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SCIENCE

Glacial geomorphology of the northern Kivalliq region, Nunavut, Canada, with
an emphasis on meltwater drainage systems
Robert D. Storrar a and Stephen J. Livingstone b

aDepartment of the Natural and Built Environment, Sheffield Hallam University, Sheffield, UK; bDepartment of Geography, University of
Sheffield, Sheffield, UK

ABSTRACT
This paper presents a glacial geomorphological map of glacial lineations, ribbed terrain,
moraines, meltwater channels (subglacial and ice-marginal/proglacial), eskers, glaciofluvial
deposits, ice-contact outwash fans and deltas and abandoned shorelines on the bed of the
former Laurentide Ice Sheet in northern Canada. Mapping was compiled from satellite
imagery and digital elevation data and landforms were digitised directly into a Geographical
Information System. The map reveals a complex glacial history characterised by multiple ice-
flow events, including fast-flowing ice streams. Moraines record a series of pauses or re-
advances during overall SE retreat towards the Keewatin Ice Divide. The distribution of
subglacial meltwater landforms indicates that several distinctive scales and modes of
drainage system operated beneath the retreating ice sheet. This includes a large (>100 km)
integrated network of meltwater channels, eskers, ice-contact outwash fans and deltas and
glaciofluvial deposits that originates at the northern edge of Aberdeen Lake. The map
comprises zone 66 of the Canadian National Topographic System, which encompasses an
area of 160,000 km2. It is presented at a scale of 1:500,000 and is designed to be printed at A0 size.
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1. Introduction

The Laurentide Ice Sheet covered a substantial pro-
portion of North America during the LateWisconsinan
glaciation (Dyke et al., 2002) and its subsequent demise
was closely coupled to dramatic climatic changes (e.g.
Barber et al., 1999; Clark, 1994; Clark, Alley, & Pollard,
1999). Understanding the fluctuations of ice sheets and
the processes which take place beneath them, and how
they interact with climate, is important for predicting
how ice sheets will respond to contemporary climate
change. High resolution climatic records extending
over the last glacial cycle (and beyond) are widely avail-
able (e.g. Shakun et al., 2012), providing a wealth of
data which can be compared with the palaeo-ice
sheet record. Previous reconstructions have focused
principally on ice-margin fluctuations (e.g. Dyke &
Prest, 1987; Dyke, Moore, & Robertson, 2003) and
the activity of ice streams (e.g. De Angelis & Kleman,
2005; Margold, Stokes, & Clark, 2015; Ó Cofaigh,
Evans, & Smith, 2010; Ross, Campbell, Parent, &
Adams, 2009; Stokes & Clark, 2001; Stokes, Clark, &
Storrar, 2009; Stokes, Margold, Clark, & Tarasov,
2016), which rapidly drain large portions of ice sheets.

Recent work on contemporary ice sheets has drawn
attention to the importance of meltwater in controlling
ice dynamics (e.g. Bartholomew et al., 2010; Schoof,
2010; Zwally et al., 2002). However, whilst meltwater

was abundant during the deglaciation of the Laurentide
Ice Sheet (e.g. Carlson et al., 2009; Storrar, Stokes, &
Evans, 2014a) and produced a large geomorphological
imprint (e.g. Brennand, 2000; Brennand & Shaw, 1994;
Mullins & Hinchey, 1989; Prest, Grant, & Rampton,
1968; Storrar, Stokes, & Evans, 2013), the geomorpho-
logical record of meltwater has to date played only a
relatively minor role in ice sheet reconstructions.
This is typically limited to providing supplementary
information about ice geometries and flow direction
(Kleman & Borgström, 1996), rather than to recon-
struct basal and hydrological processes in space and
time (see review by Greenwood, Clason, Helanow, &
Margold, 2016). The long-term effect is that the role
of meltwater in governing or modulating ice sheet
dynamics is relatively underexplored (although see
Stokes, Tarasov, & Dyke, 2012; Tarasov & Peltier,
2004, 2006). This paper aims to provide the geomor-
phological mapping basis for a first attempt to incor-
porate meltwater landforms into a larger ice dynamic
reconstruction, using a study area in northern Canada.

2. Study area and previous mapping

The study area corresponds to zone 66 of the Canadian
National Topographic System (NTS) and extends from
the 64th to 68th parallels and from the 96th to 104th
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meridians, encompassing an area of approximately
160,000 km2 (Figure 1). Despite its large size, the
study area is predominantly within the relatively flat
Back Lowland and Thelon Plain (Dyke & Dredge,
1989), with a maximum elevation of 361 m a.s.l.
Queen Maud Gulf lies to the north and the area con-
tains myriad small lakes and several larger lakes,
including Aberdeen Lake (1106 km2), Schultz Lake
(410 km2) and the Garry Lakes (776 km2). The area

lies on the Precambrian Shield and is composed mainly
of granitioid rocks, with belts of greenstone and meta-
morphosed sediments in the north and sedimentary
basins in the south (Wheeler et al., 1996).

Early mapping of areas like, and including, zone 66
(e.g. Craig, 1961, 1964) by the Geological Survey of
Canada (GSC) resulted in the publication of the Glacial
Map of Canada (Prest et al., 1968), which shows the
generalised glacial geomorphology. Since the 1980s,
the GSC have produced several more detailed surficial
geology map sheets covering subsets of the area at
scales ranging from 1:100,000 to 1:1,000,000, the spatial
distribution of which is shown in Figure 2 (Aylsworth,
1990; Aylsworth & Clarke, 1989; Aylsworth & Shilts,
1989a; Aylsworth, Cunningham, & Shilts, 1990; Helie,
1984; McMartin, Dredge, & Aylsworth, 2008; McMar-
tin, Dredge, & Robertson, 2005; St-Onge & Kerr, 2013,
2014a, 2014b; 2015; Thomas, 1981a, 1981b). This map-
ping is based on the interpretation of aerial photo-
graphs and field observations and contains different
collections of landforms, depending on the mapper.
A summary of the landforms recorded on each map
is provided in Table 1. Whilst some landforms, such
as eskers, are presented in a high level of detail, others,
notably glacial lineations, are necessarily generalised
and individual bedforms are often not mapped. More-
over, Figure 2 shows that several portions of the study

Figure 1. Location and topography of the study area. Locations of the landform examples provided in subsequent figures are indi-
cated by boxes and the numbers refer to the associated figure number. Lakes greater than 100 km2 are shown with blue outlines.

Figure 2. Extent of previous surficial geology maps at various
scales in NTS zone 66.

154 R. D. STORRAR AND S. J. LIVINGSTONE



Table 1. Features mapped in previous studies.

NTS
zone Reference Scale

Lineations
(including
flutings &
drumlins

Crag and tails
(including
roches

moutonnées) Striae
Ribbed
moraine

De Geer
moraine

Hummocky
moraine Esker

Meltwater
channel

Marine
limit

Lacustrine
limit

Shorelines
(including
beaches)

Moraine
ridge

Lateral
moraine Delta

Ice-
contact
delta

Ice-
contact
face

Glaciofluvial
terrace scarp

066A Aylsworth
et al.
(1990)

1:125,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066A McMartin
et al.
(2005)

1:250,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓

066A
south

McMartin
et al.
(2008)

1:100,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066B Aylsworth
(1990)

1:125,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066C Aylsworth
and
Clarke
(1989)

1:250,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066E St-Onge
and Kerr
(2013)

1:125,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066G
north

St-Onge
and Kerr
(2015)

1:125,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓

066I Thomas
(1981a)

1:250,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066H Thomas
(1981b)

1:250,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066J
south

St-Onge
and Kerr
(2014b)

1:125,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066L St-Onge
and Kerr
(2014a)

1:125,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066C,D,
E,F

Craig (1964) 1:506,880 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

066O,P Helie (1984) 1:250,000 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
066I,J,K,
N,O,P

Craig (1961) 1:1,013,760 ✓ ✓ ✓ ✓ ✓ ✓

066 (all) Aylsworth
and Shilts
(1989a)

1:1,000,000 ✓ ✓ ✓ ✓ ✓ ✓

JO
U
RN

A
L
O
F
M
A
PS
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area are restricted to mapping at small scales of
1:500,000 or 1:1,000,000. De Angelis (2007) produced
a map of the glacial geomorphology of the east-central
Canadian Arctic, which is based predominantly on the
interpretation of Landsat Enhanced Thematic Mapper
(ETM)+ imagery. This map portrays glacial landforms
required for a glacial inversion model (Kleman et al.,
2007). Like the Glacial Map of Canada (Prest et al.,
1968), some features (e.g. glacial lineations) are dis-
played in a generalised pattern, rather than each indi-
vidual landform being mapped. The focus of previous
mapping has been predominantly on ice sheet
dynamics, with the result that important meltwater fea-
tures, including meltwater channels, have not pre-
viously been mapped in this region. Further mapping
is therefore required to provide a higher level of detail
for reconstructions, and to interpret the meltwater his-
tory of this part of the Laurentide Ice Sheet as it
deglaciated.

3. A brief glacial history

The study area is likely to have been ice covered for
much of the last glacial cycle (Stokes et al., 2012) and
the landform record attests to three distinctive signa-
tures of ice sheet history.

First, prior to deglaciation the study area was located
in a core region of the Keewatin sector of the Lauren-
tide Ice Sheet, and acted as a centre of ice dispersal
(Dyke et al., 2002; McMartin & Henderson, 2004). A
series of ice divides developed over the area, which
reconfigured over time, having a dramatic influence
on ice-flow direction as recorded by cross-cutting gla-
cial lineations and striae (Boulton & Clark, 1990; Hod-
der, Ross, & Menzies, 2016; McMartin & Henderson,
2004).

Second, the Dubawnt Lake Ice Stream flowed across
the southern part of the area towards the NW/WNW,
during deglaciation from approximately 10.2 to 9 ka,
producing numerous mega-scale glacial lineations
(MSGLs) (Stokes & Clark, 2003a, 2003b). It has also
been suggested that, prior to deglaciation, another ice
stream operated in the northern and central parts of
the area, which flowed to the north–east and fed the
Gulf of Boothia Ice Stream (Hodder et al., 2016).

Third, the final deglaciation of the area occurred
between ca. 10 and 8 ka (Dyke et al., 2003), as ice
retreated to the east–south–east towards the final
location of the Keewatin Ice Divide (McMartin & Hen-
derson, 2004). The deglacial signature is characterised
by prominent moraines and eskers (Aylsworth & Shilts,
1989a, 1989b; Prest et al., 1968).

4. Methods and data sources

Glacial landforms were identified from satellite ima-
gery and digital elevation data and were digitised

directly into a Geographical Information System
(GIS). Landsat 7 ETM+ and 8 OLI imagery has a spatial
resolution of 30 m (and 15 m in the panchromatic
band) and was downloaded from the USGS (available
at: earthexplorer.usgs.gov). Individual images were
viewed at a variety of scales, typically between
1:50,000 and 1:500,000, as false colour composites in
different band combinations: principally 4,3,2 and
7,5,2 (R,G,B). Landforms were digitised at approxi-
mately 1:50,000. The 1:50,000 scale Canadian Digital
Elevation Dataset (CDED: available from geogra-
tis.gc.ca) was used to produce a Digital Elevation
Model (DEM) with a horizontal resolution of 15.5 m.
In order to avoid azimuth biasing (Smith & Clark,
2005; Smith & Wise, 2007), the DEM was visualised
in three different ways: (i) as two relief-shaded models
with different azimuths (315° and 45°); (ii) as a slope
gradient-shaded model and (iii) as a simple
elevation-shaded model.

Although both sets of imagery were used to identify
landforms, some features were more readily identifi-
able in one particular set. For example, low relief corri-
dors of glaciofluvial deposits were identifiable only by
their distinctive spectral signature in the Landsat
ETM+ imagery. In contrast, meltwater channels are
characterised by a topographic signature and were typi-
cally easier to identify in the CDED data. All mapping
was cross-checked with previous investigations (see
Table 1) to ensure consistency.

Glacial lineations, ribbed terrain, esker crestlines,
meltwater channel thalwegs, abandoned shorelines
and moraine crestlines were digitised as polylines. Gla-
ciofluvial deposits (deposits of sand and/or gravel
characterised by high reflectance in Landsat imagery)
and ice-contact outwash fans and deltas were digitised
as polygons. Lake outlines used on the map were down-
loaded from the North American Atlas (available from:
nationalatlas.gov).

Most of the above landforms are clearly distinguish-
able in different sets of remotely sensed imagery. How-
ever, meltwater channels (erosional products of
meltwater flow that may range frommetre to kilometre
scale) are often ambiguous. They may form in subgla-
cial, proglacial or ice-marginal positions and often
occupy topographic lows, leading to potential con-
fusion with modern or postglacial drainage. Indeed,
postglacial drainage patterns on the Canadian Shield
are characteristically deranged as a result of the effect
of repeated glaciations on reshaping the surface, with
insufficient time for graded fluvial systems to develop
(Dyke & Dredge, 1989). Many modern channels there-
fore occupy former meltwater channels, making them
difficult to objectively separate. All potential meltwater
channels were therefore mapped and individually
assessed to determine whether they formed subgla-
cially, ice-marginally or proglacially (after Greenwood,
Clark, & Hughes, 2007). The criteria for distinguishing
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subglacial meltwater channels include: (i) an associ-
ation with other glacial landforms such as moraines
and eskers; (ii) an undulating channel thalweg and
(iii) an oblique channel orientation relative to the
regional drainage slope. Proglacial meltwater channels
flow down slope, often start abruptly at former ice-
margin positions and meander downstream. Ice-mar-
ginal meltwater channels document the ice margin at
the time of their formation and are classically related
to parallel flights of lateral channels perched on valley
sides (e.g. Dyke, 1993; Greenwood et al., 2007; Maag,
1969; Margold, Jansson, Kleman, & Stroeven, 2011).

5. Mapped landforms

A new map of the glacial geomorphology of NTS
zone 66 is presented in the supplementary data
(Main Map). The mapping reveals a rich and com-
plex suite of glacial landforms and provides a consist-
ent level of detail across the study area, in places
exceeding that of previous work (Figure 2). Eight
different types of landform were mapped and these
are briefly described below.

The map contains 28,061 glacial lineations
(Figure 3), which range in size from relatively small

drumlins (Figure 3(A,B)) a few 10s to 100s of m
long, to spectacular MSGLs (Clark, 1993) of the
Dubawnt Lake Ice Stream bed (Stokes & Clark,
2003a) that reach up to 23 km long (Figure 3(C,D)).
Glacial lineations reflect different ice-flow phases,
with principal flows aligned E–W (in the southern
part) and S–N (in the east). Smaller lineation clusters
depict a complex arrangement of orientations, includ-
ing cross-cutting, suggesting that ice flow changed
direction during the last glacial. Some of the large
(10s km long) S–N trending lineations in the south of
the study area have previously been identified as
‘mega-scale transverse bedforms’ akin to giant ribbed
terrain (Greenwood & Kleman, 2010). These land-
forms have more recently been interpreted by Hodder
et al. (2016) as relict MSGL. This interpretation is sup-
ported by parallel striations, which would be difficult to
explain if the features formed transverse to ice flow. For
this reason we follow Hodder et al. (2016) and classify
these features as glacial lineations, though we note
some uncertainty in this interpretation.

Ribbed terrain (moraine) (Figure 4) are ice-flow-
transverse ridges commonly associated with drumlins
(Dunlop & Clark, 2006). The terms ‘ribbed’ or
‘Rogen’ moraine have previously been used for these

Figure 3. Glacial lineations: drumlins shown in (A) CDED and (B) 4,3,2 R,G,B Landsat ETM+ image; and mega-scale glacial lineations
shown in (C) CDED and (D) pan-sharpened 4,3,2 R,G,B Landsat ETM+ image. Locations are given in Figure 1.
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landforms (Hättestrand, 1997; Hättestrand & Kleman,
1999; Lundqvist, 1989), though they are not true mor-
aines but subglacial bedforms (Dunlop, Clark, & Hind-
marsh, 2008; Hättestrand & Kleman, 1999). Areas of
ribbed terrain occur preferentially towards the south
and south–east, close to the final location of the Keewa-
tin Ice Divide (Aylsworth & Shilts, 1989b).

Moraine ridges (Figure 5) demarcate former ice-
margin positions. Most of the moraine ridges that
were mapped are consistent with deglacial ice margins
reflecting the gradual retreat of the ice sheet from the
NW to the SE (Dyke et al., 2003; Dyke & Prest,

1987). In some locations, several moraine ridges are
aligned in close proximity, whereas elsewhere they
occur as single isolated ridges.

Eskers (Figure 6) are straight-to-sinuous ridges com-
posed of glaciofluvial sand and gravel, which form by
deposition of sediment predominantly in R-channels,
which are aligned roughly normal to the ice margin
(Brennand, 2000). Numerous eskers were mapped in
the area and they record the meltwater drainage pat-
tern and ice-margin positions during final deglaciation
over the area, approximately from the NNW to SSE
towards the final location of the Keewatin Ice Divide

Figure 4. Ribbed terrain shown in (A) CDED and (B) Landsat ETM+ (R,G,B 4,3,2) imagery. Location is given in Figure 1.

Figure 5. A segment of the MacAlpine moraine (Dyke & Prest, 1987) shown in (A) CDED and (B) Landsat ETM+ (R,G,B 4,3,2) imagery.
Location is given in Figure 1.
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(Aylsworth & Shilts, 1989b). Most eskers are up to
10 km long, although some reach lengths up to
46 km. Eskers are quasi-regularly spaced approxi-
mately 12 km apart across the study area (Storrar,
Stokes, & Evans, 2014b).

Meltwater channels (Figure 7) are up to 102 km long
and may be incised into either bedrock or sediment. Of
the 404 ‘definite’ and ‘probable’ channels mapped in
the study area, 306 were interpreted as being subglacial
in origin (76% of the total population) and 98 either
proglacial or ice-marginal channels (24% of the total
population). Ice-marginal meltwater channels are up
to 30 km long and tend to be orientated transverse to
glacial lineations and subglacial meltwater products
in association with moraine still-stand positions. The

majority of subglacial meltwater channels occur
between Aberdeen and Garry lakes along a roughly
SE–NW to S–N axis. The channels are up to 1.5 km
wide and extend for long distances (up to 100 km),
consistent with the dimensions of tunnel valleys (e.g.
Kehew, Piotrowski, & Jørgensen, 2012; Livingstone &
Clark, 2016; Ó Cofaigh, 1996; Wright, 1973). Many
appear to initiate on the northern edge of Aberdeen
Lake, whilst a smaller number originate further south
and trend through it. Subglacial meltwater channels
are often associated with eskers, which either occur
within the channels or form a continuation with
them, producing integrated drainage networks. In con-
trast to other locations (e.g. Livingstone & Clark, 2016),
about half of the subglacial meltwater channels
throughout the study area do not terminate at moraine
positions, despite the prevalence of moraines in the
area. Some meltwater channels are aligned conform-
ably with lineation trends, whereas in some places
meltwater channels cut obliquely to the surrounding
lineations. North of the Garry lakes, there is a series
of long (up to 100 km) relatively straight channels
that may have formed subglacially. However, they typi-
cally trend down normal slopes and are not associated
with other glacial landforms, like eskers and moraines,
and therefore have been classified as ‘possible’ subgla-
cial channels and omitted from the map.

Ice-contact outwash fans and deltas (Figure 8) com-
prise approximately triangular mounds and flat-topped
hills up to a few kilometres in diameter, composed of
glaciofluvial sand and gravel. They are typically
found at the terminus of esker segments and/or at mor-
aine positions (see also Helie, 1984; St-Onge & Kerr,
2013, 2014b). In contrast, the meltwater channels are
rarely associated with fans and deltas.

Figure 6. Eskers shown in (A) CDED and (B) Landsat ETM+ (R,G,B 4,3,2) imagery. Location is given in Figure 1.

Figure 7.Meltwater channels seen in (A) CDED and (B) Landsat
ETM+ (R,G,B 4,3,2) imagery. Location is given in Figure 1.
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Glaciofluvial deposits (Figure 9) form wide (up to
6 km) corridor-like tracts of glaciofluvial sand and
gravel, often located within erosional corridors (cf.
Rampton, 2000; Utting, Ward, & Little, 2009). These
deposits are commonly associated with aligned eskers,
which may suggest that they form in subglacial positions
(St-Onge, 1984). They occur exclusively north of Aberd-
een Lake and are particularly extensive in the area
between Aberdeen and Garry Lakes, where they are
aligned with a relatively strong N–S orientation.

Abandoned shorelines (Figure 10) are present in a
restricted band between approximately 80 and 280 m
a.s.l., surrounding Aberdeen Lake and Shultz Lake
(Aylsworth, 1990). Raised shorelines are also present
around the Garry lakes, a few metres above present
lake levels. They reflect a series of higher lake levels
and subsequent marine incursion (Dyke et al., 2003;
McMartin et al., 2008; Prest et al., 1968). Lakes likely
formed in proglacial positions, dammed by ice to the
south and east.

Figure 8. Ice-contact outwash fans/deltas seen in (A) CDED and (B) Landsat ETM+ (R,G,B 4,3,2) imagery. Location is given in Figure
1.

Figure 9. Glaciofluvial deposits. (A) Tracts of glaciofluvial deposits (light colours) between Aberdeen and Garry Lakes shown in
Landsat ETM+ (R,G,B 4,3,2) imagery. Location is given in Figure 1. (B) Close-up of the box in A with outline of mapping. Landsat
image is pan-sharpened. (C) DEM showing the same area as B. Note the esker in close association with the glaciofluvial deposits.
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6. Discussion and implications

This paper presents a map of the glacial geomorphol-
ogy of zone 66 of the NTS system of Canada. Mapping
from Landsat imagery and CDED elevation data reveal
a large number of glacial landforms, representing a
complex glacial history. Ubiquitous glacial lineations
include the well-documented Dubawnt Lake ice stream
bed in the southern part of the area, which records
rapid ice flow roughly from east to west (Stokes &
Clark, 2003a, 2003b). A further major flow is recorded
along a south–north axis across much of the eastern
part of the area, which may have fed the Boothia Ice
Stream to the north–east (see also Hodder et al.,
2016; Kleman et al., 2007; Margold et al., 2015). In
addition to these large flow events, the landform record
also reveals several smaller events which, in some
locations, are recorded by complex clusters of lineations
cross-cutting in up to three different directions.

Meltwater landforms, including eskers, meltwater
channels, ice-contact outwash fans and deltas and gla-
ciofluvial deposits, record the hydrological component
of the ice sheet during deglaciation as it retreated from
the north–west towards the final location of the Keewa-
tin Ice Divide to the east–south–east of the area
(McMartin & Henderson, 2004). We identified several
different arrangements, scales and types of meltwater
landform, which suggests that the mode of subglacial
drainage varied in space and time. In particular, tracts
of glaciofluvial deposits and larger meltwater channels
(tunnel valleys) form a distinctive spatial pattern
between Aberdeen Lake and the Garry Lakes, and
this indicates the intriguing possibility that they may

reflect the transportation of meltwater between the
two lakes. It is possible that the depressions in which
these lakes now sit were occupied by subglacial lakes
(Livingstone, Clark, & Tarasov, 2013) prior to the devel-
opment of proglacial lakes and then marine inundation
during deglaciation (cf. Dyke, 2004; Dyke et al., 2003;
Prest et al., 1968; Stokes & Clark, 2004). Further analysis
is required to determine the precise nature of meltwater
drainage in this area but this highlights the new insights
that can be gleaned by incorporating meltwater
dynamics into palaeo-ice sheet reconstructions.

As well as providing a detailed database that may be
used for ice-margin and ice dynamic reconstructions,
extensive glaciofluvial landforms, including landforms
not previously mapped detail such as corridors of glacio-
fluvial deposits and meltwater channels, permit the evol-
ving hydrology of the Laurentide Ice Sheet to be
reconstructed. It is therefore anticipated that the data con-
tained within this map will be used to produce a detailed
reconstruction of (i) ice-margin retreat; (ii) evolving ice
dynamics and (iii) evolving meltwater systems of this sec-
tor of the Laurentide Ice Sheet during its deglaciation.

Software

Esri ArcGIS 10.3 was used to produce the map and
figures.
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