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Abstract 9 

Different proprietary repair materials and a CEM II mortar were used to characterise the 10 

relationship between the main parameters of microwave curing (power, curing time, 11 

temperature rise and volume). The time-temperature-power relationships are linear for 12 

normal, non-rapid setting repair materials cured within the recommended temperature range 13 

taking account of temperature variation and heat of hydration. A general relationship between 14 

the microwave curing parameters of power, temperature rise, curing time and repair volume 15 

has been derived. It has been used to design and operate a prototype system. Steel 16 

reinforcement in the repair remains free from arcing under microwave exposure.  17 

 18 
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 21 

1. Introduction 22 

  Reinforced and pre-stressed concrete has been used at a massive scale for the construction 23 

of infrastructure in the last century with the secure assumption of its lasting durability. While 24 

the large majority of concrete construction is durable, repair is increasingly needed due to 25 
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various concrete degradation mechanisms, abnormal loading or poor workmanship. 26 

According to CONREPNET [1] more than 50% of Europe's annual construction budget is 27 

spent on rehabilitation and refurbishment projects including the repair of deteriorated 28 

concrete structures. In the United States the annual cost of repair, strengthening and 29 

protection of concrete structures is between $18 and $21 billion [2]. 30 

Concrete repair can be applied either to provide structural strengthening or to protect the 31 

durability of a structure. Patch repair is perhaps the most common type of concrete repair. It 32 

can be defined as the repair of relatively small areas in large surfaces such as bridge and car 33 

park decks, bridge piers and shear walls in buildings. Emmons [3] provides detailed 34 

information on the various stages of a typical patch repair scheme.  35 

Selection of suitable repair materials and their proper curing is of great importance in 36 

minimising restrained shrinkage and ensuring the long-term durability of patch repairs. 37 

Differential shrinkage of the repair patch relative to the substrate is the most common cause 38 

of cracking and failure of patch repairs. Under normal curing conditions, it may take 24 hours 39 

or more for OPC based repair materials to set and it may take several days before sufficient 40 

compressive strength is developed to carry the applied loads [4]. Under more extreme 41 

conditions such as repair application in cold weather, strength development may be 42 

compromised. Accelerating the curing process by applying heat or using admixtures can be 43 

beneficial in these situations. Rapid compressive strength development is also desirable when 44 

repairing localised damage in bridge decks or runways, such as potholes, areas damaged by 45 

heavily corroded reinforcement or severely delaminated areas. A compressive strength of 46 

approximately 14 MPa should be achieved for a road to be re-opened [5]. A correspondingly 47 

strong bond between the substrate and the repair patch is also critically important to provide 48 

durable repairs.   49 
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  The rate of compressive strength development in OPC concrete can be increased by the 50 

application of thermal energy [6]. Thermal curing of concrete repair patches is often used in 51 

cold weather to prevent damage caused by freezing temperatures and to accelerate the repair 52 

process. Thermal curing can also be used in more general conditions to accelerate the 53 

hardening of repair patches for rapid opening of roads to traffic. The heating methods 54 

commonly adopted use open flame heaters or provide heating enclosures around the repaired 55 

area. These methods are inefficient and waste energy relative to microwave curing. They 56 

provide non-uniform heat through convection to the patch repair with high temperature at the 57 

surface and significant temperature gradients into the repair patch. The effect of such curing 58 

is damaging to the homogeneity and quality of hydration products. Rapid hydration caused by 59 

high temperature produces very fine C-S-H gel surrounded by unhydrates which hinder 60 

further hydration and can cause a reduction in long term strength development [7]. Non 61 

uniform heating also produces differential thermal strains causing microcracking which 62 

reduces the durability of the patch repair. Thermal blankets based on a conductive polymer 63 

technology have been developed [8], which transfer heat from the surface into a repair patch 64 

with the associated disadvantage of non-uniform heat transfer by convection. The technology 65 

is expensive and cumbersome to use on site.   66 

  The application of microwave curing on site will introduce new technology in the 67 

construction industry to replace inefficient current practices with more effective and 68 

economical methods. It will contribute to the introduction of automation in the repair sector 69 

through robotic controlled microwave curing systems. The industrial prototype developed in 70 

the MCure project of the European Commission FP7 programme (see acknowledgements) 71 

incorporates such technology which will be further enhanced in the next stage of industrial 72 

system production. Health and safety issues on site have been rigorously addressed in the 73 

project and the industrial systems will have European regulatory certification. 74 
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  The development of a microwave heating system to provide early age curing to concrete 75 

repair patches has the potential to revolutionise the concrete repair industry by transforming 76 

the efficiency and economics of thermal curing. Its effectiveness for cold weather curing will 77 

prevent disruption to construction activity in winter, which will have a major economic 78 

impact by allowing continued construction activity during winter. Microwave heating is more 79 

economical than the thermal curing methods currently used on site such as open flame heaters 80 

with or without an enclosure around a repaired area. The energy use and CO2 emission will 81 

also be lower. It has also the potential of reducing the use of expensive and environmentally 82 

undesirable chemical admixtures in proprietary repair formulations to accelerate curing. 83 

  Thermal curing, including microwave curing, leads to higher strength at early age which 84 

allows rapid progress of repair work. There is a reduction in long term strength, values of up 85 

to 20% and 6.75% have been reported for conventional thermal curing [6, 9] and microwave 86 

curing [10], respectively. However, the early age strength and the repair-substrate interfacial 87 

bond strength are the important properties required for a durable repair that can be applied 88 

rapidly. Long term strength is of secondary importance as long as it satisfies the specified 89 

requirement. Microwave curing delivers on the requirements of early age compressive 90 

strength and long term bond strength [10].  91 

  Microwave heating, which is based on dissipation of internal energy due to the excitation of 92 

molecular dipoles when exposed to an electromagnetic field, is an economical method of 93 

providing a higher rate of temperature increase [4] and more uniform heating than the 94 

traditional heating methods [11]. Hence, a much shorter exposure time (typically less than 60 95 

minutes) is required for microwave curing to achieve high early age compressive strength [9]. 96 

Various studies [4, 9, 12-17] on microwave curing of OPC mortars made with different w/c 97 

ratios have confirmed the ability of microwave curing to significantly increase early age 98 

strength.    99 
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This paper provides a scientific framework on microwave curing of in-situ concrete repairs 100 

for the FP7 MCure project on the development of an energy efficient system for accelerated 101 

curing during repair of concrete structures. It is the first of a series of papers defining the 102 

relationship between microwave curing and the primary characteristics of concrete repairs. It 103 

derives relationships between the key parameters of concrete repair and microwave energy 104 

input. These results were used in developing and operating the prototype of a mobile 105 

microwave curing system for onsite use, which is compatible with EC standards.  106 

 107 

2. Experimental Procedure 108 

2.1. Materials and equipment  109 

Microwave curing investigation was carried out on the following commercial repair 110 

materials:   111 

Repair Material 1: A polymer-modified cement mortar, fibre-reinforced and shrinkage-112 

compensated. Density of the fresh mix was 1730 kg/m
3
. 113 

Repair Material 2: A polymer-modified rapid-setting cement mortar and fibre-reinforced. 114 

Density of the fresh mix was 2140 kg/m
3
. 115 

Repair Material 3: A polymer-modified cement mortar, fibre-reinforced and shrinkage-116 

compensated. Density of the fresh mix was 2280 kg/m
3
. 117 

Repair Material 4: A rapid hardening cement concrete with pulverised fuel ash and 118 

shrinkage-compensated. Density of the fresh mix was 2260 kg/m
3
. 119 

Repair Material 5: A polymer-modified cement mortar and fibre-reinforced. Density of fresh 120 

mix was 1500 kg/m
3
. 121 

Repair Material 6: A polymer-modified cement, rapid setting concrete. Density of fresh mix 122 

was 2200 kg/m
3
. 123 
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Repair Material 7: A mortar with CEM II/A-L 32.5 N cement [18], coarse sharp sand (50% 124 

passing a 600 m sieve) and w/c ratio of 0.5. Density of fresh mix was 2200 kg/m
3
.    125 

 126 

Two commercial microwave ovens were used, a Logik Model L25MDM13 with a 127 

maximum nominal output power of 900 Watts (manufacturer's specification) and a Sharp 128 

Model R-2370 with a maximum nominal output power of 1300 Watts (manufacturer's 129 

specification). Both microwave ovens could be set to generate power at incremental levels of 130 

10% up to 100% of their maximum output. The microwave frequency for both ovens is 2.45 131 

GHz. The microwave ovens were calibrated [11] according to ASTM F1317-98 [19] and BS 132 

EN 60705: 2012 [20] to determine their actual power outputs which in the case of the Logik 133 

Model L25MDM13 differed significantly from the manufacturer's specification. Unless 134 

otherwise mentioned, all values of microwave power given subsequently in the paper are the 135 

actual power values.   136 

 137 

2.2. Details of specimens, mixing and microwave curing 138 

2.2.1. Repair material specimens for surface temperature monitoring  139 

Three volumes of specimens, 1, 3.38 and 4.38 litres were used for microwave curing [11]. 140 

Specimens were cast in polystyrene cube moulds of 100 mm and 150 mm internal 141 

dimensions. The 1 litre volume was provided by a 100 mm mould, the 3.38 litre volume by a 142 

150 mm mould and the 4.38 litre volume comprised of the combined 100 mm and 150 mm 143 

cube moulds.  144 

Details of all repair material mixes are given in Table 1. The mix proportions recommended 145 

by the manufacturers of each repair material were used. The quantity of each repair material 146 

and water, given in Table 1, was mixed together in a Hobart mixer to produce the required 147 

volume of mix for the cube mould. Each mix was cast in the cube mould and compacted on a 148 
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vibrating table. The compacted specimens were kept in the laboratory environment 149 

(approximately 20 
o
C, 60% RH) for 30 minutes from the time of commencing mixing. After 150 

30 minutes of pre-curing in the laboratory, the cube moulds were placed in the microwave 151 

oven and cured for 45 minutes at levels of power 60, 120, 132, 180 or 264 Watts.  152 

Temperature was measured at the centre of the top surface of each cube at 0, 10, 20, 30, 40 153 

and 45 minutes from the start of microwave curing using a Flir i7 thermal camera. 154 

 155 

Table 1  156 
Details of repair material mixes. 157 

Test 

series 

Repair 

material 

Mix 

number 

Microwave 

oven 

Power 

 
(W) 

Weight 

of water 
(kg) 

Weight of 

powder  
(kg) 

w/p 

ratio* 

Volume 

of mix 
(L) 

Cube 

size 
(mm) 

28 day 

strength** 
(MPa) 

1 1 1 Logik 

L25MDM13 

  60 0.21 1.52 0.14 1 100 42 

2 120 

3 180 

2 1 120 0.26 1.88 0.14 60 

3 1   60 0.23 2.05 0.11 65-70 

2 120 

3 180 

4 1   60 0.26 2.00 0.13 65 

2 120 

3 180 

5 1   60 0.17 1.33 0.13 ≥ 25 

2 120 

3 180 

6 1   60 0.20 2.00 0.10 60 

2 120 

2 1 1 Sharp  
R-2370 

132 0.72 5.12 0.14 3.38 150 42 

2 264 

3 1 132 0.78 6.93 0.11 65-70 

2 264 

4 1 132 0.87 6.76 0.13 65 

2 264 

5 1 132 0.59 4.51 0.13 ≥25 

2 264 

3 1 1 Sharp  

R-2370 

132 0.93 6.64 0.14 4.38 100 

+ 
150 

42 

2 264 

3 1 132 1.01 8.98 0.11 65-70 

2 264 

4 1 132 1.12 8.76 0.13 65 

2 264 

5 1 132 0.76 5.84 0.13 ≥25 

2 264 

*w/p-water/powder ratio; **Manufacturer's compressive strength data. 158 
 159 

2.2.2. Repair material specimens for internal temperature monitoring  160 

Internal temperatures during 1169 minutes after microwave curing were recorded using 161 

thermocouples. Four T type thermocouples were located inside the 150 mm cube moulds as 162 

shown in Fig. 1 and the repair material was cast around them. The thermocouples were 163 
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located at 37.5, 75, 112.5 and 150 mm from the top surface of the specimens along the 164 

vertical centroidal axis. Temperature measurements were taken every 30 seconds using a 165 

Data Taker DT85G digital logger. Details of the two repair material mixes used for this 166 

investigation are given in Table 2.  167 

 168 

Table 2 169 
Details of repair material mixes for internal temperature monitoring. 170 

Repair 

material 

Mix number Microwave oven Power 

(W) 

w/p* w/c** Volume of mix 

(L) 

Cube size 

(mm) 

4 1 Sharp R-2370 132 0.13 − 3.38 150 

7 2 − 0.5   

* w/p-water/powder ratio; ** w/c-water/cement ratio. 171 

 172 

 173 

Fig. 1. Schematic diagram of thermocouples located inside a 150 mm cube specimen.  174 

 175 

2.2.3. Repair material specimens for investigating the effect of ambient (initial) temperature 176 

on microwave curing temperature 177 

The effect of different ambient temperatures of the fresh mix of a repair material on the 178 

microwave curing temperatures developed with time was investigated [11]. The investigation 179 

simulated the application of repairs in different in-situ conditions including cold weather. The 180 

constituent materials of each mix were conditioned and mixed at three different ambient 181 

temperature ranges: very low (1.7-6.5 
o
C), low (8.9-10.0 

o
C) and medium range (15.8-18.3 182 

o
C). The constituent materials were kept overnight in an environmental chamber to condition 183 
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them to the selected ambient temperature. The ambient temperature was maintained during 184 

mixing and for 30 minutes after casting a 150 mm cube specimen (3.38 litres volume) for 185 

each mix. Materials 1, 3, 4 and 5 were tested using the Sharp R-2370 microwave oven at an 186 

actual output power of 132 Watts. Temperature measurements at the centre of the top surface 187 

of the cubes were taken at 0, 10, 20, 30, 40 and 45 minutes from the start of microwave 188 

curing using a Flir i7 thermal camera. 189 

 190 

2.2.4. Steel reinforced mortar specimens for investigating safety of microwave curing 191 

Long and pointed metallic objects or very thin metal strips when placed in a microwave 192 

oven act as an antenna and reflect the microwave energy. At high levels of microwave power 193 

this can create electric arcs (sparks) which can increase the temperature of its magnetron. 194 

This can reduce the life of the magnetron. An investigation of the safety of microwave curing 195 

was carried out on specimens cast with 1, 2 or 3 steel bars placed horizontally along the entire 196 

length of the 100 mm cube as shown in Fig. 2a. Details of all steel reinforced mortar mixes 197 

are given in Table 3. The total length of each steel bar was 140 mm to cover the cube length 198 

(100 mm) plus 20 mm thickness of two mould walls. Steel bars of diameters 10, 8 or 6 mm 199 

were located through holes drilled in the side faces of the mould. In addition, one specimen 200 

was made with 6 mm diameter bars protruding 30 mm from each side face of the mould as 201 

shown in Fig. 2b. The total length of each steel bar was 200 mm. Both galvanised and normal 202 

mild steel bars were used. The top cover to steel bars was 25, 15 or 5 mm as shown in Fig. 3.   203 

A quantity of CEM II cement [18], sharp coarse sand and water (w/c ratio of 0.5) were 204 

mixed together to produce a 1 litre mix for the cube mould. Each cube was cast and 205 

compacted on a vibrating table and kept in the laboratory environment (approximately 20 
o
C, 206 

60% RH) for 30 minutes after commencing mixing. After 30 minutes of pre-curing in the 207 

laboratory, the cube moulds were placed in the microwave oven and cured for either 45 or 15 208 
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minutes at powers ranging from 60 to 420 Watts (Table 3). The temperature at the mid-point 209 

of the top surface of the cube was measured at the end of microwave curing (maximum 210 

temperature) using a Flir i7 thermal camera. 211 

 
 

Fig. 2a. Moulds with 1, 2 or 3 steel bars 

placed inside them and top cover 25 mm. 

 

 

 
 

Fig. 2b. Mould with steel bars protruding 

(exposed) and top cover 5 mm. 

                            212 

Fig. 3. Plain (control) and steel reinforced specimens with different top covers after 213 

microwave curing. 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 
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Table 3 229 
Details of steel reinforced mortar mixes. 230 

Cube size 

 

 

(mm) 

Microwave 

power 

 

(W) 

Microwave 

duration 

 

(min) 

Number and type of 

bars 

Bar 

diameter 

 

(mm) 

Top cover 

 

 

(mm) 

Orientation and 

length of steel bars 

100 60 45 1 galvanised MS* 10 25 Horizontal (140 mm) 

60 45 2 galvanised MS* 10 25 Horizontal (140 mm) 

60 45 3 galvanised MS* 10 25 Horizontal (140 mm) 

120 45 3 galvanised MS* 10 25 Horizontal (140 mm) 

180 45 3 galvanised MS* 10 25 Horizontal (140 mm) 

180 45 3 galvanised MS* 10 15 Horizontal (140 mm) 

180 45 3 galvanised MS* 10 5 Horizontal (140 mm) 

300 15 3 galvanised MS* 10 5 Horizontal (140 mm) 

300 15 3 normal MS* 8 5 Horizontal (140 mm) 

300 15 3 normal MS* 6 5 Horizontal (140 mm) 

420 15 3 normal MS* 6 5 Horizontal (140 mm) 

420 15 3 normal MS* 6 5 Horizontal (200 mm). 

Protrusion (30 mm) 

*MS-mild steel. 231 
 232 

3. Results and Discussion  233 

3.1. Temperature distribution 234 

Significant variations of top surface temperature were observed during microwave curing of 235 

all specimens of Series 1, 2 and 3, Table 1 (1, 3.38 and 4.38 L volume). In all cases hot zones 236 

appeared at the edges and corners of the polystyrene moulds shortly after starting microwave 237 

curing. Typical temperature distributions across the top surface of a 100 mm cube at 0, 10, 238 

20, 30, 40 and 45 minutes of microwave curing at 180 Watts power are shown in Fig. 4 (a-f). 239 

The dark edges represent the walls of the polystyrene moulds. At 40 minutes of curing, for 240 

example, the middle surface temperature is 81.7 
o
C whereas it increases towards 99 

o
C on the 241 

outer surfaces of the cube specimen. The temperature profiles show a significant variation of 242 

temperature developed in the cured material. This indicates the unreliability of firm 243 

relationships between temperature, time and strength development drawn by other 244 

researchers [4, 9, 12-17] based on localised temperature monitoring (e.g. by a single 245 

thermocouple).  246 

 247 

 248 
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(a) At 0 minutes 

 

(b) At 10 minutes 

 

(c) At 20 minutes 

 

(d) At 30 minutes 

 

(e) At 40 minutes 

 

(f) At 45 minutes 

 
 249 
Fig. 4 (a-f). Top surface temperature distribution of Material 1 100 mm cube subjected to 180 250 

W of microwave power. 251 

 252 

Significant variations of top surface temperature at the end of microwave curing were 253 

observed between different repair materials of the same volume exposed to the same power. 254 

Typical temperature distributions of the six repair material specimens after 45 minutes of 255 

microwave curing at 120 Watts are shown in Fig. 5 (a-f).  256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 
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(a) Material 1 

 
 

(b) Material 2 

 

(c) Material 3 

 

(d) Material 4 

 

(e) Material 5 

 

(f) Material 6 

 
 266 

Fig. 5 (a-f). Top surface temperature of the six repair materials (1 litre volume subjected to 267 

120 W power) at 45 minutes of microwave curing. 268 

 269 

Materials 2 and 6 developed particularly high temperatures (89.4 
o
C and 99.6 

o
C 270 

respectively) at the end of microwave curing compared with the normal Materials 1 and 3 271 

which developed 59.7 
o
C, and 58.1 

o
C, respectively. This is because both 2 and 6 are rapid 272 

setting repair materials. Material 4, which is a rapid hardening material did not develop 273 

higher temperatures than Materials 1 and 3. The admixtures, additives and the fineness of 274 

cement used in the repair mortars 2, 5 and 6 appear to affect the temperature. However, since 275 

the details of the constituents of these commercial materials are not available, precise 276 

conclusions cannot be drawn. There is no clear relationship between water/powder (w/p) or 277 

density of the mixes and the temperature developed by microwave curing. For example both 278 

normal Materials 1 and 3 have w/p ratios 0.14 and 0.11 respectively (Table 1) but the 279 

temperatures developed after 45 minutes of microwave curing are similar (57.9 
o
C and 58.1 280 

o
C, respectively).  Materials 1 and 5 on the other hand have similar w/p ratios (0.14 and 0.13, 281 

respectively) and densities (1730 and 1500 kg/m
3
, respectively) but they developed 282 
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significantly different temperatures after 45 minutes of microwave curing (59.7 and 75.4 
o
C, 283 

respectively). It is clear, therefore, that the constituents of repair materials, rather than their 284 

w/p ratio or density, are the main factors which control the microwave curing temperature.  285 

   286 

3.2. Time-temperature relationship 287 

A linear increase of top surface temperature with microwave curing time was observed for 288 

the repair materials, material volumes and power levels used. A typical time-temperature 289 

graph is given in Fig. 6, for 1 litre volume of Material 4 subjected to microwave power levels 290 

of 60, 120 and 180 Watts. However, the fast setting repair Material 2 showed a discontinuous 291 

linear time-temperature relationship as shown in Fig. 7 (volume 1 litre, power 120 Watts). 292 

The rapid hardening material underwent a phase change from semi-fluid to hardened material 293 

at high temperature during microwave curing. This is represented by the two different linear 294 

relationships shown in Fig. 7. The maximum curing temperature attained is excessive 295 

(reaching 90 
o
C) which would not be desirable in practice. Materials with this kind of time-296 

temperature relationship would not be suitable for microwave curing unless the ambient 297 

temperature is very low (cold weather application), when low power curing may be 298 

appropriate.    299 

The linear relationships of the type shown in Fig. 6 would be applicable to most practical in-300 

situ microwave curing situations where the maximum temperature remains below the 301 

recommended limit [11]. The industrial microwave curing system developed in this project 302 

will be based on this type of relationship.  303 
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   304 

Fig. 6. Top surface middle point time-temperature relationship for Material 4 (1 litre volume).  305 

 306 

 307 
 308 

Fig. 7. Top surface middle point time-temperature relationship for Material 2 (1 litre volume) 309 

at 120 W.  310 

 311 

3.3 Volume-temperature relationship 312 

  The thermodynamic formula for absorbed microwave power Pabs relates the volume V and 313 

temperature rise as follows [21]     314 

𝑃𝑎𝑏𝑠

𝑉
=

𝑐𝜌(𝑇𝑓−𝑇a)

𝑡
                                                                                                                        (1) 315 

 316 

where, Pabs is the microwave power (W); V is the volume (L); c is the heat capacity (J/kg/
o
C); 317 

 is the density (kg/m
3
); Tf is the temperature at the end of microwave curing (

o
C); Ta is the 318 

ambient temperature (
o
C); t is the microwave curing time (min). 319 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Te
m

p
er

at
u

re
 (

o
C

) 

Time (mins) 

Actual Output Power 60 W

Actual Output Power 120 W

Actual Output Power 180 W

T(t) = 2.32t + 27.42 
R² = 0.996 

T(t) = 0.69t + 59.52 
R² = 0.992 

0

20

40

60

80

100

0 10 20 30 40 50

Te
m

p
er

at
u

re
 (

o
C

) 

Time (mins) 

Material 2
Volume: 1 l (100 mm cube)
Actual Output Power: 120 W



16 
 

 320 

  This expression is applied to the experimental data of this investigation in Fig. 8, at a 321 

constant applied microwave power of (120-132 W) for a constant time of 45 mins for 322 

Materials 1, 3, 4 and 5. The ambient temperature of all tests ranged between 15.8 and 20.3 
o
C. 323 

Eq. 1 is re-written in the form 324 

∆𝑇 =
𝑃𝑎𝑏𝑠𝑡

𝑐𝜌
𝑉−1                                                                                                                        (2) 325 

where, ∆𝑇 = 𝑇𝑓 − 𝑇a                                                                                                               (3) 326 

 327 

  Fig. 8 shows a linear relationship between T and V for the constant power and microwave 328 

curing time for the experimental data of Materials 1, 3, 4 and 5. The slope of the graphs in 329 

Fig. 8 is a function of Pabs, t, c and ρ. The density ρ of Materials 1, 3, 4 and 5 is 1730, 2280, 330 

2260 and 1500 kg/m
3
, respectively. The coefficient c accounts for the different constituents 331 

of the repair materials and their mix proportions. 332 

 333 

Fig. 8 Volume-temperature rise relationships of repair materials 1, 3, 4 and 5 at 132 W. 334 

 335 

 336 

3.4. Rate of temperature increase with microwave power 337 

Time-temperature relationships of the repair materials and volumes at different power levels 338 

described in Section 3.2 were analysed to determine the rate of temperature increase, dT/dt 339 

(slope ), with time. The rapid setting Materials 2 and 6 were excluded since they developed 340 
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very high temperatures which would not be used in practice and had set before the end of 341 

microwave curing (Fig. 7). A linear relationship was observed between  and microwave 342 

power in all cases. A typical graph showing the relationships between microwave power and 343 

slope  for four repair materials (1 litre volume) is shown in Fig. 9. This relationship will 344 

provide an important input to the automatic control algorithm developed for the operation of 345 

the microwave curing prototype of the MCure project.  346 

 347 

Fig. 9. Power versus slope  relationship for five repair materials (1 litre volume). 348 

 349 

3.5 General relationship between microwave curing parameters of repair materials 350 

The basic parameters of microwave curing which are Power, Time and Volume are related 351 

to the temperature rise provided by microwave curing as shown in Fig. 10. The data in Fig. 352 

10 represent all tests listed in Table 1 for repair materials 1, 3 and 4 and volumes of cubes 1, 353 

3.38 and 4.38 L. The best fit relationship in Fig. 10 is given by the equation: 354 

𝛥𝑇 =
𝑃𝑡

√𝑉
                                                                                                                                 (4) 355 

where, T is the temperature rise due to microwave curing (
o
C); P is the microwave power 356 

(W); t is the duration of microwave curing (s); V is the volume of the repair material (dm
3
). 357 

 358 

  Eq. 4 has been used to design the microwave curing prototype rig for the MCure project. It 359 

was used to calculate the maximum power rating required of the prototype to deliver the 360 
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specified range of parameters , t and V required for in-situ curing of scaled up repair 361 

elements [22]. The parameters T and t were also specified on the basis of the results 362 

reported in the paper. Scaled up field trials on the MCure prototype proved that its design 363 

delivered the specified parameters [22]. 364 

 365 

Fig. 10. General relationship between microwave curing parameters of repair materials 1, 3 366 

and 4 367 

 368 

 3.6. Internal temperature development 369 

Typical time-internal temperature graphs accompanied by time-top surface temperature 370 

graphs for both normally cured (at 20 
o
C) and microwave cured specimens of Material 4 are 371 

shown in Fig. 11 and Fig. 12, respectively. The internal temperatures were monitored from 372 

thermocouples located within the 150 mm cube specimens (3.38 litre volume) which were 373 

microwave cured for 45 minutes at 132 Watts. The relationship under normal curing (20 
o
C) 374 

given in Fig. 11 shows one hump at about 775 minutes (775 + 30 pre-curing after mixing = 375 

805 minutes from the start of hydration), representing the peak heat of hydration temperature 376 

of about 45 
o
C. This represents a temperature rise of 25 

o
C due to heat of hydration. The 377 

corresponding microwave cured sample shows the first hump at 45 minutes (Fig. 12) when 378 

the peak microwave curing temperature is reached followed by a second hump at about 245 379 

minutes (275 minutes from the start of hydration, 200 minutes after the end of microwave 380 

curing) indicating the peak heat of hydration point. It is clear that the heat of hydration 381 
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reaction is significantly accelerated by microwave curing reducing the peak time from 805 to 382 

275 minutes while increasing the peak temperature to 79 
o
C. This shows a temperature rise of 383 

34 
o
C from the end of microwave curing (45 

o
C) to the peak of hydration (79 

o
C). Fig. 12 384 

shows that heat of hydration develops after the microwave curing period and has an 385 

insignificant effect on the temperatures developed during microwave curing as shown in Fig. 386 

6. Other results reported by the authors [23] for 100 mm cube specimens microwave cured to 387 

about 40 
o
C show that, for non-rapid setting repair materials, the maximum temperature of 388 

between 53.8 and 71.1 
o
C is reached at 10-60 minutes after the end of microwave curing. 389 

  The acceleration of heat hydration with microwave curing observed in Fig. 11 and Fig. 12 390 

agrees with the results of Theo et al. [24] for microwave cured precast ferrocement roofing 391 

slabs of approximately 11 litres volume. The slabs were cured for 10-20 minutes at 3000 392 

Watts microwave power. Maximum heat of hydration occurred during microwave curing, 393 

leading to high temperatures (approximately 70 
o
C) at the end of curing.  394 

The results discussed above show that both the microwave curing temperature and the heat 395 

of hydration contribute to the maximum temperature developed in the concrete volume within 396 

a short period after the end of microwave curing. In practice, the maximum temperature 397 

during this period should remain below the limit which affects durability [6] and the 398 

maximum temperature used for microwave curing should reflect this.  399 

Fig. 12 shows that the top surface mid-point temperatures measured by the thermal camera 400 

closely follow the internal temperatures (thermocouple readings) developed during the 45 401 

minutes of microwave curing. Thereafter the internal temperatures are higher due to the 402 

accelerated heat of hydration. The hot spots developed at the edges of the cube specimens get 403 

significantly hotter (Fig. 12, thermal camera, top surface hot spot) but their temperature drops 404 

immediately at the end of microwave curing to the level of mid-point surface temperature. 405 
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 406 

Fig. 11. Typical internal temperature-time relationship for Material 4 (3.38 litres volume) 407 

cured at 20 
o
C. 408 

 409 

 410 

Fig. 12. Typical internal temperature-time relationship for Material 4 (3.38 litres volume) 411 

microwave cured at 132 W for 45 minutes, followed by curing at 20 
o
C.  412 

 413 

3.7 Permissible Microwave Curing Temperature 414 

The maximum temperature of 79 
o
C reached at the peak of hydration (Fig. 12) is excessive 415 

from the considerations of long-term durability [6]. Curing of concrete at temperatures 416 

exceeding about 70 
o
C can lead to durability problems such as delayed ettringite formation 417 

and loss of long-term strength [6]. Therefore, limits need to be set to the maximum 418 

microwave curing temperature for in-situ curing, taking account of the heat of hydration and 419 
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temperature variations (hot spots) which occur during microwave curing. This can be done by 420 

adopting the following equations to determine the permissible temperature: 421 

𝑻𝒎 + 𝜟𝑻𝒉 ≤
𝟕𝟎

𝜸𝑻
      (5) 422 

𝜟𝑻𝒉 = 𝑻𝒉 − 𝑻𝒎 (6) 423 

 424 

where, Tm is the permissible temperature at the end of microwave curing (
o
C); Th is the peak 425 

heat of hydration temperature of unhardened concrete (
o
C); is the factor of safety 426 

accounting for microwave curing temperature variations (hot spots). 427 

  The temperatures at the hot spots reported in this paper are likely to have been exaggerated 428 

by the edge effects of the polystyrene moulds. More accurate information will be obtained 429 

from the larger scale trials to be carried out with the microwave curing prototype. In addition, 430 

the prototype will adopt a magnetron of higher specifications, which will provide more 431 

uniform heating. Consequently, the value of is likely to be small. Most concrete repairs are 432 

relatively small (thin) and, therefore, their volume will not cause excessive heat of hydration. 433 

The acceleration of hydration by microwave curing, however, can lead to high temperature 434 

before the repair hardens thereby raising durability concerns. The upper limit set by durability 435 

considerations regulates the maximum microwave curing temperature Tm. The temperature 436 

increase relative to the ambient (Ta), T = Tm − Ta available for microwave curing at low 437 

ambient temperatures is high and, therefore, exceeding the durability upper limit temperature 438 

is less likely to cause a problem than in repairs applied at high ambient temperatures. The 439 

authors have used a microwave curing temperature Tm of 40 
o
C in subsequent tests which 440 

recorded a maximum temperature (Tm + Th) of 71.1 
o
C for seven repair materials [23].    441 

3.8. Effect of ambient temperature on the microwave curing temperature  442 
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A summary of results which include the temperature rise T, the rate of temperature 443 

increase (dT/dt) and maximum temperature after microwave curing for 45 minutes at 132 444 

Watts, is given in Table 4 for all repair materials prepared at different ambient temperatures. 445 

Fig. 13 shows the time-temperature relationships under microwave curing of Repair Material 446 

5 prepared at different ambient temperatures of 1.7 
o
C, 8.9 

o
C and 15.8 

o
C (Material 5 mixes 447 

1, 2 and 3 respectively, Table 4). The graphs are typical of repair materials 1, 3, 4 and 5 448 

(Table 4) which show a linear increase in temperature with time.  449 

  The results in Table 4 for Materials 1, 3 and 4 show that the temperature rise T achieved 450 

after 45 minutes of microwave curing is greater at lower temperature, resulting in a higher 451 

rate of temperature rise dT/dt at lower ambient temperatures. For example, the temperature 452 

rise of Material 1 at ambient temperature of 3 
o
C is 0.88 

o
C/min compared with 0.8 

o
C/min at 453 

17.1 
o
C ambient temperature. The corresponding rates for Material 3 are 0.74 

o
C/min and 454 

0.59 
o
C/min for ambient temperatures of 6.5 and 18.3 

o
C, while the corresponding rates for 455 

Material 4 are 0.61 
o
C/min and 0.47 

o
C/min for ambient temperatures of 3.2 and 17.8 

o
C. 456 

However, this trend is reversed for repair Material 5 which heats more rapidly at higher 457 

ambient temperatures (see Fig. 5).    458 

 459 

Fig. 13. Time-temperature profile of Material 5 prepared at 1.7 
o
C, 8.9 

o
C and 15.8 

o
C and 460 

microwave cured for 45 minutes at 132 W. 461 

 462 
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Table 4 464 
Summary of microwave curing temperatures developed at different ambient temperatures. 465 

 466 
Repair 

material 

Mix Power 

 

(W) 

Volume 

 

(L) 

Ambient 

temperature 

(
o
C) 

Maximum 

temperature*  

(
o
C) 

T 

 

(
o
C) 

ddt 

 

(
o
C/min) 

 1 1 132 3.38 3.0 42.5 39.5 0.88 

 2   10.0 47.2 37.2 0.83 

 3   17.1 52.9 35.8 0.80 

3 1   6.5 39.9 33.4 0.74 

 2   9.1 43.8 34.7 0.77 

 3   18.3 45.0 26.7 0.59 

4 1   3.2 30.5 27.3 0.61 

 2   9.9 35.0 25.1 0.56 

 3   17.8 39.0 21.2 0.47 

5 1   1.7 41.4 39.7 0.88 

 2   8.9 51.7 42.8 0.95 

 3   15.8 62.2 46.4 1.03 

*Temperature measured at the centre of the top surface of cube by using a Flir i7 thermal camera.  467 

  468 

3.9. Effect of steel reinforcement   469 

No sparks or arcing was observed during microwave curing of all steel reinforced cube 470 

specimens. Typical temperature distributions of a plain (control at 120 Watts), a mild steel 471 

reinforced (3 steel bars, 10 mm diameter, 25 mm cover at 120 Watts) and a mild steel 472 

reinforced (3 protruding steel bars, 6 mm diameter, 5mm cover at 420 Watts) specimen are 473 

shown in Fig. 14a-c, respectively. No significant changes in top surface temperature 474 

distribution and mid-point surface temperatures were observed by varying the type of mild 475 

steel (galvanised or normal), number of steel bars (1, 2 or 3), bar diameter (10, 8 or 6 mm) or 476 

top cover (25, 15 or 5 mm). 477 

  Fig. 14c shows the extreme case of steel bars protruding from the cube moulds. The 478 

temperatures in the protruding parts of the steel bars are on the lower end of the recorded 479 

temperature scale and are much lower than the mortar specimen. There was no arcing 480 

observed in these tests.  481 

  The above results are provided to allay health and equipment safety concerns. The effects of 482 

microwave curing on the bond strength of the steel reinforcement were also investigated, 483 

which will be reported in another paper. 484 
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Fig. 14a. Temperature distribution of plain 

(control) mortar specimen after 45 minutes of 

microwave curing at 120 W.  

 

 

 

Fig. 14b. Temperature distribution of steel 

reinforced mortar specimen (3 steel bars, 10 

mm diameter, 25 mm top cover) after 45 

minutes of microwave curing at 120 W.  

 

 
 

Fig. 14c. Temperature distribution of steel reinforced mortar specimen (3 protruding steel 

bars, 6 mm diameter, 5 mm top cover) after 15 minutes of microwave curing at 420 W.  

 485 

 486 

Conclusions 487 

  The following conclusions can be drawn from the results presented in the paper: 488 

 Microwave curing is suitable for normal, non-rapid setting repair materials which are not 489 

cured to excessively high temperatures. The cumulative total of the microwave curing and 490 

the heat of hydration temperatures of the fresh material should be kept below the limit set 491 

by durability considerations.  492 

 Considerable variation of temperature occurs on the surface of microwave cured cubes. 493 

This should be taken into account in the cumulative total temperature of the microwave 494 

cured material. 495 

 The temperature during microwave curing increases linearly with time and power input 496 

under the recommended moderate limits of microwave curing temperatures. 497 
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 Microwave curing accelerates hydration and reduces the time taken to reach peak heat of 498 

hydration temperature. 499 

 The maximum microwave curing temperature is affected by the initial (ambient) 500 

temperature of the fresh mix. 501 

 The rate of temperature increase with microwave curing time (slope dT/dt) increases 502 

linearly with the applied power. The rapid setting materials are an exception unless the 503 

curing temperature Tm is relatively low.   504 

 The presence of steel reinforcement in repair mortar does not cause any arcing during 505 

microwave curing. This also applies to steel located at very low cover (5 mm) and to 506 

exposed steel bars protruding from the mortar surface. 507 

 508 
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