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ABSTRACT 
Given that cloud computing is a remotely accessed service, the connection between 
provider and customer needs to be adequately protected against all known security 
risks. In order to ensure this, an open and clear specification of all standards, 
algorithms and security protocols adopted by the cloud provider is required. In this 
paper, we review current issues concerned with security threats to cloud computing 
and present a solution based on our unique patented compression-encryption 
method. The method provides highly efficient data compression where a unique 
symmetric key is generated as part of the compression process and is dependent on 
the characteristics of the data. Without the key, the data cannot be decompressed. 
We focus on threat prevention by cryptography that, if properly implemented, is 
virtually impossible to break directly. Our security by design is based on two 
principles: first, defence in depth, where our proposed design is such that more than 
one subsystem needs to be violated to get both the data and their key. Second, the 
principle of least privilege, where the attacker may gain access to only part of a 
system. The paper highlights the benefits of the solution that include high 
compression ratios, less bandwidth requirements, faster data transmission and 
response times, less storage space, and less energy consumption among others. 
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1. INTRODUCTION 
Edward Snowden’s revelations were a political fiasco and an economic threat 
to US based tech companies. The extent of NSA’s data collection drove away 
overseas customers in large numbers over security and privacy concerns 
creating, at the same time, an opportunity for non-US tech companies. Despite 
security concerns over data breaches, the Cloud Computing paradigm (Buyya 
et al. 2009) in which servers, storage and applications are delivered to an 
organization’s computers and devices through the Internet is here to stay. The 
benefits of this model is that it enables data centres to be accessed and shared 
as virtual resources in a scalable manner. For businesses, this is a very 
attractive model as services can expand or shrink as needs change.  

 
Information systems stored in the cloud need to comply with EU data 
protection and privacy regulations, thus both the stored data and the 
connection between provider and customer need to be adequately protected 
against known security risks. Recent reports (Coles 2016) indicate that 82% 
of cloud providers encrypt data in transit, protecting against man-in-the-
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middle attacks as data are transmitted. However, only 9.4% of cloud providers 
encrypt data once stored in the cloud, for file sharing convenience. This is a 
serious issue leaving the cloud vulnerable to data breaches and unauthorized 
access. It is important to realise, however, that not all data in the cloud need 
to be protected by encryption, and not all data should be encrypted in the same 
way. For instance, images and video may be encrypted by a lossy method 
while text and other documents need to be lossless. Our algorithms cover both 
lossless and lossy requirements giving the user full control over what and 
where it is compressed-encrypted, either at the local machine or in the cloud. 

 
We present an algorithmic solution that has been demonstrated for 
compression of image and 3D data structures (Siddeq and Rodrigues 2016, 
2015a, 2015b, 2014a, 2014b). A unique, data-dependent symmetric key is 
generated as a side effect to the compression method. Without the key, the 
data cannot be decompressed. The method allows us to tackle cloud security 
concerns through high compression ratios, to address data protection and 
privacy issues, cost of storage, reduced access time, and reduced bandwidth 
requirements when data in transit are in compressed format. 

 
Section 2 reviews current security threats to Cloud Computing, Section 3 
describes the compression-encryption method, and experimental results are 
reported in Section 4. Finally, a discussion and conclusion is presented in 
Section 5. 
 
 
2. SECURITY THREATS TO CLOUD COMPUTING 
Cloud Computing services are normally referred to as Infrastructure as a 
Service (IaaS), Platform as a service (PaaS), and Software as a service (SaaS) 
(Kepes 2016). IaaS are the hardware and software that powers the cloud such 
as operating systems, networks, servers, and storage. PaaS are a set of tools 
and services enabling coding and deployment of applications in a quick and 
efficient manner. Finally, SaaS are applications delivered over the web that 
are designed to satisfy end-user needs. These notions are illustrated in Figure 
1 and, while blurred boundaries exist, it is assumed that IaaS would provide 
a secure environment for the other services of the Cloud Computing stack. 

 
Figure 1: A diagram depicting the Cloud Computing stack 
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On behalf of the Cloud Security Alliance (CSA), the Top Threats Working 
Group periodically publishes and updates the most relevant perceived threats 
to Cloud Computing (CSA 2016). Their aim is to provide an informed 
understanding of cloud security risks and help management making informed 
decisions. There has been an observed shift in importance in the list of 
perceived top risks since 2010 from abuse and nefarious use, insecure 
interfaces and APIs, towards the problem of data breaches. A consistent 
pattern since 2012 has been observed towards data breaches being identified 
as the most important issue in each of those years. In 2016 the identified top 
three were data breaches, access control, and insecure interfaces and APIs 
(CSA 2016). 

 
Clearly the purely technical issues such as performance, reliability, and 
availability have fully met or exceeded user’s expectations. The focus has 
shifted from the IT department to the company’s board as data and 
information are normally the most valuable assets a company has. However, 
it is reasonable to state that current data handling procedures as implemented 
by cloud providers are not fully meeting expectations. Focusing on data 
breaches, there are two situations in which a data breach can occur: when data 
are transferred to and from the cloud, or when data are at rest in the cloud 
servers. A recent report (Coles 2016) claims that only 9.4% of cloud providers 
encrypt data at rest; the main statistics in the report are reproduced in Figure 
2 below. The report has also established that around 21% of the uploaded data 
contain sensitive information and that at least 34% of users have uploaded 
sensitive data to the cloud. 
 

Figure 2: Encryption practices vary among cloud providers 
 

 
 
Computer security professionals can make use of CASBs (Cloud Access 
Security Brokers) which are applications acting as a gatekeeper between the 
user and the cloud, and can enforce security policies beyond the company’s 
structure. CASBs facilitate cloud access management and provide critical 
information on cloud services across multiple providers. In order to 
understand and assess the risks to the organization, enterprises need to have 
clear visibility of which cloud services are in use and by which people, what 
devices are accessing the data and from where, how sensitive are the data, and 
whether or not access control through encryption and other enterprise policies 
are being enforced. 

 
As pointed out above, it is clear that not all data in the cloud need to be 
encrypted. If that were the case, it would place heavy constraints on data 
sharing as the encryption key would need to be shared with the data. Solutions 
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to this problem do exist; one of such solutions is proposed in the next sections. 
The main argument we put forward is for a data compression utility that 
generates a unique symmetric key as part of the compression step. The key 
can be kept together with the data in plain text for non-sensitive data. 
Otherwise, the key would be encrypted by a symmetric algorithm.  

 
The diagram depicted in Figure 3 represents our proposal for the possible 
compression-encryption scenarios for storing data in the Cloud. The diagram 
can be used to cover all possibilities by defining whether compression and 
decompression are performed at the user machine or in the cloud. The 
possible use cases are as follows. 

 
1) Uploading data to the Cloud: 

a) Non-sensitive data, compression in the cloud: The Raw Data is 
transmitted over a secure connection, and compressed in the Cloud. 
Data are stored in the Cloud in compressed format with compression 
key in plain text. 

b) Non-sensitive data, compression at the user machine: The Raw 
Data are compressed by the user and transmitted to the cloud with the 
compression key in plain text. Data are stored in the Cloud in 
compressed format, with compression key in plain text. 

c)  Sensitive data, compression in the cloud: The Raw Data is 
transmitted over a secure connection and compressed in the cloud. 
The compression key is encrypted using the symmetric key defined 
by the owner and known to the Cloud Provider. Data are stored in the 
Cloud in compressed format together with their encrypted key. 

d)  Sensitive data, compression at the user machine: The Raw Data 
are compressed by the user and the compression key is encrypted with 
a key only known to the user. Data are stored in the cloud in 
compressed format together with their encrypted key. Cloud Provider 
cannot decrypt the data. 

 
2) Downloading data from the Cloud: 

a)  Non-sensitive data, decompression in the cloud: Decompression 
is performed in the cloud and the Raw Data are transmitted to the user 
through a secure connection. 

b)  Non-sensitive data, decompression at the user machine: The 
compressed data with their key in plain text are transmitted to the user 
through a secure connection. Decompression is performed at the user 
local machine. 

c)  Sensitive data, decompression in the cloud: Compression key is 
decrypted by a symmetric key known to the Cloud Provider and to the 
owner of the file. Data are decompressed and transmitted as Raw Data 
over a secure connection. 

d)  Sensitive data, decompression at the user machine: Compressed 
data and their encrypted key are transmitted to the user. The 
compression key is decrypted by a symmetric key only known to the 
user followed by data decompression. 
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Figure 3: Compression-encryption scenarios for storing data in the Cloud 

 
 
The most secure form of communication and storage are the (d) cases above 
in which compression and decompression can only be performed by the user 
as only they are in the possession of the key. However, an enterprise might 
be comfortable with the cloud provider having access to the decryption keys 
and the data being decompressed on the fly on the cloud providers’ servers. 
In this situation, options (c) provide adequate level of security. For sharing 
non-sensitive data, options (a) and (b) are appropriate where the compression 
key is kept in plain text along with the compressed data. In this situation, data 
can be decompressed at the user machine or in the cloud and transmitted 
through a secure connection, either in plain text or compressed-encrypted. 
 
 
 
3. THE GMPR COMPRESSION-ENCRYPTION METHODS 
There are two main categories of encryption algorithms namely symmetric 
ciphers (also known as private or symmetric key algorithms) and public key 
ciphers (public or asymmetric key algorithms). Symmetric ciphers use the 
same key for encryption and decryption and all the security is in the key, none 
in the algorithm. Symmetric key algorithms are very fast and the primary 
problem is in communicating the key securely. Normally it would be easier 
for an attacker to intercept the key rather than spending resources to crack the 
message. A secondary issue is that for each pair of users wishing to 
communicate privately, one separate key is needed, so for 𝑛 users 𝑛(𝑛 −
1)/2	private keys are required. 
 
The strengths of symmetric key algorithms are in the secrecy of the key and 
on the difficulty of guessing the key by trying out all possible combinations 
in a brute force attack. There is no way of reversing the encryption without 
knowing the key, and there are no back doors or alternative ways to decrypt 
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the file without knowing the key. Therefore, the length of symmetric key 
algorithms is the most important factor to protect against brute force attack. 
The length of the key is expressed in bits 2) where 𝑏 is the number of bits. 
Currently some of the most popular and used symmetric key algorithms are 
Triple DES (3x56 bits), Blowfish (up to 448 bits), Twofish (256 bits) and 
AES (128, 192 and 256 bits). 
 
On the other hand, public ciphers have one private and one public key. 
Algorithms are based on number theory and mathematical equations with 
particular properties. The two different keys are used for encryption and 
decryption: a public key is used by anyone wishing to encrypt messages to be 
sent to a specific user, and a private key which is used by the user (receiver) 
to decrypt the messages. It solves the key-exchange problem of symmetric 
cryptography as the same public key can be used by anyone, and only the user 
in possession of the private key is able to decrypt such messages. For 𝑛 users 
we need only 2𝑛 keys. The most common used public key algorithms are the 
RSA (Rivest, Shamir, and Adleman 1978) and DSA—Digital Signature 
Algorithm (DSA 2013). Because factorization which is the basis of such 
algorithms is a very slow process, public key cryptography is only used to 
exchange symmetric keys and all messages are then encrypted by symmetric 
algorithms which are orders of magnitude faster than public ciphers. 
 
An analysis of 2D image compression and 3D data compression algorithms 
developed within the GMPR group is presented here from a compression-
encryption perspective. We show that the proposed methods provide 
simultaneous efficient compression-encryption of data for both 2D images 
and 3D data structures (Siddeq and Rodrigues 2016, 2015a, 2015b, 2014a, 
2014b). In Siddeq and Rodrigues (2014b) we proposed a novel 2D image 
compression method based on high-frequency sub-bands. The complexity of 
the algorithm and the sequential nature of the solution meant long execution 
times at decompression stage. New methods using JPEG were proposed in 
(Siddeq and Rodrigues 2014a) where data decompression was achieved by a 
number of parallel threads speeding up the process. In (Siddeq and Rodrigues 
2015a), further algorithms were developed and tested on frequency sub-bands 
of DWT followed by DCT. Fast data decompression was achieved through 
multiple threads. 
 
We stress that the main novel aspect of the GMPR methods concerning 
security is the automatic generation of a unique symmetric compression-
encryption key that is data dependent. The data are divided into blocks and, 
within each block and after a differential operation, triplets of data are 
converted into a single value through a weighting factor. This single step 
reduces the data by 2/3 and, together with the differential process, are the 
main factors driving the high compression ratios that can be achieved. The 
array representing the triplets may have repeated values and only one instance 
of each is kept resulting in a further reduction of the array. This array is the 
actual compression-encryption key enabling data to be decoded. 
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3.1 Image Compression-Encryption via DWT and DCT Transforms  
There are many possible ways to compress-encrypt 2D images using the 
GMPR method. The method is characterized by triplet encoding and unique 
generation of a compression-encryption key. Many transformations before 
and after these main steps are possible including quantization, entropy coding, 
and arithmetic coding among others. The example described here uses a 
double DWT followed by DCT whose parameters are then encoded by the 
method. The example is of lossy compression, as we apply a DWT over the 
image and focus on the LL band only, ignoring all high frequency bands. We 
then apply a second level DWT over the LL band followed by DCT. Figure 4 
below illustrates the process. 
 
Figure 4: An example of the GMPR compression-encryption method applied 

to a 2D image 

 
 
The DWT transform separates a signal into two classes namely approximation 
and detail coefficients. The signal is decomposed into various frequency 
bands and scales (Al-Haj 2007; Khashman and Dimililer 2008) by two 
function sets: scaling and wavelet which are associated with low and high-
pass filters. Some of the important properties of the DWT are that many of 
the coefficients for the high-frequency components (LH1, HL1 and HH1) are 
zero or insignificant (Grigorios et al. 2008; Sadashivappa and Ananda Babu 
2008; Antonini et al. 1992). Most of the important information in the signal 
is contained in the LL1 sub-band. In particular, the Daubechies wavelet 
transform has the ability to reconstruct with high degree of accuracy the 
original signal through second level sub-bands (LL2, HL2, LH2 and HH2) 
while others first level high frequency sub-bands can be ignored leading to 
high compression ratios (Gonzales and Woods 2001; Acharya and Tsai 2005).  
 
Following a two-level DWT transform, a DCT is applied to each 2x2 block 
of pixels from the low frequency LL2 sub-band as shown in Figure 4. The 
transformed coefficients concentrate energy on the low frequency coefficients 
(top left) which rapidly decreases for higher frequency coefficients at the 
bottom right of the matrix (Richardson 2002; Rao and Yip 1990). It is safe to 
discard small value coefficients of the DCT without significantly affecting 
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the quality of the image since they are de-correlated. Compression works 
more efficiently on a compact matrix of de-correlated coefficients than on a 
highly correlated matrix (Sayood 2000; Ahmed, Natarajan and Rao 1974).  
 
Without affecting image quality, the high frequency sub-bands in the first 
level DWT are set to zero (i.e. discard or ignore all HL1, LH1 and HH1). 
However, the high-frequency sub-bands in the second level DWT (HL2, LH2 
and HH2) cannot be discarded without significantly affecting image quality. 
A quantization 𝑸	can be applied at this stage which depends on the maximum 
value in each sub-band as follows: 
 

𝑸 = 𝑞𝑯/01                (1) 
 
where the matrix 𝑯 refers to the high-frequency coefficients in HL2, LH2 and 
HH2, the factor 𝑞	refers to the quality affecting the matrix 𝑯. Thus, image 
details are reduced in case quality 𝑞 ≥ 0.01. The limit range for this factor is 
specified by the user in a similar way to other image compression methods 
such as JPEG. The sub-bands HL2, LH2 and HH2 are lossless compressed by 
arithmetic coding. 
 
3.2 Triplets Encoding, Encryption and Decryption Keys 
The purpose of this step is to encode an arbitrary matrix of data with 
dimension 𝑟𝑐 where 𝑟 is the number of rows and 𝑐	is the number of columns. 
For computational efficiency at decompression stage, the AC matrix of Figure 
4 is divided into blocks where each block is made out of a certain number of 
rows by exactly 3 columns which are padded with zeros if required. Each 
block is then encoded and afterwards decoded separately by concurrent 
threads.  
 
The three columns of each row are encoded into a single value by a generated 
encryption key 𝐾8 which can be generated randomly between {0…1}. Here, 
the 3-valued key is directly generated from the data which is the preferred 
solution. Let us assume that the three values to be encoded is the triplet 
(𝑥, 𝑦, 𝑧) representing a single row from a block of data. If the data is 
represented by floating point numbers, it is convenient to convert to integer 
by multiplying each value by a shift value 𝑆; after decompression, the 
recovered data are divided by the same shift value. Thus, 
 

𝑥, 𝑦, 𝑧 8>?@A@B = floor 𝑆 𝑥, 𝑦, 𝑧                           (2) 
 
In order to reduce the number of bits needed to represent each triplet a delta 
or differential process is defined such that only differences are kept after the 
first values: 
 

𝐷8 = 	𝐷8 − 𝐷(8HI)                  (3) 
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where 𝑖 = 1,2, … ,𝑚 − 1	and 𝑚 is the number of rows of each block. 
Assuming an integer multiplier factor 𝐹 ≥ 1 the parameters required by 
triplet encoding are defined as follows: 
 
 𝑀 = 1.5max	(𝑥, 𝑦, 𝑧)                 (4) 

𝐾I = rand 0,1                                (5) 
𝐾U = 𝐾I +𝑀 + 	𝐹                   (6) 
𝐾W = 𝐹𝑀(𝐾I + 𝐾U)                 (7) 
𝐶 = 𝐾I𝑥 +	𝐾U𝑦	 +	𝐾W𝑧                (8) 

 
Where 𝐶 is the coded triplet. Given that the original data are organized into a 
number of 𝑏 blocks, each block contains a number of rows 𝑟 with exactly 3 
columns and, to allow reconstruction after compression, we also encode the 
minimum and maximum values for each of the 3 columns of data for each 
block as illustrated in Figure 5 below. The MinMax operation extracts both 
the minimum and maximum values of each column of data for each block.  
 

Figure 5: Each block of data is uniquely coded by a new set of K1,K2,K3 
encryption keys. 

 
 
The decryption key as earlier illustrated in Figure 4 is obtained by entropy 
coding the values of the AC matrix. Such values can also be seen as frequency 
data and are used at decompression stage: the set of weights are valid if the 
error is zero and the triplets are all in the domain search or are members of 
the frequency data (details in Section 3.3 below). The remaining operation is 
to encode the DC column depicted in Figure 4. It contains the DC values of 
the DCT partitioned into 𝑛-arrays (e.g. 𝑛 = 64). Each of these arrays are 
transformed by a one-dimensional DCT, quantized and stored in a temporary 
T-matrix. This matrix contains de-correlated values yielding good 
compression ratios. Each column of the T-matrix is concatenated into a one-
dimensional array which is then coded by Arithmetic coding (Sayood 2000). 
The coding process of the DC values is illustrated in Figure 6 below. 
 

Figure 6: Encoding the DC columns from the DCT transforms 
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3.3 Decoding the Data 
In order to decode the data, a number of reverse steps are necessary. First we 
reverse the arithmetic coding to recover the T-Matrix of Figure 6. This is 
followed by inverse quantization and inverse DCT leading to the recovery of 
of the DC-column data – the inverse path of Figure 6. The AC-matrix has 
been coded as depicted in Figure 5. Applying inverse arithmetic coding, the 
sum value 𝐶 defined in Equation 8 for each triplet is recovered together with 
minimum and maximum values for each column. The issue here is to recover 
the generated key values K1, K2, and K3 – note that for each block we have a 
new set of generated keys. We have developed a number of algorithms and 
this is currently an active area of research. Here we describe a method based 
mostly on a simple search. The value of 𝐶 is constrained by the minimum and 
maximum values that are known at this stage, and also 𝐹 is known as it is 
saved in the file header. Knowledge of the range minimum and maximum 
allow the development of a number of optimized search algorithms where the 
goal is zero error: 
 

𝐸 = 𝐶 −	 𝑆8𝐾8W
8\I                  (9) 

 
If the error 𝐸 is zero, then the estimated values 𝑆8	correspond to the original 
values in the AC-Matrix. At this stage then, we have recovered the DC-
column and AC-matrix values depicted in Figure 4. An inverse DCT is 
performed on each block recovering the LL2 sub-band. The other sub-bands 
HL2, LH2 and HH2 are recovered by reversing the arithmetic code and the 
original data are reclaimed. 
3.4 Compression-Encryption of 3D Data Structures 
The approach to 3D data compression is similar to 2D images in the sense 
that we look at compressing triplets of data through randomly generated keys 
and keeping the minimal information that is required to be able to successfully 
reconstruct the data. This minimal information makes part of the 
compression-encryption key. We show the steps in the methodology by 
providing an example of compressing a 3D structure defined in Wavefront’s 
OBJ file format. The OBJ format is very structured with a list of vertices, 
faces, vertex normal directions, and texture mapping information. In the 
description that follows, we focus on the compression of a list of vertices; the 
rest of the file is compressed by the differential process of Equation 3 
followed by arithmetic coding. 
 
First it is very convenient to note that a vertex in 3D is defined by its triplet 
𝑥, 𝑦, 𝑧  coordinates, and that our technique is based on converting each 
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triplet into a single value, so it is most appropriate for vertex encoding. Figure 
7 depicts the method, starting by breaking the data into a number of blocks. 
The rationale for doing so is to allow fast decompression by running parallel 
threads each operating on a single block. Triplet encoding amounts to a 
geometry minimization process and is indicated in the figure by converting 
each triplet 𝑥, 𝑦, 𝑧  into a single integer data. The required variables 
(𝑀,𝐾I, 𝐾U, 𝐾W, 𝐹) are determined by Equations 4 through 8. The domain 
search (DS) or frequency data makes part of the decryption key which 
represents the frequency at which data occurs. It is used in conjunction with 
the coded data 𝐶 of equations 8 and 9 to decide whether or not the 
reconstructed triplet is accepted (at decompression stage). 
 

Figure 7: Compression-encryption of 3D data 

 
The vertex texture mapping represented by the (𝑢, 𝑣) coordinates and the 
triangle face indices 𝑉I, 𝑉U, 𝑉W  are subject to the differential process of 
Equation 3 applied to each row from left to right and then compressed by 
arithmetic coding. Data decompression is achieved by reversing the 
compression method. Each block is decompressed independently by a 
concurrent thread and a number of search algorithms can be implemented to 
recover the differential data followed by recovery of vertex data using 
Equation 9. The normal directions, triangulated face indices, and vertex 
texture coordinates are recovered by reversing both arithmetic coding and the 
differential process. 
 
 
4. EXPERIMENTAL RESULTS 
 

4.1 Compression-Encryption of Images 
Here we use four images as examples. We apply the GMPR compression and 
decompression method and compare with the standard image compression 
methods JPG and JPEG2000. In all the compared methods one can control 
the quality of the image which will result in a larger or smaller compressed 
file. It is therefore, necessary that we compress all images to equivalent sizes 
such that the perceived quality of the image together with the root mean 
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square errors can be directly compared. Figure 8 depicts the four images used 
and provides information on original and compressed file sizes, and the 
achieved compression ratios using the GMPR method. It is noted that 
compression ratios around 99% are achieved with good perceived quality of 
the reconstructed image comparable to JPEG2000. 
 

Figure 8: Images showing their original and compressed sizes 

    
Image1:  
39MB to 300KB  
Compression: 
99.2% 

Image2:  
9MB to 92KB 
Compression: 
98.9% 

Image3:  
10MB to 120KB 
Compression:  
98.8% 

Image4:  
19.3MB to 193KB 
Compression:  
99.0% 

 
Table 1 provides a comparison between the GMPR method, JPEG and 
JPEG2000. We observe that both JPEG2000 and the GMPR method have an 
equivalent, superior perceptual quality when compared with JPEG for the 
same high compression ratio. When we consider an objective measure of 
quality such as 2D RMSE, then the GMPR method is superior to both JPEG 
and JPEG2000 methods. 
 
Table 1: 2D compression-encryption of sample image files and comparative 

analysis with JPEG and JPEG2000 

Image 
Original 

size 
(MB) 

GMPR Method JPEG JPEG2000 
Compressed 

size (MB) 
2D 

RMSE 
Compressed 

size (MB) 
2D 

RMSE 
Compressed 

size (MB) 
2D 

RMSE 
Image1 39.4 0.300 2.85 0.300 8.33 0.300 5.32 
Image2 9.0 0.092 3.14 0.096 7.39 0.092 6.33 

Image3 10.0 0.120 4.68 0.122 11.20 0.120 11.38 

Image4 19.3 0.193 2.83 0.197 5.80 0.193 4.45 

 
4.2 Compression-Encryption of 3D Data Structures 
We demonstrate 3D compression-encryption methods through two examples, 
with and without texture mapping. Both models are publicly available from 
(David 2016) in several file formats. Here we use the OBJ file format as the 
original file and the purpose is to compress, decompress and evaluate both 
the perceived quality of the reconstruction and calculate an objective measure 
of 2D RMSE for texture mapping and 3D RMSE for vertex locations. Two 
experiments were carried out. The first experiment involved lossy 
compression, in which the GMPR methods were applied using shift values of 
2 and 10. In the second experiment, all floating point vertices were defined as 
integers and a lossless compression was applied. 

 
Figure 9: 3D models Angel (left) and Face (right) 
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Table 2 illustrates typical achieved compression rates for lossy compression: 
there are two observed peaks, for a large number of tested files compression 
rates are around 90% while most of the remainders are around 98%. The 
quality value used to convert from floating point to integer according to 
Equation 2 allows the user to control data loss after the decimal point and 
thus, the overall quality of the mesh in terms of 3D RMSE. If the model is 
defined in millimetres it may be safe to round off vertex coordinates to the 
nearest integer as, at this level of detail, humans may not perceive such small 
differences. 

 
Table 2: 3D lossy compression-encryption of files from OBJ format 

Image 
or 

Model 

OBJ 
Origin
al size 
(MB) 

Quality 
value, 

S 

Compre
ssed size 

(MB) 

Compr
ession 
Ratio 

No. of 
Vertices 

No. of 
triangles 

3D 
RMSE 

2D 
RMSE 

Angel 24.7 
10 2.670 89% 307,144 614,287 2.022 N/A 
50 3.090 87% 307,144 614,287 2.023 N/A 

Face 14.4 
2 0.290 98% 105,819 206,376 1.283 5.7E-4 

10 0.378 97% 105,819 206,376 1.285 5.7E-4 

 
A comparison in terms of compression ratios was made with standard 
compression algorithms available on Unix/Linux environments, namely 
Lempel-Ziv-Welch, xz, gzip and bzip2. The Lempel-Ziv-Welch (LZW) 
algorithm is a widely used lossless Unix compression utility based on creating 
a dictionary for the sequences existing in the data as it is encoded. When the  
next character is added to the current sequence and it makes a new sequence 
that it is not in the dictionary, it is added. The algorithm provides fast 
compression and fast decompression but it is not very efficient in terms of 
compression ratios.  

 
xz is also a lossless compression algorithm that incorporates the LZMA-
Lempel-Ziv-Markov chain algorithm. It shares the same compression format 
as 7-Zip, a popular compression algorithm on Windows. It provides a 
relatively very slow compression and fast decompression. 

 
gzip is both a file format and a compression algorithm used in Unix systems. 
It was developed to replace LZW and it contains a combination of the LZ77 
algorithm and Huffman coding. The algorithm allows the concatenation of 
multiple files although its normal use is for compression of single files. The 
algorithm provides slow compression and fast decompression. 
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bzip2 is an open source file compression utility. It is more efficient than LZW 
and there are parallel implementations with multiple threads but these are not 
available on the standard version of the algorithm. Similar to gzip, bzip2 is a 
file compressor and provides no means to compress multiple files. It provides 
relatively slow compression and fast decompression. 

 
Table 3: Lossless and lossy compression: comparative analysis with 

standard Unix compression utilities 

File 
Original 

size 
(MB) 

GMPR 
Method 

(MB) 

Lempel-
Ziv-

Welch 
(MB) 

xz  
(MB) 

gzip 
(MB) 

bzip2 
(MB) 

Angel 
(floating 
point) 

24.7 2.670 7.3 3.1 5.5 5.3 

Face 
(floating 
point) 

14.0 0.290 4.7 1.2 3.3 2.6 

Average compression 
ratio 

94% 
(lossy) 69% 90% 78% 81% 

Angel 
(integer) 19.1 3.35 6.3 2.7 4.6 4.8 

Face 
(integer) 12.0 0.556 4.1 0.723 2.7 2.1 

Average compression 
ratio 

89% 
(lossless) 66% 90% 77% 79% 

 
Note that the GMPR method operates most efficiently on integers, so 
normally floating point data are converted to integers by shifting the decimal 
point to the right and then shifting it back after decompressing. A small shift 
to the right means that numbers after the decimal point may be truncated and 
this will result in information loss. For most applications a small shift is 
acceptable as it would not be possible to discern small decrease in quality 
when data are visualized. 

 
Results are depicted in Table 3 for both lossy and lossless compression 
providing a comparative analysis with standard Unix compression utilities. It 
is noted that the GMPR method compares favourably against all major 
algorithms in terms of file size without perceived degradation of quality 
which was verified through careful visual inspection and RMSE measures 
depicted in Table 2. For lossless compression, the xz algorithm shows a 
slightly higher compression ratio than the GMPR method. 
 
 
5. DISCUSSION AND CONCLUSION 
In this paper, we review recent security threats to cloud computing and focus 
on threat prevention through cryptographic methods that, when properly 
implemented, are virtually impossible to break directly. We pointed out that 
consistent reports indicate data breaches as the most significant threat as 
perceived by end users. While most cloud providers encrypt data in transit, 
data at rest are not encrypted for convenience of data sharing. While it is 
accepted that most cloud providers implement adequate access control the 
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danger remains that an attacker can gain access to sensitive data stored in raw 
format.  

 
The best solution from a security and privacy perspective would be that 
sensitive data be compressed at the user machine and their compression key 
be encrypted with a key only known to the user before depositing the file in 
the cloud. The cloud provider would not be able to decompress the data. This 
is the principle of least privilege. Note that the compressed data would not 
need to be encrypted, only the compression key. This situation however, can 
create issues when data need to be shared as users would also have to share 
their key. Therefore, this is only a solution for non-shareable sensitive data. 

 
In many instances, the user might be comfortable with the cloud provider 
having access to the key to facilitate data sharing. In this case, we propose 
that the compression key be encrypted by a symmetric key of the user choice, 
which is exchanged with the cloud provider through public key infrastructure. 
The cloud provider then would be able to decrypt the key and decompress the 
data before allowing access to authorized users over a secure connection. This 
solution would protect the data against data breaches as, if data are stolen, 
their compression key is encrypted, so there is no way the actual data can be 
accessed. The solution however, does not protect the data in the case of a 
rogue employee having access to users’ keys. In any case, the solution 
provides protection in depth as for an attacker to succeed, first it would need 
access to the data, then access to the symmetric key to finally enable data 
decompression. 

 
The GMPR method yields a per-file compression-encryption as the generated 
key from triplets is entirely data-dependent. All data in the cloud are stored 
in compressed format, where the compression key is encrypted for sensitive 
data and kept in plain text for non-sensitive data. Furthermore, the size of the 
compression-encryption key also depends on the data. To ensure strong 
encryption, the key can be tested for a minimum of 128 bits, padding if 
necessary.  

 
Compression of 2D images and 3D structures were reported in the 
experimental results for both lossy and lossless compression. For 2D data, the 
method provides compression ratios up to 99% outperforming JPG and being 
of equivalent perceptual quality of JPEG2000. For 3D data structures, the 
method yields average compression ratios of 94% for lossy compression and 
89% for lossless compression, comparing very favourably to a number of 
popular data compression utilities available on Unix/Linux environments. 

 
The main advantage of the GMPR methods as presented here are to ensure 
security and privacy of sensitive data. Given the superior compression ratios 
of the techniques, a number of further advantages can be listed for deployment 
in a cloud environment. First, the method requires less storage space than 
current techniques and this can be even more significant when we consider 
that cloud providers have to implement file redundancy to guarantee integrity 
and accessibility of user data. Redundancy imposes hard limits: if the data are 
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to be duplicated, storage space needs to be duplicated there is no alternative 
way. Second, sensitive data whose compression key is encrypted do not need 
to be further encrypted for transmission and this can save significant 
bandwidth obtained from the high compression ratios. This will lead to faster 
transmission and faster response times. Third, because of less physical space 
and less bandwidth requirements there will also be corresponding energy 
savings to be made so it is a green solution to cloud access and storage. 

 
Finally, data protection and privacy legislations are not similar across the 
globe. It is demonstrated that our solution addresses security and privacy 
concerns to the highest standards according to current European legislation 
on data protection whether the servers are located or not in the EU. Future 
work is focused on implementing a set of Linux utilities as system calls for 
compression encryption that automatically recognise all types of data (image, 
3D formats, video, text, audio, etc.) applying the algorithms accordingly. 
Also, work is under way on increasing the speed of decompression through 
high performance computing techniques and will be reported in the near 
future. 
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