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Abstract

The interpretation of Electroencephalogrphy (ECG) signals is difficult, because even sub-
tle changes in the waveform can indicate a serious heart disease. Furthermore, these waveform
changes might not be present all the time. As a consequence, it takes years of training for
a medical practitioner to become an expert in ECG based cardiovascular disease diagnosis.
That training is a major investment in a specific skill. Even with expert ability, the signal
interpretation takes time. In addition, human interpretation of ECG signals causes inter-
operator and intraoperator variability. ECG based Computer-Aided Diagnosis (CAD) holds
the promise of improving the diagnosis accuracy and reducing the cost. The same ECG
signal will result in the same diagnosis support regardless of time and place. This paper
introduces both the techniques used to realize the CAD functionality and the methods used
to assess the established functionality. This survey aims to instill trust in CAD of cardiovas-
cular diseases using ECG signals by introducing both a conceptional overview of the system
and the necessary assessment methods.

1 Introduction

Cardiovascular diseases are a global public health problem, because they contribute about 30%
of global mortality and 10% of the global disease burden [1, 2, 3]. In 2005, about 58 million
deaths occurred worldwide, 17 million of these mortalities were due to cardiovascular disease
[4, 5, 6]. According to heart disease and stroke statistics, the adjusted populations attributable
to cardiovascular disease mortality are 40.6% for high blood pressure, 11.9% for insufficient
physical exercise, 13.2% for poorly balanced diet, 13.7% for smoking and 88% for abnormal
glucose levels [7]. In other words, cardiovascular diseases are linked to poor lifestyle choices,
such as increased intake of fat, smoking, physical inactivity and alcohol consumption [8]. Despite
numerous campaigns and public education efforts, these bad lifestyle choices are on the rise. For
example, obesity and the prevalence of obesity has increased dramatically worldwide over the
last decades and it has now reached epidemic proportions [9]. Furthermore, in America 21.3% of
men and 16.7% of women, older than 18 years, continue to smoke. While the number of patients
with cardiovascular diseases is receding in several high income countries, low and middle income
nations have seen a rise in the occurrence, where 82% of cardiovascular disease deaths occur in
both genders equally [10].

In disease prevalence studies, the World Health Organization (WHO) defined cardiovascu-
lar diseases from symptoms, ECG abnormalities, and enzymes [11]. Amongst these diagnosis
methods, ECG has the potential to deliver cost savings, because the signal acquisition is non
invasive and a measurement setup requires only medium skilled labor. However, ECG by itself is
often insufficient to diagnose cardiovascular diseases, such as acute coronary syndrome or acute
myocardial infarction. It is important to improve the accuracy of ECG based diagnosis, because
it reduces the need for more expensive diagnosis tools. Furthermore, a higher accuracy allows
us to detect cardiovascular diseases earlier. Traditionally, improving the diagnosis accuracy re-
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quires more training for the screening medical practitioner. However, training is a considerable
reoccurring cost factor.

CAD systems hold the promise of reducing cost and at the same time improving the accuracy
of ECG based diagnosis. The cost reduction arises from the fact that human labor is replaced
by machine work. The accuracy improvements result from a range of beneficial trends, chief
amongst them is progress in the relevant areas of science and technology. In this introduction
to CAD for cardiovascular disease we explore the techniques used to create the systems. We
focus on statistical performance assessment methods, which are applied during the system design
phase, because an understanding of these methods enables us to judge the CAD system quality.
The ability to assess CAD systems for cardiovascular diseases instills trust in these systems.
Trust, but not blind reliance, is needed to work with these systems in order to realize the
promise of improving cardiovascular diagnosis while at the same time reducing the cost.

The article is organized as follows. Section 2 introduces the materials and methods used
to construct a CAD system for cardiovascular diseases based on ECG signals. The system
assessment methods take center stage of our discussion, because the assessment results shape
both the construction of the CAD system and subsequently the acceptance of the physical
problem solution in a practical setting. Section 3 provides insight into practical performance
reporting and analysis. Practical settings and limitations are also covered in the discussion
section. Section 5 concludes the introduction to CAD for cardiovascular diseases based on ECG
signals.

2 Materials and methods

All CAD systems aim to provide diagnosis support for medical practitioners by suggesting a
possible diagnosis [12]. The CAD system reaches the diagnosis through a decision making pro-
cess. In general, the decision process is based on physiological measurements or medical images
[13]. The output ranges from simple disease or non-disease classifications to the sophisticated
detection of specific diseases. The decision support quality is an important criteria for selecting
a CAD system. The quality is evaluated based on statistical performance measures throughout
the CAD system design phase. Hence, in order to judge the quality of a CAD system it is
necessary to understand the design principles which lead to the creation of such systems. This
section provides the necessary background to judge and select CAD systems.

To explain CAD systems for cardiovascular diseases based on ECG signals in detail, we adopt
the design perspective. Fundamentally, the design is structured into an offline and an online
system. The offline is used to evaluate and select the best algorithm structure. The selected
algorithm structure is employed in the online system where it servers as diagnosis support
system. Figure 1 shows an overview blockdiagram of the online and the offline systems. Both
the online and offline systems are modeled as an algorithm chain. The algorithm chain starts
with preprocessing and the feature extraction. These initial steps condition the ECG signals
for classification. As such, the classification results constitute the decision support for medical
practitioners. The next sections provide a brief overview of the individual concepts and methods
used in both online and offline systems.

2.1 ECG signals

ECG signals represent the electrical activity of the heart and they can be used to investigate
cardiac health [14]. The offline system deals with known or labeled ECG datasets. The label
indicates whether the signal was measured from a diseased patient or from a normal control.
For more sophisticated systems the label indicates one of multiple diseases. Datasets with the
same label form one signal class. For example, ECG signals from normal controls (Normal Sinus
Rhythm (NSR)) form the NSR signal class [15]. ECG signals taken from patients with Atrial
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Figure 1: Overview block diagram of CAD systems for cardiovascular diseases based on ECG
signals.

Fibrillation (AF) form the AF signal class. Finally, signals taken from patients with Atrial
Flutter (AFL) form the AFL signal group. The task of the CAD system is to differentiate the
individual signals and classify them into one of the signal classes. For the example above, each
ECG signal is classified into one of the three distinct signal classes {NSR, AF , AFL}. Apart
from these three signal classes, CADs were developed tor Atrial Tachycardia (AT), Ventricular
Tachycardia (VT), Ventricular Fibrillation (VF), Ventricular Flutter (VFL), Premature Ven-
tricular Contraction (PVC) and general Cardiovascular Disease (CVD). Beat specific labeling
included Non-Ectopic Beat (NEB), Supraventricular Ectopic Beat (SVEB), Ventricular Ectopic
Beat (VEB), Fusion Beat (FB) and Unclassified Beat (UB).

Knowing the signal labels allows us to assess the algorithms used in the offline system. The
individual algorithms and their assessment methods are discussed in the subsequent sections.
Given the importance of labeled data for the design of CAD systems, the aspect of of data
volume, number of classes and performance are vital. Data volume describes the number of
labeled ECG data sets. In general, more data sets leads to a statistically stronger evaluation.
Data variety referrers to both the number of signal classes and the variety of signals belonging
to the same class. For classification evaluation problems, the variety of signals within the class
is critical, because only if the variety of the labeled data sets matches the variety of practical
ECG signals, measured in a clinical setting, then the assessment results are credible and indeed
the CAD system performs as expected in a practical setting. Data performance refers to the
data quality. Similar to the data variability, the data veracity of the labeled data set must
match the expected data veracity in a practical setting, because a mismatch might render the
CAD performance assessment incorrect. The data veracity is difficult to estimate, but in general
the quality of labeled data is high, because these datasets were measured by experts in medical
centers.

Labeled ECG datasets are a prerequisite for the design and assessment of CADs for car-
diovascular diseases. PhysioNet is a de facto standard resource for research on cardiovascular
CAD [16]. Having such a standard research makes the individual performance results more
comparable, but more data variety is required to increase the reliability of the implemented
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systems.

2.2 Preprocessing

The ECG signals are measured with electrodes on the body surface. Therefore, they are often
contaminated by various kinds of unwanted signal components, such as power-line interference,
baseline wander, electromyographic noise, electrode motion artifacts and so on [17]. Humans
can deal with noisy signals and experienced medical practitioners have the ability to spot and
subsequently ignore ECG signal artifacts. In contrast, these unwanted signal components have
a negative impact on the ability of the CAD system to provide adequate diagnosis support.
Preprocessing aims to reduce the negative effect of unwanted signal components. The reduction
is established through filtering or signal removal [18, 19].

2.3 Feature extraction

The feature extraction step is necessary, because the classification algorithms fail to process
ECG signals directly. To be specific, the most effective classification algorithms can only deal
with a very limited amount of parameters, practical knowledge suggests that the number of
parameters should be kept at a minimum [20]. Martis et al. provide a detailed review of feature
extraction methods [8].

Feature extraction methods can be classified as either linear and nonlinear. In general, linear
methods are old, they are based on time and frequency analysis techniques [21]. The following
list provides names, linear feature extraction methods and references to the CAD systems which
employed them.

• RR interval – The RR-interval measures the time duration of a cardiac cycle. [22, 23]

• Spectrum – In the area of feature extraction, a spectrum denotes the result of a frequency
domain analysis [24]

• Lorenz plot – A graphical representation of a cumulative distribution function of an empir-
ical probability distribution of a quantity of interest. For example, the hear rate variability
is such a quantity of interest [25]

• First and second order statistics – Mean and variance [26]

• Discrete Wavelet Transform (DWT) – This feature extraction technique is closely related
to spectrum techniques. Spectrum techniques provide only frequency restitution, whereas
DWT provides both time and frequency resolution [27, 28, 27, 29]

• Independent Component Analysis (ICA) – The technique separates multivariate signals
into their additive subcomponents [27, 15, 28]

• Principal Component Analysis (PCA) – The statistical procedure is based on orthogonal
transformation which produces linearly uncorrelated parameters known as the principal
components [30, 29, 28, 31, 32]

• Linear Discriminant Analysis (LDA) – Yields features that characterizes two or more signal
classes [28]

• Discrete Cosine Transform (DCT) – Spectrum technique based on cosine waves [15, 33]

Nonlinear methods are based on the more recent concepts of chaos and fuzzy logic [34, 35,
36]. The novelty of these methods is reflected in the fact that only a few recent CAD systems
employ them, as indicated in the following list.
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• Fractal characteristics – From chaos theory. Used to describe the fractal nature of a signal
[37, 38]

• EM Clustering – The expectation–maximization (EM) algorithm constitutes an iterative
method that estimates parameters in statistical models [39]

• Higher Order Statistics – Statistical measures beyond mean and variance [31, 32]

2.4 Feature assessment

The feature quality depends on the ability to discriminate the minute ECG signal changes that
indicate a specific disease [40, 14]. Feature assessment aims to quantify the ability to detect
these signal changes correctly. The feature assessment serves two purposes:

1. Feature assessment results can be used for feature selection. There are numerous linear and
nonlinear feature extraction methods in existence, however the classification algorithms
work effectively with a minimum number features. Hence, not all features can be used for
classification and a selection process is necessary to find the best features. Such a selection
process is based on the feature assessment [41].

2. Instill trust in the CAD system for cardiovascular diseases based on ECG signals. That
is a very important exercise, because a system design needs a consistent performance
where good feature assessment results lead to good classification results [33]. Excellent
classification results conflict with poor feature assessment results, therefore such systems
are less trustworthy.

A popular method for feature assessment is a statistical test method called Analysis Of
Variance (ANOVA) [42, 41, 43, 44]. The method establishes the similarity within signal groups
and the distinctiveness amongst signal groups. As such, the signal groups are established with
labeled datasets. The ANOVA algorithm is aware of the individual signal groups and it checks
the parameter value distribution. The checking principle is based on the so called null hypothesis
which postulates that the parameter distribution is random. The algorithm expresses the null
hypothesis validity with the p-value. A quality feature causes the ANOVA algorithm to reject
the null hypothesis, because the parameter clusters are not random. As a consequence, a good
feature will have a low p-value. For clinical trials, a p-value of 0.05 is considered to be clinically
significant. However, for CAD, we regularly see features with p-values below 0.0001.

The most important characteristic of the offline system is the fact that the individual features
compete, i.e. the features are ranked and subsequently they are selected according to their ability
discriminate the signal groups [45, 46]. One way of feature ranking is based on the ANOVA test
results. The feature with the lowest p-value is ranked fist, the feature with the second lowest
p-value is ranked second etc. Only the highest ranking features are selected as elements of the
feature vector, which is fed into the classification algorithms.

2.5 Classification

The idea behind automated classification algorithms is to learn the characteristics of different
signal classes based on known feature vectors [47, 48]. The acquired knowledge is used when an
unknown feature vector is identified. As such, the identification process assigns a label to the
unknown feature vector. The method of using known data to train the algorithm is known as
supervised learning [42]. The following list details examples of supervised learning algorithms
and it provides a reference to the CAD systems which use them:

• Support Vector Machine (SVM) – The coordinates of the feature space are transformed
such that decision borders become straight lines, i.e. the signal classes a linearly separable.
For nonlinear data, nonlinear kernel functions are used [49, 28, 29, 31, 32].
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• ADABoost – The results of numerous weak learners is combined to form a strong decision
[49].

• Artificial Neural Network (ANN) – The algorithm mimics brain functionality [50, 15, 29,
32, 31].

• Gaussian Mixture Model (GMM) – The algorithm decides to which subpopulation in input
vector belongs [28].

• Decision Tree (DT) – The decision making algorithm is based on a tree like graph that
structures a continuum of binary questions [51, 52, 15, 24].

• Fuzzy classifier – Based on grouping known elements into fuzzy sets and identifying un-
known input by mapping it to one of the previously (training phase) identified sets [52,
37, 38, 27].

• K-Nearest Neighbour (K-NN) – The majority of neighboring known signal points decides
the signal class of an unknown input [15, 28, 31].

• Probabilistic Neural Network (PNN) – Refinement of an ANN [28, 33].

• Classification And Regression Tree (CART) – Used to construct prediction models form
ECG data [53, 31]

• Random Forest (RF) – Ensemble learning algorithm [31]

• Threshold – Binary decision based on a threshold value [25, 26, 22, 23].

The classification algorithms were introduced with just a brief discussion of the functionality.
The variety of classification algorithms, used in practical systems, indicates that there is no
consensus which method is works best to classify the features extracted from ECG signals.
Hence, a wide range of classification algorithms should be tested in the offline system. The
CAD systems, which used these classification algorithms to identify cardiovascular diseases,
were cited.

2.6 Classification assessment

In the offline system, the classification results are assessed based on the labeled datasets. The
assessment helps us to select the most appropriate classification algorithm for online system [54].
For a two class problem (normal and abnormal) individual measures are briefly explained below:

• True Negative (TN)=Number of normal data classified as normal.

• False Negative (FN)=Number of abnormal data classified as normal.

• True Positive (TP)=Number of abnormal data correctly classified as they are.

• False Positive (FP)=Number of normal data classified as abnormal.

• Accuracy (A)=( TP + TN ) / ( TP + FN + TN + FP ).

• Sensitivity (Se)=TP / ( TP + FN ).

• Specificity (Sp)=TN / ( TN + FP ).
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Accuracy, sensitivity and specificity are basic performance measures, used to assess classifi-
cation algorithms. Apart from these basic assessment methods, a Receiver Operating Charac-
teristic (ROC) curve may be used. The curve is created by plotting the TP rate against the FP
rate at various threshold settings. Having such an ROC plot allows us to assess the classification
quality and we can set the threshold value son that the highest classification accuracy is achieved
[55, 56].

A fundamental problem of supervised learning is the arbitrary split of the labeled datasets
into testing and training data, because that split, to some extent, influences the classification
accuracy. k-fold cross-validation aims to overcome the dependency by sub-sampling the labeled
dataset into k disjoint sets. k − 1 sets are grouped together to form the training set. The
remaining fold is used to test the classifier. There are k runs and for each run a different fold
is used. Performance measures, such as A, Se and Sp, are computed after each run. In a last
step, the average over all individual results is calculated for each performance measure. As a
consequence, k-fold cross-validation results are less biased compared to traditional classification
assessment methods [15].

2.7 Online system

The online system contains preprocessing, feature extraction and classification algorithms [57].
Statistical feature and classification assessment is not possible, because in the online system all
the ECG signals and indeed the the resulting feature vectors are unknown, i.e. no predefined
labels exist for the ECG signal. The online system classifies a particular ECG signal as belonging
to specific signal group. That classification can be a valuable support for the diagnosis of a
patient.

The quality of the diagnosis support depends on the algorithms and parameters used to pro-
cess the ECG signal and to establish the classification. Therefore, the design process, structured
through the offline system, is so important for the practical relevance of the deployed CAD
system. To be specific, once the online system is deployed, the diagnostic quality is established
through the assessment methods used in the offline system.

Using softprocessing methods in the online CAD system has the advantage of updating
the system. It is expected that the algorithms, used to discriminate individual cardiovascular
diseases will improve. Furthermore, the labeled ECG data volume, number of classes and per-
formance is expected to increase over time. As a consequence, the algorithm structure, which
underpins the diagnostic support, gets better, i.e. accuracy, sensitivity and specificity of the
offline system will increase. In addition to these improvements, the assessment results are more
credible, because they are based on data which is closer, in a statistical sense, to the ECG
signals measured in a practical setting. Regular updates of the online system ensure that the
CAD system performance continuously improves without additional effort from the practicing
medical doctor.

3 Practical performance reporting and analysis

The performance of CAD systems is established with statistical measures. Credible system
design teams use the performance measurement results to compete with published results from
other design groups. Only the best performing CAD systems for cardiovascular diseases will be
implemented, that ensures the best possible diagnosis support for medical practitioners. Table
1 provides an example on how the performance measurement results are compared. The last
row is usually reserved for the results of the CAD system under discussion, because such a setup
makes it easy for the reader to compare the performance assessment results.
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Table 1: Performance summary of different CAD systems for cardiovascular diseases. ∗ indi-
cates that the labeled datasets were specified as database entries.

Name Method Labeled datasets Quality

Cerutti et
al. [37]

AR model on RR
intervals

NSR and AF Se=96%, Sp=81%

Slocum et
al. [24]

Atrial activation NSR(81) and AF(74) Se=62%, Sp=71%

Hu et al.
[58]

Mixture of experts SVEB and NSR 94.0%

Tatento et
al. [23]

K-S test on RR
intervals

NSR(95879) and AF(11589) Se=91%, Sp=96%

Wang et al.
[38]

Multifractality AF(60), VF(60) and VT(60) AF A=99.4%, VF
A=97.2%, VT
A=97.8%

Logan et al.
[22]

Variance in RR
intervals

NSR(–) and AF(–) Se=96%, Sp=89%

de Chazal
and Reilly
[59]

Heartbeat interval SVEB, non-SVEB A=97%, Se=77.7%

Inan et al.
[60]

DWT and timing
interval

PVC, NSR from MIT/BIH
arrhythmia database

95.2%

Sarkar et al.
[25]

RR interval deduced
features

AF(422 h) and AT(2000 h) Sp=94%

Chao et al.
[26]

Delta RR interval
difference curve

AF(6599599) and
NSR(1729629)

Se=96.1%,
Sp=98.1%

Fahim et al.
[39]

Compressed ECG VF(30∗), VFL(16∗), PVC(1∗)
and AF(2∗)

A=97%

Martis et
al. [29]

Segmentation,
re-sampling

Normal(10000) and
abnormal(24989)

A=98.11%,
Se=99.90% and
Sp=99.10%

Jovic et al.
[49]

Linear and
nonlinear features
(in total 56)

Nine classes (total 109000) A=85.63%

Giri et al.
[28]

Variance in RR
intervals

NSR(16 × 15 min) and
CVD(16 × 15 min)

A=96.8%, Se=100%
and Sp=93.7%

Martis et
al. [32]

Segmentation,
re-sampling

Normal(10000) and
abnormal(24989)

A=94.52%,
Se=98.61% and
Sp=98.41%

Martis et
al. [33]

Segmentation,
re-sampling

NEB(90580), SVEB(2973),
VEB(7707), FB(1784) and
UB(7050)

A=99.52%,
Se=98.69%,
Sp=99.91%

Martis et
al. [61]

Time domain ECG
amplitude

NSR, AF and AFL Se=100%,
Sp=99.33%,
A=99.42%

Faust et al.
[30]

PCA features NEB(90547), SVEB(2972),
VEB(7704), FB(1783) and
UB(7070)

A= 96.4%,
Se=96.3% and Sp
=98.4%
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Table 1: (continued)

Name Method Labeled datasets Quality

Martis et
al. [31]

Segmentation,
re-sampling

Normal(10000) and
abnormal(24989)

A=93.48%, Se
99.27% and
Sp=98.31%

Martis et
al. [32]

Cumulants NSR, AF and AFL Se=100%,
Sp=99.22%,
A=99.50%

Martis et
al. [62]

Segmentation,
re-sampling

NSR(641), AFL(887) and
AF(855)

A=97.65%,
Se=98.16% and
Sp=98.75%

Jenny et al.
[27]

DWT, ICA NSR(1000) and PVC(1000) A=80.94%,
Se=81.10% and
Sp=80.1%

Martis et
al. [15]

ICA on DCT NSR (1200), AF(887) and
AFL(855)

Se=99.61%,
Sp=100%,
A=99.45%

Column two of Table 1 indicates the methods used for feature extraction. For CAD system
design, the feature extraction methods are more important than the classification algorithms.
Therefore, detailing these methods is more beneficial for comparing the individual systems.

Column three of Table 1 details the labeled dataset which is used to create and assess the
reviewed CAD systems. There are three different ways to report the labeled dataset which is
used to design and assess the CAD system.

Column four of Table 1 reproduces the reported performance measure results. The most
important performance measure is the classification accuracy, because it provides a good indi-
cation of the overall system performance. As a consequence, the CAD systems are ranked in the
order of their classification accuracy. However, such a ranking should be understood in terms
of what is possible, i.e. the ranking answers what is the best possible classification accuracy.
An in-depth discussion is required relates the best possible classification performance to the
a new method, especially when the classification performance is lower than the best reported
performance.

4 Discussion

The promise of CAD for cardiovascular diseases based on ECG signals to provide diagnostic
support with less capital and time investment. CAD in healthcare applications can help in
automated decision making, visualization and extraction of hidden complex features to aid the
clinical diagnosis process. The main component to realize that promise is well earned trust.
Trust comes from understanding the technologies which underpin the CAD systems. Therefore,
this review has focused on providing the reader with a broad overview of the methods used. The
concept of offline and online systems is instrumental for an informed discussion on these topics.
Assessment is an integral component of trust, hence both feature and classification assessment
strategies are introduced in the Materials and Methods section.

Apart from the design methods, there is also a social aspect to CAD for cardiovascular dis-
eases. In this section we explore social benefits of CAD systems by discussing their relationship
to the healthcare divide between urban centers and rural areas. The benefits come from cost
savings and ease of use, as discussed in Section 4.2. In Section 4.3 we explore the limitations of
and risk associated with CAD systems.
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4.1 Bridging the heath-care divide with CAD systems

At the time of writing, there are more doctors and medical staff available in urban centers than
in rural areas. That problem is especially prominent in of developing countries. Furthermore,
urban centers host advanced diagnostic machines, hence there are also the specialists who operate
them. As a consequence, rural people don’t have access to healthcare facilities. Investing into
advanced medical technologies and employing more doctors in charitable medical hospitals in
rural areas might not be economically feasible, especially in developing and third world countries.
Science and technology can to tackle such a complex, large scale problem in an objective, logical,
and professional way. The solution must involve a collaborative effort, which is based on a
team of experts, that works on the health care problem holistically. On the technical level,
communication and networking can help economically middle class people and even some rural
poor have access to internet and mobile communication systems. These systems can be used
to communicate ECG signal data to urban centers with diagnostic expertise. In urban centers,
CAD systems can help to diagnose cardiovascular diseases in a nascent stage [63].

Even with the clarity on design and realization of ECG based CAD systems some limitations
and shortcomings still remain. The main limitation comes from the fact that most studies on
CAD for cardiovascular diseases are based on a small number of classified ECG signals. Having
only a small dataset to test the features implies that the statistical significance of the feature
assessment can be doubted. A small number of ECG signals poses an even greater problem for
the classification step, because the set is split into subsets for training and testing. By splitting
the known dataset, we reduce the variability within the sets further, hence the classifier is
neither trained nor tested with all the available information. The cross-validation techniques
try to reduce the negative effects of these shortcomings. But, even cross-validated classification
results are ultimately limited by the number and performance of the known dataset.

4.2 ECG versus chemical measurements

ECG and troponins are the current diagnostic tests available for clinical assessment of the heart
[64, 65]. These tests improve clinical practice by helping to identify patients with acute symp-
toms who are at high risk. Furthermore, these tests help in selecting patients who are likely to
benefit from an early invasive intervention. Combining sensitive cardiac troponin assays with
clinical assessment and ECG will reduce the number of patients for whom the diagnosis is un-
certain after the first cardiac troponin measurement. IF the cases are still uncertain, continuous
ECG monitoring and serial blood sampling might be necessary. In the long run, electronic
measurements are always more cost efficient than chemical measurements [11]. Increasing the
early diagnostic accuracy, are likely to result in substantial cost sayings [66]. The combination
of ECG and troponins overcomes the low sensitivity of ECG alone [67].

4.3 Design faults in CAD systems

A big and growing problem for CAD is system failures caused by weak design approaches. As
such, the error probability of digital systems is astonishingly low, under normal conditions, a
digital system exhibits an error once in every 1023 operations [68]. However, digital processing
systems, such as CADs, fail much more often than the error probability suggests. Root cause
analysis shows that design problems cause these additional system failures. The argument
which relates design problems to system failures starts with the following observation. In terms
of computer science, the online system is designed as a network of algorithms. To be of practical
use, such networks are quite complex [69]. Unfortunately, the system complexity is positively
correlated with the design error probability. In other words, complex systems tend to have much
more design errors. It is impossible to find design errors through testing, because reasonably
complex CAD systems can be in one of several million system states and it is impractical to test
the stability of all system states [70]. As a consequence, refined design methods are required
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to minimize the design errors. In future, when CAD systems become even more pervasive and
more human wellbeing depends on the correct functionality of these systems. Hence, we have
to limit the impact of design and other errors in the online system. For example through fault
tolerance, contingency and backup systems [71].

5 Conclusion

This paper gives an introduction to CAD for cardiovascular diseases based on ECG signals. The
CAD systems provide diagnosis support for medical practitioners through signal processing and
classification algorithms. The system design is based on the concept of offline and online systems.
The offline system uses performance assessment methods to select the best algorithm structure.
Only when the selected algorithms are used in the online system it provides decision support
for medical practitioners. A direct consequence from having the concept of online and offline
systems is that the diagnosis support quality is established with the offline system. Therefore,
quality measures, such as statistical feature tests and classification performance measures, are
of paramount importance.

Before the widespread deployment of CAD systems for cardiovascular diseases, we have to
establish trust in these systems. A major component to build trust is an an explanation on
how the system works. In this paper we have tried to explain the design and test principles
of CAD systems for cardiovascular diseases based on ECG signals. The design principles are
sound, because through internal and external competition a designer thrives to find the best
possible algorithm structure for the given task. Issues remain with the availability of reliable
datasets for testing. Furthermore, the engineering quality of these systems is an issue, therefore
it is not (yet) recommended to trust CAD systems blindly, current systems can only provide
diagnosis support. Even with these limitations, CAD based on ECG signals can reduce the
workload of medical practitioners dramatically. As a direct consequence, screening of ECG
signals will help to detect many cardiac diseases early and save life. Therefore, such systems
will aide cardiovascular disease diagnosis, treatment monitoring and drug efficacy tests.

CAD systems will get more and more important in the future, because all physiological
measurements, such as ECG, will be digital. The digital content is a treasure trove for data
mining and artificial decision making systems. Apart from the general applicability of these
techniques to large data sets, working on the particularly well known ECG signals has the
advantage that there are labeled datasets available. However, more data is needed to improve
the CAD systems. In future that shortage will be overcome and the offline systems will become
like robots crawling through enormous amounts of data and optimizing the diagnosis support
strategy. The improved diagnosis support strategies will be made available as updates for the
diagnosis support systems. So, the latest research, based on the most comprehensive data, will
be available in the most user friendly form – a new update will work in a familiar CAD system.

6 Acronyms

A Accuracy
AF Atrial Fibrillation
AFL Atrial Flutter
ANN Artificial Neural Network
ANOVA Analysis Of Variance
AT Atrial Tachycardia
CAD Computer-Aided Diagnosis
CART Classification And Regression Tree
CVD Cardiovascular Disease
DCT Discrete Cosine Transform
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DT Decision Tree
DWT Discrete Wavelet Transform
ECG Electroencephalogrphy
FB Fusion Beat
FN False Negative
FP False Positive
GMM Gaussian Mixture Model
ICA Independent Component Analysis
K-NN K-Nearest Neighbour
LDA Linear Discriminant Analysis
NEB Non-Ectopic Beat
NSR Normal Sinus Rhythm
PCA Principal Component Analysis
PNN Probabilistic Neural Network
PVC Premature Ventricular Contraction
RF Random Forest
ROC Receiver Operating Characteristic
Se Sensitivity
Sp Specificity
SVEB Supraventricular Ectopic Beat
SVM Support Vector Machine
TN True Negative
TP True Positive
UB Unclassified Beat
VEB Ventricular Ectopic Beat
VF Ventricular Fibrillation
VFL Ventricular Flutter
VT Ventricular Tachycardia
WHO World Health Organization
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