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Abstract

Humans need sleep. It is important for physical and psychological recreation.
During sleep our consciousness is suspended or least altered. Hence, our abil-
ity to avoid or react to disturbances is reduced. These disturbances can come
from external sources or from disorders within the body. Obstructive Sleep Ap-
nea (OSA) is such a disorder. It is caused by obstruction of the upper airways
which causes periods where the breathing ceases. In many cases, periods of
reduced breathing, known as hypopnea, precede OSA events. The medical back-
ground of OSA is well understood, but the traditional diagnosis is expensive, as
it requires sophisticated measurements and human interpretation of potentially
large amounts of physiological data. Electrocardiogram (ECG) measurements
have the potential to reduce the cost of OSA diagnosis by simplifying the mea-
surement process. On the down side, detecting OSA events based on ECG data
is a complex task which requires highly skilled practitioners. Computer algo-
rithms can help to detect the subtle signal changes which indicate the presence
of a disorder. That approach has the following advantages: computers never
tire, processing resources are economical and progress, in the form of better al-
gorithms, can be easily disseminated as updates over the internet. Furthermore,
Computer-Aided Diagnosis (CAD) reduces intra- and inter-observer variability. In
this review we adopt and support the position that computer based ECG signal
interpretation is able to diagnose OSA with a high degree of accuracy.

Keywords: Computer Aided Diagnosis, Electrocardiogram, Obstructive Sleep
Apnea, Classifier, Features
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1. Introduction

Obstructive Sleep Apnea (OSA) is a common disorder that affects both chil-
dren and adults [1]. In 1993, the Wisconsin Sleep Cohort Study produced data
which suggests that one in every 15 Americans experiences symptoms of sleep
apnea, such as pauses in breathing or instances of shallow breathing during sleep
[2]. OSA is associated with increased perioperative risk, hypertention and stroke
[3, 4]. Kapur et al. presented evidence that medical costs almost double prior to
the diagnosis of OSA [5]. The result was established by taking into account con-
trol groups matched for age, sex, residence, and in some cases, family physician
as well as obesity. In a sequence of 238 cases, identified in a health-maintenance
institution, in the year prior to the diagnosis of OSA, the mean yearly medical
cost per patient was US$2,720, versus US$1,384 for sex and age matched con-
trols. Regression analysis showed that the OSA severity, expressed through the
Apnea/Hypopnea Index (AHI), was positively correlated with the annual med-
ical costs, after adjusting for age, sex, and Body Mass Index (BMI) [6]. For
the entire population, that increase may cause US$3.4 billion/year in additional
medical costs. Unfortunately, the costs of untreated OSA are higher than just the
cost incurred by health issues. Apart from diagnosis and treatment costs, there
is a decrement in the quality of life, which is associated with the medical con-
sequences, but there are also motor vehicle accidents, and occupational losses.
OSA-related motor vehicle collisions in 2000 were estimated to cost US$15.9
billion [7]. Another factor, which increases the cost, is the fact that traditional
OSA diagnosis requires an Polysomnography (PSG), an all-night examination in
a specialized clinic, under constant medical supervision [8, 9]. That procedure is
labour-intensive, time-consuming and, at times, inaccessible or even impractical
[10]. Accordingly, a cost effective screening method, which allows us an early
assessment of the disease severity prior to a referral for PSG [11].

As such, OSA poses a high cost to society and current diagnosis methods are
expensive. These two facts are interrelated, hence it is reasonable to assume that
novel methods of OSA detection can contribute to the solution of both problems.
Accurate and more cost effective diagnosis will result in wider screenings where
OSA is detected earlier. Early disease detection means more effective treatment
can be administered, which reduces both patient suffering and social cost of the
disease. Thus, there is a growing interest in alternative diagnosis approaches,
such as portable holter Electrocardiogram (ECG) monitoring [12, 13]. By using
modern computing machinery and state of the art algorithms, it is possible to
extract respiration waveforms from ECG signals [14]. Such systems can be used
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in OSA analysis. In terms of medical foundations, these systems are based on
the fact that there are fluctuations in both R-wave amplitude and QRS duration
at the onset and termination of apnoea-bradycardia episodes [15]. However,
practical holter reports are often difficult to analyze from a Heart Rate Variability
(HRV) perspective, because of the nondeterministic nature of the signal, which
results from underlying physiological processes that are assumed to be chaotic
[16, 17, 18, 19].

Both, the amount of disability affected lifetime and the economic cost create
a powerful need to diagnose OSA in an accurate and cost effective manner. ECG
based screening methods hold the promise of delivering non-invasive, accurate
and cost efficient diagnosis methods. However, the physiological processes, which
link changes in the heart beat to OSA events are not entirely understood. Hence,
we have to depend on empirical evidence to show that indeed such a link exists.
The first part of our study details a comprehensive survey of papers which discuss
physiological evidence that changes in the ECG signal are positively correlated
with OSA events. Once that link is established, a corollary problem is to automate
the detection of OSA induced changes in the ECG signal. To analyze the problem
and to get an overview of the performance of automated OSA detection systems,
the second part of our study reviews ECG based OSA Computer-Aided Diagnosis
(CAD) systems. As such, each of these engineering papers provides evidence
that there is an exploitable correlation between ECG measurements and OSA.
Hence, these papers constitute valuable input to medical researchers. But, during
our study, we found that the medical community forms distinct citation clusters,
where research, with a biomedical background, is rarely cited. To overcome that,
our review aims to provide an unbiased overview of ECG based OSA detection.

1.1. Sleep apnea survey

Before we introduce CAD systems for OSA detection, it is beneficial to briefly
review the scientific literature that relates to sleep-disordered breathing and Heart
Rate (HR). In general, sleep disordered breathing, known as sleep apnea, is fur-
ther classified as mixed, central, or obstructive. The classification is based on
whether effort to breathe is present during the event [20]. With approximately
84% of all cases, OSA is the most common form of sleep apnea [21, 22]. In 1984,
Guilleminault et al. published the first paper about the effects of sleep apnea
on the electrical activity of the human heart. To be specific, they noted that
OSAs were often correlated with a bradycardia during apneic periods, followed
by a tachycardia as breathing resumes [23]. These patterns were termed cyclical
fluctuations in HR. Typical apneas have a duration of 10–20 seconds and that
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is the time when the effect on the heart beat is most profound. More specif-
ically, the apnea periods introduce a frequency component to the Respiration
Rate (RR) interval tachogram, which corresponds to the apnea duration. Hence,
the apnea induced frequency component has a value in the range of 0.05 Hz
to 0.1 Hz. It is difficult to detect these additional frequency components in
the time domain. However, transform domains, like the spectrum, reveal both
frequency and amplitude of the sleep apnea induced signal component. Stein
et al. established a useful graphical representation of this observation [24]. In
adult patients, they were able to detect episodes of OSA solely through visual
inspection of the RR-interval tachogram by detecting the characteristic cyclical
variations in HR patterns. Other research groups noted the low-frequency fluc-
tuations which were introduced by apneas as well. In response, they developed a
range of possible systems for using HR to detect apneas [25, 26]. Even healthy
subjects can influence their heart beats by holding their breath [27]. Erdem et al.
demonstrated the pure effect of OSA on the cardiac autonomic function with HR
turbulence parameters [28]. Impaired HR turbulence may be an important factor
which causes arrhythmia and sudden cardiac death in patients with OSA [29].
By monitoring the Q wave/T wave (QT) interval, computed from ECG signals
during sleep, it is possible to create a link between the ventricular repolarization
and sleep stages [30]. Uznańska et al. found that there is a significant correlated
between OSA and cardiovascular diseases [31].

That concludes our brief review of the medical evidence which underpins all
attempts to construct ECG based diagnosis support systems for OSA. In the
next section, we review scientific articles, which were published on that subject.
Our focus is on CAD systems which help practitioners to detect OSA. Section
3 relates these systems to the wider research in the field of OSA detection and
CAD. The paper concludes with Section 4, where we highlight again the systemic
aspects of creating ECG based diagnosis support systems for OSA.

2. Materials

The previous section outlined that there is a link between OSA and the beating
pattern of the human heart. That link is important, because these beating
pattern can be measured with the non-invasive and cost effective ECG method.
However, OSA induced changes on the ECG signal are minute and the data needs
to be observed over a long time interval. Hence, human based interpretation is
error prone and there is inter- and intra-observer variability. As a consequence,
computing technology is used to detect OSA induced changes in ECG signals.
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Such computing methods form the backbone of CAD systems. These systems
benefit patients through diagnosis support and treatment monitoring. In this
part of our study, we review research on ECG based CAD systems for OSA.

The data for our study were retrieved in November 2015 from the Scopus
Database (DB) [32]. In the time frame from January 2002 to October 2015,
a total of 85 articles on the topic of sleep apnea and ECG were found. A
citation analysis of the 85 scientific articles reveals that the majority of these
publications falls into one of two groups. The first group of articles provides
physiological evidence that sleep apnea affects the heart and indeed these sleep
apnea induced changes can be captured with ECG measurements. These articles
have a medical nature. The second group of articles describes automated sleep
apnea detection systems. Hence, the second group of articles has an engineering
nature. All engineering articles focused on OSA. Figure 1 shows the citation
cluster visualization. The clustering was done with the VOSviewer [33].

Figure 1: Citation network visualization for papers on ECG based sleep apnea detection from
the Scopus DB. All research articles were published within the time period from January 2002
to October 2015.

As such, ECG based sleep apnea detection was never a hot topic, but over
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Figure 2: Distribution of papers on ECG based sleep apnea detection over the observation
period from 2002 to 2015.

the last 10 years there was a steady stream of high quality research articles which
focused on that subject. Figure 2 details the yearly distribution of these research
articles over the time span from January 2002 to October 2015. Within the
observation period, 2007 saw the largest number of research articles (15) on
ECG and sleep apnea. In contrast, there were no articles in 2003. From 2006
onwards, there were at least five articles a year on that topic.

Having outlined both the need for CAD systems and the way in which that
need sparked research publications, we move on to discuss CAD systems for ECG
based OSA detection.

2.1. Computer aided diagnosis systems

The steady stream of research articles indicates that there is a link between
respiration and ECG signals. Hence, it is necessary to translate that link into
tangible improvements for patients as well as cost savings for society. CAD sys-
tems are a well-known strategy to realize the diagnostic potential of physiological
measurements, such as ECG [34, 35].

CAD systems apply data mining techniques to reach a decision on whether or
not a particular ECG signal sequence shows signs of OSA [36, 37]. Interpreting
CAD systems as data mining machines leads to a clear design pattern which
structures the system creation [38]. Figure 3 shows an overview block-diagram
of the individual processing steps which establish the CAD functionality. In terms
of systems design, each of these steps poses a particular problem. As long as
these problems are well defined, they can be addressed with standard solutions.
In exceptional cases, it is possible to find novel and innovative problem solutions.
The next sections detail the individual steps, by introducing the problem and
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Figure 3: Block diagram of computer aided sleep apnea detection systems based on ECG
signals.

discussing standard solutions.

2.1.1. Electrocardiogram data

The first problem of ECG based OSA detection is data. There are a number
of requirements for the ECG recordings, some of them are even conflicting. First
and foremost, the data should represent the variety and veracity of OSA induced
changes in ECG signals [39]. In general, that requirement can only be adequately
met with large datasets taken from a wide range of specimens. However, there is
problem with the group of heart patients. Their heart beat, hence also their ECG
signal, is already altered by an underlying heart disease [40, 41, 42]. Routinely,
such datasets are not considered as a basis for the design of OSA detection
systems. As a consequence, all automated OSA detection systems under-perform
for patients with an underlying heart disease.

Another important requirement for ECG data, which is used for OSA de-
tection, is concerned with availability and competition. As such, availability is
prerequisite for competition, because competition means to compare the per-
formance results of different studies and that comparison is only valid if the
underlying data is the same. When the studies, under scrutiny, were based on
different datasets, researchers tend to regard larger datasets to be more difficult,
i.e. good performance results are harder to achieve, then smaller datasets or
datasets from selected individuals.

As a consequence of the interrelatedness between performance and data used,
we have to be extra careful when comparing different OSA detection methods.
For example, the plentiful and diverse measurements very useful for validating
methods for diagnosing sleep disorders, however researchers must be careful when
comparing their algorithms with those implemented by other authors. The same
algorithm my yield significantly different results, if the DB employed to test the
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algorithm is not the same, due to differences in methodologies of processing,
thus leading to confusing conclusions in the outcomes obtained [43].

One way to overcome the lack of data for and to foster competition amongst
researchers is to establish publicly accessible DBs. For the special field of ECG
based OSA detection, the PhysioNet sleep apnea ECG DataBase (PNDB) is such
a publicly accessible resource. The DB contains 70 nighttime ECG measurements
from sleep apnea patients [44]. The data is annotated based on visual scoring of
disordered breathing during sleep. Both annotation quality and amount of data
make the PNDB a prime resource for research on OSA induced changes of the
ECG signals.

2.1.2. Preprocessing

The second problem, we have to deal with for ECG based OSA detection,
arises from unwanted disturbances in the signal. The electrodes, used for ECG
measurements, pick up ambient and power line noise as well as muscle movement
artifices. These undesired signal components have a degrading effect on the CAD
system performance. For example, artifacts in electrocardiographic recordings
lead to the spurious quantification of RR intervals and these effects can result
in substantial biases in studies of the chronotropic state of the heart [45]. The
problem of artefact contaminated ECG signals is well documented in scientific
literature, and a number of artifact detection methods were developed to help
in identifying of suspicious heart periods [46]. Also the problem of noise is
well understood and there are numerous noise filtering approaches. Wavelet
methods have gained a good reputation for their ability to differentiate between
information bearing signal components and noise [47, 48].

Once the ECG signals are cleaned, the practitioner, who is designing the OSA
detection system, phases a choice between using ECG or HR based features.
Both approaches are equally valid and they have been used for ECG based OSA
detection. As such, a HR signal captures the main activity of the heart, but
information about the particular shape of the QRS complex is lost. For ECG based
OSA detection, that loss of information is acceptable if we limit our investigations
to the influence of OSA on the heartbeat. Accepting that limitation has the
advantage that the feature extraction becomes simpler and more transparent.
In terms of systems design, HR extraction is considered to be a pre-processing
technique. Conceptually, HR is based on the time between two R peaks known
as the RR interval. Pan and Tomkins developed a widely used ECG based QRS
detection algorithm [49].
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2.1.3. Feature extraction and selection

The third problem for ECG based OSA detection is to find methods which
extract relevant information from ECG signals. In this case, information is rele-
vant if it helps to discriminate between OSA and normal berating periods. The
process of extracting relevant information from a physiological signal is usually
referred to as feature extraction. In the past years, we have seen the application
of machine learning or pattern recognition. As a consequence, the feature do-
main has expanded from tens to hundreds of features that can be used in those
applications [50]. ECG based OSA detection is no exception. In the reviewed
research articles, we found a diverse range of feature extraction algorithms. The
following text describes the most common feature extraction methods with a
bias towards nonlinear feature extraction.

A number of researchers used statistical methods to extract relevant informa-
tion from either ECG or HR. The statistical methods included basic first order
quantities, such as mean and variance as well as more advanced approaches such
as ST-segment deviation. In general, these statistical approaches assume that
the signal is predictable and that the signal is stationary. However, the human
heart is a non-stationary oscillator and there is good evidence that it is even a
chaotic system. Statistical methods are prone to failure, because they are not
robust to nonlinear events. Indeed such nonlinear events can be caused by OSA,
i.e. such events cause a significant but unpredictable alteration of the heartbeat.

The main idea behind domain transformation algorithms, such as Fourier,
Spectrum estimation and wavelets, is to compare the measured ECG signal with
known signals. In the case of spectrum approaches, the known signals are sine
waves of different phase angles and frequencies. As a consequence, the spectrum
method yields information about the frequency content of the ECG signal and
the phase angle. The phase angle is rarely used, but the frequency content is an
important signal feature. Similarly, the continuous wavelet transform compares
the measured ECG signal with scaled versions of the so called mother wavelet.
The discrete wavelet transform compares the measured signal with the filter
transfer functions. The wavelet transform results show location and quality of
the comparison. Both parameters hold valuable information for ECG based OSA
detection, because they reveal the nature of an OSA induced abnormality and
when that abnormality happened.

The reviewed papers describe a number of novel time domain feature extrac-
tion methods. These methods aim to extract relevant information for either HR
or ECG to OSA periods. They were proposed by scientists with expertise in both
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algorithm design and wide ranging medical knowledge on either ECG or HR [51].
For example, Kalman filter can be used to measure the predictability of the ECG
signal. OSA events are not predictable, hence the Kalman filter will do poorly
for OSA affected ECG signals. As a consequence, the Kalmen filter performance
can be used as feature, for OSA detection.

Nonlinear features were also used for ECG based OSA detection. The features
were extracted with algorithms from the domain of the chaos theory [52]. These
algorithms deal with strange signals. In this case ‘strange’ means that the signals
are predictable if and only if we understand all the physiological processes in
the human body. Clearly, that is impossible, hence the ECG prediction is also
impossible. However, it is possible to quantify the strangeness or indeed the self-
similarity of the signal. Such quantifications reveal lots of hidden information
about the underlying processes. One of these underlying processes is the effect
OSA has on the human heart. A common test to support the idea that ECG
signals result from strange attractors can be constructed with a surrogate data
test [53]. The test is established as follows. The Fast Fourier Transform (FFT)
algorithm is used to calculate the spectrum of the ECG signal. Subsequently, the
phase is randomized before the inverse FFT is used to transform the signal back
into the time domain. The resulting signal has the same statistical properties as
the original ECG signal. If a nonlinear parameter shows a difference between the
original and phase randomized signal, then we cannot rule out that the underlying
process, which generates the signal, is nonlinear. So far, there are no records
that the test has failed for ECG signals, at least not for all nonlinear parameters.

Having such a wide range of possible feature extraction methods requires
feature selection. Fundamentally, feature selection is necessary because the clas-
sification step can only deal with a limited number of features. Plenty of feature
selection methods are documented in literature due to the availability of data with
hundreds of variables leading to data with very high dimension. As such, feature
selection methods provide us with a way of reducing computational complexity,
improving prediction performance, and a better understanding of the data in ma-
chine learning or pattern recognition applications. There is no way of knowing
a priori which feature combination works best for a given OSA detection task.
Hence, the strategy must be to try out as many features as possible. With that
approach, the problem reduces to the simple task of feature selection, i.e. we
have to select the features which are used for classification. To find the best
possible combination, the experimenter has multiple options. The first of these
options is to use statistical performance evaluation methods, such as students t-
test and Analysis Of Variance (ANOVA) [54, 55]. Once the statistical test results
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are established, the best features are selected, to form the basis for classifica-
tion. Another method is to process all permutations of a feature set with strong
classifier. However, even with state of the art processing facilities, such a brute
force approach is very time consuming, because running classification algorithms
for all feature permutations is computationally complex. The final method relies
on dimension reduction through algorithms, such as Principal Component Anal-
ysis (PCA), Kernel PCA, Neighborhood Preserving Embedding (NPE), Locality
Sensitive Discriminant Analysis (LSDA), Independent Component Analysis (ICA)
[35, 56, 57]. The idea, behind that method, is to establish an ordered sequence
of parameters from a feature set. The parameters are ordered in terms of their
ability to represent the important properties (not noise) of the feature set [58].
Hence, the feature vector, which is used for classification, is composed from the
most signification parameters.

2.1.4. Two class results

The forth problem of ECG based OSA detection centres on finding ways
of using the extracted information. In general, the extracted features do not
reassemble the ECG waveform. Hence, it is difficult for humans to relate the
features to particular diseases. To overcome that difficulty, threshold values are
introduced. For example, Roche et al. state that a threshold value of -11.1 for
a statistical feature (∆[D/N] SDNN index) results in a sensitivity of 86.5% and
a specificity of 55% [59]. However, such thresholding methods can only be used
on a single scalar value. One way to overcome that drawback is to incorporate
multiple features into one index value and to present the resulting value to the
threshold classifier [60]. However, the creation of such index values is based on
the intuition and experience of the experimenter. Hence, such indexes are highly
subjective, which makes it difficult to evaluate them. To be specific, a different
way of combining the features might yield better results. In many cases it is
impossible to analyze all features combinations, therefore we cannot proof that a
particular index is the most performant for a given feature set. To find the right
threshold value, the Receiver Operating Characteristic (ROC) method can be
used [61]. The ROC curve reflects the fact that a lower threshold value increases
the sensitivity, but decreases the specificity, under the assumption that a larger
feature value indicates OSA.

A much better approach, then to combine individual features to form an
index value and to specify a threshold value, is to automate the classification of
a feature vector. An automated classification algorithm will find the best way
of reaching a classification decision. For supervised learning algorithms, the best
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way is found with decision strategies based on a known dataset. By extraction
relevant information from a known dataset, the Support Vector Machine (SVM)
algorithm establishes a hyperplane which separates two signal groups [62, 63].
Repeating the process of establishing the hyperplane, with a reduced dataset,
will lead to the classification of more than two classes. The classifier has been
used for five of the surveyed OSA detection systems, as shown in Tables 1 and
2.

The Artificial Neural Network (ANN) classifier is one of the oldest decision
making algorithms [64]. It models the way a human brain works. The ANN
structure is application specific, i.e. different ANN structures show different
performance for the same OSA detection task [65]. There is no way to predict
which structure works the best. Hence, trial and error is required to find the best
ANN configuration for a given task. As part of our survey, we found four ANN
based OSA detection systems.

The most common application for Linear Discriminant (LD) in medicine is
disease severity assessment [66]. However, the technique, which characterizes two
or more signal classes, can also be used for classification [67]. In the surveyed
scientific articles, LD was used twice as classification method.

AdaBoost is a modern meta classification algorithm, which employs a poten-
tially large number of weak decision making methods to reach a strong decision
[68]. For biomedical problems, AdaBoost is always a strong contender for the
best classifier, but it is usually outperformed by other classification algorithms,
such as SVM. Hence, AdaBoost was used only once in the surveyed research
articles.

Just like feature extraction, also the classification step needs internal compe-
tition as well. There is no way of knowing which classification algorithm works
best for a given feature set. Therefore, empirical science is called upon to find the
best classification algorithm. The best classification algorithm is chosen based
on performance parameters which reflect various aspects of making a correct de-
cision [69]. For classification problems, the correct decision constitutes the true
value and the classification. Accuracy (A) is inversely proportional to the degree
of closeness of the classification achieved by an individual algorithm. Another im-
portant performance measure is Sensitivity (Se), which describes the proportion
of different samples that are correctly identified. For ECG based OSA detection,
Se represents the percentage of ECG samples that were correctly identified as
showing signs of OSA [70]. Specificity (Sp) is the last measure which was widely
used in the surveyed papers. As such, Sp determines the proportion of normal
ECG signals that were correctly identified. The formal definition of all three per-
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formance measures is based on the confusion matrix [71]. That four quadrant
matrix contains: true positive – ECG segments correctly identified as showing
signs of OSA, true negative – normal segments correctly identified as normal,
false positive – normal segments identified as showing signs of OSA, and false
negative – incorrect identification of ECG signal segment showing signs of OSA.

2.1.5. Two class results

In between January 2002 to October 2015, there were 29 engineering papers,
which discussed OSA detection systems. In technical terms, sleep apnea detec-
tion comes down to a two class problem: either there are sleep apnea events in
a given ECG signal or not. In general, the research articles in Table 1 describe
system designs which follow the block diagram shown in Figure 3. However,
the methods used in the individual steps vary significantly. From an engineering
perspective, the feature extraction methods are the most important and indeed
the most creative step. During this step, a designer is confronted with the task
of selecting the best feature extraction methods, for a given task, from a wide
range of existing algorithms. Some designers push the envelope by proposing
new and innovative feature extraction methods which are specifically tailored to
ECG based OSA detection.

From the 29 research articles, listed in Table 1, 17 detail threshold classifica-
tion, in some cases supported by ROC analysis. Even with such basic classification
methods, the researchers achieved good classification accuracy, >= 79%. The
lowest reported classification accuracy came from Cohen and de Chazal [72].
They reported an accuracy of just 67% based on the LD classifier. However,
their system had to deal with infant ECG signals which have a much smaller
knowledge base when compared with adult ECG.

Table 1: Summary of study conducted on classification of normal and apnea. The term
features to the feature extraction method used. The column labelled ‘Perf. in %’ details
the CAD system performance in A, Se, and Sp. Some researchers did no publish all three
performance measures. Primarily, the table entries are ordered in terms of data used. Within
the resulting subgroups, the entries are ordered in terms of classification performance.

Name,
year

Features Classifier Data used Perf.
in %

Khandoker
et al. [73],
2009

Wavelet SVM PNDB A =
100
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Table 1: (continued)

Name,
year

Features Classifier Data used Perf.
in %

Bsoul et
al. [74],
2014

Time and
spectral

SVM PNDB Se=96

Oussama
et al. [75],
2016

11 time domain
and PCA

ANN PNDB A=96

Khandoker
et al. [76],
2009

Wavelet SVM Sleep Research Unit DB,
PNDB

A=93

Thomas et
al. [77],
2007

Spectrograms ThresholdPNDB Se=86,
Sp=95

Maier et
al. [78],
2014

Time-domain
feature

ThresholdPNDB in addition data
from 121 patients

Se=86,
Sp=86

Varon et
al. [79],
2015

Wavelet and
HRV statistics

ThresholdPNDB and KU Leuven
sleep lab

A=85,
Se=85,
Sp=85

Liu et al.
[80], 2012

HilbertHuang
transform

ROC
thresh-
old

PNDB A=79,
Se=73,
Sp=71

Dickhaus
and Maier
[81], 2007

Amplitude
modulation

ROC,
thresh-
old

PNDB ROC
areas

Xie and
Minn [82],
2012

HRV AdaBoostUCD DB A=83,
Se=79,
Sp=85

O’Brien
and
Heneghan
[83], 2007

Statistics and
spectral

LD UCD and Computers in
Cardiology challenge
2000 DB

A=82,
Se=78,
Sp=85

14



Table 1: (continued)

Name,
year

Features Classifier Data used Perf.
in %

Akşahin et
al. [84],
2011

HRV cross
power spectrum
density

ANN 10 patients and 10
control

A=99

Cohen and
de Chazal
[72], 2015

HRV statistics
and PSD

LD National Collaborative
Home Infant Monitoring
Evaluation dataset

A=67,
Se=67,
Sp=58

Tong et al.
[85], 2014

Mean cardiac
electrical axis

ROC,
thresh-
old

32 control, 88 patients A=88

Jiang et
al. [86],
2014

ST-segment
deviation

Threshold105 patients and a
control group

Se=65,
Sp=89

Monasterio
et al. [87],
2012

20 linear
measures

SVM Multi-Parameter
Intelligent Monitoring for
Intensive Care II

A=90,
Se=86,
Sp=91

Roche et
al. [59],
2002

HRV statistics Threshold124 sets Se=87

Maier et
al. [88],
2007

Local
recurrences

ROC
thresh-
old

140 sets Se=81,
Sp=86

Shouldice
et al. [89],
2004

Statistics and
PSD

Quadratic
dis-
crimi-
nant

25 sets A=88,
Se=86,
Sp=91

Roche et
al. [90],
2007

HRV statistics
and spectrum

ROC 150 sets Se=91,
Sp=34

Kesper et
al. [91],
2012

HRV, EDR ThresholdSIESTA DB A=81
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Table 1: (continued)

Name,
year

Features Classifier Data used Perf.
in %

Poupard et
al. [92],
2012

HRV statistics Threshold118 patients Se=97,
Sp=72

Yilmaz et
al. [93],
2010

HRV statistics SVM 17 subjects A=87

Singhathip
et al. [94],
2010

HRV statistics ROC
thresh-
old

26 subjects A=93

Roche et
al. [95],
2004

Spectral Threshold28 subjects Se=78,
Sp=70

Tong et al.
[85], 2012

Not reported ROC
thresh-
old

120 subjects Se=85,
Sp=94

Maier and
Dickhaus
[96], 2010

Time-delay
Embedding

Threshold26 recordings Se=84

Ghahjaver-
estan et al.
[97], 2015

Kalman filter ThresholdNot reported Se=95,
Sp=94

2.1.6. Three class results

There were only five research articles, which discriminated the ECG signals in
three classes, in the Scopus DB on ECG and sleep apnea between January 2002
to October 2015. Table 2 lists these five papers. Most of the three class CAD
systems discriminate between normal, apnea and hypopnea ECG segments. In
general, three class problems are more difficult than two class problems. There-
fore, the performance measurements are lower as compared to two class problems.
The work by Acharya et al. stands out, because they achieved a classification
accuracy of 90% on a large dataset [98]. The key to that classification perfor-
mance lies in the feature extraction methods. The authors have used a range of
nonlinear methods, from the domain of chaos theory, to extract features which
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represent the complexities of the electrical activity of the human heart well.

Table 2: Summary of study conducted on classification of normal, hypopnea and apnea.

Name,
year

Features Classifier Data used Perf. in %

Acharya
et al.
[98],
2011

Approximate entropy, fractal
dimension, correlation
dimension, largest Lyapunov
exponent and Hurst
exponent

ANN 450 apnoea
sets, 130
hypopnoea
sets and 130
normal sets

A=90,
Se=100,
Sp=95

Khan-
doker
et al.
[99],
2009

Wavelet ANN 17 sets A=77

Babaei-
zadeh
et al.
[100],
2011

Peak-to-trough QRS
amplitude and HRV based
method

ROC
thresh-
olds

Sleep health
center in
Boston

A = 71,
Se=60,
Sp=82

Boyle
et al.
[101]

Wavelet Statistical
analysis

10 one hour
recordings and
six overnight
recordings

ECG method
comparable
with
respiratory
monitor.

Lado et
al.
[102],
2012

HRV STFT Threshold 46 patients Not reported

3. Discussion

The human heart beat is influenced by both internal and external factors.
Therefore, electrical measurements of the heart, in the form of ECG signals, can
provide a holistic assessment of health [103]. However, a fundamental problem
with such general indicators of health is the complexity of interpretation. As a
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consequence, it is necessary to focus on one disease or disease class. The prime
candidates for such a focus are the heart diseases [104, 105]. For this disease
class, ECG signals are the reference physiological measurement. OSA is another
application area where ECG abnormalities can be used to support a diagnosis,
despite the fact that the ECG signal changes are just a secondary measure of
breathing problems [101]. In this case, secondary means that the ECG signals
are influenced by both autonomous and non-autonomous activities of the human
body, and respiration events are just one amongst many influencing factors.
Fortunately, sleep describes a rather predictable state of the human body, hence
other factors, which shape the ECG signals are less prominent, at least they are
more predictable. Therefore, external influences on the ECG signal are minimal.
Hence, it is possible to link abnormalities in ECG signals with berating disorders
without the need for restricting or controlling external influences. For example,
during sleep, there is no need to enforce a specific posture when taking the ECG
measurement. As a consequence, ECG based OSA detection is practical, it can
be done with autonomous machines, such as holter or even cost effective HR
monitors [106].

There is dependable physiological evidence that OSA events cause changes in
the ECG signal. As a consequence it is possible to build automated systems which
detect OSA induced ECG signal changes and through that provide diagnosis
support for practitioners. Building these systems is a creative process, because
there is no standard way of extracting information from nonlinear signals, such
as ECG measurements. In this review, we focused on the creative process and
the fact that it is difficult to compare individual OSA detection systems. Tables
1 and 2 detail features, classifier, data as well as performance of OSA detection
systems. The data used, together with the classification performance, indicate
the system quality. To be specific, accuracy alone is insufficient to determine the
system quality, because the accuracy depends on the dataset used for testing.
In general, the performance measures, A, Se and Sp, are more dependable when
obtained in huge quantity from varied dataset. Hence, the first step in evaluating
the system performance is to look at the datasets used. According to our review,
for two class problems, the most widely used data comes from the PNDB. The
eight studies, which were based on PNDB, are highly competitive, because the
performance results are comparable. Therefore, we have ordered the entries in
Table 1 according to the data used. Within the resulting subsets, the order was
established by the system performance. That ordering allows us to compare the
feature extraction and the classification methods. The most relevant observations
come from the largest subset, namely to the detection systems based on the
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PNDB. For that subset, the adopted element ordering reveals that classification
algorithms are superior to simple threshold methods, because the four classifier
based systems outperform the five threshold based systems. There is not such a
clear result for the features used. Time and frequency domain as well as wavelet
features seem to be sufficient to discriminate two classes.

Some researchers describe the effects of obstructive sleep hypopnea as indis-
tinguishable from apnea events [107]. Gould et al. introduced the idea of a sleep
hypopnea syndrome as an alternative to the AHI [108]. Their index lists minimal
breathing difficulties on the lower end of the scale and OSA is listed as most
severe event. Another aspect, which makes it worthwhile to study hypopnea,
comes from the fact that hypopnea periods usually precede apnea events. Hence,
hypopnea periods can be used to predict and, with more advanced systems, pre-
vent OSA events. Future CAD systems should have the ability to discriminate
between hypopnea periods and apnea events, because hat will improve patient
monitoring. With such improved patient monitoring, it is possible to individualize
treatment. The ability to administer individualized treatment, together with con-
stant patient monitoring, can lead to self-optimizing patient control systems with
feedback through monitoring and activation through individualized treatment.

ECG based OSA detection is not the only novel method to diagnose breathing
disorders during sleep. Pulse oximetry is another non-invasive tool which is often
applied in modern medicine to evaluate both arterial oxygen saturation and HR.
In recent years, pulse oximeters shrank, the smaller size has broadened their
application spectrum. In terms of medical evidence, it was found that OSA is
frequently accompanied by repetitive oxygen desaturation that can be useful in
its detection [109]. For diagnosis and treatment of sleep-disordered breathing,
overnight pulse oximetry helps us to determine the severity of disease and is used
as an economical means to detect OSA [110, 111, 112].

The prevalence of specific sleep disorders increases with age. For example,
the number of patients with phase advance in the normal circadian sleep cy-
cle increases with age, so does the restless legs syndrome. Especially, OSA is
increasingly seen among older individuals and it is significantly correlated with
cardio- and cerebrovascular diseases as well as cognitive impairment [113]. OSA
increases corrected QT dispersion, that is the difference between the maximum
and minimum QT intervals and is a strong risk factor for cardiovascular mortal-
ity [114]. Solaimanzadeh et al. identified ECG based predictors of mortality in
patients with familial dysautonomia [115].

OSA is associated with hypertension and diabetes. The combination of these
diseases puts patients at high risk of developing cardiovascular disease. Appropri-
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ate screening routines are important to detect cardiovascular risk factors in pa-
tients with OSA [116]. Unfortunately, very little data is currently available about
the incidence of OSA in patients examined for cardiac arrhythmias [117, 118].
Another important problem is heritability of abnormalities in cardiopulmonary
coupling in sleep apnea [119]. Mauser et al. predicted that ECG based sleep ap-
nea detection methods could become a simple tool for cardiologists to screen for
Sleep Apnea/Hypopnoea Syndrome (SAHS) in clinical routine [120]. In patients
with arrhythmias, coincidence with sleep-related breathing disorders is high and
of clinical relevance [121]. To investigate the cardiac activity further, Czopek
combined acoustic and ECG measurements to monitor sleep [122].

Morbidly obese patients have a high prevalence of known and unknown car-
diopulmonary diseases [123]. Catheline et al. evaluated the impact of surgically-
induced weight loss on obstructive SAHS electrocardiographic changes, pul-
monary arterial pressure and daytime sleepiness in morbidly obese patients [124].

Adnane et al. developed a cardiorespiratory belt sensor [125]. Their system
is used for unobtrusive night-time ECG and HRV monitoring. Furthermore, they
present data analysis methods by comparing bed sheet HR and HRV values with
corresponding parameters obtained by a reference measurement. ECG derived
RR1-interval data can be used to calculate HRV parameters, these parameters
can be used to analyze the sleep quality as well as other wellness-related topics,
which include sleep apnoea detection [126].

Traditionally, sleep staging is based on Electroencephalogrphy (EEG) signals
[127]. Redmond and Heneghan found that cardiorespiratory signals deliver mod-
erate sleep-staging accuracy [128]. The features exhibit significant subject depen-
dence which is a limitation to use these signals in a general subject-independent
sleep staging system. Parée et al. discuss the design of a new sleep staging sys-
tem for ambulatory situations [129]. Cardiorespiratory-based sleep staging can
be used as an adjunct tool in home sleep apnea monitoring [130].

We predict that the complexity of ECG based CAD systems will increase,
because that is the dominant way of increasing accuracy, sensitivity and specificity
of such mature systems [131, 132, 133]. The increased complexity creates its own
unique set of problems. The increased system complexity is addressed with divide
and conquer design methods [134]. Individual design teams create functional
entities which communicate with one another. On the system level, complex
networked problem solutions are susceptible to cyber vandalism and cybercrime.

1R-peak to R-peak in the QS complex.
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The only way to overcome these difficulties is through well thought out design
strategies which take into account the increased levels of system complexity [135].

4. Conclusion

Over the last decades, ECG based OSA detection has attracted lots of inter-
est from the research community. One measure for that interest is the number
and diversity of the research articles on that topic. In the current review, we have
analysed papers from a range of medical and engineering backgrounds. During
the review we found that ECG based OSA detection is difficult, because ECG
signals are complex and the OSA induced signal changes are varied and sub-
tle. Such complex detection tasks are best handled with computer algorithms.
Indeed, none of the surveyed research relied on human interpretation of ECG
signals. Even though all relevant studies involved computer support, there was a
wide range of topics covered. Fundamental studies established the link between
OSA and ECG. Scientific articles, from the engineering domain, described how
to exploit such a link for diagnostic purposes to complete descriptions of physical
system implementations. Our review focused on papers which aim to automate
OSA detection. From these papers, we distilled the design pattern for the data
mining systems which deliver effective physical problem solutions for the chal-
lenging task of ECG based OSA detection. These physical problem solutions take
the form of CAD systems. It is of eminent importance to establish and improve
the CAD system performance through internal and external competition. Most
of the reviewed articles establish the concept of internal competition by com-
paring different feature extraction and classification methods. That competition
leads to optimal CAD systems within the search space, which was established
through the tested methods. External competition is established through citing
the performance and data used by other published research work. As a direct
consequence of the requirement for external competition, the surveyed research
papers also published their performance and the dataset used. In turn, that in-
formation should be used by future ECG based OSA detection systems for future
external competition.

Our survey shows that there is a link between changes in the ECG signal and
OSA events. Hence, it is time to realize the cost saving potential of ECG based
OSA detection by designing CAD systems. During our survey, we discovered 29
two class and 5 three class OSA diagnosis support systems. Most of the three
class studies discriminated between normal, hypopnea and OSA events. We found
that, based on the same data, classification algorithms outperform threshold
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methods. Another observation is that for simple two class detectors time and
frequency feature extraction methods yield good results. However, for three class
problems nonlinear feature extraction methods were used with great success.
Hence, even two class systems might benefit from nonlinear feature extraction
methods. These features could help to extend the detector performance for larger
and more varied datasets.

5. Acronyms

A Accuracy
ANN Artificial Neural Network
AHI Apnea/Hypopnea Index
ANOVA Analysis Of Variance
BMI Body Mass Index
CAD Computer-Aided Diagnosis
DB Database
ECG Electrocardiogram
EDR ECG-Derived Respiration
EEG Electroencephalogrphy
FFT Fast Fourier Transform
HR Heart Rate
HRV Heart Rate Variability
ICA Independent Component Analysis
LD Linear Discriminant
LSDA Locality Sensitive Discriminant Analysis
NPE Neighborhood Preserving Embedding
OSA Obstructive Sleep Apnea
PCA Principal Component Analysis
PNDB PhysioNet sleep apnea ECG DataBase
PSD Power Spectrum Density
PSG Polysomnography
ROC Receiver Operating Characteristic
RR Respiration Rate
SAHS Sleep Apnea/Hypopnoea Syndrome
Se Sensitivity
Sp Specificity
STFT Short Time Fourier Transform
SVM Support Vector Machine

22



UCD Sleep Disorders Clinic at St Vincent’s University Hospital, Dublin

6. References

[1] V. K. Kapur, Obstructive sleep apnea: diagnosis, epidemiology, and eco-
nomics, Respiratory care 55 (9) (2010) 1155–1167.

[2] T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, S. Badr, The
occurrence of sleep-disordered breathing among middle-aged adults, New
England Journal of Medicine 328 (17) (1993) 1230–1235.

[3] D. Hwang, N. Shakir, B. Limann, C. Sison, S. Kalra, L. Shulman,
A. de Corla Souza, H. Greenberg, Association of sleep-disordered breath-
ing with postoperative complications, Chest Journal 133 (5) (2008) 1128–
1134.

[4] R. J. Thomas, M. D. Weiss, J. E. Mietus, C. K. Peng, A. L. Goldberger,
D. J. Gottlieb, Prevalent hypertension and stroke in the sleep heart health
study: Association with an ecg-derived spectrographic marker of cardiopul-
monary coupling, Sleep 32 (7) (2009) 897–904.

[5] V. K. Kapur, R. Alfonso-Cristancho, Just a good deal or truly a steal?
medical cost savings and the impact on the cost-effectiveness of treating
sleep apnea, Sleep 32 (2) (2009) 135–136.

[6] M. D. Vishesh Kapur, R. E. Sandblom, R. Hert, B. James, D. Sean, The
medical cost of undiagnosed sleep apnea, Sleep 22 (6) (1999) 749–755.

[7] A. Sassani, L. J. Findley, M. Kryger, E. Goldlust, C. George, T. M.
Davidson, Reducing motor-vehicle collisions, costs, and fatalities by
treating obstructive sleep apnea syndrome, SLEEP-NEW YORK THEN
WESTCHESTER- 27 (3) (2004) 453–458.
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[51] O. Barquero-Pérez, R. Goya-Esteban, F. Alonso-Atienza, J. Requena-
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