
Information Systems: Secure Access and Storage in the
Age of Cloud Computing

RODRIGUES, Marcos A <http://orcid.org/0000-0002-6083-1303> and
SIDDEQ, Mohammed M

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/13715/

This document is the Accepted Version [AM]

Citation:

RODRIGUES, Marcos A and SIDDEQ, Mohammed M (2016). Information Systems:
Secure Access and Storage in the Age of Cloud Computing. Athens Journal of
Sciences, 3 (4), 267-284. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

 1

Information Systems: Secure Access and
Storage in the Age of Cloud Computing

Marcos A Rodrigues and Mohammed M Siddeq

GMPR-Geometric Modelling and Pattern Recognition Group
Sheffield Hallam University, Sheffield, UK

Email m.rodrigues@shu.ac.uk, mamadmmx76@yahoo.com

ABSTRACT
Given that cloud computing is a remotely accessed service, the connection between
provider and customer needs to be adequately protected against all known security
risks. In order to ensure this, an open and clear specification of all standards,
algorithms and security protocols adopted by the cloud provider is required. In this
paper, we review current issues concerned with security threats to cloud computing
and present a solution based on our unique patented compression-encryption
method. The method provides highly efficient data compression where a unique
symmetric key is generated as part of the compression process and is dependent on
the characteristics of the data. Without the key, the data cannot be decompressed.
We focus on threat prevention by cryptography that, if properly implemented, is
virtually impossible to break directly. Our security by design is based on two
principles: first, defence in depth, where our proposed design is such that more than
one subsystem needs to be violated to get both the data and their key. Second, the
principle of least privilege, where the attacker may gain access to only part of a
system. The paper highlights the benefits of the solution that include high
compression ratios, less bandwidth requirements, faster data transmission and
response times, less storage space, and less energy consumption among others.

Keywords
Cloud computing, data compression, encryption, security, privacy.

1. INTRODUCTION
Edward Snowden’s revelations were a political fiasco and an economic threat
to US based tech companies. The extent of NSA’s data collection drove away
overseas customers in large numbers over security and privacy concerns
creating, at the same time, an opportunity for non-US tech companies. Despite
security concerns over data breaches, the Cloud Computing paradigm (Buyya
et al. 2009) in which servers, storage and applications are delivered to an
organization’s computers and devices through the Internet is here to stay. The
benefits of this model is that it enables data centres to be accessed and shared
as virtual resources in a scalable manner. For businesses, this is a very
attractive model as services can expand or shrink as needs change.

Information systems stored in the cloud need to comply with EU data
protection and privacy regulations, thus both the stored data and the
connection between provider and customer need to be adequately protected
against known security risks. Recent reports (Coles 2016) indicate that 82%
of cloud providers encrypt data in transit, protecting against man-in-the-

 2

middle attacks as data are transmitted. However, only 9.4% of cloud providers
encrypt data once stored in the cloud, for file sharing convenience. This is a
serious issue leaving the cloud vulnerable to data breaches and unauthorized
access. It is important to realise, however, that not all data in the cloud need
to be protected by encryption, and not all data should be encrypted in the same
way. For instance, images and video may be encrypted by a lossy method
while text and other documents need to be lossless. Our algorithms cover both
lossless and lossy requirements giving the user full control over what and
where it is compressed-encrypted, either at the local machine or in the cloud.

We present an algorithmic solution that has been demonstrated for
compression of image and 3D data structures (Siddeq and Rodrigues 2016,
2015a, 2015b, 2014a, 2014b). A unique, data-dependent symmetric key is
generated as a side effect to the compression method. Without the key, the
data cannot be decompressed. The method allows us to tackle cloud security
concerns through high compression ratios, to address data protection and
privacy issues, cost of storage, reduced access time, and reduced bandwidth
requirements when data in transit are in compressed format.

Section 2 reviews current security threats to Cloud Computing, Section 3
describes the compression-encryption method, and experimental results are
reported in Section 4. Finally, a discussion and conclusion is presented in
Section 5.

2. SECURITY THREATS TO CLOUD COMPUTING
Cloud Computing services are normally referred to as Infrastructure as a
Service (IaaS), Platform as a service (PaaS), and Software as a service (SaaS)
(Kepes 2016). IaaS are the hardware and software that powers the cloud such
as operating systems, networks, servers, and storage. PaaS are a set of tools
and services enabling coding and deployment of applications in a quick and
efficient manner. Finally, SaaS are applications delivered over the web that
are designed to satisfy end-user needs. These notions are illustrated in Figure
1 and, while blurred boundaries exist, it is assumed that IaaS would provide
a secure environment for the other services of the Cloud Computing stack.

Figure 1: A diagram depicting the Cloud Computing stack

 3

On behalf of the Cloud Security Alliance (CSA), the Top Threats Working
Group periodically publishes and updates the most relevant perceived threats
to Cloud Computing (CSA 2016). Their aim is to provide an informed
understanding of cloud security risks and help management making informed
decisions. There has been an observed shift in importance in the list of
perceived top risks since 2010 from abuse and nefarious use, insecure
interfaces and APIs, towards the problem of data breaches. A consistent
pattern since 2012 has been observed towards data breaches being identified
as the most important issue in each of those years. In 2016 the identified top
three were data breaches, access control, and insecure interfaces and APIs
(CSA 2016).

Clearly the purely technical issues such as performance, reliability, and
availability have fully met or exceeded user’s expectations. The focus has
shifted from the IT department to the company’s board as data and
information are normally the most valuable assets a company has. However,
it is reasonable to state that current data handling procedures as implemented
by cloud providers are not fully meeting expectations. Focusing on data
breaches, there are two situations in which a data breach can occur: when data
are transferred to and from the cloud, or when data are at rest in the cloud
servers. A recent report (Coles 2016) claims that only 9.4% of cloud providers
encrypt data at rest; the main statistics in the report are reproduced in Figure
2 below. The report has also established that around 21% of the uploaded data
contain sensitive information and that at least 34% of users have uploaded
sensitive data to the cloud.

Figure 2: Encryption practices vary among cloud providers

Computer security professionals can make use of CASBs (Cloud Access
Security Brokers) which are applications acting as a gatekeeper between the
user and the cloud, and can enforce security policies beyond the company’s
structure. CASBs facilitate cloud access management and provide critical
information on cloud services across multiple providers. In order to
understand and assess the risks to the organization, enterprises need to have
clear visibility of which cloud services are in use and by which people, what
devices are accessing the data and from where, how sensitive are the data, and
whether or not access control through encryption and other enterprise policies
are being enforced.

As pointed out above, it is clear that not all data in the cloud need to be
encrypted. If that were the case, it would place heavy constraints on data
sharing as the encryption key would need to be shared with the data. Solutions

 4

to this problem do exist; one of such solutions is proposed in the next sections.
The main argument we put forward is for a data compression utility that
generates a unique symmetric key as part of the compression step. The key
can be kept together with the data in plain text for non-sensitive data.
Otherwise, the key would be encrypted by a symmetric algorithm.

The diagram depicted in Figure 3 represents our proposal for the possible
compression-encryption scenarios for storing data in the Cloud. The diagram
can be used to cover all possibilities by defining whether compression and
decompression are performed at the user machine or in the cloud. The
possible use cases are as follows.

1) Uploading data to the Cloud:

a) Non-sensitive data, compression in the cloud: The Raw Data is
transmitted over a secure connection, and compressed in the Cloud.
Data are stored in the Cloud in compressed format with compression
key in plain text.

b) Non-sensitive data, compression at the user machine: The Raw
Data are compressed by the user and transmitted to the cloud with the
compression key in plain text. Data are stored in the Cloud in
compressed format, with compression key in plain text.

c) Sensitive data, compression in the cloud: The Raw Data is
transmitted over a secure connection and compressed in the cloud.
The compression key is encrypted using the symmetric key defined
by the owner and known to the Cloud Provider. Data are stored in the
Cloud in compressed format together with their encrypted key.

d) Sensitive data, compression at the user machine: The Raw Data
are compressed by the user and the compression key is encrypted with
a key only known to the user. Data are stored in the cloud in
compressed format together with their encrypted key. Cloud Provider
cannot decrypt the data.

2) Downloading data from the Cloud:

a) Non-sensitive data, decompression in the cloud: Decompression
is performed in the cloud and the Raw Data are transmitted to the user
through a secure connection.

b) Non-sensitive data, decompression at the user machine: The
compressed data with their key in plain text are transmitted to the user
through a secure connection. Decompression is performed at the user
local machine.

c) Sensitive data, decompression in the cloud: Compression key is
decrypted by a symmetric key known to the Cloud Provider and to the
owner of the file. Data are decompressed and transmitted as Raw Data
over a secure connection.

d) Sensitive data, decompression at the user machine: Compressed
data and their encrypted key are transmitted to the user. The
compression key is decrypted by a symmetric key only known to the
user followed by data decompression.

 5

Figure 3: Compression-encryption scenarios for storing data in the Cloud

The most secure form of communication and storage are the (d) cases above
in which compression and decompression can only be performed by the user
as only they are in the possession of the key. However, an enterprise might
be comfortable with the cloud provider having access to the decryption keys
and the data being decompressed on the fly on the cloud providers’ servers.
In this situation, options (c) provide adequate level of security. For sharing
non-sensitive data, options (a) and (b) are appropriate where the compression
key is kept in plain text along with the compressed data. In this situation, data
can be decompressed at the user machine or in the cloud and transmitted
through a secure connection, either in plain text or compressed-encrypted.

3. THE GMPR COMPRESSION-ENCRYPTION METHODS
There are two main categories of encryption algorithms namely symmetric
ciphers (also known as private or symmetric key algorithms) and public key
ciphers (public or asymmetric key algorithms). Symmetric ciphers use the
same key for encryption and decryption and all the security is in the key, none
in the algorithm. Symmetric key algorithms are very fast and the primary
problem is in communicating the key securely. Normally it would be easier
for an attacker to intercept the key rather than spending resources to crack the
message. A secondary issue is that for each pair of users wishing to
communicate privately, one separate key is needed, so for 𝑛 users 𝑛(𝑛 −
1)/2	private keys are required.

The strengths of symmetric key algorithms are in the secrecy of the key and
on the difficulty of guessing the key by trying out all possible combinations
in a brute force attack. There is no way of reversing the encryption without
knowing the key, and there are no back doors or alternative ways to decrypt

 6

the file without knowing the key. Therefore, the length of symmetric key
algorithms is the most important factor to protect against brute force attack.
The length of the key is expressed in bits 2) where 𝑏 is the number of bits.
Currently some of the most popular and used symmetric key algorithms are
Triple DES (3x56 bits), Blowfish (up to 448 bits), Twofish (256 bits) and
AES (128, 192 and 256 bits).

On the other hand, public ciphers have one private and one public key.
Algorithms are based on number theory and mathematical equations with
particular properties. The two different keys are used for encryption and
decryption: a public key is used by anyone wishing to encrypt messages to be
sent to a specific user, and a private key which is used by the user (receiver)
to decrypt the messages. It solves the key-exchange problem of symmetric
cryptography as the same public key can be used by anyone, and only the user
in possession of the private key is able to decrypt such messages. For 𝑛 users
we need only 2𝑛 keys. The most common used public key algorithms are the
RSA (Rivest, Shamir, and Adleman 1978) and DSA—Digital Signature
Algorithm (DSA 2013). Because factorization which is the basis of such
algorithms is a very slow process, public key cryptography is only used to
exchange symmetric keys and all messages are then encrypted by symmetric
algorithms which are orders of magnitude faster than public ciphers.

An analysis of 2D image compression and 3D data compression algorithms
developed within the GMPR group is presented here from a compression-
encryption perspective. We show that the proposed methods provide
simultaneous efficient compression-encryption of data for both 2D images
and 3D data structures (Siddeq and Rodrigues 2016, 2015a, 2015b, 2014a,
2014b). In Siddeq and Rodrigues (2014b) we proposed a novel 2D image
compression method based on high-frequency sub-bands. The complexity of
the algorithm and the sequential nature of the solution meant long execution
times at decompression stage. New methods using JPEG were proposed in
(Siddeq and Rodrigues 2014a) where data decompression was achieved by a
number of parallel threads speeding up the process. In (Siddeq and Rodrigues
2015a), further algorithms were developed and tested on frequency sub-bands
of DWT followed by DCT. Fast data decompression was achieved through
multiple threads.

We stress that the main novel aspect of the GMPR methods concerning
security is the automatic generation of a unique symmetric compression-
encryption key that is data dependent. The data are divided into blocks and,
within each block and after a differential operation, triplets of data are
converted into a single value through a weighting factor. This single step
reduces the data by 2/3 and, together with the differential process, are the
main factors driving the high compression ratios that can be achieved. The
array representing the triplets may have repeated values and only one instance
of each is kept resulting in a further reduction of the array. This array is the
actual compression-encryption key enabling data to be decoded.

 7

3.1 Image Compression-Encryption via DWT and DCT Transforms
There are many possible ways to compress-encrypt 2D images using the
GMPR method. The method is characterized by triplet encoding and unique
generation of a compression-encryption key. Many transformations before
and after these main steps are possible including quantization, entropy coding,
and arithmetic coding among others. The example described here uses a
double DWT followed by DCT whose parameters are then encoded by the
method. The example is of lossy compression, as we apply a DWT over the
image and focus on the LL band only, ignoring all high frequency bands. We
then apply a second level DWT over the LL band followed by DCT. Figure 4
below illustrates the process.

Figure 4: An example of the GMPR compression-encryption method applied

to a 2D image

The DWT transform separates a signal into two classes namely approximation
and detail coefficients. The signal is decomposed into various frequency
bands and scales (Al-Haj 2007; Khashman and Dimililer 2008) by two
function sets: scaling and wavelet which are associated with low and high-
pass filters. Some of the important properties of the DWT are that many of
the coefficients for the high-frequency components (LH1, HL1 and HH1) are
zero or insignificant (Grigorios et al. 2008; Sadashivappa and Ananda Babu
2008; Antonini et al. 1992). Most of the important information in the signal
is contained in the LL1 sub-band. In particular, the Daubechies wavelet
transform has the ability to reconstruct with high degree of accuracy the
original signal through second level sub-bands (LL2, HL2, LH2 and HH2)
while others first level high frequency sub-bands can be ignored leading to
high compression ratios (Gonzales and Woods 2001; Acharya and Tsai 2005).

Following a two-level DWT transform, a DCT is applied to each 2x2 block
of pixels from the low frequency LL2 sub-band as shown in Figure 4. The
transformed coefficients concentrate energy on the low frequency coefficients
(top left) which rapidly decreases for higher frequency coefficients at the
bottom right of the matrix (Richardson 2002; Rao and Yip 1990). It is safe to
discard small value coefficients of the DCT without significantly affecting

 8

the quality of the image since they are de-correlated. Compression works
more efficiently on a compact matrix of de-correlated coefficients than on a
highly correlated matrix (Sayood 2000; Ahmed, Natarajan and Rao 1974).

Without affecting image quality, the high frequency sub-bands in the first
level DWT are set to zero (i.e. discard or ignore all HL1, LH1 and HH1).
However, the high-frequency sub-bands in the second level DWT (HL2, LH2
and HH2) cannot be discarded without significantly affecting image quality.
A quantization 𝑸	can be applied at this stage which depends on the maximum
value in each sub-band as follows:

𝑸 = 𝑞𝑯/01 (1)

where the matrix 𝑯 refers to the high-frequency coefficients in HL2, LH2 and
HH2, the factor 𝑞	refers to the quality affecting the matrix 𝑯. Thus, image
details are reduced in case quality 𝑞 ≥ 0.01. The limit range for this factor is
specified by the user in a similar way to other image compression methods
such as JPEG. The sub-bands HL2, LH2 and HH2 are lossless compressed by
arithmetic coding.

3.2 Triplets Encoding, Encryption and Decryption Keys
The purpose of this step is to encode an arbitrary matrix of data with
dimension 𝑟𝑐 where 𝑟 is the number of rows and 𝑐	is the number of columns.
For computational efficiency at decompression stage, the AC matrix of Figure
4 is divided into blocks where each block is made out of a certain number of
rows by exactly 3 columns which are padded with zeros if required. Each
block is then encoded and afterwards decoded separately by concurrent
threads.

The three columns of each row are encoded into a single value by a generated
encryption key 𝐾8 which can be generated randomly between {0…1}. Here,
the 3-valued key is directly generated from the data which is the preferred
solution. Let us assume that the three values to be encoded is the triplet
(𝑥, 𝑦, 𝑧) representing a single row from a block of data. If the data is
represented by floating point numbers, it is convenient to convert to integer
by multiplying each value by a shift value 𝑆; after decompression, the
recovered data are divided by the same shift value. Thus,

𝑥, 𝑦, 𝑧 8>?@A@B = floor 𝑆 𝑥, 𝑦, 𝑧 (2)

In order to reduce the number of bits needed to represent each triplet a delta
or differential process is defined such that only differences are kept after the
first values:

𝐷8 = 	𝐷8 − 𝐷(8HI) (3)

 9

where 𝑖 = 1,2, … ,𝑚 − 1	and 𝑚 is the number of rows of each block.
Assuming an integer multiplier factor 𝐹 ≥ 1 the parameters required by
triplet encoding are defined as follows:

 𝑀 = 1.5max	(𝑥, 𝑦, 𝑧) (4)

𝐾I = rand 0,1 (5)
𝐾U = 𝐾I +𝑀 + 	𝐹 (6)
𝐾W = 𝐹𝑀(𝐾I + 𝐾U) (7)
𝐶 = 𝐾I𝑥 +	𝐾U𝑦	 +	𝐾W𝑧 (8)

Where 𝐶 is the coded triplet. Given that the original data are organized into a
number of 𝑏 blocks, each block contains a number of rows 𝑟 with exactly 3
columns and, to allow reconstruction after compression, we also encode the
minimum and maximum values for each of the 3 columns of data for each
block as illustrated in Figure 5 below. The MinMax operation extracts both
the minimum and maximum values of each column of data for each block.

Figure 5: Each block of data is uniquely coded by a new set of K1,K2,K3
encryption keys.

The decryption key as earlier illustrated in Figure 4 is obtained by entropy
coding the values of the AC matrix. Such values can also be seen as frequency
data and are used at decompression stage: the set of weights are valid if the
error is zero and the triplets are all in the domain search or are members of
the frequency data (details in Section 3.3 below). The remaining operation is
to encode the DC column depicted in Figure 4. It contains the DC values of
the DCT partitioned into 𝑛-arrays (e.g. 𝑛 = 64). Each of these arrays are
transformed by a one-dimensional DCT, quantized and stored in a temporary
T-matrix. This matrix contains de-correlated values yielding good
compression ratios. Each column of the T-matrix is concatenated into a one-
dimensional array which is then coded by Arithmetic coding (Sayood 2000).
The coding process of the DC values is illustrated in Figure 6 below.

Figure 6: Encoding the DC columns from the DCT transforms

 10

3.3 Decoding the Data
In order to decode the data, a number of reverse steps are necessary. First we
reverse the arithmetic coding to recover the T-Matrix of Figure 6. This is
followed by inverse quantization and inverse DCT leading to the recovery of
of the DC-column data – the inverse path of Figure 6. The AC-matrix has
been coded as depicted in Figure 5. Applying inverse arithmetic coding, the
sum value 𝐶 defined in Equation 8 for each triplet is recovered together with
minimum and maximum values for each column. The issue here is to recover
the generated key values K1, K2, and K3 – note that for each block we have a
new set of generated keys. We have developed a number of algorithms and
this is currently an active area of research. Here we describe a method based
mostly on a simple search. The value of 𝐶 is constrained by the minimum and
maximum values that are known at this stage, and also 𝐹 is known as it is
saved in the file header. Knowledge of the range minimum and maximum
allow the development of a number of optimized search algorithms where the
goal is zero error:

𝐸 = 𝐶 −	 𝑆8𝐾8W
8\I (9)

If the error 𝐸 is zero, then the estimated values 𝑆8	correspond to the original
values in the AC-Matrix. At this stage then, we have recovered the DC-
column and AC-matrix values depicted in Figure 4. An inverse DCT is
performed on each block recovering the LL2 sub-band. The other sub-bands
HL2, LH2 and HH2 are recovered by reversing the arithmetic code and the
original data are reclaimed.
3.4 Compression-Encryption of 3D Data Structures
The approach to 3D data compression is similar to 2D images in the sense
that we look at compressing triplets of data through randomly generated keys
and keeping the minimal information that is required to be able to successfully
reconstruct the data. This minimal information makes part of the
compression-encryption key. We show the steps in the methodology by
providing an example of compressing a 3D structure defined in Wavefront’s
OBJ file format. The OBJ format is very structured with a list of vertices,
faces, vertex normal directions, and texture mapping information. In the
description that follows, we focus on the compression of a list of vertices; the
rest of the file is compressed by the differential process of Equation 3
followed by arithmetic coding.

First it is very convenient to note that a vertex in 3D is defined by its triplet
𝑥, 𝑦, 𝑧 coordinates, and that our technique is based on converting each

 11

triplet into a single value, so it is most appropriate for vertex encoding. Figure
7 depicts the method, starting by breaking the data into a number of blocks.
The rationale for doing so is to allow fast decompression by running parallel
threads each operating on a single block. Triplet encoding amounts to a
geometry minimization process and is indicated in the figure by converting
each triplet 𝑥, 𝑦, 𝑧 into a single integer data. The required variables
(𝑀,𝐾I, 𝐾U, 𝐾W, 𝐹) are determined by Equations 4 through 8. The domain
search (DS) or frequency data makes part of the decryption key which
represents the frequency at which data occurs. It is used in conjunction with
the coded data 𝐶 of equations 8 and 9 to decide whether or not the
reconstructed triplet is accepted (at decompression stage).

Figure 7: Compression-encryption of 3D data

The vertex texture mapping represented by the (𝑢, 𝑣) coordinates and the
triangle face indices 𝑉I, 𝑉U, 𝑉W are subject to the differential process of
Equation 3 applied to each row from left to right and then compressed by
arithmetic coding. Data decompression is achieved by reversing the
compression method. Each block is decompressed independently by a
concurrent thread and a number of search algorithms can be implemented to
recover the differential data followed by recovery of vertex data using
Equation 9. The normal directions, triangulated face indices, and vertex
texture coordinates are recovered by reversing both arithmetic coding and the
differential process.

4. EXPERIMENTAL RESULTS

4.1 Compression-Encryption of Images
Here we use four images as examples. We apply the GMPR compression and
decompression method and compare with the standard image compression
methods JPG and JPEG2000. In all the compared methods one can control
the quality of the image which will result in a larger or smaller compressed
file. It is therefore, necessary that we compress all images to equivalent sizes
such that the perceived quality of the image together with the root mean

 12

square errors can be directly compared. Figure 8 depicts the four images used
and provides information on original and compressed file sizes, and the
achieved compression ratios using the GMPR method. It is noted that
compression ratios around 99% are achieved with good perceived quality of
the reconstructed image comparable to JPEG2000.

Figure 8: Images showing their original and compressed sizes

Image1:
39MB to 300KB
Compression:
99.2%

Image2:
9MB to 92KB
Compression:
98.9%

Image3:
10MB to 120KB
Compression:
98.8%

Image4:
19.3MB to 193KB
Compression:
99.0%

Table 1 provides a comparison between the GMPR method, JPEG and
JPEG2000. We observe that both JPEG2000 and the GMPR method have an
equivalent, superior perceptual quality when compared with JPEG for the
same high compression ratio. When we consider an objective measure of
quality such as 2D RMSE, then the GMPR method is superior to both JPEG
and JPEG2000 methods.

Table 1: 2D compression-encryption of sample image files and comparative

analysis with JPEG and JPEG2000

Image
Original

size
(MB)

GMPR Method JPEG JPEG2000
Compressed

size (MB)
2D

RMSE
Compressed

size (MB)
2D

RMSE
Compressed

size (MB)
2D

RMSE
Image1 39.4 0.300 2.85 0.300 8.33 0.300 5.32
Image2 9.0 0.092 3.14 0.096 7.39 0.092 6.33

Image3 10.0 0.120 4.68 0.122 11.20 0.120 11.38

Image4 19.3 0.193 2.83 0.197 5.80 0.193 4.45

4.2 Compression-Encryption of 3D Data Structures
We demonstrate 3D compression-encryption methods through two examples,
with and without texture mapping. Both models are publicly available from
(David 2016) in several file formats. Here we use the OBJ file format as the
original file and the purpose is to compress, decompress and evaluate both
the perceived quality of the reconstruction and calculate an objective measure
of 2D RMSE for texture mapping and 3D RMSE for vertex locations. Two
experiments were carried out. The first experiment involved lossy
compression, in which the GMPR methods were applied using shift values of
2 and 10. In the second experiment, all floating point vertices were defined as
integers and a lossless compression was applied.

Figure 9: 3D models Angel (left) and Face (right)

 13

	 	 	 	

Table 2 illustrates typical achieved compression rates for lossy compression:
there are two observed peaks, for a large number of tested files compression
rates are around 90% while most of the remainders are around 98%. The
quality value used to convert from floating point to integer according to
Equation 2 allows the user to control data loss after the decimal point and
thus, the overall quality of the mesh in terms of 3D RMSE. If the model is
defined in millimetres it may be safe to round off vertex coordinates to the
nearest integer as, at this level of detail, humans may not perceive such small
differences.

Table 2: 3D lossy compression-encryption of files from OBJ format

Image
or

Model

OBJ
Origin
al size
(MB)

Quality
value,

S

Compre
ssed size

(MB)

Compr
ession
Ratio

No. of
Vertices

No. of
triangles

3D
RMSE

2D
RMSE

Angel 24.7
10 2.670 89% 307,144 614,287 2.022 N/A
50 3.090 87% 307,144 614,287 2.023 N/A

Face 14.4
2 0.290 98% 105,819 206,376 1.283 5.7E-4

10 0.378 97% 105,819 206,376 1.285 5.7E-4

A comparison in terms of compression ratios was made with standard
compression algorithms available on Unix/Linux environments, namely
Lempel-Ziv-Welch, xz, gzip and bzip2. The Lempel-Ziv-Welch (LZW)
algorithm is a widely used lossless Unix compression utility based on creating
a dictionary for the sequences existing in the data as it is encoded. When the
next character is added to the current sequence and it makes a new sequence
that it is not in the dictionary, it is added. The algorithm provides fast
compression and fast decompression but it is not very efficient in terms of
compression ratios.

xz is also a lossless compression algorithm that incorporates the LZMA-
Lempel-Ziv-Markov chain algorithm. It shares the same compression format
as 7-Zip, a popular compression algorithm on Windows. It provides a
relatively very slow compression and fast decompression.

gzip is both a file format and a compression algorithm used in Unix systems.
It was developed to replace LZW and it contains a combination of the LZ77
algorithm and Huffman coding. The algorithm allows the concatenation of
multiple files although its normal use is for compression of single files. The
algorithm provides slow compression and fast decompression.

 14

bzip2 is an open source file compression utility. It is more efficient than LZW
and there are parallel implementations with multiple threads but these are not
available on the standard version of the algorithm. Similar to gzip, bzip2 is a
file compressor and provides no means to compress multiple files. It provides
relatively slow compression and fast decompression.

Table 3: Lossless and lossy compression: comparative analysis with

standard Unix compression utilities

File
Original

size
(MB)

GMPR
Method

(MB)

Lempel-
Ziv-

Welch
(MB)

xz
(MB)

gzip
(MB)

bzip2
(MB)

Angel
(floating
point)

24.7 2.670 7.3 3.1 5.5 5.3

Face
(floating
point)

14.0 0.290 4.7 1.2 3.3 2.6

Average compression
ratio

94%
(lossy) 69% 90% 78% 81%

Angel
(integer) 19.1 3.35 6.3 2.7 4.6 4.8

Face
(integer) 12.0 0.556 4.1 0.723 2.7 2.1

Average compression
ratio

89%
(lossless) 66% 90% 77% 79%

Note that the GMPR method operates most efficiently on integers, so
normally floating point data are converted to integers by shifting the decimal
point to the right and then shifting it back after decompressing. A small shift
to the right means that numbers after the decimal point may be truncated and
this will result in information loss. For most applications a small shift is
acceptable as it would not be possible to discern small decrease in quality
when data are visualized.

Results are depicted in Table 3 for both lossy and lossless compression
providing a comparative analysis with standard Unix compression utilities. It
is noted that the GMPR method compares favourably against all major
algorithms in terms of file size without perceived degradation of quality
which was verified through careful visual inspection and RMSE measures
depicted in Table 2. For lossless compression, the xz algorithm shows a
slightly higher compression ratio than the GMPR method.

5. DISCUSSION AND CONCLUSION
In this paper, we review recent security threats to cloud computing and focus
on threat prevention through cryptographic methods that, when properly
implemented, are virtually impossible to break directly. We pointed out that
consistent reports indicate data breaches as the most significant threat as
perceived by end users. While most cloud providers encrypt data in transit,
data at rest are not encrypted for convenience of data sharing. While it is
accepted that most cloud providers implement adequate access control the

 15

danger remains that an attacker can gain access to sensitive data stored in raw
format.

The best solution from a security and privacy perspective would be that
sensitive data be compressed at the user machine and their compression key
be encrypted with a key only known to the user before depositing the file in
the cloud. The cloud provider would not be able to decompress the data. This
is the principle of least privilege. Note that the compressed data would not
need to be encrypted, only the compression key. This situation however, can
create issues when data need to be shared as users would also have to share
their key. Therefore, this is only a solution for non-shareable sensitive data.

In many instances, the user might be comfortable with the cloud provider
having access to the key to facilitate data sharing. In this case, we propose
that the compression key be encrypted by a symmetric key of the user choice,
which is exchanged with the cloud provider through public key infrastructure.
The cloud provider then would be able to decrypt the key and decompress the
data before allowing access to authorized users over a secure connection. This
solution would protect the data against data breaches as, if data are stolen,
their compression key is encrypted, so there is no way the actual data can be
accessed. The solution however, does not protect the data in the case of a
rogue employee having access to users’ keys. In any case, the solution
provides protection in depth as for an attacker to succeed, first it would need
access to the data, then access to the symmetric key to finally enable data
decompression.

The GMPR method yields a per-file compression-encryption as the generated
key from triplets is entirely data-dependent. All data in the cloud are stored
in compressed format, where the compression key is encrypted for sensitive
data and kept in plain text for non-sensitive data. Furthermore, the size of the
compression-encryption key also depends on the data. To ensure strong
encryption, the key can be tested for a minimum of 128 bits, padding if
necessary.

Compression of 2D images and 3D structures were reported in the
experimental results for both lossy and lossless compression. For 2D data, the
method provides compression ratios up to 99% outperforming JPG and being
of equivalent perceptual quality of JPEG2000. For 3D data structures, the
method yields average compression ratios of 94% for lossy compression and
89% for lossless compression, comparing very favourably to a number of
popular data compression utilities available on Unix/Linux environments.

The main advantage of the GMPR methods as presented here are to ensure
security and privacy of sensitive data. Given the superior compression ratios
of the techniques, a number of further advantages can be listed for deployment
in a cloud environment. First, the method requires less storage space than
current techniques and this can be even more significant when we consider
that cloud providers have to implement file redundancy to guarantee integrity
and accessibility of user data. Redundancy imposes hard limits: if the data are

 16

to be duplicated, storage space needs to be duplicated there is no alternative
way. Second, sensitive data whose compression key is encrypted do not need
to be further encrypted for transmission and this can save significant
bandwidth obtained from the high compression ratios. This will lead to faster
transmission and faster response times. Third, because of less physical space
and less bandwidth requirements there will also be corresponding energy
savings to be made so it is a green solution to cloud access and storage.

Finally, data protection and privacy legislations are not similar across the
globe. It is demonstrated that our solution addresses security and privacy
concerns to the highest standards according to current European legislation
on data protection whether the servers are located or not in the EU. Future
work is focused on implementing a set of Linux utilities as system calls for
compression encryption that automatically recognise all types of data (image,
3D formats, video, text, audio, etc.) applying the algorithms accordingly.
Also, work is under way on increasing the speed of decompression through
high performance computing techniques and will be reported in the near
future.

6. REFERENCES

Acharya, T. and Tsai, P.S. 2005. JPEG2000 Standard for Image Compression:
Concepts, Algorithms and VLSI Architecture. New York: John Wiley & Sons.

Ahmed, N., Natarajan, T. and Rao, K.R. 1974. Discrete cosine transforms, IEEE
Transactions Computer, Vol. C-23, pp. 90-93.

Al-Haj, A. 2007. Combined DWT-DCT Digital Image Watermarking, Science
Publications, Journal of Computer Science 3 (9): 740-746.

Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I. 1992. Image coding using
wavelet transform, IEEE Trans. on Image Processing, Vol. 1, No. 2, pp. 205–
220.

Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J. and Brandic, I. 2009. Cloud
computing and emerging IT platforms: Vision, hype, and reality for delivering
computing as the 5th utility, Future Generation Computer Systems, 599—616.

Coles, C. 2016. Only 9.4% of Cloud Providers Are encrypting Data at Rest,
Skyhigh Report, [online] https://www.skyhighnetworks.com/cloud-security-
blog/only-9-4-of-cloud-providers-are-encrypting-data-at-rest/

CSA 2016. The Treacherous 12 CSA’s Cloud Computing Top Threats in 2016.
CSA Top Threats Working Group. [online]
https://cloudsecurityalliance.org/group/top-threats/

 David 2016. David 3D Scanner, [online] document available for download from
http://www.david-3d.com/en/support/downloads

DSA 2013. FIPS PUB 186-4: Digital Signature Standard (DSS), [online] July
2013. csrc.nist.gov.

Gonzalez, R.C. and Woods, R.E. 2001. Digital Image Processing, Addison Wesley
publishing company.

Grigorios, D., Zervas, N.D., Sklavos, N. and Goutis, C.E. 2008. Design
Techniques and Implementation of Low Power High-Throughput Discrete
Wavelet Transform Tilters for JPEG 2000 Standard, WASET , International
Journal of Signal Processing, Vo. 4, No.1.

 17

Kepes, B. 2016. Understanding the Cloud Computing Stack: SaaS, PaaS, IaaS.
Rackspace US Inc. [online] https://support.rackspace.com/white-
paper/understanding-the-cloud-computing-stack-saas-paas-iaas/

Khashman, A., Dimililer, K. 2008. Image Compression using Neural Networks and
Haar Wavelet, WSEAS TRANSACTIONS on SIGNAL PROCESSING, Vol. 4,
No.5.

Rao, K.R. and Yip, P. 1990. Discrete cosine transform: Algorithms, advantages,
applications, Academic Press, San Diego, CA.

Richardson, I.E.G. 2002. Video Codec Design, John Wiley & Sons.
Rivest, R.L., Shamir, A., and Adleman, L. 1978. A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems, Communications of the ACM, Vol
21, No. 2, February 1978, p. 120-26.

Sadashivappa, G. and Ananda Babu K.V.S. 2008. Performance Analysis of Image
Coding using Wavelets, IJCSNS International Journal of Computer Science
and Network Security, VOL. 8 No.10.

Sayood, K. 2000. Introduction to Data Compression, 2nd edition, Academic Press,
Morgan Kaufman Publishers.

Siddeq, M.M. and Rodrigues, M.A. 2016. Novel 3D Compression Methods for
Geometry, Connectivity and Texture, 3DR Express, 3D Research, June 2016
7:13.

Siddeq, M.M. and Rodrigues, M.A. 2015a. A novel 2D image compression
algorithm based on two levels DWT and DCT transforms with enhanced
minimize-matrix-size algorithm for high resolution structured light 3D surface
reconstruction. 3D Research, 6 (3), p. 26.

Siddeq, M.M. and Rodrigues, M.A. 2015b. Applied sequential-search algorithm for
compression-encryption of high-resolution structured light 3D
data. In: BLASHKI, Katherine and XIAO, Yingcai, (eds.) MCCSIS:
Multiconference on Computer Science and Information Systems 2015. IADIS
Press, 195-202.

Siddeq, M.M. and Rodrigues, M.A. 2014a. A new 2D image compression technique
for 3D surface reconstruction. Advances in information sciences and
application: Proceedings of 18th International Conference on Computers (part
of CSCC'14). Recent advances in computer engineering series, 1 (22). 379-386.

Siddeq, M.M. and Rodrigues, M.A. 2014b. A novel image compression algorithm
for high resolution 3D reconstruction. 3D research, 5 (7), 17 pages.

