

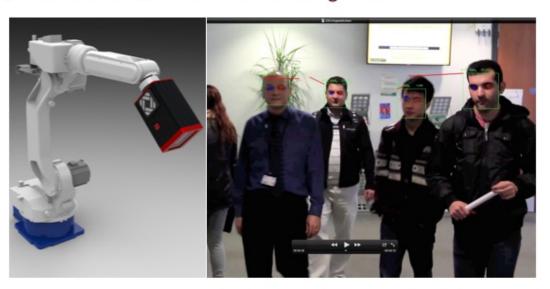
Al Deep Learning and Data Security in the Internet of Everything

RODRIGUES, Marcos http://orcid.org/0000-0002-6083-1303 Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/14293/

This document is the Presentation

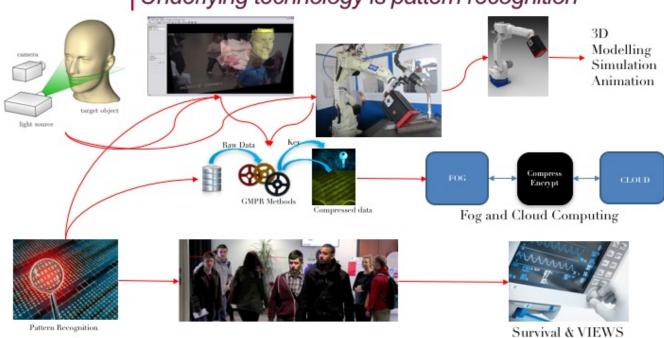
Citation:

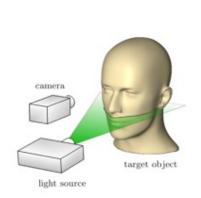
RODRIGUES, Marcos (2016). Al Deep Learning and Data Security in the Internet of Everything. In: Kelaniya International Conference on Advances in Computing and Technology (KICACT) 2016, Colombo, Sri Lanka, 25 November 2016. (Unpublished) [Conference or Workshop Item]


Copyright and re-use policy

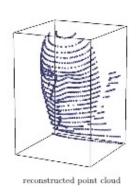
See http://shura.shu.ac.uk/information.html

Al Deep Learning and Data Security in the Internet of Everything


Professor Marcos Aurelio Rodrigues


GMPR Geometric Modelling And Pattern Recognition Research Group


From 3D Reconstruction to Medical to Security Underlying technology is pattern recognition

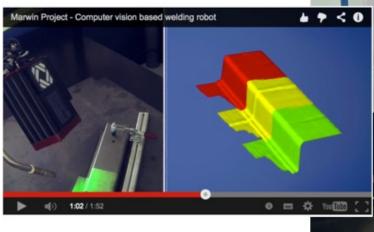


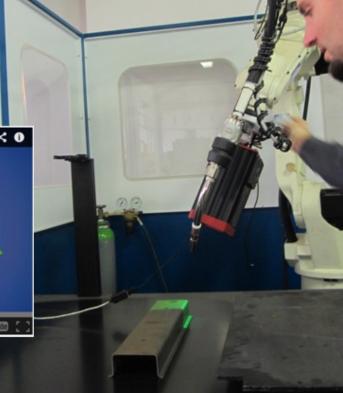
The GMPR 3D scanning technologies 3D with single image

Each light plane is uniquely detected by original algorithms

GMPR Geometric Modelling And Pattern Recognition Research Group

MARWIN Project: full design integrated into a robotic arm The actual robotic cell

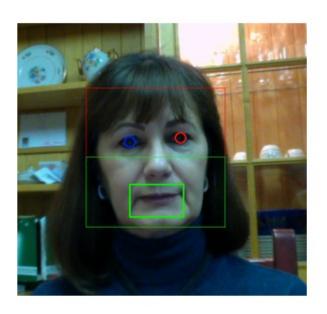




GMPR Geometric Modelling And Pattern Recognition Research Group

ommunication and Computing Research Centre

GMPR Geometric Modelling And Pattern Recognition Research Group



Client Side Software Development Firmware and control s/w development

Real time processing:

- 1. face detection and tracking
- 2. eye tracking
- 3. other feature tracking (mouth, nose)
- 4. cropping the various face-ROI
- 5. gender classification
- 6. age estimation
- 7. save statistical info to an xml file
- 8. transmit to server at periodic intervals

Sheffield Hallam University

GMPR Geometric Modelling And Pattern Recognition Research Group

Applying binary patterns to face images Visualizing the differences on images

Input image

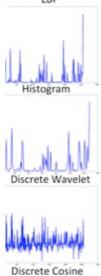
Modified Census 3×3

LBP 3×3

Census 5×5

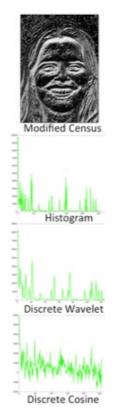
Census 3×3

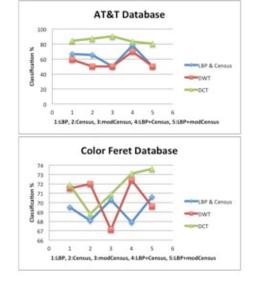
Modified Census 5×5

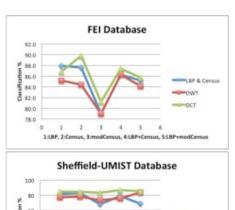


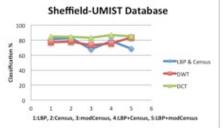
GMPR Geometric Modelling And Pattern Recognition Research Group

Comparative analysis of binary patterns


Raw histograms Transformed histograms by DCT Transformed histograms by DWT

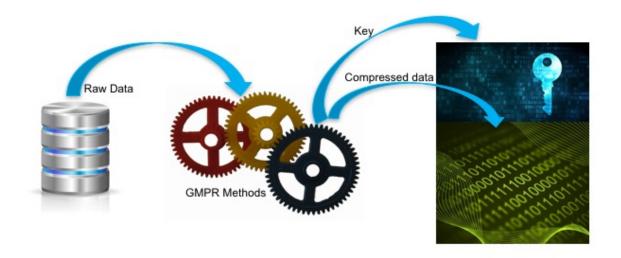

Discrete Cosine



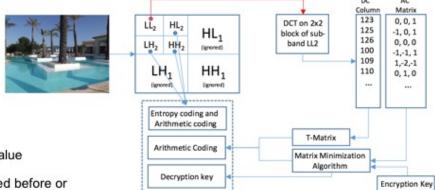


GMPR Geometric Modelling And Pattern Recognition Research Group

Classification results Four public databases



GMPR compression-encryption


Automatic generation of encryption key

The GMPR method

Automatic generation of compression-encryption key

Main novel steps:

- Data divided into blocks
- 2. Delta or differential process
- 3. Triplet encoding into a single value

Many transformations can be applied before or after, e.g.:

DCT, DST, DWT, DFT, Quantization, Entropy coding, Arithmetic coding, etc.

Sheffield Hallam University

GMPR Geometric Modelling And Pattern Recognition Research Group

Experimental Results 2D Images: Original v. GMPR

Sheffield Hallam University

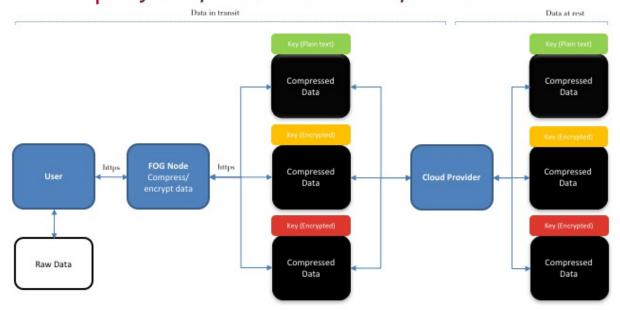
GMPR Geometric Modelling And Pattern Recognition Research Group
Communication and Computing Research Centre

Experimental Results 2D Images: GMPR v. JPEG2000


Sheffield Hallam University

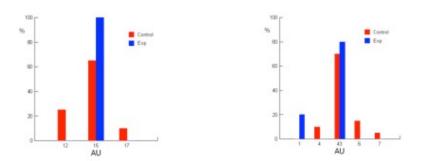
GMPR Geometric Modelling And Pattern Recognition Research Group


Experimental Results 3D lossless compression

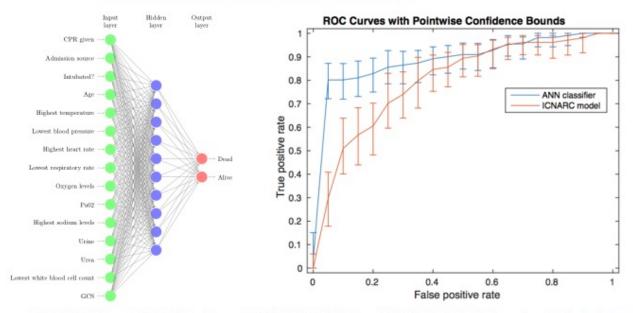

GMPR Geometric Modelling And Pattern Recognition Research Group

Comparison of Lossy and Lossless compression with popular Unix/Linux compression utilities

File	Original size (MB)	GMPR Method (MB)	Lempel-Ziv- Welch (MB)	xz (MB)	gzip (MB)	bzip2 (MB)
Angel (floating point)	24.7	2.670	7.3	3.1	5.5	5.3
Face (floating point)	14.0	0.290	4.7	1.2	3.3	2.6
Average compression ratio		94% (lossy)	69%	90%	78%	81%
Angel (integer)	19.1	3.35	6.3	2.7	4.6	4.8
Face (integer)	12.0	0.556	4.1	0.723	2.7	2.1
Average compression ratio 89% (lossles		89% (lossless)	66%	90%	77%	79%


Vision for Fog and Cloud Computing Only compressed data are kept in the Cloud

All data processing and enforcement of company's security policy are performed in the Fog


A novel method for identification of patients at risk of deterioration using FACS

The research has demonstrated for the first time that patients at risk of deterioration and terminally-ill have similar patterns of AU in the lower and upper parts of the face, with peak frequencies of AU 15 and 43 respectively

An improved classifier for mortality prediction in adult critical care admissions

SHENFIELD, Alex, RODRIGUES, Marcos, VALENTINE, D, LIU, D and MORENO-CUESTA, Jeronimo (2015). An improved classifier for mortality prediction in adult critical care admissions. Journal of the Intensive Care Society, 16 (4), 118.

Future Directions GMPR main priority areas

Medical engineering:

- Deep Learning: survival prediction with 100s thousands patient data
- VIEWS: computer vision FACS analysis to detect patients at risk of deterioration in critical care

3D Reconstruction:

Collection of 3D facial data from up to 5,000 subjects

Al and pattern recognition:

- Deep Learning: intrusion detection from network packet data
- Deep Learning: 2D and 3D face recognition

Security:

- · Tracking of financial transactions
- · Intrusion detection
- Data compression and cloud security