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In this work, we treat the specific features of molec-
ular light scattering in supercooled states of high-vis-
cosity glycerol-like liquids in terms of the concept of
their microheterogeneous structure [19, 20]. To
describe the behavior of scattered radiation, we use cor-
relation functions obtained by solving the system of
hydrodynamic equations suggested by us for the high-
viscosity region. The characteristic feature of these
equations is that they take into account not only
unusual frequency dispersion of kinetic coefficients
[20, 21] but also the dependence of the heat capacity of
the system on frequency. This dependence has a notice-
able influence on the spectral parameters that are deter-
mined by thermal modes and even causes the appear-
ance of additional details. In this work, we concentrate
on the fine structure of the Rayleigh line wing, the
shape of the spectrum of polarized light scattering, and
the temperature dependences of spectral parameters.

SPECTRA OF CORRELATION FUNCTIONS

Most of the above-mentioned features of the spectra
of molecular light scattering are caused by the low-fre-
quency components of thermal motions of molecules
and can be described using hydrodynamics methods.
The structure of hydrodynamics equations in the high-
viscosity region was discussed in [21]. It was shown
that the number and the general form of the equations
are the same as in the low-viscosity region, and only the
frequency dispersion of viscoelastic moduli changes
substantially. Below, we refine the results of [21] by
additionally including the frequency dispersion of heat
capacities 

 

C

 

p

 

 and 

 

C

 

V

 

 and explicitly partitioning anisot-

ropy tensor  into the  and

 

 

 

components which differently change in passage to the
high-viscosity region.

ξαβ r t,( ) ξαβ
' r t,( ) ξ̃αβ r t,( )

 

High viscosity glycerol-like liquids exhibit many
nontrivial thermodynamic and kinetic properties [1–3].
These properties manifest themselves in the spectra of
molecular light scattering. In particular, the spectra of
depolarized molecular light scattering show so-called
fine structure (fine structure of the Rayleigh line wing)
[4, 5]. In the frequency range (

 

0, 

 

c

 

t

 

∞

 

, 

 

k

 

), where 

 

c

 

t

 

∞

 

 is the
high-frequency transverse sound velocity and 

 

k

 

 is the
wave vector, an intense central component and two side
peaks are formed. Qualitatively, the origin of these
peaks is known [6–8], but the reasons why central com-
ponent shapes deviate from Lorentzian contours and
why the intensity ratio between the central and side
peaks abnormally rapidly increases with decreasing
temperature [9, 10] have not been elucidated. Important
data on the temperature dependence of Mandelshtam–
Brillouin component parameters were obtained in
[11, 12] but were not given a satisfactory physical inter-
pretation.

Consider weak points of the concepts used in inter-
preting the above-mentioned and other special features
of the spectra of scattered radiation. One such point is
a trivial generalization of the relaxation theories that
are used in the low-viscosity region by merely increas-
ing the number of relaxation processes [7, 13, 14] even
to an infinite number of relaxation variables [2]. The
major difficulty is specifying the physical meaning of
the variables introduced. Next, in recent years, a diver-
sity of modifications of the theory of interacting modes
have been in wide use [3, 15–17]. This approach makes
it possible to reproduce the fractional-power laws of
dispersion of viscoelastic parameters in high-viscosity
liquids and many spectral effects. However, this is
achieved by extending the use of macroscopic charac-
teristics (such as the structure factor) far beyond the
scope of their applicability. In addition, this approach
does not explain relations with the special features of
the behavior of thermodynamic values. Other
approaches [18] are of a more fragmentary character.
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The frequency dispersion of the heat capacity of a
system depends on the same mechanism of structural
relaxation as that responsible for the behavior of shear
and volume viscosities in the high-viscosity region. It
was shown [22] that the complex heat capacity of the
system at a constant volume, 

 

C

 

V

 

(

 

ω

 

)

 

, is described by the
equation

 

(1)

 

where 

 

C

 

g

 

 is the heat capacity component obtained by
extrapolation of its value in the vitreous state,

 

(2)

(3)

 

c

 

 is the known coefficient, and 

 

τ

 

 is the time during
which the mass distribution of weakly bound clusters
relaxes to the equilibrium distribution. In addition, the
frequency dispersion of cluster contributions to shear
and volume viscosity is also given by the 

 

F(i

 

ωτ)

 

 func-
tion [21]. The behavior of 

 

C

 

p

 

(

 

ω)

 

 

 

was not examined in
detail. However clearly, it should be similar in character
to that of 

 

C

 

V

 

(

 

ω

 

)

 

. This similarity predetermines the char-
acter of variations of the ratio of the heat capacities

 

γ(ω

 

) = 

 

C

 

p

 

(

 

ω

 

)/

 

C

 

V

 

(

 

ω

 

)

 

.

The anisotropy tensor component  is
closely related to the frequency dispersion of viscosi-
ties, heat capacities, and some other values. This com-
ponent is determined by processes of partial ordering in
the high-viscosity state and changes together with the
characteristics of weakly bound clusters. The key rela-

tion [21] for the correlator  (there is
no summation over 

 

α

 

 and 

 

β

 

) has the form

 

(4)

 

where 

 

δ

 

g

 

 is the mass change of a weakly bound cluster.

In hydrodynamics equations, parameter  only oper-
ates through frequency dispersions of viscoelastic
moduli and heat capacities.

The other anisotropy tensor component ( )
involves contributions that do not change in passing
from the low- to high-viscosity region. Weaker interac-

tion of the  component with the velocity field
has the same character as in the low-viscosity region.
As a result, the hydrodynamics equations in the high-
viscosity region written as Fourier transforms with

CV ω( ) Cg c π2χ iωτ( ) iωτ Re F iωτ( )+( ),+=

χ ωτ( ) Re
1
u

cth u
1
u

−( ) , u π iωτ( ) 1/2 ,= =

F z( ) 1
z

1
3

π2z

3

πz1/2
cth πz1/2−+{ } ,=

ξαβ
' r t,( )

ξαβ
' r t,( )ξαβ

' 0 0,( )〈 〉

ξ'ξ'〈 〉ω δgδg〈 〉 τF iωτ( )∼ ∼ ,

ξαβ
'

ξ̃αβ r t,( )

ξ̃αβ r t,( )

 

respect to spatial coordinates and Laplace transforms
with respect to time take the form

 

(5)

 

where 

 

ρ

 

1

 

 and 

 

T

 

1

 

 are the deviations of density and tem-
perature from their equilibrium values 

 

ρ

 

0

 

 and 

 

T

 

; 

 

v

 

 is the
velocity; 

 

σ

 

 is the coefficient of thermal expansion; 

 

χ

 

 is
the coefficient of heat conductivity; 

 

D

 

t

 

 = 

 

χ

 

/

 

ρ

 

0

 

C

 

V

 

γ

 

 is the
coefficient of temperature conductivity;

 

 c

 

0

 

 is the ulti-
mate low-frequency sound velocity; 

 

Γ

 

‡

 

 = 1/

 

τ

 

‡

 

 is the
coefficient of orientation diffusion; 

 

γ

 

1

 

 is the coefficient
of dissipative interaction of velocity and anisotropy
field modes; 

 

η

 

(
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) = 

 

η
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 and 
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, where 

 

η

 

0

 

 and 

 

ζ

 

0

 

 are the seed values of shear and
volume viscosities; 
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V
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) = 
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(0)/(1 + 

 

i

 

ωτ

 

V

 

)

 

 is the vol-
ume viscosity component related to vibrational relax-
ation; 

 

τ

 

V

 

 is the vibrational relaxation time; 

 

η

 

c

 

(
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) =

 

η

 

c

 

(0)

 

F
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i
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)/

 

F

 

(0); and 
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c

 

(
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) = 

 

ζ
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(0)

 

F

 

(

 

i

 

ωτ

 

)/

 

F

 

(0)

 

.

It is important that only 

 

τ

 

 and, consequently, 

 

η

 

c

 

(0)

 

and 

 

ζ

 

c

 

(0)

 

 change in order of magnitude with decreasing
temperature. One more point that should be taken into
account is the applicability range of equations (5). It
was shown in [20] that the mechanism of relaxation to
equilibrium of mass distribution of weakly bound clus-
ters manifests itself only in the frequency range

 

(6)

 

Another important conclusion follows from consider-
ation of viscoelastic moduli. According to (5), the fre-
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quency dispersion of shear 

 

G

 

(

 

ω

 

) 

 

and longitudinal 

 

K

 

(

 

ω

 

)

 

elasticity moduli is given by

 

(7)

 

The absence of a noticeable dispersion of transverse
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and longitudinal 
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)
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 sound propaga-

tion velocities in the frequency range

 

  

 

!

 

 

 

ω

 

 

 

!

 

 

 

means that in addition to (4), the following inequalities
should be met

 

, (8)

 

where 

 

G
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 = 
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= 

 

ζ
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.

 

The spectra of correlation functions can conve-
niently be obtained using vector 

 

u

 

 with components

(

 

ρ

 

1

 

, 

 

T

 

1

 

, 

 

v

 

x

 

, 

 

v

 

y

 

, 

 

v

 

z

 

, , , 

 

…,

 

 

 

). System (5) then
takes the form

 

(9)

 

or

 

(9')

 

As the simultaneous values of vector @u components
are mutually orthogonal,

 

(10)

 

we obtain the spectral density of hydrodynamic vari-
ables in the form

 

(11)

 

In conformity with the foregoing, the correlation func-
tion of the anisotropy tensor components is given by the
sum

As above, the sums over 

 

α

 

 and 

 

β

 

 are not taken. The
simultaneous correlators of hydrodynamic variables
are described by the equations

 

(12)
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where

is the isothermal compressibility [22] and 

 

α

 

 is the coef-
ficient in the expansion of free energy 

 

δ

 

F

 

 =

 

dV

 

 + …

 

 . Formulas (11) and (12) give an

unambiguous solution to the problem of determining
the spectra of correlation functions in the high-viscos-
ity region.

DEPOLARIZED LIGHT SCATTERING

Let the incident light beam propagate along axis 

 

y

 

and be polarized along axis 

 

z

 

, and let the scattered light
beam lie in plane (

 

x

 

,

 

 y

 

) and make angle 

 

θ

 

 with axis 

 

y

 

.
The geometry of the experiment is described by the fol-
lowing expression for depolarized light scattering
intensity:

 

(13)

(14)

 

Here,

 

(15)

 

are the components of the anisotropic part of the tensor
of scattering and

 

(16)

 

where  are the anisotropic components of the
fluctuation dielectric constant tensor in the (

 

MNL

 

)
coordinate system whose 

 

L

 

 and 

 

M

 

 axes lie in the 

 

xy

 

plane, axis 

 

L

 

 is aligned with scattering vector 

 

k

 

, and the
axis perpendicular to 

 

L

 

 is formed by turning axis 

 

L

 

counterclockwise through 

 

π

 

/2

 

. Axis 

 

N

 

 coincides with
the 

 

z

 

 axis of the laboratory coordinate system.

It is assumed that

 

(17)

 

The 

 

c

 

a

 

 coefficient value is on the order of unity and
does not change substantially on passing to the high-
viscosity region (see [21]).
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The explicit form of the 

 

K

 

1

 

, 

 

K

 

2

 

, 

 

K

 

3

 

,

 

 and 

 

K

 

4

 

 functions
is as follows:

 

(18)

 

where 
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 = 
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i

 

/
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 i 
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 is the proportional-
ity factor between 

 

〈ξ

 

'

 

ξ

 

'

 

〉

 

 and 

 

F

 

(

 

i

 

ωτ

 

)

 

 in (4). Substituting
(18) into (13) gives the spectrum of depolarized scatter-
ing in the form
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By virtue of the inequality 

 

1/

 

τ 

 

! 

 

1/

 

τ

 

‡

 

, the relaxation
processes in the high-viscosity region determine the
special features of the spectrum only in the frequency
range (0, 10/

 

τ

 

). In addition, taking into account that in
(19), 

 

k

 

B
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/

 

a 

 

&

 

 

 

a

 

, we obtain
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It follows that the shape of the central component is
essentially non-Lorentzian. As temperature decreases,
the height of the central component 
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v

 

H

 

(

 

k

 

, 0)

 

 increases
in proportion to 

 

τ

 

 or, in other words, to viscosity 

 

η

 

. In
the frequency range 
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! 
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&
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, side components
are formed:
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 is the transverse
sound propagation velocity. The first term in (21) cor-
responds to a slowly [in comparison with (20)] varying
contribution to the central component.

Note that the integrated intensities of the narrow
central component and side peaks have comparable val-
ues. However, in contrast to the rapidly narrowing cen-
tral component, the parameters (height and half-width
proportional to 1/

 

τ

 

‡

 

) of the side peaks change only
slightly.

The observed patterns are strongly affected by
instrumental effects. For simplicity, we assume that the
instrument response function 
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 in the equation
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has a Lorentzian shape, that is 
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that 
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 is given by (19). The observed signal,
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, is then given by
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In deriving (23), it was taken into account that renor-
malization of side components can be neglected at typ-
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. Evidently, for not too deep supercool-
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i.e., at temperatures 
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, the
height ratio between the central and side peaks is stabi-
lized but is still far above unity.

In passing to the low-viscosity region, the obtained
results are transformed to the well-known ones [14].

Next, let us briefly consider the special features of
depolarized scattering 
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scattering components. It directly follows from (14),
(15), and (19) that

 

(26)

(27)

 

Here, 

 

c

 

l

 

∞

 

 = 

 

 is the high-frequency

longitudinal sound velocity. Note that 
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,
and the half-width of side components is largely deter-
mined by anisotropy relaxation time. The influence of
instrument effects on 

 

I

 

HH 

 

is the same as with VH scat-
tering.

POLARIZED LIGHT SCATTERING

Polarized light scattering intensity 

 

I

 

VV

 

 (with a verti-
cal orientation of polarization unit vectors) is described
by the equation [21]
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where
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is the isotropic component of the fluctuation dielectric
constant tensor and 
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 and 
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 are the density and tem-
perature fluctuations, respectively.

At a constant density, temperature fluctuations are
largely determined by the degrees of freedom that do
not affect the structure and special features of the high-
viscosity state. The correlator 
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 value is the
same as for the low-viscosity and vitreous regions. The
contribution of temperature fluctuations is relatively
small in this region, and we will therefore ignore it.

The contribution of anisotropy fluctuations does not
exceed 10
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 of the contribution of density fluctuations
[6]. Therefore,
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For supercooled states of high-viscosity liquids with
microheterogeneous structures, optomechanical coeffi-
cient 
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 is given by [23]
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where 
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 are the dielectric constants of the system in the
low-viscosity and vitreous states extrapolated to the
high-viscosity state, and 

 

ϕ

 

 is the specific volume occu-
pied by strongly bound clusters.

An explicit form of the correlator can be found from
equations (9'), (11), and (12). The special features of its
behavior are determined by the roots of the equation
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)

 

 and the

 

γ

 

(
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)

 

 ratio in (5) complicates the problem substantially.
However, in the limits of

 

(a) (33)

(b) (34)

 

and on the additional assumption
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, 1/
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 ~ 

 

c

 

0
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 (for not too low 

 

k

 

 values),

the roots are more easy to determine. It is obvious that
the roots that describe thermal and sound modes are

 

(35)

(36)

 

where

 

(37)

 

The spectral density of the intensity of molecular light
scattering corresponding to (35) and (36) has the form
(see [24]):
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Note that there is one more root in case (b):

 

(39)

 

The narrow central peak that corresponds to (39) has a
relatively low integrated intensity. The ratio of this
intensity to that of the thermal peak is

 

(40)

 

This ratio decreases rapidly as temperature lowers.
The peak can, however, be detected by correlation
spectroscopy methods [24].

If inequality (34) is not fulfilled, the spectrum has a
more complex form. This is especially true of the com-
ponent corresponding to the thermal mode. The param-
eters of this component will take on intermediate val-
ues. The Landau–Placzek relationship changes accord-
ingly:

 

(41)

 

Consider the temperature dependence of the
Mandelshtam–Brillouin component width. According
to (37),

 

(42)

 

The temperature dependence of parameter 

 

Γ

 

 can be
described if it is taken into account that relaxation times
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 and 
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 decrease slowly as temperature lowers. For

simplicity, consider the situation when viscosity forma-
tion is dominated by one mechanism. Put
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decreases, then

also decreases. It follows that at 

 

T ~ T

 

*

 

, the Mandelsh-

tam–Brillouin component width is a maximum. This
conclusion is in complete agreement with experiment
[11, 12].

Absorption per wave length at Mandelshtam–Bril-
louin frequencies is related to half-width 

 

Γ 

 

of side com-
ponent as

For comparison, we give equations for sound velocity
and the coefficient of sound absorption 

 

(

 

αλ

 

):

 

(45)

(46)

 

where

 

(47)

 

It follows from (47) that the frequency dependences of

 

c

 

I

 

(

 

ω

 

)

 

 and 

 

(

 

αλ

 

)(

 

ω

 

)

 

 at a constant temperature and the
dependences of these values on relaxation time at a
constant frequency are described by similar curves. In
other words, there exists scaling in the frequency range

 

(48)

 

CONCLUSIONS

The principal results of this work are in qualitative
agreement with the available experimental data.
Because of inaccuracy of these data, detailed verifica-
tion of the theory is, however, impossible. Indeed, none
of high-viscosity glycerol-like liquids was studied by
the methods of acoustic, molecular, and dielectric spec-
troscopy in the same temperature range. This seriously
impedes checking consistency of various theoretical
approaches and revealing their potentialities.

Attention should be given to thorough examination
of two integral characteristics of polarized molecular
light scattering, the integrated intensity and the
Landau–Placzek relation. The degree of nonlinearity of
integrated intensity variations with temperature is
closely related to the formation of weakly bound clus-
ters and can be used as a sensitive test for their pres-
ence. A nonlinear temperature behavior of the Landau–
Placzek relation in some temperature range gives infor-
mation about structural relaxation contributions to sys-
tem’s heat capacity and compressibility. Note also the
importance of comprehensive studies of the behavior of
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liquids in the region of intermediate viscosities, for in
this region, various physical mechanisms can be identi-
fied more accurately.
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