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Abstract— Electric vehicles with four individually controlled 

drivetrains are over-actuated systems and therefore the total 
wheel torque and yaw moment demands can be realized through 
an infinite number of feasible wheel torque combinations. Hence, 
the energy-efficient torque distribution among the four 
drivetrains is crucial for reducing the drivetrain power losses and 
extending driving range. In this paper, the reference torque 
distribution is formulated as the solution of a parametric 
optimization problem, depending on vehicle speed. An analytical 
solution is provided for the case of equal drivetrains on the front 
and rear axles, under the experimentally confirmed hypothesis 
that the drivetrain power losses are monotonically increasing 
with the torque demand. The easily implementable and 
computationally fast wheel torque distribution algorithm is 
validated by simulations and experiments on an electric vehicle 
demonstrator, along driving cycles and cornering maneuvers. 
The results show considerable energy savings compared to 
alternative torque distribution strategies. 
 

Index Terms—Electric vehicle; torque distribution; control 
allocation; power loss; experiments. 
 

I. INTRODUCTION  
ne of the main obstacles to the success of electric 
vehicles (EVs) in the automotive market is their limited 

driving range. This issue is addressed by research in novel 
battery technologies to increase energy density and, hence, to 
provide viable/lightweight high-capacity energy storage 
systems. On the other hand, energy management systems are 
conceived to improve vehicle efficiency through advanced 
control of the drivetrains and ancillaries. In particular, EVs 
with multiple drivetrains allow the implementation of control 
functions, such as front-to-rear and left-to-right torque-
vectoring, which improve active safety and drivability, and 
contribute to the attractiveness of EV technology [1-2]. Owing 
to the use of multiple motors an actuation redundancy is 
obtained – that is, the desired vehicle behavior corresponding 
to the driver’s inputs at the accelerator/brake pedal and/or 
steering wheel can be realized through an infinite number of 
feasible wheel torque distributions. For the range of feasible 
torque distributions, this paper presents a novel solution to 

determine the combinations providing maximum energy 
efficiency. 

The two major sources of power loss in EVs are the 
drivetrains and the tires. The drivetrain power losses include 
the contributions of the drives, electric motors and 
transmissions (where present). Tire contributions relate to 
rolling resistance, longitudinal slip and lateral slip, with the 
latter two being relevant only at significant acceleration levels.  

Prior research (e.g., [3-7]) indicates that the power losses 
can be reduced by specific torque distribution algorithms, also 
called control allocation (CA) strategies. For instance, [3,8] 
present CA strategies minimizing energy dissipation due to 
tire slip. Although effective, the practical implementation of 
these strategies requires some form of continuous estimation 
of the longitudinal and lateral slip velocities of each tire, 
which is beyond the capability of existing state estimators in 
normal driving conditions. In [4-6] and [9-11] the reduction of 
energy dissipations within the electric motor drives is 
examined. The presented strategies are mainly based on 
experimentally measured efficiency maps of electric motors. 
In particular, [4] carries out an off-line calculation of the 
optimal wheel torques, but without analyzing the resulting 
wheel torque distribution as a function of the input parameters, 
i.e., wheel torque demand and vehicle speed. The results in [4] 
imply that the optimal solution is either to only use a single 
axle or to evenly distribute the torque among the four drives of 
the EV. Moreover, the CA strategies in [5,11-12] are shown to 
be more efficient than simple even torque distribution among 
the front and rear axles. However, the influence of vehicle 
speed (ܸ) on the optimal solution is not directly taken into 
account. The effect of speed variation is investigated in [6] but 
it is not formulated. [9] discusses the change of the optimal 
distribution ratio as a function of longitudinal acceleration. 
The problem formulation is novel with results indicating small 
variations of the optimal distribution ratio over the achievable 
acceleration range. According to the results in [9], the vehicle 
never operates in the ‘single-axle’ mode, which is shown in 
[4,7] to be the optimal solution for small torque demands. 
Also, [9] only considers straight line driving. [10] presents a 
CA strategy that is based on a simplified piecewise-linear 
efficiency map of the brushless DC motors. An algorithm, 

based on Karush-Kuhn-Tucker (KKT) conditions of 
optimality, finds global solutions of the CA problem for non-
monotonically increasing drivetrain power loss curves. The 
corresponding non-convex optimization problem is translated 

into a number of equivalent eigenvalue problems. [13-14] 
propose high-level controllers aimed at achieving the 
reference cornering response, coupled with CA algorithms to 
improve vehicle stability. However, [3] shows that such 
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strategies can be far from optimal in terms of energy 
efficiency.  

In summary, an extensive literature deals with the subject of 
CA strategies for four-wheel-drive EVs. Many of the proposed 
algorithms are designed for reduced tire slip variance among 
the wheels. The papers dealing with drivetrain energy 
efficiency either do not discuss the resultant wheel torque 
distribution maps, or they present very complicated algorithms 
(such as multi-parametric non-convex optimization, [15-16]), 
which are unlikely to be directly implemented on production 
vehicles. As a consequence, there is a clear need for simple, 
computationally efficient, easily-tunable and effective 
solutions of the CA problem aimed at energy efficiency. The 
gap is addressed by this paper, including the following novel 
contributions: 
i) The analytical solution of the CA problem maximizing 

energy efficiency, under the hypothesis of monotonically 
increasing drivetrain power losses with torque demand. 
The optimal solution, obtained for the case of equal 
drivetrains on the front and rear axles, is parameterized as 
a function of ܸ;  

ii) A fast and easily implementable torque distribution 
strategy maximizing energy efficiency, based on the 
proposed analytical solution in i); 

iii) The simulation-based and experimental validation of the 
energy benefits of the CA algorithm in cornering 
conditions and along driving cycles. 

The remainder of the paper is organized in four sections (II 
to V). Section II formulates the energy-efficient CA problem 
as a multi-parametric non-convex optimization. Section III 
provides the theoretical background required to design the 
proposed fast CA for EVs. The performance of the CA 
strategy is verified in Section IV through computer 
simulations with a vehicle dynamics model and experiments 
on an electric Range Rover Evoque demonstrator vehicle. 
Finally, the conclusions are provided in Section V. 

II. PROBLEM STATEMENT AND FORMULATION 

A. Problem statement 
Fig. 1 shows the simplified vehicle control structure. The 
reference generator outputs the reference yaw rate, ݎ , and  
traction/braking force, ܨ, starting from the steering wheel 
angle (ߜ), accelerator and brake pedal positions (respectively 
 and longitudinal vehicle speed and ,(ܲܲܤ and ܲܲܣ
acceleration (respectively ܸ and ܽ௫). The high-level controller 
calculates the corrected longitudinal force reference, ܨ෨ (i.e., 
ܨ  from the reference generator is reduced in extreme 
cornering conditions), and the yaw moment reference, ∆ܯ, 
e.g., based on the combination of feedforward and feedback 
control of vehicle yaw rate, ݎ. 

The proposed CA strategy must minimize the drivetrain 

energy consumption while maintaining ܨ෨  (each drivetrain 
can operate in either traction or regeneration) and ∆ܯ. As 
the drivetrain power losses are functions of ܸ, the CA strategy 
includes  ܸ as a parameter.  

The CA problem is formulated as a static optimization or 
quasi-dynamic optimization [17-19] to be solved at each time 
step for the values of ܨ෨ and ∆ܯ calculated by the high-
level controller, and the estimated ܸ (Fig. 1). The CA strategy 
could be integrated into the high-level controller, thus giving 
origin to a single multiple-output controller. On the other 
hand, the separation among the high-level controller and the 
CA strategy (Fig. 1) has advantages, such as ease of 
considering actuator limitations [20] and flexibility with 
respect to the drivetrain configuration. The following 
subsection will formulate the CA problem mathematically, 
under Assumptions 1 and 2. 

Assumption 1: The case study EV includes four identical 
electric drivetrains with equal power loss characteristics – i.e., 
the electric machines and their power electronics, single-speed 
gearboxes, constant-velocity joints and wheels are the same on 
each vehicle corner.  

Assumption 2: The drivetrain power loss characteristic on each 
vehicle corner, ܲ௦௦(߬௪,ܸ), is positive and monotonically 
increasing as a function of torque demand, ߬௪. This means that 
ܲ௦௦(߬௪,ܸ) > 0 and ߲ ܲ௦௦(߬௪,ܸ)/߲߬௪ ≥ 0. 

The results presented in the next paragraphs can also be 
applied (with specific re-arrangements) to the simplified case 
of a four-wheel-drive EV with a single drivetrain per axle. 

B. Mathematical formulation 
The proposed optimal CA problem for small steering angles is 
formulated as follows: 
{߬௪}∗൫ܨ෨, Δܯ,ܸ൯

= arg min
ఛೢ, ,ఛೢ,

ܬ ቀ߬௪,, ߬௪, ,ܸቁ

≔ቂ ܲ ,௧ቀ߬௪,,ܸቁ− ܲ, ቀ߬௪, ,ܸቁቃ
ସ

ୀଵ

 

.ݏ ∑    .ݐ ቀ߬௪, − ߬௪,ቁ = ෨ܴସܨ
ୀଵ   

݀ ቀ߬௪మ, + ߬௪భ, − ߬௪భ, − ߬௪మ,ቁ+

݀ ቀ߬௪ర, + ߬௪య, − ߬௪య, − ߬௪ర,ቁ =   ܴܯ∆
0 ≤ ܸ ≤ ܸ௫  
0 ≤ ߬௪, ≤ ߬௪,௫, ,௧ 
0 ≤ ߬௪, ≤ ߬௪,௫ ,, 
߬௪,߬௪, = 0;  ݅ = 1,2,3,4 

(1) 

߬௪, and ߬௪,  are the traction and regeneration torques at 
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Fig. 1. The vehicle dynamics control structure 

the different wheels (numbered as in Fig. 1). ܴ is the tire 
radius. ݀ and ݀ are the front and rear half-tracks. ߬௪,௫ ,,௧  
and ߬௪,௫ ,,  are the minimum between the torque available 
at the drivetrain in traction, ߬௪,௫,௧(ܸ), or regeneration, 
߬௪,௫ ,(ܸ), and the transmissible torque at the tire-road 
contact, ܨ ߤ௭,ܴ, being ߤ the estimated tire-road friction 
coefficient and ܨ௭, the estimated vertical load at the wheel ݅. 
The first and second constraint in (1) have a clear physical 
meaning in vehicle dynamics: they require that the torques 
applied at the wheels generate, respectively, the reference 
longitudinal force of the vehicle ܨ෨ , and the reference yaw 
moment of the vehicle ∆ܯ. 

In the hypothesis of low load transfers, Problem (1) has 
three parameters: i) ܨ෨ ; ii) ∆ܯ and iii) vehicle speed. The 
problem is non-convex due to the complementarity constraints 
and non-convexities in the power loss characteristics of the 
electric machines and mechanical transmission systems. The 
complementarity constraints ߬௪,߬௪, = 0 specify that at each 
instant each wheel can only operate in traction or regeneration. 
ܲ ,௧ and ܲ , are, respectively, the drawn and regenerated 

electrical powers at the wheel ݅, given by: 

ܲ ,௧ = ߬௪,

ோ

+ ܲ௦௦ ,௧ቀ߬௪, ,ܸቁ;  ݅ = 1,2,3,4  
(2) 

ܲ , = ߬௪,

ோ
− ܲ௦௦, ቀ߬௪,,ܸቁ ;  ݅ = 1,2,3,4  

where the first term on the right-hand side is the mechanical 
power and the second term is the power loss. The power losses 
of all vehicle corners are modeled with the same functions, 
ܲ௦௦ ,௧/ (the subscripts indicate traction and regeneration, 

respectively), obtained by fitting the experimental 
measurements on the drivetrains to a mathematical expression 
(Assumption 1). 

By replacing (2) into the cost function ܬ ቀ߬௪,, ߬௪, ,ܸቁ of 
 :is reformulated as ܬ ,(1)

ܬ ቀ߬௪, , ߬௪,,ܸቁ = 
ோ
൭
∑ ቀ߬௪, − ߬௪,ቁ
ସ
ୀଵ

ᇩᇭᇭᇭᇭᇭᇪᇭᇭᇭᇭᇭᇫ
ி෨ೝ ோ

൱+

∑ ቂ ܲ௦௦,௧ቀ߬௪, ,ܸቁ+ ܲ௦௦ , ቀ߬௪,,ܸቁቃସ
ୀଵ   

(3) 

where the first term on the right-hand side is the overall 
mechanical power and the second term is the overall power 
loss. 

The term (ܸ/ܴ)ܨ෨ܴ can be assumed constant for any 
value of the parameters. Hence, the cost function can be 
reduced to:  

ܬ ቀ߬௪,, ߬௪, ,ܸቁ = ∑ ቂ ܲ௦௦ ,௧ቀ߬௪, ,ܸቁ+ସ
ୀଵ

݃,ݏݏ݈ܲ ܸ,݃,݅ݓ߬   (4) 

(4) assumes that the vehicle operates with limited yaw rate 
and limited relative slip among the wheels, which means that 
ܸ can be used as the speed of each vehicle corner.  

In summary, (1) is a multi-parametric Non-Linear 
Programming (mp-NLP) problem [21-22], with the following 
general formulation: 

(ߠ)ݖ = min
௫∈

ܬ   (ߠ,ݔ)

.ݏ (ߠ,ݔ)ܩ  .ݐ ≤ (ߠ,ݔ)ܪ;0 = 0; ߠ  ∈ Θ  
(5) 

where ߠ = ෨ܨൣ , ܯ∆ ,ܸ൧
்
is the parameter vector, and ܩ 

and ܪ represent the inequality and equality constraints.  

III. CONTROLLER DESIGN 
Lemma 1: Problem (1) has only one solution for each side of 
the vehicle, assuming ݀ = ݀ = ݀: 

߬௪,
∗ = 0.5 ൬ܨ෨ −

ܯ∆

݀
൰ܴ; 

߬௪,
∗ = 0.5 ൬ܨ෨ +

ܯ∆

݀
൰ܴ; 

−߬௪,௫, , ≤ ߬௪,
∗ ≤ ߬௪,௫ ,,௧; 

−߬௪,௫, , ≤ ߬௪,
∗ ≤ ߬௪,௫,,௧ 

(6) 

where ߬௪,
∗  and ߬௪,

∗  are, respectively, the reference wheel 
torques of the left- and right-hand sides of the vehicle, with 
߬௪,௫,,௧/ =  ߬௪,௫ ,ଵ,௧/ + ߬௪,௫ ,ଷ,௧/ and ߬௪,௫, ,௧/ =
 ߬௪,௫ ,ଶ,௧/ + ߬௪,௫,ସ,௧/ (the subscripts ‘ݐ’ and ‘݃’ indicate 
traction and regeneration, respectively).  

Proof: From the vehicle schematic in Fig. 1: 
߬௪, = ߬௪భ, + ߬௪య, − ߬௪భ, − ߬௪య,  
߬௪, = ߬௪మ, + ߬௪ర, − ߬௪మ, − ߬௪ర, (7) 

By replacing (4) and (7) into (1), Problem (1) becomes: 

{߬௪}∗൫߬,∆ܯ,ܸ൯
= arg min

ఛೢ,,ఛೢ ,ೝ
,൫߬௪,ܬ ߬௪,,ܸ൯

  

 

∶= ܲ௦௦൫߬௪,,ܸ൯ + ܲ௦௦ೝ൫߬௪,,ܸ൯ 

.ݏ .ݐ     ߬௪, + ߬௪, =  ;෨ܴܨ

߬௪, − ߬௪, =
ܴܯ∆

2݀ ; 

(8) 
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0 ≤ ܸ ≤ ܸ௫ ; 
−߬௪,௫,, ≤ ߬௪, ≤ ߬௪,௫,,௧; 
−߬௪,௫,, ≤ ߬௪, ≤ ߬௪,௫,,௧  

The complementarity conditions ߬௪,߬௪, = 0 are no longer 
present in (8) as they are internal conditions for the left- and 
right-hand sides; this implies that ߬௪, and ߬௪, can only vary 
between −߬௪,௫ ,/,  and ߬௪,௫,/,௧  (the subscripts ‘݈’ and 
 indicate left and right, respectively). Problem (8) has a ’ݎ‘
unique solution, as in (6), due to the two equality constraints 
for the decision variables ߬௪, and ߬௪, . The solution is fixed 
and independent of the cost function.                                       □ 

Remark 1: The solutions for the left- and right-hand sides of 
the vehicle are independent of ܸ and only depend on ܨ෨  and 
 .ܯ∆

Remark 2: The reference values of the total longitudinal force 
and yaw moment are restricted by the maximum and minimum 
torques of the electric motors, which depend on ܸ, and (in 
second approximation) the estimated tire-road friction 
coefficient. 

Remark 3: As mentioned before, because of the two equality 
constraints with two decision variables in the main problem, a 
unique analytical feasible solution exists. To consider torque 
rate constraints, these two equality constraints need to be 
relaxed or transferred to the cost function to make the problem 
feasible. 

Lemma 2: If Assumptions 1 and 2 hold, the optimal torque 
distributions for the left- or right-hand sides of the vehicle 
make both front and rear motors work in either traction or 
regeneration (including the case that one motor is switched off 
and only one motor is producing torque). 

Proof: Lemma 1 proves that Problem (1) can be simplified to 
an optimal torque distribution problem for each side of the 
vehicle. The optimal torque distribution of the left-hand side 
of the vehicle for the case of traction, i.e., ߬௪,

∗ ≥ 0, is the 
solution of the following problem: 

{߬௪}∗൫߬௪, ,ܸ൯ = arg min
ఛೢభ,,ఛೢయ, ,ఛೢభ, ,ఛೢయ,

ܲ௦௦,௧൫߬௪భ,,ܸ൯

+ ܲ௦௦,௧൫߬௪య,,ܸ൯ + ܲ௦௦, ቀ߬௪భ, ,ܸቁ

+ ܲ௦௦, ቀ߬௪య, ,ܸቁ 

.ݏ ௪భ,߬     .ݐ + ߬௪య, − ߬௪భ, − ߬௪య, = ߬௪,
∗ ; 

߬௪,߬௪, = 0;   ݅ ∈ {1,3}; 
0 ≤ ߬௪, ≤ ߬௪,௫,,; 
0 ≤ ߬௪, ≤ ߬௪,௫ , ,௧ 

(9) 

The same problem is defined for the right-hand side of the 
vehicle or for the regeneration case, i.e., ߬௪,

∗ < 0. Expanding 
the complementarity constraint of Problem (9), the optimal 
solution of (9) is the best solution among the following four 
problems: 

{߬௪}∗൫߬௪, ,ܸ൯
= arg min

ఛೢభ ,ఛೢయ
ܲ௦௦ ,௧ ⁄ ൫߬௪భ,ܸ൯+ ܲ௦௦,௧/(߬௪య ,ܸ)

  

  

.ݏ     .ݐ

⎩
⎪
⎨

⎪
⎧ ߬௪భ + ߬௪య = ߬௪,

∗ ;ܱܴ
−߬௪భ − ߬௪య = ߬௪,

∗ ;ܱܴ
߬௪భ − ߬௪య = ߬௪,

∗ ;ܱܴ
−߬௪భ + ߬௪య = ߬௪,

∗ .

 

0 ≤ ߬௪ ≤ ߬௪,௫,,௧ ܱܴ  
0 ≤ ߬௪ ≤ ߬௪,௫,,; ݅ ∈ {1,3} 

(10) 

where ߬௪భ and ߬௪య are the torques at the left front and left rear 
wheels. ߬௪భ + ߬௪య = ߬௪,

∗  and −߬௪భ − ߬௪య = ߬௪,
∗  represent the 

pure traction and regeneration cases, while ߬௪భ − ߬௪య = ߬௪,
∗  

and −߬௪భ + ߬௪య = ߬௪,
∗  are the cases in which one of the 

wheels is in traction and the other one in regeneration.  
The resulting value of the cost function in (10) is smaller 

without regeneration as ܲ௦௦  is positive and monotonically 
increasing, i.e., ܲ௦௦ ≥ 0 and ߲ ܲ௦௦/߲߬௪ ≥ 0 (Assumption 
2). Any regeneration increases the absolute value of the 
traction torque and therefore, according to (2), increases the 
total power loss. As a result, the conditions ߬௪భ − ߬௪య = ߬௪,

∗  
and −߬௪భ + ߬௪య = ߬௪,

∗  are not optimal cases and, depending 
on the sign of ߬௪,

∗ , both wheels on the same side must work in 
either traction or regeneration.           

    □ 

Theorem 1: Suppose that Assumptions 1 and 2 hold, ܲ௦௦(߬௪) 
has the shape indicated in Fig. 2 (with a non-convex region 
followed by a convex region, i.e., with a single saddle point) 
and there are no torque rate constraints; then for each side of 
the vehicle: 
a) Single-axle is the optimal solution for small values of the 

reference torque demand; 
b) Even distribution among the wheels is the optimal solution 

for large values of the reference torque demand; 
c) The optimal switching point between strategies a) and b) at 

vehicle speed ܸ can be calculated as the solution of: 
ܲ௦௦ ,௧ ⁄ (߬௦௪,ܸ)  + ܲ௦௦,௧/(0,ܸ) =

2 ܲ௦௦,௧ ⁄ (0.5߬௦௪,ܸ)  
(11) 

where ߬௦௪ is the switching torque. 

Proof: Lemma 2 proves that the optimal torque distribution of 
the left-hand side of the vehicle with ߬௪,

∗ ≥ 0 is the solution 
of the following problem: 

{߬௪}∗൫߬௪, ,ܸ൯ = arg min
ఛೢభ,ఛೢయ

൫߬௪భܬ , ߬௪య ,ܸ൯  

∶= ܲ௦௦ ,௧൫߬௪భ,ܸ൯ + ܲ௦௦ ,௧൫߬௪య,ܸ൯ 

.ݏ ௪భ߬    .ݐ + ߬௪య = ߬௪,
∗ ; 

0 ≤ ߬௪ ≤ ߬௪,௫,,௧;  ݅ ∈ {1,3}.  

(12) 

By approximating the cost function of (12) around ߬௪, =
߬௪,
∗ /2, which is the solution of the even distribution strategy, 

the Taylor series is: 

൫߬௪భܬ , ߬௪య ,ܸ൯ ≅
ܲ௦௦,௧൫߬௪,,ܸ൯ + ∇ఛೢ ܲ௦௦,௧൫߬௪, ,ܸ൯൫߬௪భ − ߬௪,൯ +

(13) 
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ଵ
ଶ
∇ఛೢఛೢ
ଶ

ܲ௦௦,௧൫߬௪,,ܸ൯൫߬௪భ − ߬௪,൯
ଶ

+

ܲ௦௦ ,௧൫߬௪,,ܸ൯ + ∇ఛೢ ܲ௦௦,௧൫߬௪,,ܸ൯൫߬௪య − ߬௪,൯ +
ଵ
ଶ
∇ఛೢఛೢ
ଶ

ܲ௦௦,௧൫߬௪,,ܸ൯൫߬௪య − ߬௪,൯
ଶ
  

Since ߬௪భ + ߬௪య = ߬௪,
∗  is a constant value, if ߬௪భ (or ߬௪య) 

deviates from ߬௪, by the amount ߝ, then ߬௪య (or ߬௪భ) must 
deviate from ߬௪, by the same amount but in opposite 
direction: 

߬௪భ = ߬௪, + ;ߝ  ߬௪య = ߬௪, −  (14) ߝ

By substituting (14) into (13), the Taylor series 
approximation in (13) is reformulated as: 

(ܸ,ߝ)ܬ ≅ 2 ܲ௦௦,௧൫߬௪, ,ܸ൯ + ∇ఛೢఛೢ
ଶ

ܲ௦௦ ,௧൫߬௪,,ܸ൯ߝଶ 
.ݏ ௪,߬−     .ݐ ≤ ߝ ≤ ߬௪, 

(15) 
 

2 ܲ௦௦൫߬௪,,ܸ൯ is the power loss of the even distribution 
case. Therefore, for ܲ௦௦ ≥ 0: 
 If the Hessian of ܲ௦௦ is negative, i.e., ܲ௦௦ is non-convex 

at ߬௪,, then (ܸ,ߝ)ܬ < 2 ܲ௦௦൫߬௪,,ܸ൯ and, therefore, the 
even distribution is the worst strategy. In this case the 
minimum value of the cost function is achieved with the 
biggest offset from ߬௪,. From Lemma 2 (see also Fig. 2), 
the biggest offset is for the case |ߝ| = ߬௪,, and therefore 
߬௪భ or ߬௪య must be zero, which is equivalent to the single-
axle strategy a); 

 If the Hessian of ܲ௦௦ is positive or zero at ߬௪,, i.e., ܲ௦௦  
is convex at ߬௪,, then (ܸ,ߝ)ܬ ≥ 2 ܲ௦௦൫߬௪,,ܸ൯, which 
means that the even distribution (ߝ = 0) is the optimal 
solution. Fig. 2 shows that ܲ௦௦  is typically convex for 
large torque demands and therefore b) is proven. 

If both ߬௪, and ߬௪,  are in the convex region of {ߝ} ݊݅݉+
Fig. 2, the even distribution becomes the optimal strategy. On 
the other hand, if both ߬௪, and ߬௪, + -fall in the non {ߝ}ݔܽ݉
convex area, the single-axle is the optimal strategy. As a 
result, an optimal switching torque ߬௦௪ between these two 
strategies can be found – that is, a torque value exists at which 
the power loss of the even distribution strategy, 
2 ܲ௦௦(0.5߬௦௪ ,ܸ), is equal to the one of the single-axle 
strategy, ܲ௦௦(߬௦௪ ,ܸ) + ܲ௦௦(0,ܸ). 

□ 
Fig. 2 represents a geometrical interpretation of the optimal 

switching torque, ߬௦௪. It shows that the single-axle strategy is 
the optimal one up to the point at which ܲ௦௦(2߬௪ ,ܸ) −
ܲ௦௦(߬௪,ܸ) ≤ ܲ௦௦(߬௪ ,ܸ)− ܲ௦௦(0,ܸ). The right- and left-

hand sides of the inequality are, respectively, the amount of 
power loss which is reduced, compared to the even 
distribution, by switching off one of the drivetrains, and the 
amount of power loss increase by the other drivetrain, again 
compared to the even distribution. Suppose Assumption 2 
holds, these two terms become equal at the switching torque 
߬௦௪. 

 

Remark 4: Based on Theorem 1, the optimal distribution 
strategy is as follows:  

߬௪,ଵ
∗ ൫߬௪,

∗ ,ܸ൯ = ቊ
߬௪,
∗                    ߬௪,

∗ ≤ ߬௦௪(ܸ)
0.5߬௪,

∗             ߬௪,
∗ > ߬௦௪(ܸ)  

߬௪,ଷ
∗ ൫߬௪,

∗ ,ܸ൯ = ቊ
0                   ߬௪,

∗ ≤ ߬௦௪(ܸ)
0.5߬௪,

∗             ߬௪,
∗ > ߬௦௪(ܸ) 

(16) 

where ߬௪,ଵ
∗  and ߬௪,ଷ

∗  are, respectively, the optimal torque 
demands of the front and rear wheels of the left-hand side of 
the vehicle. In the single-axle strategy the front motors are 
selected (instead of the rear motors) for safety reasons; in fact, 
in limit conditions it is preferable to have understeer rather 
than oversteer. 

 
Fig. 2. Geometrical interpretation of Theorem 1, indicating the optimal 
switching point on the drivetrain power loss characteristic 
 

The equivalent right-hand side torques are calculated with 
the same approach. In the practical implementation of the 
controller, a sigmoid function is used to approximate the 
discontinuity of (16), in order to prevent drivability issues 
deriving from the fast variation of the torque demands. 

Remark 5: ߬௦௪ depends on the value of ܸ. Since the problem 
is parametric, the solution is parametric as well. In practice, ܸ 
can be estimated with a suitable Kalman filter using the four 
wheel speed signals and the longitudinal acceleration of the 
vehicle [23-24]. 

Remark 6: If ܲ௦௦(߬௪) is convex (i.e., without the saddle point 
in Fig. 2), then the even distribution is the optimal solution for 
any torque demand. 

Remark 7: If (13) is not a good approximation of  
൫߬௪భܬ , ߬௪య ,ܸ൯, the even order derivatives of ܲ௦௦,௧(߬௪,ܸ) with 
respect to ߬௪ must either be zero or have the same sign for the 
same values of ߬௪. For example, this is the case if 
ܲ௦௦,௧(߬௪ ,ܸ) is a cubic polynomial. The experimental power 

loss characteristics reported in Section IV are very well 
interpolated by a cubic polynomial.  

Remark 8: Theorem 1 can be extended to the case of a 
ܲ௦௦(߬௪) characteristic with multiple saddle points (i.e., with 

a sequence of several non-convex and convex parts), 
maintaining the assumption that ܲ௦௦ is monotonically 
increasing. 

Remark 9:  The developed control allocation strategy is 
overruled in two cases: 
 In the case of wheel torque saturation (see Section II.B), 

the torque demand beyond the limit is transferred to the 
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other wheel on the same side until saturation is reached as 
well; 

 For significant braking, an Electronic Braking Distribution 
(EBD) strategy intervenes to maintain the correct relative 
slip ratio among the tires of the front and rear axles. 

IV. RESULTS 

A. Experiments 
Experimental system setup 
Fig. 3 shows the experimental set-up for the validation of the 
developed torque distribution strategy. The vehicle 
demonstrator is an electric Range Rover Evoque with four 
identical on-board switched reluctance motors, connected to 
the wheels through single-speed transmissions, constant-
velocity joints and half-shafts. Table 1 reports the main 
vehicle parameters.  

A dSPACE AutoBox system is used for running all 
controllers (Fig. 1), including the reference generator, the 
high-level controller (as in [23]) and the CA algorithm. The 
electrical power is provided by an external supply (visible in 
the background of Fig. 3), which is connected in parallel with 
the battery pack. Therefore, the high-voltage dc bus level is 
maintained steady around 600 V. 

The tests are conducted using a MAHA rolling road facility 
(located at Flanders MAKE, Belgium) allowing speed and 
torque control modes of the rollers. In the speed control mode, 
the roller speeds are constantly kept at the specified set value 
irrespective of variations in the actual wheel torques. The 
torque demand at each wheel is assigned manually through the 
dSPACE interface, and therefore the vehicle can be tested for 
any assigned achievable torque demand and speed. The rig 
includes the measurement of the longitudinal force and speed 
of the rollers, and thus allows the evaluation of the overall 
drivetrain efficiency, i.e., from the electrical power at the 
inverters to the mechanical power at the rollers during traction 
(opposite flow in the case of regeneration). In the torque 
control mode, the roller bench applies a torque to the rollers, 
which emulates tire rolling resistance, aerodynamic drag and 
vehicle inertia. Therefore, the torque control mode is used for 
driving cycle testing. The vehicle follows the reference 
velocity profile of the specific driving schedule through a 
velocity trajectory tracker (i.e., a model of the human driver) 
implemented on the dSPACE system as the combination of a 
feedforward and feedback controller, providing a wheel torque 
demand output. 

Drivetrain power loss measurement 
The experimental drivetrain power loss characteristics of the 
case study EV are reported in Fig. 4 for a number of vehicle 
speeds. The power loss curves are plotted in terms of the 
actual wheel torque. The first point of each curve corresponds 
to the case of zero torque demand, resulting in non-zero power 
loss due to tire rolling resistance; conversely, the actual wheel 
torque is zero when the torque supplied by drivetrain 
compensates rolling resistance.  

Fig. 4 shows that the drivetrain power loss characteristics 

are positive and monotonically increasing functions of wheel 
torque, hence, confirming Assumption 2. The curves are non-
convex for low wheel torques and become convex for large 
torque values. Therefore, Theorem 1 is applicable to the 
design of an energy-efficient CA algorithm for the electric 
Range Rover Evoque demonstrator. Fig. 5 reports the 
measured efficiencies of each side of the EV demonstrator in 
terms of the front-to-total torque ratio, for different values of 
ܸ and side torque demands. The relative slip among the 
wheels did not change significantly for different combinations 
of speeds, torque demands and front-to-total torque ratios. Due 
to the non-convexity of the power loss at low torque demands, 
the efficiency is higher for torque ratios of 0 or 1, i.e., for the 
single-axle strategy. In contrast, an even distribution 
(corresponding to the torque ratio of 0.5) is the optimal 
solution for high torque demands. As a result, the optimal 
torque distribution on each side of the vehicle is achieved by 
switching between the single-axle and even torque 
distributions depending on torque demand and vehicle speed. 

 
  

 
Fig. 3. The Range Rover Evoque set-up on the rolling road facility at Flanders 
MAKE (Belgium) 
 
Switching torque calculation 
Based on the measured power loss curves in Fig. 4, the 
switching torque, ߬௦௪, is calculated using Theorem 1 and (11). 
The power loss curve at each vehicle speed is piecewise 
linearly interpolated to construct ܲ௦௦(߬௪,ܸ), as in (4). The 
method assumes that the tire rolling resistance power losses 
are equal at each vehicle corner, which is a reasonable 
approximation in normal driving conditions with low values of 
the load transfers (which directly affect tire power losses). The 
longitudinal slip power losses are included in the rolling road 
measurement. The method assumes that the slip ratios are 
similar to those measured on the rolling road, which is also a 

 
TABLE 1 

MAIN VEHICLE PARAMETERS 

Symbol Name and dimension Value 

ℓ Wheelbase (m) 2.665 
߬  Gearbox ratio (-) 10.56 

ܴ Wheel radius (m) 0.364 
݀ Half-track (m) 0.808 
− No. of motors per axle (-) 2 
ௗܸ  High-voltage dc bus level (V) 600 
ܶ Motor nominal torque (Nm) 80 
ܲ  Motor nominal power (kW) 35 
ܲ  Motor peak power (kW) 75 
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reasonable approximation in normal driving conditions. 
Knowing ܲ௦௦(߬௪ ,ܸ), (11) is solved offline with an 
exhaustive search method to calculate ߬௦௪. Fig. 6 shows the 
calculated ߬௦௪ on each side of the vehicle for different ܸ. The 
values are stored as a look-up table in the controller 
implemented on the dSPACE system. In terms of 
implementation on the vehicle, the developed procedure was 
demonstrated to be fast, i.e. it can easily be run in real-time on 
hardware with low computational processing power.  

 

 
Fig. 4. The power losses of a single drivetrain, measured on the rolling bench 
facility 
 

Fig. 5. Measured drivetrain efficiencies as a function of the front-to-total 
torque ratio, for different side torques at vehicle speeds of: (a) 40 km/h; (b) 
65 km/h; (c) 90 km/h; and (d) 115 km/h 
 

 

 
Fig. 6. Switching torque (߬௦௪) for each side of the vehicle as a function of ܸ 

Driving cycle tests 
To assess the energy-efficiency benefits of the developed CA 
strategy in straight line conditions, three different driving 
cycles were performed with the vehicle demonstrator on the 
rolling road. The driving cycles are the New European Driving 
Cycle (NEDC), the Artemis Road driving cycle, and the Extra 
Urban Driving Cycle (EUDC) with the hypothesis of a 
constant 8% (uphill) slope of the road.  

 

 
Fig. 7. Sample of driving cycle measurements; (a) electrical power input for 
the even-distribution and single-axle strategies with the switching points 
indicated by markers; and (b) side torque demands overlapped with ܸ 
 

The energy consumption of the vehicle with the CA 
strategy is measured and compared with the ones for the fixed 
single-axle and even distribution strategies. Table 2 shows the 
measurement results, which indicate energy savings of up to 
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TABLE 2 
ENERGY CONSUMPTION OF THE DEVELOPED CONTROL ALLOCATION 

STRATEGY OVER DIFFERENT DRIVING CYCLES 

Driving 
Cycle 

Energy consumptions (kWh) Improvements (%) by 
CA with respect to 

Single-
axle only 

Even 
distribution 

With 
CA 

Single- 
axle only 

Even 
distribution 

NEDC 2.921 3.059 2.918 0.1% 4.6% 
Artemis-

Road 4.487 4.634 4.442 1.0% 4.1% 

EUDC 8% 
slope 5.793 5.740 5.709 1.5% 0.5% 
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~5% for the developed CA algorithm, depending on the 
driving cycle. Interestingly, the NEDC and Artemis Road 
favor the single-axle strategy over the even distribution 
because of the relatively low wheel torque demand. This trend 
is reversed with the EUDC with 8% slope as it is a more 
aggressive cycle with mostly high torque demands. The fact 
that for some conditions the specific vehicle is more efficient 
with the single-axle strategy is caused by the significant values 
of the peak power and torque of its electric drivetrains, which 
work at very low demands during conventional driving cycles. 

The operation of the developed torque distribution 
algorithm over a segment of a driving cycle is investigated in 
Fig. 7, which confirms the validity of the CA strategy. For 
instance, between 305 s and 309 s, when the vehicle speed is 
~117 km/h, the side torque demand is ~215 Nm, i.e., less than 
the calculated switching torque of 280 Nm in Fig. 6, and 
therefore single-axle is the optimal solution, as in Fig. 7(a). 

B. Simulations 
To examine the performance of the torque distribution strategy 
in cornering conditions a ramp steer simulation with a 
validated CarMaker/Simulink vehicle model (see details in 
[25]) was performed. For the simulation, the vehicle was 
accelerated to ܸ=110 km/h and, then a constant steering wheel 
rate of 3 deg/s and up to 100 deg was applied.  

 
Fig. 8. Longitudinal wheel forces, simulated during the ramp steer maneuver 
at 100 km/h with the developed CA strategy. The outer and inner sides switch 
from single-axle to even distributions respectively at ܽ௬  of 2.6 and 7.8 m/s2 

 
Fig. 9. Total drivetrain power losses (including tire power losses) simulated 
during the ramp steer maneuver for even torque distribution, single-axle 
torque distribution, and the developed CA algorithm 
 

Fig. 8 depicts the simulated longitudinal wheel forces as 
functions of lateral acceleration, ܽ௬, according to the 
developed CA strategy. The single-axle strategy is the solution 
for both sides of the vehicle for lateral accelerations below 2.6 

m/s2. For ܽ௬ > 7.8 m/s2, the solution for both sides is the even 
distribution. Between the two ܽ௬-values the switching 
between the strategies is dependent on the side of the vehicle – 
namely, with increasing ܽ௬, the outer side of the vehicle 
switches earlier to even distribution due to the yaw moment 
and its contribution to the longitudinal forces in (6). This 
happens because the specific high-level controller set-up (see 
Section II.A) applies a yaw moment which reduces vehicle 
understeer, i.e., the torque demand (the parameter on which 
the switching is actually based) on the outer side of the car is 
higher than on the inner side. Therefore, when the lateral 
acceleration is between 2.6 m/s2 and 7.8 m/s2, the torque 
demand is distributed equally between the front and rear 
wheels on the outer side and is applied only to the front wheel 
on the inner side of the vehicle. In other words, 3 motors are 
simultaneously active.  

Fig. 9 shows the total vehicle power loss (excluding the 
aerodynamic losses) simulated for the three different torque 
distribution strategies, i.e., even distribution, single-axle, and 
the developed CA strategy. As with the experimental tests, the 
CA strategy reduces the drivetrain power losses; here by up to 
10% and 8% compared to the even distribution and single-axle 
strategies. The biggest improvements are achieved at very low 
and very high lateral accelerations where, respectively, the 
single-axle strategy and the even distribution strategy are the 
optimal solutions (see also Fig. 6). For lateral accelerations 
between 2.6 and 7.8 m/s2, when the optimal solution for the 
outer and inner vehicle sides are different (Fig. 8), the 
developed CA strategy reduces the power loss by ~2.4% (Fig. 
9). 

V. CONCLUSION 
The presented research work allows the following 
conclusions, essential for the design of a fast, energy-efficient 
and easily implementable torque allocation algorithm for four-
wheel-drive electric vehicles with equal drivetrains on the 
front and rear axles: 
 For relatively small values of steering wheel angle, the 

control allocation problem of a four-wheel-drive electric 
vehicle with multiple motors can be independently solved 
for the left- and right-hand sides of the vehicle; 

 If the power loss characteristics of the electric drivetrains 
are monotonically increasing functions of the torque 
demand, the minimum consumption is achieved by using a 
single motor on each side of the vehicle up to a torque 
demand threshold, and an even torque distribution among 
the front and rear motors above such threshold; 

 An analytical formula is proposed for the computation of 
the torque demand threshold, which is a function of vehicle 
speed, based on the drivetrain power loss characteristic; 

 The developed strategy is easily implementable as a small-
sized look-up table in the main control unit of the vehicle, 
allowing real-time operation with minimum demand on the 
processing hardware; 

 The experimental analysis of the case study drivetrain 
efficiency characteristics as functions of the front-to-total 
wheel torque distribution confirms the validity of the 
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proposed control allocation algorithm at different vehicle 
velocities and torque demands, i.e., at low torques single-
axle is the optimal solution and at high torques even 
distribution is the optimal solution;  

 The experimental results for a four-wheel-drive electric 
vehicle demonstrator along driving cycles show energy 
consumption reductions between 0.5% and 5%, with 
respect to the same vehicle with single-axle and even 
torque distributions; 

 The simulation results of ramp steer maneuvers indicate 
significant energy consumption reductions for the whole 
range of lateral accelerations. 

The approximation related to the assumptions of tire slip 
ratios similar to those in the rolling road experiments and 
negligible rolling resistance variation with vertical load will be 
addressed in future work. 
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