Rietveld refinement of Ba5(AsO4)3Cl from high-resolution synchrotron data BELL, Anthony M. T., HENDERSON, C. Michael B., WENDLANDT, Richard F. and HARRISON, Wendy J. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/12759/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. ### **Published version** BELL, Anthony M. T., HENDERSON, C. Michael B., WENDLANDT, Richard F. and HARRISON, Wendy J. (2008). Rietveld refinement of Ba5(AsO4)3Cl from high-resolution synchrotron data. Acta Crystallographica Section E, E64 (9), i63-i64. ### Copyright and re-use policy See http://shura.shu.ac.uk/information.html Acta Crystallographica Section E ### **Structure Reports** Online ISSN 1600-5368 # Rietveld refinement of Ba₅(AsO₄)₃Cl from high-resolution synchrotron data ## Anthony M. T. Bell, a* C. Michael B. Henderson, Brichard F. Wendlandt and Wendy J. Harrison ^aSynchrotron Radiation Source, STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire, WA4 4AD, England, ^bSchool of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, England, and ^cDepartment of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA Correspondence e-mail: a.m.t.bell@dl.ac.uk Received 30 July 2008; accepted 20 August 2008 Key indicators: powder synchrotron study; T = 298 K; mean σ (As–O) = 0.040 Å; R factor = 0.059; wR factor = 0.082; data-to-parameter ratio = 22.1. The apatite-type compound $Ba_5(AsO_4)_3Cl$, pentabarium tris[arsenate(V)] chloride, has been synthesized by ion exchange at high temperature from a synthetic sample of mimetite ($Pb_5(AsO_4)_3Cl$) with $BaCO_3$ as a by-product. The results of the Rietveld refinement, based on high resolution synchrotron X-ray powder diffraction data, show that the title compound crystallizes in the same structure as other halogenoapatites with general formula $A_5(YO_4)_3X$ (A = divalent cation, Y = pentavalent cation, X = Cl, Br) in space group $P6_3/m$. The structure consists of isolated tetrahedral AsO_4^{3-} anions (m symmetry), separated by two crystallographically independent Ba^{2+} cations that are located on mirror planes and threefold rotation axes, respectively. The Cl^- anions are at the 2b sites ($\overline{3}$ symmetry) and are located in the channels of the structure. ### **Related literature** For crystal chemistry of apatites, see: Mercier *et al.* (2005); White & ZhiLi (2003); Wu *et al.* (2003). For powder diffraction data on Ba-containing As-apatites, see: Kreidler & Hummel (1970); Dunn & Rouse (1978). Atomic coordinates as starting parameters for the Rietveld (Rietveld, 1969) refinement of the present phases were taken from Chengjun *et al.* (2005); Dai *et al.* (1991); de Villiers *et al.* (1971). For related Ba—Cl-apatites, see: Dordevic *et al.* (2008); Hata *et al.* (1979); Reinen *et al.* (1986); Roh & Hong (2005); Schiff-Francois *et al.* (1979). For synthetic work, see: Baker (1966); Essington (1988); Harrison *et al.* (2002). ### **Experimental** Crystal data As₃Ba₅ClO₁₂ $\lambda = 0.998043 \text{ Å}$ $\mu = 56.07 (1) \text{ mm}^{-1}$ $M_r = 1138.85$ Hexagonal, P63/m T = 298 KSpecimen shape: cylinder a = 10.5570 (1) Åc = 7.73912 (8) Å $40 \times 0.7 \times 0.7 \text{ mm}$ Specimen prepared at 100 kPa $V = 746.98 (1) \text{ Å}^3$ Z = 2Specimen prepared at 1258 K Synchrotron radiation Particle morphology: powder, white #### Data collection In-house design diffractometer Specimen mounting: capillary Specimen mounted in transmission mode Scan method: step Absorption correction: none $2\theta_{\min}=2$, $2\theta_{\max}=70^{\circ}$ Increment in $2\theta=0.01^{\circ}$ ### Refinement $R_{\rm p} = 0.059$ $R_{\rm wp} = 0.082$ $R_{\rm exp} = 0.067$ $R_{\rm B} = 0.090$ S = 1.23 Excluded region(s): 2-6 degrees 2θ . Profile function: Fundamental Parameters 464 Bragg reflections 464 Bragg reflections 21 parameters Preferred orientation correction: **Table 1**Selected geometric parameters (Å, °). | Ba1-O1 | 2.67 (5) | Ba2-O1 ^v | 3.14 (4) | |-----------------------|----------|---------------------|-----------| | Ba1-O2i | 2.81 (4) | Ba2-Cl1iv | 3.281 (5) | | Ba1-O3 ⁱ | 3.12 (3) | As1-O3 | 1.64(2) | | Ba2—O2 ⁱⁱ | 2.59 (4) | As1-O1 | 1.70 (8) | | Ba2-O3 ⁱⁱⁱ | 2.62 (4) | As1-O2 | 1.70 (4) | | Ba2-O3 ^{iv} | 3.05 (4) | | | | $O3-As1-O3^{vi}$ | 118 (2) | O3-As1-O2 | 108 (2) | | O3-As1-O1 | 108 (1) | O1-As1-O2 | 106 (2) | Symmetry codes: (i) x - y, x, -z; (ii) -y + 1, x - y + 1, z; (iii) y, -x + y + 1, -z; (iv) x, y + 1, z; (v) -x + y, -x + 1, z; (vi) x, y, $-z + \frac{1}{2}$. Data collection: local software; cell refinement: *CELREF* (Laugier & Bochu, 2003); data reduction: local software; method used to solve structure: coordinates taken from a related compound; program(s) used to refine structure: *TOPAS* (Coelho, 2000); molecular graphics: *Balls and Sticks* (Kang & Ozawa, 2003); software used to prepare material for publication: *publCIF* (Westrip, 2008). AMTB acknowledges the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher *et al.*, 1996). AMTB also acknowledges the referees and Co-editor whose suggestions and comments helped to improve this paper. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2188). #### References Baker, W. E. (1966). Am. Mineral. 51, 1712-1721. Chengjun, D., Xueyan, W., Wei, L., Haohong, C., Xinxin, Y. & Jingthai, Z. (2005). J. Alloys Compd, 396, 86–91. Coelho, A. (2000). TOPAS. http://members.optusnet.com.au/~alancoelho/. Dai, Y.-S., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369–376. Đorđević, T., Šutović, S., Stojanović, J. & Karanović, Lj. (2008). Acta Cryst. C64, i82–i86. Dunn, P. J. & Rouse, R. C. (1978). *Can. Mineral.* **16**, 601–604. Essington, M. E. (1988). *Soil Sci. Soc. Am. J.*, **52**, 1566–1570. ### inorganic compounds Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). *Chem. Inf. Comput. Sci.* **36**, 746–749. Harrison, W. J., Wendlandt, R. F. & Wendlandt, A. E. (2002). International Mineralogical Association 18th General Meeting, Sept 1-6, 2002, Edinburgh, Scotland. Abstract A18-10, meeting program with abstracts, p. 185. Hata, M., Marumo, F., Iwai, S. & Aoki, H. (1979). Acta Cryst. B35, 2382–2384. Kang, S. J. & Ozawa, T. C. (2003). Balls and Sticks. http://www.softbug.com/toycrate/bs/index.html. Kreidler, E. R. & Hummel, F. A. (1970). Am. Mineral. 55, 170-184. Laugier, J. & Bochu, B. (2003). CELREF. http://www.CCP14.ac.uk/tutorial/lmgp/CELREF.htm. Mercier, P. H. J., Le Page, Y., Whitfield, P. S., Mitchell, L. D., Davidson, I. J. & White, T. J. (2005). Acta Cryst. B61, 635–655. Reinen, D., Lachwa, H. & Allmann, R. (1986). Z. Anorg. Allg. Chem. **542**, 71–88 Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71. Roh, Y.-H. & Hong, S.-T. (2005). Acta Cryst. E61, i140-i142. Schiff-Francois, A., Savelsberg, G. & Schaefer, H. (1979). Z. Naturforsch. Teil B, 34, 764–765. Villiers, J. P. R. de (1971). Am. Mineral. 56, 758-766. Westrip, S. P. (2008). publCIF. In preparation. White, T. J. & ZhiLi, D. (2003). Acta Cryst. B59, 1-16. Wu, P., Zeng, Y. Z. & Wang, C. M. (2003). Biomaterials, 25, 1123-1130. **i64** Bell et al. • As₃Ba₅ClO₁₂ Acta Cryst. (2008). E**64**, i63–i64 | supplementary m | aterials | | |-----------------|----------|--| | | | | | | | | | | | | | | | | Acta Cryst. (2008). E64, i63-i64 [doi:10.1107/S1600536808026901] ### Rietveld refinement of Ba₅(AsO₄)₃Cl from high-resolution synchrotron data ### A. M. T. Bell, C. M. B. Henderson, R. F. Wendlandt and W. J. Harrison ### Comment Apatites are minerals and synthetic compounds with general formula $A_5(YO_4)_3X$, containing tetrahedrally coordinated YO_4^{3-} anions (Y = pentavalent cation) and a monovalent anion X such as F^- , Cl^- or OH^- . The divalent cations frequently belong to the alkaline earth group, but other cations like Pb^{2+} are also known. For a review of the structures and crystal-chemistry of these materials, see Mercier *et al.* (2005) and White & Dong (2003). Apatites containing arsenic (As-apatites) are of interest as hosts for storage of arsenic removed from contaminated water (Harrison *et al.*, 2002). Powder diffraction data for the Ba containing As-apatites $Ba_5(AsO_4)_3Cl$ (Kreidler & Hummel, 1970) and for $(Ba_{2.25}Ca_{1.65}Pb_{1.16}Fe_{0.06}Mg_{0.06})[(AsO_4)_{2.56}(PO_4)_{0.3}]Cl_{1.09}$ (mineral name morelandite; Dunn & Rouse, 1978) were indexed in space group $P6_3/m$. Related crystal structures have also been reported for $Ba_5(AsO_4)_2SO_4S$ (Schiff-Francois *et al.*, 1979) and $(Sr_{1.66}Ba_{0.34})(Ba_{2.61}Sr_{0.39})(AsO_4)_3Cl$ (Dordevic *et al.*, 2008). The crystal structure of $Ba_5(AsO_4)_3Cl$ in space group $P6_3/m$ is reported in the present communication. Table 1 shows refined interatomic distances and angles for the Ba₅(AsO₄)₃Cl structure. The averaged Ba1—O and Ba2—O distances of respectively 2.87 Å and 2.84 Å are similar to those in other Ba and Cl containing apatites. In comparison, the average Ba1—O and Ba2—O distances are 2.84 Å and 2.78 Å for Ba₅(VO₄)₃Cl (Roh & Hong, 2005), 2.83 Å and 2.79 Å for Ba₅(PO₄)₃Cl (Hata *et al.*, 1979) and 2.83 Å and 2.76 Å for Ba₅(MnO₄)₃Cl (Reinen *et al.*, 1986). The As—O distances are characteristic for tetrahedral AsO₄ units. The O—As—O angles deviate significantly from the ideal tetrahedral angle of 109.5°, indicating a strong distortion. The refined lattice parameters for $Ba_5(AsO_4)_3Cl$ are similar to the previously published parameters of a = 10.54 Å, c = 7.73 Å given by Kreidler & Hummel (1970). A study of 108 existing and predicted apatites with different compositions made use of elemental radii to calculate their lattice parameters (Wu *et al.*, 2003). Only 52 of these compositions had known lattice parameters. The predicted lattice parameters for $Ba_5(AsO_4)_3Cl$ were a = 10.3979 Å, c = 7.6105 Å. These predicted parameters are respectively 1.51% and 1.66% smaller than the measured lattice parameters, and only 2 of the 52 apatite compositions had bigger differences between observed and calculated lattice parameters. Fig. 1 shows the Rietveld difference plot for the present refinement. The crystal structure of Ba₅(AsO₄)₃Cl, showing the isolated tetrahedral AsO₄³⁻ anions separated by Ba²⁺ cations and Cl⁻ anions, is displayed in Fig. 2. ### **Experimental** This work was part of an attempt to synthesize analogues of $Pb_5(AsO_4)_3Cl$ (mimetite) with Pb^{2+} substituted by alkaline earth cations. All starting materials were well crystallized solids. $Pb_5(AsO_4)_3Cl$ was precipitated by titration of 0.1M Na₂HAsO₄ into a well stirred, saturated $PbCl_2$ solution at room temperature (procedure modified from methods of Baker (1966) and ### supplementary materials Essington (1988)). The molar ratio of Pb:As was slightly greater than 5:3, allowing for excess PbCl₂ during the precipitation. A very fine-grained pure solid formed immediately, which was then separated, washed, and dried. Typically, five de-ionized water washes were needed to reduced the conductivity of the wash water to $< 50 \,\mu\text{S} \cdot \text{cm}^{-1}$. Ba₅(AsO₄)₃Cl was successfully synthesized by ion exchange of Pb₅(AsO₄)₃Cl with molten BaCl₂ at 1258 K (modified from the method given by Kreidler & Hummel (1970)). Two fusions were required to completely eliminate formation of Pb containing solid solutions and to yield the Pb free title compound. Excess metal in the form of BaCl₂ was removed from the solids by repeated washing with de-ionized water followed by centrifugation and filtration to separate the solid from the solution. #### Refinement The powdered sample was loaded into a 0.7 mm diameter borosilicate capillary, prior to high-resolution synchrotron X-ray powder diffraction data collection using station 9.1 of the Daresbury Synchrotron Radiation Source. The beam on the sample was 13 mm wide and 1.2 mm high. 9 powder datasets were collected, all were with a step with of $0.01^{\circ}/2\theta$ and a counting time of 2 s per point. Three of these datasets were collected between $5-70^{\circ}/2\theta$, two between $30-70^{\circ}/2\theta$, two between $40-70^{\circ}/2\theta$, one between $31.73-70^{\circ}/2\theta$ and one between $2-13.2^{\circ}/2\theta$. All of these data were summed and normalized to account for decay of the synchrotron beam with time. The main Bragg reflections of the powder diffraction pattern could be indexed in space group P63/m with similar lattice parameters to those of the published powder diffraction data (Kreidler & Hummel, 1970). Some broad and weak Bragg reflections were matched by the pattern of BaCO₃ in space group *Pmcn*. The synchrotron X-ray wavelength was calibrated as 0.998043Å with an external *NIST* 640c silicon standard reference material. Initial lattice parameters for the two phases were refined using *CELREF* (Laugier & Bochu, 2003). The *P*6₃/m crystal structure of Ba₅(PO₄)₃(OH) (Chengjun *et al.*, 2005) was used as a starting model for the Rietveld (Rietveld, 1969) refinement of the structure of Ba₅(AsO₄)₃Cl. The crystal structure of witherite (de Villiers *et al.*, 1971) was used as a starting model for refinement of the structure of BaCO₃. Isotropic atomic displacement parameters were used for both phases. For the Ba₅(AsO₄)₃Cl phase the As—O distances in the AsO₄ tetrahedral units were constrained to those for mimetite (Dai *et al.*, 1991). For the BaCO₃ phase the C—O distances of the trigonal carbonate anion were constrained to those in witherite, and the U_{iso} factors for all atoms in the carbonate anion were constrained to be the same. As the Ba₅(AsO₄)₃Cl phase was prepared by ion-exchange of Pb₅(AsO₄)₃Cl, Rietveld refinements were done with the metal sites partially occupied by both Pb and Ba. However, this resulted in the refined Pb occupancies falling to zero. Therefore the occupancies of the metal sites were fixed as fully occupied by Ba and no Pb was included for the final refinement of the Ba₅(AsO₄)₃Cl phase. Proportions of the two phases were refined as 64.7 (9) wt.% Ba₅(AsO₄)₃Cl and 35.3 (9) wt.% BaCO₃. ### **Figures** Fig. 1. Rietveld difference plot for the multi-phase refinement of Ba₅(AsO₄)₃Cl and BaCO₃. The black dots, and grey and black lines show respectively the observed, calculated and difference plots. Calculated Bragg reflection positions are indicated by triangles for the Ba₅(AsO₄)₃Cl phase and by crosses for the BaCO₃ phase. Fig. 2. The crystal structure of Ba₅(AsO₄)₃Cl. Pink tetrahedra show AsO₄ units with As⁵⁺ cations as yellow spheres and O²- anions as red spheres. Large blue spheres represent Ba²⁺ cations and small green spheres Cl⁻ anions. ### pentabarium tris(arsenate(V)) chloride Crystal data $As_3Ba_5Cl_1O_{12}$ Z = 2 $M_r = 1138.85$ $D_{\rm x} = 5.063 \, (1) \, {\rm Mg \, m}^{-3}$ Synchrotron radiation Hexagonal, P63/m $\lambda = 0.998043 \text{ Å}$ a = 10.5570 (1) Å $\mu = 56.07 (1) \text{ mm}^{-1}$ T = 298 Kb = 10.5570 (1) Å c = 7.73912 (8) Å Specimen shape: cylinder $\alpha = 90^{\circ}$ $40\times0.7\times0.7~mm$ $\beta = 90^{\circ}$ Specimen prepared at 100 kPa $\gamma = 120^{\circ}$ Specimen prepared at 1258 K $V = 746.98 (1) \text{ Å}^3$ Particle morphology: powder, white Data collection In-house design T = 298 K diffractometer $2\theta_{\text{min}} = 2$, $2\theta_{\text{max}} = 70^{\circ}$ Monochromator: Si(111) channel-cut crystal Increment in $2\theta = 0.01^{\circ}$ Specimen mounting: capillary Specimen mounted in transmission mode Increment in $2\theta = 0.01^{\circ}$ Scan method: step Refinement $R_{\rm p} = 0.059$ Profile function: Fundamental Parameters $R_{\rm wp} = 0.082$ 21 parameters $R_{\rm exp} = 0.067$ 3 constraints $R_{\rm B} = 0.090$ S = 1.23 $(\Delta/\sigma)_{\text{max}} = 0.001$ Wavelength of incident radiation: 0.998043 Å Preferred orientation correction: None Excluded region(s): 2-6 degrees 2θ. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2) $U_{\rm iso}*/U_{\rm eq}$ 0.059(1)Ba1 0.3333 0.6667 0.0061(9)Ba2 0.2445(4)0.9874(6) 0.2500 0.065(1) ## supplementary materials $({\rm vii})\,x,\,y+1,\,-z+1/2;\,({\rm viii})\,x,\,y+1,\,z;\,({\rm ix})\,-x,\,-y+1,\,z+1/2;\,({\rm x})\,x,\,y,\,-z+1/2.$ | As1 | 0.4047 (7) | 0.3716 (7) | 0.2500 | 0.059(2) | | | | |--|--------------|------------|-------------------------|-----------|-----------|--|--| | 01 | 0.347 (7) | 0.495 (6) | 0.2500 | 0.13 (2) | | | | | 02 | 0.591 (4) | 0.473 (4) | 0.2500 | 0.08 (1) | | | | | 03 | 0.354 (2) | 0.280 (3) | 0.068 (3) | 0.065 (8) | | | | | Cl1 | 0.0000 | 0.0000 | 0.000 | 0.070 (6) | | | | | CII | 0.0000 | 0.0000 | 0.0000 | 0.070 (0) | | | | | Geometric parame | eters (Å, °) | | | | | | | | Ba1—O1 ⁱ | | 2.67 (5) | Ba2—O3 ^{vi} | | 2.62 (4) | | | | Ba1—O1 ⁱⁱ | | 2.67 (5) | Ba2—O3 ^{vii} | | 3.05 (4) | | | | Ba1—O1 | | 2.67 (5) | Ba2—O3 ^{viii} | | 3.05 (4) | | | | Ba1—O2 ⁱⁱⁱ | | 2.81 (4) | Ba2—O1 ⁱⁱ | | 3.14 (4) | | | | Ba1—O2 ^{iv} | | 2.81 (4) | Ba2—Cl1 ^{viii} | | 3.281 (5) | | | | Ba1—O2 ^v | | 2.81 (4) | Ba2—Cl1 ^{ix} | | 3.281 (5) | | | | Ba1—O3 ^{iv} | | 3.12 (3) | As1—O3 | | 1.64 (2) | | | | Ba1—O3 ⁱⁱⁱ | | 3.12 (3) | As1—O3 ^x | | 1.64 (2) | | | | Ba1—O3 ^v | | 3.12 (3) | As1—O1 | | 1.70 (8) | | | | Ba2—O2 ⁱ | | 2.59 (4) | As1—O2 | | 1.70 (4) | | | | Ba2—O3 ^{iv} | | 2.62 (4) | | | | | | | O3—As1—O3 ^x | | 118 (2) | O3—As1—O2 | | 108 (2) | | | | O3—As1—O1 | | 108 (1) | O3 ^x —As1—O2 | | 108 (2) | | | | O3 ^x —As1—O1 | | 108 (1) | O1—As1—O2 | | 106 (2) | | | | Symmetry codes: (i) $-y+1$, $x-y+1$, z ; (ii) $-x+y$, $-x+1$, z ; (iii) $x-y$, x , $-z$; (iv) y , $-x+y+1$, $-z$; (v) $-x+1$, $-y+1$, $-z$; (vi) y , $-x+y+1$, $z+1/2$; | | | | | | | | Fig. 1 Fig. 2