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ABSTRACT
Purpose: This study evaluated pathological response to neoadjuvant 

chemotherapy using quantitative ultrasound (QUS) and diffuse optical spectroscopy 
imaging (DOSI) biomarkers in locally advanced breast cancer (LABC). 

Materials and Methods: The institution’s ethics review board approved this 
study. Subjects (n = 22) gave written informed consent prior to participating. US 
and DOSI data were acquired, relative to the start of neoadjuvant chemotherapy, 
at weeks 0, 1, 4, 8 and preoperatively. QUS parameters including the mid-band fit 
(MBF), 0-MHz intercept (SI), and the spectral slope (SS) were determined from tumor 
ultrasound data using spectral analysis. In the same patients, DOSI was used to 
measure parameters relating to tumor hemoglobin and composition. Discriminant 
analysis and receiver-operating characteristic (ROC) analysis was used to classify 
clinical and pathological response during treatment and to estimate the area under 
the curve (AUC). Additionally, multivariate analysis was carried out for pairwise QUS/
DOSI parameter combinations using a logistic regression model. 

Results: Individual QUS and DOSI parameters, including the (SI), oxy-hemoglobin 
(HbO2), and total hemoglobin (HbT) were significant markers for response after one 
week of treatment (p < 0.01). Multivariate (pairwise) combinations increased the 
sensitivity, specificity and AUC at this time; the SI + HbO2 showed a sensitivity/
specificity of 100%, and an AUC of 1.0. 

Conclusions: QUS and DOSI demonstrated potential as coincident markers 
for treatment response and may potentially facilitate response-guided therapies. 
Multivariate QUS and DOSI parameters increased the sensitivity and specificity of 
classifying LABC patients as early as one week after treatment.
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INTRODUCTION

Breast cancer is the second leading cause of 
cancer-related mortalities in women and a major public 
health problem worldwide [1]. There are as many as 17 
tumor subtypes, which are characterized by contrasting 
histological and molecular features [2, 3]. However, 
approximately 5–15% of all breast tumors will exhibit 
similar disease patterns that are consistent with locally 
advanced breast cancer (LABC); defined as stage 3–4 
tumors, ≥ 5 cm in size, and may involve one or more 
lymph nodes [4]. Treatment typically includes pre-
operative (neoadjuvant) chemotherapy (NAC), followed 
by definitive surgery, then radiation therapy. The major 
benefit to NAC is to downstage the disease to facilitate 
surgical resection, and to enable clinical surveillance of 
the tumor in response to therapy [5]. NAC has not yet 
been demonstrated to enhance long-term survival, but a 
survival benefit has been indicated in patients who attain 
complete pathological response in comparison to patients 
with progressive or residual disease after NAC [6, 7]. In 
general however, survival outcomes are poor; only 25% of 
women may achieve complete pathological response [8] 
and up to 46% of patients may develop recurrence within 
5 years [9]. 

Breast cancer imaging during NAC can provide 
important clinical information about response to 
treatment, and potentially impact treatment outcomes if 
used to guide therapy. Current imaging methods such 
as x-ray mammography, and conventional computed 
tomography imaging can be used to study anatomical 
characteristics, but may be limited in showing functional 
and biological changes which start to occur early after 
treatment initiation [10]. Understanding these changes can 
potentially improve treatment strategies for personalized 
medicine. In response to these clinical challenges, imaging 
biomarkers have gained widespread interest in recent 
years as a potential tool to measure tumor response to 
NAC. This is due to technological improvements in 
imaging resolution, contrast, sensitivity and available 
approaches to assess pathophysiological tumor changes. 
Research into imaging biomarkers have aimed to match the 
sensitivity and specificity of gold-standard approaches from 
immunohistochemistry and microscopy, while providing 
quantitative and “real-time” results non-invasively. 
Emerging technologies are demonstrating that imaging 
biomarkers can detect important tumor characteristics 
such as cell death, tumor vascularity, and metabolic 
activity that relate to tumor response [11]. Rousseau et al. 
measured tumor metabolic activity using 18F-FDG-PET 
by quantifying the passage and clearance of radioactively 
labeled metabolites in solid tumors. The study demonstrated 
significant differences in the standard uptake value between 
responding/non-responding tumors during treatment [12]. 
Other developments in MRI-based functional imaging 
techniques, such as blood oxygenation-level dependent 

(BOLD) contrast, have indicated some promising results 
to measure vascular oxygenation as a marker for treatment 
response in tumors [13]. BOLD-MRI detects T2-weighted 
signals from deoxy-hemoglobin, and a number of studies to 
date have explored BOLD-MRI in breast cancer [14, 15]. 
For example, a pilot study by Jiang et al. demonstrated 
significant differences in tumor blood oxygen in patients 
with complete pathological response versus patients with 
partial response or stable disease to NAC [13]. Other 
MRI methods relating to tumor vascular perfusion use 
dynamic contrast-enhanced (DCE)-MRI to predict NAC 
treatment outcomes. Data reported on 20 LABC patients 
by Craciunescu et al. showed that predictive models 
with DCE-MRI parameters could classify pathological 
responders and non-responders with 91% sensitivity and 
78% specificity [16]. Other important contributions in 
MRI have included diffusion-weighted imaging (DWI) 
to provide information on tissue microstructure related to 
cell death and this technique has been exploited for NAC 
response in breast tumors. Previous studies using DWI-MRI 
have demonstrated an increased accuracy in classifying 
patient response to NAC for breast cancer [17]. However, 
the routine implementation of such specialized methods 
from MRI and PET is limited by their invasiveness, need 
for contrast agents, cost, or patient exposure to ionizing 
radiation [18]. Additionally, other limiting factors include 
patient motion during imaging and the dependency on other 
factors such as cardiac output for contrast enhancement, 
which may affect data stability [13, 19]. There is recent 
evidence to suggest that imaging markers from quantitative 
ultrasound (QUS) and diffuse optical spectroscopy 
imaging (DOSI) can reflect early biological response to 
chemotherapy. Previous studies have monitored treatment 
using either QUS or DOSI individually, using both 
laboratory or commercially based imaging devices [20–23]. 
Both QUS and DOS imaging modalities have the advantage 
of being non-invasive, relatively cost effective, quick, 
and provide functional information about metabolism, 
physiology, and biological activity. 

Quantitative ultrasound

Quantitative ultrasound uses either low or high  
(> 20 MHz) frequency ultrasound for tissue 
characterization, based on the desired acoustic resolution, 
and required depth for imaging. QUS uses the spectral 
information of radiofrequency (RF) signals that are 
typically discarded in conventional grey-scale sonography 
[Figure 1]. The spectral information of the RF signal is 
retained and processed by applying a Fourier transform 
to the signal to compute a frequency-dependent power 
spectrum [24]. QUS parameters, such as the mid-band 
fit (MBF), 0-MHz intercept (SI) and spectral slope (SS) 
are determined by applying a linear regression function 
within a discrete frequency bandwidth of the computed 
power spectrum [24–27]. In early studies by Lizzi et al., 
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QUS parameters were studied for therapy response 
monitoring in hyperthermia-treated ocular tumors [27]. 
The results of their study showed an increase in the SI 
in responsive lesions, in comparison to the surrounding 
normal tissue (p = 0.003). This increase in the backscatter 
intensity was explained as corresponding to changes in 
tissue microstructure caused by focal areas of increased 
cell death [27]. It was hypothesized that changes in the 
scattering surfaces at subcellular levels from cell death, 
such as fragmented nuclear structures, may modulate 
acoustic scattering in tissue. Later reports by Czarnota and 
colleagues applied Lizzi et al.’s theoretical framework to 
study the effects of apoptotic cell death and QUS in acute 
myeloid leukemia (AML) cells treated with chemotherapy 
in vitro [25]. That work used QUS methods as markers 
for apoptotic cell death. Chemotherapy-treated AML 
cells demonstrated a 2.92-fold to 5.83-fold increase in 
backscatter intensity compared to non-treated cells, and 
histological data revealed morphological changes resulting 
from cellular pyknosis, karyorhexis and apoptotic cell 

death [25]. In another study, Kolios et al. demonstrated 
an increase in the MBF (+13 dB) after treating AML 
cells to chemotherapy in vitro, and linked these findings 
to morphological changes from chromatin condensation 
[26]. These studies demonstrated the link between changes 
in tissue features, nuclear morphology and the resulting 
acoustic scattering in tissue [28]. Theoretical frameworks 
in these early QUS studies for cancer imaging have driven 
efforts to study chemotherapy response in breast cancer 
in vivo [20, 29]. To date, QUS has been demonstrated 
for functional imaging to monitor treatment response 
in photodynamic therapy, chemotherapy, and radiation 
therapy; both in animal and human studies [20, 25, 29–32]. 

Diffuse optical spectroscopy

Other specialized functional imaging, such as 
DOSI is capable of measuring aspects related to tumor 
vasculature but is additionally capable of measuring other 
biochemical features such as water and lipid content, and 

Figure 1: Experimental setup. (A) QUS imaging. For QUS, patients were positioned supine for ultrasound imaging. A panoramic 
scan was acquired over the affected breast, which included the entire volume of the tumor, and also normal breast tissue (points A and B).  
(B) Diffuse Optical Spectroscopy Imaging. Immediately after sonography, patients were transferred onto a diffuse optical tomography 
device. The breast was positioned into an imaging aperture and compressed by stabilizing plates to limit motion, and maintain similar breast 
thickness throughout the scan series. Optical compensation fluid was added to the imaging aperture to improve light transmission between 
the varying surfaces. 
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tissue scattering. DOSI measures light absorption and 
scattering in the near-infrared spectrum (600–1100 nm) to 
evaluate the concentrations of endogenous chromophores 
such as hemoglobin, oxyhemoglobin, lipids and water, 
but also permitting maps of tissue oxygen-saturation to be 
made [33]. DOSI typically uses a large spectral bandwidth 
and systems can be built as handheld, or larger tomographic 
systems that are often referred to as diffuse optical 
tomography (DOT) devices. Several studies to date have 
utilized both research-based and commercially developed 
products. Both systems have their respective advantages, 
such as broad optical bandwidth and tissue penetrance. For 
example, advantages for DOT include the capability of 
imaging deeper tumors, and major technical advancements 
have increased the performance of DOT systems to 
separate the specific contributions of light absorption and 
scattering in tissue for improved tissue contrast. 

Three types of DOSI techniques, such as frequency 
domain (FD), time domain (TD) or continuous wave 
(CW) have been used to measure photon migration in 
tissue. Continuous wave systems emit light with constant 
amplitude and measure the attenuation [34]; while other 
systems use frequency domain methods to emit light 
that are sinusoidally modulated at high frequencies. FD 
detection systems measure the attenuation and phase 
shift of the light to report the absorption and scattering. 
The major advantage to FD systems is a relatively higher 
signal-to-noise ratio, and can be portable, which makes 
it potentially desirable as a “bedside” tool. In a TD 
system, used in the present study, short pulses of light are 
emitted and the time-of-flight are measured. The major 
advantage is the tissue-depth penetrance and improved 
resolution, compared to other DOSI systems. However TD 
systems are often large due to the requirement for several 
subcomponents used in signal detection and processing. 

Continuous wave, frequency domain and time domain 
systems utilize the absorption co-efficient to calculate 
the biochemical composition of tissue. Using the Beer-
Lambert law, with the known molar extinction co-efficient, 
one can calculate the concentrations of hemoglobin, 
oxyhemoglobin, water, and lipids. It is important to note that 
breast tissue demonstrates significantly higher scattering 
than absorption, and this is due to the tissue’s composition, 
and cellular structure. Other DOSI parameters such as the 
scatter power and scatter amplitude, calculated by using 
the power-law function, are representative of the tissue’s 
substructure, which is related to cellularity, cell arrangement 
and light-scatterer spatial distributions [35]. As a result, 
DOSI can demonstrate a good sensitivity to the biochemical 
characteristics of tissue.

In the present study, combined QUS and DOSI 
parameters as predictive models, are examined to classify 
chemotherapy-treated LABC patients into response 
groups. Earlier reports from our group have indicated that 
QUS and DOS imaging as independent modalities, may be 
useful for monitoring treatment response [20, 21, 36]. A 

study by Soliman et al. studied 10 patients with DOSI, and 
reported a significant decrease in DOSI parameters such as 
oxyhemoglobin, deoxy-hemoglobin and scatter power after 
four weeks of treatment for responders [36]. Similarly, 
Sadeghi et al. recently demonstrated that cell death markers 
from QUS, such as the MBF and SI were significantly 
increased for responders after 4 weeks of chemotherapy 
[20]. Both studies demonstrated a concordance in the 
times that QUS and DOSI biomarkers were significant. 
Unlike the present study however, QUS and DOS imaging 
studies were independent of each other, and these reports 
examined separate patient cohorts. However, the results 
of those studies suggested (expectedly) that responding 
breast tumors exhibited concurrent biological markers 
for tumor cell death, decreased metabolism and potential 
vascular reorganization. Therefore, the motivation 
of the present study was to build on those previous 
reports to specifically: i) use QUS and DOSI within a 
single patient cohort to measure breast tumor biology 
during NAC and; ii) examine the possibility of QUS/
DOSI multiparametric combinations to improve the 
classification of breast tumor response at early stages of 
neoadjuvant chemotherapy. 

Tumor responses can be characterized by several 
biological events, but have three common criteria: 1) tumor 
cell death; 2) hematological/vascular modulation and; 3) 
tumor morphological changes. These criteria are closely 
interrelated and yet, one single factor may not completely 
predict patient response with high accuracy, since tumor 
response and resistance is a multifactorial process [37]. In 
the study here, it is hypothesized that building predictive 
models at early stages of NAC with combined QUS and 
DOSI parameters, may reflect these complementary, 
and multifactorial changes; namely by characterizing 
tumor cell death, vascularity, and tumor morphology 
concurrently. QUS/DOSI imaging was used on 22 cases of 
locally advanced breast cancers: 14 of which were clinical 
responders (R) and 8, which were non-responders (NR) 
and demonstrated a close correspondence between changes 
detected by the two different imaging modalities. 

RESULTS

Data indicated significant differences between 
clinical/pathological responders and non- responders 
with both imaging modalities. Clinical and patient 
characteristics are summarized in Table 1. Representative 
data for three responders and three non-responders are 
presented in Figures 2 and 3. Representative clinical 
characteristics and imaging findings for a typical responder 
and non-responder are described below.

Representative clinical/pathological responder (R)

This post-menopausal woman presented with a 
locally advanced breast tumor in the upper inner quadrant 
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of the right breast that measured 9 × 9 × 6 cm by MRI. Core 
biopsy revealed a high-grade invasive ductal carcinoma 
that was estrogen receptor (ER) and progesterone receptor 
(PR) positive, and negative for HER2-Neu (HER2) 
overexpression. Neoadjuvant chemotherapy consisted 
of AC-T. Histological examination at the time of 
mastectomy revealed pathological response to treatment. 
Figure 2A presents representative QUS and DOSI data 
for this patient. After 4 weeks of treatment, this patient 
demonstrated an increase in the mid-band fit (∆MBF) of 
+10.0 ± 1.4 dBr [± SD]. At the same time interval, the 
DOSI-measured hemoglobin concentration (Hb) decreased 
to 29.1% ± 9.5%, relative to the baseline. Figure 2B, 2C 
are presented for other responding patients. 

Representative clinical/pathological non-
responder (NR)

A post-menopausal woman presented with a tumor 
in the right breast, which measured 5 × 4 × 2 cm by MRI. 
Core biopsy confirmed the presence of invasive ductal 
carcinoma that was confirmed ER, PR negative, and 
positive for HER2. Chemotherapy treatment consisted of 
AC-T + H. Pathological examination after mastectomy 
demonstrated only minimal response to neoadjuvant 
treatment. Representative patient data is shown in 
Figure 3A. This patient, in contrast to the one above, 
demonstrated a smaller change in the MBF at week four 
(ΔMBF = +2.3 ± 1.8 dBr), which was coincident with 
a reduction in hemoglobin to 64.4% ± 10.9% [± SD], 
relative to baseline values. Figure 3B, 3C are presented 
for other non-responding patients. 

Study data summary

Univariate analysis of QUS and DOSI parameters

Significant differences between response groups 
were detected in estimated parameters as early as one 
week after the start of chemotherapy, such as the 0-MHz 
intercept (SI), and tumor hemoglobin parameters (HbO2, 
and HbT) (p < 0.01) [Table 2]. After four weeks, QUS 
parameters such as MBF and SI were significantly 
different between responders and non-responders 
(p < 0.001). This corresponded to a significant reduction 
in several DOSI parameters at the same experimental 
times such as the Hb, HbO2, HbT, %Water, %Lipids, SP, 
SA, TOI [Figures 4, 5, Table 2]. However, there were 
no significant differences in the SS between responders 
and non-responders during this time (p > 0.05) and 
this corresponded to overall insignificant changes in 
the spectral slope (SS) during treatment for responders 
(p = 0.161) and non-responders (p = 0.127). After 
8 weeks, there were significant differences between 
groups for QUS and DOSI parameters: MBF, SI, Hb, 
HbO2, HbT, %Lipids, SP, SA and TOI (p < 0.01). At 

this time, QUS parameters such as the MBF increased 
significantly for responders (ΔMBF = 10.0 ± 1.5 [± SD] 
dBr) , corresponding to a significant reduction in DOSI 
parameters such as the HbT (12.7 ± 2.2% relative to 
baseline). Pre-operative QUS parameters such as the SI 
and SS were not significantly different between groups, 
however there was a significant difference for all DOSI 
markers at this time interval (pre-op) (p < 0.01). Both 
responders and non-responders demonstrated a significant 
change in the tumor hemoglobin parameters (Hb, HbO2, 
HbT) during the course of treatment (p < 0.05). Summary 
data is presented in Table 2 and Figures 4 and 5. 

Discriminant analysis and ROC analysis of 
individual QUS and DOSI parameters was carried out to 
differentiate ultimate clinical and pathological response 
during treatment [Table 3]. Representative AUCs for 
individual QUS and DOSI parameters during treatment 
(Weeks 1, 4, 8) are presented in Figure 6. After one 
week of treatment, the QUS and DOSI parameters: SI, 
HbO2, and HbT indicated good response classification 
(AUC range = 0.839–0.982), and this corresponded with  
64.3–85.7% sensitivity, and 75.0–87.5% specificity. Other 
QUS and DOSI parameters were poorer predicators at this 
time interval, such as the SS, %Water, % Lipids, and SA 
[Table 3, Figure 6]. However, after four weeks of treatment, 
the QUS MBF and SI markers showed an increase in the 
AUC (range 0.920–0.982) and this corresponded with high 
sensitivity and specificity (range; 85.7–100.0%). DOSI 
parameters related to tumor hemoglobin demonstrated 
high sensitivity and specificity (%S n = 85.7%,  
%S p = 87.5%), and an AUC of 0.911–0.964. Other DOSI 
parameters such as the TOI demonstrated a sensitivity and 
specificity of 85.7% and 87.5% respectively, and an AUC 
of 0.973. After 8 weeks, most QUS and DOSI parameters 
showed further increased sensitivity, specificity, and AUC. 
The MBF and SI classified patients into response groups 
with high sensitivity and specificity (%S n = 92.9–100.0%  
%S p = 87.5–100.0%; AUC range = 0.991–1.0). At the same 
experimental time, DOSI parameters (Hb, HbO2, HbT, SP, 
%Lipids, SA, TOI) were also good predictors (%S n = 92.9–
100%, %Sp = 75.0%–100%, AUC = 0.884–1.0). Statistically  
weaker classifiers included the SI and SS at the conclusion 
of chemotherapy (AUC range = 0.616–0.634), but all DOSI 
parameters were good classifiers (%S n = 85.7–100.0%; 
%Sp = 87.5–100.0%; AUC = 0.870–1.0). 

Multivariate analysis of pairwise Qus/Dosi 
parameter combinations

Table 4 and Figure 6 represent results of the 
discriminant and ROC analyses of QUS/DOSI pairwise 
combinations during chemotherapy (Weeks 1, 4, 8). All 
combinations that demonstrated an AUC > 0.8 are given in 
Supplementary Table 1. Parametric combinations increased  
the sensitivity and specificity for response classification as 
early as one week after treatment. At week 1, combining 
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the SI and tumor hemoglobin parameters (HbO2 and HbT) 
demonstrated a sensitivity and specificity of 85.7–100.0%. 
This corresponded with an AUC of 0.929–1.0. Also, 
combining the SS + HbO2 enhanced the AUC (AUC = 1.0) 
compared to those single parameters individually. At week 
1, the combination of the MBF with tumor hemoglobin 
demonstrated good AUC values (range 0.857–0.973), but 
this did not demonstrate a classification benefit compared 
to using those individual parameters alone. 

At week 4, response classification was enhanced 
when the MBF, SI, and SS were combined with the 
following DOSI parameters: Hb, HbO2, %Water, 
SA, TOI. The combination of the MBF and Hb, or 
HbO2, or %Water resulted in an AUC of 1.0, and a 
sensitivity and specificity of 100% [Figure 6]. The SI 
showed an increase in sensitivity and specificity when 
combined with either HbO2, %Water, or SA (%Sn,  
%Sp = 85.7–100%). Lastly, the SS showed an 

improvement with combinations with the SA, or TOI or 
%Water (%Sn/%S p = 85.7–100%, AUC = 0.955–1.0). 
Other pairwise combinations demonstrated an increase in 
the sensitivity and specificity, and AUC after eight weeks 
of chemotherapy, compared to univariate predictors. 
Combinations involving the SI, showed an increase in 
the AUC when combined with %Water or the SA. The 
SI+%Water or SA resulted in an AUC of 1.0. 

Histology

Gross examination of the tumor bed using 
hematoxylin and eosin staining demonstrated a reduction 
in the bulk tumor in responsive tumors in comparison to 
non-responsive patients [Figure 7A]. Post-mastectomy 
histology demonstrated changes in vascular density 
between responders and non-responders by CD31 staining 
[Figure 7B, 7C]. For CD31 staining, there was a significant 

Table 1: Patient and clinical characteristics
Clinical Features Pathologic Features Pre-Treatment Post-Treatment

No. R/NR
Pre/Post

Menopausal 
Status1

Laterality Chemo 
Strategy

Histological 
Type ER PR HER2

Thickness
(DOT)
(mm)

Tumor Size 
(MRI)
(cm)

Tumor Size 
(Pathology)

(cm)
1 R Post Right ACT + H IDC + + + 60.0 2 × 2 × 3 0.2
2 R Pre Left ACT + H IDC − − + 55.2 2 × 3 × 1 0.2
3 R Pre Right ACT IDC + + − 55.8 2 × 2 × 2 0.5
4 R Post Right FEC D + H IDC + − + 75.7 5 × 5 × 2 0.0
5 R Post Left FEC D IDC + + − 80.4 7 × 7 × 3 1.0
6 R Post Right FEC D ILC + − − 84.4 7 × 6 × 5 1.0
7 R Pre Right FEC D + H IDC + + + 70.1 8 × 6 × 3 0.4
8 R Pre Right ACT + H IDC + + + 80.5 5 × 4 × 5 1.6
9 R Post Right ACT + H IDC + + + 60.7 2 × 3 × 3 0.2
10 R Post Right ACT IDC + + − 75.3 9 × 9 × 6 2.0
11 R Pre Left FEC D IDC + + − 75.0 9 × 7 × 4 0.2
12 R Post Left ACT + H IDC + + + 85.5 6 × 4 × 3 0.5
13 R Post Right ACT IDC + + − 85.0 9 × 6 × 7 0.5
14 R Pre Right ACT IDC − − − 60.5 3 × 2 × 2 0.0
15 NR Pre Left ACT IDC − − − 66.7 5 × 5 × 4 3.4
16 NR Pre Right ACT IDC + + − 85.0 9 × 7 × 6 4.5
17 NR Pre Right ACT IDC + + − 84.3 10 × 12 × 8 8.0
18 NR Post Right ACT + H IDC + + + 75.5 8 × 7 × 3 8.4
19 NR Post Right FEC D IDC − − − 68.9 5 × 2 × 1 2.8
20 NR Post Left ACT IDC − − − 78.9 6 × 4 × 5 12.6
21 NR Pre Left ACT IDC − − − 84.9 10 × 10 11.4
22 NR Post Right ACT + H IDC − − + 65.0 5 × 4 × 2 5.0

22 Patients were studied.
Clinical Features: R = Responder, NR = Non-Responder, A = Adriamycin, C = Cyclophosphamide, T = Taxol, H = 
Herceptin, F = Fluorouracil, E = Epirubicin, D = Docetaxel.
Pathologic Features: IDC = Invasive Ductal Carcinoma, ILC = Invasive Lobular Carcinoma,  ER = Estrogen Receptor,  
PR = Progesterone Receptor, HER2 = Human Epidermal Growth Factor Receptor 2.
Patients listed here were not recruited consecutively. 
Pre-treatment and post-treatment measurements reported from the patient’s medical records.
1Mean age of all participants: 51 years old.
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 difference in endothelial cell count within the tumor bed 
(p < 0.05) between groups, with responders showing a 
lower mean cell count (cells/field = 3.5 ± 1.8) in contrast 
to non-responders (cells/field = 9.6 ± 4.3) [Figure 7B, 7C]. 
After treatment, CD31 vessel counts in responding patients 
demonstrated insignificant differences (p = 0.319) between 
the tumor bed and normal tissue. In contrast, non-responding 
patients maintained a higher CD31 count in tumors when 
compared to non-tumor tissue (p < 0.05) [Figure 7C]. 

DISCUSSION

In the present study, we examined combined analysis 
of QUS/DOSI parameters to predict NAC response in 
locally advanced breast cancer. DOSI parameters have 
been useful in demonstrating biochemical, hematological 
and morphological changes with treatment [23, 38, 39], 
while QUS parameters have demonstrated cell death in 
samples from chemotherapy [20, 26]. These parameters 

Figure 2: Representative QUS and DOS data of three clinical/pathological responders. QUS and DOS imaging was acquired 
at weeks 0, 1, 4, 8, and preoperatively, relative to the start of chemotherapy. Representative B-mode images and DOSI parametric maps 
are presented for baseline, mid-treatment (week 4) and pre-operative scans. Responsive patients demonstrated an overall increase in QUS 
ultrasound backscatter intensity up to week 8, measured by the mid-band fit. These patients demonstrated a co-incident overall reduction in 
many DOSI parameters, such as deoxyhemoglobin (presented) during treatment. Error bars = Standard deviation, Scale bars; US = 2 cm, 
DOS, 2 cm. Deoxy-hemoglobin [Hb] color bar = 0–15 µM. Representative figures presented correspond with Patient No. 10 (2A); No. 8 
(2B); No. 6 (2C) [Table 1].
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have also been tied to pathologic characteristics and 
outcomes [20, 22, 29, 33]. Recent work by Cerussi 
et al., used DOSI to measure tumor water content, and 
tumor hemoglobin concentration at multiple times 
during chemotherapy treatment [33]. The results of that 
study indicated a significant reduction in %Water and 
tumor hemoglobin at the conclusion of chemotherapy 
when compared to the baseline measurements, and this 
corresponded to patients who demonstrated complete 
pathological response [33]. The results in the study here 

are consistent with their findings and in addition, DOSI 
data is supplemented with QUS biomarkers (MBF, SI) 
that indicated an increase in cell death within the tumor 
region. Specifically, after four weeks, the MBF and SI 
increased +7.9 ± 1.4 dBr and +8.5 ± 1.8 dBr, respectively 
in responders, which contrasted with non-responders who 
demonstrated a smaller intensity change of +0.7 ± 1.4 dBr 
(MBF) and +4.4 ± 1.6 dBr (SI). At the same time, the total 
hemoglobin (HbT) in responders reduced to 32.8 ± 4.0% 
in comparison to non-responders that showed a decrease 

Figure 3: Representative QUS/DOS images and data for three non-responders. Non-responsive patients demonstrated an 
insignificant change in the mid-band fit (dBr) and lesser changes in DOS parameters (deoxyhemoglobin presented) during treatment. Error 
bars = Standard deviation, Scale bars; US = 2 cm, DOS = 2 cm. Deoxy-hemoglobin [Hb] color bar = 0–15 µM Representative figures 
presented correspond with Patient No. 22 (3A); No. 16 (3B); No. 20 (3C) [Table 1].
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to only 80.7% ± 8.1% from the baseline value. A possible 
explanation in responders could be due to decreased 
vessel viability within the tumor [11, 40]. Conversely, 
non-responding patients may have tumors with more 
aggressive tumor cells that prompt blood vessel growth to 
support metabolic demands. 

In principle, tumor metabolic information, 
reflected by markers for deoxy-hemoglobin and oxy-
hemoglobin parameters is closely linked to tumor cellular 
activity [21, 41]. This is explained by the conversion 

of oxyhemoglobin to deoxyhemoglobin during tumor 
cell cycling, and activity. After 8 weeks of treatment, 
responders demonstrated a significant reduction of 
[HbO2], and [Hb] to 10.2 ± 2.3% and 21.0 ± 2.9% of the 
pre-treatment values, respectively. This corresponded 
with an increase in MBF of +10.0 ± 1.5 dBr suggesting 
a coincident increase in dying cells within the tumor bed. 
Non-responders however, demonstrated less significant 
decreases in the tumor hemoglobin, relative to the pre-
treatment value (76.7 ± 9.2% [HbO2]; 81.9 ± 9.4% [Hb]) 

Table 2: Summary of measured p values
Comparison between response groups1 Comparison over treatment time2

Week 1 Week 4 Week 8 Pre-Op R NR
p p

MBF 0.413 0.000 0.000 0.020 0.000 0.474
SI 0.009 0.001 0.000 0.306 0.000 0.113
SS 0.222 0.275 0.116 0.375 0.161 0.127

Hb 0.375 0.002 0.000 0.000 0.000 0.005
HbO2 0.000 0.001 0.000 0.000 0.000 0.015
HbT 0.004 0.000 0.000 0.000 0.000 0.003
%Water 0.495 0.008 0.062 0.001 0.000 0.241
%Lipids 0.838 0.000 0.000 0.000 0.000 0.595
SP 0.838 0.000 0.000 0.000 0.000 0.595
SA 0.410 0.002 0.002 0.001 0.000 0.170
TOI 0.339 0.000 0.000 0.000 0.000 0.058

A repeated-measures ANOVA was used to test for significant changes over time for QUS and DOSI parameters. QUS and 
DOS parameters were also tested for significant differences between responders and non-responders using an independent 
t-test within the 95% confidence level following a test for normality. Otherwise, a Mann-Whitney test was performed.  
1Independent t-test, tested for normality violations. 
2Repeated measures ANOVA.
p < 0.05, Considered statistically significant.
p < 0.01, Considered very statistically significant. 

Figure 4: QUS parameters measured. Relative changes resulting from treatment effects are presented in QUS parameters for all 
patients grouped by clinical response. (A) Mid-band Fit (MBF); (B) 0-MHz Intercept (SI); (C) Spectral Slope (SS). Error bars = Standard 
deviation, n = 14 responders and n = 8 non-responders. Significant differences between responders and non-responders were tested at each 
time interval and parametric changes over time were tested for responders and non-responders [Table 2].
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and this was also correlated to a lesser change in the MBF 
and SI (+1.6 ± 1.4 dBr and +2.8 ± 1.6 dBr, respectively). 
Together, QUS and DOSI data suggest that chemotherapy-
responsive tumors decrease in metabolism as linked to 
blood-based parameters in comparison to non-responding 
tumors; potentially as a result of dying tumor cells. QUS 
parameters, such as the SI and SS were not significantly 
different between responders and non-responders at 
the pre-operative time-point. This was expected since 
QUS measurement are sensitive to cell death induced 
by treatment which occurs in responsive patients early 
on, rather than many months later after chemotherapy. 
Pre-operative measurements were obtained 4–6 weeks 
after the last chemotherapy infusion and therefore at this 

time, cell death is expected to diminish within the tumor 
bed in responsive patients, due to a large reduction in 
tumor cells after many months of chemotherapy.

Tumor structure was further characterized by 
measuring the tissue optical index (TOI) using DOSI [35, 
42]. The TOI accounts for the ratio between %Water, lipid 
content and deoxyhemoglobin and reflects the optical 
properties of breast tumors in reference to its pathological 
state [35]. In the work here, the TOI demonstrated 
significant differences (p = 0.000) between responders 
and non-responders after four weeks of chemotherapy 
(8.1 ± 1.9%, and 36.5 ± 6.5%, respectively from the 
baseline values). The TOI also differed significantly  
(p < 0.001) at the conclusion of chemotherapy and this 

Figure 5: DOSI parameters measured. Percent changes resulting from treatment effects according to clinical response of patients 
to neoadjuvant chemotherapy. Hemodynamic and tissue changes within the tumor volume are presented. Error bars = Standard deviation, 
n = 14 responders and n = 8 non-responders. Significant differences between responders and non-responders were tested at each time 
interval and parametric changes over time were tested for responders and non-responders [Table 2].
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was consistent with previous reports [33, 36, 43]. The 
change in TOI is dependent on the water fraction and 
lipid content (Equation 2), and thus responsive tumors 
that demonstrate a larger reduction in [H2O] will also 
result in a diminished TOI value [35, 44]. Cerussi et al. 
previously suggested that this reduction in water fraction 
in responsive tumors might represent variations in tumor 
cell density, and cellularity within the tumor bed [22], 
and this was supported by clinically reported histological 
data that demonstrated cellular changes in the tumor after 
NAC. Although the relationship between water fraction 
and tumor cellularity is not entirely clear; it may be related 
to inflammatory response mechanisms within the tumor 
parenchyma [45]. Further, it was noted in the work here 
that %Lipid also increased for responders, which can affect 
the TOI. The increase in lipid content within the tumor bed 
could represent the changes in lipid composition closer to 
that of normal breast tissue. 

QUS/DOSI combined parameters enhanced 
chemotherapy response classification in comparison 
to single modality parameters as early as one week 
after the start of NAC. However, we note that not all 
combinations increased the sensitivity and specificity of 
response assessment, and this could likely be caused by 
the relatively small sample size in this first study. Many 
single parameters classified patients with higher accuracy 
at weeks 4 and 8. This is likely due to the cumulative 
effects of treatment and the concurrent biological changes 
in tumors at those times. However, some parameters 
such as the SS benefited from multivariate QUS/DOSI 
combinations. It was expected that combining highly 
sensitive and/or specific parameters would increase 

the accuracy and prediction of treatment outcomes. 
In contrast, weaker predictors (such as the SS) would 
benefit from pairing with stronger predictive parameters 
with increases in sensitivity and specificity because more 
parameters carry complementary information about tumor 
physiology or cell death. The results of this study suggest 
that QUS/DOSI pairwise combinations may be useful for 
clinical application when modeled at one week of NAC 
treatment, using a combination of parameters that include: 
SI, SS, HbO2, HbT, SP, SA, %Water, and TOI, since many 
of these parameters demonstrate poor sensitivity and specify 
on their own at that time. This may potentially be followed 
by treatment response verification and validation by using 
several other QUS/DOSI parameters at weeks 4 and 8. 

Other strategies for combined systems include 
US-guided optical imaging, developed by Zhu et al., 
from the University of Connecticut [40, 46, 47]. These 
systems have been studied to measure NAC response in 
breast tumors. US grey-scale imaging was used there to 
localize breast tumors, and optical tomography to map 
tumor hemoglobin changes during treatment [40, 47]. The 
technical benefits of that approach use co-registered US 
images to verify posterior (deeper) tumor margins, where 
optical image resolution is poorer [40]. For the current study, 
conventional US and DOS images were not co-registered 
since there were differences in the spatial geometries of the 
QUS and DOS images but averaged values over the tumor 
volume were used. This was due to patient positioning 
for each scan modality (i.e. supine vs. prone), and breast 
shape from DOSI breast compression. Another study 
from Ueda et al. used multivariate analyses for baseline 
DOSI parameters combined with tissue biomarkers from 

Table 3: Sensitivity (%Sn), specificity (%Sp), and area under curve (AUC) for univariate QUS and 
DOSI parameters

Week 1 Week 4 Week 8 Pre-Op

Parameters %Sn %Sp AUC 
(Logistic) %Sn %Sp AUC 

(Logistic) %Sn %Sp AUC 
(Logistic) %Sn %Sp AUC 

(Logistic)
MBF 50.0 50.0 0.607 92.9 100 0.982 100 100 1.000 71.4 75.0 0.804
SI 64.3 87.5 0.839 85.7 87.5 0.920 92.9 87.5 0.991 64.3 62.5 0.634
SS 28.6 25.0 0.201 57.1 62.5 0.643 28.6 25.0 0.295 64.3 62.5 0.616

Hb 64.3 62.5 0.616 85.7 87.5 0.911 100 100 1.000 92.9 100 0.982
HbO2 85.7 87.5 0.982 85.7 87.5 0.938 100 100 1.000 100 100 1.000
HbT 78.6 75.0 0.875 85.7 87.5 0.964 100 100 1.000 100 100 1.000
%Water 50.0 50.0 0.589 85.7 75.0 0.848 71.4 75.0 0.732 85.7 87.5 0.902
%Lipids 50.0 50.0 0.527 92.9 87.5 0.982 100 100 1.000 100 100 1.000
SP 50.0 50.0 0.527 92.9 87.5 0.982 100 100 1.000 100 100 1.000
SA 57.1 50.0 0.393 85.7 87.5 0.897 92.9 75.0 0.884 85.7 87.5 0.870
TOI 64.3 62.5 0.625 85.7 87.5 0.973 100 100 1.000 100 100 1.000

QUS and DOSI parameters were analyzed for weeks 1, 4 and 8 to correspond to response monitoring during treatment. 
Markers for response classification were detected as early as one week relative to the start of chemotherapy.
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Table 4: Sensitivity (%Sn), specificity (%Sp) and AUC for representative multivariate (pairwise) 
QUS and DOSI parameters
Combined Parameters %Sn %Sp AUC (Logistic) p

Week 1
MBF + HbO2 85.7 87.5 0.973 0.000
MBF + HbT 71.4 75.0 0.857 0.006

SI + HbO2 100 100 1.000 0.000
SI + HbT 85.7 87.5 0.929 0.001
SI + %Water 71.4 75.0 0.866 0.005

SS + HbO2 100 100 1.000 0.000
SS + HbT 85.7 87.5 0.955 0.000
SS + TOI 64.3 62.5 0.821 0.014

Week 4
MBF + Hb 100 100 1.000 0.000
MBF + HbO2 100 100 1.000 0.000
MBF + %Water 100 100 1.000 0.000

SI + SA 100 100 1.000 0.000
SI + HbO2 85.7 87.5 0.982 0.000
SI + %Water 85.7 87.5 0.964 0.000

SS + SA 100 100 1.000 0.000
SS + TOI 92.9 87.5 0.982 0.000
SS + %Water 85.7 87.5 0.955 0.000

Week 8
MBF + Hb 100 100 1.000 0.000
MBF + %Lipids 100 100 1.000 0.000
MBF + TOI 100 100 1.000 0.000

SI + HbT 100 100 1.000 0.000
SI + %Water 100 100 1.000 0.000
SI+SA 100 100 1.000 0.000

SS + HbT 100 100 1.000 0.000
SS + SA 78.6 75.0 0.911 0.002
SS + %Water 71.4 75.0 0.893 0.003

Pairwise combinations were reported with AUC > 0.8. Analyses were performed at week 1, 4 and 8 for combined parameters 
(i.e. during treatment). Combining QUS and DOSI parameters demonstrated an increase in sensitivity and specificity as 
early as one week after treatment. Combination pairs were analyzed using a logistic regression model, and the AUC was 
estimated using a receiver-operating characteristic. A complete list of all pairwise combinations (AUC > 0.8) are presented 
in Supplementary Table 1.
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immunohistochemistry [11]. Markers for cell proliferation 
(Ki67), and molecular features (estrogen and progesterone 
receptor) were combined with optical measurements 
such as [HbO2], [Hb], or the tumor oxygen saturation 
(StO2). Multivariate analysis of the combined parameters 
demonstrated an increase in the sensitivity and specificity 
for predicting NAC response. The results of this study from 
Ueda et al. support the need for further exploration into 
combination analysis to improve the predictive performance 
of multiple imaging and clinical biomarkers [11]. 

This cohort represents a first in terms of patients 
imaged with QUS and DOSI, probing tumor response 
with parallel modalities. However, limitations here 
included a relatively small study cohort (n = 22), which 
could potentially contribute to overestimated measures. 
Also, due to the small number of patients included in this 
report, the discriminant model was not cross validated. 
There were also positional limitations from using both 
QUS and DOSI. However to address this, we applied a 
volumetric analysis throughout the scan series to measure 

Figure 6: Receiver operating characteristic and corresponding area under curve. ROC analysis was carried out for QUS 
parameters, DOS parameters, and combined pairwise combinations (QUS + DOS). All individual and pairwise combinations are summarized 
in Tables 3 and 4, and Supplementary Table 1. ROC analyses demonstrate that the combination of QUS and DOS parameters may increase 
the AUC as early as one week after the start of treatment. 
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the average volumetric changes over time. Also, clinical 
response was confirmed using pathological endpoints 
and for the purpose of statistical analysis; patients were 
classified into binary categories (responder vs. non-
responder). In practice, pathological response is graduated, 
and classified using standard conventions such as, Miller-
Payne criteria [48]. Larger cohort studies would be needed 

to stratify patients, similar to pilot studies by Zhu et al. 
[47]. Pathological endpoints were also used to make 
inferences about the biological measurements during 
treatment. A major limitation was that it was not possible 
to validate mid-treatment tumor biology histologically, 
with repeat biopsies of the breast. A potential future 
endeavor would be to include other quantitative imaging 

Figure 7: Representative comparison of responder and non-responder based on pathological examination. (A) 
Reduction in the bulk tumor size in responder (left) and minimal reduction in non-responder (right, arrow); H & E stain, scale bar = 2.0 cm. 
(B) Reduction in vascular density within the tumor in responder (left) as compared to non-responder (right); CD31 immunostain, 
Scale bar = 200 μm. (C) Vessel quantification: For non-responders, there was significantly higher vascular staining in the tumor bed 
compared to normal breast tissue (p < 0.05). In contrast for responders, vessel counts per field showed insignificant differences (p = 0.319) 
between the tumor bed and normal tissue. Error bars = Standard deviation. * p < 0.05, within group comparison.
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methods, such as BOLD-MRI, and DWI-MRI to 
complement the physiological inferences made in this 
current study. The study population here demonstrated 
variations in chemotherapy regimens, and a patient cohort 
with differing molecular and histological breast cancer 
subtypes. However, all patients received anthracycline- or 
taxane-based chemotherapies, and these agents have been 
recognized to initiate cell death in tumors from broad 
categories of patients [49, 50]. With these limitations, 
these initial results serve as a framework for future studies 
into evaluating breast tumor response to NAC using 
combined QUS and DOSI parameters. 

CONCLUSIONS

QUS/DOS imaging biomarkers were studied 
in breast cancer patients to report first accounts of 
coincident expression during neoadjuvant chemotherapy. 
We observed that cell death markers from QUS are 
associated with a decrease in tumor hemoglobin 
markers from DOSI, suggesting that increased cell 
death and vascular remodeling are typically predictive 
of a favorable treatment response. Using these imaging 
modalities together and deriving combined acoustic 
and optical spectral data could provide more powerful 
imaging signatures to help guide treatment decisions and 
improve outcomes for patients. With further validation 
studies, it would be plausible to use QUS/DOSI markers 
as biological surrogates to predict tumor response to 
neoadjuvant chemotherapy. These imaging modalities are 
cost effective, non-invasive and can be acquired quickly 
and efficiently within the patient’s treatment schedule. 
Co-incident QUS and DOS changes are important to 
understand the pathophysiological traits in tumors for 
better treatment response evaluation. 

MATERIALS AND METHODS

Patient recruitment and treatment

Women were enrolled into the study (n = 22) 
following institutional ethics approval, and written 
informed consent was obtained from each study participant. 
Subjects were selected based on disease and clinical 
criteria, which included: LABC diagnosis, older than 18 
years, and receiving neoadjuvant chemotherapy as first line 
standard treatment (adriamycin (A), cyclophosphamide (C) 
and paclitaxel (T) [AC-T] or with flouricil (F), epirubicin 
(E), cyclophosphamide (C) and docetaxel (D) [FEC-D]. In 
addition patients with Her2-Neu amplified tumors received 
Herceptin (H) after 3–4 cycles of treatment. Clinical and 
patient-specific information are summarized in Table 1. 
Participants were imaged at the following times relative to 
the start of chemotherapy: weeks 0 (baseline), one, four, 
eight and a final scan several weeks later prior to surgery; 
all patients underwent mastectomy. 

Instrumentation and imaging

Breast imaging used QUS and DOSI in sequence, 
to acquire both types of data using methods described 
previously [20, 21, 51]. For ultrasound, a continuous 
panoramic scan was performed on the affected breast, 
which included both normal breast tissue and the 
entire tumor volume [Figure 1A]. This was repeated 
for each time point throughout the imaging series for 
data reproducibility. A Sonix RP system (Ultrasonix, 
Vancouver, Canada) operating with an L14-5/60 
transducer was used to collect conventional brightness 
mode (B-mode) and RF data (center frequency of 7 MHz, 
40 MHz 8-bit dynamic range RF digitization frequency). 
The sector size was kept constant (lateral distance = 6 cm, 
axial depth 4 cm), and the focal depth was placed to 
correspond to the tumor’s position. The focal depth 
remained constant throughout the ultrasound imaging 
series. The total duration of the ultrasound scans were 
approximately 20 minutes. 

Immediately after sonography, DOSI data was 
collected. The patient was transferred onto a commercially 
developed diffuse optical tomography system (SoftScan, 
Advanced Research Technologies, Montreal, Canada). The 
patient was positioned prone, and the breast was placed into 
an enclosed imaging aperture and stabilized by opposing 
Plexiglas plates with soft compression in the cranio-caudal 
direction [Figure 1B]. The distance (thickness) between 
plates was recorded at baseline (average thickness = 73.3 
± 10.3 mm) and maintained during the imaging series. 
Optical compensation medium (OCM) was added into 
the imaging aperture and filled to cover the entire breast 
surface [Figure 1B]. The OCM was used to improve light 
transmission between surfaces, and was formulated as 
an emulsion of lipids, water, and dye to mimic optical 
properties of breast tissue (µa= 0.05 cm-1 and µs =11 cm- 1, 
(λ) = 780 nm [51, 52]. The optical mammography system 
employed time-domain methods for imaging, and used four 
individual semiconductor diode lasers (LDH-P, PicQuant, 
Berlin, Germany) that operated at 690, 730, 780, 830 nm. 
The pulse duration at the full width half maximum was 
less than 150 ps, driven at 20 MHz. For the detection 
system, the light was collected using a photomultiplier 
(H7422P-50, Hamamatsu Photonics, Shizuoka, Japan), 
which was opposite to the light source. Images were 
reconstructed into tomographic and parametric maps of 
the optical parameters. Each voxel size was 3 mm × 3 mm 
× 7 mm3. The total duration of the optical mammography 
scan was approximately 30–40 minutes. 

Image analysis

Tumor volume analyses were carried out with the 
average of QUS and DOSI parameters calculated over the 
volume of the tumor. Selection of the region of interest 
(ROI) and imaging analysis was completed with the 
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assistance of a radiologist. For the estimation of QUS 
parameters, spectral analysis of the tumor RF signal was 
performed. These methods were previously described by 
Lizzi et al. [53], and were adapted for this study. Analysis 
was performed using a MATLAB-based software (Matlab, 
Mathworks, Natick MA, USA) developed by Oelze et al. 
from the University of Illinois and previously used by 
our group [20]. RF Data was analyzed and averaged from 
10–14 equally spaced scan planes by applying a fixed-
sized ROI spanning the volume of the tumor [20]. The 
ROI dimensions were kept constant for the duration of the 
scan series, and determined at baseline. In order to reduce 
spectral-noise artifacts, a sliding window algorithm was 
used with the settings of a Hamming window function for 
gating, where there was an 80% overlap between adjacent 
windows in the axial direction. A reference phantom 
technique was used to remove system transfer effects from 
the data using a tissue-mimicking agar-embedded glass-
bead phantom, with measured acoustic properties [29]. 
The normalized power spectrum (dBr) was calculated by 
dividing the power spectrum for samples by the reference 
power spectrum of the phantom. A linear regression line of 
the normalized power spectrum over the -6 dB bandwidth 
of the transducer was analyzed to determine the mid-band 
fit (MBF), 0-MHz intercept (SI) and the spectral slope 
(SS) [54]. 

For DOSI, the measured absorption and scattering 
coefficients were employed to calculate the DOSI 
parameters. The hemoglobin (Hb) and oxyhemoglobin 
(HbO2) concentrations (units; µM), and water content 
(%Water) were calculated using the Beer-Lambert law, 
given the known molar extinction coefficients for each 
chromophore, and by using the measured absorption 
coefficients. Scattering properties of breast tissue at 
the near-infrared light range were approximated to Mie 
scattering in tissue [55]. The scatter power (SP) and scatter 
amplitude (SA) were calculated by the power-law fit of 
the reduced scattering coefficients for each transmitted 
wavelength, expressed as:

μs = a(λ)-b, where a = scatter amplitude, b = scatter 
power (Equation 1).

The total hemoglobin concentration (HbT, units; 
µM) was calculated using the combined concentrations of 
oxy-hemoglobin and deoxy-hemoglobin [HbT = HbO2 + 
Hb]. Since the absorption peaks for lipids were beyond 
the spectral range of the imaging system, lipid content 
(%Lipid) was estimated using the linear relationship with 
the scatter power, previously described by Cerussi et al., 
and Intes et al. [10, 51]. Lastly, the TOI has been defined in 
a variety of ways [42, 56, 57] and previously described by 
Cerussi et al. to give maximum tissue contrast in breast as:

[%Water] × Hb
[%Lipid]

 (Equation 2) [42].

Diffuse optical images were reconstructed with 
a voxel resolution of 3 mm × 3 mm × 7 mm, and then 

analyzed in-plane using the manufacturer’s software (ART 
Review Workstation, V. 1.01.01, Advanced Research 
Technologies, Montreal, Quebec Canada). For the 
reconstructed images, a fixed size region of interest was 
selected around the tumor bed, based on TOI parametric 
images, and with the assistance of the patient’s medical 
imaging record, such as MRI. The ROI included the 
tumor volume and the signal threshold values for analysis 
were determined before the start of treatment (baseline). 
The threshold value was kept constant for each patient 
throughout the analysis of all imaging series. 

Definition of response to treatment

Patients were classified as responders (R) or non-
responders (NR) based on combined data from pre- 
and post therapy imaging and particularly pathology 
examination of post-treatment tissue. The pre- and post 
therapy imaging measurements of tumor size were 
performed according to RECIST 1.1 guidelines using 
MRI [58]. Also, as part of the standard clinical cancer 
treatment, a breast pathologist examined mastectomy 
specimens macroscopically and microscopically for any 
residual tumor. Specimens were stained using standard 
hematoxylin and eosin (H & E) techniques and examined 
by a board-certified staff pathologist. The responders were 
defined in this study as having complete pathological 
response or a greater than 50% decrease in tumor size as 
compared to pre-therapy. Non-responders were classified 
as having stable or progressive disease and where there 
was < 50% decrease in tumor size [59]. Pathological data 
was collected from the pathology report from the patients’ 
medical record. 

In addition, post-mastectomy CD31 immunostaining 
(JC07 clone, Leica Biosystems, Concord, Ontario Canada) 
was used to quantitatively assess vascular density within 
the tumor bed and adjacent mammary tissue (normal 
tissue) in responders and non-responders (TissueScope, 
Huron Digital Pathology, Waterloo, Canada). The 
analysis ROIs were dependent on the patient’s response 
to treatment due to the size variance of the residual tumor 
bed. Stained vessels were counted for each specimen and 
the vessel counts were averaged across all respective 
normal or tumor regions analyzed. 

Statistical analysis

Descriptive statistics were used on both QUS and 
DOS parameters (SPSS Inc., Chicago IL, USA). The 
means and standard deviations were calculated for each 
imaging dataset taken at each time-point. For QUS, 
the change [∆] in QUS parameters was calculated by 
subtracting the measurements at each time interval from 
the value measured at baseline. DOSI measurements 
were expressed in percent changes from the baseline 
[% Change]. Significant changes over time were tested for 
each QUS and DOSI parameter to compare its difference 
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to baseline values using a repeated-measures ANOVA. 
Independent QUS and DOS parameters were tested 

for significant differences between responders and non-
responders at each time interval. A normality violation was 
tested for each parameter using a Shapiro-Wilk test. For 
normally distributed parameter changes, an independent 
t-test was used (unpaired, two-sided, 95% confidence 
interval). Otherwise, an unpaired, Mann-Whitney U-test 
within the 95% confidence level was utilized (SPSS Inc., 
Chicago IL, USA) for parametric changes that were not 
normally distributed. Discriminant analysis (SPSS Inc., 
Chicago IL, USA), and receiver-operating characteristic 
(ROC) analysis (SPSS Inc., Chicago IL, USA) estimated 
sensitivity and specificity, and the area under the 
curve (AUC) values for QUS and DOSI parameters 
individually. Additionally for multivariate analysis, a 
logistic regression model was employed to estimate the 
sensitivity and specificity, and AUC of combined QUS 
and DOSI parameters within a 95% confidence interval. 
The pairing/combination strategy analyzed all pairwise 
combinations between QUS and DOSI parameters 
during treatment (weeks 1, 4 and 8, relative to the start 
of chemotherapy). Pairwise combinations were reported 
for AUC classification scores that were greater than 0.8 
[60]. Parameters and statistical measures were considered 
significant, at an alpha level of 0.05 or less. 
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