot is
large enough to grasp the branch firmly and to hold its
body. In Fig. 4 other configurations are shown, when a
chameleon moves on a flat surface, a plane or a curved
surface, respectively, by opening and adapting the fingers
to the surface. As shown in Fig.4 a), chameleons can keep
their body balanced by two legs with the help of tail as a
third leg. With the two-finger feet they can walk and grasp
objects and ground. Therefore, a chameleon-like robot for
space service operations can be proposed by replicating the
structure and operation of chameleons. A configuration for
a space robot with three legs is also suggested by the
posture of a chameleon in Fig. 4 a) as referring to the above-
mentioned conditions for a static stable posture but also
with a possibility of using a leg as an arm for contempora‐
neous manipulation purposes.
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are also able to grasp firmly tree branches since each foot 
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Therefore, a chameleon-like robot for space service 

operations can be proposed by replicating the structure 

and operation of chameleons. A configuration for a space 

robot with three legs  is also suggested  by the posture of 
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Figure 4. Examples of chameleons in their peculiar postures for 

different environments: a) on a tree branch; b) on a flat floor; c) 

on a rough curves surface.  
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Figure 5. The structure and firm grasp of the two-finger foot of a 

chameleon  

 

A chameleon-like robot can be characterized with legs of 

reduced size and motion power but with the possibility to 

be used as arms, and by being equipped with a foot 

extremity with only two powerful fingers that can be 

adjusted to grasp handrails or to attach surfaces during 

walking actions. Therefore, we have designed a  

chameleon-like robot with the conceptual kinematic 

scheme shown in Fig.6. The conceptual biomimetic idea 

lays in three legs/arms that can be used with 

interchangeable function thanks to the essential structure 

and multi-functional end-effector. The design 

configuration in Fig.6 recalls the chameleon configuration 

in Fig. 4a) by which the animal uses two legs as arms for 

other activities. With the proposed structure the space 

chameleon-like robot can move in most of the places of a 

space station by using rods, handrails and even 

flat/curved surfaces. A proper mobility in outdoor space 

Figure 4. Examples of chameleons in their peculiar postures for different
environments: a) on a tree branch; b) on a flat floor; c) on a rough curves
surface

Figure 5. The structure and firm grasp of the two-finger foot of a chameleon

A chameleon-like robot can be characterized with legs of
reduced size and motion power but with the possibility to
be used as arms, and by being equipped with a foot
extremity with only two powerful fingers that can be
adjusted to grasp handrails or to attach surfaces during
walking actions. Therefore, we have designed a chameleon-
like robot with the conceptual kinematic scheme shown in
Fig.6. The conceptual biomimetic idea lays in three legs/
arms that can be used with interchangeable function thanks
to the essential structure and multi-functional end-effector.
The design configuration in Fig.6 recalls the chameleon
configuration in Fig. 4a) by which the animal uses two legs
as arms for other activities. With the proposed structure the
space chameleon-like robot can move in most of the places
of a space station by using rods, handrails and even flat/
curved surfaces. A proper mobility in outdoor space of
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orbital stations is an essential capability for performing
service tasks since a proper location and proper displace‐
ment can be considered a fundamental part of a service
task. In addition, the proposed space robot can be light and
highly reliable because of the compact mechanical design
and essential actuated joints. The compactness and robust‐
ness of a mechanical design with the proposed kinematic
structure is ensured by the low number of links in the
structure of limbs, like wise in the chameleons.
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Figure 6. A conceptual design of the proposed chameleon-like 

space service robot.  

 

The proposed chameleon-like robot is composed of one 

trunk and three legs. Cameras and other sensor 

equipment can be installed within or on the trunk, as well 

as other end-effectors and tools can be also stored on the 

platform body in order to ensure the robot capability in 

service for assembling, repairing, and monitoring works. 

Each leg is composed of one ball joint and one revolute 

joint so that a leg has four DOFs. The four DOFs make 

sure that the robot can move along and on the rods and 

handrails with a good mobility capability even in 

changing direction. In order to ensure the robot can move 

on the rods, a gripper-foot is installed on each leg, which 

has one DOF and can grasp a rod firmly. The 

configuration of the three legs can be symmetric so that 

the robot can be used with any posture and easily 

maintained because of a modular design with 

interchangeable parts. The kinematic design is illustrated 

in the sketch in Fig. 7 where in Fig. 7 a) a general 

configuration is indicated and in Fig. 7 b) the folded 

configuration is reported as suitable for the storage in the 

missile transporter or for storage during no use. In order 

to limit the weight of the robot to 300 N, the robot can be 

sized with the length of 25 cm for link1, the length of 20 

cm link2, and the lengths of trunk sides are 30 cm. 

Following the biomimetics inspiration looking at 

chameleons, a new kind of foot can be designed for the 

space robot. In Fig. 8, a robot foot-hand is proposed with 

two  fingers likewise that one of chameleons. Each finger 

has two phalanxes only and  each phalange is driven by 

one direct motor with the aim to produce the necessary 

actuation torque Ti (i=1 … 4). Alternatively, a reduced 

number of actuators can be thought by using one motor 

per finger and suitable mechanical transmission either by 

gears  or belts to have the two phalanxes actuated by one 

motor in a proper coordination. 
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Figure 7. A kinematic diagram of the structure of a chameleon-

like robot for space applications: a) general configuration; b) 

folded configuration for transportation and storage.  
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Figure 8. A conceptual design of a foot-hand extremity with 

actuation torque per phalanx.  

 

The phalanx structure of the foot-hand  extremity can be 

used similarly to the chameleon foot with a variety of 

configurations, like those shown in Fig.9. The foot shown 

in Fig. 9 can move in most of the places of outside space 

station by grasping handrails like astronauts or by 

attaching surfaces. Some places cannot be reached 

because there are not handrails and a chameleon-like 

robot will move to these places by walking on the surface 

of the space station. Therefore, a kind of adhesive pad can 

be added to the foot to meet this requirement as indicated 

with black tips in Fig. 9 a) for a case with adhesive pad 

attaching on a surface. 

Thus, the robot extremity can have two operation modes, 

namely grasping and adhesive attachments. The adhesive 

action mode can be used to walk on surfaces, as shown in 

the models of Fig.9 a) to c), by using proper forces in each 

tip. The grasping action mode can be used not only to 

grasp objects but also to touch and to interact with objects 

and ground surfaces in different way as depending of the 

required situations, as shown in the models in Fig. 9 d) 

and e).  

Thus, the proposed chameleon-like service space robot 

can be characterized by a structure with a symmetric 

Figure 6. A conceptual design of the proposed chameleon-like space service
robot

The proposed chameleon-like robot is composed of one
trunk and three legs. Cameras and other sensor equipment
can be installed within or on the trunk, as well as other end-
effectors and tools can be also stored on the platform body
in order to ensure the robot capability in service for
assembling, repairing, and monitoring works. Each leg is
composed of one ball joint and one revolute joint so that a
leg has four DOFs. The four DOFs make sure that the robot
can move along and on the rods and handrails with a good
mobility capability even in changing direction. In order to
ensure the robot can move on the rods, a gripper-foot is
installed on each leg, which has one DOF and can grasp a
rod firmly. The configuration of the three legs can be
symmetric so that the robot can be used with any posture
and easily maintained because of a modular design with
interchangeable parts. The kinematic design is illustrated
in the sketch in Fig. 7 where in Fig. 7 a) a general configu‐
ration is indicated and in Fig. 7 b) the folded configuration
is reported as suitable for the storage in the missile trans‐
porter or for storage during no use. In order to limit the
weight of the robot to 300 N, the robot can be sized with the
length of 25 cm for link1, the length of 20 cm link2, and the
lengths of trunk sides are 30 cm.

Following the biomimetics inspiration looking at chame‐
leons, a new kind of foot can be designed for the space
robot. In Fig. 8, a robot foot-hand is proposed with two
fingers likewise that one of chameleons. Each finger has
two phalanxes only and each phalange is driven by one
direct motor with the aim to produce the necessary
actuation torque Ti (i=1... 4). Alternatively, a reduced

number of actuators can be thought by using one motor per
finger and suitable mechanical transmission either by gears
or belts to have the two phalanxes actuated by one motor
in a proper coordination.
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of the space station. Therefore, a kind of adhesive pad can 

be added to the foot to meet this requirement as indicated 

with black tips in Fig. 9 a) for a case with adhesive pad 

attaching on a surface. 

Thus, the robot extremity can have two operation modes, 

namely grasping and adhesive attachments. The adhesive 

action mode can be used to walk on surfaces, as shown in 

the models of Fig.9 a) to c), by using proper forces in each 

tip. The grasping action mode can be used not only to 

grasp objects but also to touch and to interact with objects 

and ground surfaces in different way as depending of the 
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Figure 8. A conceptual design of a foot-hand extremity with actuation torque
per phalanx

The phalanx structure of the foot-hand extremity can be
used similarly to the chameleon foot with a variety of
configurations, like those shown in Fig.9. The foot shown
in Fig. 9 can move in most of the places of outside space
station by grasping handrails like astronauts or by attach‐
ing surfaces. Some places cannot be reached because there
are not handrails and a chameleon-like robot will move to
these places by walking on the surface of the space station.
Therefore, a kind of adhesive pad can be added to the foot
to meet this requirement as indicated with black tips in Fig.
9 a) for a case with adhesive pad attaching on a surface.

Thus, the robot extremity can have two operation modes,
namely  grasping  and  adhesive  attachments.  The  adhe‐
sive  action  mode  can  be  used  to  walk  on  surfaces,  as
shown in the models of  Fig.9 a)  to c),  by using proper
forces in each tip. The grasping action mode can be used
not only to grasp objects but also to touch and to interact
with  objects  and  ground  surfaces  in  different  way  as
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depending  of  the  required  situations,  as  shown  in  the
models in Fig. 9 d) and e).

Thus, the proposed chameleon-like service space robot can
be characterized by a structure with a symmetric modular
design with leg-arms and foot-hand extremities, which
may recall the operation and structure of chameleons.

The stability of locomotion can be explained as due to the
end-effector grasping. The parts of the chameleon features
that are implemented in the robot design can be recognized
in:

• The foot/hand structure that can act either as foot (see
Fig. 4 b and c) or as gripper (see Fig.5)

• The same structure for the three legs /arms with inter‐
changeable function as leg or arm (see Fig. 4a).

The possibility of the above-mentioned multiple function‐
ality can be considered important in a service robot for
space stations as to increase reliability and versatility of
robot functioning.

Figure 9. Finger configurations of the chameleon-like foot-hand extremity

The proposed robot has been conceived to answer to main
requirements that are related to locomotion capability in
station frames (handrails and curved/sloped surfaces), and
firm positioning for performing tasks in or without
cooperation with astronauts. The extreme environment
conditions (in temperature and radiations) will affect the
mechanical design and technology of the components, but
they are not considered in this paper. Low gravity has been
considered in the simulation conditions for checking the
feasibility of the motion and its sensitivity and for sizing
the motion properties and actuating torques.

4. A performance characterization by simulation results

The proposed chameleon-like robot can perform two
locomotion modes, namely revolving mode and walking
mode. In the revolving mode, the feet grasp the handrails
in successive actions, and the trunk of the robot rotates
when the robot moves. In the walking mode similarly to
chameleons, the robot moves only by using two legs to
grasp rod-handrails while the third foot does not partici‐
pate to the walking, and it can do some other tasks.

In order to characterize the motion capability of the robot,
simulations have been computed in ADAMS environment
by using a proper model as in Fig.10 with characteristic data
for space environment such as 0.1 g for gravity field and
low friction and damping at the joints of a mechanical
design of the robot. Examples of simulated basic operations
of the robot are reported in Figs. 11 and 13 to show the
feasibility of the proposed conceptual design and its basic
operation capabilities with proper features for mobility in
servicing in outdoor space of orbital space stations.
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Figure 10. A scheme for a simulation model of the robot in Fig. 7 

the  with motion parameters.  

 

The simulation results in Fig. 11 show the robot 

locomotion in walking mode both for a straight motion 

along a rod-handrail and a motion with changing 

direction in skewed rods-handrails. Similarly, the 

simulation results in Fig. 12 show the robot locomotion in 

revolving mode along a straight rod-handrail and skewed 

rod-handrails. The simulation results in Fig. 13 show the 

Figure 10. A scheme for a simulation model of the robot in Fig. 7 the with
motion parameters

The simulation results in Fig. 11 show the robot locomotion
in walking mode both for a straight motion along a rod-
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handrail and a motion with changing direction in skewed
rods-handrails. Similarly, the simulation results in Fig. 12
show the robot locomotion in revolving mode along a
straight rod-handrail and skewed rod-handrails. The
simulation results in Fig. 13 show the robot handling an
object with two arms while the third leg-arm grasps firmly
a rod-handrail by simulating a service action.

The reported simulations in Figs 11 and 12 show the robot
ability to move to everywhere outside the space station if
there are rods-handrails. The last simulation in Fig. 13
shows the ability of different cooperation of the arm-legs
so that the robot to use various configurations of its arm-
legs. The reported simulations snapshots show suitable
motion capabilities of proposed space service robot with
chameleon-like simple robust behavior.

robot handling an object with two arms while the third 

leg-arm grasps firmly a rod-handrail by simulating a 

service action.  

The reported simulations in Figs 11 and 12 show the 

robot ability to move to everywhere outside the space 

station if there are rods-handrails. The last simulation in 

Fig. 13 shows the ability of different cooperation of the 

arm-legs so that the robot can have the ability to work out 

more complicated operations by suitable cooperation of 

the three arm-legs. The reported simulations snapshots 

show suitable motion capabilities of proposed space 

service robot with chameleon-like simple robust 

behavior. 
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Figure 11. Simulation results of the robot motion by walking 

mode: a) along a straight rod; b) changing direction between two 

skewed rods.  

 

In particular, the reported sequence of robot postures 

during the walking modes show smooth motion of the 

robot and well balanced robot configurations that can be 

recognized as important features for a reliable locomotion 

in outdoor space. Although the simulations are focused 

on the walking motion, the shown postures can be 

understood also as suitable configurations for 

manipulation tasks by using the third leg/arm free from 

the walking activity. In Fig.13 this capability is 

emphasized with the use of two limbs in a robot 

configuration that recalls the chameleon posture of Fig. 4 

a). 
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Figure 12. Simulation results of the robot motion by revolving 

mode: a) along a straight rod; b) changing direction between two 

skewed rods. 
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Figure 13. Simulation results of the robot operation in handling 

objects  

 

The computed simulations have been useful also to 

define a first mechanical design with basic features in 

term of suitable ranges of joint mobility, proper actuating 

motor torques, and feasible grasping-contact force of the 

gripper-foot extremities. 

In particular, the following remarks can be observed from 

the numerical results of the simulation for a single step as 

reported in Figs.14 to 17: 

- in the walking mode in a single step motion one leg is 

not involved in walking activity and the other two have 

a smooth motion in joint angles with a range of about 

100 deg for each leg joint with clear sequence in 

supporting and swing phases, Fig.14; 

- from Fig.15 in the walking mode the actuating torque 

operate within a range of about 300 N mm with 

maximum peaks of 500 N mm; but the operating values 

are computed before 15 sec with a maximum value of 

50 N mm. The large computed values at the end of the 

simulation are mainly due to vibration in the stopping 

phase; 

Figure 11. Simulation results of the robot motion by walking mode: a) along
a straight rod; b) changing direction between two skewed rods

In particular, the reported sequence of robot postures
during the walking modes show smooth motion of the
robot and well balanced robot configurations that can be
recognized as important features for a reliable locomotion
in outdoor space. Although the simulations are focused on
the walking motion, the shown postures can be understood

also as suitable configurations for manipulation tasks by
using the third leg/arm free from the walking activity. In
Fig.13 this capability is emphasized with the use of two
limbs in a robot configuration that recalls the chameleon
posture of Fig. 4 a).
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Figure 13. Simulation results of the robot operation in handling objects

The computed simulations have been useful also to define
a first mechanical design with basic features in term of
suitable ranges of joint mobility, proper actuating motor
torques, and feasible grasping-contact force of the gripper-
foot extremities.

In particular, the following remarks can be observed from
the numerical results of the simulation for a single step as
reported in Figs.14 to 17:

• in the walking mode in a single step motion one leg is
not involved in walking activity and the other two have
a smooth motion in joint angles with a range of about 100
deg for each leg joint with clear sequence in supporting
and swing phases, Fig.14;

• from Fig.15 in the walking mode the actuating torque
operate within a range of about 300 N mm with maxi‐
mum peaks of 500 N mm; but the operating values are
computed before 15 sec with a maximum value of 50 N
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mm. The large computed values at the end of the
simulation are mainly due to vibration in the stopping
phase;

• from Fig.16 in the revolving mode all the legs move with
a motion smoother than in the case of walking mode; the
range in joint angles is of about 100 deg for each leg joint
yet, but with a longer duty cycle;

• from Fig.17 in the revolving mode the actuating torque
operate within a range of about 500 N mm with peaks of
800 N mm maximum; but the operating values are
computed before 15 sec with a maximum value of 50 N
mm like in the waling mode. Again the large computed
values at the end of the simulation are mainly due to
vibration in the stopping phase;
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in the case of both simulated locomotion modes the energy

consumption can be estimated as 0.1 J/step/joint that gives
approximately a total consumption of 0.2 J/sec during
walking.

- from Fig.16 in the revolving mode all the legs move 

with a motion smoother than in the case of walking 

mode;  the range in joint angles is of about 100 deg for 

each leg joint  yet, but with a longer duty cycle; 

- from Fig.17 in the revolving mode the actuating torque 

operate within a range of about 500 N mm with peaks 

of 800 N mm maximum; but the operating values are 

computed before 15 sec with a maximum value of 50 N 

mm like in the waling mode. Again the large computed 

values at the end of the simulation are mainly due to 

vibration in the stopping phase; 
 

 
a) 

 
b) 

¶(4pt) 

Figure 14. Plots of the joint angles of three legs vs time as 

numerical results of the simulation of straight walking mode  in 

Fig. 11a): a) for legs B and C; b) for leg A. 

 

- in both modes the most active joint with largest 

actuating torque is joint 2 in the shoulder design since it 

is the main source  of the motion . 

The simulation results refer to the locomotion capabilities 

of the robot and its firm posture. Energy consumption 

can be estimated by using results of the simulations as the 

sum of required energy for all the joints during the 

motion. Thus in the case of both simulated locomotion 

modes  the energy consumption can be estimated as 0.1 

J/step/joint that gives approximately a total consumption 

of 0.2 J/sec during walking. 

 

 
a) 

 
b) 

 
c) 

¶(4pt) 

Figure 15. Plots of the actuating torques of three legs vs time as 

numerical results of the simulation of straight walking mode  in 

Fig. 11a): a) for leg A; b) for leg B; c) for leg C.  

 

The force and torque applied to the space station by the 

robot can be considered as the ground actions that the 

robot exerts during locomotion. The simulation results 

are not reported since they show very small values as due 

to light design of the robot in low-gravity environment. 

Figure 15. Plots of the actuating torques of three legs vs time as numerical
results of the simulation of straight walking mode in Fig. 11a): a) for leg A;
b) for leg B; c) for leg C

The force and torque applied to the space station by the robot
can be considered as the ground actions that the robot exerts
during locomotion. The simulation results are not report‐
ed since they show very small values as due to light design
of the robot in low-gravity environment. Considering a total
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mass of 30 Kg for the robot and because of the slow motion
(1 step in 5 sec) the actions that the robot exerts on its contact
with the orbital station on the handrails or rods can be
calculated approximately with a maximum value of 30 N in
orthogonal direction, 100 N in tangential direction with high
necessary friction and a torque of 1.5 Nm.
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that the robot exerts on its contact with the orbital station 

on the handrails or rods can be calculated approximately 

with a maximum value of 30 N in orthogonal direction, 

100 N in tangential direction with high necessary friction 

and a torque of 1.5 Nm. 
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Figure 16. Plots of the joint angles of three legs vs time as 

numerical results of the simulation of revolving mode in Fig. 
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Figure 17. Plots of the actuating torques of three legs vs time as numerical
results of the simulation of of revolving mode in Fig. 12a): a) for leg A; b) for
leg B; c) for leg C

The simulation results are reported in terms of leg joint
angles and actuating torques to stress the feasibility of the
operation of the chameleon-like space robot in basic
operation for both locomotion modes. In fact, both the
kinematics of the leg joints and actuator torques show
values and time history that are feasible for a practical
implementations in service tasks in space orbital stations
since they refer to possible motion planning and acceptable
torque efforts in astronautic solutions.
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5. Conclusions

A new chameleon-like robot is proposed and simulated for
service applications in helping astronauts to do assembling,
repairing, and monitoring works outside space orbital
stations with a proper capability and flexibility in locomo‐
tion. The proposed conceptual kinematic design is obtained
as a result from an analysis of operation problems and
requirements in space stations and by looking at a biomi‐
metics inspiration. The novel robot design is composed of
one trunk and three legs/arms with a two-finger gripper-
foot extremity by looking at the structure and operation of
chameleons to ensure robust, compact, and light design.
Simulations have been used to characterize the basic
performance in two modes of mobility and to give first
indications for a feasible design of a first prototype. Results
and contributions of the paper can be summarized in
presenting the new conceptual design with chameleon-like
characteristics in Figs. 6 to 10 as: compact design as stressed
in Fig.7, versatility in locomotion capability as outlined in
Fig.6 and more clearly in the simulations of Figs.11 and
12, mutifunctionality for service tasks through the design
of leg/arm with foot/hand in Figs 8 and 9. Future work is
planned for experimental validation and performance
testing of a prototype under construction at IRI in Beijing.
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