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Abstract The multi-tier Covariance Matrix Adaptation
Pareto Archived Evolution Strategy (m-CMA-PAES) is an
evolutionary multi-objective optimisation (EMO) algorithm
for real-valued optimisation problems. It combines a non-
elitist adaptive grid based selection scheme with the efficient
strategy parameter adaptation of the elitist CovarianceMatrix
Adaptation Evolution Strategy (CMA-ES). In the original
CMA-PAES, a solution is selected as a parent for the next
population using an elitist adaptive grid archiving (AGA)
scheme derived from the Pareto Archived Evolution Strategy
(PAES). In contrast, a multi-tiered AGA scheme to pop-
ulate the archive using an adaptive grid for each level of
non-dominated solutions in the considered candidate popu-
lation is proposed. The new selection scheme improves the
performance of the CMA-PAES as shown using benchmark
functions from the ZDT, CEC09, and DTLZ test suite in
a comparison against the (μ + λ) Multi-Objective Covari-
ance Matrix Adaptation Evolution Strategy (MO-CMA-ES).
In comparison with MO-CMA-ES, the experimental results
show that the proposed algorithm offers up to a 69% per-
formance increase according to the Inverse Generational
Distance (IGD) metric.
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adaptation · Adaptive grid archiving

Communicated by A. Di Nola.

B Shahin Rostami
srostami@bournemouth.ac.uk

1 Department of Computing and Informatics, Bournemouth
University, Bournemouth BH12 5BB, UK

2 Department of Engineering and Mathematics, Sheffield
Hallam University, Sheffield S1 1WB, UK

1 Introduction

The quality of the set of candidate solutions to a multi-
objective optimisation problem can be assessed using three
criteria: proximity to the true Pareto front (i.e. how close the
set of candidate solutions is to the true global solution set),
diversity (i.e. how well distributed the set of candidate solu-
tions is over the true Pareto optimal front) and pertinency
(i.e. how relevant the set of candidate solutions is to a deci-
sionmaker). An ideal approximation set should be uniformly
spread across the true Pareto optimal front (Deb 2001), or—
in real-world problems at least–that part of it that represents
a useful subset of solutions to the problem1 (Purshouse and
Fleming 2007).

The vastmajority of the current state-of-the-art Evolution-
ary Multi-objective Optimisation (EMO) algorithms employ
elitism to enhance convergence to the true Pareto optimal
front. Elitism ensures some or all of the fittest individuals in a
population at generation g are inserted into generation g+1.
Using this method, it is possible to prevent the loss of the
fittest individuals which are considered to have some of the
most valuable chromosomes in the population. However, in
many multi-objective optimisation problems, solutions exist
whichmay not be considered elite due to their objective value
in regard to the population, but may contain useful genetic
information. This genetic information can be utilised later
in the search to move into unexplored areas of the objective
space, but due to elitism and non-dominated sorting schemes
it may be abandoned in the early stages of the search.

1 For example, in the design of automotive engines, there is typically a
trade-off between torque generated and emissions produced. Designs at
the extreme ends of this trade-off surface (i.e. with good emissions but
poor torque—or vice versa) are usually not very useful for production
automobiles.
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The aim of this study is to counter the potential nega-
tive effects resulting from elitist approaches to selection (for
example, the bounded Pareto archive used in the Covari-
ance Matrix Adaption—Pareto Archived Evolution Strategy
(CMA-PAES)) by not only preserving elite solutions but
also focusing part of the function evaluation budget on non-
elitist solutions that have the potential to contribute useful
genetic information in the future. To achieve this, a novel
multi-tier adaptive grid selection scheme is developed and
combined with the existing CMA-PAES algorithm, in a
new augmented algorithm named the Multi-tier Covariance
Matrix Adaptation Pareto Archived Evolution Strategy. This
novel algorithm sacrifices a portion of the function evalu-
ation budget in favour of producing diverse approximation
sets consisting of solutions from areas of the objective space
which are difficult or impossible to obtain with an elitism
approach.With this feature, the final approximation set offers
a better representation of the trade-off surface, therefore
allowing the decision maker to make a more informed selec-
tion. The performance of this new algorithm is then evaluated
on several benchmarking test suites from the literature.

The paper is organised as follows: Sect. 2 introduces the
field of evolutionarymulti-objective optimisation and its per-
formance characteristics, Sect. 3 introduces the CMA-PAES
algorithm and novel multi-tier adaptive grid algorithm, Sect.
4 contains the experimental set-up and methods of perfor-
mance assessment, Sect. 5 presents and discusses the results,
and Sect. 6 draws some conclusions as well as suggesting
future research direction.

2 Background

2.1 Evolutionary algorithms

Evolutionary algorithms (EAs) are an optimisation technique
inspired by some of the concepts behind natural selection and
population genetics and are capable of iteratively evolving a
population of candidate solutions to a problem (Goldberg
1989). They both explore the solution space of a problem
(by using variation operators such as mutation and recom-
bination) and exploit valuable information present in the
previous generation of candidate solutions (by using a selec-
tion operator which gives preference to the best solutions in
the population when creating the next generation of solutions
to be evaluated).

One of the main reasons evolutionary algorithms are
applicable across many different problem domains (includ-
ing those where conventional optimisation techniques strug-
gle) is their direct use of evaluation function information,
rather than derivative information or other auxiliary knowl-
edge. Derivative information (for example) can be extremely
difficult to calculate in many real-world problems because

the evaluation of candidate solutions can be expensive. Evo-
lutionary algorithms are also robust to noisy solution spaces
because of their population-based nature. This means that
each generation containsmore information about the shape of
the fitness landscape thanwould be available to conventional,
non-population-based optimisation methods (Michalewicz
and Fogel 2000).

Evolutionary algorithms have also been used in combina-
tion with other approaches to optimisation to form hybrid
algorithms which have been applied successfully to real-
world problems (Sfrent and Pop 2015). Hyperheuristics are
a methodology in search and optimisation which are con-
cernedwith choosing an appropriate heuristic or algorithm in
any given optimisation context (Burke et al. 2003), and can
operate on meta-heuristics. Hybrid algorithms indicate the
benefits of using an approach which aim to combine existing
algorithms and heuristics such that a more general approach
can be taken to optimisation.

2.2 Evolutionary multi-objective optimisation

Many real-world optimisation problems involve the satisfac-
tion of several objectives which, in a general form, can be
described by a vector of objective functions f and a corre-
sponding set of decision variables v, as illustrated in Eq. 1.

min
f

(v) = ( f1(v), f2(v), . . . , fM (v)) (1)

In many problems, conflicts occur between objectives
such that it is not possible to find a single ideal solution
to the problem. In this case, the solution consists of a set
of Pareto optimal points—where any improvement in one
objective will lead to a deterioration in one or more of the
other objectives.

The quality of the set of non-dominated solutions (known
as the approximation set) can be characterised by considering
three main measures (Purshouse 2003):

– The proximity of the approximation set to the true Pareto
front.

– The diversity of the distribution of solutions in the
approximation set.

– The pertinence of the solutions in the approximation set
to the decision maker.

These concepts are illustrated graphically in Fig. 1, where
a single-objective value is defined as xm and an objective vec-
tor of M objectives can be defined as X = 〈x1, x2, . . . , xM 〉.
A preference vector can be defined as P = 〈ρ1, ρ2, . . . , ρM 〉,
where every entryρm refers to the goalwhich the correspond-
ing objective values xm must satisfy.

An ideal approximation set should contain solutions that
are as close as possible to the true Pareto front (i.e. having
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Fig. 1 Characterising the approximation set for a bi-objective problem

good proximity) and provide a uniform spread of solutions
across the region of interest of the decisionmaker (i.e. having
a diverse set of candidate solutions that are pertinent to the
decision maker).

Conventional multi-objective optimisation methods often
fail to satisfy all these requirements, with methods such as
the weighted sum method (Hwang and Masud 1979) and the
goal attainment method (Gembicki 1974) only capable of
finding a single point from the approximation set rather than
a diverse distribution of potential solutions. This means that
such algorithms do not fully capture the shape of the trade-off
space without running the optimisation routine many times.
In contrast, evolutionary algorithms (EAs) iteratively evolve
a population of candidate solutions to a problem in paral-
lel and are thus capable of finding multiple non-dominated
solutions. This results in a diverse set of potential solutions
to choose from, rather than a single solution that may not
meet the required performance criteria.

2.3 Obtaining good proximity

The primary goal in evolutionary multi-objective optimisa-
tion is finding an approximation set that has good proximity
to the Pareto front. This ensures that the candidate solu-
tions in this approximation set represent optimal trade-offs
between objectives. The early approaches to evolutionary
multi-objective optimisation were primarily concerned with
guiding the search towards the Pareto front, reflecting the
importance of this goal.

Convergence to the Pareto front is mainly driven by selec-
tion for variation, where the best candidate solutions are
assigned the highest fitness (and thus have the best chance of
contributing to the next generation). Several techniques have
been proposed to solve the problemof assigning scalar fitness

values to individuals in the presence of multiple objectives—
with Pareto-based methods generally being considered the
best. Several variants of Pareto-based fitness assignment
methods exist (see Zitzler et al. 2004 for more information),
but the general procedure is to rank individuals in the approx-
imation set according to some dominance criterion, and then
map fitness values to these ranks (often via a linear transfor-
mation). Mating selection then proceeds using these fitness
values.

The proximity of the approximation set to the true Pareto
front can be enhanced by the use of elitism. Elitism aims to
address the problem of losing good solutions during the opti-
misation process (Zitzler et al. 2004), either by maintaining
an external population of non-dominated solutions (com-
monly referred to as an archive), or by using a (μ + λ) type
environmental selectionmechanism. Studies have shown that
elitist MOEAs perform favourably when compared to their
non-elitist counterparts (Zitzler andThiele 1999; Zitzler et al.
2000a). Elitism has also been shown to be a theoretical
requirement to guarantee convergence of an MOEA in the
limit condition (Rudolph and Agapie 2000).

In archive-based elitism, the archive can be used either
just to store good solutions generated by the MOEA or can
be integrated into the algorithm with individuals from the
archive participating in the selection process. Some mecha-
nism is often needed to control the number of non-dominated
solutions in the archive, since the archive is usually a
finite size and the number of non-dominated individuals can
potentially be infinite. Density-based measures to preserve
diversity are commonly used in this archive reduction—for
example, the Pareto Archived Evolution Strategy (Knowles
and Corne 2000a) uses an adaptive crowding procedure to
preserve diversity (see later).

An alternative elitist strategy is the (μ + λ) population
reduction scheme, where the parent population and the child
population compete against each other for selection. This
schemeoriginated inEvolutionStrategies and forms the basis
of the environmental selection scheme used in algorithms
such as NSGA-II (Deb et al. 2002a) and, more recently,
the Multi-Objective Covariance Matrix Adaptation Evolu-
tionary Strategy (MO-CMA-ES) (Igel et al. 2007). In both
these algorithms, a two level sorting process is used, with
Pareto dominance as the primary sorting criteria and pop-
ulation density as a secondary sorting criteria (used as a
tiebreaker amongst individuals having the same level of non-
dominance).

MO-CMA-ES is a state-of-the-art elitist multi-objective
evolutionary optimisation technique that builds upon the
powerful covariance matrix adaptation evolution strategy
(CMA-ES) real-valued single-objective optimiser (Hansen
and Ostermeier 2001; Hansen et al. 2003). The key features
of CMA-ES are that it is invariant against linear transforma-
tions of the search space, performs extremely well across a
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broad spectrumof problems in the continuous domain (Auger
and Hansen 2005), and is robust to the initial choice of para-
meters (due to its advanced self-adaptation strategy). These
make the CMA-ES algorithm an excellent choice to base a
multi-objective evolutionary optimisation on.

Two variants of MO-CMA-ES exist in the literature: the
s-MO-CMA-ES which achieves diversity using the con-
tributing hypervolume measure (or s-metric) introduced by
(Zitzler and Thiele 1998), and the c-MO-CMA-ES which
achieves diversity using the crowding-distance measure
introduced in NSGA-II. Whilst initial results have shown
that MO-CMA-ES is extremely promising, it is as yet mostly
untested on real-world engineering problems. Some results
show that MO-CMA-ES struggles to converge to good solu-
tions onproblemswithmanydeceptive locallyPareto optimal
fronts—a feature that can be common in real-world problems
(Voß et al. 2010).

In the original MO-CMA-ES, a mutated offspring solu-
tion is considered to be successful if it dominates its parent.
In contrast, (Voß et al. 2010) introduces a newMO-CMA-ES
variant which considers a solution successful if it is selected
to be in the next parent population, introduces a new update
rule for the self-adaptive strategy, and conducts a compar-
ison of MO-CMA-ES variants on synthetic test functions
consisting of up to three objectives. MO-CMA-ES with the
improved update rule is shown to perform substantially better
than the original algorithm and thus is used for comparison
in Sect. 5 of this paper.

2.4 Obtaining good diversity

Most EMO algorithms use density information in the selec-
tion process to maintain diversity in the approximation set.
However, diversity preservation has often been seen as a
secondary consideration (after obtaining good proximity to
the Pareto front). This is because, as Bosman and Thierens
(2003) state:

“…since the goal is to preserve diversity along an
approximation set that is as close as possible to the
Pareto optimal front, rather than to preserve diversity
in general, the exploitation of diversity should not pre-
cede the exploitation of proximity”.

Goldberg (1989) initially suggested the use of a niching
strategy in EMO to maintain diversity, with most of the
first generation of Pareto-based EMO algorithms using the
concept of fitness sharing from single-objective EA theory
(Fonseca and Fleming 1993; Horn et al. 1994; Srinivas and
Deb1994).However, the success of fitness sharing is strongly
dependent on the choice of an appropriate niche size para-
meter, σshare. Whilst several authors proposed guidelines for
choosing σshare (Deb and Goldberg 1989; Fonseca and Flem-
ing 1993), Fonseca and Fleming (1995) were the first to

note the similarity between fitness sharing and kernel density
estimation in statistics which then provided the EMO com-
munity with a set of established techniques for automatically
selecting the niche size parameter, such as the Epanechnikov
estimator (Silverman 1986).

A large number of the second generation of Pareto-based
MOEAs include advanced methods of estimating the pop-
ulation density, inspired by statistical density estimation
techniques. These can be mainly classified into histogram
techniques (such as that used in PAES (Knowles and Corne
2000a)) or nearest neighbour density estimators (such as that
used in SPEA2 (Zitzler et al. 2001) and NSGA-II (Deb et al.
2002a)). Other approaches to diversity preservation include
the use of hybrid algorithms, such as the Hybrid Immune
Genetic Algorithm (HIGA) Istin et al. (2011), which uses
an immune component to continuously evolve new solutions
and then inject themback into the population of an EA. These
estimates of population density can be used in both mating
selection and environmental selection. In mating selection,
these density estimates are commonly used to discriminate
between individuals of the same rank. Individuals from a less
dense part of the population are assigned higher fitness and
thus have a higher chance of contributing to the next gener-
ation.

Density estimation in environmental selection is co-
mmonly used when there exists more locally non-dominated
solutions than can be retained in the population. For example,
in archive-based elitism, density-based clustering methods
are often used to reduce the archive to the required size.
Non-dominated solutions from sparser regions of the search
space are again preferred over those from regions with higher
population densities, with the aim being to ensure that the
external population contains a diverse set of candidate solu-
tions in close proximity to the Pareto front.

The Pareto Archived Evolution Strategy (Knowles and
Corne 2000a) uses an adaptive crowding procedure to pre-
serve diversity that recursively divides up the objective space
into grid segments. This bounded Pareto archiving technique
then uses this adaptive grid to keep track of the density of
solutionswithin sections of the objective space (Knowles and
Corne 1999). Since it is adaptive, this crowding procedure
does not require the critical setting of a niche size parameter
which was a common problem with traditional kernel-based
methods of diversity preservation. This adaptive grid archiv-
ing (AGA) scheme uses a grid with a preconfigured number
of divisions to divide the objective space, and when a solu-
tion is generated, its grid location is identified and associated
with it. Each grid location is considered to contain its own
sub-population, and information on how many solutions in
the archive are located within a certain grid location is avail-
able during the optimisation process. Figure 2 illustrates this
grid archiving scheme in two dimensions; in this example, it
can be observed that the sub-population at grid location 91
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Fig. 2 An example plot of a population and visualisation of grid divi-
sions managed by an AGA

holds a single solution, whereas the sub-population at grid
location 62 contains many more. With this additional infor-
mation, it is possible to discard a solution from one of the
more densely populated sub-populations in favour of a can-
didate solution which will be located in a sparsely populated
sub-population, e.g., the one located at grid location 91.

When an archive has reached capacity and a newcandidate
solution is to be archived, the information trackedby theAGA
is used to replace a solution in the grid location containing
the highest number of solutions. When a candidate solution
is non-dominated in regard to the current solution and the
archive, the grid information is used to select the solution
from the least populated grid location as the current (and
parent) solution.

The AGA concept used in PAES later inspired several
researchers and was altered and deployed in multiple EMO
algorithms such as the Pareto Envelope-based Selection
Algorithm (PESA) (a population-based version of PAES)
(Corne et al. 2000), the Micro Genetic Algorithm (Coello
Coello and Pulido 2001), and the Domination Based Multi-
Objective Evolutionary Algorithm (ε-MOEA) (Deb et al.
2005).

2.5 Issues with elitism

Whilst elitism has been almost universally adopted in the
current state of the art for evolutionary multi-objective
optimisers, in many multi-objective optimisation problems
solutionsmay exist which are not considered elite due to their
objective value in regard to the population but may still con-

Fig. 3 An approximation set found using an elitist EMO algorithm
after 300,000 function evaluations on CEC09 UF1

Fig. 4 True Pareto optimal front (left) and Pareto optimal set (right)
for CEC09 UF1

tain useful genetic information. This genetic information can
be utilised later in the search to move into unexplored areas
of the objective space but, due to elitism and non-dominated
sorting schemes, it may be abandoned in the early stages of
the search.

The consequences of elitism and non-dominated sorting
can be seen in Fig. 3, where an elitist EMO algorithm has
produced an approximation set for the CEC09 UF1 (Zhang
et al. 2008b) test function with a budget of 300,000 func-
tion evaluations (in compliance with the CEC09 competition
rules).

By observing this two-objective plot of the approxima-
tion set, it can be seen that the elitist EMO algorithm has
converged to an approximation setwhich ismissing three dis-
tinct areas containing solutions in comparison with the true
Pareto optimal front plotted in Fig. 4. The genetic informa-
tion which would have potentially found these missing areas
was discarded by the algorithm during the search process due
to the use of elitism and non-dominated sorting. This is a dif-
ficulty that occurs in the CEC09UF1 test problem because of
its complicated Pareto optimal set, which has some regions
that are easier to reach. In these cases, elitist EMO algo-
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Fig. 5 Example of elitist and non-dominated selection, circled points
indicate a selected individual

rithms will focus selection on these more dominant solutions
and converge further into that area of the Pareto optimal set,
discarding individuals which may have been only a few gen-
erations away from producing non-dominated solutions in
unexplored areas of the objective space.

Figure 5 illustrates an example of elitist and non-
dominated selection discarding an individual that may con-
tain valuable genetic information, which could have been
exploited to produce a better quality approximation set. In
this example, a Pareto AGA selection scheme has been used
to select parent individuals for the next generation. Because
of the scheme’s elitist nature, the individual between 0.6 and
0.7 on the x-axis has not been selected for reproduction,
and therefore, the scheme has discarded genetic informa-
tion which may have ultimately produced solutions towards
the missing area of the approximation set. This behaviour
over many generations can lead to convergence to incom-
plete approximation sets.

3 CMA-PAES

The Covariance Matrix Adaptation Pareto Archived Evolu-
tion Strategy is an extensible EMO algorithm framework
(Rostami and Shenfield 2012) inspired by the simplicity of
PAES (Knowles and Corne 2000b). As a result, the execu-
tion life cycle of the optimisation process does not have a
high computational cost in regard to algorithm overhead.
The modular structure of the algorithm has allowed for the
Covariance Matrix Adaptation (CMA) operator to be easily
incorporated in order to achieve fast convergence through
the powerful variation of population solutions. To manage
these populations at each generational iteration, an Adaptive
Grid Algorithm (AGA) approach is used in conjunction with

Fig. 6 Execution life cycle for the CMA-PAES algorithm

bounded Pareto archiving with the aim of diversity preserva-
tion.

The algorithm execution life cycle for CMA-PAES has
been illustrated in Fig. 6. CMA-PAES begins by initialis-
ing the algorithm variables and parameters; these include the
number of grid divisions used in the AGA, the archive for
storing Pareto optimal solutions, the parent vector Y , and the
covariance matrix. An initial current solution is then gen-
erated at random, which is evaluated and then the first to
be archived (without being subjected to the PAES archiv-
ing procedure). The generational loop then begins, and the
square root of the covariance matrix is resolved using Chol-
sky decomposition (as recommended by Beyer and Sendhoff
2008) which offers a less computationally demanding alter-
native to spectral decomposition. The λ candidate solutions
are then generated using copies of the current solution and
the CMA-ES procedure for mutation before being evaluated.
The archive is then merged with the newly generated off-
spring and subjected to Pareto ranking, and this assigns a rank
of zero to all non-dominated solutions, and a rank reflecting
the number of solutions that dominate the inferior solutions.
The population is then purged of the inferior solutions so that
only non-dominated solutions remain before being fed into
the PAES archiving procedure. After the candidate solutions
have been subjected to the archiving procedure and the grid
has been adapted to the new solution coverage of objective
space, the archive is scanned to identify the grid location
with the smallest population, this is considered the lowest
density grid population (ldgp). The solutions from the low-
est density grid population are then spliced onto the end of
the first μ − ldgp of the Pareto rank-ordered population to
be included in the adaptation of the covariance matrix, with
the aim to improve the diversity of the next generation by
encouraging movement into the least dense area of the grid.
After the covariance matrix is updated, the generational loop

123



A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of...

continues onto its next iteration until the termination criteria
is satisfied (maximum number of generations).

CMA-PAES has been benchmarked against NSGA-II and
PAES in Rostami and Shenfield (2012) on the ZDT syn-
thetic test suite. Two performance metrics were used to
compare the performance in terms of proximity (using the
generational distance metric) and diversity (using the spread
metric). CMA-PAES displayed superior performance (the
significance ofwhichwas supportedwith randomisation test-
ing) in returning an approximation set close to or on the true
Pareto optimal front as well asmaintaining diversity amongst
solutions in the set.

CMA-PAES has also been benchmarked against the
MO-CMA-ES algorithm in Rostami (2014), using the hyper-
volume indicator as a measure of performance. In this study,
both the algorithms considered demonstrated comparable
performance across multiple test problems. The significance
of which was supported by the use of nonparametric testing.

3.1 A novel multi-tier adaptive grid algorithm

The new multi-tier AGA aims to prevent a population from
prematurely converging as a result of following only the dom-
inant (i.e. elite) solutions which may be discovered early
in the optimisation process. This common optimisation sce-
nario often results in genetic drift and consequently a final
approximation set with solutions clustered around these elite
solutions. This prevention is achieved by dividing an optimi-
sation function evaluation budget and investing a percentage
of this budget in to non-elite solutions. These solutionswhich
appear non-elite early on in the optimisation process may
potentially contain genetic information that would contribute
to finding undiscovered areas of the objective space later in
the search.

The algorithm pseudo-code for this new multi-tier
approach is listed in Algorithm 1, which is executed from
line 14 of theMulti-tier CovarianceMatrixAdaptation Pareto
Archived Evolution Strategy (m-CMA-PAES) execution life
cycle presented in Algorithm 2. This new optimisation algo-
rithm which builds upon the algorithmic components (AGA
and CMA) outlined in Fig. 6 is referred to as the m-
CMA-PAES. First, the candidate population is divided into
sub-populations based on their non-dominated rank using
NSGA-II’s fast non-dominated sort. If the size of any sub-
population exceeds μ, then the standard AGA scheme is
applied to it with a maximum archive capacity ofμ, resulting
in a number of rank-ordered archives each with a maximum
capacity of μ. Then, a single population of size μ plus the
budget for non-elite individuals β is produced, for example,
if β is set as 10% for a μ population of 100, then a popula-
tion of size 100×1.10 is to be produced. Next, the multi-tier
archives containing the first μ×β solutions are merged with
no size restriction (meaning the merged archive size can be

Fig. 7 Example of the multi-tiered grid selection, circled points indi-
cate a selected individual

greater thanμ×β). Thismerged archive is then subjected to a
non-elite AGA (ensuring non-elite solutions are not instantly
discarded) with an archive capacity of μ, producing a pop-
ulation of individuals to be selected as parents for the next
generation.

The configuration of β is important to the convergence of
the algorithm—if it is too high (for example, if it is greater
than half of μ), then the majority of the function evalua-
tion budget is spent on solutions which are dominated and
the search does not progress in a positive direction, and may
insteadmove away from the Pareto optimal front. However, if
β is too small, the benefits of investing in non-elite solutions
are not exploited to an extent which will significantly impact
the performance of the optimisation process. The result of
this new grid selection scheme has been illustrated in Fig.
7, where the solution which may potentially contain valu-
able genetic information is selected, in contrast to it being
discarded in Fig. 5.

Algorithm1Pseudo-code ofMulti-TierAdaptiveGridAlgo-
rithm: multiTierSelect()
1: nonDominatedFronts = nonDominatedSort(population)
2: spaceRemaining = μ × β

3: for all nonDominatedFront in nonDominatedFronts do
4: if spaceRemaining > 0 then
5: tierArchive = adaptiveGridSelection(nonDominatedFront,

μ)
6: archive = archive + tierArchive
7: spaceRemaining = spaceRemaining - size(archive)
8: end if

parentPopulation = adaptiveGridSelection(archive, μ)
9: end for

Inm-CMA-PAES, a population of candidate solution indi-

viduals ai (g) are initialised as the structure
[
xi (g), p̄

(g)
succ,i ,
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σi
(g), p(g)

i,c ,C(g)
i

]
, where each individual is assigned a ran-

domly generated problem variable xi (g) ∈ Rn between the
lower (x (L)) and upper (x (U )) variable boundaries, p̄(g)

succ,i ∈
[0, 1] is the smoothed success probability, σi (g) ∈ R+

0 is the

global step size, p(g)
i,c ∈ Rn is the cumulative evolution path,

and C(g)
i ∈ Rn×n is the covariance matrix of the search dis-

tribution.

Algorithm 2 m-CMA-PAES life cycle
1: g ← 0
2: initialise parent population Qg

3: while termination criteria not met do
4: for k = 1, ..., λ do
5: ik ← k;
6: a

′ (g+1)
k ← ai

(g)
k

7: x
′ (g+1)
k ∼ xi

(g)
k + σi

(g)
k N

(
0,Ci

(g)
k

)
;

8: if x (L) � x
′ (g+1)
k � x (U ) then

9: x
′ (g+1)
k =

{
x (U ) if x

′ (g+1)
k > x (U )

x (L) otherwise
10: end if
11: Q(g)

μ+k ←
{
a

′ (g+1)
k

}
;

12: end for
13: end while
14: Qg+1 = multiT ier Select (Qg) (Executes Algorithm 1)
15: updateParameters() (Executes CMA Algorithm)
16: g ← g + 1

4 Experimental design and performance
assessment

4.1 Experimental set-up

In order to evaluate the performance of m-CMA-PAES
on multi-objective test problems, a pairwise comparison
between m-CMA-PAES and MO-CMA-ES on selected
benchmark problems from the literature (consisting of upto 3
objectives) has been conducted. MO-CMA-ES (as outlined
in Sect. 2.3) is a state-of-the-art algorithm which uses the
CMA operator for variance much like m-CMA-PAES.

Both m-CMA-PAES and MO-CMA-ES have been con-
figured with a budget of 300, 000 function evaluations per
algorithm execution and were executed 30 times per test
function as per the CEC2009 competition guidelines. The
algorithm configurations are presented in Table 1, and the
finer configurations for the CMAoperator andMO-CMA-ES
have been taken from Voß et al. (2010), where the version
of MO-CMA-ES used incorporates the improved step-size
adaptation.

The ZDT, DTLZ and CEC2009 test suites have been
selected for the benchmarking and comparison of m-CMA-

Table 1 Algorithm configurations used when benchmarking MO-
CMA-ES and m-MA-PAES

Parameter MO-CMA-ES m-CMA-PAES

μ 2D(100), 3D(300) 2D(100), 3D(300)

λ 2D(100), 3D(300) 2D(100), 3D(300)

Archive capacity – 2D(100), 3D(300)

Multi-tier budget – 10%

Divisions – 10

PAES and MO-CMA-ES (see Sect. 4.2). These test suites
will pose bothMOEAswith difficulties which are likely to be
encountered inmany real-worldmulti-objective optimisation
problems, in both two-dimensional and three-dimensional
objective spaces (allowing for feasible comparisonwithMO-
CMA-ES which relies on the hypervolume indicator for
secondary sorting and is thus computationally expensive in
high-dimensional search spaces).

Themetric used for performance assessment is the popular
Inverted Generational Distance (IGD) indicator described in
Sect. 4.3. The IGD indicator will be used at each generation
in order to assess performance and compare both algorithms
on not just the IGD quality of the final approximation set,
but also the IGD quality over time. In order to comply with
the CEC2009 competition rules (as described in Zhang et al.
2008b), both m-CMA-PAES and MO-CMA-ES have been
executed 30 times on each test function to reduce stochastic
noise. This sample size is seen as sufficient because of the
limited benefit of producingmore than 25 samples (discussed
in Sect. 4.1.1).

4.1.1 Sample size sufficiency

Selecting a sufficient number of samples when comparing
optimisers is critical. The sample size of 25, in order to reduce
stochastic noise, is reoccurring in the evolutionary compu-
tation literature (e.g. Yang et al. 2008; Zamuda et al. 2007;
Falco et al. 2012; García et al. 2009; Wang et al. 2011). To
prove the sufficiency of this sample size, a large number of
hypervolume indicator value samples have been produced by
executing m-CMA-PAES 200 times on the DTLZ1 synthetic
test problem.

These 200 samples were then used to identify the relation-
ship between the standard error of the mean (SEM) and the
sample size using:

SEM = SD√
N

(2)

This relationship has been illustrated in Fig. 8, which
shows the limited benefit of more than 25 independent exe-
cutions of the algorithm on the synthetic test problem.
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Fig. 8 Relationship between standard error of the mean (SEM) and
the sample size of hypervolume indicator values from 200 executions
of m-CMA-PAES on the DTLZ1 synthetic test problem

sizes, evolution paths and covariance matrices of the suc-
cessful solutions are updated.

4.2 Multi-objective test suites

The performance of the novel m-CMA-PAES algorithm
is compared to MO-CMA-ES across three different real-
valued, synthetic, test suites: the widely used ZDT bi-
objective test suite proposed in Zitzler et al. (2000b), the
scalable DTLZ multi-objective test suite proposed in Deb
et al. (2002b) and the unconstrained functions from the
CEC2009 multi-objective competition test suite proposed in
Zhang et al. (2008b). The configurations used for these test
problems and some of their salient features are shown in
Table 2

Each of these test suites incorporates a different bal-
ance of features that MOEAs may find difficult to overcome
during the optimisation process (for example, multi-modal
search landscapes, deceptive local Pareto-fronts, non-convex
Pareto-fronts). The ZDT and DTLZ test suites provide well-
defined Pareto optimal fronts that have been widely used in
the literature—thus allowing easy comparison with previous
work. The CEC2009 multi-objective optimisation compe-
tition test suite is more recent and is predominantly made
up of problems with solution sets that consist of complex
curves through decision variable space. These test problems
contain variable linkages and present many difficulties for
multi-objective optimisation routines.

4.3 Performance assessment

As the EMO process is stochastic by nature, each algorithm
was executed 30 times against each test function, in an effort
to minimise stochastic noise and increase the integrity of the
comparison between the algorithms (see Sect. 4.1.1). The

Table 2 Parameter configurations used for the ZDT, DTLZ and CEC09
test suites

Problem # Var # Obj Salient features

ZDT1 30 2 Convex front

ZDT2 30 2 Concave front

ZDT3 30 2 Disconnected front

ZDT4 10 2 Convex front, many local
optima

ZDT6 10 2 Concave front, non-uniform
distribution

DTLZ1 7 3 Linear front

DTLZ2 12 3 Spherical front

DTLZ3 12 3 Spherical front, many local
optima

DTLZ4 12 3 Spherical front,
non-uniform distribution

DTLZ5 12 3 Spherical front, difficult to
find true front

DTLZ6 12 3 Disconnected front

DTLZ7 22 3 Disconnected front

UF1 30 2 Nonlinear decision space

UF2 30 2 Nonlinear decision space

UF3 30 2 Many local fronts

UF4 30 2 Non-convex front

UF5 30 2 Discrete points on a linear
hyperplane

UF6 30 2 Disconnected front

UF7 30 2 Linear hyperplane front

UF8 30 3 Spherical front

UF9 30 3 Disconnected front

UF10 30 3 Spherical front

performance of each algorithm execution was then measured
using the inverted generational distance (IGD) performance
metric to assess the quality of the approximation set, in terms
of proximity to the true Pareto optimal front and the diversity
of solutions in the population.

The IGD metric measures how well the obtained approx-
imation set represents the true Pareto optimal front which
is provided as a large reference set. This is calculated by
finding the minimum Euclidean distance of each point of
the approximation set to points in the reference set. Lower
IGD values indicate a better quality approximation set with
IGD values of 0, indicating all the solutions in the approx-
imation set are in the reference set and cover all the Pareto
front.

The IGD was introduced in Coello Coello and Cortés
(2005) as an enhancement to the generational distance met-
ric, measuring the proximity of the approximation set to the
true Pareto optimal front in objective space. The IGD can be
defined as:
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Table 3 IGD results from 30
executions of m-CMA-PAES
and MO-CMA-ES on the ZDT
and CEC09 test suites with two
problem objectives

2D m-CMA-PAES MO-CMA-ES

Best Mean Worst Best Mean Worst p value %IGD

ZDT1 0.00628 0.00657 0.00686 0.00813 0.00936 0.01031 1.4e−09 69.23 +

ZDT2 0.00592 0.00614 0.00639 0.00989 0.01172 0.01511 1.4e−09 60.72 +

ZDT3 0.00574 0.00609 0.00676 0.00552 0.00594 0.00643 0.0625 −12.10 =

ZDT4 1.80044 6.17983 11.44563 2.85512 8.35397 14.56593 0.0232 17.03 +

ZDT6 0.01132 0.01279 0.01406 0.04788 0.08938 0.20901 1.4e−09 38.74 +

UF1 0.03762 0.05824 0.06579 0.05044 0.07228 0.12375 1.1e−06 17.00 +

UF2 0.01359 0.02006 0.02687 0.02117 0.03496 0.05235 5.5e−08 38.44 +

UF3 0.04869 0.07992 0.12647 0.06044 0.08129 0.10133 0.7269 1.76 =

UF4 0.05925 0.06431 0.06942 0.07661 0.08261 0.09722 1.4e−09 48.20 +

UF5 0.49880 0.72982 1.04816 0.87997 1.04873 1.26644 8.3e−09 41.54 +

UF6 0.08817 0.12736 0.22802 0.09314 0.11268 0.22469 0.010432 −10.50 –

UF7 0.01791 0.02431 0.03226 0.03306 0.06434 0.12773 1.4e−09 36.45 +

The boldface results indicate better performance

Table 4 IGD results from 30
executions of m-CMA-PAES
and MO-CMA-ES on the DTLZ
and CEC09 test suites with three
problem objectives

3D m-CMA-PAES MO-CMA-ES

Best Mean Worst Best Mean Worst p value %IGD

UF8 0.13308 0.18188 0.23023 0.16091 0.23432 0.24924 3.6e−08 45.14 +

UF9 0.07381 0.07877 0.08795 0.06755 0.07440 0.07911 5.4e−05 −21.45 –

UF10 0.64046 0.97907 1.34102 1.33073 1.90805 2.89107 1.6e−09 41.28 +

DTLZ1 0.60928 3.11971 5.72913 2.11988 10.1829 20.9531 1.2e−06 34.72 +

DTLZ2 0.03919 0.04005 0.04077 0.04207 0.04491 0.04939 1.4e−09 7.06 +

DTLZ3 22.4023 50.7571 102.51 171.175 188.531 229.147 1.4e−09 66.64 +

DTLZ4 0.02459 0.03090 0.04093 0.03181 0.04411 0.07016 5.5e−08 28.99 +

DTLZ5 0.00152 0.00174 0.00201 0.00190 0.00213 0.00259 8.3e−09 11.21 +

DTLZ6 0.11059 0.32162 0.65582 0.19705 0.42455 0.71631 0.01701 16.99 +

DTLZ7 0.05268 0.05783 0.06449 0.05824 0.06653 0.07449 2.9e−08 39.89 +

The boldface results indicate better performance

IGD =
√∑n′

i=1 d
2
i

n′ (3)

where n′ is the number of solutions in the reference set and d
is the Euclidean distance (in objective space) between each
solution in the reference set and the nearest solution in the
approximation set. A GD value equal to zero indicates that
all members of the approximation set are on the true Pareto
optimal front, and any other value indicates the magnitude of
the deviation of the approximation set from the true Pareto
optimal front. This implementation of the GD solves an issue
in its predecessor so that it will not rate an approximation set
with a single solution on the reference set as better than an
approximation set which has more non-dominated solutions
that are close in proximity to the reference set.

Much like the GD measure, knowledge regarding the true
Pareto optimal front is required in order to form a reference
set. The selection of solutions for the reference set will have
an impact on the results obtained from the IGD, and therefore,
the reference set must be diverse. The calculation of the IGD

can be computational expensive when working with large
reference sets or a high number of objectives.

The IGD measure has been employed in the performance
assessment of algorithms inmuch of themulti-objective opti-
misation and evolutionary computation literature (e.g. Zhang
et al. 2008a, 2010; Tiwari et al. 2009; Chen et al. 2009; Nasir
et al. 2011).

4.4 Statistical comparison of stochastic optimisers

Statistical comparison of the performance of the algorithms
was conducted by computing the t values2 of the IGDmetric
produced by both the algorithms. However, when analysing
stochastic systems (such as EAs), the initial conditions that
ensure the reliability of parametric tests cannot be satisfied
(Li et al. 2012)—therefore a nonparametric test (encouraged
byDerrac et al. 2011;Epitropakis et al. 2012) for pairwise sta-
tistical comparison must be used to evaluate the significance

2 The t value is the difference between themeans of the datasets divided
by the standard error.
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Fig. 9 IGD results at each generation visualising performance of m-CMA-PAES and MO-CMA-ES over 300, 000 function evaluations on two-
objective test problems, 30 runs

of results. TheWilcoxon signed-ranks (Wilcoxon 1945) non-
parametric test (counterpart of the paired t test) can be used
with the statistical significance value (α = 0.05) to rank the
difference in performance between two algorithms over each
approximation set.

Nonparametric testing is becoming more commonly used
in the literature to statistically contrast the performance of
evolutionary algorithms in many experiments (García et al.
2010; Derrac et al. 2012; Li et al. 2012; Epitropakis et al.
2012; Hatamlou 2013; Civicioglu 2013).

5 Results

The results from the experiments described in Sect. 4 have
been produced and presented in a number of formats in order
to allow for a better assessment of each algorithms perfor-
mance.

The worst, mean and best IGD indicator results for the
final approximation set of each algorithm are presented in
Table 3 for the two-objective test functions and in Table 4 for
the three-objective test functions. Tables 3 and 4 also present
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Fig. 10 IGD results at each generation visualising performance of m-CMA-PAES and MO-CMA-ES over 300, 000 function evaluations on
two-objective test problems, 30 runs

information regarding the p value resolved by the Wilcoxon
signed-ranks nonparametric test for the final approximation
sets of the considered synthetic test problems, and a sym-
bol indicating the observation of the null hypothesis. A ‘+’
symbol indicates that the null hypothesis was rejected, and
m-CMA-PAES displayed statistically superior performance
at the 95% significance level (α = 0.05) on the considered
synthetic test function. A ‘−’ symbol indicates that the null
hypothesis was rejected, and m-CMA-PAES displayed sta-
tistically inferior performance. An ‘=’ symbol indicates that
there was no statistically significant difference between both
of the considered algorithms on the synthetic test problem.
The table column ‘%IGD’ indicates the difference in per-
formance between m-CMA-PAES and MO-CMA-ES using
m-CMA-PAES as the benchmark. This percentage can be
calculated by finding the normalised mean performance of
each algorithm:

%IGD = 100 ×
(
meana − worst

best − worst
− meanb − worst

best − worst

)

(4)

where meana is the mean performance for m-CMA-PAES
meanb is the mean performance for MO-CMA-ES,worst is
the highest IGD achieved by either algorithm, and best is the
lowest IGD achieved by either algorithm. A positive %IGD
indicates the percentage of which m-CMA-PAES outper-
formed MO-CMA-ES, whereas a negative %IGD indicates
the percentage of which m-CMA-PAES was outperformed
by MO-CMA-ES.

Overall, m-CMA-PAES outperformed MO-CMA-ES on
all but 3 (ZDT3, UF6 and UF9) of the 22 test functions,
producing better performing worst, mean and best approxi-
mation sets.

The mean of the IGD metric at each generation has been
plotted and presented in Figs. 9 and 10 for the two-objective
test functions and Figs. 11 and 12 for the three-objective test
functions. These plots illustrate the rate of IGD convergence
from the initial population to the final population.

m-CMA-PAES significantly outperforms the MO-CMA-
ES on most of the test functions used in this comparison.
However, as a consequence of investing a percentage of
the maximum number of function evaluations in non-elite
solutions, it can be observed in Figs. 9, 10, 11, 12 that the
convergence of the algorithm is slower in most cases (more
so in the two-objective test functions). This suggests that in
experiments where the number of function evaluations is not
constrained to a low number, the m-CMA-PAES will outper-
form MO-CMA-ES.

It can be observed in Figs. 9, 10, 11, 12 that the mean IGD
for MO-CMA-ES oscillates or rises on some test functions
over time. This issue is most visible on UF4 (where the mean
IGD forMO-CMA-ES can be seen to oscillate over time) and
on DTLZ3 (where the mean IGD for MO-CMA-ES can be
seen to improve in performance until 200 generations and
then worsen gradually until termination). This issue is due
to MO-CMA-ES being dependent on the hypervolume indi-
cator entirely for diversity preservation which, when paired
with its elitism scheme, ends up gradually reducing the IGD
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Fig. 11 IGD results at each generation visualising performance of m-CMA-PAES and MO-CMA-ES over 300, 000 function evaluations on
three-objective test problems, 30 runs

quality of an approximation set once a difficult area of the
search space is encountered.

The results presented in Tables 3 and 4, as well as the
box plots presented in Figs. 13 and 14, show that on 18 of
the 22 considered test functions m-CMA-PAES significantly
outperformed MO-CMA-ES in regard to the achieved mean
and median IGD. The box plots show that the interquar-
tile ranges for the m-CMA-PAES results are significantly
better than the interquartile ranges for the MO-CMA-ES

results. Across all test functions m-CMA-PAES produces
fewer outliers—indicating a more reliable and robust algo-
rithm than MO-CMA-ES on the considered test functions.

On the UF3 test function, it can be observed (in Fig. 13)
that, although the MO-CMA-ES median IGD outperforms
m-CMA-PAES, m-CMA-PAES achieved a better interquar-
tile range and a far better total range—achieving the best
approximation set for that test function. A similar result can
be seen in the performance on UF6 where m-CMA-PAES
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Fig. 12 IGD results at each generation visualising performance of m-CMA-PAES and MO-CMA-ES over 300, 000 function evaluations on
three-objective test problems, 30 runs
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Fig. 13 Box plots of IGD indicator results for two-objective test
problems (1: m-CMA-PAES; 2: MO-CMA-ES) 300,000 function eval-
uations, 30 runs

also achieves the best approximation set but is outperformed
by MO-CMA-ES on the median values of the IGD results.

TheMO-CMA-ESsignificantly outperforms them-CMA-
PAES on UF9. This function (as well as ZDT3 and UF6)
consists of disjoint true Pareto optimal fronts as shown in
Fig. 15. The comparison in performance on these problems
shows that the m-CMA-PAES has performance issues on
some problems consisting of multiple parts in their Pareto
optimal fronts.

6 Conclusion

In this paper, a multi-tier AGA scheme has been introduced
and incorporated into the CMA-PAES algorithm to create
m-CMA-PAES. m-CMA-PAES improves the quality of the
produced final approximation set by investing a percent-
age of the allowed function evaluation budget in non-elite
but potentially successfully solutions. With this approach,
m-CMA-PAES is able to find portions of the Pareto opti-
mal front which remain unexplored by elitist approaches.
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Fig. 14 Box plots of IGD indicator results for three-objective test
problems (1: m-CMA-PAES; 2: MO-CMA-ES) 300,000 function eval-
uations, 30 runs

Experiments and statistical analysis presented in this study
show that with CEC09 competition compliant benchmark-
ing configurations, m-CMA-PAES significantly outperforms
MO-CMA-ES on all but 4 of the 22 considered synthetic test
problems, and out of these 4, MO-CMA-ES only performs
statistically significantly better on 2 test functions.

When observing the IGD values at each generation, it can
be seen that in some cases the IGD of the final population is
higher than some of the generations before it, this is due to
the non-elite solutions invested in at each generation being a
factor right to the end of the algorithm. This suggests that in
further work the algorithmmay benefit from either an offline
archive which the algorithm selects from at the end of the
optimisation process or a final approximation set selection
scheme which uses the last two generations of the optimisa-
tion process, including non-dominated solutions only.

The results indicate a clear trade-off between m-CMA-
PAES andMO-CMA-ES. In the majority of the benchmarks,
MO-CMA-ES appears to offer a faster rate of convergence.
However, this comes at the cost of premature convergence
very early in the optimisation process. In contrast, m-CMA-
PAEs offer a slower rate of convergence throughout the entire
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Fig. 15 True Pareto optimal fronts plotted for problems ZDT3 (left), UF6 (middle) and UF9 (right)

optimisation process, with steady improvement until the end
of the function evaluation budget. Unlike MO-CMA-ES,
m-CMA-PAES does not subject the entire non-dominated
population to the contributing hypervolume indicator. By
not doing so, m-CMA-PAES remains computationally light-
weight, unlike MO-CMA-ES which becomes computation-
ally infeasible as the number of problem objectives increase.
By investing a portion of the function evaluation budget in
non-elite solutions, areas of the Pareto optimal front which
are difficult to obtain can be discovered later on in the opti-
misation process. This results in improved diversity and
coverage in the produced approximation sets.

Future works will further investigate the possibility for
self-adaptation of the m-CMA-PAES algorithm parameter
which defines the budget for non-elite individuals (β). A
current limitation ofm-CMA-PAES requires themanual con-
figuration of the β parameter, which may result in inefficient
usage of the function evaluation budget when parameters
such as the population size and the number of problem objec-
tives change.
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